
Imagem

João Gonçalo Pires Ferreira da Silva

Object Segmentation and Classification

from RGB-D Data

Dissertação de Mestrado em Engenharia Mecânica

na Especialidade de Energia e Ambiente

 10/07/2017

DEPARTAMENTO DE

ENGENHARIA MECÂNICA

Object Segmentation and

Classification from RGB-D Data

Submitted in Partial Fulfilment of the Requirements for the Degree of Master in
Mechanical Engineering in the speciality of Energy and Environment

Segmentação e Classificação de Objetos a partir de

Dados RGB-D

Author

João Gonçalo Pires Ferreira da Silva

Advisor

Professor Pedro Mariano Simões Neto

Jury

President
Professor Doutor Cristóvão Silva

Professor Auxiliar da Universidade de Coimbra

Vowel
Doutor Nuno Alberto Marques Mendes

Investigador Auxiliar da Universidade de Coimbra

Advisor
Professor Doutor Pedro Mariano Simões Neto

Professor Auxiliar da Universidade de Coimbra

Coimbra, July, 2017

“At the desk where I sit, I have learned one great truth. The answer for all our

national problems - the answer for all the problems of the world - come to a single word.

That word is education.”

Lyndon B. Johnson, in Congressional Record, 2001.

To my parents.

 ACKNOWLEDGEMENTS

João Gonçalo Pires Ferreira da Silva i

ACKNOWLEDGEMENTS

First, I would like to thank my parents and the rest of my family for all the

support and kindness, that they provided. With them, I was able to achieve my goals and

dreams throughout my life.

I would also like to express my gratitude to my advisor Professor Pedro Neto,

for his patience, encouragement and guidance. With his help, I was able to develop this

dissertation in my own way, but his advice was fundamental in the completion of this

dissertation.

Then, I would like to thank my colleagues from the Collaborative Robotics

Laboratory of the University of Coimbra for all the patience, support and advice. They

received me with open arms from day one, always treating me as a friend and helping me

when they could.

Finally, I would like to thank my friends for always being there when I needed

them, with their patience, cheerfulness and support.

Object Segmentation and Classification from RGB-D Data

ii 2017

 ABSTRACT

João Gonçalo Pires Ferreira da Silva iii

ABSTRACT

Object classification is a key factor in the development of autonomous robots.

Object classification can be greatly improved with previous reliable segmentation and

feature extraction. With this in mind, the main objective of this dissertation is to implement

an object classification algorithm, capable of classifying objects from the Yale-CMU-

Berkeley (YCB) object and model set, through the use of a novel unsupervised feature

extraction method from red, green, blue and depth (RGB-D) data and feedforward artificial

neural networks (FFANNs).

In the method presented here, after the acquisition of data from an RGB-D

camera, noise is removed and the objects in the scene are isolated. For each isolated object,

k-means clustering is applied to extract a global main colour and three main colours. Three

scores are computed based on the fitting of primitive shapes (cylinder, sphere or rectangular

prism). Object dimensions and volume are estimated by calculating the volume of the best

primitive shape previously fitted. Then with these features, FFANNs are trained and used to

classify these objects.

Experimental tests were carried out in 20 objects, from the YCB object and

model set and results indicate that this algorithm has a recognition accuracy of 96%, with

five objects in the workspace at the same time and in random poses.

Also, a method of calculating the location of an object, based on the location of

the geometric centre, of the best primitive shape previously fitted is developed.

Keywords: Machine learning, Features, Object classification, Microsoft
Kinect, Neural networks.

Object Segmentation and Classification from RGB-D Data

iv 2017

 RESUMO

João Gonçalo Pires Ferreira da Silva v

RESUMO

A classificação de objetos é um fator chave no desenvolvimento de robôs

autónomos. A classificação de objetos pode ser grandemente melhorada com uma anterior

segmentação e extração de características confiáveis. Com isso em mente, o principal

objetivo desta dissertação é implementar um algoritmo de classificação de objetos, capaz de

classificar objetos do conjunto de objetos e modelos de Yale-CMU-Berkeley (YCB), através

do uso de um novo método de extração de características não supervisionado a partir de

dados de vermelho, verde, azul e profundidade (RGB-D) e de redes neuronais artificiais do

tipo feedforward (FFANNs).

No método aqui apresentado, após a aquisição de dados a partir de uma câmara

RGB-D, o ruído é removido e os objetos na cena são isolados. Para cada objeto isolado,

agrupamento k-means é aplicado para extrair uma cor global e três cores principais. Três

pontuações são calculadas com base no encaixe de formas primitivas (cilindro, esfera ou

prisma retangular). As dimensões do objeto e volume são estimados calculando o volume da

melhor forma primitiva ajustada anteriormente. De seguida, com essas características,

FFANNs são treinadas e usadas para classificar esses objetos.

Testes experimentais foram realizados em 20 objetos, do conjunto de objetos e

modelos de YCB e os resultados indicam que este algoritmo tem uma precisão de

reconhecimento de 96%, com cinco objetos no espaço de trabalho ao mesmo tempo e em

poses aleatórias.

Também é desenvolvido, um método de cálculo da localização de um objeto,

com base na localização do centro geométrico, da melhor forma primitiva ajustada

anteriormente.

Palavras-chave: Aprendizagem automática, Características,
Classificação de objetos, Microsoft Kinect, Redes
neuronais.

Object Segmentation and Classification from RGB-D Data

vi 2017

 CONTENTS

João Gonçalo Pires Ferreira da Silva vii

CONTENTS

LIST OF FIGURES .. ix

LIST OF TABLES ... xi

NOMENCLATURE AND ACRONYMS .. xiii
Nomenclature ... xiii
Acronyms ... xiv

1. INTRODUCTION ... 1
1.1. Problem Specification and Challenges ... 2

1.2. Related Work .. 3
1.3. Proposed Approach and Overview ... 9

2. OBJECT SEGMENTATION AND CLASSIFICATION ... 11
2.1. Point Cloud Acquisition and Processing .. 11

2.1.1. Acquiring ... 11
2.1.2. First Trimming ... 12

2.1.3. Rotations .. 14
2.1.4. Fine Trimming ... 16
2.1.5. Removal of Table Plane .. 16
2.1.6. Object Segmentation ... 18

2.2. Feature Extraction and Classification ... 19

2.2.1. Colour Extraction .. 20
2.2.2. Shape Extraction .. 22

2.2.3. Dimension Extraction and Volume Estimation ... 26
2.2.4. Location Estimation ... 27
2.2.5. Classification ... 27

3. EXPERIMENTS AND DISCUSSION ... 29
3.1. Setup ... 29
3.2. Cataloguing ... 31

3.2.1. Cataloguing Results ... 35

3.3. Classification .. 38
3.4. Training ... 44
3.5. Testing .. 45
3.6. Location Accuracy and Calibration .. 48

4. CONCLUSIONS ... 51

4.1. Future Work .. 52

BIBLIOGRAPHY ... 53

APPENDIX A (Algorithm Scheme) ... 59

APPENDIX B (Rectangular Prism Test)... 63

APPENDIX C (Cataloguing Means) ... 67

Object Segmentation and Classification from RGB-D Data

viii 2017

APPENDIX D (Cataloguing Standard Deviations) .. 69

APPENDIX E (Confusion Matrices) .. 71

APPENDIX F (Training Result) ... 73

 LIST OF FIGURES

João Gonçalo Pires Ferreira da Silva ix

LIST OF FIGURES

Figure 1.1. Robot grasping power drill of object set [34]. .. 8

Figure 1.2. Overview of the proposed approach. .. 9

Figure 2.1. Point cloud, 𝑃𝐶M , after merging. ... 12

Figure 2.2. Point cloud, 𝑃𝐶T, after first trimming. ... 13

Figure 2.3. Rotations. .. 14

Figure 2.4. Point cloud after fine trimming. .. 16

Figure 2.5. Table segmentation. .. 17

Figure 2.6. Histogram counts of points at each coordinate along the Z-axis. 17

Figure 2.7. Clustering example.. 18

Figure 2.8. Point cloud (a) before clustering and (b) after clustering. 18

Figure 2.9. Axis explanation. .. 19

Figure 2.10. Evolution of denoise and downsampling of 𝑃𝐶O, 𝑙 into 𝑃𝐶𝐷, 𝑔. 20

Figure 2.11. Result of colour extraction. ... 21

Figure 2.12. Shape extraction results for (a) rectangular prism fitter and (b) cylinder fitter.

 ... 23

Figure 2.13. Rectangular prism shape fitting for (a) prism aligned with camera and for (b)

prism in a random orientation with the camera. .. 24

Figure 2.14. Testing setup in vertical position. ... 25

Figure 2.15. Scheme of the Microsoft Kinect V2 sensors. .. 27

Figure 3.1. Microsoft Kinect V2 setup. ... 29

Figure 3.2. Cataloguing objects. .. 32

Figure 3.3. Explanation of orientations. .. 33

Figure 3.4. Explanation of positions. ... 33

Figure 3.5. Bowl in the (a) top up and (b) bottom up orientations. 37

Figure 3.6. Fraction of misclassified samples by number of virtual positions. 40

Figure 3.7. Fraction of misclassified samples by number of hidden neurons. 41

Figure 3.8. Fraction of misclassified samples by data division. .. 42

Figure 3.9. Schematic representation of used FFANNs. ... 45

Figure 3.10. Master chef can (a) not covering and (b) covering the baseball. 45

Figure 3.11. Confusion matrix of multiple object testing. .. 47

Object Segmentation and Classification from RGB-D Data

x 2017

 LIST OF TABLES

João Gonçalo Pires Ferreira da Silva xi

LIST OF TABLES

Table 1.1. Comparison between methods of classification. .. 7

Table 3.1. Cataloguing objects and their corresponding number. 31

Table 3.2. Fraction of misclassified samples by number of virtual positions. 40

Table 3.3. Fraction of misclassified samples by number of hidden neurons. 41

Table 3.4. Fraction of misclassified samples by data division. ... 42

Table 3.5. Fraction of misclassified samples according to type of data. 44

Table 3.6. Testing sets. .. 46

Table 3.7. Recognition results in testing. .. 46

Table 3.8. Location test and calibration results. .. 49

Object Segmentation and Classification from RGB-D Data

xii 2017

 NOMENCLATURE AND ACRONYMS

João Gonçalo Pires Ferreira da Silva xiii

NOMENCLATURE AND ACRONYMS

Nomenclature

The notation that we are going to follow throughout this dissertation, is going to

be as described:

• Bold capital letters are used to denote matrices, for example 𝐑𝑇
1 represents

the first rotation matrix;

• Bold and italic small letters are used to denote vectors, for example 𝒄p𝑗

represents the red, green and blue (RGB) colour vector of point p𝑗;

• Italic small letters or words are used to denote scalars, for example 𝑛pct

represents the total number of acquired point clouds;

• Small letters are used to denote points, for example pM represents a generic

point of the merged point cloud;

• Italic capital letters are used to denote point clouds, for example 𝑃𝐶M

represents the merged point cloud.

Object Segmentation and Classification from RGB-D Data

xiv 2017

Acronyms

2D – Two-dimensional

3D – Three-dimensional

ANNs – Artificial neural networks

CAD – Computer-aided design

CKM – Convolutional k-means descriptors

CNNs – Convolutional neural networks

DL – Dictionary learning

ELMs – Extreme learning machines

FFANNs – Feedforward artificial neural networks

HMP – Hierarchical matching pursuit

HMP2D – Hierarchical matching pursuit for 2D voxel data

HMP3D – Hierarchical matching pursuit for 3D voxel data

LIDAR – Light detection and ranging

LinSVM – Linear support vector machine

PCA – Principal component analysis

RANSAC – Random sample consensus

RBF – Radial basis function

R-CNNs – Combination of region proposals and CNNs

RFs – Random forests

RGB – Red, green and blue

RGB-D – Red, green, blue and depth

RNNs – Recursive neural networks

SIFT – Scale invariant feature transform

SURF – Speeded-up robust features

SVM – Support vector machine

YCB – Yale-CMU-Berkeley

 INTRODUCTION

João Gonçalo Pires Ferreira da Silva 1

1. INTRODUCTION

Nowadays, automation and robotics are the corner stones of many industries.

Their involvement in the workspace contributes to higher production and accuracy. At the

same time, robots are moving into our households, since they can have simple and repetitive

tasks delegated to them.

This makes robot autonomy a major research topic. One of the main reasons is

the fact that, robots work more and more alongside humans and humans may change the

environment, in many different and unpredictable ways, so a robot needs to be able to

constantly adapt to their surroundings. It means that they need to be able to make

autonomous decisions. Some examples of such behaviour are autonomous vehicles that

recognize traffic signs and react in accordance, robotic vacuum cleaners and robotic lawn

mowers that avoid obstacles in real time.

In the last few years, the view on the subject of industrial robots has changed,

from one where robots work separated from humans, many times in a caged environment,

to one where they work alongside humans and collaborate with them to perform tasks.

In order to be able to do that, they need to be able to classify objects, tools or

parts that a human might need and obstacles in their path. They also need localization and

navigation skills, in order to know where these elements are and/or where to put them. By

doing this, collaborative robots can act autonomously in order to improve productivity, by

using the robot’s best assets which are accuracy and the ability to perform monotonous task

very fast.

Collaborative robots may also be called to handle objects never seen before. For

example, a human may want to exchange a tool with a neighbour robot. In [1], the authors

were interested in considering the problem of grasping novel objects using computer vision

and machine learning.

On-board vision sensors as well as additional red, green, blue and depth (RGB-

D) devices, such as Microsoft Kinect, can be used to obtain a three-dimensional (3D) model

of the target object. Then, machine learning techniques can be exploited to find good

Object Segmentation and Classification from RGB-D Data

2 2017

candidates of grasping positions based on the geometric structure of the object (using a two-

dimensional (2D) and/or a 3D model), robot trials and learning from the user.

In the first case, the 3D point cloud of the object is analysed with grasping

representations, as in [2] or rules for object grasping based on models, as in [3].

In the second case, the robot tries to autonomously grasp the target object.

Positive or negative results will be used in a machine learning framework, for example using

reinforcement learning [4], to improve future tasks.

Finally, in the last case, computer vision algorithms can be exploited to detect

and understand grasping positions, by observing human collaborators [5].

1.1. Problem Specification and Challenges

The problem with vision-based classification is the reliability, which can be

difficult to achieve depending on several factors. Object classification can be greatly

improved with previous reliable segmentation, which allows isolation of the objects and

feature extraction. This feature extraction serves as input for a classification algorithm.

Recent deep learning methods present state of the art results for classification,

no features are required and the objects are classified from the raw red, green and blue (RGB)

or RGB-D data. However, deep learning requires large amounts of training data. Object

features will allow to improve the deep learning accuracy when there is less training data,

by giving it more inputs. In addition, these features can also be used as a unique input for

any supervised classifier that is expected to output accurate results with small amounts of

training data.

