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Abstract

Artificial perception systems need to be able to deal with uncertainty. A well tried solution
for that problem is the use of probabilistic approaches, however these can easily overload
standard architectures based on Central Processing Units (CPUs) and Graphics Processing
Units (GPUs), which leads to slow computations. As opposed to this, the work presented
in this dissertation uses machines developed around unconventional hardware based on
stochastic signals, allowing the use of simple logic gates to perform computations and
efficiently solve Bayesian inference.

These machines were developed during the European project "Bottom-up Approaches
to Machines dedicated to Bayesian Inference" (BAMBI) from the Future and Emerging
Technologies (FET) program. Since their architecture is not generic, meaning they would
not be appropriate to implement with Application Specific Integrated Circuits (ASICs), a
toolchain was developed that allows the spooling of these machines into Field-Programmable
Gate Arrays (FPGAs).

By using FPGAs there are no off-the-shelf solutions to connect to a robot. To do this, the
FPGAs were connected to a computer that is then able to use the Robot Operating System
(ROS) to communicate with ROS-compliant robots/sensors/actuators/simulators. ROS is
widely used for the development of robotic systems, and by using it we are able to design an
interface that is easily integrated into many robotic projects.

In order for the host computer and the FPGAs to achieve high-speed data transfers, a PCI-
Express (PCIe) connection was developed. The final objective is to provide an abstraction
from all the communication layers of the interface so the user only needs to handle ROS
topics to implement probabilistic models in the FPGA mini-cluster.

In Chapter 4 a case study is presented that successfully demonstrates the properties of the
system.
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"Probability theory is nothing but common sense reduced to calculation."

- Pierre-Simon Laplace



Resumo

Os sistemas de perceção artificial precisam de conseguir lidar com a incerteza. Uma solução
robusta para esse problema consiste em usar métodos probabilísticos. No entanto, estes facil-
mente sobrecarregam arquiteturas padrão, baseadas em Unidades Centrais de Processamento
(CPUs) ou Unidades de Processamento Gráfico (GPUs), o que leva a cálculos mais lentos.
Por outro lado, o trabalho apresentado nesta dissertação usa máquinas desenvolvidas em
redor de hardware não convencional baseado em sinais estocásticos, permitindo o uso de
portas lógicas simples para realizar computações e lidar com inferência Bayesiana de forma
eficiente.

Estas máquinas foram desenvolvidas durante o projecto Europeu "Bottom-up Approaches
to Machines dedicated to Bayesian Inference" (BAMBI), no âmbito do programa Future and
Emerging Technologies (FET). Como a sua arquitectura não é genérica, o que significa que
não seriam apropriadas para implementar em Circuitos Integrados de Aplicação Especifica
(ASICs), uma toolchain foi desenvolvida para permitir a implementação destas máquinas em
Field-Programmable Gate Arrays (FPGAs).

Ao usar FPGAs não há soluções prontas a usar para estabelecer uma ligação a um robo.
Para fazer isto as FPGAs necessitam de estar ligadas a um computador capaz de usar o
Robot Operating System (ROS) para comunicar com robos/sensores/actuadores/simuladores
compatíveis com ROS. O ROS é amplamente utilizado para o desenvolvimento de sistemas
robóticos e ao usá-lo é-nos possível desenhar uma interface facilmente integrada em muitos
projectos robóticos.

Também foi desenvolvida uma ligação PCI-Express (PCIe) para que o computador e as
FPGAs alcancem transferências de dados de alta-velocidade. O objetivo final é fornecer
uma abstração de todas as camadas de comunicação da interface de forma a que o utilizador
apenas tenha que lidar com tópicos de ROS para implementar modelos probabilísticos num
mini-grupo de FPGAs.

No Capítulo 4 apresenta-se um estudo de caso que ilustra as propriedades do sistema,
bem como situações em que o mesmo possa ser aplicado com sucesso.
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Chapter 1

Introduction

1.1 Motivation

Artificial perception systems must be able to efficiently deal with uncertainty [1, 2]. One
robust solution for that problem is the use of probabilistic approaches [1, 2], however these
can easily overload standard architectures based on Central Processing Units (CPUs) and
Graphics Processing Units (GPUs) and quickly become intractable [3, 2].

This led to the conception of the European BAMBI project - Bottom-up Approaches to
Machines dedicated to Bayesian Inference - from the Future and Emerging Technologies
(FET) program. During this project new architectures that are able to efficiently solve
Bayesian inference were developed. The original idea regarding a hardware implementation
of these machines was to construct easy-to-deploy Bayesian Application-Specific Integrated
Circuits ((B)ASICs), since ASICs are: a) energy efficient and b) have high performance [4].
However these (B)ASICs are application specific, meaning we would have to build new ones
every time the probabilistic model changes [4]. Since ASICs have very high non-recurring
engineering costs, a fixed function and are not reconfigurable, they may not be an appropriate
platform for the deployment of these architectures [4].

FPGAs, on the other hand, posses the following characteristics:

• Reconfigurability =⇒ no cost to produce extra ASICs for each function or update;

• A Low-Power architecture =⇒ can be better tuned for low power and energy efficiency
than CPUs and GPUs;

• Comparable performance to CPUs and GPUs, depending on the characteristics of the
problem.
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The reconfigurability of FPGAs allowed for the creation of a toolchain to build dedi-
cated (B)ASIC machines when given an inference problem specified in ProBT, which is a
proprietary python library from ProbaYes [3, 4].

After selecting FPGAs as the preferred means of implementing these Bayesian Machines
(BMs), we still had to design an interface between them and robots, which leads us to this
thesis’ objective.

1.2 Objective

The main goal of the work described in this dissertation was to develop an interface, as generic
as possible, between an FPGA mini-cluster and any ROS compliant robot/sensor/actuator,
in order to implement probabilistic models for use on robotic applications. This comes in
continuation of the work developed by Hugo Fernandes within the BAMBI project, under
the supervision of Professor Doctor Jorge Lobo at the Institute of Systems and Robotics of
the University of Coimbra, and aims to contribute to its development.

The chosen solution was to use a computer as the Host PC of the FPGA Mini-cluster
with a Peripheral Component Interconnect-Express (PCIe) connection between them. The
Host PC could then use a WebSocket connection to send/receive data to/from a robot. A high
level view of such a system is presented in Figure 1.1.

Fig. 1.1 High level view of the interface between the FPGA Mini-Cluster and a Robot.
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1.3 Related Work

The BAMBI project was not the only project to develop unconventional architectures dedi-
cated to Bayesian inference in recent years.

Two other projects, named SpinNaker and TrueNorth, present highly parallel machines
that work like assemblies of neurons, however each processing unit is based on the traditional
von Neumann architecture and performs either fixed or floating point operations [5].

V. Mansinghka and E. Jonas used sampling methods to compute approximate probabilistic
inferences. The hardware implementation made use of hardware components performing
standard operations, for example normalisation or exponentiation [5, 4].

