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ABSTRACT 

Object classification is a key factor in the development of autonomous robots. 

Object classification can be greatly improved with previous reliable segmentation and 

feature extraction. With this in mind, the main objective of this dissertation is to implement 

an object classification algorithm, capable of classifying objects from the Yale-CMU-

Berkeley (YCB) object and model set, through the use of a novel unsupervised feature 

extraction method from red, green, blue and depth (RGB-D) data and feedforward artificial 

neural networks (FFANNs).  

In the method presented here, after the acquisition of data from an RGB-D 

camera, noise is removed and the objects in the scene are isolated. For each isolated object, 

k-means clustering is applied to extract a global main colour and three main colours. Three 

scores are computed based on the fitting of primitive shapes (cylinder, sphere or rectangular 

prism). Object dimensions and volume are estimated by calculating the volume of the best 

primitive shape previously fitted. Then with these features, FFANNs are trained and used to 

classify these objects. 

Experimental tests were carried out in 20 objects, from the YCB object and 

model set and results indicate that this algorithm has a recognition accuracy of 96%, with 

five objects in the workspace at the same time and in random poses.  

Also, a method of calculating the location of an object, based on the location of 

the geometric centre, of the best primitive shape previously fitted is developed. 

 

 

 

 

 

 

 

Keywords: Machine learning, Features, Object classification, Microsoft 
Kinect, Neural networks. 

 



 

 

Object Segmentation and Classification from RGB-D Data  

 

 

iv  2017 

 

 



 

 

  RESUMO 

 

 

João Gonçalo Pires Ferreira da Silva  v 

 

 

RESUMO 

A classificação de objetos é um fator chave no desenvolvimento de robôs 

autónomos. A classificação de objetos pode ser grandemente melhorada com uma anterior 

segmentação e extração de características confiáveis. Com isso em mente, o principal 

objetivo desta dissertação é implementar um algoritmo de classificação de objetos, capaz de 

classificar objetos do conjunto de objetos e modelos de Yale-CMU-Berkeley (YCB), através 

do uso de um novo método de extração de características não supervisionado a partir de 

dados de vermelho, verde, azul e profundidade (RGB-D) e de redes neuronais artificiais do 

tipo feedforward (FFANNs). 

No método aqui apresentado, após a aquisição de dados a partir de uma câmara 

RGB-D, o ruído é removido e os objetos na cena são isolados. Para cada objeto isolado, 

agrupamento k-means é aplicado para extrair uma cor global e três cores principais. Três 

pontuações são calculadas com base no encaixe de formas primitivas (cilindro, esfera ou 

prisma retangular). As dimensões do objeto e volume são estimados calculando o volume da 

melhor forma primitiva ajustada anteriormente. De seguida, com essas características, 

FFANNs são treinadas e usadas para classificar esses objetos. 

Testes experimentais foram realizados em 20 objetos, do conjunto de objetos e 

modelos de YCB e os resultados indicam que este algoritmo tem uma precisão de 

reconhecimento de 96%, com cinco objetos no espaço de trabalho ao mesmo tempo e em 

poses aleatórias. 

Também é desenvolvido, um método de cálculo da localização de um objeto, 

com base na localização do centro geométrico, da melhor forma primitiva ajustada 

anteriormente. 
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NOMENCLATURE AND ACRONYMS 

Nomenclature 

The notation that we are going to follow throughout this dissertation, is going to 

be as described: 

• Bold capital letters are used to denote matrices, for example 𝐑𝑇
1  represents 

the first rotation matrix; 

• Bold and italic small letters are used to denote vectors, for example 𝒄p𝑗
 

represents the red, green and blue (RGB) colour vector of point p𝑗; 

• Italic small letters or words are used to denote scalars, for example 𝑛pct 

represents the total number of acquired point clouds; 

• Small letters are used to denote points, for example pM represents a generic 

point of the merged point cloud; 

• Italic capital letters are used to denote point clouds, for example 𝑃𝐶M 

represents the merged point cloud. 
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2D – Two-dimensional 

3D – Three-dimensional 

ANNs – Artificial neural networks 

CAD – Computer-aided design 

CKM – Convolutional k-means descriptors 

CNNs – Convolutional neural networks 

DL – Dictionary learning 

ELMs – Extreme learning machines 

FFANNs – Feedforward artificial neural networks 

HMP – Hierarchical matching pursuit 

HMP2D – Hierarchical matching pursuit for 2D voxel data 

HMP3D – Hierarchical matching pursuit for 3D voxel data 

LIDAR – Light detection and ranging 

LinSVM – Linear support vector machine 

PCA – Principal component analysis 

RANSAC – Random sample consensus 

RBF – Radial basis function 

R-CNNs – Combination of region proposals and CNNs 

RFs – Random forests 

RGB – Red, green and blue 

RGB-D – Red, green, blue and depth 

RNNs – Recursive neural networks 

SIFT – Scale invariant feature transform 

SURF – Speeded-up robust features 

SVM – Support vector machine 

YCB – Yale-CMU-Berkeley 

 

  



 

 

  INTRODUCTION 

 

 

João Gonçalo Pires Ferreira da Silva  1 

 

 

1. INTRODUCTION 

Nowadays, automation and robotics are the corner stones of many industries. 

Their involvement in the workspace contributes to higher production and accuracy. At the 

same time, robots are moving into our households, since they can have simple and repetitive 

tasks delegated to them.  

This makes robot autonomy a major research topic. One of the main reasons is 

the fact that, robots work more and more alongside humans and humans may change the 

environment, in many different and unpredictable ways, so a robot needs to be able to 

constantly adapt to their surroundings. It means that they need to be able to make 

autonomous decisions. Some examples of such behaviour are autonomous vehicles that 

recognize traffic signs and react in accordance, robotic vacuum cleaners and robotic lawn 

mowers that avoid obstacles in real time. 

In the last few years, the view on the subject of industrial robots has changed, 

from one where robots work separated from humans, many times in a caged environment, 

to one where they work alongside humans and collaborate with them to perform tasks.  

In order to be able to do that, they need to be able to classify objects, tools or 

parts that a human might need and obstacles in their path. They also need localization and 

navigation skills, in order to know where these elements are and/or where to put them. By 

doing this, collaborative robots can act autonomously in order to improve productivity, by 

using the robot’s best assets which are accuracy and the ability to perform monotonous task 

very fast. 

Collaborative robots may also be called to handle objects never seen before. For 

example, a human may want to exchange a tool with a neighbour robot. In [1], the authors 

were interested in considering the problem of grasping novel objects using computer vision 

and machine learning.  

On-board vision sensors as well as additional red, green, blue and depth (RGB-

D) devices, such as Microsoft Kinect, can be used to obtain a three-dimensional (3D) model 

of the target object. Then, machine learning techniques can be exploited to find good 
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candidates of grasping positions based on the geometric structure of the object (using a two-

dimensional (2D) and/or a 3D model), robot trials and learning from the user. 

In the first case, the 3D point cloud of the object is analysed with grasping 

representations, as in [2] or rules for object grasping based on models, as in [3].  

In the second case, the robot tries to autonomously grasp the target object. 

Positive or negative results will be used in a machine learning framework, for example using 

reinforcement learning [4], to improve future tasks. 

Finally, in the last case, computer vision algorithms can be exploited to detect 

and understand grasping positions, by observing human collaborators [5]. 

1.1. Problem Specification and Challenges 

The problem with vision-based classification is the reliability, which can be 

difficult to achieve depending on several factors. Object classification can be greatly 

improved with previous reliable segmentation, which allows isolation of the objects and 

feature extraction. This feature extraction serves as input for a classification algorithm. 

Recent deep learning methods present state of the art results for classification, 

no features are required and the objects are classified from the raw red, green and blue (RGB) 

or RGB-D data. However, deep learning requires large amounts of training data. Object 

features will allow to improve the deep learning accuracy when there is less training data, 

by giving it more inputs. In addition, these features can also be used as a unique input for 

any supervised classifier that is expected to output accurate results with small amounts of 

training data. 

Effective segmentation and feature extraction are achieved with no previous 

knowledge of the objects and no training data. In general, there are six major difficulties in 

the segmentation and feature extraction process for object classification: 

• No information about objects pose (position + orientation) in the scene; 

• Each object can have multiple poses in the scene, so that the same object may 

look different depending on the perspective the image frame is captured. This 

is more critical when we have large libraries of objects to classify since this 

increases the size of those libraries; 
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• Only part of the object is captured by the camera, depending on the object’s 

relative pose in relation to the camera; 

• Feature extraction can be made difficult depending on the lighting conditions 

and pose, because they affect the colour that is captured and since the camera 

only captures the part of the object facing it, the captured colour can have a 

wide variation; 

• The background can be dynamic; 

• Clustered scenes can have possible occlusions. 

In face of the above, several challenges can be pointed out: 

• Creating an unsupervised segmentation and feature extraction algorithm that 

is robust enough to accurately eliminate noise, isolate objects and create 

distinctive features. This has to be done in unstructured environment, without 

previous knowledge about the object, pose, background, lighting conditions 

and others and from single RGB-D camera; 

• Association of a primitive shape to each object; 

• Extraction of colour features; 

• Estimation of objects volume and location; 

• Use of a robust classification algorithm capable of correctly identifying the 

objects in real-time, having shape, colour and volume features as input. 

1.2. Related Work 

Reliable object classification is today a major challenge in robotics field. The 

appearance of novel sensing technologies allows the recording of quality RGB and depth 

images (RGB-D). Depth information is relatively invariant to lighting or colour variations, 

allows background subtraction, video ground truth annotation via 3D reconstruction, and 

improved object classification. Nevertheless RGB-D cameras, such as Microsoft Kinect, are 

still affected by noise and missing depth information, due to for example, reflective 

properties of materials as well as their coatings, that interfere with the camera by 

overexposing the depth image [6]. Despite of this, their cost makes them worthwhile 

alternatives, for prototyping before committing to a more expensive sensor. 
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Existing object recognition algorithms for RGB-D images use features such as 

scale invariant feature transform (SIFT) [7], spin images [7], [8], visual, shape and 

geometrical features [9]. Other methods generalize this idea and combine RGB-D image 

features such as size, 3D shape and depth edges [10]. 

Krainin et al. developed a system to build a 3D surface model of objects by 

grasping the object and moving it in front of an RGB-D camera [11]. The idea was to allow 

a robot equipped with an RGB-D camera to create models of new objects, by interacting 

with them using different grasps and combining the information from several snapshots.  

Unsupervised feature learning methods suffered a massive evolution in the last 

few years, allowing for the improvement of object classification and pattern recognition in 

general. Deep learning methods have been extensively studied for RGB images. However, 

their implementation for RGB-D images is still matter of study [12]. 

Blum et al. introduced convolutional k-means descriptors (CKM) for RGB-D 

data, in which they learn features in an unsupervised fashion [13]. They adapted the 

unsupervised learning approach proposed in [14] to process RGB-D images. They begin by 

learning features only in the vicinity of interest points with the depth information being 

added later. To detect the interest points, they opted for speeded-up robust features (SURF) 

[15] due to its computational efficiency and quality of results. The descriptor is then 

extracted similarly to SURF’s, and according to the authors, the number of learned features 

is typically high, which may then require a dimensionality reduction, using principal 

component analysis (PCA), for input in a linear support vector machine (LinSVM) classifier. 

They evaluated their work using the Washington RGB-D Object Dataset [7]. 

Bo et al. proposed unsupervised feature learning from grey scale intensity, RGB, 

depth, and surface normal [16]. Features are then used in hierarchical matching pursuit 

(HMP) with two layers, to learn hierarchical feature representation, then LinSVM is used as 

the classifier. The algorithm was tested on five datasets, although here we are only going use 

the test on the Washington RGB-D Object Dataset [7], since it’s one of the most widely 

available. 

Convolutional neural networks (CNNs) have recently been shown to be 

remarkably successful for recognition on RGB images [17]. In [18], Farabet et al. introduced 

a model for scene parsing, that is based on multi-scale CNNs for feature extraction, other 

similar works, use a combination of region proposals and CNNs (R-CNNs), such as [19]. 
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Also, features extracted from CNNs and colorization methods to represent depth in a 2D 

image have demonstrated good results in RGB-D object classification [20].  

Lai et al. introduced a new variant of HMP, to use with point clouds directly, 

called hierarchical matching pursuit for 3D voxel data (HMP3D) [21]. They use a LinSVM 

classifier trained using a synthetic dataset of virtual scenes, generated using computer-aided 

design (CAD) models. They evaluated their algorithm using the Washington RGB-D Scenes 

Dataset [7]. It was concluded that in some situations, HMP3D may not even require to be 

combined with hierarchical matching pursuit for 2D voxel data (HMP2D), in order to 

improve the results. 