Effective segmentation and feature extraction are achieved with no previous

knowledge of the objects and no training data. In general, there are six major difficulties in

the segmentation and feature extraction process for object classification:

• No information about objects pose (position + orientation) in the scene;

• Each object can have multiple poses in the scene, so that the same object may

look different depending on the perspective the image frame is captured. This

is more critical when we have large libraries of objects to classify since this

increases the size of those libraries;

 INTRODUCTION

João Gonçalo Pires Ferreira da Silva 3

• Only part of the object is captured by the camera, depending on the object’s

relative pose in relation to the camera;

• Feature extraction can be made difficult depending on the lighting conditions

and pose, because they affect the colour that is captured and since the camera

only captures the part of the object facing it, the captured colour can have a

wide variation;

• The background can be dynamic;

• Clustered scenes can have possible occlusions.

In face of the above, several challenges can be pointed out:

• Creating an unsupervised segmentation and feature extraction algorithm that

is robust enough to accurately eliminate noise, isolate objects and create

distinctive features. This has to be done in unstructured environment, without

previous knowledge about the object, pose, background, lighting conditions

and others and from single RGB-D camera;

• Association of a primitive shape to each object;

• Extraction of colour features;

• Estimation of objects volume and location;

• Use of a robust classification algorithm capable of correctly identifying the

objects in real-time, having shape, colour and volume features as input.

1.2. Related Work

Reliable object classification is today a major challenge in robotics field. The

appearance of novel sensing technologies allows the recording of quality RGB and depth

images (RGB-D). Depth information is relatively invariant to lighting or colour variations,

allows background subtraction, video ground truth annotation via 3D reconstruction, and

improved object classification. Nevertheless RGB-D cameras, such as Microsoft Kinect, are

still affected by noise and missing depth information, due to for example, reflective

properties of materials as well as their coatings, that interfere with the camera by

overexposing the depth image [6]. Despite of this, their cost makes them worthwhile

alternatives, for prototyping before committing to a more expensive sensor.

Object Segmentation and Classification from RGB-D Data

4 2017

Existing object recognition algorithms for RGB-D images use features such as

scale invariant feature transform (SIFT) [7], spin images [7], [8], visual, shape and

geometrical features [9]. Other methods generalize this idea and combine RGB-D image

features such as size, 3D shape and depth edges [10].

Krainin et al. developed a system to build a 3D surface model of objects by

grasping the object and moving it in front of an RGB-D camera [11]. The idea was to allow

a robot equipped with an RGB-D camera to create models of new objects, by interacting

with them using different grasps and combining the information from several snapshots.

Unsupervised feature learning methods suffered a massive evolution in the last

few years, allowing for the improvement of object classification and pattern recognition in

general. Deep learning methods have been extensively studied for RGB images. However,

their implementation for RGB-D images is still matter of study [12].

Blum et al. introduced convolutional k-means descriptors (CKM) for RGB-D

data, in which they learn features in an unsupervised fashion [13]. They adapted the

unsupervised learning approach proposed in [14] to process RGB-D images. They begin by

learning features only in the vicinity of interest points with the depth information being

added later. To detect the interest points, they opted for speeded-up robust features (SURF)

[15] due to its computational efficiency and quality of results. The descriptor is then

extracted similarly to SURF’s, and according to the authors, the number of learned features

is typically high, which may then require a dimensionality reduction, using principal

component analysis (PCA), for input in a linear support vector machine (LinSVM) classifier.

They evaluated their work using the Washington RGB-D Object Dataset [7].

Bo et al. proposed unsupervised feature learning from grey scale intensity, RGB,

depth, and surface normal [16]. Features are then used in hierarchical matching pursuit

(HMP) with two layers, to learn hierarchical feature representation, then LinSVM is used as

the classifier. The algorithm was tested on five datasets, although here we are only going use

the test on the Washington RGB-D Object Dataset [7], since it’s one of the most widely

available.

Convolutional neural networks (CNNs) have recently been shown to be

remarkably successful for recognition on RGB images [17]. In [18], Farabet et al. introduced

a model for scene parsing, that is based on multi-scale CNNs for feature extraction, other

similar works, use a combination of region proposals and CNNs (R-CNNs), such as [19].

 INTRODUCTION

João Gonçalo Pires Ferreira da Silva 5

Also, features extracted from CNNs and colorization methods to represent depth in a 2D

image have demonstrated good results in RGB-D object classification [20].

Lai et al. introduced a new variant of HMP, to use with point clouds directly,

called hierarchical matching pursuit for 3D voxel data (HMP3D) [21]. They use a LinSVM

classifier trained using a synthetic dataset of virtual scenes, generated using computer-aided

design (CAD) models. They evaluated their algorithm using the Washington RGB-D Scenes

Dataset [7]. It was concluded that in some situations, HMP3D may not even require to be

combined with hierarchical matching pursuit for 2D voxel data (HMP2D), in order to

improve the results.

A deep learning method for object classification, based on a combination of

CNNs and recursive neural networks (RNNs) for learning features and classifying RGB-D

images, is presented in [22]. The CNNs layer learns low-level translationally invariant

features which are the input to fixed-tree RNNs to compose higher order features. Results

indicate state of the art performance in category recognition on the Washington RGB-D

Object Dataset [7]. With the same method being applied in [23], along with support vector

machine (SVM) to improve accuracy of classification in the same dataset.

A two stream CNNs (RGB and depth) for object recognition is proposed in [24],

using the Washington RGB-D Object Dataset [7] and implementing their work in the Caffe

framework [25]. They were able to achieve an accuracy of 84.1% using only RGB and 83,8%

using only depth, which were improved to 91.3% when combined, for category recognition.

Another method in [26], used CNNs to learn features, which were inputs to a LinSVM

classifier to classify objects from Washington RGB-D Object Dataset [7], this method

achieved 91.4% accuracy on category recognition. CNNs also demonstrated superior

performance in detecting object grasping areas [27].

Extreme learning machines (ELMs) can be used for object classification. These

are very simple feedforward artificial neural networks (FFANNs) with a single layer of

hidden neurons. In [28], ELMs are used both in the feature extraction and the classification

parts of the algorithm, achieving an accuracy of 89.3% in the category recognition task of

the Washington RGB-D Object Dataset [7]. Also using the same dataset, random forests

(RFs) [29] and SVM [30], can be used as classifiers, using these they were able to achieve

88.1% and 75.6% accuracy, respectively, in category recognition.

Object Segmentation and Classification from RGB-D Data

6 2017

As can be seen in [31], the problem of volume estimation with the Microsoft

Kinect can be approached with reasonable accuracy for medium size objects. Their setup

consisted of a turn table with markers, on which the object is placed and a Microsoft Kinect

camera takes several snapshots of the object from different orientations. This allowed them

to get a complete view of the object, in order to get the best possible point cloud for volume

estimation.

Another approach to volume estimation is the one used by B. Q. Ferreira et al.

in [32], it consists of capturing one stationary image, then delimitating the object’s planes,

after getting the vertices of that object and computing the volume using these vertices.

One approach that can improve the volume estimation, is proposed by D.

Schiebener et al., in [33], using the Yale-CMU-Berkeley (YCB) object and model set [34],

these authors proposed an approach to complete an object’s model, when a complete view

of the object is not available. This approach is based on the assumption that most objects

have symmetries and uses these symmetries to complete the view of an object. Although this

approach is useful in some situations, this is not always the case, especially if the object has

no plane of symmetry. This also shows some of the difficulties of estimating the hidden parts

of an object, since these can have very different shapes.

In our setup though, we are only getting pictures from one stationary position,

making the volume estimation not very precise, since we cannot see the hidden part of an

object. But on the other hand, since we don’t need a very precise estimation, this makes the

process of image acquisition and setup much easier.

An interesting study is presented by A. Broad and B. Argall [35], in here they

use CNNs, as a classifier for object recognition in the YCB object and model set [34]. By

taking the object’s location and size, they define bounding boxes, after this they transform

these bounding boxes from RGB-D space to RGB space and classify each object by passing

these RGB bounding boxes through these CNNs.

Another method of obtaining a point cloud for object recognition is using light

detection and ranging (LIDAR), as proposed by Artur Maligo and Simon Lacroix in [36].

Such method is not going to be developed in this paper, although it presents another possible

method to obtain data for object recognition and can be applied in terrestrial autonomous

vehicles, such as self-driving cars, as in [37] which achieved an accuracy of 98.5% in

classifying using LIDAR data as input.

 INTRODUCTION

João Gonçalo Pires Ferreira da Silva 7

Considering similar work to our own, which is instance or object recognition or

classification from RGB-D data, but with different datasets, since works with the same

dataset, namely are going to be analysed further along in this paper, we get Table 1.1. This

table has the reference to the paper containing that method of classification, the number of

objects with which the method was test, average number of real samples per class used in

training, the maximum classification accuracy, the classifier used and the year of the

publication of that paper.

Table 1.1. Comparison between methods of classification.

Reference

Number

of

objects

Average

number

of real

samples

per class

Classification

accuracy [%]
Classifier Year

[13] 300 109 92.1 LinSVM 2012

[16] 300 93 92.8 LinSVM 2013

[20] 300 93 94.1 LinSVM 2015

[38] 300 117 96.9
Dictionary

learning (DL)
2015

[39] 300 117 94.4

Radial basis

function (RBF)

kernel SVM

2014

[40] 300 117 96.1

Statistical

similarity

(Their own

classifier)

2017

[41] 300 100 94.8 LinSVM 2015

[42] 300 100 97.2 ELMs 2016

[43] 300 93 93.5 ELMs 2015

[44] 300 100 99 CNNs 2015

[45] 300 117 70 LinSVM 2016

[46] 153 33 42.1
Ensemble

classifier
2015

[47] 5 360 94.8 SVM 2014

Object Segmentation and Classification from RGB-D Data

8 2017

From [13] until [46] in Table 1.1, we considered only the tests on the Washington

RGB-D Object Dataset [7], since it’s one of the most widely available and allows for

comparison between methods. In [47] used its own object set and the accuracy is the average

accuracy of all objects.

Applications of this can be seen in [48], in which robots execute several tasks of

manipulation of household objects. In the case of the robot Cosero, it actually is equipped

with a Microsoft Kinect RGB-D camera. This robot shows some of possible applications of

our algorithm, such as baking an omelette, which requires the robot to know where several

needed objects, ingredients and cooking utensils, are in order to perform this task.

Another application is in [34] and Figure 1.1, here we see a robot attempting to

grasp a power drill. This robot can be an assistant to a factory worker and give this worker

the tools that he needs, in order to do that, the robot needs to know what objects are needed

and where they are, this can be achieved with the use of an object classification algorithm.

Figure 1.1. Robot grasping power drill of object set [34].

This analysis is a reference of existing studies, mainly in the last 5-6 years and

allows us to conclude, that in many of these approaches, the classification uses deep learning,

although these methods present good results, they require large amounts of training data.

The possibility of object classification using other features, extracted in an

unsupervised fashion, is not considered with the sufficient detail, especially considering that

these features could allow to reduce the required training data.

 INTRODUCTION

João Gonçalo Pires Ferreira da Silva 9

1.3. Proposed Approach and Overview

This dissertation, introduces a novel unsupervised feature extraction method

from RGB-D data that outputs a primitive shape, that best fits each object, the four main

colours and the estimated volume and location of each object. Also introduces the

application of this method in combination with FFANNs, in order to create an object

classification algorithm capable of identifying 20 objects from the YCB object and model

set [34], in an unstructured environment, with very few real training data and with more than

one object in the workspace at the same time.

This algorithm, in Figure 1.2, works by first acquiring the point clouds and

merging them together. Inaccessible points and noise are removed. Due to the relative

referential frame, the point cloud is rotated in three different stages, first to the vertical

position, then to the horizontal position and finally we optimize the table plane rotation to

the horizontal, to achieve better results in the following stages of the algorithm.

We trim this resulting configuration, with not much more than the objects on top

of the table. Then the table plane is removed, based on a histogram to ensure the accuracy

of the method. After this, object segmentation is done, by finding regions in the point cloud

containing points and surrounded by empty spaces, in order to separate each object in to its

own point cloud, so that objects in the scene are isolated.

Figure 1.2. Overview of the proposed approach.

Object Segmentation and Classification from RGB-D Data

10 2017

As we can see in Figure 1.2, denoise and downsampling are performed to

improve the accuracy and speed of the algorithm. After that feature extraction can begin, for

each isolated object k-means clustering is applied to extract a global main colour and three

main colours.

Then three scores are computed based on the fitting of primitive shapes

(cylinder, sphere and rectangular prism), and the best shape and model are chosen based on

the primitive shape that has the highest score. Object’s volume is estimated by calculating

the volume of the model or the point cloud. Then the location is estimated, by calculating

the geometric centre of the model or point cloud, in accordance with the volume estimation.

Experimental tests were carried out in 20 objects from the YCB object and model

set [34] in an unstructured environment. It was demonstrated that:

• The object’s primitive shapes (cylinder, sphere and rectangular prism), main

colours (a total of four) and volume are estimated;

• The proposed method allows to accurately and in an unsupervised fashion,

isolate the objects in the scene and reduce the noise;

• The extracted features can be used as main input for a classification

algorithm;

• The location of the objects can be reasonably obtained using this algorithm,

after proper calibration;

• The algorithm was able to achieve 96% accuracy, with five objects in the

workspace at the same time and in random poses, with just an average of 13

real samples per object in training, much less than the other previously

referred methods, leading to a training time of around 6 minutes.

 OBJECT SEGMENTATION AND CLASSIFICATION

João Gonçalo Pires Ferreira da Silva 11

2. OBJECT SEGMENTATION AND CLASSIFICATION

Knowing the challenge that we face and the proposed approach to solve it. The

objective of this section is to explain in depth the algorithm, with its scheme in Appendix A.

2.1. Point Cloud Acquisition and Processing

2.1.1. Acquiring

In order to improve the quality of the RGB-D data, we obtain 𝑛pct point clouds

in a row, from Microsoft Kinect V2. The acquiring procedure is made statically, that is, the

objects and the sensor stay in the same pose during data acquisition. These point clouds are

then merged using a box grid filter with a small cell size, just like in downsampling

operations.

Assuming a cell size of 𝑠c and 𝑛pct point clouds 𝑃𝐶𝑛pc
, 𝑛pc ∈ [1, 𝑛pct] , each

with overall dimensions of [𝑠x,𝑛pc
, 𝑠y,𝑛pc

, 𝑠z,𝑛pc
] being X, Y and Z the respective Cartesian

axis, the total number of divisions for each point cloud will be [
𝑠x,𝑛pc

𝑠c
,

𝑠y,𝑛pc

𝑠c
,

𝑠z,𝑛pc

𝑠c
]. In each

of these divisions, colours and normal of all contained points are averaged and become a

single occurrence in the merged point cloud, 𝑃𝐶M, as shown in Figure 2.1, where the position

of that occurrence is the geometric centre of the respective division.

Object Segmentation and Classification from RGB-D Data

12 2017

Figure 2.1. Point cloud, 𝑃𝐶M , after merging.

The small cell size, 𝑠c, ensures that most data will be kept, but without duplicates

or redundancies, leading to a point cloud with less points and allowing for faster processing.

After this, the invalid points are removed using a MATLAB function, in order to eliminate

acquisition errors. The merging procedure also helps avoiding acquisition errors and noise

by averaging the values of the 𝑛pct point clouds.