The use of standard hardware to implement algorithms is referred to as a Top-Down
approach. The BAMBI project, on the other hand, followed a Bottom-Up approach [4].

This involved designing unconventional hardware for probabilistic computation from
new stochastic building blocks that allowed the parallelism to take place at the bit level. By
doing so, operations like addition and multiplication can be done with very low-complexity
components [5, 4].

Other teams have also developed unconventional hardware dedicated to Bayesian infer-
ence. For example, Vigoda presented architectures based on probabilities that made use of
analogue signals, but these could not handle complex inference problems [5, 4].

The Nanoscale Computing Fabrics Laboratory at the University of Massachusetts Amherst [5]
has also been pursuing research based in Directed Acyclic Graph (DAG) models. The
Bayesian Estimation And Stochastic Tracker (BEAST) and Bayesian INference in DAG
(BIND) frameworks have also been presented by Thakur [5]. It is worth mentioning that all
of the projects mentioned above seem to be only theoretical and lack any robotic implemen-
tation.

The idea behind interfacing FPGAs with robots using ROS has been implemented before.
In [6] a ROS-compliant FPGA component was developed which acts as the translator
between the ROS topics and the hardware design. By having the hardware design and the
ROS-compliant FPGA component on the same chip, high-speed data transfers between
them were achieved, however the system becomes limited to only one board. To add more
boards to the system would mean creating custom interfaces for those boards, meaning this
system does not scale well to larger problems, a necessity for systems dealing with Bayesian
inference. Furthermore FPGA resources are also required to implement the ROS-compliant
FPGA component in hardware.
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The system presented in this dissertation, on the other hand, can easily be scaled to
bigger clusters. This is due to the ROS communication being performed in the host computer,
thus freeing the FPGAs to serve their purpose of being co-processors for handling Bayesian
inference computations. However this leads to the necessity of implementing a high-speed
interface between the FPGAs and the host computer in order to avoid creating bottlenecks in
the system. To achieve this a PCIe connection was implemented.

To establish a PCIe connection between an FPGA and a Host PC, one would usually
have to design the interface in hardware, either using the FPGA logic, or a Hard PCIe block
that is available in some FPGAs. These Hard PCIe blocks allow the user to create this
connection without wasting precious resources on the FPGA chip. The user would then also
have to design drivers for the PCIe interface or use an open-source framework like Reusable
Integration Framework for FPGA Accelerators (RIFFA) [7].

In order to avoid this lengthy and troublesome process Gidel, the company that designed
the boards that were used in this project, created an application that is able to instantiate both
the hardware components for the PCIe interface and the drivers for the host computer.

1.4 Key Contributions

• Implementation of machines capable of efficiently computing Bayesian inference in an
FPGA mini-cluster;

• A generic ROS interface for the FPGA mini-cluster that allows it to:

Receive data from any ROS-compatible robot/sensor/actuator;

Publish the results to a ROS topic.

• A PCIe connection between the host computer and the FPGA mini-cluster to allow for
fast data transfers;



1.5 Structure of Dissertation 5

1.5 Structure of Dissertation

• Chapter 1 contains the motivations, goal, related research and key contributions of
this thesis;

• In Chapter 2 the theoretical framework, the scientific background and methods, of this
thesis are presented. To be more specific, it is in this chapter that we delve deeper into
the concepts of Bayesian Machines, the Robot Operating System and PCI-Express;

• In Chapter 3 we will go over the implementation details of both the Rosbridge
connection and the PCI-Express links. An overview of the entire system is also
displayed;

• In Chapter 4 a case study is presented, along with results;

• Finally, in Chapter 5 conclusions are drawn and future work is also presented.





Chapter 2

Theoretical Framework

2.1 Bayesian Machines

As mentioned in Section 1.1, a toolchain was devised that allows the user to build (B)ASIC
machines for a given probabilistic model that is specified in ProBT. The user can further
specify if the resulting machine should perform exact inference with approximate calculations,
or if it should follow a sample-based approach to find an approximate solution. Depending
on the choice, the toolchain will generate a BM1, for the first option, or a BM2 for the
second [4].

Although their architecture and target applications may differ, they possess two things
in common. First, they transform the input data into stochastic signals and perform all
operations with those stochastic signals. Second, they possess a generic interface in the
sense that they only receive as input the sensor data and output the full posterior probability
distribution [4].

It is this generic interface of the BMs that makes them well suited to be used as co-
processors for classical computers that need to run large Bayesian problems in an efficient
fashion [4].

The architecture of these machines was already developed within the BAMBI project.
However, the toolchain had to be adjusted, and a deep understanding of these architectures
was required. In the following subsections, a summary description of the architecture and
illustrative block diagrams of the modules of these machines are provided. In [4], a more
elaborate description is available, however, it dwells in development details and variants that
were not integrated in the final architectures of the BMs.
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2.1.1 Stochastic Computing

Most of the computer performance gains of the last decades have been associated with a
reduction in size of the processor’s electronic components. This led to an increase in the
amount of transistors one could fit on a chip. In fact Moore’s Law - the observation that the
number of transistors on a chip doubles approximately every two years - has been accurate
for many decades, however as of recently it has been slowing down [8, 4].

In the search for a source of new performance gains old concepts have been revisited, one
of them being stochastic computing. Instead of performing operations using fixed or floating-
point representations, stochastic computing is based on a temporal coding of numbers by
using streams of bits. A stream of n random bits codes the value p = n1

n = n1
n1+n0

where n1 is
the number of bits equal to one and n0 is the number of bits equal to zero [4].

A stochastic bitstream that encodes the value p is generated by independently drawing n

bits bi following a Bernoulli law of parameter p, where: P([bi] = 1) = p and P([bi] = 0) =
1− p.

As such it can be demonstrated that if we have two stochastic bitstreams p1 and p2 we can
obtain the bitstream that encodes the value p1 × p2 with a simple AND gate. The operators
for addition and subtraction are also very simple, therefore stochastic computing allows us to
design small-area and low-power architectures [4].

Another important property of stochastic computing is its increased fault tolerance. Since
no bit in a stochastic bitstream is more significant than the others, possible errors have less
impact on the global results than on fixed or floating-point representations. By taking this
into account we could greatly relax the accuracy requirements of the BMs and have highly
energy-efficient circuits [4].

The main drawback of stochastic computing is the trade-off between precision and
computation time. For a biststream obtained as n independent Bernoulli experiments of
parameter p, the standard deviation of the estimated probability n1

n is:

σ(n1/n) =
√

p(1− p)/n (2.1)

According to equation 2.1 we could have an arbitrarily small error, however this would
lead to a rapid increase in computation time [4]. One more problem associated with time-
based representations of probabilities is related to coding very low probability values. By
having multiple products between several stochastic bitstreams that encode values close to 0
we can obtain a bitstream with very few bits set to "1". This means that the number of bits
necessary to get an accurate reconstruction of the distribution can become very high, which
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causes the time dilution problem. This problem can lead to a necessity to run a machine for a
very high number of cycles in order to collect the output data, which would be prohibitive
for many applications [4, 5, 9].