A deep learning method for object classification, based on a combination of 

CNNs and recursive neural networks (RNNs) for learning features and classifying RGB-D 

images, is presented in [22]. The CNNs layer learns low-level translationally invariant 

features which are the input to fixed-tree RNNs to compose higher order features. Results 

indicate state of the art performance in category recognition on the Washington RGB-D 

Object Dataset [7]. With the same method being applied in [23], along with support vector 

machine (SVM) to improve accuracy of classification in the same dataset. 

A two stream CNNs (RGB and depth) for object recognition is proposed in [24], 

using the Washington RGB-D Object Dataset [7] and implementing their work in the Caffe 

framework [25]. They were able to achieve an accuracy of 84.1% using only RGB and 83,8% 

using only depth, which were improved to 91.3% when combined, for category recognition. 

Another method in [26], used CNNs to learn features, which were inputs to a LinSVM 

classifier to classify objects from Washington RGB-D Object Dataset [7], this method 

achieved 91.4% accuracy on category recognition. CNNs also demonstrated superior 

performance in detecting object grasping areas [27].  

Extreme learning machines (ELMs) can be used for object classification. These 

are very simple feedforward artificial neural networks (FFANNs) with a single layer of 

hidden neurons. In [28], ELMs are used both in the feature extraction and the classification 

parts of the algorithm, achieving an accuracy of 89.3% in the category recognition task of 

the Washington RGB-D Object Dataset [7]. Also using the same dataset, random forests 

(RFs) [29] and SVM [30], can be used as classifiers, using these they were able to achieve 

88.1% and 75.6% accuracy, respectively, in category recognition. 
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As can be seen in [31], the problem of volume estimation with the Microsoft 

Kinect can be approached with reasonable accuracy for medium size objects. Their setup 

consisted of a turn table with markers, on which the object is placed and a Microsoft Kinect 

camera takes several snapshots of the object from different orientations. This allowed them 

to get a complete view of the object, in order to get the best possible point cloud for volume 

estimation. 

Another approach to volume estimation is the one used by B. Q. Ferreira et al. 

in [32], it consists of capturing one stationary image, then delimitating the object’s planes, 

after getting the vertices of that object and computing the volume using these vertices.  

One approach that can improve the volume estimation, is proposed by D. 

Schiebener et al., in [33], using the Yale-CMU-Berkeley (YCB) object and model set [34], 

these authors proposed an approach to complete an object’s model, when a complete view 

of the object is not available. This approach is based on the assumption that most objects 

have symmetries and uses these symmetries to complete the view of an object. Although this 

approach is useful in some situations, this is not always the case, especially if the object has 

no plane of symmetry. This also shows some of the difficulties of estimating the hidden parts 

of an object, since these can have very different shapes. 

In our setup though, we are only getting pictures from one stationary position, 

making the volume estimation not very precise, since we cannot see the hidden part of an 

object. But on the other hand, since we don’t need a very precise estimation, this makes the 

process of image acquisition and setup much easier. 

An interesting study is presented by A. Broad and B. Argall [35], in here they 

use CNNs, as a classifier for object recognition in the YCB object and model set [34]. By 

taking the object’s location and size, they define bounding boxes, after this they transform 

these bounding boxes from RGB-D space to RGB space and classify each object by passing 

these RGB bounding boxes through these CNNs.  

Another method of obtaining a point cloud for object recognition is using light 

detection and ranging (LIDAR), as proposed by Artur Maligo and Simon Lacroix in [36]. 

Such method is not going to be developed in this paper, although it presents another possible 

method to obtain data for object recognition and can be applied in terrestrial autonomous 

vehicles, such as self-driving cars, as in [37] which achieved an accuracy of 98.5% in 

classifying using LIDAR data as input. 
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Considering similar work to our own, which is instance or object recognition or 

classification from RGB-D data, but with different datasets, since works with the same 

dataset, namely are going to be analysed further along in this paper, we get Table 1.1. This 

table has the reference to the paper containing that method of classification, the number of 

objects with which the method was test, average number of real samples per class used in 

training, the maximum classification accuracy, the classifier used and the year of the 

publication of that paper. 

Table 1.1. Comparison between methods of classification. 

 

 

Reference 

Number 

of 

objects 

Average 

number 

of real 

samples 

per class 

Classification 

accuracy [%] 
Classifier Year 

[13] 300 109 92.1 LinSVM 2012 

[16] 300 93 92.8 LinSVM 2013 

[20] 300 93 94.1 LinSVM 2015 

[38] 300 117 96.9 
Dictionary 

learning (DL) 
2015 

[39] 300 117 94.4 

Radial basis 

function (RBF) 

kernel SVM 

2014 

[40] 300 117 96.1 

Statistical 

similarity 

(Their own 

classifier) 

2017 

[41] 300 100 94.8 LinSVM 2015 

[42] 300 100 97.2 ELMs 2016 

[43] 300 93 93.5 ELMs 2015 

[44] 300 100 99 CNNs 2015 

[45] 300 117 70 LinSVM 2016 

[46] 153 33 42.1 
Ensemble 

classifier 
2015 

[47] 5 360 94.8 SVM 2014 
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From [13] until [46] in Table 1.1, we considered only the tests on the Washington 

RGB-D Object Dataset [7], since it’s one of the most widely available and allows for 

comparison between methods. In [47] used its own object set and the accuracy is the average 

accuracy of all objects.  

Applications of this can be seen in [48], in which robots execute several tasks of 

manipulation of household objects. In the case of the robot Cosero, it actually is equipped 

with a Microsoft Kinect RGB-D camera. This robot shows some of possible applications of 

our algorithm, such as baking an omelette, which requires the robot to know where several 

needed objects, ingredients and cooking utensils, are in order to perform this task.  

Another application is in [34] and Figure 1.1, here we see a robot attempting to 

grasp a power drill. This robot can be an assistant to a factory worker and give this worker 

the tools that he needs, in order to do that, the robot needs to know what objects are needed 

and where they are, this can be achieved with the use of an object classification algorithm. 

 

Figure 1.1. Robot grasping power drill of object set [34]. 

This analysis is a reference of existing studies, mainly in the last 5-6 years and 

allows us to conclude, that in many of these approaches, the classification uses deep learning, 

although these methods present good results, they require large amounts of training data.  

The possibility of object classification using other features, extracted in an 

unsupervised fashion, is not considered with the sufficient detail, especially considering that 

these features could allow to reduce the required training data. 
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1.3. Proposed Approach and Overview 

This dissertation, introduces a novel unsupervised feature extraction method 

from RGB-D data that outputs a primitive shape, that best fits each object, the four main 

colours and the estimated volume and location of each object. Also introduces the 

application of this method in combination with FFANNs, in order to create an object 

classification algorithm capable of identifying 20 objects from the YCB object and model 

set [34], in an unstructured environment, with very few real training data and with more than 

one object in the workspace at the same time. 

This algorithm, in Figure 1.2, works by first acquiring the point clouds and 

merging them together. Inaccessible points and noise are removed. Due to the relative 

referential frame, the point cloud is rotated in three different stages, first to the vertical 

position, then to the horizontal position and finally we optimize the table plane rotation to 

the horizontal, to achieve better results in the following stages of the algorithm. 

We trim this resulting configuration, with not much more than the objects on top 

of the table. Then the table plane is removed, based on a histogram to ensure the accuracy 

of the method. After this, object segmentation is done, by finding regions in the point cloud 

containing points and surrounded by empty spaces, in order to separate each object in to its 

own point cloud, so that objects in the scene are isolated. 

  

Figure 1.2. Overview of the proposed approach. 
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As we can see in Figure 1.2, denoise and downsampling are performed to 

improve the accuracy and speed of the algorithm. After that feature extraction can begin, for 

each isolated object k-means clustering is applied to extract a global main colour and three 

main colours. 

Then three scores are computed based on the fitting of primitive shapes 

(cylinder, sphere and rectangular prism), and the best shape and model are chosen based on 

the primitive shape that has the highest score. Object’s volume is estimated by calculating 

the volume of the model or the point cloud. Then the location is estimated, by calculating 

the geometric centre of the model or point cloud, in accordance with the volume estimation.  

Experimental tests were carried out in 20 objects from the YCB object and model 

set [34] in an unstructured environment. It was demonstrated that: 

• The object’s primitive shapes (cylinder, sphere and rectangular prism), main 

colours (a total of four) and volume are estimated; 

• The proposed method allows to accurately and in an unsupervised fashion, 

isolate the objects in the scene and reduce the noise;  

• The extracted features can be used as main input for a classification 

algorithm; 

• The location of the objects can be reasonably obtained using this algorithm, 

after proper calibration; 

• The algorithm was able to achieve 96% accuracy, with five objects in the 

workspace at the same time and in random poses, with just an average of 13 

real samples per object in training, much less than the other previously 

referred methods, leading to a training time of around 6 minutes. 
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2. OBJECT SEGMENTATION AND CLASSIFICATION 

Knowing the challenge that we face and the proposed approach to solve it. The 

objective of this section is to explain in depth the algorithm, with its scheme in Appendix A. 

2.1. Point Cloud Acquisition and Processing 

2.1.1. Acquiring 

In order to improve the quality of the RGB-D data, we obtain 𝑛pct  point clouds 

in a row, from Microsoft Kinect V2. The acquiring procedure is made statically, that is, the 

objects and the sensor stay in the same pose during data acquisition. These point clouds are 

then merged using a box grid filter with a small cell size, just like in downsampling 

operations.  

Assuming a cell size of 𝑠c and 𝑛pct point clouds 𝑃𝐶𝑛pc
, 𝑛pc ∈ [1, 𝑛pct] , each 

with overall dimensions of [𝑠x,𝑛pc
, 𝑠y,𝑛pc

, 𝑠z,𝑛pc
] being X, Y and Z the respective Cartesian 

axis, the total number of divisions for each point cloud will be [
𝑠x,𝑛pc

𝑠c
,

𝑠y,𝑛pc

𝑠c
,

𝑠z,𝑛pc

𝑠c
]. In each 

of these divisions, colours and normal of all contained points are averaged and become a 

single occurrence in the merged point cloud, 𝑃𝐶M, as shown in Figure 2.1, where the position 

of that occurrence is the geometric centre of the respective division. 
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Figure 2.1. Point cloud, 𝑃𝐶M , after merging. 

The small cell size, 𝑠c, ensures that most data will be kept, but without duplicates 

or redundancies, leading to a point cloud with less points and allowing for faster processing. 

After this, the invalid points are removed using a MATLAB function, in order to eliminate 

acquisition errors. The merging procedure also helps avoiding acquisition errors and noise 

by averaging the values of the 𝑛pct  point clouds. 

2.1.2. First Trimming 

After obtaining and merging these 𝑛pct point clouds, into 𝑃𝐶M, a trimming 

operation designed to remove useless data for posterior grasping algorithms is performed, 

that is, the point cloud is trimmed based on the range and position of a manipulator, for 

example, a robot. In this stage, we assume a sphere with a radius, 𝑟 and we find every point, 

pM ∈ 𝑃𝐶M with coordinates [𝑥pM
, 𝑦pM

, 𝑧pM
], inside it. In Equation (2.1), the radius is referred 

by 𝑟 and the zero indexed constants, refer to centre of the trimming sphere. 

 (𝑥pM
− 𝑥0)

2
+ (𝑦pM

− 𝑦0)
2

+ (𝑧pM
− 𝑧0)

2
≤ 𝑟2 (2.1) 
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The resulting point cloud 𝑃𝐶T, shown in Figure 2.2, is significantly smaller than 

𝑃𝐶M, both in terms of number of points and overall size, but contains only the points inside 

this sphere, which are the useful points that the manipulator can grasp. This makes the 

algorithm faster, since we are reducing significantly the number of point that it has to 

analyse. 

 

Figure 2.2. Point cloud, 𝑃𝐶T, after first trimming. 

With this trimmed point cloud, 𝑃𝐶T, we execute a denoise operation which finds 

the mean distance 𝑑n of the nearest 𝑛n number of points, and then compares it to the distance 

𝑑d, which is a function of 𝑛d number of the standard deviations, from the mean distance, 𝜇𝑑, 

to all neighbouring points. By doing this, we are effectively removing sparse data and some 

isolated points that tend to stack near the trimmed surface, if the condition in Equation (2.2) 

is not met. 

 𝑑𝑛 ≤  𝑑𝑑 = 𝜇𝑑 + 𝑛𝑑×𝜎𝑑 (2.2) 

Here 𝜎𝑑  is the standard deviation of the distance to all neighbouring points. Large values of 

𝑛n contribute to more intense point removal and increased risk of useful point removal. 

Small values of 𝑛n lead to a moderate point removal but may fail to remove noise. 
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2.1.3. Rotations 

This denoised point cloud is then aligned in 3 rotations, as we can see in Figure 

2.3, and Equation (2.3).  

  

Figure 2.3. Rotations. 