2.1.2. First Trimming

After obtaining and merging these 𝑛pct point clouds, into 𝑃𝐶M, a trimming

operation designed to remove useless data for posterior grasping algorithms is performed,

that is, the point cloud is trimmed based on the range and position of a manipulator, for

example, a robot. In this stage, we assume a sphere with a radius, 𝑟 and we find every point,

pM ∈ 𝑃𝐶M with coordinates [𝑥pM
, 𝑦pM

, 𝑧pM
], inside it. In Equation (2.1), the radius is referred

by 𝑟 and the zero indexed constants, refer to centre of the trimming sphere.

 (𝑥pM
− 𝑥0)

2
+ (𝑦pM

− 𝑦0)
2

+ (𝑧pM
− 𝑧0)

2
≤ 𝑟2 (2.1)

 OBJECT SEGMENTATION AND CLASSIFICATION

João Gonçalo Pires Ferreira da Silva 13

The resulting point cloud 𝑃𝐶T, shown in Figure 2.2, is significantly smaller than

𝑃𝐶M, both in terms of number of points and overall size, but contains only the points inside

this sphere, which are the useful points that the manipulator can grasp. This makes the

algorithm faster, since we are reducing significantly the number of point that it has to

analyse.

Figure 2.2. Point cloud, 𝑃𝐶T, after first trimming.

With this trimmed point cloud, 𝑃𝐶T, we execute a denoise operation which finds

the mean distance 𝑑n of the nearest 𝑛n number of points, and then compares it to the distance

𝑑d, which is a function of 𝑛d number of the standard deviations, from the mean distance, 𝜇𝑑,

to all neighbouring points. By doing this, we are effectively removing sparse data and some

isolated points that tend to stack near the trimmed surface, if the condition in Equation (2.2)

is not met.

 𝑑𝑛 ≤ 𝑑𝑑 = 𝜇𝑑 + 𝑛𝑑×𝜎𝑑 (2.2)

Here 𝜎𝑑 is the standard deviation of the distance to all neighbouring points. Large values of

𝑛n contribute to more intense point removal and increased risk of useful point removal.

Small values of 𝑛n lead to a moderate point removal but may fail to remove noise.

Object Segmentation and Classification from RGB-D Data

14 2017

2.1.3. Rotations

This denoised point cloud is then aligned in 3 rotations, as we can see in Figure

2.3, and Equation (2.3).

Figure 2.3. Rotations.

 𝑃𝐶R = 𝐑 𝐑 1
2 𝐑2

𝑅
𝑇
1 𝑃𝐶T (2.3)

Where 𝑃𝐶T refers to the point cloud after first trimming, 𝐑𝑇
1 to the first rotation matrix, 𝐑1

2

to the second rotation matrix, 𝐑2
𝑅 to the third rotation and 𝑃𝐶R refers to the point cloud after

all rotations are applied to it.

The first rotation uses a random sample consensus (RANSAC) algorithm [49],

to fit a plane to the input point cloud. RANSAC and its adaptations/variations are all iterative

methods, the implementation of RANSAC aims at finding the most representative set of data

by finding the model specified, that contains the biggest number of inliers, points between

the model and a tolerance.

From the plane model that we fitted, we extract its normal and use a Y-aligned

vector to align the point cloud vertically. We compute the angles between the two vectors,

after that we compute the equivalent rotation matrix, 𝐑,𝑇
1 which, we then use to rotate the

point cloud. The result of this operation is a vertically aligned point cloud, as if the table

were a wall.

The second rotation, rotates the point cloud to a horizontal position. By taking

the Y-aligned vector and defining a new Z-aligned vector, we execute the same rotation

procedure as explained before, this time using 𝐑1
2 . This two stage rotation, is necessary in

order to make sure that the point cloud points upwards and not downwards, when the

Microsoft Kinect V2 angle with the horizontal is high.

 OBJECT SEGMENTATION AND CLASSIFICATION

João Gonçalo Pires Ferreira da Silva 15

 The third rotation, 𝐑2
𝑅 , iteratively tries to optimize the fitting of a plane, that is

in the form of 𝑎𝑥 + 𝑏𝑦 + 𝑑 = 𝑧, to the lowest Z-coordinate of points of each cell in a grid,

and remove the points that are more than a 𝑛𝑧 number of standard deviations away, from the

mean distance to the plane along the Z-axis, 𝜇𝑧. By repeating this procedure, we are trying

to isolate the table plane since it is the biggest provider of points and it contains the lowest

points. After this we apply the rotation 𝐑2
𝑅 .

To explain this rotation in more detail, we create a 2D grid, and place the

minimum of coordinate along the Z-axis of all points of each cell, in its corresponding cell,

in order to get an approximation of the floor plane, since this has the lowest points. We create

a scatter plot of Z-coordinates with these points and iteratively fit a plane to this scatter plot.

Then we remove points, it they are a distance 𝑑z equal to an average, 𝜇𝑧, plus a number of

standard deviations away, 𝑛𝑧 , from the plane along the Z-axis and then repeat this task. If

this number of executions is too small, the plane quality will be poor, not representative of

the table, if it’s too large, we risk removing most of the points ensuing a poor result. The

distance, 𝑑pR
, from a point pR of the scatter plot, with coordinates [𝑥pR

, 𝑦pR
, 𝑧pR

] to the plane

defined above, is equal to Equation (2.4).

 𝑑pR
= 𝑎𝑥pR

+ 𝑏𝑦pR
+ 𝑑 − 𝑧pR

 (2.4)

Considering all points, 𝜎𝑧 is the standard deviation of 𝑑pR
of these points, and

they are kept if the condition in Equation (2.5) is met.

 𝑑pR
< 𝑑z = 𝜇𝑧 + 𝑛z×𝜎𝑧 (2.5)

After this the rotation 𝐑2
𝑅 is applied, taking in to account the normal of the last

fitted plane and a Z-aligned vector.

This final operation verifies the alignment of the table plane with the horizontal,

since the table is the biggest provider of points and has the lowest ones. We can use that to

detect the alignment of the normal and flip it if needed. In order to make the table plane align

with the horizontal as best as possible, giving a better input to the table segmentation

algorithm. This allows for the Microsoft Kinect V2 to have its pose changed and be able to

compensate it, without requiring a fixed pose.

Object Segmentation and Classification from RGB-D Data

16 2017

2.1.4. Fine Trimming

After being properly aligned, a new trimming operation is performed. Since we

only want to process the objects on the table, the trimming area is defined as a rectangular

prism, that contains all the objects on the table, as in Figure 2.4.

Figure 2.4. Point cloud after fine trimming.

Our trimming function, used previously, is able to trim the space according to a

sphere, as used previously but it can also trim according to a cube, rectangular prism and

even an ellipsoid in any orientation. By giving the appropriate number properties: a shape

chosen from the ones mentioned before, a coordinates vector 1×3 for the geometric centre

of the shape, a length(s) which are a scalar for the sphere and cube or 1×3 vector for the

rectangular prism and ellipsoid and an orientation vector containing the angles relative to the

original frame, 3×1 or 1×3, if desired.

2.1.5. Removal of Table Plane

The next step involves the removal of the table plane or table segmentation, as

seen in Figure 2.5, the green being what was removed and the pink being what was kept. By

plotting a histogram, 𝑛bin ∈ [1, 𝑛bins], of the counts of points at each coordinate along the

Z-axis, as in Figure 2.6, with 𝑏𝑖𝑛𝑤𝑖𝑑𝑡ℎ of bin width and then organizing the points by bins.

After that, locating the trimming bin, 𝑏𝑖𝑛trimming , to a bin that is 𝑏𝑖𝑛𝑜𝑓𝑓𝑠𝑒𝑡 above the

maximum number of points bin, which we define as 𝑏𝑖𝑛max, as in Equation (2.6). Following

the trimming, we obtain a new point cloud which is the point cloud after table segmentation

𝑃𝐶S, 𝑃𝐶S ∈ [𝑏𝑖𝑛trimming, 𝑏𝑖𝑛𝑛bins
].

 OBJECT SEGMENTATION AND CLASSIFICATION

João Gonçalo Pires Ferreira da Silva 17

Figure 2.5. Table segmentation.

Figure 2.6. Histogram counts of points at each coordinate along the Z-axis.

 𝑏𝑖𝑛trimming = 𝑏𝑖𝑛max + 𝑏𝑖𝑛𝑜𝑓𝑓𝑠𝑒𝑡
(2.6)

The 𝑏𝑖𝑛𝑜𝑓𝑓𝑠𝑒𝑡 is due to the fact that, with objects on the table the Microsoft

Kinect V2 distorts the table plane, creating peaks and valleys that need to be eliminated, thus

the existence of this offset, since the bin with most points sometimes is inside the table. The

accuracy and reliability of the method increased substantially with this method.

We also tried this operation performed based on the plane that fits most of the

points, since the table is the biggest provider of points it should be the table, again using

RANSAC a plane was fitted. With this plane, we got the Z-coordinate of this plane relative

to the camera and separated the points which are above and below this plane. Here we should

have got a reasonable approximation of the table plane. However, there were some

occurrences in which the table wasn’t removed accurately or completely. It was clear that

Object Segmentation and Classification from RGB-D Data

18 2017

most problems were due to the fact that the plane ended up inside the table or too high on

the table ignoring smaller objects. So, we went with the first approach.

2.1.6. Object Segmentation

After a second denoise operation, the point cloud is now ready to be segmented

by finding clusters of data, each of these representing a possible object. By removing the Z-

coordinate, dividing the resulting 2D space in cells, as in Figure 2.7, and placing a count of

points in each cell, we begin to check groups of non-empty adjacent cells which we define

as clusters.

Figure 2.7. Clustering example.

Each of these groups are point cloud objects 𝑃𝐶O,𝑙 , 𝑙 ∈ [1, 𝑛O], which must be

processed individually, to do this we separate the points of the original point cloud according

to these clusters, as in Figure 2.8.

(a) (b)

Figure 2.8. Point cloud (a) before clustering and (b) after clustering.

After this, we get the count of points (𝑛pts,𝑙) and cells (𝑛cells,𝑙) in each cluster,

by summing all the points and cells that are clustered to that object. Then we perform the

validation in Equation (2.7), in order to determine if a cluster is meaningful. To do this we

stipulate that the rounded toward negative infinity base ten logarithm of the number of points

 OBJECT SEGMENTATION AND CLASSIFICATION

João Gonçalo Pires Ferreira da Silva 19

of a given cluster 𝑙, 𝑛pts,𝑙 , must be bigger than the corresponding rounded toward negative

infinity base ten logarithm of the number of cells in that cluster 𝑙, 𝑛cells,𝑙.

 ⌊𝑙𝑜𝑔(𝑛pts,𝑙)⌋ > ⌊𝑙𝑜𝑔(𝑛cells,𝑙)⌋ (2.7)

This allows for the removal of small clusters of useless points, more effectively,

based on point cloud density and without the need for a denoise operation that could fail to

produce this change but could damage the models.

Nevertheless, a verification procedure is implemented which requires the point

cloud objects to have at least a pre-defined number of points, 𝑛v, this parameter is heavily

dependent on the quality of the point cloud and sensor, the average object distance from the

camera to the objects and the average object size. It increases with the first and third and

decreases with the second.

Even with this we encountered some problem since with objects that were close

to each other, the clustering was not done properly due to the fact that noise and drag

appeared in the point cloud, making a connection between more than one object and making

them cluster as one.

Figure 2.9. Axis explanation.

The numbering of the objects is done, as in Figure 2.7, relative to the camera

with the axis in the form of Figure 2.9, in first instance from left to right, in increasing X-

coordinate order and in second instance from near to far, in increasing Y-coordinate order.

2.2. Feature Extraction and Classification

After the segmentation, in order to lessen the time of calculations and to obtain

features accurately, we execute a third or fine denoise, followed by a downsampling and a

fourth or coarse denoise, as in Figure 2.10, to improve the stability and quality of the object’s

Object Segmentation and Classification from RGB-D Data

20 2017

representation, by removing erroneous data. The feature extraction is now performed, as in

Algorithm 1, using the point cloud, 𝑃𝐶D,𝑔, 𝑔 ∈ [1, 𝑛D], which is the point cloud after denoise

and downsampling have been done to it. From now on, we will take a single object into

consideration.

Figure 2.10. Evolution of denoise and downsampling of 𝑃𝐶O,𝑙 into 𝑃𝐶𝐷,𝑔.

Algorithm 1: Feature extraction.

Input: Point cloud object

For each Isolated Object

% Colour extraction.

Colours = Extract_Colours (Point_Cloud)

 For m = 1:𝑛𝑟𝑢𝑛𝑠, 𝑛𝑟𝑢𝑛𝑠 ≥ 0

 %Geometric shape fitter.

 [Scores, Models] = Shape_Fitter (Point_Cloud)

 End for

%Shape, score, volume and location extraction.

[Shape, Score, Volume, Location] = Shape_Volume_Extraction (Scores, Models)

End for

Output: Colours, Shape, Score, Volume and Location

2.2.1. Colour Extraction

We consider the colour to be important feature, as it allows for the differentiation

between similar objects, for example: apples and oranges and pens of different colours. Each

point, p𝑗, 𝑗 ∈ [1, 𝑛𝑗], of the point cloud, 𝑃𝐶D,𝑔, 𝑔 ∈ [1, 𝑛D], contributes with an RGB colour

vector, 𝒄p𝑗
= [𝑟p𝑗

, 𝑔p𝑗
, 𝑏p𝑗

], leading to a total of 𝑛×3 colours steaming from 𝑛 points,

making a matrix of size 𝑛𝑗×3.

 OBJECT SEGMENTATION AND CLASSIFICATION

João Gonçalo Pires Ferreira da Silva 21

If we consider only the colours of individual objects, these usually have distinct

sets of colours, and as such, a clustering function seems appropriate to extract them. A

clustering function aims at finding hidden groups or patterns of similar objects in a set of

data, k-means clustering assumes that 𝑘, 𝑘 ∈ ℕ, groups exist and tries to partition the data,

so that each point will belong to the nearest “mean” or cluster. The algorithm picks 𝑘 random

points to initialize the procedure by designating them as “means”. For the remaining points,

the closest “mean” is found and the point will now belong to that cluster. After all points

have been clustered, a new “mean” is computed for each cluster by taking in to account all

the points of each cluster. The procedure is then repeated with the new “means” until no

significant change is detected or an iteration limit is reached.

Figure 2.11. Result of colour extraction.

We extract a total of four colours, as we can see in Figure 2.11. The first colour

is the global main colour obtained by assuming that there is only one dominant colour, one

cluster in k-means clustering. The second, third and fourth extracted colours are three main

colours. We obtain them by assuming the existence of three clusters that are sorted in

descending order of importance. The rationale behind this choice, besides what was

previously referred, is also deeply connected to the number primary colours of RGB colour

model, 3 which are red, green and blue.

Object Segmentation and Classification from RGB-D Data

22 2017

2.2.2. Shape Extraction

The geometric or shape features are extracted iteratively, as in Algorithm 2. Each

point cloud object 𝑃𝐶D,𝑔, 𝑔 ∈ [1, 𝑛D] is evaluated using three shape fitters: cylinder (1),

sphere (2) and rectangular prism (3). Again, these models are fitted by means of RANSAC.

Due to the iterative nature of RANSAC algorithms, we initialize the algorithm

𝑛𝑟𝑢𝑛𝑠 times to improve reliability, reproducibility and choose the best possible fitting, the

fitting that has the maximum score, 𝑠𝑚𝑎𝑥,𝑔, 𝑔 ∈ [1, 𝑛D] for each point cloud object 𝑃𝐶D,𝑔, as

in Equation (2.8).