In summary, stochastic computing provides us some advantages, such as: a) small-area
and low-power architectures, and b) increased fault tolerance. However it also presents
us with disadvantages: c) trade-off between precision and computation time, and d) time
dilution problem.

2.1.2 BM1 - Exact Inference with Approximate Computations

The BM1 is a machine capable of performing naive Bayesian fusion in parallel where all the
known variables are considered to be conditionally independent with one another for any
given searched variable [4]. It computes the posterior probability distribution on a searched
variable S, while knowing the prior distribution P(S) and the conditional distributions P(Ki|S)
with i ∈ [1, ...,N] [5]. The resulting inference can be defined by equation 2.2, where Z is a
normalization constant [4].

P(S|k1, ...,kn) =
1
Z

P(S)
N

∏
i=1

P(ki|S) ∝ P(S)
N

∏
i=1

P(ki|S) (2.2)

If S has M possible values, we can consider j ∈ [1, ...,M], and say that the BM1 is capable
of concurrently computing the M posterior probability values P([S = s j]|k1, ...,kn) in parallel.
To achieve this it uses a very simple architecture, a matrix of components with:

• Number of lines = M • Number of columns = N +2

Each line of the matrix is composed of a BM1 prior element, a number of BM1 tile
elements equal to N and a counter where the final posterior probability calculated in that line
is stored [4]. There is also a Random Number Generator (RNG) for every column of the
BM1, except in the column with the counters. In Figures 2.1 and 2.2 you can see how the
BM1 prior and tile elements work, in these figures the blue lines indicate binary numbers,
whereas the red lines indicate stochastic bitstreams.

The prior element in Figure 2.1 receives a prior value that is used to select a probability
from a table that is stored in local memory [4]. The probability values of this table are
generated by the toolchain based on the implemented probabilistic model [4]. The resulting
value is a binary number that represents the prior probability of the variable S: P(S) [4]. The
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random number and P(S) are provided to the Stochastic Bitstream Generator, which then
generates a stochastic signal encoding the value of P(S) [4].

Fig. 2.1 BM1 prior element. Red lines indicate stochastic bitstreams, blue lines indicate
binary numbers.

The tile element in Figure 2.2 is very similar to the prior element, the differences are
that instead of receiving a prior value it receives a sensor value, K, and the prior probability,
P(S) [4]. The sensor value is used to select the conditional probability of P(K|S). The
resulting binary number is then converted into a stochastic bitstream and multiplied with the
prior probability with an AND gate [4]. The resulting stochastic bitstream encodes the value
P(S)P(K|S) which is proportional to the posterior probability P(S|K) [4].

Fig. 2.2 BM1 tile element. Red lines indicate stochastic bitstreams, blue lines indicate binary
numbers.

By correctly arranging these blocks we are able to compute P(S)∏
N
i=1 P(ki|S) for every

searched variable. The last step necessary to obtain the full posterior probability distribution
is to normalize the final results. The counters are responsible for: a) recovering the full
posterior probability as a numeric representation, and b) perform the normalization [4, 5].

In order to recover the probability value of each line as a numeric representation, each
counter integrates the incoming stochastic signals by counting the number of ’1’ bits (n1) in a
given number of clock cycles n. This results in the fixed point representation of the value n1

n ,
which is an estimation of the probability value encoded by the stochastic bitstream. The
accuracy of this estimation increases with the size of the counters and the integration time (n)
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due to the trade-off between accuracy and computation time when dealing with stochastic
signals [4, 5].

In each counter there is a component that detects when its buffer overflows. The first
counter to overflow is considered to correspond to the maximum probability value. When
this happens all other counters need to stop. The maximum count value, at overflow, is then
used to normalise all other counters to obtain the output distribution up to a scale factor λ .

P([S = s j]|k1, ...,kn) = λ
count j

countmax
(2.3)

By multiplying the values in every line of the matrix by the same factor, we are able to
preserve the distribution profile since only the normalization constant, Z, from the inference
equation 2.2 is modified [4]. The scale factor λ is determined by the fact that P([S =

s j]|k1, ...,kn) is a probability distribution, i.e.: ∑
M
j=1 P([S = s j]|k1, ...,kn) = 1.

2.1.2.1 BM1 Example - Boat Localization Problem

In this problem we have to find the location of a boat in a 64×64 grid using only the values
provided by the sensors of the boat.

There are three beacons on the shore and the boat has both distance and bearing sensors
that are capable of detecting those beacons. An illustration of this problem can be seen
in Figure 2.3. The distances and bearings from the boat to each beacon are stored in the
following variables: D1, D2, D3, B1, B2 and B3. These variables become the known
variables of the probabilistic model, whereas the searched variables are the grid cells.

Fig. 2.3 Illustration of the Boat Localization Problem.

The hardware implementation of the boat localization problem can be seen in Figure 2.4.
The number of lines, M, is equal to the number of grid cells, in this case 64×64 = 4096.
The number of columns equals the number of sensors, 6, plus two.
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You can see that the random numbers for each column are shared between all the
elements of that column. This allows us to save hardware resources, however it is only
possible because all of the searched variables (lines in the matrix) are considered to be
independent [4]. Another important detail is that the number of searched variables has no
influence on the amount of clock cycles the BM1 has to spend to compute the posterior
probabilities. This number only affects the size of the machine and the amount of resources
required. The determining factors in the amount of time the machine has to spend to obtain
accurate results are: a) the number of sensors or known variables in the module (columns),
and b) the size of the counters.
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2.1.3 BM2 - Approximate Solution of Otherwise Intractable Problems

In the BM1 the stochastic circuits are based on an exhaustive inference paradigm where the
computation trees, corresponding to the considered inferences, are fully represented in the
circuits [4]. As the size of the probabilistic problems increases and the marginalization over
high cardinality variables becomes necessary, the BM1 starts to present scalability problems
in terms of size and power consumption [4]. This issue arises from the fact that probabilistic
inference is an NP-hard problem, therefore computing the exact output distribution for some
inference problems can quickly become intractable [4].

An alternative approach involves using approximate inference and output samples drawn
from the target distribution by using Markov Chain Monte Carlo (MCMC) sampling tech-
niques based on Metropolis-Hastings or Gibbs sampling [4]. The concept and design of
the BM2 followed this alternative approach. This machine follows a sampling inference
paradigm that allows us to find an approximate solution for probabilistic problems that would
be intractable in exact inference [4, 10].

The BM2 uses a bit level Gibbs sampling algorithm: an approximate inference algorithm
based on Gibbs sampling where, given a decomposition of the joint probability distribution
over some discrete variables, it efficiently produces samples in the joint space bit-by-bit
without excessive memory requirements [4]. By adapting the Gibbs sampling algorithm to
operate at the bit level it becomes possible to implement approximate inference by sampling in
stochastic circuits [4]. Considering a set of discrete and finite variables V = {Vi} partitioned
into two sets, the known variables K = {Ki} and unknown variables U = {Ui}, and P(K,U)

as a joint probability distribution over these variables, we end up with Algorithm 1 [4].