 𝑃𝐶R = 𝐑 𝐑 1
2 𝐑2

𝑅
𝑇
1  𝑃𝐶T (2.3) 

Where 𝑃𝐶T refers to the point cloud after first trimming, 𝐑𝑇
1  to the first rotation matrix, 𝐑1

2  

to the second rotation matrix, 𝐑2
𝑅  to the third rotation and 𝑃𝐶R refers to the point cloud after 

all rotations are applied to it. 

The first rotation uses a random sample consensus (RANSAC) algorithm [49], 

to fit a plane to the input point cloud. RANSAC and its adaptations/variations are all iterative 

methods, the implementation of RANSAC aims at finding the most representative set of data 

by finding the model specified, that contains the biggest number of inliers, points between 

the model and a tolerance.  

From the plane model that we fitted, we extract its normal and use a Y-aligned 

vector to align the point cloud vertically. We compute the angles between the two vectors, 

after that we compute the equivalent rotation matrix, 𝐑,𝑇
1  which, we then use to rotate the 

point cloud. The result of this operation is a vertically aligned point cloud, as if the table 

were a wall.  

The second rotation, rotates the point cloud to a horizontal position. By taking 

the Y-aligned vector and defining a new Z-aligned vector, we execute the same rotation 

procedure as explained before, this time using 𝐑1
2 . This two stage rotation, is necessary in 

order to make sure that the point cloud points upwards and not downwards, when the 

Microsoft Kinect V2 angle with the horizontal is high.  
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 The third rotation, 𝐑2
𝑅 , iteratively tries to optimize the fitting of a plane, that is 

in the form of 𝑎𝑥 + 𝑏𝑦 + 𝑑 =   𝑧, to the lowest Z-coordinate of points of each cell in a grid, 

and remove the points that are more than a 𝑛𝑧 number of standard deviations away, from the 

mean distance to the plane along the Z-axis, 𝜇𝑧. By repeating this procedure, we are trying 

to isolate the table plane since it is the biggest provider of points and it contains the lowest 

points. After this we apply the rotation 𝐑2
𝑅 .  

To explain this rotation in more detail, we create a 2D grid, and place the 

minimum of coordinate along the Z-axis of all points of each cell, in its corresponding cell, 

in order to get an approximation of the floor plane, since this has the lowest points. We create 

a scatter plot of Z-coordinates with these points and iteratively fit a plane to this scatter plot. 

Then we remove points, it they are a distance 𝑑z equal to an average, 𝜇𝑧,  plus a number of 

standard deviations away, 𝑛𝑧 , from the plane along the Z-axis and then repeat this task. If 

this number of executions is too small, the plane quality will be poor, not representative of 

the table, if it’s too large, we risk removing most of the points ensuing a poor result. The 

distance, 𝑑pR
, from a point pR of the scatter plot, with coordinates [𝑥pR

, 𝑦pR
, 𝑧pR

] to the plane 

defined above, is equal to Equation (2.4). 

 𝑑pR
=  𝑎𝑥pR

+ 𝑏𝑦pR
+ 𝑑 − 𝑧pR

 (2.4) 

Considering all points, 𝜎𝑧 is the standard deviation of 𝑑pR
of these points, and 

they are kept if the condition in Equation (2.5) is met. 

 𝑑pR
<  𝑑z = 𝜇𝑧 + 𝑛z×𝜎𝑧 (2.5) 

After this the rotation 𝐑2
𝑅  is applied, taking in to account the normal of the last 

fitted plane and a Z-aligned vector. 

This final operation verifies the alignment of the table plane with the horizontal, 

since the table is the biggest provider of points and has the lowest ones. We can use that to 

detect the alignment of the normal and flip it if needed. In order to make the table plane align 

with the horizontal as best as possible, giving a better input to the table segmentation 

algorithm. This allows for the Microsoft Kinect V2 to have its pose changed and be able to 

compensate it, without requiring a fixed pose. 
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2.1.4. Fine Trimming 

After being properly aligned, a new trimming operation is performed. Since we 

only want to process the objects on the table, the trimming area is defined as a rectangular 

prism, that contains all the objects on the table, as in Figure 2.4. 

 

Figure 2.4. Point cloud after fine trimming. 

Our trimming function, used previously, is able to trim the space according to a 

sphere, as used previously but it can also trim according to a cube, rectangular prism and 

even an ellipsoid in any orientation. By giving the appropriate number properties: a shape 

chosen from the ones mentioned before, a coordinates vector 1×3 for the geometric centre 

of the shape, a length(s) which are a scalar for the sphere and cube or 1×3 vector for the 

rectangular prism and ellipsoid and an orientation vector containing the angles relative to the 

original frame, 3×1 or 1×3, if desired. 

2.1.5. Removal of Table Plane 

The next step involves the removal of the table plane or table segmentation, as 

seen in Figure 2.5, the green being what was removed and the pink being what was kept. By 

plotting a histogram, 𝑛bin ∈ [1, 𝑛bins], of the counts of points at each coordinate along the 

Z-axis, as in Figure 2.6, with 𝑏𝑖𝑛𝑤𝑖𝑑𝑡ℎ of bin width and then organizing the points by bins. 

After that, locating the trimming bin, 𝑏𝑖𝑛trimming , to a bin that is 𝑏𝑖𝑛𝑜𝑓𝑓𝑠𝑒𝑡 above the 

maximum number of points bin, which we define as 𝑏𝑖𝑛max, as in Equation (2.6). Following 

the trimming, we obtain a new point cloud which is the point cloud after table segmentation 

𝑃𝐶S, 𝑃𝐶S ∈ [𝑏𝑖𝑛trimming, 𝑏𝑖𝑛𝑛bins
]. 
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Figure 2.5. Table segmentation. 

 

Figure 2.6. Histogram counts of points at each coordinate along the Z-axis. 

 𝑏𝑖𝑛trimming = 𝑏𝑖𝑛max + 𝑏𝑖𝑛𝑜𝑓𝑓𝑠𝑒𝑡 
(2.6) 

The 𝑏𝑖𝑛𝑜𝑓𝑓𝑠𝑒𝑡 is due to the fact that, with objects on the table the Microsoft 

Kinect V2 distorts the table plane, creating peaks and valleys that need to be eliminated, thus 

the existence of this offset, since the bin with most points sometimes is inside the table. The 

accuracy and reliability of the method increased substantially with this method.  

We also tried this operation performed based on the plane that fits most of the 

points, since the table is the biggest provider of points it should be the table, again using 

RANSAC a plane was fitted. With this plane, we got the Z-coordinate of this plane relative 

to the camera and separated the points which are above and below this plane. Here we should 

have got a reasonable approximation of the table plane. However, there were some 

occurrences in which the table wasn’t removed accurately or completely. It was clear that 
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most problems were due to the fact that the plane ended up inside the table or too high on 

the table ignoring smaller objects. So, we went with the first approach. 

2.1.6. Object Segmentation 

After a second denoise operation, the point cloud is now ready to be segmented 

by finding clusters of data, each of these representing a possible object. By removing the Z-

coordinate, dividing the resulting 2D space in cells, as in Figure 2.7, and placing a count of 

points in each cell, we begin to check groups of non-empty adjacent cells which we define 

as clusters. 

 

Figure 2.7. Clustering example. 

Each of these groups are point cloud objects 𝑃𝐶O,𝑙 , 𝑙 ∈ [1, 𝑛O], which must be 

processed individually, to do this we separate the points of the original point cloud according 

to these clusters, as in Figure 2.8.  

  
(a) (b) 

Figure 2.8. Point cloud (a) before clustering and (b) after clustering. 

After this, we get the count of points (𝑛pts,𝑙) and cells (𝑛cells,𝑙) in each cluster, 

by summing all the points and cells that are clustered to that object. Then we perform the 

validation in Equation (2.7), in order to determine if a cluster is meaningful. To do this we 

stipulate that the rounded toward negative infinity base ten logarithm of the number of points 
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of a given cluster 𝑙, 𝑛pts,𝑙 , must be bigger than the corresponding rounded toward negative 

infinity base ten logarithm of the number of cells in that cluster 𝑙, 𝑛cells,𝑙. 

 ⌊𝑙𝑜𝑔(𝑛pts,𝑙)⌋ > ⌊𝑙𝑜𝑔(𝑛cells,𝑙)⌋ (2.7) 

This allows for the removal of small clusters of useless points, more effectively, 

based on point cloud density and without the need for a denoise operation that could fail to 

produce this change but could damage the models. 

Nevertheless, a verification procedure is implemented which requires the point 

cloud objects to have at least a pre-defined number of points, 𝑛v, this parameter is heavily 

dependent on the quality of the point cloud and sensor, the average object distance from the 

camera to the objects and the average object size. It increases with the first and third and 

decreases with the second.  

Even with this we encountered some problem since with objects that were close 

to each other, the clustering was not done properly due to the fact that noise and drag 

appeared in the point cloud, making a connection between more than one object and making 

them cluster as one. 

 

Figure 2.9. Axis explanation. 

The numbering of the objects is done, as in Figure 2.7, relative to the camera 

with the axis in the form of Figure 2.9, in first instance from left to right, in increasing X-

coordinate order and in second instance from near to far, in increasing Y-coordinate order. 

2.2. Feature Extraction and Classification 

After the segmentation, in order to lessen the time of calculations and to obtain 

features accurately, we execute a third or fine denoise, followed by a downsampling and a 

fourth or coarse denoise, as in Figure 2.10, to improve the stability and quality of the object’s 
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representation, by removing erroneous data. The feature extraction is now performed, as in 

Algorithm 1, using the point cloud, 𝑃𝐶D,𝑔, 𝑔 ∈ [1, 𝑛D], which is the point cloud after denoise 

and downsampling have been done to it. From now on, we will take a single object into 

consideration. 

 

Figure 2.10. Evolution of denoise and downsampling of 𝑃𝐶O,𝑙 into 𝑃𝐶𝐷,𝑔. 

Algorithm 1: Feature extraction. 

Input: Point cloud object 

For each Isolated Object  

% Colour extraction. 

Colours = Extract_Colours (Point_Cloud) 

          For m = 1:𝑛𝑟𝑢𝑛𝑠, 𝑛𝑟𝑢𝑛𝑠 ≥ 0 

          %Geometric shape fitter. 

         [Scores, Models] = Shape_Fitter (Point_Cloud) 

         End for 

%Shape, score, volume and location extraction. 

[Shape, Score, Volume, Location] = Shape_Volume_Extraction (Scores, Models) 

End for  

Output: Colours, Shape, Score, Volume and Location 

2.2.1. Colour Extraction 

We consider the colour to be important feature, as it allows for the differentiation 

between similar objects, for example: apples and oranges and pens of different colours. Each 

point, p𝑗, 𝑗 ∈ [1, 𝑛𝑗], of the point cloud, 𝑃𝐶D,𝑔, 𝑔 ∈ [1, 𝑛D], contributes with an RGB colour 

vector, 𝒄p𝑗
= [𝑟p𝑗

, 𝑔p𝑗
, 𝑏p𝑗

], leading to a total of 𝑛×3 colours steaming from 𝑛 points, 

making a matrix of size 𝑛𝑗×3.  
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If we consider only the colours of individual objects, these usually have distinct 

sets of colours, and as such, a clustering function seems appropriate to extract them. A 

clustering function aims at finding hidden groups or patterns of similar objects in a set of 

data, k-means clustering assumes that 𝑘, 𝑘 ∈  ℕ, groups exist and tries to partition the data, 

so that each point will belong to the nearest “mean” or cluster. The algorithm picks 𝑘 random 

points to initialize the procedure by designating them as “means”. For the remaining points, 

the closest “mean” is found and the point will now belong to that cluster. After all points 

have been clustered, a new “mean” is computed for each cluster by taking in to account all 

the points of each cluster. The procedure is then repeated with the new “means” until no 

significant change is detected or an iteration limit is reached. 

 

Figure 2.11. Result of colour extraction. 

We extract a total of four colours, as we can see in Figure 2.11. The first colour 

is the global main colour obtained by assuming that there is only one dominant colour, one 

cluster in k-means clustering. The second, third and fourth extracted colours are three main 

colours. We obtain them by assuming the existence of three clusters that are sorted in 

descending order of importance. The rationale behind this choice, besides what was 

previously referred, is also deeply connected to the number primary colours of RGB colour 

model, 3 which are red, green and blue. 
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2.2.2. Shape Extraction 

The geometric or shape features are extracted iteratively, as in Algorithm 2. Each 

point cloud object 𝑃𝐶D,𝑔, 𝑔 ∈ [1, 𝑛D] is evaluated using three shape fitters: cylinder (1), 

sphere (2) and rectangular prism (3). Again, these models are fitted by means of RANSAC.  

Due to the iterative nature of RANSAC algorithms, we initialize the algorithm 

𝑛𝑟𝑢𝑛𝑠 times to improve reliability, reproducibility and choose the best possible fitting, the 

fitting that has the maximum score, 𝑠𝑚𝑎𝑥,𝑔, 𝑔 ∈ [1, 𝑛D] for each point cloud object 𝑃𝐶D,𝑔, as 

in Equation (2.8). 