 𝑠𝑚𝑎𝑥,𝑔 = 𝑚𝑎𝑥 (𝑠𝑖,𝑔) (2.8)

The scores, 𝑠𝑖,𝑔, 𝑖 ∈ [1, 𝑛fitters] ∧ 𝑔 ∈ [1, 𝑛D], for each fitting of point cloud object 𝑃𝐶D,𝑔,

are evaluated by considering the number of inliers, 𝑛inliers,𝑖, for each fitting 𝑖, against the

total number of points, 𝑛points,𝑔, of point cloud object 𝑔, as in Equation (2.9).

 𝑠𝑖,𝑔 =
𝑛inliers,𝑖

𝑛points,𝑔
⁄ (2.9)

We also extract a volume, 𝑣𝑜𝑙𝑔, and a maximum length along all

axis, 𝑚𝑎𝑥𝑙𝑒𝑛𝑔𝑡ℎ𝑔, of the point cloud object 𝑃𝐶D,𝑔, 𝑔 ∈ [1, 𝑛D], which are used to evaluate

the size relationship between the computed shape or fitted model and the point cloud 𝑃𝐶D,𝑔,

as shown in Equation (2.10) and Equation (2.11).

If one of the values of radius or volume of the model are more than maximum

radius, 𝑚𝑎𝑥𝑟𝑎𝑑𝑖𝑢𝑠𝑔 or maximum volume, 𝑚𝑎𝑥𝑣𝑜𝑙𝑔, respectively, which are a function of

maximum scale, 𝑚𝑎𝑥𝑠𝑐𝑎𝑙𝑒, then those calculations are discarded. Either by giving them a

score, 𝑠𝑖,𝑔, of zero, in the case of the radius verification or by discarding the volume

calculation for being inaccurate, because the size of model is too big when compared with

the point cloud’s, 𝑃𝐶D,𝑔 ,size giving it the volume of a rectangular prism, containing the

sides at minimum and maximum coordinates of the point cloud, in each Cartesian axis.

𝑚𝑎𝑥𝑟𝑎𝑑𝑖𝑢𝑠𝑔 =

(𝑚𝑎𝑥𝑠𝑐𝑎𝑙𝑒 ×𝑚𝑎𝑥𝑙𝑒𝑛𝑔𝑡ℎ𝑔)

2

(2.10)

 𝑚𝑎𝑥𝑣𝑜𝑙𝑔 = 𝑚𝑎𝑥𝑠𝑐𝑎𝑙𝑒 ×𝑣𝑜𝑙𝑔 (2.11)

Also, if the maximum score, 𝑠𝑚𝑎𝑥,𝑔, for a particular object 𝑔 is equal or below a

certain threshold, it will be attributed another shape which is no match shape (4).

 OBJECT SEGMENTATION AND CLASSIFICATION

João Gonçalo Pires Ferreira da Silva 23

Algorithm 2: Shape fitting and model extraction.

Input: Point cloud object

For each Isolated Object

 For each Shape

 Score(Shape) = 0

 For m = 1:𝑛𝑟𝑢𝑛𝑠, 𝑛𝑟𝑢𝑛𝑠 ≥ 0

 %Geometric shape fitter.

 Trial_Model (Shape) = Shape_Fitter (Shape, Point_Cloud)

 compute Trial_Score (Shape)

 if Trial_Score (Shape) > Score (Shape) then

 Model (Shape) = Trial_Model (Shape)

 Score (Shape) = Trial_Score (Shape)

 End if

 End for

End for

Output: Scores and Models

(a) (b)
Figure 2.12. Shape extraction results for (a) rectangular prism fitter and (b) cylinder fitter.

The cylinder fitter, shown in Figure 2.12 (b), assumes three reference vectors for

fitting, one aligned with the X-axis, one aligned with the Z-axis and one that is the normal

of a plane fitted to the point cloud, 𝑃𝐶D,𝑔, using RANSAC. Then creates a cylinder fit for

each of these reference vectors using MATLAB functions by means of RANSAC. In the

case of the sphere fitter, there is no sense in using reference vectors since the sphere is always

Object Segmentation and Classification from RGB-D Data

24 2017

the same independently of its orientation, but we also fit this shape using MATLAB

functions by means of RANSAC.

The rectangular prism shape fitter, shown in Figure 2.12 (a), assumes the

existence of two scenarios, one where the rectangular prism is aligned with camera, Figure

2.13 (a), here we extract the plane 1 by fitting a vertical plane, with normal aligned with Y-

axis, and extract the top plane by fitting a horizontal plane, with normal aligned with Z-axis.

The rest of the planes are obtained by creating planes that intersect the point cloud’s

minimum and maximum coordinates at each of the Cartesian axis and that have a normal

aligned with the Cartesian axis.

(a) (b)
Figure 2.13. Rectangular prism shape fitting for (a) prism aligned with camera and for (b) prism in a

random orientation with the camera.

The other scenario assumes that the rectangular prism is in a random orientation

with the camera, Figure 2.13 (b), here there are three planes to be fitted: one horizontal, the

top of the rectangular prism, and two intersecting vertical planes, planes 1’ and 2’.

To get a normal for each plane to be fitted, we find the points that would be

equivalent to the corners, the minimum and maximum coordinates along the X-axis and

along the Y-axis. Combining this information, two vectors can be created that are parallel to

the planes 1’ and 2’, by making them equal to the difference of coordinates, along the XY

2D space, between the point with minimum coordinate along the Y-axis and both points with

the minimum and maximum coordinates along the X-axis. With this information, the normal

for each plane, reference vector, can be computed, by getting vectors that are perpendicular

to the previous ones.

The planes 1’ and 2’can now be fitted, using the previously calculated reference

vectors in a RANSAC algorithm. After this the top plane, can be fitted using a reference

 OBJECT SEGMENTATION AND CLASSIFICATION

João Gonçalo Pires Ferreira da Silva 25

vector along the Z- axis. The planes 3’ and 4’ are defined by creating vertical planes, that

contain the points corresponding to the minimum and maximum coordinates along the X-

axis and are parallel to the planes 1’ and 2’, only in the XY 2D space. In both cases the floor

plane is created by making a horizontal plane, that intersects the minimum value of

coordinates along Z-axis of the point cloud.

Another method tested, assumed that the planes 3’ and 4’ were defined by

creating planes parallel in the 3D space to planes 1’ and 2’, with the rest being equal to what

was referred. In both cases the results were similar, but slightly better considering the method

of vertical planes 3’ and 4’ that ended up being used, as we can see in Appendix B, here

method 1 refers to the vertical plane or parallel only in the XY 2D space method and method

2 refers to the parallel in 3D space plane method. The both methods were tested in random

orientation towards the camera, considering the horizontal position, where the biggest side

of the prim was against the top of the table and the vertical position, where the smallest side

of the rectangular prism was against the top of the table, as in Figure 2.14 and keeping the

testing setup between methods.

Figure 2.14. Testing setup in vertical position.

Object Segmentation and Classification from RGB-D Data

26 2017

2.2.3. Dimension Extraction and Volume Estimation

With the shape primitives fitted, we now extract the dimensions and then

estimate the volume. The dimensions themselves are obtained by direct extraction from the

models, using their geometric properties in the cases of cylinders and sphere or by

calculating the side lengths, knowing the corners by intersecting two planes, in the case of

the rectangular prism.

In order to get the corners of the rectangular prism, we use the plane equation is

in the form 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0, considering the intersection at the Z-coordinate of the

point cloud’s centre, 𝑧𝑐, since this should be the average value of area of the rectangle

containing the four side planes of the rectangular prism. Then we need to solve a system of

equations, in order to get the point of intersection between two planes at that Z-coordinate

𝑧𝑐, for example Equation (2.12) is for generics planes 1 and 2.

 [
𝑎1 𝑏1

𝑎2 𝑏2
] [

𝑥
𝑦] = [

−𝑑1 − 𝑐1𝑧𝑐

−𝑑2 − 𝑐2𝑧𝑐
] (2.12)

After this, we calculate an approximation of the area of rectangle by finding the

length of each of the sides of rectangle, along the XY 2D space at the Z-coordinate of the

point cloud’s centre and use difference of coordinates of two points, of two different planes

to compute the height of the rectangular prism, one corresponding to the top of the prism,

which is calculated by finding the coordinate along the Z-axis, of the plane top fitted at centre

of the rectangle and the other corresponding to the bottom plane, which is perfectly

horizontal, so we only need to obtain its Z-coordinate.

To finalize, we calculate volume using the geometric equations for each shape.

If the model didn’t respect the volume or score verifications, the volume of the object would

be estimated by the size of a rectangular prism that contained the points that corresponded

to the minimum and maximum coordinates in each of the axis, in other words the size of the

point cloud.

In the test that were mentioned previously, in Appendix B, the object foam brick

had a big difference in the value of its volume from the extracted to the real one, which was

taken from the dimension values in [34]. That was due to the distortion of the image, by the

inaccuracy of the Microsoft Kinect V2 sensor, as in [6] and the size of the trace behind the

object was very significant compared to the size of the object, making the value of the

volume very different from the real one.

 OBJECT SEGMENTATION AND CLASSIFICATION

João Gonçalo Pires Ferreira da Silva 27

Another method used assumed that the height of the rectangular prism was equal

to the height at one of the corners, this gave us similar results to the ones in the previous

method, since the bottom plane is horizontal and the top plane is almost horizontal, so we

decided to use the first one.

2.2.4. Location Estimation

The location of the objects relative to the camera is calculated, in the cases of

sphere and cylinder, by using the property centre of that model and in the cases of rectangular

prism, no match shape and no volume verification, we calculate its location by getting the

centroid of the model or point cloud, in other words we find the geometric centre of these

rectangular prisms.

After this an offset is applied based on the calibration that is done, this step is

detailed further along this dissertation, in the location accuracy and calibration subchapter.

This location though is considered to be relative to the RGB camera, in Figure 2.15, not the

depth sensor, since its exact position is unknown.

Figure 2.15. Scheme of the Microsoft Kinect V2 sensors.

2.2.5. Classification

To classify the objects using Algorithm 3, we use FFANNs, which we load in to

our algorithm. Then we run each sample through these FFANNs and get a classification

result. In order to run each sample through the FFANNs, we have to arrange the features

before running it, so that they are in the form that the FFANNs were trained. Finally, we

write the output of the classification, the data that the FFANNs used to classify the objects

and their location after calibration, in to an Excel file.

Object Segmentation and Classification from RGB-D Data

28 2017

Algorithm 3: Classification.

Input: Colours, Shape, Volume and Score

For each Isolated Object

 Input (object)= Load (features)

End for

Load neural_network

For each Isolated Object

 Classification (object) = neural_network (Input (object))

End for

%Writing of results into Excel file.

Output: Classification and Location

 EXPERIMENTS AND DISCUSSION

João Gonçalo Pires Ferreira da Silva 29

3. EXPERIMENTS AND DISCUSSION

3.1. Setup

The point clouds in this dissertation were obtained using Microsoft Kinect V2.

The Microsoft Kinect V2 is placed on top of a structure, which makes the centre of the RGB

camera stand 46.5 cm above the table, looking down at the maximum angle allowed by the

Microsoft Kinect V2 stand, between 27º and 30º and at a distance of between 55 cm and 105

cm along the Y-axis, to the object. This setup is in Figure 3.1 and was the one that yielded

the best results according to several setups that we tested.

Figure 3.1. Microsoft Kinect V2 setup.

The Microsoft Kinect V2 is able to capture 1920x1080 RGB images and

512x424 depth images at 30 Hz and in the range of 0.5 m to 4.5 m.

The objects that were used are from the YCB object and model set [34].

We decided to set the following conditions as defaults of the algorithm:

• We use 𝑛pct = 10, as a good equilibrium between number of points and

computational time;

• The cell size in the merging operation was chosen as 𝑠c = 0.00001 𝑚;

• In first trimming stage, we used a sphere as our trimming shape, the zero

indexed constants, refer to centre of that sphere and are all equal to 0, since

Object Segmentation and Classification from RGB-D Data

30 2017

the trimming is centred on the Microsoft Kinect V2, which is the origin of

our referential and the radius (𝑟) is equal to 1.5 m;

• We found that the values of 𝑛n = 400 and 𝑛d = 1, to be good in this case, at

removing noise but not removing useful data in the first denoise operation;

• The iterative optimization of point removal and plane refitting is usually made

12 times, with cell of size of 0.01 m and the removal of points is done with

𝑛𝑧 = 1;

• In the fine trimming stage, we used a rectangular prism as our trimming

shape, with the dimensions of all sides equal to 0.5 m, in practice being a

cube. Its centre was the centre of the point cloud after rotation with an offset

of +0.15 m along the X-axis, to the right, in order to detect which is the area

of the table in which objects are;

• We used 𝑏𝑖𝑛𝑜𝑓𝑓𝑠𝑒𝑡 = 4 and 𝑏𝑖𝑛𝑤𝑖𝑑𝑡ℎ = 0.003 𝑚, since these values

provide a good table removal;

• We found that the values of 𝑛n = 4 and 𝑛d = 1, to be good in the case of

second denoise operation;

• In the clustering stage, the grid size was 0.01 m, as this provided good enough

clustering;

• In the validation of clustering, we used 𝑛v = 500, because it was a good value

for these household objects;

• We used the values of 𝑛n = 20 and 𝑛d = 1, as they were good in this case,

at removing noise but not removing useful data in the third denoise operation;

• The cell size in the downsampling operation was 𝑠c = 0.001 𝑚;

• The values of 𝑛n = 10 and 𝑛d = 1 were used, as they were good in the case

of the fourth denoise operation;

• We chose to use 𝑛𝑟𝑢𝑛𝑠 = 10 and maximum number of random trials in the

fitting equal to 1000, since this was enough to ensure the convergence of the

scores;

• We decided to use 𝑚𝑎𝑥𝑠𝑐𝑎𝑙𝑒 = 1, since this gave us good results in

eliminating erroneous models;

 EXPERIMENTS AND DISCUSSION

João Gonçalo Pires Ferreira da Silva 31

• The inlier tolerances for shape fitters were 0.01 m for cylinder fitter, 0.005 m

for plane fitter, 0.005 m for sphere fitter and a 10º for angular tolerance in the

cylinder and plane fitters;

• The threshold for no match shape (4) is 𝑠𝑚𝑎𝑥,𝑔 ≤ 0.5.

These numbers were reached by performing several trials, in our setup and

evaluating the impact on the next stages.

3.2. Cataloguing

The cataloguing was done considering 20 objects from the YCB object and

model set [34], which are in the Table 3.1 and Figure 3.2.

Table 3.1. Cataloguing objects and their corresponding number.

Object Number

Sugar box 1

Potted meat can 2

Cracker box 3

Wood block 4

Gelatine box 5

Pitcher 6

Mug 7

Master chef can 8

Tomato soup can 9

Chips can 10

Apple 11

Peach 12

Plum 13

Lemon 14

Mini soccer ball 15

Orange 16

Softball 17

Tennis ball 18

Baseball 19

Bowl 20

Object Segmentation and Classification from RGB-D Data

32 2017

Figure 3.2. Cataloguing objects.