Algorithm 1: Gibbs sampling
Initialization:
for Ki ∈ K do

Set Ki to the thrown values ki

end
for Ui ∈U do

Set variable Ui to a value ui drawn randomly
end
Sampling:
while TRUE do

for Ui ∈U do
Draw a sample ui of Ui according to P(Ui|{k j},{u j ̸=i})
Update Ui with the value ui

Output the current values of all variables Ui as a sample on the joint space U
end

end

Fig. 2.5 Bit level Gibbs sampling algorithm.
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This algorithm tells us that all the bits of the set of unknown variables need to be sampled
individually in order for the BM2 to output a sample on the posterior distribution P(U |{ki}),
however the difficulty lies in properly drawing samples according to the conditional distribu-
tions [4]:

P(Ui|{k j},{u j ̸=i}) (2.4)

Because we are drawing one sample, ui, at each iteration of the algorithm, equation 2.4
becomes reduced to making a binary choice between ui = 1 or ui = 0, which we can denote
as the following Bernoulli distribution of parameter p [4]:

P([Ui = 1]|{k j},{u j ̸=i}) = p (2.5)

P([Ui = 0]|{k j},{u j ̸=i}) = 1− p (2.6)

From this distribution it is possible to generate a stochastic bitstream of size n encoding
the value of p, however it may take a long time to get accurate results. If we revisit
equation 2.1 we find that the representation error of a stochastic bitstream decreases as the
inverse of the square root of n [4]. Since we are using a sampling algorithm, we are able to
produce a single sample with the right probability at each iteration by foregoing the need to
explicitly compute p with equation 2.7. If we were to use this equation it would be necessary
to compute the normalisation constant P({k j},{u j ̸=i}) [4].

p = P([Ui]|{k j},{u j ̸=i}) =
P([Ui],{k j},{u j ̸=i})

P({k j},{u j ̸=i})
(2.7)

Instead we can use the odds representation to parametrise the stochastic bitstreams
with the following relations: o = p

1−p , p = o
1+o . By using this representation we obtain

equation 2.8 where we no longer need to compute the normalisation constant [4].

o =
P([Ui = 1]|{k j},{u j ̸=i})
P([Ui = 0]|{k j},{u j ̸=i})

=
P([Ui = 1],{k j},{u j ̸=i})
P([Ui = 0],{k j},{u j ̸=i})

(2.8)

If we assume that the joint distribution over the |V | variables of V is given as a product of
positive functions, we can obtain equation 2.9, where S j ⊆ {V1, ...,V|V |} denotes the set of all
variables of the positive function f j : S j = {S j

1, ...,S
j
|S j|} [4]:

P(V1, ...,V|V |) = ∏
j

f j(S j) (2.9)
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If M = { j : Ui ∈ S j} is the set of indices j such that Ui is a variable of function f j, then
we can define equation 2.10 where the odds o can be seen as a product of odds om [4]:

o = ∏
m∈M

fm(sm
1 , ...,s

m
l−1,Ui = 1,sm

l+1, ...,s
m
Sm
)

fm(sm
1 , ...,s

m
l−1,Ui = 0,sm

l+1, ...,s
m
Sm
)
= ∏

m∈M
om (2.10)

At each iteration of the Gibbs algorithm a sample is drawn from the distribution of
equation 2.4 thanks to a bitstream of odds o, which can be obtained as a product of odds

om [4].
Since Algorithm 1 only requires one sample to be drawn with odds o it becomes unneces-

sary to evaluate with precision the value of o = ∏
m

om [4]. In fact, if we take into consideration

a set of independent bitstreams (S1, ...,Sn) that are generated with odds (o, ...,on) we can
obtain a sample S with odds o as soon as all the bitstreams are equal [4].

To implement Algorithm 1 in hardware, the BM2 uses four types of components:

• The Sequencer;

• The Samples Register (SR);

• The Conditional Distribution Encoders (CDEs);

• And the Odds Product Samplers (OPS).

In order to select all the bits of the set of unknown variables, U , one by one, we use
the Sequencer. This component updates the index of the pointed bit in a linear or random
order [4].

The state of the system and the final sample of the joint space are stored in the Samples
Register [4].

The state of the system, along with the index of the pointed bit are used by the n number
of CDEs in the machine to select the correct odds om value from a table stored in local
memory. This value is then compared with a random number to generate a stochastic
bitstream encoding the value of om [4]. An illustration of a CDE can be seen in Figure 2.6.
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Fig. 2.6 The Conditional Distribution Encoder (CDE). Red lines indicate stochastic bitstreams,
blue lines indicate binary numbers.

The resulting bitstreams of two CDEs become the inputs of an OPS. This component,
shown in Figure 2.7, is able to detect the moment when the incoming bitstreams are equal
and outputs a sample S with odds o and a validation flag V . The new sample is sent to the
SR and is used to update the registers that store the state of the system. The validation flag
informs the Sequencer it needs to iterate the pointed bit and is used by the SR to determine
which registers are enabled [4].

Fig. 2.7 The Odds Product Sampler (OPS). Red lines indicate stochastic bitstreams, blue
lines indicate binary numbers and the black lines indicates validation flags.

In addition to the validation flag, V , and the new sample, S, the SR also receives the
pointed bit for sampling from the Sequencer and the data of the known variables from the
sensors. The pointed bit acts as an enable signal for the registers in conjunction with the
validation flag. The data from the known variables is used to update the values of their
respective registers of the state of the system. The output of this component is a binary
number that describes the current state of the system.
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2.1.3.1 BM2 Example - Sprinkler Bayes net

The classical "sprinkler" Bayes net example will now be used to display how all of the
components of the BM2 are connected. This example can also be seen in [10]. Considering
R, S and G as binary variables that correspond, respectively, to: “it has been Raining”, “the
Sprinkler was turned on” and “the Grass is wet”. The joint probability distribution P(R,S,G)

is decomposed as P(R)P(S|R)P(G|R,S). Our objective is to compute the probability of
P(R|G = g), meaning: the probability that it rained, knowing that the grass is wet.

From the model question we obtain the known, K, and unknown, U , variables. For this
example they are K = {G} and U = {R,S}. According to Algorithm 1 we need to sample, in
odds, every bit of U . This is achieved with the formulas:

O(R|G = g,S = s) =
P(R = 1)
P(R = 0)

· P(s|R = 1)
P(s|R = 0)

· P(g|R = 1,s)
P(g|R = 0,s)

(2.11)

O(S|G = g,R = r) =
P(r)
P(r)

· P(S = 1|r)
P(S = 0|r)

· P(g|r,S = 1)
P(g|r,S = 0)

(2.12)

The ratios in these formulas are stored in memories in the CDEs. The number of CDEs of
the machine are directly related to the decomposition of the joint probability distribution, in
this case we will need three of these components. Since we have three CDEs we will also
need two OPS.