 𝑠𝑚𝑎𝑥,𝑔 = 𝑚𝑎𝑥 (𝑠𝑖,𝑔) (2.8) 

The scores, 𝑠𝑖,𝑔, 𝑖 ∈ [1, 𝑛fitters] ∧ 𝑔 ∈ [1, 𝑛D], for each fitting of point cloud object 𝑃𝐶D,𝑔, 

are evaluated by considering the number of inliers,  𝑛inliers,𝑖, for each fitting 𝑖, against the 

total number of points,  𝑛points,𝑔, of point cloud object 𝑔, as in Equation (2.9).  

 𝑠𝑖,𝑔 =
𝑛inliers,𝑖

𝑛points,𝑔
⁄  (2.9) 

We also extract a volume,  𝑣𝑜𝑙𝑔, and a maximum length along all 

axis,  𝑚𝑎𝑥𝑙𝑒𝑛𝑔𝑡ℎ𝑔, of the point cloud object 𝑃𝐶D,𝑔, 𝑔 ∈ [1, 𝑛D], which are used to evaluate 

the size relationship between the computed shape or fitted model and the point cloud 𝑃𝐶D,𝑔, 

as shown in Equation (2.10) and Equation (2.11). 

If one of the values of radius or volume of the model are more than maximum 

radius, 𝑚𝑎𝑥𝑟𝑎𝑑𝑖𝑢𝑠𝑔 or maximum volume, 𝑚𝑎𝑥𝑣𝑜𝑙𝑔, respectively, which are a function of 

maximum scale, 𝑚𝑎𝑥𝑠𝑐𝑎𝑙𝑒, then those calculations are discarded. Either by giving them a 

score, 𝑠𝑖,𝑔, of zero, in the case of the radius verification or by discarding the volume 

calculation for being inaccurate, because the size of model is too big when compared with 

the point cloud’s, 𝑃𝐶D,𝑔 ,size giving it the volume of a rectangular prism, containing the 

sides at minimum and maximum coordinates of the point cloud, in each Cartesian axis.  

 
𝑚𝑎𝑥𝑟𝑎𝑑𝑖𝑢𝑠𝑔 =  

(𝑚𝑎𝑥𝑠𝑐𝑎𝑙𝑒 ×𝑚𝑎𝑥𝑙𝑒𝑛𝑔𝑡ℎ𝑔)

2
 

(2.10) 

 𝑚𝑎𝑥𝑣𝑜𝑙𝑔 =  𝑚𝑎𝑥𝑠𝑐𝑎𝑙𝑒 ×𝑣𝑜𝑙𝑔 (2.11) 

Also, if the maximum score, 𝑠𝑚𝑎𝑥,𝑔, for a particular object 𝑔 is equal or below a 

certain threshold, it will be attributed another shape which is no match shape (4). 
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Algorithm 2: Shape fitting and model extraction. 

Input: Point cloud object 

For each Isolated Object  

     For each Shape  

          Score(Shape) = 0 

          For m = 1:𝑛𝑟𝑢𝑛𝑠, 𝑛𝑟𝑢𝑛𝑠 ≥ 0 

               %Geometric shape fitter. 

               Trial_Model (Shape) = Shape_Fitter (Shape, Point_Cloud) 

               compute Trial_Score (Shape) 

               if Trial_Score (Shape) > Score (Shape) then 

                    Model (Shape) = Trial_Model (Shape) 

                    Score (Shape) = Trial_Score (Shape) 

               End if 

         End for 

End for  

Output: Scores and Models  

 

 

 

(a) (b) 
Figure 2.12. Shape extraction results for (a) rectangular prism fitter and (b) cylinder fitter. 

The cylinder fitter, shown in Figure 2.12 (b), assumes three reference vectors for 

fitting, one aligned with the X-axis, one aligned with the Z-axis and one that is the normal 

of a plane fitted to the point cloud, 𝑃𝐶D,𝑔, using RANSAC. Then creates a cylinder fit for 

each of these reference vectors using MATLAB functions by means of RANSAC. In the 

case of the sphere fitter, there is no sense in using reference vectors since the sphere is always 



 

 

Object Segmentation and Classification from RGB-D Data  

 

 

24  2017 

 

the same independently of its orientation, but we also fit this shape using MATLAB 

functions by means of RANSAC. 

The rectangular prism shape fitter, shown in Figure 2.12 (a), assumes the 

existence of two scenarios, one where the rectangular prism is aligned with camera, Figure 

2.13 (a), here we extract the plane 1 by fitting a vertical plane, with normal aligned with Y-

axis, and extract the top plane by fitting a horizontal plane, with normal aligned with Z-axis. 

The rest of the planes are obtained by creating planes that intersect the point cloud’s 

minimum and maximum coordinates at each of the Cartesian axis and that have a normal 

aligned with the Cartesian axis. 

 

(a) (b) 
Figure 2.13. Rectangular prism shape fitting for (a) prism aligned with camera and for (b) prism in a 

random orientation with the camera. 

The other scenario assumes that the rectangular prism is in a random orientation 

with the camera, Figure 2.13 (b), here there are three planes to be fitted: one horizontal, the 

top of the rectangular prism, and two intersecting vertical planes, planes 1’ and 2’.  

To get a normal for each plane to be fitted, we find the points that would be 

equivalent to the corners, the minimum and maximum coordinates along the X-axis and 

along the Y-axis. Combining this information, two vectors can be created that are parallel to 

the planes 1’ and 2’, by making them equal to the difference of coordinates, along the XY 

2D space, between the point with minimum coordinate along the Y-axis and both points with 

the minimum and maximum coordinates along the X-axis. With this information, the normal 

for each plane, reference vector, can be computed, by getting vectors that are perpendicular 

to the previous ones.  

The planes 1’ and 2’can now be fitted, using the previously calculated reference 

vectors in a RANSAC algorithm. After this the top plane, can be fitted using a reference 
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vector along the Z- axis. The planes 3’ and 4’ are defined by creating vertical planes, that 

contain the points corresponding to the minimum and maximum coordinates along the X-

axis and are parallel to the planes 1’ and 2’, only in the XY 2D space. In both cases the floor 

plane is created by making a horizontal plane, that intersects the minimum value of 

coordinates along Z-axis of the point cloud. 

Another method tested, assumed that the planes 3’ and 4’ were defined by 

creating planes parallel in the 3D space to planes 1’ and 2’, with the rest being equal to what 

was referred. In both cases the results were similar, but slightly better considering the method 

of vertical planes 3’ and 4’ that ended up being used, as we can see in Appendix B, here 

method 1 refers to the vertical plane or parallel only in the XY 2D space method and method 

2 refers to the parallel in 3D space plane method. The both methods were tested in random 

orientation towards the camera, considering the horizontal position, where the biggest side 

of the prim was against the top of the table and the vertical position, where the smallest side 

of the rectangular prism was against the top of the table, as in Figure 2.14 and keeping the 

testing setup between methods.  

 

Figure 2.14. Testing setup in vertical position. 
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2.2.3. Dimension Extraction and Volume Estimation 

With the shape primitives fitted, we now extract the dimensions and then 

estimate the volume. The dimensions themselves are obtained by direct extraction from the 

models, using their geometric properties in the cases of cylinders and sphere or by 

calculating the side lengths, knowing the corners by intersecting two planes, in the case of 

the rectangular prism.  

In order to get the corners of the rectangular prism, we use the plane equation is 

in the form 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 =   0, considering the intersection at the Z-coordinate of the 

point cloud’s centre, 𝑧𝑐, since this should be the average value of area of the rectangle 

containing the four side planes of the rectangular prism. Then we need to solve a system of 

equations, in order to get the point of intersection between two planes at that Z-coordinate 

𝑧𝑐, for example Equation (2.12) is for generics planes 1 and 2. 

 [
𝑎1 𝑏1

𝑎2 𝑏2
] [

𝑥
𝑦] = [

−𝑑1 − 𝑐1𝑧𝑐

−𝑑2 − 𝑐2𝑧𝑐
] (2.12) 

After this, we calculate an approximation of the area of rectangle by finding the 

length of each of the sides of rectangle, along the XY 2D space at the Z-coordinate of the 

point cloud’s centre and use difference of coordinates of two points, of two different planes 

to compute the height of the rectangular prism, one corresponding to the top of the prism, 

which is calculated by finding the coordinate along the Z-axis, of the plane top fitted at centre 

of the rectangle and the other corresponding to the bottom plane, which is perfectly 

horizontal, so we only need to obtain its Z-coordinate.  

To finalize, we calculate volume using the geometric equations for each shape. 

If the model didn’t respect the volume or score verifications, the volume of the object would 

be estimated by the size of a rectangular prism that contained the points that corresponded 

to the minimum and maximum coordinates in each of the axis, in other words the size of the 

point cloud. 

In the test that were mentioned previously, in Appendix B, the object foam brick 

had a big difference in the value of its volume from the extracted to the real one, which was 

taken from the dimension values in [34]. That was due to the distortion of the image, by the 

inaccuracy of the Microsoft Kinect V2 sensor, as in [6] and the size of the trace behind the 

object was very significant compared to the size of the object, making the value of the 

volume very different from the real one.  
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Another method used assumed that the height of the rectangular prism was equal 

to the height at one of the corners, this gave us similar results to the ones in the previous 

method, since the bottom plane is horizontal and the top plane is almost horizontal, so we 

decided to use the first one. 

2.2.4. Location Estimation 

The location of the objects relative to the camera is calculated, in the cases of 

sphere and cylinder, by using the property centre of that model and in the cases of rectangular 

prism, no match shape and no volume verification, we calculate its location by getting the 

centroid of the model or point cloud, in other words we find the geometric centre of these 

rectangular prisms.  

After this an offset is applied based on the calibration that is done, this step is 

detailed further along this dissertation, in the location accuracy and calibration subchapter. 

This location though is considered to be relative to the RGB camera, in Figure 2.15, not the 

depth sensor, since its exact position is unknown. 

 

Figure 2.15. Scheme of the Microsoft Kinect V2 sensors. 

2.2.5. Classification 

To classify the objects using Algorithm 3, we use FFANNs, which we load in to 

our algorithm. Then we run each sample through these FFANNs and get a classification 

result. In order to run each sample through the FFANNs, we have to arrange the features 

before running it, so that they are in the form that the FFANNs were trained. Finally, we 

write the output of the classification, the data that the FFANNs used to classify the objects 

and their location after calibration, in to an Excel file. 
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Algorithm 3: Classification. 

Input: Colours, Shape, Volume and Score 

For each Isolated Object  

     Input (object)= Load (features) 

End for  

Load neural_network 

For each Isolated Object  

     Classification (object) = neural_network (Input (object)) 

End for 

%Writing of results into Excel file. 

Output: Classification and Location 
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3. EXPERIMENTS AND DISCUSSION 

3.1. Setup 

The point clouds in this dissertation were obtained using Microsoft Kinect V2. 

The Microsoft Kinect V2 is placed on top of a structure, which makes the centre of the RGB 

camera stand 46.5 cm above the table, looking down at the maximum angle allowed by the 

Microsoft Kinect V2 stand, between 27º and 30º and at a distance of between 55 cm and 105 

cm along the Y-axis, to the object. This setup is in Figure 3.1 and was the one that yielded 

the best results according to several setups that we tested. 

 

Figure 3.1. Microsoft Kinect V2 setup. 

The Microsoft Kinect V2 is able to capture 1920x1080 RGB images and 

512x424 depth images at 30 Hz and in the range of 0.5 m to 4.5 m. 

The objects that were used are from the YCB object and model set [34]. 