The conditions were set to the defaults of the software that was developed and

explained before.

The objects were catalogued with the orientations in Figure 3.3 and in Figure

3.5, some were catalogued in two different orientations and others were catalogued in four

different orientations.

The objects that closely resemble a sphere were catalogued in two different

orientations, one with the logo facing the camera, if applicable, being the front orientation

and one with no logo facing the camera, being the back orientation. The objects that closely

resemble a cylinder were catalogued in two different orientations, vertical with both the front

and back facing the camera.

The objects that closely resemble a rectangular prism were catalogued in four

different orientations, in the vertical orientation, with both sides, front and back, of the object

facing the camera and with the objects biggest side aligned with the camera or in a random

orientation. Both random orientations corresponded to a counter clockwise rotation from the

aligned orientation.

Of this we exempt the bowl, due to reasons that will be explained in the

cataloguing results subchapter and the wood block, since in this object the front and back

are the same, making only sense to catalogue in both the vertical and horizontal orientations

and in only the random and aligned orientations, as in Figure 3.3.

 EXPERIMENTS AND DISCUSSION

João Gonçalo Pires Ferreira da Silva 33

Figure 3.3. Explanation of orientations.

With these orientations, we catalogued the objects in five different positions, as

in Figure 3.4, the first position is in the centre of the workspace, a square that has the position

referred in the setup, the next four are closer to each of the corners of the workspace, from

the camera position 2 is near the near left corner, position 3 is near the near right corner,

position 4 is near the far left corner and position 5 is near the far right corner.

Figure 3.4. Explanation of positions.

Object Segmentation and Classification from RGB-D Data

34 2017

The fitting tolerances were 0.005 m for sphere and plane fitting, 0.01 m for

cylinder fitting, due to the fact that by our empirical testing the cylinders fitted worse than

the other shapes, so we had to favour them by giving them a bigger tolerance and 10º for

angular tolerance in all fittings. Also, we set 𝑚𝑎𝑥𝑠𝑐𝑎𝑙𝑒 = 1, these values were achieved by

empirical testing of several objects and were found to be the ones that gave the algorithm

the best performance.

We take the following features from Microsoft Kinect V2 and the algorithm for

cataloguing:

• Shape;

• Score;

• Measured volume;

• Global main colour;

• Three main colours;

• Location.

The next features had to be provided by us and were taken from page 43 of article

[34], except in the cases of the pitcher and bowl, since in both cases the diameter of base and

top, where very different, we assumed the diameter to be the average of this two values,

which we measured, and used to calculate the real volume. These features are:

• Object;

• Real volume.

One important aspect of this work, is that samples for both training and testing

were taken in a unstructured environment, as oppose to the ones in the datasets [7], [34],

making the variability of these be much higher than the works referred in the state of the art,

and making the detection of objects more difficult.

The cataloguing means and standard deviations for each feature of each object,

except for the location and real volume, are shown in Appendix C and in Appendix D,

respectively.

Note that even though the volume in the appendices is always in cubic

centimetres, in the algorithm we used cubic meters, since for the algorithm it’s the same to

use either one.

 EXPERIMENTS AND DISCUSSION

João Gonçalo Pires Ferreira da Silva 35

3.2.1. Cataloguing Results

Depending on the tolerances used, objects can have similar scores for very

different geometries, for example: a cylinder with a small base can be reasonably

approximated to a rectangular prism, apples, are slightly flattened at the poles which increase

the score of the cylinder and rectangular prism fitters.

On the other hand, some volume estimations can be very different from the real

volume since a drag is always formed behind the object, in an unpredictable way, making

the hidden part of the object appear much further back than it actually is and the volume

bigger than real one. This drag could also lower the score of an object, because the points of

the drag would not appear in the fitted result leading to for example a wrong shape detection.

If the objects are small or they have low height the Microsoft Kinect V2

distortion of the image and the limited precision of the segmentation can make a big error

appear in the volume or eliminate the object.

With this in mind, this subchapter is dedicated to discussing the unexpected

results or acquisition errors in the cataloguing process. To be considered an error, the sample

must have at least one of the following:

• Wrong best fit;

• Score lower than 0.9 of the best fit;

• Measured volume that is below 20% of the real volume or that is 10 times

bigger than the real volume.

We exempted the mini soccer ball, of the score being below 0.9, since it isn’t a

perfect sphere, by being composed of many flat surfaces, it’s expected that its score on the

sphere shape is below 0.9.

In the cases of the potted meat can, master chef can and tomato soup can,

Microsoft Kinect V2 had problems acquiring reflective surfaces [6] and thus distorted them,

making the score, shape and volume estimation have a big error. This was more apparent

under artificial lighting, where the surfaces were more reflective, because of the angle of

incidence of the light, made them reflect more towards the camera. This also happened in

the top surface of the chips can, which had a lid made of a transparent and reflective plastic,

but in here the effect were much lower only making the score of the best fit low, when

compared with instances of no reflection.

Object Segmentation and Classification from RGB-D Data

36 2017

Also, the potted meat can had round corners making the score low when

compared with the other objects with rectangular prism shape, even making the fitting better

as a cylinder in some instances because of this.

In some cases, the algorithm would get the best score for the rectangular prism

as a random one even though it was aligned in reality, only picking up the part of the object

facing the camera and making a wrong volume estimation, lower than the real one. This was

the case in some samples of the cracker box, gelatine box.

Also, in some cases, namely in the wood block, the score for an aligned

rectangular prism was low, since using our fitting function for aligned prism, the points on

the sides don’t count for inliers, but count negatively towards the score, making the score

low. This also explains the fact that sometimes, the best score would be of the rectangular

prism as a random one, even though the object was aligned in reality, since for the aligned

prism fitter the points corresponding to the sides do not count as inliers, but in the case of

the random prism fitter, the points of one of the sides count as inliers.

The gelatine box in some instances had low score, because Microsoft Kinect V2

distorted the top by making it have a large drag with an inclination equal the inclination of

Microsoft Kinect V2, between 27º and 30º from the horizontal, making very few points of

the top plane count as inliers, because the angular tolerance for fitting was only 10º.

The pitcher and mug got low scores, in some samples, because of the handles

not being considered in the fitted result as inliers, but counting negatively, towards the score,

in the total points. Also, the pitcher was not a perfect cylinder since the top had a bigger

diameter than the bottom, contributing more towards this.

In the cases of the chips can and master chef can there were some instances

where a large drag was formed behind the object, making the score of the cylinder shape

low, since most of the points of the drag did not count as inliers. This made the best fit be a

rectangular prism, that counted more of those points as inliers.

In the cases of the orange, apple, plum and peach, the best fitting was always

expected to be a sphere and in the case of the lemon, it was expected to be a cylinder, but

instead, sometimes it was something else or had a low score. In the cases of the orange and

apple, this was due to the fact that they were not perfect spheres, having the top and/or

bottom as flat surfaces. In the cases the peach, lemon and plum, this was due to the fact that

 EXPERIMENTS AND DISCUSSION

João Gonçalo Pires Ferreira da Silva 37

they were small objects and the tolerances for inlier points, in fitting, were big when

compared with the overall dimensions of the object.

In both cases counting almost the same points of the object in all fitting shapes,

making all the shape scores very close, thus not having a very stable fitting shape and getting

different shapes on different trials with the same object. To contribute to this, none of these

objects were perfect primitive shapes. To correct this, we tried to put bigger tolerances on

the sphere fitter, but this made all small objects appear as spheres, so we decided to keep the

tolerances as they were, since we gained precision in some samples only, at the expense of

others.

It is also important to note that since the fitting was affected, the volume

estimation also was affected, as was the case in some instances of the lemon, where the

volume estimation was much lower than the real volume. Contributing also to this was the

fact that the plum, peach and lemon where small objects and that a significant part of the

object was removed, during the table removal stage of the algorithm, due to its limited

precision. So, in the case of the lemon, orange, apple, plum and peach, we assumed the

nomenclature, catalogued and tested them all, as if they were cylinders, in all trials.

We also tried the bowl, the best shape that we expect was a cylinder, but because

the sides are curved, it gave us a best fit of a sphere, in most cases, with a relatively low

score of around 0.8 in all cases, including the ones that gave us the cylinder shape. With this

in mind and taking into account that by rotating the bowl, it is still perceived in the same

way, we decided to catalogue the bowl in two orientations, the top up orientation in Figure

3.5 (a) and the bottom up orientation in Figure 3.5 (b).

(a) (b)
Figure 3.5. Bowl in the (a) top up and (b) bottom up orientations.

Object Segmentation and Classification from RGB-D Data

38 2017

The shape error, made the volume and location estimations have a big error,

although this error was consistent in all testing, making use of the volume verification that

was previously referred, the error was lessened in the volume and location estimations. This

show the importance that the colour has in classification, due to the inaccuracy of the shape

and volume estimation and the importance of the volume verification.

One final source of defects was that some objects had undergone some damage

along the transportation before reaching us, making this also an origin of errors for our

algorithm. This was clear in the case of the sugar box, where there were some instances, that

the object was detected with a low score, due to the fact that some points of the damaged

object, did not go as in the inlier points of the rectangular prism shape fitter, as it would

happen if the object was not damaged.

Overall the errors were due to the fact the Microsoft Kinect V2 had low accuracy

and distorted the objects as input to this algorithm, making every estimation have an error,

especially the volume estimation. Also, the fact that we only used one camera, made us only

see one side of the object, meaning that the data that we had was very few, making us have

to estimate the hidden parts of the object, which was not precise and gave us a great error.

3.3. Classification

After the cataloguing and since the number of samples is very low for training

artificial neural networks (ANNs), in order to make the training faster, we created algorithm

that creates virtual samples, based on the real ones that we took during the cataloguing

process, by creating virtual positions with the same number of orientations as in cataloguing.

This algorithm works by first defining the number of virtual positions that we

want, and loading each of the targets and samples that we took. After this, we organize the

samples according to each object and get for each feature of each object a mean and a

standard deviation, based on the samples that we took during the cataloguing process. We

create each virtual sample, by creating random values for each feature of each object, from

the normal distributions with the mean and standard deviation calculated previously.

After this and due to the large number of virtual samples that is created, it is

possible that some values are outside the real ranges that those features have, for example

negative values of volume and shapes that are not positive integers between 1 and 4.

 EXPERIMENTS AND DISCUSSION

João Gonçalo Pires Ferreira da Silva 39

The range of shapes is a positive integer between 1 and 4, so we round the value

of random number generated and make that if a value is smaller than 1, it should be equal to

1 and if it’s bigger than 4, it should be 4 and have its score equal to a random uniformly

distributed number between 0 and 0.5, to be consistent with the previously set score

verification. Also, the score range will have a similar verification, since every score that is

equal or below 0.5 will be attributed the no match shape (4), and have its score equal to a

random uniformly distributed number between 0 and 0.5 and if the score is bigger than 1 it

should be equal to 1.

For the case of the range of volume, we say that if a volume is less or equal than

0, then the value of volume would be equal to the absolute value, of that random number

that was generated. In the case of the colour, since the values from Microsoft Kinect V2

range from 0 to 255, we considered every value that is less or equal than zero to be equal to

zero and would correspond to a value of colour that is so low, that Microsoft Kinect V2

would pick it up as 0 and every value larger than 255, would correspond to a value that is so

big, that Microsoft Kinect V2 would pick it up as maximum value or in other words 255.

This is a problem of pattern recognition, which has 15 inputs, that are shape,

score, measured volume and the four colours, since each colour has 3 values corresponding

to the values of red, green and blue, this explains the number of inputs. We have 20 outputs,

since this is the number of target classes.

 To solve this problem, we decided to use FFANNs which are one of the simplest

types of ANNs and tested various conditions of training, in order to estimate the optimal

conditions for training.

We started by finding the best number of virtual positions for training, we trained

five times each with 10, 100, 1000, 10000 and 100000 virtual positions. We did this testing

with 10 neurons in the hidden layer and in MATLAB’s default conditions of random

distribution of data of 70% for training, 15% for validation and 15% for testing. After this,

we took the average fraction of misclassified samples of five tests, at each number of virtual

positions and got Table 3.2 and Figure 3.6.

In the following tests of this subchapter, we used as testing data the real samples

that we took in cataloguing and changed the training data as a new training was done.

Object Segmentation and Classification from RGB-D Data

40 2017

Table 3.2. Fraction of misclassified samples by number of virtual positions.

 Fraction of misclassified samples [%]

Number of

virtual

positions

Training

1

Training

2

Training

3

Training

4

Training

5
Average

10 12,4 13,6 16,8 15,2 15,6 14,7

100 7,2 8,4 8,8 7,2 6 7,5

1000 4,4 6,8 4,8 8,4 6 6,1

10000 4,4 5,2 4,4 4,8 6,4 5,0

100000 4,8 5,2 5,6 5,6 5,6 5,4

Figure 3.6. Fraction of misclassified samples by number of virtual positions.

Since the minimum average fraction of misclassified samples corresponded to

10000 virtual positions, we used that value in the following tests, in order to train the

FFANNs and chose the first three tests, of the 10000 virtual positions, to use in the Table

3.3 and Figure 3.7 as comparison, as they were the 10 hidden neurons case. But as a note we

also got good results with 1000 virtual positions in training.

Now we will change the number of hidden neurons, between 5, 10, 15, 20, 25,

30, 40, 50, 75 and 100, to see what is the effect of this change. In this and the next test

0,0

2,0

4,0

6,0

8,0

10,0

12,0

14,0

16,0

1 10 100 1000 10000 100000

A
ve

ra
ge

 f
ra

ct
io

n
 o

f
m

is
cl

as
si

fi
ed

 s
am

p
le

s
[%

]

Number of virtual positions in logarithmic scale

 EXPERIMENTS AND DISCUSSION

João Gonçalo Pires Ferreira da Silva 41

though, we are only to average the fraction of misclassified samples of three tests, since the

accuracy of the algorithm is already good. Keeping the same data division as before for

training, validation and testing. We got the following results.

Table 3.3. Fraction of misclassified samples by number of hidden neurons.

 Fraction of misclassified samples [%]

Number of hidden

neurons

Training

1

Training

2

Training

3
Average

5 8 4,4 8 6,8

10 4,4 5,2 4,4 4,7

15 5,2 4 4,8 4,7

20 3,2 4,8 5,2 4,4

25 4 2,8 4,4 3,7

30 3,2 5,2 5,6 4,7

40 4,8 4,8 4 4,5

50 3,6 3,6 4 3,7

75 2,8 4 2,8 3,2

100 5,6 4,4 4,4 4,8

Figure 3.7. Fraction of misclassified samples by number of hidden neurons.

Considering that one of the minimum fraction of misclassified samples was in a

training using FFANNs of 25 hidden neurons and that after that there was little to gain in

adding more neurons, since we couldn’t get below the 2.8% fraction of misclassified

0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

8,0

0 20 40 60 80 100 120

A
ve

ra
ge

 f
ra

ct
io

n
 o

f
m

is
cl

as
si

fi
ed

 s
am

p
le

s
[%

]

Number hidden neurons

Object Segmentation and Classification from RGB-D Data

42 2017

samples. We decided to used 25 neurons in the hidden layer and change the division of data.