The SR for this problem is shown in Figure 2.8. It uses the validation flag and the pointed
bit for sampling to only update the register of the value that was sampled. Since the known
variable is G, it is the input bit that determines whether the register G is updated or not.

Fig. 2.8 The Sample Register (SR) of the BM2 for the Sprinkler Example. Blue lines indicate
binary numbers, black lines indicate validation flags and green lines indicate the pointed bit
for sampling.



2.2 The Robot Operating System (ROS) 19

By properly combining these components and the Sequencer we obtain the circuit in
Figure 2.9. The input of the machine is the value of the observed variable G indicating if the
grass is wet or not. The output is a sequence of joint space samples.

Fig. 2.9 BM2 architecture for the "sprinkler" Bayes net example. Red lines indicate stochastic
bitstreams, blue lines indicate binary numbers, black lines indicate validation flags and green
lines indicate the pointed bit for sampling. Red blocks compute stochastic bitstreams, blue
blocks output binary numbers, the green block outputs the pointed bit for sampling.

2.2 The Robot Operating System (ROS)

Despite its name, ROS is not an Operating System in the traditional sense; it is however
an open-source framework that provides hardware abstraction, low-level device control,
message-passing between processes, and package management for robotic applications [11,
12]. ROS is built for UNIX platforms [11] and its aim is to build robotic systems with software
components for robotic research and development with support for software reuse [6].

In this framework we design robotic systems using one or more components called
nodes [6, 12]. These nodes communicate with each other by sending/receiving messages
through topics or services in an assyncronous communication model called Publish-Subscribe
messaging [6]. By using this model we can have a dynamic network where nodes can easily
be added or removed [6].

Each ROS node can publish and/or subscribe to any given topic/service, as long as it has
the name of the topic/service and the type of the message published on that topic [12]. A
typical example of two nodes communicating in a ROS network is given in Figure 2.10. One
node publishes a message on a given topic, making the message available for any node that
has subscribed to that topic [6]. ROS topics act in a similar way to buses, not buffers, so if a
node were to subscribe to that topic at a later time it would not receive the same message [6].
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ROS nodes are unaware of other nodes in the network [6]. In order for them to communi-
cate with each other there needs to be a ROS Master that provides naming and registration
services, as well as tracking publishers and subscribers to any given topics [12]. This ROS
Master can be any computer that has a ROS distribution installed.

Fig. 2.10 Communication model between ROS nodes.

2.2.1 Rosbridge

Rosbridge provides a JavaScript Object Notation (JSON) Application Programming Interface
(API) that allows non-ROS programs to communicate with ROS nodes [13]. It’s, in essence,
a JSON interface to ROS that encapsulates topics’ and nodes’ information in JSON based
commands and makes it available through a WebSocket [13].

JSON is a lightweight data-interchange format [12] and by using it the data can be read or
written by any programming language that can handle that format, such as Java, JavaScript,
Python or C++.

In Figure 2.11 you can see how the rosbridge protocol works:

Fig. 2.11 Rosbridge communication model.

2.3 Peripheral Component Interconnect-Express (PCIe)

At the beginning of this thesis two choices for the interface between the CPU and the FPGA
mini-cluster were available to us: Universal Serial Bus/Joint Test Action Group (USB/JTAG)
and PCIe.
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According to Intel FPGA [14] the USB/JTAG connection has a maximum speed of
24 Mbps, on the other hand PCIe has displayed an average throughput of 20800 Mbps in
read/write operations in our system. This means that the PCIe connection is on average
around 800 times faster than a traditional USB/JTAG connection.

This number was obtained with the diagnostics application provided by Gidel - the vendor
of the boards used in this thesis - with PCIe Gen 2 in a computer running CentOS 6.9.

PCIe is the new generation of I/O interconnect technology of the PCI bus. It is a high
performance expansion bus standard for connecting a computer to one or more peripheral
devices. It defines standards for the physical, data link and transaction layers, with the
physical layer being replaceable [15]. A high level diagram of the layers of the PCIe protocol
is shown in Figure 2.12. [16].

Fig. 2.12 High level view of the PCIe architecture.

The PCI drivers in the software layers generate read and write requests which are then
transported by the transaction layers to the I/O devices through a packet-based protocol. The
data link layer is responsible for adding sequence numbers and Cyclic Redundancy Checks
(CRCs) to these packets. Lastly, the physical layer transmits and receives data through PCIe
links like the one presented in Figure 2.13

Fig. 2.13 PCIe link.

In these links data is transferred over two differential signal pairs, with each set being
called a "lane". In each lane there are two wires for transmitting and two for receiving, that
allow for the transmission and reception of eight-bit data packets simultaneously between
the two endpoints of the link [17]. The number of lanes in a PCIe link can scale from one to
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thirty two and the number used has a direct impact on the transmission throughput between
the two endpoints [17].

Although PCIe preserves many features of PCI - like its usage model, load-store archi-
tecture, and software interfaces - there is one major difference. Instead of PCI’s parallel
architecture, it uses a highly scalable serial interface [7].

By using a serial interface, PCIe allows for a lower latency and higher data transfers
between devices than the former PCI bus. This is due to devices not having to compete for
bandwidth since they are connected to the motherboard with their own PCIe link and are not
sharing the same bus [17].

A high level diagram of the interface between the FPGA mini-cluster and the CPU and
memory of the host computer can be seen in Figure 2.14. In this system the Root Complex
becomes the root of the I/O hierarchy that connects the CPU and memory to the FPGA
mini-cluster. The PCIe endpoints implemented on the FPGAs can be the requesters or
completers of a PCIe data transaction [7].

Fig. 2.14 PCIe Interface for the FPGA mini-cluster.

In the case that the FPGA has Hard PCIe controllers, these can be used to implement
the PCIe endpoint and save between 8000 to 30000 logic elements, depending on their
configuration. These Hard PCIe controllers embed the PCIe protocol stack into the FPGA,
including the transceiver modules, physical layer, data link layer, and transaction layer [18].
They are present in many FPGAs developed by Intel FPGA, including the devices of the
Stratix V family (Intel FPGA’s flagship devices), the family of the devices used during this
thesis [18].



Chapter 3

Implementation

As mentioned in Section 1.2, the objective of this thesis was to develop an interface between
an FPGA mini-cluster and a ROS compliant robot, in order to implement probabilistic models
for use on robotic applications. Also in this section, Figure 1.1 displayed the original idea for
an implementation.

This idea has since matured into the system presented in Figure 3.1.

Fig. 3.1 High level view of the implemented system.