We decided to set the following conditions as defaults of the algorithm: 

• We use 𝑛pct = 10, as a good equilibrium between number of points and 

computational time; 

• The cell size in the merging operation was chosen as 𝑠c = 0.00001 𝑚; 

• In first trimming stage, we used a sphere as our trimming shape, the zero 

indexed constants, refer to centre of that sphere and are all equal to 0, since 
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the trimming is centred on the Microsoft Kinect V2, which is the origin of 

our referential and the radius (𝑟) is equal to 1.5 m; 

• We found that the values of 𝑛n = 400 and 𝑛d = 1, to be good in this case, at 

removing noise but not removing useful data in the first denoise operation; 

• The iterative optimization of point removal and plane refitting is usually made 

12 times, with cell of size of 0.01 m and the removal of points is done with 

𝑛𝑧 = 1; 

• In the fine trimming stage, we used a rectangular prism as our trimming 

shape, with the dimensions of all sides equal to 0.5 m, in practice being a 

cube. Its centre was the centre of the point cloud after rotation with an offset 

of +0.15 m along the X-axis, to the right, in order to detect which is the area 

of the table in which objects are;  

• We used 𝑏𝑖𝑛𝑜𝑓𝑓𝑠𝑒𝑡 = 4  and 𝑏𝑖𝑛𝑤𝑖𝑑𝑡ℎ = 0.003 𝑚, since these values 

provide a good table removal; 

• We found that the values of 𝑛n = 4 and 𝑛d = 1, to be good in the case of 

second denoise operation; 

• In the clustering stage, the grid size was 0.01 m, as this provided good enough 

clustering; 

• In the validation of clustering, we used 𝑛v = 500, because it was a good value 

for these household objects; 

• We used the values of 𝑛n = 20 and 𝑛d = 1, as they were good in this case, 

at removing noise but not removing useful data in the third denoise operation; 

• The cell size in the downsampling operation was 𝑠c = 0.001 𝑚; 

• The values of 𝑛n = 10 and 𝑛d = 1 were used, as they were good in the case 

of the fourth denoise operation; 

• We chose to use 𝑛𝑟𝑢𝑛𝑠 =  10 and maximum number of random trials in the 

fitting equal to 1000, since this was enough to ensure the convergence of the 

scores;  

• We decided to use 𝑚𝑎𝑥𝑠𝑐𝑎𝑙𝑒 = 1, since this gave us good results in 

eliminating erroneous models;  
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• The inlier tolerances for shape fitters were 0.01 m for cylinder fitter, 0.005 m 

for plane fitter, 0.005 m for sphere fitter and a 10º for angular tolerance in the 

cylinder and plane fitters; 

• The threshold for no match shape (4) is 𝑠𝑚𝑎𝑥,𝑔 ≤ 0.5.  

These numbers were reached by performing several trials, in our setup and 

evaluating the impact on the next stages. 

3.2. Cataloguing 

The cataloguing was done considering 20 objects from the YCB object and 

model set [34], which are in the Table 3.1 and Figure 3.2. 

Table 3.1. Cataloguing objects and their corresponding number. 

Object Number 

Sugar box 1 

Potted meat can 2 

Cracker box 3 

Wood block 4 

Gelatine box 5 

Pitcher 6 

Mug 7 

Master chef can 8 

Tomato soup can 9 

Chips can 10 

Apple 11 

Peach 12 

Plum 13 

Lemon 14 

Mini soccer ball 15 

Orange 16 

Softball 17 

Tennis ball 18 

Baseball 19 

Bowl 20 
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Figure 3.2. Cataloguing objects. 

The conditions were set to the defaults of the software that was developed and 

explained before. 

The objects were catalogued with the orientations in Figure 3.3 and in Figure 

3.5, some were catalogued in two different orientations and others were catalogued in four 

different orientations. 

The objects that closely resemble a sphere were catalogued in two different 

orientations, one with the logo facing the camera, if applicable, being the front orientation 

and one with no logo facing the camera, being the back orientation. The objects that closely 

resemble a cylinder were catalogued in two different orientations, vertical with both the front 

and back facing the camera. 

The objects that closely resemble a rectangular prism were catalogued in four 

different orientations, in the vertical orientation, with both sides, front and back, of the object 

facing the camera and with the objects biggest side aligned with the camera or in a random 

orientation. Both random orientations corresponded to a counter clockwise rotation from the 

aligned orientation.  

Of this we exempt the bowl, due to reasons that will be explained in the 

cataloguing results subchapter and the wood block, since in this object the front and back 

are the same, making only sense to catalogue in both the vertical and horizontal orientations 

and in only the random and aligned orientations, as in Figure 3.3. 
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Figure 3.3. Explanation of orientations. 

With these orientations, we catalogued the objects in five different positions, as 

in Figure 3.4, the first position is in the centre of the workspace, a square that has the position 

referred in the setup, the next four are closer to each of the corners of the workspace, from 

the camera position 2 is near the near left corner, position 3 is near the near right corner, 

position 4 is near the far left corner and position 5 is near the far right corner. 

 

Figure 3.4. Explanation of positions. 
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The fitting tolerances were 0.005 m for sphere and plane fitting, 0.01 m for 

cylinder fitting, due to the fact that by our empirical testing the cylinders fitted worse than 

the other shapes, so we had to favour them by giving them a bigger tolerance and 10º for 

angular tolerance in all fittings. Also, we set 𝑚𝑎𝑥𝑠𝑐𝑎𝑙𝑒 = 1, these values were achieved by 

empirical testing of several objects and were found to be the ones that gave the algorithm 

the best performance. 

We take the following features from Microsoft Kinect V2 and the algorithm for 

cataloguing: 

• Shape; 

• Score; 

• Measured volume; 

• Global main colour; 

• Three main colours; 

• Location. 

The next features had to be provided by us and were taken from page 43 of article 

[34], except in the cases of the pitcher and bowl, since in both cases the diameter of base and 

top, where very different, we assumed the diameter to be the average of this two values, 

which we measured, and used to calculate the real volume. These features are: 

• Object; 

• Real volume. 

One important aspect of this work, is that samples for both training and testing 

were taken in a unstructured environment, as oppose to the ones in the datasets [7], [34], 

making the variability of these be much higher than the works referred in the state of the art, 

and making the detection of objects more difficult. 

The cataloguing means and standard deviations for each feature of each object, 

except for the location and real volume, are shown in Appendix C and in Appendix D, 

respectively. 

Note that even though the volume in the appendices is always in cubic 

centimetres, in the algorithm we used cubic meters, since for the algorithm it’s the same to 

use either one. 



 

 

  EXPERIMENTS AND DISCUSSION 

 

 

João Gonçalo Pires Ferreira da Silva  35 

 

3.2.1.  Cataloguing Results 

Depending on the tolerances used, objects can have similar scores for very 

different geometries, for example: a cylinder with a small base can be reasonably 

approximated to a rectangular prism, apples, are slightly flattened at the poles which increase 

the score of the cylinder and rectangular prism fitters.  

On the other hand, some volume estimations can be very different from the real 

volume since a drag is always formed behind the object, in an unpredictable way, making 

the hidden part of the object appear much further back than it actually is and the volume 

bigger than real one. This drag could also lower the score of an object, because the points of 

the drag would not appear in the fitted result leading to for example a wrong shape detection.  

If the objects are small or they have low height the Microsoft Kinect V2 

distortion of the image and the limited precision of the segmentation can make a big error 

appear in the volume or eliminate the object.  

With this in mind, this subchapter is dedicated to discussing the unexpected 

results or acquisition errors in the cataloguing process. To be considered an error, the sample 

must have at least one of the following: 

• Wrong best fit; 

• Score lower than 0.9 of the best fit; 

• Measured volume that is below 20% of the real volume or that is 10 times 

bigger than the real volume.  

We exempted the mini soccer ball, of the score being below 0.9, since it isn’t a 

perfect sphere, by being composed of many flat surfaces, it’s expected that its score on the 

sphere shape is below 0.9. 

In the cases of the potted meat can, master chef can and tomato soup can, 

Microsoft Kinect V2 had problems acquiring reflective surfaces [6] and thus distorted them, 

making the score, shape and volume estimation have a big error. This was more apparent 

under artificial lighting, where the surfaces were more reflective, because of the angle of 

incidence of the light, made them reflect more towards the camera. This also happened in 

the top surface of the chips can, which had a lid made of a transparent and reflective plastic, 

but in here the effect were much lower only making the score of the best fit low, when 

compared with instances of no reflection.  
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Also, the potted meat can had round corners making the score low when 

compared with the other objects with rectangular prism shape, even making the fitting better 

as a cylinder in some instances because of this. 

In some cases, the algorithm would get the best score for the rectangular prism 

as a random one even though it was aligned in reality, only picking up the part of the object 

facing the camera and making a wrong volume estimation, lower than the real one. This was 

the case in some samples of the cracker box, gelatine box. 

Also, in some cases, namely in the wood block, the score for an aligned 

rectangular prism was low, since using our fitting function for aligned prism, the points on 

the sides don’t count for inliers, but count negatively towards the score, making the score 

low. This also explains the fact that sometimes, the best score would be of the rectangular 

prism as a random one, even though the object was aligned in reality, since for the aligned 

prism fitter the points corresponding to the sides do not count as inliers, but in the case of 

the random prism fitter, the points of one of the sides count as inliers. 

The gelatine box in some instances had low score, because Microsoft Kinect V2 

distorted the top by making it have a large drag with an inclination equal the inclination of 

Microsoft Kinect V2, between 27º and 30º from the horizontal, making very few points of 

the top plane count as inliers, because the angular tolerance for fitting was only 10º. 

The pitcher and mug got low scores, in some samples, because of the handles 

not being considered in the fitted result as inliers, but counting negatively, towards the score, 

in the total points. Also, the pitcher was not a perfect cylinder since the top had a bigger 

diameter than the bottom, contributing more towards this. 

In the cases of the chips can and master chef can there were some instances 

where a large drag was formed behind the object, making the score of the cylinder shape 

low, since most of the points of the drag did not count as inliers. This made the best fit be a 

rectangular prism, that counted more of those points as inliers.  

In the cases of the orange, apple, plum and peach, the best fitting was always 

expected to be a sphere and in the case of the lemon, it was expected to be a cylinder, but 

instead, sometimes it was something else or had a low score. In the cases of the orange and 

apple, this was due to the fact that they were not perfect spheres, having the top and/or 

bottom as flat surfaces. In the cases the peach, lemon and plum, this was due to the fact that 
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they were small objects and the tolerances for inlier points, in fitting, were big when 

compared with the overall dimensions of the object.  

In both cases counting almost the same points of the object in all fitting shapes, 

making all the shape scores very close, thus not having a very stable fitting shape and getting 

different shapes on different trials with the same object. To contribute to this, none of these 

objects were perfect primitive shapes. To correct this, we tried to put bigger tolerances on 

the sphere fitter, but this made all small objects appear as spheres, so we decided to keep the 

tolerances as they were, since we gained precision in some samples only, at the expense of 

others.  

It is also important to note that since the fitting was affected, the volume 

estimation also was affected, as was the case in some instances of the lemon, where the 

volume estimation was much lower than the real volume. Contributing also to this was the 

fact that the plum, peach and lemon where small objects and that a significant part of the 

object was removed, during the table removal stage of the algorithm, due to its limited 

precision. So, in the case of the lemon, orange, apple, plum and peach, we assumed the 

nomenclature, catalogued and tested them all, as if they were cylinders, in all trials. 

We also tried the bowl, the best shape that we expect was a cylinder, but because 

the sides are curved, it gave us a best fit of a sphere, in most cases, with a relatively low 

score of around 0.8 in all cases, including the ones that gave us the cylinder shape. With this 

in mind and taking into account that by rotating the bowl, it is still perceived in the same 

way, we decided to catalogue the bowl in two orientations, the top up orientation in Figure 

3.5 (a) and the bottom up orientation in Figure 3.5 (b). 

  

(a) (b) 
Figure 3.5. Bowl in the (a) top up and (b) bottom up orientations. 
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The shape error, made the volume and location estimations have a big error, 

although this error was consistent in all testing, making use of the volume verification that 

was previously referred, the error was lessened in the volume and location estimations. This 

show the importance that the colour has in classification, due to the inaccuracy of the shape 

and volume estimation and the importance of the volume verification. 

One final source of defects was that some objects had undergone some damage 

along the transportation before reaching us, making this also an origin of errors for our 

algorithm. This was clear in the case of the sugar box, where there were some instances, that 

the object was detected with a low score, due to the fact that some points of the damaged 

object, did not go as in the inlier points of the rectangular prism shape fitter, as it would 

happen if the object was not damaged.  

Overall the errors were due to the fact the Microsoft Kinect V2 had low accuracy 

and distorted the objects as input to this algorithm, making every estimation have an error, 

especially the volume estimation. Also, the fact that we only used one camera, made us only 

see one side of the object, meaning that the data that we had was very few, making us have 

to estimate the hidden parts of the object, which was not precise and gave us a great error. 

3.3. Classification 

After the cataloguing and since the number of samples is very low for training 

artificial neural networks (ANNs), in order to make the training faster, we created algorithm 

that creates virtual samples, based on the real ones that we took during the cataloguing 

process, by creating virtual positions with the same number of orientations as in cataloguing. 

This algorithm works by first defining the number of virtual positions that we 

want, and loading each of the targets and samples that we took. After this, we organize the 

samples according to each object and get for each feature of each object a mean and a 

standard deviation, based on the samples that we took during the cataloguing process. We 

create each virtual sample, by creating random values for each feature of each object, from 

the normal distributions with the mean and standard deviation calculated previously.  

After this and due to the large number of virtual samples that is created, it is 

possible that some values are outside the real ranges that those features have, for example 

negative values of volume and shapes that are not positive integers between 1 and 4. 
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The range of shapes is a positive integer between 1 and 4, so we round the value 

of random number generated and make that if a value is smaller than 1, it should be equal to 

1 and if it’s bigger than 4, it should be 4 and have its score equal to a random uniformly 

distributed number between 0 and 0.5, to be consistent with the previously set score 

verification. Also, the score range will have a similar verification, since every score that is 

equal or below 0.5 will be attributed the no match shape (4), and have its score equal to a 

random uniformly distributed number between 0 and 0.5 and if the score is bigger than 1 it 

should be equal to 1.  