The validation and testing data can be 5%, 10%, 15%, 20% and 25% of the total data, with

them being equal in all the tests. We used the three tests of 25 neurons that we previously

got as comparison, as they were the 15% case and got Table 3.4 and Figure 3.8.

Table 3.4. Fraction of misclassified samples by data division.

 Fraction of misclassified samples [%]

Data division (validation and

testing) [%]

Training

1

Training

2

Training

3
Average

5 2,8 4,8 4 3,9

10 5,6 4 4 4,5

15 4 2,8 4,4 3,7

20 5,6 4,4 3,6 4,5

25 3,2 4 5,6 4,3

Figure 3.8. Fraction of misclassified samples by data division.

The results show that changing the data divisions had little effect on the

classification, in which the best results were achieved with training containing 10000 virtual

positions (500000 samples), 25 hidden neurons and the divisions set by MATLAB’s default

conditions of random distribution of data of 70% for training, 15% for validation and 15%

for testing.

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

0 5 10 15 20 25 30

A
ve

ra
ge

 f
ra

ct
io

n
 o

f
m

is
cl

as
si

fi
ed

 s
am

p
le

s
[%

]

Data division (validation and testing) [%]

 EXPERIMENTS AND DISCUSSION

João Gonçalo Pires Ferreira da Silva 43

The confusion matrices in Appendix E, are the ones that we got in testing with

the best training conditions and are in the previous tables.

Ignoring instances of confusion, that happened in only one of the tests in

Appendix E, we can see that the FFANNs confused tomato soup can and the chips can 5

times, the cracker box and the gelatine box 5 times, the gelatine box and the chips can 2

times, the sugar box and the wood block 2 times, the sugar box and gelatine box 5 times, the

potted meat can and master chef can 2 times and the cracker box with the chips can 5 times.

Based on the means of the features of each object in Appendix C, we see that the

confusions can be explained as follows.

In the case of the tomato soup can and the chips can, they were confused because

they have the same shape, similar scores and similar colours being the red and the white.

Since the volumes are in the same order of magnitude and since the volume estimation has

a big error, the confusion happened.

The confusion between the cracker box and the gelatine box was due to the fact

that these two objects had the same shape, almost the same score and similar colours, being

the red and the white, also as we saw in the cataloguing, there were some instances where

volume estimation had a big error in these objects, being this the possible source of the

confusion, since this was one of the few features that distinguished them.

In the case of the gelatine box and the chips can, the confusion is understandable

since here score and colours are similar, they have both the red and white colours, also there

were some instances in the cataloguing, where the chips can was detected as a rectangular

prim, as said previously, making the shape the same as the gelatine box.

Considering now the case of the confusion between the sugar box and the wood

block, we can see that they have the same shape, similar scores and similar colours, being

these between the white and yellow colours. Since the volumes are same order of magnitude

and the volume estimation has a big error, the confusion happened.

Seeing now the case of the confusion between the sugar box and gelatine box,

they have the same shape, similar scores and colour, this being the white colour. Due to the

inaccuracy of the volume estimation an error happened.

In the case of the potted meat can and master chef can, they have similar shapes,

since in some instances the master chef can has the rectangular prism shape and in some

instance of the potted meat can has the cylinder shape, the scores are similar and they have

Object Segmentation and Classification from RGB-D Data

44 2017

similar colours, being the blue and orange. Once more since the volumes are in the same

order of magnitude and since the volume estimation has a big error, the confusion happened.

In the case of the confusion between the cracker box with the chips can, this was

due to the score and all the colours being similar, the colours being the red, white and orange,

plus, as said before, in some instances the chips can was detected has a rectangular prism

and the cracker box had a big error in volume, making the confusion understandable.

To try to solve these confusion errors, we tried to change the training by

changing number of samples, the number of hidden neurons and the random distribution of

data between training, validation and testing, but this yielded no improvement in overall

results since we made these confusions disappear at the expense of creating new ones. So,

we decided to keep the best training.

Overall these tests showed the need to improve the volume estimation of the

algorithm, and how important the volume is as a feature. The biggest issue that was

encountered during the volume estimation, was that since we only use one RGB camera in

a stationary position, with one single view of the objects, we only see the part of the objects

facing the camera, meaning that the hidden parts of the objects need to be estimated, making

an inaccurate volume estimation, in many occasions.

3.4. Training

Since as we saw earlier, the best results were achieved with training containing

10000 virtual positions (500000 samples), 25 hidden neurons and the divisions set by

MATLAB’s default conditions of random distribution of data of 70% for training, 15% for

validation and 15% for testing, as previously explained. We chose the best FFANNs that we

trained, to implement into our algorithm, by selecting the one that had the least fraction of

misclassified samples, in testing with the real samples. We got following the results with

these FFANNs, in Table 3.5 and Figure 3.9.

Table 3.5. Fraction of misclassified samples according to type of data.

Data
Fraction of misclassified samples

[%]

Training 0,186

Validation 0,219

Testing 0,228

 EXPERIMENTS AND DISCUSSION

João Gonçalo Pires Ferreira da Silva 45

To achieve this result we needed 215 iterations, it took us 5 minutes and 43

seconds to train in a 4th generation Intel Core i7 processor.

Figure 3.9. Schematic representation of used FFANNs.

We use two-layer FFANNs, with 25 sigmoid neurons in the hidden layer and 20

softmax output neurons, since this is the number of target classes.

In our testing, in Appendix F, we tested the FFANNs, as we did before, with the

real data from cataloguing, which we used to create the virtual positions and got a fraction

of misclassified samples of 2.8%.

In this test, the algorithm confused the cracker box and the gelatine box 2 times,

the gelatine box and the chips can 1 time, the sugar box and gelatine box 2 times, the potted

meat can and master chef can 1 time and the cracker box with the chips can 1 time, with all

the reasons for these confusions being explained in the previous subchapter.

3.5. Testing

After this, we tested the algorithm with four object sets, in Table 3.6, containing

five objects each. We did five tests per object set, randomizing the pose of the objects

between tests, only paying attention that bigger objects can not cover small objects behind

them, allowing for Microsoft Kinect V2 to see them all, as in Figure 3.10 (a) and opposed to

what happens in Figure 3.10 (b).

(a) (b)
Figure 3.10. Master chef can (a) not covering and (b) covering the baseball.

Object Segmentation and Classification from RGB-D Data

46 2017

Table 3.6. Testing sets.

Sets Object 1 Object 2 Object 3 Object 4 Object 5

1
Gelatine

box

Tomato

soup can

Potted meat

can

Mini soccer

ball
Bowl

2 Wood block Sugar box Peach Plum Lemon

3
Master chef

can
Pitcher Softball Tennis ball Orange

4 Chips can Cracker box Apple Baseball Mug

There were some instances where we accidentally put two objects close to each

other and that made the clustering process not preform correctly, these instances were

discarded but the results showed the need to improve how the algorithm handles objects not

in our dataset and the clustering process. This improvement can be done by maybe putting a

smaller grid size in this stage of the algorithm. Also, shown that testing with multiple objects

is more difficult than using one single object, since the presence of multiple objects on the

scene close to each other, interferes with the objects in the scene causing confusion.

The results are in Table 3.7 and Figure 3.11.

Table 3.7. Recognition results in testing.

 Recognition accuracy

Sets
Object

1

Object

2

Object

3

Object

4

Object

5

1 5/5 4/5 4/5 5/5 5/5

2 4/5 5/5 5/5 5/5 5/5

3 5/5 5/5 5/5 5/5 5/5

4 5/5 4/5 5/5 5/5 5/5

 EXPERIMENTS AND DISCUSSION

João Gonçalo Pires Ferreira da Silva 47

Figure 3.11. Confusion matrix of multiple object testing.

In this test, there were some instances of misclassification making the overall

accuracy in this test equal to 96%, which is in line with state of the art techniques, that are

in Table 1.1. To add to this, we have to take into account the fact that, we are testing with

multiple objects in the workspace or scene in an unstructured environment, instead of just

one in a structured environment, as they did in most papers of Table 1.1.

In Figure 3.11, the algorithm confused the potted meat can with the tomato soup

can, this was due to the fact, that in one instance the potted meat can had the cylinder shape

as best fit and a measured volume very similar to the average volume of the tomato soup

can, in cataloguing. Plus, Microsoft Kinect V2 distorted the potted meat can making the

score low and causing the confusion.

Object Segmentation and Classification from RGB-D Data

48 2017

The algorithm confused the tomato soup can with the chips can and the cracker

box with the chips can, due to reasons that were explained before and plus in this case the

cracker box was very near the side orientation, which was an orientation not in our catalogue

and showed the need to take more samples.

Also, we got the confusion of the wood block with the cracker box, this was due

to the fact that in Appendix C, they had the same shape, similar scores, similar volumes and

some of the colours were similar, namely the third main colour and the reds in all the RGB

colour vectors. Plus, in this case there were even more colours that were similar to the ones

of the cracker box, namely the blues in all the RGB colour vectors.

Since this field is new, we were only able to find method [35] using the YCB

object and model set [34]. This method, achieved a perfect classification in single object

instance recognition, using the same object set [34], as we did. But only classified 11 objects,

with only 8 from the object set in [34], whereas our algorithm classifies 20 objects from the

same object set [34], also our algorithm required much less real data for training, only 250

total samples, an average of 13 samples per class, whereas the algorithm in [35] required

1744 total samples, an average of 159 samples per class. Making the cataloguing for our

algorithm faster, since we need less real samples.

Also, in our tests with multiple objects, we tested with five objects instead of

three, as in [35], making the classification more difficult, since here we have more objects

to interfere with the segmentation and classification algorithms. Still we achieved an

accuracy of 96%, whereas the method in [35] achieved an accuracy of 100%, with only the

objects in its training set.

Since our algorithm got an accuracy of 96% with multiple objects on the scene

and in an unstructured environment, we can say that algorithm has good accuracy when

compared with similar algorithms, as seen in the Table 1.1 and in the related work [35].

3.6. Location Accuracy and Calibration

To estimate the location, we use the centroid of the best model that was fitted.

In order to calibrate Microsoft Kinect V2, we need to choose an object that it identifies well.

Based on the means and standard deviations, in Appendix C and in Appendix D, and the real

values of the features, we chose the tennis ball as our calibration object, since the measured

 EXPERIMENTS AND DISCUSSION

João Gonçalo Pires Ferreira da Silva 49

volume and real volume were very close, the measured volume had a small standard

deviation and the best shape was always a sphere.

The tests were performed considering five positions, just as we did before in

Figure 3.4, we took the real coordinates of those locations and then compared them with the

ones that we took from the algorithm, five times, in order to calibrate our device.

With the average distance between the real and measured positions along each

of the Cartesian axis, we can create an offset to put in our algorithm, in order to give a more

precise estimation and to have an idea of the error, that our algorithm has in the location

estimation.

The positions were as described in the cataloguing section, in Figure 3.4 and

were chosen, in order to get an idea of what the error was in the different parts of our

workspace. The location error was due to [6]:

• The sensor by inadequate calibration;

• The measurement setup by the lighting conditions and image shape;

• The properties of object surface as in reflective surfaces.

The average differences of the real location minus the measured location and the

average distance from the real location to the measure location for each position are in Table

3.8.

Table 3.8. Location test and calibration results.

Position

Average

difference of

coordinate X-

axis [cm]

Average

difference of

coordinate

Y-axis [cm]

Average

difference of

coordinate

Z-axis [cm]

Average

distance

[cm]

1 -5,22 -1,36 -1,01 5,50

2 -4,53 -1,94 -0,87 5,01

3 -4,81 -2,03 -0,67 5,27

4 -4,69 -1,81 -1,12 5,15

5 -5,04 -1,70 -1,26 5,47

After this, we created an algorithm that divides the workspace into four equal

spaces, along the XY 2D space and creates an offset to the location in each space, based on

the average difference of coordinates between the real and measured positions, from

positions 2 to 5. This algorithm is implemented after the location is obtained. Also, the first

position was only to get an idea of what was the error was in the centre of the workspace.

Object Segmentation and Classification from RGB-D Data

50 2017

We got a minimum distance of 4.78 cm and a maximum distance of 5.75 cm

between the real and the measured positions, these values are useful to give an idea to the

robot where this object is. From Table 3.8, we can see that the biggest difference is in the X-

coordinate, this difference is on average -4.86 cm and is due to the fact that the location is

relative to the depth sensor not the RGB camera, which is about 5 cm to the right of the RGB

camera, while looking at the front of Microsoft Kinect V2.

By taking this average error in the X-axis and offsetting the location by it, we

can see that the minimum distance of 1.46 cm and a maximum distance of 2.62 cm. In line

with the precision of Microsoft Kinect V2 that is in [6]. Although we know that it is not like

this, in the algorithm, we decided to use the location relative to the RGB camera, since this

is a well-known position, making it is easy to implement in any robotics application, as

opposed to the exact location of the depth sensor which is unknown.

As a note, since with aligned rectangular prisms, the fitting can be only the part

of an object facing the camera and not much more this can lead the location to have a large

error.

 CONCLUSIONS

João Gonçalo Pires Ferreira da Silva 51

4. CONCLUSIONS

The objective of this dissertation was to present a novel method of object

classification using RGB-D data from Microsoft Kinect V2, that was able to classify 20

objects from the YCB object and model set [34]. In doing so, a novel unsupervised feature

extraction algorithm from RGB-D data was also introduced, which was used together with

FFANNs for object classification.

The unsupervised feature extraction algorithm works by first acquiring and

merging frames from Microsoft Kinect V2. After this a first trimming procedure is done,

that removes useless data, beyond the reach of the manipulator, for example a robot. Then

rotations are applied to the point cloud so that, Microsoft Kinect V2 is able to compensate

when its pose is changed and in order to have the table in the horizontal position. Following

this, a fine trimming operation and a table plane removal are applied in order separate the

objects from the background.

Then object segmentation is applied to separate each object into its own points

cloud, with the objects separated denoise and downsampling are applied, in order to give

more stable data to the feature extraction algorithm. This algorithm works by extracting the

main colours of an object, the primitive shapes and score that best fits an object and an

estimation of the volume based on that fitting.

In the classification stage of the algorithm, FFANNs are used to classify the

objects based on these inputs. Results show, that with the introduction of virtual samples the

accuracy of classification can be greatly improved, without the need to take a large number

of real samples, which is a very time-consuming task. Also in this dissertation, it is shown

the importance of careful study of the best conditions of training, taking into account that

the number of samples in training and the number of hidden neurons in the FFANNs, can

have a great impact on the accuracy of classification.

With the tests that were presented in this dissertation, we can see that an accuracy

of 96% can be achieved with multiple objects on the scene and in an unstructured

environment, which is better than most state of the art methods which achieve similar

accuracies but with a single object on the scene and in a structured environment.

Object Segmentation and Classification from RGB-D Data

52 2017

It is demonstrated that by doing the training with features instead of raw RGB-

D data, cataloguing was much faster, since this allows for the simple creation of virtual

samples, based on means and standard deviations from cataloguing, to be used for training,

which will have more samples and will lead to a higher accuracy of recognition.

Also with this dissertation, a method of locating objects using RGB-D data was

introduced, this method considers the location of an object to be the geometric centre of the

model, that was created during the fitting stage of the algorithm. It is shown that maximum

error of this method is 5.75 cm and that this error can be lessened with careful calibration.