24 Implementation

This system can be split into four parts:

1. The jRosbridge → implements the Rosbridge protocol and secures communication
with any ROS node through a WebSocket;

2. The PCIe application → controls the data transfers between the host computer and the
FPGA mini-cluster through the PCIe connection;

3. The Python master script → manages the system by controlling the flow of data
between the jRosbridge and the PCIe application according to the implemented proba-
bilistic model;

4. The FPGA mini-cluster → processes the incoming data with Bayesian Machines.

3.1 jRosbridge - Implementing a Rosbridge in a Computer
Without ROS Compatibility

Creating a connection between a computer and a ROS compliant robot can be achieved by
installing a ROS distribution with the Rosbridge packages in the computer, however ROS is
not compatible with all Operating Systems. The Proce V boards used in our system are only
compatible with Windows 7 or CentOS 6, which in turn do not have support for ROS.

To circumvent this problem a Java API called jRosbridge was used. The jRosbridge
provides an abstraction from the Rosbridge handshake and allows us to communicate with
other ROS nodes through a Rosbridge connection, even without installing ROS. Its only
requirement is Java 8, which can be installed in most modern Operating Systems.

Two ’.jar’ files were created using this API: a) the ’Subscriber.jar’ and b) the ’Pub-

lisher.jar’

The ’Subscriber.jar’ receives as inputs:

• The Rosbridge WebSocket Uniform Resource Identifier (URI) of the desired ROS
node;

• The topic where the sensor data is published;

• The type of that topic;

• The name of the variables it needs to search for.
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It then establishes a Rosbridge connection to the desired ROS node and searches the
obtained JSON message recursively until it finds the variable(s) it is looking for. If it fails to
find the variable(s), it outputs an error indicating which variable it failed to find.

The ’Publisher.jar’ receives as inputs:

• The Rosbridge WebSocket URI of the desired ROS master;

• The message type containing the number of results from the counters of the BM;

• The results of the BM.

This file is responsible for publishing the results of the BM so they become available to
any ROS node in the same ROS network. The user can then create a ROS file that subscribes
to the topic ’/BMresults’ and performs any desired operation with the results.

In Figure 3.2 an illustration of the implemented Rosbridge connection is presented.

Fig. 3.2 Implementation of a Rosbridge between the host computer and a ROS node with the
jRosbridge API.

3.2 PCIe Application - Communicating with FPGAs Through
a PCIe Connection

At the beginning of this thesis it became apparent that in order to develop this interface,
changes would have to be made to the toolchain and the architecture of the BMs. Due to time
constraints it was only possible to implement the changes to one of them: the BM1.

Since the number of inputs and outputs used by the BM1 can vary wildly with the
probabilistic model that is implemented, it was not possible at the time of writing to design a
completely generic PCIe connection. Instead we followed the hardware requirements of the
next generation of BMs that are currently being developed. These requirements stipulated
that a future ASIC containing a BM would need to be able to receive the data from around
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twenty different sensors and compute the data corresponding to around a thousand and twenty
four different search variables.

With this in mind a PCIe connection was designed with Gidel’s ProcWizard software
tool that has the ability to transfer data from twenty different sources to the FPGA and a
thousand and two hundred different sources from the FPGA. After specifying this interface,
the ProcWizard generated:

• The required files for our hardware project;

• A header file containing the necessary libraries for a software application in C++ to
interact with an FPGA containing that interface.

These new files meant that slight alterations to the architecture and finite state machine
of the BM1 had to be performed to accommodate for the PCIe connection. The finite
state machine of the BM1 now sends a signal through the PCIe connection when a counter
overflows, indicating the end of the computation of the full posterior probability distribution.
It then waits for a signal from the PCIe connection indicating it should restart its operations.

In terms of the architecture, connections had to be made to registers in order for the
BM1 to be able to receive the sensor data and output the respective results through a PCIe
connection.

A new hardware project of the BM1, that already has a PCIe connection compliant with
the hardware requirements mentioned above, was created. The only files that need to be
updated when the probabilistic model is changed are:

1. The ’bm1_parameters.vhd’ in the ’bm_arch’ folder of the project;

2. The files contained in the ’Memory_MIFs’ folder that is also inside the ’bm_arch’

folder of the project.

Number 1) is used to define the number of lines, columns and which RNG will be used
in the BM1. It also specifies: a) if the RNGs will be shared throughout the columns, b) the
resolution of the probability tables, RNGs, sensor data and counters. The files referenced in
point 2) define the probability tables of the BM1 prior and tile elements, and also the tables
of the RNGs. When the user generates a new project, all of these files will be automatically
updated by the toolchain based on the given probabilistic model.

By having a single file that stipulates the parameters that the BM1 needs to follow, we
could also use it to adjust the PCIe connection automatically to the implemented probabilistic
model, thus using only the necessary resources in the FPGA(s). The PCIe interface generated
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by the ProcWizard also uses the Hard PCIe controllers present in the Proce V D8 boards.
These controllers allow us to save resources on the FPGA(s) and provide a more energy
efficient solution than implementing a controller with Logic Elements.

By taking into account the new finite state machine of the BM1, an application was
designed in C++ that implements the data flow illustrated in Figure 3.3. First the application
writes in a register the number of target samples the BM1 needs to count before it outputs its
results. Then it resets all of the components of the BM1 and writes the first string of sensor
data. After this the application waits for the done signal from the BM1, indicating that it has
computed the full posterior probability distribution. When the signal is received, the registers
of the BM1 containing the results are read and the data is transferred to variables of the PCIe
application. At this point a new string of sensor data is written to the BM1, the counters are
reset and the finite state machine returns to the computing state and starts processing the new
data. The loop is then restarted and its execution is only terminated when the Python Master
script closes the PCIe application.

Fig. 3.3 Data flow of the PCIe connection from the Host PC’s side. Blue nodes indicate write
operations performed by the PCIe application, green nodes indicate read operations.
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3.3 Python Master Script - Controlling the System

The Python Master script is responsible for executing the jRosbridge files and the PCIe C++

application and transferring data between them. It also handles any errors returned by these
files.

The script receives the sensor data from the ’Subscriber.jar’, sends it to the PCIe applica-
tion, waits for a ’done’ signal from it, reads the results of the BM(s) and sends them to the

’Publisher.jar’ file so they can be published on the topic ’/BMresults’. It can do this once or
continuously. When the script terminates its execution it also terminates the jRosbridge files
and the PCIe application. An illustration of the data flow can be seen in Figure 3.4.

The Python Master script will be generated by the toolchain so that its parameters are
adapted to the desired probabilistic model.

Fig. 3.4 Data flow of the Python Master script. Blue nodes indicate write operations per-
formed by the script, green nodes indicate read operations.

3.4 Implementing Bayesian Machines in the FPGA Mini-
Cluster

The use of this interface is relatively simple from a user’s point of view. The user is first
required to define a probabilistic model with the ProBT library.