For the case of the range of volume, we say that if a volume is less or equal than 

0, then the value of volume would be equal to the absolute value, of that random number 

that was generated. In the case of the colour, since the values from Microsoft Kinect V2 

range from 0 to 255, we considered every value that is less or equal than zero to be equal to 

zero and would correspond to a value of colour that is so low, that Microsoft Kinect V2 

would pick it up as 0 and every value larger than 255, would correspond to a value that is so 

big, that Microsoft Kinect V2 would pick it up as maximum value or in other words 255. 

This is a problem of pattern recognition, which has 15 inputs, that are shape, 

score, measured volume and the four colours, since each colour has 3 values corresponding 

to the values of red, green and blue, this explains the number of inputs. We have 20 outputs, 

since this is the number of target classes. 

 To solve this problem, we decided to use FFANNs which are one of the simplest 

types of ANNs and tested various conditions of training, in order to estimate the optimal 

conditions for training.  

We started by finding the best number of virtual positions for training, we trained 

five times each with 10, 100, 1000, 10000 and 100000 virtual positions. We did this testing 

with 10 neurons in the hidden layer and in MATLAB’s default conditions of random 

distribution of data of 70% for training, 15% for validation and 15% for testing. After this, 

we took the average fraction of misclassified samples of five tests, at each number of virtual 

positions and got Table 3.2 and Figure 3.6.  

In the following tests of this subchapter, we used as testing data the real samples 

that we took in cataloguing and changed the training data as a new training was done.  
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Table 3.2. Fraction of misclassified samples by number of virtual positions. 

 Fraction of misclassified samples [%] 

Number of 

virtual 

positions 

Training 

1 

Training 

2 

Training 

3 

Training 

4 

Training 

5 
Average 

10 12,4 13,6 16,8 15,2 15,6 14,7 

100 7,2 8,4 8,8 7,2 6 7,5 

1000 4,4 6,8 4,8 8,4 6 6,1 

10000 4,4 5,2 4,4 4,8 6,4 5,0 

100000 4,8 5,2 5,6 5,6 5,6 5,4 

 

 

Figure 3.6. Fraction of misclassified samples by number of virtual positions. 

Since the minimum average fraction of misclassified samples corresponded to 

10000 virtual positions, we used that value in the following tests, in order to train the 

FFANNs and chose the first three tests, of the 10000 virtual positions, to use in the Table 

3.3 and Figure 3.7 as comparison, as they were the 10 hidden neurons case. But as a note we 

also got good results with 1000 virtual positions in training.  

Now we will change the number of hidden neurons, between 5, 10, 15, 20, 25, 

30, 40, 50, 75 and 100, to see what is the effect of this change. In this and the next test 
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though, we are only to average the fraction of misclassified samples of three tests, since the 

accuracy of the algorithm is already good. Keeping the same data division as before for 

training, validation and testing. We got the following results. 

Table 3.3. Fraction of misclassified samples by number of hidden neurons. 

 Fraction of misclassified samples [%] 

Number of hidden 

neurons 

Training 

1 

Training 

2 

Training 

3 
Average 

5 8 4,4 8 6,8 

10 4,4 5,2 4,4 4,7 

15 5,2 4 4,8 4,7 

20 3,2 4,8 5,2 4,4 

25 4 2,8 4,4 3,7 

30 3,2 5,2 5,6 4,7 

40 4,8 4,8 4 4,5 

50 3,6 3,6 4 3,7 

75 2,8 4 2,8 3,2 

100 5,6 4,4 4,4 4,8 

 

 

Figure 3.7. Fraction of misclassified samples by number of hidden neurons. 

Considering that one of the minimum fraction of misclassified samples was in a 

training using FFANNs of 25 hidden neurons and that after that there was little to gain in 

adding more neurons, since we couldn’t get below the 2.8% fraction of misclassified 
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samples. We decided to used 25 neurons in the hidden layer and change the division of data. 

The validation and testing data can be 5%, 10%, 15%, 20% and 25% of the total data, with 

them being equal in all the tests. We used the three tests of 25 neurons that we previously 

got as comparison, as they were the 15% case and got Table 3.4 and Figure 3.8. 

Table 3.4. Fraction of misclassified samples by data division. 

 Fraction of misclassified samples [%] 

Data division (validation and 

testing) [%] 

Training 

1 

Training 

2 

Training 

3 
Average 

5 2,8 4,8 4 3,9 

10 5,6 4 4 4,5 

15 4 2,8 4,4 3,7 

20 5,6 4,4 3,6 4,5 

25 3,2 4 5,6 4,3 

 

 

Figure 3.8. Fraction of misclassified samples by data division. 

The results show that changing the data divisions had little effect on the 

classification, in which the best results were achieved with training containing 10000 virtual 

positions (500000 samples), 25 hidden neurons and the divisions set by MATLAB’s default 

conditions of random distribution of data of 70% for training, 15% for validation and 15% 

for testing. 
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The confusion matrices in Appendix E, are the ones that we got in testing with 

the best training conditions and are in the previous tables.  

Ignoring instances of confusion, that happened in only one of the tests in 

Appendix E, we can see that the FFANNs confused tomato soup can and the chips can 5 

times, the cracker box and the gelatine box 5 times, the gelatine box and the chips can 2 

times, the sugar box and the wood block 2 times, the sugar box and gelatine box 5 times, the 

potted meat can and master chef can 2 times and the cracker box with the chips can 5 times. 

Based on the means of the features of each object in Appendix C, we see that the 

confusions can be explained as follows.  

In the case of the tomato soup can and the chips can, they were confused because 

they have the same shape, similar scores and similar colours being the red and the white. 

Since the volumes are in the same order of magnitude and since the volume estimation has 

a big error, the confusion happened. 

The confusion between the cracker box and the gelatine box was due to the fact 

that these two objects had the same shape, almost the same score and similar colours, being 

the red and the white, also as we saw in the cataloguing, there were some instances where 

volume estimation had a big error in these objects, being this the possible source of the 

confusion, since this was one of the few features that distinguished them. 

In the case of the gelatine box and the chips can, the confusion is understandable 

since here score and colours are similar, they have both the red and white colours, also there 

were some instances in the cataloguing, where the chips can was detected as a rectangular 

prim, as said previously, making the shape the same as the gelatine box. 

Considering now the case of the confusion between the sugar box and the wood 

block, we can see that they have the same shape, similar scores and similar colours, being 

these between the white and yellow colours. Since the volumes are same order of magnitude 

and the volume estimation has a big error, the confusion happened. 

Seeing now the case of the confusion between the sugar box and gelatine box, 

they have the same shape, similar scores and colour, this being the white colour. Due to the 

inaccuracy of the volume estimation an error happened. 

In the case of the potted meat can and master chef can, they have similar shapes, 

since in some instances the master chef can has the rectangular prism shape and in some 

instance of the potted meat can has the cylinder shape, the scores are similar and they have 
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similar colours, being the blue and orange. Once more since the volumes are in the same 

order of magnitude and since the volume estimation has a big error, the confusion happened. 

In the case of the confusion between the cracker box with the chips can, this was 

due to the score and all the colours being similar, the colours being the red, white and orange, 

plus, as said before, in some instances the chips can was detected has a rectangular prism 

and the cracker box had a big error in volume, making the confusion understandable. 

To try to solve these confusion errors, we tried to change the training by 

changing number of samples, the number of hidden neurons and the random distribution of 

data between training, validation and testing, but this yielded no improvement in overall 

results since we made these confusions disappear at the expense of creating new ones. So, 

we decided to keep the best training.  

Overall these tests showed the need to improve the volume estimation of the 

algorithm, and how important the volume is as a feature. The biggest issue that was 

encountered during the volume estimation, was that since we only use one RGB camera in 

a stationary position, with one single view of the objects, we only see the part of the objects 

facing the camera, meaning that the hidden parts of the objects need to be estimated, making 

an inaccurate volume estimation, in many occasions.  

3.4. Training 

Since as we saw earlier, the best results were achieved with training containing 

10000 virtual positions (500000 samples), 25 hidden neurons and the divisions set by 

MATLAB’s default conditions of random distribution of data of 70% for training, 15% for 

validation and 15% for testing, as previously explained. We chose the best FFANNs that we 

trained, to implement into our algorithm, by selecting the one that had the least fraction of 

misclassified samples, in testing with the real samples. We got following the results with 

these FFANNs, in Table 3.5 and Figure 3.9. 

Table 3.5. Fraction of misclassified samples according to type of data. 

Data 
Fraction of misclassified samples 

[%] 

Training 0,186 

Validation 0,219 

Testing 0,228 
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To achieve this result we needed 215 iterations, it took us 5 minutes and 43 

seconds to train in a 4th generation Intel Core i7 processor. 

 

Figure 3.9. Schematic representation of used FFANNs. 

We use two-layer FFANNs, with 25 sigmoid neurons in the hidden layer and 20 

softmax output neurons, since this is the number of target classes. 

In our testing, in Appendix F, we tested the FFANNs, as we did before, with the 

real data from cataloguing, which we used to create the virtual positions and got a fraction 

of misclassified samples of 2.8%. 

In this test, the algorithm confused the cracker box and the gelatine box 2 times, 

the gelatine box and the chips can 1 time, the sugar box and gelatine box 2 times, the potted 

meat can and master chef can 1 time and the cracker box with the chips can 1 time, with all 

the reasons for these confusions being explained in the previous subchapter. 

3.5. Testing 

After this, we tested the algorithm with four object sets, in Table 3.6, containing 

five objects each. We did five tests per object set, randomizing the pose of the objects 

between tests, only paying attention that bigger objects can not cover small objects behind 

them, allowing for Microsoft Kinect V2 to see them all, as in Figure 3.10 (a) and opposed to 

what happens in Figure 3.10 (b).  

  

(a) (b) 
Figure 3.10. Master chef can (a) not covering and (b) covering the baseball. 



 

 

Object Segmentation and Classification from RGB-D Data  

 

 

46  2017 

 

Table 3.6. Testing sets. 

Sets Object 1 Object 2 Object 3 Object 4 Object 5 

1 
Gelatine 

box 

Tomato 

soup can 

Potted meat 

can 

Mini soccer 

ball 
Bowl 

2 Wood block Sugar box Peach Plum Lemon 

3 
Master chef 

can 
Pitcher Softball Tennis ball Orange 

4 Chips can Cracker box Apple Baseball Mug 

 

There were some instances where we accidentally put two objects close to each 

other and that made the clustering process not preform correctly, these instances were 

discarded but the results showed the need to improve how the algorithm handles objects not 

in our dataset and the clustering process. This improvement can be done by maybe putting a 

smaller grid size in this stage of the algorithm. Also, shown that testing with multiple objects 

is more difficult than using one single object, since the presence of multiple objects on the 

scene close to each other, interferes with the objects in the scene causing confusion.  

The results are in Table 3.7 and Figure 3.11. 

Table 3.7. Recognition results in testing. 

 Recognition accuracy 

Sets 
Object 

1 

Object 

2 

Object 

3 

Object 

4 

Object 

5 

1 5/5 4/5 4/5 5/5 5/5 

2 4/5 5/5 5/5 5/5 5/5 

3 5/5 5/5 5/5 5/5 5/5 

4 5/5 4/5 5/5 5/5 5/5 
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Figure 3.11. Confusion matrix of multiple object testing. 

In this test, there were some instances of misclassification making the overall 

accuracy in this test equal to 96%, which is in line with state of the art techniques, that are 

in Table 1.1. To add to this, we have to take into account the fact that, we are testing with 

multiple objects in the workspace or scene in an unstructured environment, instead of just 

one in a structured environment, as they did in most papers of Table 1.1. 

In Figure 3.11, the algorithm confused the potted meat can with the tomato soup 

can, this was due to the fact, that in one instance the potted meat can had the cylinder shape 

as best fit and a measured volume very similar to the average volume of the tomato soup 

can, in cataloguing. Plus, Microsoft Kinect V2 distorted the potted meat can making the 

score low and causing the confusion. 
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The algorithm confused the tomato soup can with the chips can and the cracker 

box with the chips can, due to reasons that were explained before and plus in this case the 

cracker box was very near the side orientation, which was an orientation not in our catalogue 

and showed the need to take more samples.  

Also, we got the confusion of the wood block with the cracker box, this was due 

to the fact that in Appendix C, they had the same shape, similar scores, similar volumes and 

some of the colours were similar, namely the third main colour and the reds in all the RGB 

colour vectors. Plus, in this case there were even more colours that were similar to the ones 

of the cracker box, namely the blues in all the RGB colour vectors. 