Overall the results indicate that, we can extract features of objects from RGB-D

data, approximate them by 3D primitive shapes and use this information to classify them,

with a reduced amount of training data.

4.1. Future Work

Taking into account the work that has been done in this dissertation, future work

will include:

• Cataloguing more images, in order to improve the accuracy of the algorithm

and to include more objects in classification;

• Perfecting the object segmentation algorithm possibly by using a 3D grid or

a smaller grid size in order to see the effect that this has on clustering;

• Getting more primitive shapes or a combination of primitive shapes, in order

to classify more complex objects;

• Lessen the acquiring parameters in order to speed up the algorithm and see

what would be the effect on the classification, namely taking out the third

rotation and some denoise operations;

• Implementation of the algorithm in grasping applications, in order to aid

robots in detecting and classifying obstacles and graspable objects.

 BIBLIOGRAPHY

João Gonçalo Pires Ferreira da Silva 53

BIBLIOGRAPHY

[1] A. Y. N. Ashutosh Saxena, Justin Driemeyer, “Robotic Grasping of Novel Objects

using Vision,” J. Int. J. Robot. Res., 2008.

[2] Yun Jiang, S. Moseson, and A. Saxena, “Efficient grasping from RGBD images:

Learning using a new rectangle representation,” in 2011 IEEE International

Conference on Robotics and Automation, 2011, pp. 3304–3311.

[3] A. T. Miller, S. Knoop, H. I. Christensen, and P. K. Allen, “Automatic grasp planning

using shape primitives,” in 2003 IEEE International Conference on Robotics and

Automation (Cat. No.03CH37422), pp. 1824–1829.

[4] V. Mnih et al., “Human-level control through deep reinforcement learning,” Nature,

vol. 518, pp. 529–533, 2015.

[5] W. P. Chan, K. Nagahama, H. Yaguchi, Y. Kakiuchi, K. Okada, and M. Inaba,

“Implementation of a framework for learning handover grasp configurations through

observation during human-robot object handovers,” in 2015 IEEE-RAS 15th

International Conference on Humanoid Robots (Humanoids), 2015, pp. 1115–1120.

[6] K. Khoshelham and S. O. Elberink, “Accuracy and Resolution of Kinect Depth Data

for Indoor Mapping Applications,” Sensors, vol. 12, no. 12, pp. 1437–1454, Feb.

2012.

[7] K. Lai, L. Bo, X. Ren, and D. Fox, “A large-scale hierarchical multi-view RGB-D

object dataset,” in Proceedings - IEEE International Conference on Robotics and

Automation, 2011, pp. 1817–1824.

[8] A. Johnson, “Spin-images: a representation for 3-D surface matching,” Technology,

no. CMU-RI-TR-97-47, p. 138, 1997.

[9] H. S. Koppula, A. Anand, T. Joachims, and A. Saxena, “Semantic Labeling of 3D

Point Clouds for Indoor Scenes,” Neural Inf. Process. Syst., pp. 1–9, 2011.

[10] L. Bo, X. Ren, and D. Fox, “Depth kernel descriptors for object recognition,” in 2011

IEEE/RSJ International Conference on Intelligent Robots and Systems, 2011, pp.

821–826.

[11] M. Krainin, B. Curless, and D. Fox, “Autonomous generation of complete 3D object

Object Segmentation and Classification from RGB-D Data

54 2017

models using next best view manipulation planning,” in Proceedings - IEEE

International Conference on Robotics and Automation, 2011, pp. 5031–5037.

[12] I. Lenz, H. Lee, and A. Saxena, “Deep learning for detecting robotic grasps,” Int. J.

Rob. Res., vol. 34, no. 4–5, pp. 705–724, Apr. 2015.

[13] M. Blum, J. T. Jost Tobias Springenberg, J. Wulfing, and M. Riedmiller, “A learned

feature descriptor for object recognition in RGB-D data,” in 2012 IEEE International

Conference on Robotics and Automation, 2012, pp. 1298–1303.

[14] A. Coates, H. Lee, and A. Y. Ng, “An Analysis of Single-Layer Networks in

Unsupervised Feature Learning,” in Proceedings of the 14th International Conference

on Artificial Intelligence and Statistics (AISTATS), 2011.

[15] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-Up Robust Features

(SURF),” Comput. Vis. Image Underst., vol. 110, no. 3, pp. 346–359, 2008.

[16] L. Bo, X. Ren, and D. Fox, “Unsupervised Feature Learning for RGB-D Based Object

Recognition,” Springer International Publishing, 2013, pp. 387–402.

[17] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep

Convolutional Neural Networks,” 2012, pp. 1097–1105.

[18] C. Farabet, C. Couprie, L. Najman, and Y. LeCun, “Scene parsing with multiscale

feature learning, purity trees, and optimal covers,” 29th International Conference on

Machine Learning, ICML 2012. 2012.

[19] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich Feature Hierarchies for

Accurate Object Detection and Semantic Segmentation,” in 2014 IEEE Conference

on Computer Vision and Pattern Recognition, 2014, pp. 580–587.

[20] M. Schwarz, H. Schulz, and S. Behnke, “RGB-D object recognition and pose

estimation based on pre-trained convolutional neural network features,” in 2015 IEEE

International Conference on Robotics and Automation (ICRA), 2015, pp. 1329–1335.

[21] K. Lai, L. Bo, and D. Fox, “Unsupervised feature learning for 3D scene labeling,”

2014 IEEE Int. Conf. Robot. Autom., pp. 3050–3057, 2014.

[22] R. Socher, B. Huval, B. Bhat, C. D. Manning, and A. Y. Ng, “Convolutional-

Recursive Deep Learning for 3D Object Classification,” Adv. Neural Inf. Process.

Syst. 25, 2012.

[23] Y. Cheng et al., “Query Adaptive Similarity Measure for RGB-D Object

Recognition,” in 2015 IEEE International Conference on Computer Vision (ICCV),

 BIBLIOGRAPHY

João Gonçalo Pires Ferreira da Silva 55

2015, pp. 145–153.

[24] A. Eitel, J. T. Springenberg, L. Spinello, M. Riedmiller, and W. Burgard, “Multimodal

deep learning for robust RGB-D object recognition,” in 2015 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), 2015, pp. 681–687.

[25] Y. Jia et al., “Caffe: Convolutional Architecture for Fast Feature Embedding,” in

Proceedings of the ACM International Conference on Multimedia, 2014, pp. 675–

678.

[26] J. Wang, J. Lu, W. Chen, and X. Wu, “Convolutional neural network for 3D object

recognition based on RGB-D dataset,” in 2015 IEEE 10th Conference on Industrial

Electronics and Applications (ICIEA), 2015, pp. 34–39.

[27] J. Redmon and A. Angelova, “Real-time grasp detection using convolutional neural

networks,” in 2015 IEEE International Conference on Robotics and Automation

(ICRA), 2015, pp. 1316–1322.

[28] F. Li, H. Liu, X. Xu, and F. Sun, “Multi-Modal Local Receptive Field Extreme

Learning Machine for object recognition,” in 2016 International Joint Conference on

Neural Networks (IJCNN), 2016, pp. 1696–1701.

[29] U. Asif, M. Bennamoun, and F. Sohel, “Efficient RGB-D object categorization using

cascaded ensembles of randomized decision trees,” in 2015 IEEE International

Conference on Robotics and Automation (ICRA), 2015, pp. 1295–1302.

[30] V. Kramarev, S. Zurek, J. L. Wyatt, and A. Leonardis, “Object Categorization from

Range Images Using a Hierarchical Compositional Representation,” in 2014 22nd

International Conference on Pattern Recognition, 2014, pp. 586–591.

[31] B. Dellen and I.A. Rojas, “Volume measurement with a consumer depth camera based

on structured infrared light,” in 16th Catalan Conference on Artificial Intelligence,

2013, pp. 1–10.

[32] B. Q. Ferreira, M. Griné, D. Gameiro, J. P. Costeira, and B. S. Santos,

“VOLUMNECT: measuring volumes with Kinect,” in Three-Dimensional Image

Processing, Measurement (3DIPM), and Applications 2014, 2014, pp. 5–10.

[33] D. Schiebener, A. Schmidt, N. Vahrenkamp, and T. Asfour, “Heuristic 3D object

shape completion based on symmetry and scene context,” in 2016 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), 2016, pp. 74–81.

[34] B. Calli, A. Walsman, A. Singh, S. Srinivasa, P. Abbeel, and A. M. Dollar,

Object Segmentation and Classification from RGB-D Data

56 2017

“Benchmarking in Manipulation Research: Using the Yale-CMU-Berkeley Object

and Model Set,” IEEE Robot. Autom. Mag., vol. 22, no. 3, pp. 36–52, Sep. 2015.

[35] A. Broad and B. Argall, “Geometry-Based Region Proposals for Accelerated Image-

Based Detection of 3D Objects.” pp. 1–6, 2016.

[36] A. Maligo and S. Lacroix, “Classification of Outdoor 3D Lidar Data Based on

Unsupervised Gaussian Mixture Models,” IEEE Trans. Autom. Sci. Eng., vol. 14, no.

1, pp. 5–16, Jan. 2017.

[37] A. Teichman, J. Levinson, and S. Thrun, “Towards 3D object recognition via

classification of arbitrary object tracks,” in 2011 IEEE International Conference on

Robotics and Automation, 2011, pp. 4034–4041.

[38] W. J. Beksi and N. Papanikolopoulos, “Object classification using dictionary learning

and RGB-D covariance descriptors,” in 2015 IEEE International Conference on

Robotics and Automation (ICRA), 2015, pp. 1880–1885.

[39] D. Fehr, W. J. Beksi, D. Zermas, and N. Papanikolopoulos, “RGB-D object

classification using covariance descriptors,” in 2014 IEEE International Conference

on Robotics and Automation (ICRA), 2014, pp. 5467–5472.

[40] E. Martinez-Martin and A. P. del Pobil, “Object Detection and Recognition for

Assistive Robots,” IEEE Robot. Autom. Mag., pp. 2–17, 2017.

[41] H. Pan, S. I. Olsen, and Y. Zhu, “Object classification from RGB-D images using

depth context kernel descriptors,” in 2015 IEEE International Conference on Image

Processing (ICIP), 2015, pp. 512–516.

[42] H. F. M. Zaki, F. Shafait, and A. Mian, “Convolutional hypercube pyramid for

accurate RGB-D object category and instance recognition,” in 2016 IEEE

International Conference on Robotics and Automation (ICRA), 2016, pp. 1685–1692.

[43] H. F. M. Zaki, F. Shafait, and A. Mian, “Localized Deep Extreme Learning Machines

for Efficient RGB-D Object Recognition,” in 2015 International Conference on

Digital Image Computing: Techniques and Applications (DICTA), 2015, pp. 1–8.

[44] E. Santana, K. Dockendorf, and J. C. Principe, “Learning joint features for color and

depth images with Convolutional Neural Networks for object classification,” in 2015

IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), 2015, pp. 1320–1323.

[45] S. Boubou, T. Narikiyo, and M. Kawanishi, “Differential Histogram of Normal

 BIBLIOGRAPHY

João Gonçalo Pires Ferreira da Silva 57

Vectors for Object Recognition with Depth Sensors,” in 2016 International

Conference on Autonomous Robot Systems and Competitions (ICARSC), 2016, pp.

162–167.

[46] V. Seib, R. Memmesheimer, and D. Paulus, “Ensemble classifier for joint object

instance and category recognition on RGB-D data,” in 2015 IEEE International

Conference on Image Processing (ICIP), 2015, pp. 143–147.

[47] L. Peppoloni, M. Satler, E. Luchetti, C. A. Avizzano, and P. Tripicchio, “Stacked

generalization for scene analysis and object recognition,” in IEEE 18th International

Conference on Intelligent Engineering Systems INES 2014, 2014, pp. 215–220.

[48] J. Stuckler and S. Behnke, “Benchmarking mobile manipulation in everyday

environments,” in 2012 IEEE Workshop on Advanced Robotics and its Social Impacts

(ARSO), 2012, pp. 1–6.

[49] M. A. Fischler and R. C. Bolles, “Random sample consensus: A paradigm for model

fitting with applications to image analysis and automated cartography,” Graph. Image

Process., vol. 24, no. 6, pp. 381–395, 1981.

Object Segmentation and Classification from RGB-D Data

58 2017

 APPENDIX A (Algorithm Scheme)

João Gonçalo Pires Ferreira da Silva 59

APPENDIX A (ALGORITHM SCHEME)

In this appendix, we will show in an index form of how the algorithm works,

showing what functions does it call, when the main function SmartDemonstrator.m is called.

The algorithm contains four parts which are:

• Part 1: Obtaining data from Microsoft Kinect V2;

• Part 2: Point Cloud Processing;

• Part 3: Feature Extraction;

• Part 4: Classification.

When functions are called, an index will appear that indicates the order in which

the function was called and what it does once it’s called, as shown next:

Part 1: Obtaining data from Microsoft Kinect V2.

1. Acquisition of point cloud using fKinectAcquireM;

1.1. Acquire point clouds from Kinect;

1.2. Merging of point clouds into one;

2. Remove invalid points from resulting point cloud using

ptCloud.removeInvalidPoints;

3. First trimming operation based on the range of grasping using PtTrimLoc;

3.1. Define shape, dimensions, centre and angles;

3.2. Create an affine transformation matrix from Angles and then rotates the input

point cloud using PtRotTrams;

3.3. Point cloud analysis – defines region of interest, useful points are inside this

region, based on a shape and its limits;

3.3.1. Define cube limits;

3.3.2. Define sphere limits;

3.3.3. Define rectangular prism limits;

3.3.4. Define ellipsoid limits;

3.4. Output creation – creates output by selecting only useful points and then plotting

the output point cloud on a figure;

4. Denoise and show the image before and after denoise.

Object Segmentation and Classification from RGB-D Data

60 2017

Part 2: Point Cloud Processing.