He can then use the toolchain to generate: a) the memory files for the probability tables,
which will be stored in the ’Memory_MIFs’ folder, b) the ’bm1_parameters.vhd’ file, which
will be stored in the ’bm_arch’ folder, and c) the Python Master script.
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The parameters the user has to give the toolchain so it can generate those files are:

• The probabilistic model;

• A number of options for the implementation of the BM1, including the type of RNG to
be used;

• The number of partitions of the probabilistic model (only one by default). Useful if the
model is too big to implement in a single FPGA. Can split up to a maximum of 4. If
the user chooses to do this he will have to program more than one board;

• The ROS URI of the intended ROS master;

• The topic and type of topic where the sensor data will be published;

• The name of the variables of the sensors. This must be provided in the correct order,
otherwise the data sent to the BM1 will be sent to the wrong columns.

All of the other files will then be automatically created, including the binary files for
programming the FPGAs.

In case any alterations have to be made to the project, the toolchain provides the user
options to:

• (Re)Generate the memory and parameters files;

• (Re)Compile the BM1 hardware project;

• (Re)Write the Python Master script;

This can be useful in many cases, such as not providing the correct order of the variables
to the toolchain.

The ’SofLoader’ application, provided by Gidel, allows the user to program the FPGA(s)
in the mini-cluster through the USB/JTAG port without having to restart the host computer. A
restart would usually be necessary so the host computer could detect the new PCIe board(s).

After programming the FPGA(s) in the mini-cluster, the user can publish the sensor data
in the ROS topic he provided to the toolchain, run the Python Master script, and subscribe to
the ROS topic ’/BMresults’ to obtain the output of the BM1(s). After subscribing to the ROS
topic ’/BMresults’, the user can choose how to handle the data.

In Chapter 4 a case study is given of the operation of the toolchain for a probabilistic
model.





Chapter 4

Case Study

The case study presented in this chapter consists of an implementation of the probabilistic
model of the boat localization problem, previously mentioned in Section 2.1.2.1. This model
is implemented in a BM1 with the system presented in Chapter 3.

Although this is a very simple problem of Bayesian inference, it has been used in many
instances of the BAMBI project as a benchmark and a demonstration of the potential of the
BM1. Therefore, it is an adequate case study to demonstrate the added value of the work
presented in this dissertation.

Due to the unavailability of the required material for a robotic implementation, a simulator
was used. The chosen simulator is named Gazebo and was selected due to its ability to use
plug-ins to publish simulation data to ROS topics. It was installed, along with ROS and the
Rosbridge packages, in a separate computer. A ROS node was also created in that computer
that normalizes the simulation data and publishes it to another ROS topic. A Rosbridge is
then used to make this ROS topic available to other computers through a WebSocket.

The system discussed in Chapter 3 can then acquire the sensor data through a WebSocket
and process it in the FPGA mini-cluster. As mentioned in Section 3.1, the results are then
published in the ROS topic ’/BMresults’.

In the computer where Gazebo and ROS were installed, a new ROS application was
created that subscribes to the ROS topic ’/BMresults’ and generates a graphical representation
of the position of the boat in the grid according to the obtained results.

A block diagram of this experiment is shown in Figure 4.1.
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4.1 Gazebo - A ROS Compatible Simulator

Gazebo was developed by the Open-Source Robotics Foundation (OSRF) and provides the
user with the ability to accurately simulate robots in complex environments. It also supports
the use of plug-ins to implement new features, such as subscribing and publishing to ROS
topics. This feature makes it suitable to simulate the operation of a robot that publishes its
sensor data with a ROS node, and was therefore chosen as the tool to implement this case
study.

The Operating System in the host computer of the FPGA mini-cluster does not support
Gazebo or ROS, therefore another computer was used to install this software and implement
the simulation. Although the correct functioning of this system could, in theory, be com-
pletely demonstrated in the same computer, this case study accurately portrays a typical data
exchange between a ROS-compatible robot and the FPGA mini-cluster.

In Figure 4.2 is presented a diagram of the implementation of the Gazebo simulator for
this case study, where a robot model was used as a surrogate for the boat. The world model
contains the information of the simulation map and the declaration of each item in the world,
including their starting positions. The robot model is where the plug-in is declared and
associated with the robot. With this information the physics engine of Gazebo is able to send
the information associated with the robot to a ROS plug-in that publishes that data to a ROS
topic.

Fig. 4.2 Implementation of the Gazebo simulator.

In Figure 4.3 an image of the resulting map is displayed. The starting position of the
robot is in the middle of the map. The beacons are placed, in order, in the following positions:
1) lower left corner; 2) middle point of the left line; 3) middle point of the bottom line.
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Fig. 4.3 Simulation in Gazebo. The overlay with the distances and bearings is not present in
the simulator, it is shown here to better establish a connection to Figure 2.3.

4.2 Implementing the Probabilistic Model - Boat Localiza-
tion Problem

The objective was to implement the boat localization problem in a thirty two by thirty two
grid, however, this would lead to a hardware implementation similar to the one in Figure 2.4
with 32×32 = 1024 lines. After compiling the project, it became clear that the number of
logic elements in a Proce V D8 board was not sufficient to implement a problem of this
magnitude. As such, the toolchain was used to partition the search space of the problem into
four pieces. Each of the FPGAs in the mini-cluster was then programmed with one of the
pieces.

By using the toolchain to split the problem, the Python Master script was also generated
with the ability to communicate with the four boards of the system. The only differences
from Figure 3.4 are that the script now resets and loads the sensor data to four BMs and it
waits until all of the BMs have finished executing before restarting the cycle.

4.3 Experimental Results - Finding the Position of the Boat

As mentioned before in this Chapter, a ROS application that handles the results of the BM1s
was created in the computer that is running Gazebo and ROS. This application subscribes to
the results of the FPGA mini-cluster and generates a heat map with the possible location of
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the boat in the search space of the problem: a 32×32 grid. A user of this system would have
to design a similar application to handle the results of the FPGA mini-cluster for his specific
application.

Four instances of the position of the boat in the heat map, alongside the real position of
the "boat" in Gazebo, are displayed in Figure 4.4.1

The results show that a robotic perception inference problem was successfully computed
in the FPGA mini-cluster, with a seamless connection to the simulator under the ROS
framework. The inference problem specified in ProBT was correctly computed, given the
sensor data, and the boat was correctly localized in the grid.

This opens the door to a range of applications in robotics. Given an inference problem
we only need the corresponding ProBT specification, the required ROS topics for the sensor
inputs and subscribe to the ROS topic ’/BMresults’ to obtain the output distribution of the
problem. In Section 4.4, we show that other characteristics of the problem need to be taken
into consideration, besides the inference per se.

Some inference problems may not be well suited for the BM1. If the cardinality of the
matrix were to become very high, this machine would start to present scalability issues. In
these cases the BM2, being a sample-based approach, may provide a more adequate solution.
The work developed in this thesis also allows for the use of the BM2, with some minor
adjustments in the boundary I/O of the Bayesian Machine.

During this experiment, the speed of communications and computations were measured
in several steps of the system to better assess the presence of any bottlenecks. The experiment
was repeated 25 times and the average results obtained can be observed in Figure 4.5.