Since this field is new, we were only able to find method [35] using the YCB 

object and model set [34]. This method, achieved a perfect classification in single object 

instance recognition, using the same object set [34], as we did. But only classified 11 objects, 

with only 8 from the object set in [34], whereas our algorithm classifies 20 objects from the 

same object set [34], also our algorithm required much less real data for training, only 250 

total samples, an average of 13 samples per class, whereas the algorithm in [35] required 

1744 total samples, an average of 159 samples per class. Making the cataloguing for our 

algorithm faster, since we need less real samples. 

Also, in our tests with multiple objects, we tested with five objects instead of 

three, as in [35], making the classification more difficult, since here we have more objects 

to interfere with the segmentation and classification algorithms. Still we achieved an 

accuracy of 96%, whereas the method in [35] achieved an accuracy of 100%, with only the 

objects in its training set. 

Since our algorithm got an accuracy of 96% with multiple objects on the scene 

and in an unstructured environment, we can say that algorithm has good accuracy when 

compared with similar algorithms, as seen in the Table 1.1 and in the related work [35]. 

3.6. Location Accuracy and Calibration 

To estimate the location, we use the centroid of the best model that was fitted. 

In order to calibrate Microsoft Kinect V2, we need to choose an object that it identifies well. 

Based on the means and standard deviations, in Appendix C and in Appendix D, and the real 

values of the features, we chose the tennis ball as our calibration object, since the measured 
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volume and real volume were very close, the measured volume had a small standard 

deviation and the best shape was always a sphere.  

The tests were performed considering five positions, just as we did before in 

Figure 3.4, we took the real coordinates of those locations and then compared them with the 

ones that we took from the algorithm, five times, in order to calibrate our device.  

With the average distance between the real and measured positions along each 

of the Cartesian axis, we can create an offset to put in our algorithm, in order to give a more 

precise estimation and to have an idea of the error, that our algorithm has in the location 

estimation.  

The positions were as described in the cataloguing section, in Figure 3.4 and 

were chosen, in order to get an idea of what the error was in the different parts of our 

workspace. The location error was due to [6]: 

• The sensor by inadequate calibration; 

• The measurement setup by the lighting conditions and image shape; 

• The properties of object surface as in reflective surfaces. 

The average differences of the real location minus the measured location and the 

average distance from the real location to the measure location for each position are in Table 

3.8. 

Table 3.8. Location test and calibration results. 

Position 

Average 

difference of 

coordinate X-

axis [cm] 

Average 

difference of 

coordinate 

Y-axis [cm] 

Average 

difference of 

coordinate 

Z-axis [cm] 

Average 

distance 

[cm] 

1 -5,22 -1,36 -1,01 5,50 

2 -4,53 -1,94 -0,87 5,01 

3 -4,81 -2,03 -0,67 5,27 

4 -4,69 -1,81 -1,12 5,15 

5 -5,04 -1,70 -1,26 5,47 

 

After this, we created an algorithm that divides the workspace into four equal 

spaces, along the XY 2D space and creates an offset to the location in each space, based on 

the average difference of coordinates between the real and measured positions, from 

positions 2 to 5. This algorithm is implemented after the location is obtained. Also, the first 

position was only to get an idea of what was the error was in the centre of the workspace. 



 

 

Object Segmentation and Classification from RGB-D Data  

 

 

50  2017 

 

We got a minimum distance of 4.78 cm and a maximum distance of 5.75 cm 

between the real and the measured positions, these values are useful to give an idea to the 

robot where this object is. From Table 3.8, we can see that the biggest difference is in the X-

coordinate, this difference is on average -4.86 cm and is due to the fact that the location is 

relative to the depth sensor not the RGB camera, which is about 5 cm to the right of the RGB 

camera, while looking at the front of Microsoft Kinect V2.  

By taking this average error in the X-axis and offsetting the location by it, we 

can see that the minimum distance of 1.46 cm and a maximum distance of 2.62 cm. In line 

with the precision of Microsoft Kinect V2 that is in [6]. Although we know that it is not like 

this, in the algorithm, we decided to use the location relative to the RGB camera, since this 

is a well-known position, making it is easy to implement in any robotics application, as 

opposed to the exact location of the depth sensor which is unknown. 

As a note, since with aligned rectangular prisms, the fitting can be only the part 

of an object facing the camera and not much more this can lead the location to have a large 

error. 
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4. CONCLUSIONS 

The objective of this dissertation was to present a novel method of object 

classification using RGB-D data from Microsoft Kinect V2, that was able to classify 20 

objects from the YCB object and model set [34]. In doing so, a novel unsupervised feature 

extraction algorithm from RGB-D data was also introduced, which was used together with 

FFANNs for object classification.  

The unsupervised feature extraction algorithm works by first acquiring and 

merging frames from Microsoft Kinect V2. After this a first trimming procedure is done, 

that removes useless data, beyond the reach of the manipulator, for example a robot. Then 

rotations are applied to the point cloud so that, Microsoft Kinect V2 is able to compensate 

when its pose is changed and in order to have the table in the horizontal position. Following 

this, a fine trimming operation and a table plane removal are applied in order separate the 

objects from the background.  

Then object segmentation is applied to separate each object into its own points 

cloud, with the objects separated denoise and downsampling are applied, in order to give 

more stable data to the feature extraction algorithm. This algorithm works by extracting the 

main colours of an object, the primitive shapes and score that best fits an object and an 

estimation of the volume based on that fitting. 

In the classification stage of the algorithm, FFANNs are used to classify the 

objects based on these inputs. Results show, that with the introduction of virtual samples the 

accuracy of classification can be greatly improved, without the need to take a large number 

of real samples, which is a very time-consuming task. Also in this dissertation, it is shown 

the importance of careful study of the best conditions of training, taking into account that 

the number of samples in training and the number of hidden neurons in the FFANNs, can 

have a great impact on the accuracy of classification. 

With the tests that were presented in this dissertation, we can see that an accuracy 

of 96% can be achieved with multiple objects on the scene and in an unstructured 

environment, which is better than most state of the art methods which achieve similar 

accuracies but with a single object on the scene and in a structured environment. 
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It is demonstrated that by doing the training with features instead of raw RGB-

D data, cataloguing was much faster, since this allows for the simple creation of virtual 

samples, based on means and standard deviations from cataloguing, to be used for training, 

which will have more samples and will lead to a higher accuracy of recognition. 

Also with this dissertation, a method of locating objects using RGB-D data was 

introduced, this method considers the location of an object to be the geometric centre of the 

model, that was created during the fitting stage of the algorithm. It is shown that maximum 

error of this method is 5.75 cm and that this error can be lessened with careful calibration. 

Overall the results indicate that, we can extract features of objects from RGB-D 

data, approximate them by 3D primitive shapes and use this information to classify them, 

with a reduced amount of training data. 

4.1.  Future Work 

Taking into account the work that has been done in this dissertation, future work 

will include: 

• Cataloguing more images, in order to improve the accuracy of the algorithm 

and to include more objects in classification; 

• Perfecting the object segmentation algorithm possibly by using a 3D grid or 

a smaller grid size in order to see the effect that this has on clustering; 

• Getting more primitive shapes or a combination of primitive shapes, in order 

to classify more complex objects; 

• Lessen the acquiring parameters in order to speed up the algorithm and see 

what would be the effect on the classification, namely taking out the third 

rotation and some denoise operations; 

• Implementation of the algorithm in grasping applications, in order to aid 

robots in detecting and classifying obstacles and graspable objects. 
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APPENDIX A (ALGORITHM SCHEME) 

In this appendix, we will show in an index form of how the algorithm works, 

showing what functions does it call, when the main function SmartDemonstrator.m is called. 

The algorithm contains four parts which are: 

• Part 1: Obtaining data from Microsoft Kinect V2; 

• Part 2: Point Cloud Processing; 

• Part 3: Feature Extraction; 

• Part 4: Classification. 

When functions are called, an index will appear that indicates the order in which 

the function was called and what it does once it’s called, as shown next: 

Part 1: Obtaining data from Microsoft Kinect V2. 

1. Acquisition of point cloud using fKinectAcquireM; 

1.1. Acquire point clouds from Kinect; 

1.2. Merging of point clouds into one; 

2. Remove invalid points from resulting point cloud using 

ptCloud.removeInvalidPoints; 

3. First trimming operation based on the range of grasping using PtTrimLoc; 

3.1. Define shape, dimensions, centre and angles; 

3.2. Create an affine transformation matrix from Angles and then rotates the input 

point cloud using PtRotTrams; 

3.3. Point cloud analysis – defines region of interest, useful points are inside this 

region, based on a shape and its limits; 

3.3.1. Define cube limits;   

3.3.2. Define sphere limits; 

3.3.3. Define rectangular prism limits; 

3.3.4. Define ellipsoid limits; 

3.4. Output creation – creates output by selecting only useful points and then plotting 

the output point cloud on a figure; 

4. Denoise and show the image before and after denoise. 
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Part 2: Point Cloud Processing. 

1. Point cloud rotation using FPtFastRot; 

1.1.  Fit plane to 3-D point cloud using fFitPlaneMatLabOptimize; 

1.2.  Creates first affine transformation matrix from vectors using RotFromVec; 

1.3.  First rotation to the vertical of the input point cloud using PtRotTrams; 

1.4.  Creates second affine transformation matrix from vectors using RotFromVec; 

1.5.  Second rotation to the horizontal of the input point cloud using PtRotTrams; 

1.6.  Fine-tune point cloud rotation by iteratively fitting a plane using 

PtFineTuneRotation; 

1.6.1. Create a grid and get statistical data from it using FGrid; 

1.6.1.1.Generate limits according to the max/min coordinates using 

Generate_Zone4Boundary; 

1.6.1.2.Create a grid and count points in each cell using 

FGridCreateACount; 

1.6.1.3.Get statistical data from grid using MATLAB functions and 

FStatGen; 

1.6.2. Create a 3D scatter plot from data using F3DPointPlaneForFitting; 

1.6.3. Fit a plane using FCreateFitPlaneX1Y1; 

1.6.4. Iterative optimization using FFitPlaneRemoveOutliners to remove less 

similar points to plane and create a new fit plane; 

1.6.4.1.Remove less similar points;  

1.6.4.2.Fit a plane using FCreateFitPlaneX1Y1; 

1.6.5. Rotate the point cloud in order to align the plane to the horizontal using 

FPTRotTra2Plane; 

1.6.5.1. Creates affine transformation matrix from vectors using 

RotFromVec; 

1.6.5.2.Translation of the input point cloud to the origin of the Cartesian 

axis using PtRotTrams; 

1.6.5.3.Rotation to the horizontal of the point cloud using PtRotTrams; 

1.6.5.4.Translation of the point cloud using PtRotTrams; 

1.7.  Show evolution during the optimization plus alignment; 

1.8.  Show final rotation (result of PtFineTuneRotation); 
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2. Trimming Section;  

2.1. Find centre of point cloud using fPtFindCenter; 

2.2. Fine trimming operation using PtTrimLoc; 

2.2.1. Define shape, dimensions, centre and angles; 

2.2.2. Create an affine transformation matrix from Angles and then rotates the 

input point cloud using PtRotTrams; 

2.2.3. Point cloud analysis – defines region of interest, useful points are inside 

this region, based on a shape and its limits; 

2.2.3.1.Define cube limits;   

2.2.3.2.Define sphere limits; 

2.2.3.3.Define rectangular prism limits; 

2.2.3.4.Define ellipsoid limits; 

2.2.4. Output creation – creates output by selecting only useful points and then 

plotting the output point cloud on a figure; 

3. Segmentation of floor using FloorDepthSegmentation; 

3.1. Creation and plotting of histograms of counts of points at each coordinate along 

the Z-axis of point cloud; 

3.2. Segmentation of the table from point cloud based on maximum number of points 

bin and show of point cloud after table segmentation;  

4. Point Cloud Clustering and Segmentation; 

4.1.  Denoise point cloud using pcdenoise; 

4.2.  Cluster and segment regions of interest from point cloud using 

ROIClusteringSegmentation; 

4.2.1. Obtain grid count and indexes using FGrid; 

4.2.1.1.Generate limits according to the max/min coordinates using 

Generate_Zone4Boundary; 

4.2.1.2.Create a grid and count points in each cell using 

FGridCreateACount; 

4.2.1.3.Get statistical data from grid using MATLAB functions and 

FStatGen; 

4.2.2. Get clusters from a grid using FGridClustering; 

4.2.3. Remove meaningless clusters; 
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4.2.3.1.Separate data according to clusters in grid using FProcessCluster; 

4.2.3.2.Remove meaningless clusters with density validation; 

4.2.3.3.Get final data and plot; 

4.3. Remove useless point cloud clusters using fPtSegmentedClean. 

Part 3: Feature Extraction. 