1. Point cloud rotation using FPtFastRot;

1.1. Fit plane to 3-D point cloud using fFitPlaneMatLabOptimize;

1.2. Creates first affine transformation matrix from vectors using RotFromVec;

1.3. First rotation to the vertical of the input point cloud using PtRotTrams;

1.4. Creates second affine transformation matrix from vectors using RotFromVec;

1.5. Second rotation to the horizontal of the input point cloud using PtRotTrams;

1.6. Fine-tune point cloud rotation by iteratively fitting a plane using

PtFineTuneRotation;

1.6.1. Create a grid and get statistical data from it using FGrid;

1.6.1.1.Generate limits according to the max/min coordinates using

Generate_Zone4Boundary;

1.6.1.2.Create a grid and count points in each cell using

FGridCreateACount;

1.6.1.3.Get statistical data from grid using MATLAB functions and

FStatGen;

1.6.2. Create a 3D scatter plot from data using F3DPointPlaneForFitting;

1.6.3. Fit a plane using FCreateFitPlaneX1Y1;

1.6.4. Iterative optimization using FFitPlaneRemoveOutliners to remove less

similar points to plane and create a new fit plane;

1.6.4.1.Remove less similar points;

1.6.4.2.Fit a plane using FCreateFitPlaneX1Y1;

1.6.5. Rotate the point cloud in order to align the plane to the horizontal using

FPTRotTra2Plane;

1.6.5.1. Creates affine transformation matrix from vectors using

RotFromVec;

1.6.5.2.Translation of the input point cloud to the origin of the Cartesian

axis using PtRotTrams;

1.6.5.3.Rotation to the horizontal of the point cloud using PtRotTrams;

1.6.5.4.Translation of the point cloud using PtRotTrams;

1.7. Show evolution during the optimization plus alignment;

1.8. Show final rotation (result of PtFineTuneRotation);

 APPENDIX A (Algorithm Scheme)

João Gonçalo Pires Ferreira da Silva 61

2. Trimming Section;

2.1. Find centre of point cloud using fPtFindCenter;

2.2. Fine trimming operation using PtTrimLoc;

2.2.1. Define shape, dimensions, centre and angles;

2.2.2. Create an affine transformation matrix from Angles and then rotates the

input point cloud using PtRotTrams;

2.2.3. Point cloud analysis – defines region of interest, useful points are inside

this region, based on a shape and its limits;

2.2.3.1.Define cube limits;

2.2.3.2.Define sphere limits;

2.2.3.3.Define rectangular prism limits;

2.2.3.4.Define ellipsoid limits;

2.2.4. Output creation – creates output by selecting only useful points and then

plotting the output point cloud on a figure;

3. Segmentation of floor using FloorDepthSegmentation;

3.1. Creation and plotting of histograms of counts of points at each coordinate along

the Z-axis of point cloud;

3.2. Segmentation of the table from point cloud based on maximum number of points

bin and show of point cloud after table segmentation;

4. Point Cloud Clustering and Segmentation;

4.1. Denoise point cloud using pcdenoise;

4.2. Cluster and segment regions of interest from point cloud using

ROIClusteringSegmentation;

4.2.1. Obtain grid count and indexes using FGrid;

4.2.1.1.Generate limits according to the max/min coordinates using

Generate_Zone4Boundary;

4.2.1.2.Create a grid and count points in each cell using

FGridCreateACount;

4.2.1.3.Get statistical data from grid using MATLAB functions and

FStatGen;

4.2.2. Get clusters from a grid using FGridClustering;

4.2.3. Remove meaningless clusters;

Object Segmentation and Classification from RGB-D Data

62 2017

4.2.3.1.Separate data according to clusters in grid using FProcessCluster;

4.2.3.2.Remove meaningless clusters with density validation;

4.2.3.3.Get final data and plot;

4.3. Remove useless point cloud clusters using fPtSegmentedClean.

Part 3: Feature Extraction.

1. Downsample and denoise point cloud using fPtDownDenoise;

2. Colour extraction by k-means clustering using FFExtractColour;

3. Get volumes, location, shape and score of objects using fPtCloudShapeVolLoc;

3.1. Fit primitive shapes using MATLAB functions by calling

fPtCloudGeoMatchMatlab;

3.1.1. Get maximum radius and volume by using fPtCldSize;

3.1.2. Fitting of primitive shapes using MATLAB functions;

3.1.3. Find centre of point cloud using fPtFindCenter;

3.2. Select best shape and score, estimate volume and location using

fPtCloudMatchVol;

3.2.1. If volume or score verification is not met use fPtCldSizeCentre to find

volume and location of point cloud;

3.2.2. Calculate plane intersection for rectangular prism at the Z-coordinate of

the point cloud’s centre using fModelPlaneInter;

4. Write output for cataloguing in to Microsoft Excel file using WriteOutputExcel;

5. Offset location based on previous calibration using fOffsetLocation.

Part 4: Classification.

1. Classification and creation of output Microsoft Excel file using fClassification;

1.1. Creation of input matrix for neural network;

1.2. Classification using neural network

1.3. Writing of output in to Microsoft Excel file.

 APPENDIX B (Rectangular Prism Test)

João Gonçalo Pires Ferreira da Silva 63

APPENDIX B (RECTANGULAR PRISM TEST)

Method 1 (Horizontal)

Object
Volume

1 [cm^3]

Volume 2

[cm^3]

Volume 3

[cm^3]

Foam

rick
152,0 423,0 420,0

Wood

block
1281,0 1308,0 1304,0

Cracker

box
1832,0 1875,0 1908,0

Object

Real

volume

[cm^3]

Average

Volume [cm^3]

Absolute value

of error [cm^3]

Absolute

percentage of

error [%]

Foam

rick
187,5 331,7 144,2 76,9

Wood

block
1536,7 1297,7 239,0 15,6

Cracker

box
1990,8 1871,7 119,1 6,0

Average

absolute error

[cm^3]

167,4

Object Segmentation and Classification from RGB-D Data

64 2017

Method 2 (Horizontal)

Object
Volume 1

[cm^3]

Volume 2

[cm^3]

Volume 3

[cm^3]

Foam

rick
402,0 439,0 482,0

Wood

block
1437,0 1334,0 1344,0

Cracker

box
1886,0 1975,0 1948,0

Object

Real

volume

[cm^3]

Average Volume

[cm^3]

Absolute value

of error [cm^3]

Absolute

percentage of

error [%]

Foam

rick
187,5 441,0 253,5 135,2

Wood

block
1536,7 1371,7 165,0 10,7

Cracker

box
1990,8 1936,3 54,5 2,7

Average

absolute error

[cm^3]

157,7

 APPENDIX B (Rectangular Prism Test)

João Gonçalo Pires Ferreira da Silva 65

Method 1 (Vertical)

Object
Volume 1

[cm^3]

Volume 2

[cm^3]

Volume 3

[cm^3]

Foam

rick
234,0 246,0 215,0

Wood

block
1278,0 1253,0 925,0

Cracker

box
2112,0 2392,0 2605,0

Object

Real

volume

[cm^3]

Average

Volume [cm^3]

Absolute value

of error [cm^3]

Absolute

percentage of

error [%]

Foam

rick
187,5 231,7 44,2 23,6

Wood

block
1536,7 1152,0 384,7 25,0

Cracker

box
1990,8 2369,7 378,9 19,0

Average

absolute error

[cm^3]

269,2

Object Segmentation and Classification from RGB-D Data

66 2017

Method 2 (Vertical)

Object
Volume 1

[cm^3]

Volume 2

[cm^3]

Volume 3

[cm^3]

Foam

rick
245,0 318,0 244,0

Wood

block
986,0 1113,0 1216,0

Cracker

box
2433,0 2691,0 2381,0

Object

Real

volume

[cm^3]

Average Volume

[cm^3]

Absolute value

of error [cm^3]

Absolute

percentage of

error [%]

Foam

rick
187,5 269,0 81,5 43,5

Wood

block
1536,7 1105,0 431,7 28,1

Cracker

box
1990,8 2501,7 510,9 25,7

Average

absolute error

[cm^3]

341,3

 APPENDIX C (Cataloguing Means)

João Gonçalo Pires Ferreira da Silva 67

APPENDIX C (CATALOGUING MEANS)

Object Shape Score

Measured

volume

[cm^3]

Global

main

colour

R

Global

main

colour

G

Global

main

colour

B

Main

colour

1 R

Main

colour

1 G

Main

colour

1 B

Main

colour

2 R

Main

colour

2 G

Main

colour

2 B

Main

colour

3 R

Main

colour

3 G

Main

colour

3 B

Sugar

box
3,0 0,95 833,0 173,5 184,3 146,0 183,3 196,5 123,7 175,4 188,3 147,2 93,5 98,0 119,8

Potted

meat can
2,4 0,86 396,5 125,6 124,6 88,6 142,7 137,2 90,2 84,6 86,4 71,1 153,4 156,2 111,4

Cracker

box
3,0 0,94 1867,5 165,0 116,0 95,0 163,2 112,4 100,9 161,0 102,0 64,9 183,0 164,3 147,9

Wood

block
3,0 0,97 1487,4 170,2 167,6 126,0 161,8 160,3 117,1 175,3 172,4 131,8 192,3 186,6 149,1

Gelatine

box
3,0 0,97 201,4 174,8 153,2 150,6 185,5 180,0 179,6 168,5 119,4 114,1 161,0 122,0 118,4

Pitcher 1,0 0,77 2152,3 33,4 66,8 136,2 27,4 60,8 131,1 44,2 77,4 144,8 116,3 149,4 203,0

Mug 1,0 0,91 348,0 91,4 35,9 25,8 99,7 40,9 28,6 65,8 15,4 8,5 135,5 89,4 85,9

Master

chef can
1,2 0,86 693,4 79,3 87,8 125,6 26,6 36,2 89,4 142,1 149,0 169,2 156,1 161,8 170,2

Tomato

soup can
1,0 0,91 256,3 151,8 134,3 131,4 160,2 144,7 142,4 149,6 127,6 123,2 126,5 104,5 100,6

Chips

can
1,4 0,90 710,8 157,4 100,8 81,1 153,3 51,9 35,8 171,1 157,7 132,9 143,5 128,3 106,7

Object Segmentation and Classification from RGB-D Data

68 2017

Object Shape Score

Measured

volume

[cm^3]

Global

main

colour

R

Global

main

colour

G

Global

main

colour

B

Main

colour

1 R

Main

colour

1 G

Main

colour

1 B

Main

colour

2 R

Main

colour

2 G

Main

colour

2 B

Main

colour

3 R

Main

colour

3 G

Main

colour

3 B

Apple 2,4 0,91 141,5 162,3 50,0 47,9 150,1 39,6 34,9 183,4 62,9 66,5 207,6 123,3 125,6

Peach 2,6 0,95 70,6 205,2 166,5 53,9 216,8 189,8 54,7 189,5 134,2 48,7 192,1 136,1 66,8

Plum 2,2 0,95 42,0 80,6 43,5 46,6 71,7 34,5 35,6 99,7 61,6 71,9 143,8 112,1 121,6

Lemon 2,5 0,96 50,7 229,7 232,5 62,1 223,9 225,6 56,7 236,4 240,9 65,0 229,1 232,0 85,0

Mini

soccer

ball

2,0 0,93 1016,6 145,8 99,3 54,7 123,1 62,0 35,8 155,9 119,3 59,7 206,1 190,3 120,3

Orange 2,1 0,93 127,7 198,9 117,7 50,2 191,5 107,2 37,9 211,1 131,7 63,1 211,0 151,6 101,2

Softball 2,0 0,96 342,7 191,6 230,1 84,1 208,6 247,1 91,5 177,7 216,6 78,7 96,6 130,9 41,1

Tennis

ball
2,0 0,97 102,9 192,6 217,1 119,5 189,9 215,0 113,9 200,9 225,2 126,1 132,3 155,8 88,8

Baseball 2,0 0,98 145,8 199,8 205,3 207,7 204,1 210,2 213,0 203,2 209,2 211,8 161,6 164,2 165,0

Bowl 1,9 0,81 1090,3 153,5 49,7 35,7 147,5 41,0 25,3 168,8 71,8 65,1 213,4 162,5 162,2

 APPENDIX D (Cataloguing Standard Deviations)

João Gonçalo Pires Ferreira da Silva 69

APPENDIX D (CATALOGUING STANDARD DEVIATIONS)

Object Shape Score

Measured

volume

[cm^3]

Global

main

colour

R

Global

main

colour

G

Global

main

colour

B

Main

colour

1 R

Main

colour

1 G

Main

colour

1 B

Main

colour

2 R

Main

colour

2 G

Main

colour

2 B

Main

colour

3 R

Main

colour

3 G

Main

colour

3 B

Sugar

box
0,0 0,03 437,0 3,8 3,8 28,5 10,4 14,2 64,9 20,5 21,4 53,8 59,5 60,7 53,2

Potted

meat

can

0,9 0,08 206,8 15,2 15,5 9,4 28,9 32,0 15,9 66,9 66,8 38,6 68,8 70,9 44,7

Cracker

box
0,0 0,02 1058,4 4,8 13,7 20,1 20,6 68,3 74,9 26,4 47,2 35,6 23,1 32,3 45,3

Wood

block
0,0 0,04 257,4 9,5 10,4 12,3 8,6 11,8 14,9 33,3 34,2 40,6 37,8 38,8 44,9

Gelatine

box
0,0 0,03 142,1 4,9 16,0 18,2 15,3 30,2 32,9 28,1 58,8 64,1 28,8 54,7 56,8

Pitcher 0,0 0,07 945,1 2,7 2,3 2,0 1,5 3,5 7,2 22,5 29,5 31,3 33,4 23,2 11,0

Mug 0,0 0,04 39,4 5,9 1,9 2,6 4,9 1,8 2,7 5,9 1,4 0,6 20,5 28,7 31,5

Master

chef can
0,6 0,05 173,5 26,6 26,4 17,6 6,4 6,0 6,1 73,2 73,8 62,1 29,1 30,1 28,3

Tomato

soup can
0,0 0,07 78,8 6,6 14,7 16,0 31,8 60,4 65,5 26,3 53,6 59,0 12,5 27,3 29,2

Chips

can
0,8 0,05 335,1 10,3 15,8 19,9 14,9 4,6 6,7 14,7 27,8 32,8 50,0 58,5 56,7

Object Segmentation and Classification from RGB-D Data

70 2017

Object Shape Score

Measured

volume

[cm^3]

Global

main

colour

R

Global

main

colour

G

Global

main

colour

B

Main

colour

1 R

Main

colour

1 G

Main

colour

1 B

Main

colour

2 R

Main

colour

2 G

Main

colour

2 B

Main

colour

3 R

Main

colour

3 G

Main

colour

3 B

Apple 1,0 0,05 34,8 3,8 4,4 5,3 5,0 0,9 2,1 11,0 12,5 14,0 5,1 37,7 35,6

Peach 0,5 0,02 21,8 10,8 17,5 4,4 8,2 13,4 6,5 32,2 56,6 16,7 35,5 53,8 37,4

Plum 0,9 0,04 13,5 2,5 2,3 2,5 2,5 1,2 2,2 12,3 13,3 13,3 15,5 18,9 18,8

Lemon 0,7 0,01 19,3 5,4 3,3 3,0 9,2 9,1 3,6 9,9 12,9 6,5 21,8 22,8 28,2

Mini

soccer

ball

0,0 0,03 142,1 4,0 7,5 3,4 13,8 27,8 9,0 11,7 28,9 9,3 9,9 12,7 21,8

Orange 0,3 0,02 25,1 1,9 1,7 2,2 3,1 2,6 1,6 12,5 12,7 11,5 46,2 38,5 43,2

Softball 0,0 0,02 29,8 7,4 6,7 1,2 9,5 4,7 8,7 29,8 25,5 16,5 45,7 47,3 15,1

Tennis

ball
0,0 0,02 7,8 10,7 10,1 3,8 7,4 7,0 5,5 47,5 47,1 32,1 67,0 66,2 44,0

Baseball 0,0 0,01 27,3 4,4 4,7 4,7 12,3 12,9 13,9 23,8 25,0 26,7 49,7 50,0 51,2

Bowl 0,3 0,04 163,1 12,0 5,8 5,1 10,4 4,9 4,0 20,5 17,0 21,9 18,1 31,9 32,3

 APPENDIX E (Confusion Matrices)

João Gonçalo Pires Ferreira da Silva 71

APPENDIX E (CONFUSION MATRICES)

Object Segmentation and Classification from RGB-D Data

72 2017

 APPENDIX F (Training Result)

João Gonçalo Pires Ferreira da Silva 73

APPENDIX F (TRAINING RESULT)