1Two videos of the simulation can be seen in: https://youtu.be/Bn_hL0gBCK8 and https://youtu.
be/ESrzyTnmLiI. In the first video you can see the simulation running in Gazebo where the user manipulated
the position of the robot to generate different results. The new position of the robot is only updated by the
simulator when the user drops the robot in the new position. In the second video you can see a graphical
representation of the obtained results responding to the movements performed by the user in the simulator.

https://youtu.be/Bn_hL0gBCK8
https://youtu.be/ESrzyTnmLiI
https://youtu.be/ESrzyTnmLiI
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(a) (b)

Fig. 4.4 Experimental results of the boat localization problem. The first column (a) displays
the position of the robot in the simulator. The second column (b) presents the obtained results
for that same position.
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Fig. 4.5 Average execution times, in seconds, of: jRosbridge subscriptions/publications, total
PCIe reads and writes, and BM1 computations for the boat localization problem, for a 32x32
grid.

As can be seen from Figure 4.5 the slowest component of the system, by far, is the
jRosbridge. It takes up about 98.74% of the execution time of the entire system, whereas
the computations of the FPGA mini-cluster take up around 1.24%. The impact of the total
amount of PCIe read and write operations between the host computer and the mini-cluster
for one cycle of computations of the BM1(s) is barely noticeable, and is only responsible for
around 0.01% of the execution time of the entire system.

The execution time of the PCIe read and write operations is directly dependent on the
size of the data transfers. The BM1 computation time, on the other hand, is related to the
amount of columns in the architecture for the implemented probabilistic model. This means
that the more sensor inputs there are in the model, the longer it will take the BM1 to obtain
its results.

Further tests need to be performed to evaluate the behaviour of the jRosbridge’s execution
time for different problems. While the Rosbridge protocol provides a convenient, generic
connection to ROS-compliant components, it was not specified with speed in mind. However,
the key characteristic we were aiming for with this component was ease of integration with
any ROS robotic system.
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4.4 Exploratory Research - Bayesian Computing of Binoc-
ular Disparity

Another probabilistic model was also considered for this case study, the model for Bayesian
computation of binocular disparity presented in [9].

This model would use a BM1 to compute the most likely disparity value between two
pixels from two different images. Since the proposed architecture was relatively small, we
could adjust the spectrum of disparity values to be computed, within an acceptable range, in
order to be able to program one FPGA with many BM1s. By doing so, an FPGA would be
capable of computing, in parallel, the most probable disparity value between a number of
pixels from two images. This number would be equal to the number of BM1s with which the
FPGA was programmed.

Despite this, a big shortcoming of this model is its necessity to implement, in the host
computer, three filters for each of the two images in an image pair. The computer would then
also have to use a function to compute the matching cost between each pair of filters. Only
then can the data can be sent to the FPGAs.

Although the filters were simple and fast to implement, the computations of the matching
costs, in the host computer, for each pixel of the images would take a long time for a video
application, approximately 0.6 seconds for each pair of images. This meant that there was a
bigger computational burden on the host computer than on the FPGA mini-cluster. Since the
gains obtained from using this system would be limited, we found that this would not be the
best model to display the benefits of using the framework presented in this dissertation.

This, along with the necessity to alter the architecture of the BM1, caused us to abandon
this model as a potential case study. The required alterations to the architecture to implement
this model were:

• Implement the ability to program many BM1s in one FPGA according to their size;

• Allow for different sensor data information to be sent to every cell of the matrix, instead
of the current architecture where the sensor data is shared through an entire column.
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Conclusions and Future Work

5.1 Conclusions

This dissertation presented a system that can successfully interface an FPGA mini-cluster with
ROS-compatible robots, in order to implement probabilistic models for robotic applications.
The details of the implementation of this system were presented in Chapter 3.

Machines that are capable of efficiently performing Bayesian inference were implemented
in an FPGA mini-cluster. Their architecture was altered to allow for the development of
a high-bandwidth PCIe connection. This connection replaces the previous USB/JTAG
connection to the FPGAs, thus allowing for fast data transfers between the mini-cluster and
the host computer and eliminating one of the bottlenecks of the system.

A connection was established with a Rosbridge server in a different computer by using
the developed jRosbridge. The jRosbridge files granted a system that was unable to have ROS
installed, the ability to interact with ROS-compatible robots/sensors/actuators/simulators
through WebSockets.

A Python script manages the data transfers between the jRosbridge and the PCIe connec-
tion, thus ensuring that the BM(s) in the FPGA mini-cluster are able to receive the needed
sensor data and output its/their results.

The toolchain developed within the BAMBI project that allowed for the spooling of
Bayesian Machines onto FPGAs, based on a given probabilistic model, was altered to account
for the new hardware changes. This toolchain is now also able to customize the Python
Master script so that it is automatically adjusted to any newly implemented probabilistic
model.

In Chapter 4 a case study was presented using a probabilistic model for the boat localiza-
tion problem. This case study was a success, displaying the previously mentioned properties
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of the system. However one limitation was observed, namely the speed of the jRosbridge.
This component is now the bottleneck of the system, but in the future, other, faster protocols
can be used to replace it.

5.2 Future work

The framework developed during this thesis allows for many future developments, namely:

• Creation of a generic ROS subscriber that subscribes to the ’/BMresults’ ROS topic and
has a function for the user to handle the incoming data. This will avoid the necessity
for the user to constantly create a new ROS subscriber to obtain the results of the
FPGA mini-cluster. The user will still have to write the necessary code in the given
function to perform the desired operations with the results;

• Development of a connection to ROS topics using a different protocol in order to
accelerate what is currently the slowest component of the system;

• Improvements to the PCIe connection, such as using Gidel’s MultiFIFO hardware
function, are possible. This would allow for the transfer of data in bursts and a more
efficient use of the PCIe connection;

• Implementation of the Bonjour protocol with the jRosbridge to automatically resolve
host-names. The user can then simply select his robot/sensor/actuator/simulator from
a name list instead of having to insert an Internet Protocol (IP) address, thus providing
ease-of-use;

• Implementation of the fibre optic interface that can be used between the FPGAs of the
mini-cluster. This would require a new hardware project. The toolchain would also
have to be adapted to implement this interface. In the case of the BM1s may not make
much of a difference due to the nature of their architecture and the ability to partition a
BM1 through any number of FPGAs.

• Design a PCIe interface for the BM2 to allow for probabilistic models to be imple-
mented with both BMs. Research could then be made on the more suitable type of BM
for any given robotic application, with experimental results;

• Make the interface more user-friendly by implementing a Graphical User Interface
(GUI). Should be relatively easy to adapt inputs of the toolchain and the Python Master
script execution to such an interface;
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• Collaboration with the National Science Foundation (NSF) Center for High-Performance
Reconfigurable Computing (CHREC) at the University of Florida to implement these
architectures and interface on the Novo-G supercomputer. The boards used in this
project were already selected with this in mind.
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