1. Downsample and denoise point cloud using fPtDownDenoise; 

2. Colour extraction by k-means clustering using FFExtractColour; 

3. Get volumes, location, shape and score of objects using fPtCloudShapeVolLoc; 

3.1. Fit primitive shapes using MATLAB functions by calling 

fPtCloudGeoMatchMatlab; 

3.1.1. Get maximum radius and volume by using fPtCldSize; 

3.1.2. Fitting of primitive shapes using MATLAB functions; 

3.1.3. Find centre of point cloud using fPtFindCenter; 

3.2.  Select best shape and score, estimate volume and location using 

fPtCloudMatchVol; 

3.2.1. If volume or score verification is not met use fPtCldSizeCentre to find 

volume and location of point cloud; 

3.2.2. Calculate plane intersection for rectangular prism at the Z-coordinate of 

the point cloud’s centre using fModelPlaneInter; 

4. Write output for cataloguing in to Microsoft Excel file using WriteOutputExcel; 

5. Offset location based on previous calibration using fOffsetLocation. 

Part 4: Classification. 

1. Classification and creation of output Microsoft Excel file using fClassification; 

1.1. Creation of input matrix for neural network; 

1.2. Classification using neural network 

1.3. Writing of output in to Microsoft Excel file. 
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APPENDIX B (RECTANGULAR PRISM TEST) 

 

Method 1 (Horizontal)  

Object 
Volume 

1 [cm^3] 

Volume 2 

[cm^3] 

Volume 3 

[cm^3] 
 

Foam 

rick 
152,0 423,0 420,0  

Wood 

block 
1281,0 1308,0 1304,0  

Cracker 

box 
1832,0 1875,0 1908,0  

     

Object 

Real 

volume 

[cm^3] 

Average 

Volume [cm^3] 

Absolute value 

of error [cm^3] 

Absolute 

percentage of 

error [%] 

Foam 

rick 
187,5 331,7 144,2 76,9 

Wood 

block 
1536,7 1297,7 239,0 15,6 

Cracker 

box 
1990,8 1871,7 119,1 6,0 

  
Average 

absolute error 

[cm^3] 

167,4  
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Method 2 (Horizontal)  

Object 
Volume 1 

[cm^3] 

Volume 2 

[cm^3] 

Volume 3 

[cm^3] 
 

Foam 

rick 
402,0 439,0 482,0  

Wood 

block 
1437,0 1334,0 1344,0  

Cracker 

box 
1886,0 1975,0 1948,0  

     

Object 

Real 

volume 

[cm^3] 

Average Volume 

[cm^3] 

Absolute value 

of error [cm^3] 

Absolute 

percentage of 

error [%] 

Foam 

rick 
187,5 441,0 253,5 135,2 

Wood 

block 
1536,7 1371,7 165,0 10,7 

Cracker 

box 
1990,8 1936,3 54,5 2,7 

  
Average 

absolute error 

[cm^3] 

157,7  
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Method 1 (Vertical)  

Object 
Volume 1 

[cm^3] 

Volume 2 

[cm^3] 

Volume 3 

[cm^3] 
 

Foam 

rick 
234,0 246,0 215,0  

Wood 

block 
1278,0 1253,0 925,0  

Cracker 

box 
2112,0 2392,0 2605,0  

     

Object 

Real 

volume 

[cm^3] 

Average 

Volume [cm^3] 

Absolute value 

of error [cm^3] 

Absolute 

percentage of 

error [%] 

Foam 

rick 
187,5 231,7 44,2 23,6 

Wood 

block 
1536,7 1152,0 384,7 25,0 

Cracker 

box 
1990,8 2369,7 378,9 19,0 

  
Average 

absolute error 

[cm^3] 

269,2  
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Method 2 (Vertical)  

Object 
Volume 1 

[cm^3] 

Volume 2 

[cm^3] 

Volume 3 

[cm^3] 
 

Foam 

rick 
245,0 318,0 244,0  

Wood 

block 
986,0 1113,0 1216,0  

Cracker 

box 
2433,0 2691,0 2381,0  

     

Object 

Real 

volume 

[cm^3] 

Average Volume 

[cm^3] 

Absolute value 

of error [cm^3] 

Absolute 

percentage of 

error [%] 

Foam 

rick 
187,5 269,0 81,5 43,5 

Wood 

block 
1536,7 1105,0 431,7 28,1 

Cracker 

box 
1990,8 2501,7 510,9 25,7 

  
Average 

absolute error 

[cm^3] 

341,3  
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APPENDIX C (CATALOGUING MEANS) 

Object Shape Score 

Measured 

volume 

[cm^3] 

Global 

main 

colour 

R 

Global 

main 

colour 

G 

Global 

main 

colour 

B 

Main 

colour 

1 R 

Main 

colour 

1 G 

Main 

colour 

1 B 

Main 

colour 

2 R 

Main 

colour 

2 G 

Main 

colour 

2 B 

Main 

colour 

3 R 

Main 

colour 

3 G 

Main 

colour 

3 B 

Sugar 

box 
3,0 0,95 833,0 173,5 184,3 146,0 183,3 196,5 123,7 175,4 188,3 147,2 93,5 98,0 119,8 

Potted 

meat can 
2,4 0,86 396,5 125,6 124,6 88,6 142,7 137,2 90,2 84,6 86,4 71,1 153,4 156,2 111,4 

Cracker 

box 
3,0 0,94 1867,5 165,0 116,0 95,0 163,2 112,4 100,9 161,0 102,0 64,9 183,0 164,3 147,9 

Wood 

block 
3,0 0,97 1487,4 170,2 167,6 126,0 161,8 160,3 117,1 175,3 172,4 131,8 192,3 186,6 149,1 

Gelatine 

box 
3,0 0,97 201,4 174,8 153,2 150,6 185,5 180,0 179,6 168,5 119,4 114,1 161,0 122,0 118,4 

Pitcher 1,0 0,77 2152,3 33,4 66,8 136,2 27,4 60,8 131,1 44,2 77,4 144,8 116,3 149,4 203,0 

Mug 1,0 0,91 348,0 91,4 35,9 25,8 99,7 40,9 28,6 65,8 15,4 8,5 135,5 89,4 85,9 

Master 

chef can 
1,2 0,86 693,4 79,3 87,8 125,6 26,6 36,2 89,4 142,1 149,0 169,2 156,1 161,8 170,2 

Tomato 

soup can 
1,0 0,91 256,3 151,8 134,3 131,4 160,2 144,7 142,4 149,6 127,6 123,2 126,5 104,5 100,6 

Chips 

can 
1,4 0,90 710,8 157,4 100,8 81,1 153,3 51,9 35,8 171,1 157,7 132,9 143,5 128,3 106,7 
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Object Shape Score 

Measured 

volume 

[cm^3] 

Global 

main 

colour 

R 

Global 

main 

colour 

G 

Global 

main 

colour 

B 

Main 

colour 

1 R 

Main 

colour 

1 G 

Main 

colour 

1 B 

Main 

colour 

2 R 

Main 

colour 

2 G 

Main 

colour 

2 B 

Main 

colour 

3 R 

Main 

colour 

3 G 

Main 

colour 

3 B 

Apple 2,4 0,91 141,5 162,3 50,0 47,9 150,1 39,6 34,9 183,4 62,9 66,5 207,6 123,3 125,6 

Peach 2,6 0,95 70,6 205,2 166,5 53,9 216,8 189,8 54,7 189,5 134,2 48,7 192,1 136,1 66,8 

Plum 2,2 0,95 42,0 80,6 43,5 46,6 71,7 34,5 35,6 99,7 61,6 71,9 143,8 112,1 121,6 

Lemon 2,5 0,96 50,7 229,7 232,5 62,1 223,9 225,6 56,7 236,4 240,9 65,0 229,1 232,0 85,0 

Mini 

soccer 

ball 

2,0 0,93 1016,6 145,8 99,3 54,7 123,1 62,0 35,8 155,9 119,3 59,7 206,1 190,3 120,3 

Orange 2,1 0,93 127,7 198,9 117,7 50,2 191,5 107,2 37,9 211,1 131,7 63,1 211,0 151,6 101,2 

Softball 2,0 0,96 342,7 191,6 230,1 84,1 208,6 247,1 91,5 177,7 216,6 78,7 96,6 130,9 41,1 

Tennis 

ball 
2,0 0,97 102,9 192,6 217,1 119,5 189,9 215,0 113,9 200,9 225,2 126,1 132,3 155,8 88,8 

Baseball 2,0 0,98 145,8 199,8 205,3 207,7 204,1 210,2 213,0 203,2 209,2 211,8 161,6 164,2 165,0 

Bowl 1,9 0,81 1090,3 153,5 49,7 35,7 147,5 41,0 25,3 168,8 71,8 65,1 213,4 162,5 162,2 

  



 

 

  APPENDIX D (Cataloguing Standard Deviations)  

 

 

João Gonçalo Pires Ferreira da Silva           69 

 

APPENDIX D (CATALOGUING STANDARD DEVIATIONS) 

Object Shape Score 

Measured 

volume 

[cm^3] 

Global 

main 

colour 

R 

Global 

main 

colour 

G 

Global 

main 

colour 

B 

Main 

colour 

1 R 

Main 

colour 

1 G 

Main 

colour 

1 B 

Main 

colour 

2 R 

Main 

colour 

2 G 

Main 

colour 

2 B 

Main 

colour 

3 R 

Main 

colour 

3 G 

Main 

colour 

3 B 

Sugar 

box 
0,0 0,03 437,0 3,8 3,8 28,5 10,4 14,2 64,9 20,5 21,4 53,8 59,5 60,7 53,2 

Potted 

meat 

can 

0,9 0,08 206,8 15,2 15,5 9,4 28,9 32,0 15,9 66,9 66,8 38,6 68,8 70,9 44,7 

Cracker 

box 
0,0 0,02 1058,4 4,8 13,7 20,1 20,6 68,3 74,9 26,4 47,2 35,6 23,1 32,3 45,3 

Wood 

block 
0,0 0,04 257,4 9,5 10,4 12,3 8,6 11,8 14,9 33,3 34,2 40,6 37,8 38,8 44,9 

Gelatine 

box 
0,0 0,03 142,1 4,9 16,0 18,2 15,3 30,2 32,9 28,1 58,8 64,1 28,8 54,7 56,8 

Pitcher 0,0 0,07 945,1 2,7 2,3 2,0 1,5 3,5 7,2 22,5 29,5 31,3 33,4 23,2 11,0 

Mug 0,0 0,04 39,4 5,9 1,9 2,6 4,9 1,8 2,7 5,9 1,4 0,6 20,5 28,7 31,5 

Master 

chef can 
0,6 0,05 173,5 26,6 26,4 17,6 6,4 6,0 6,1 73,2 73,8 62,1 29,1 30,1 28,3 

Tomato 

soup can 
0,0 0,07 78,8 6,6 14,7 16,0 31,8 60,4 65,5 26,3 53,6 59,0 12,5 27,3 29,2 

Chips 

can 
0,8 0,05 335,1 10,3 15,8 19,9 14,9 4,6 6,7 14,7 27,8 32,8 50,0 58,5 56,7 
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Object Shape Score 

Measured 

volume 

[cm^3] 

Global 

main 

colour 

R 

Global 

main 

colour 

G 

Global 

main 

colour 

B 

Main 

colour 

1 R 

Main 

colour 

1 G 

Main 

colour 

1 B 

Main 

colour 

2 R 

Main 

colour 

2 G 

Main 

colour 

2 B 

Main 

colour 

3 R 

Main 

colour 

3 G 

Main 

colour 

3 B 

Apple 1,0 0,05 34,8 3,8 4,4 5,3 5,0 0,9 2,1 11,0 12,5 14,0 5,1 37,7 35,6 

Peach 0,5 0,02 21,8 10,8 17,5 4,4 8,2 13,4 6,5 32,2 56,6 16,7 35,5 53,8 37,4 

Plum 0,9 0,04 13,5 2,5 2,3 2,5 2,5 1,2 2,2 12,3 13,3 13,3 15,5 18,9 18,8 

Lemon 0,7 0,01 19,3 5,4 3,3 3,0 9,2 9,1 3,6 9,9 12,9 6,5 21,8 22,8 28,2 

Mini 

soccer 

ball 

0,0 0,03 142,1 4,0 7,5 3,4 13,8 27,8 9,0 11,7 28,9 9,3 9,9 12,7 21,8 

Orange 0,3 0,02 25,1 1,9 1,7 2,2 3,1 2,6 1,6 12,5 12,7 11,5 46,2 38,5 43,2 

Softball 0,0 0,02 29,8 7,4 6,7 1,2 9,5 4,7 8,7 29,8 25,5 16,5 45,7 47,3 15,1 

Tennis 

ball 
0,0 0,02 7,8 10,7 10,1 3,8 7,4 7,0 5,5 47,5 47,1 32,1 67,0 66,2 44,0 

Baseball 0,0 0,01 27,3 4,4 4,7 4,7 12,3 12,9 13,9 23,8 25,0 26,7 49,7 50,0 51,2 

Bowl 0,3 0,04 163,1 12,0 5,8 5,1 10,4 4,9 4,0 20,5 17,0 21,9 18,1 31,9 32,3 
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APPENDIX E (CONFUSION MATRICES) 
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