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ABSTRACT: So far, most studies of the geometric phase effect have presumed that the
phase is path-independent; hence, one must supply another restriction concerning the
boundary condition on the nuclear wave functions when dealing with nonsymmetric
isotopomers of X3 systems. We report calculations of the vibrational spectra of HD2 using
a recently proposed generalized Born–Oppenheimer (GBO) formalism. The calculations
demonstrate that there are significant differences between the results calculated from the
present GBO method and those based on the preceding presumption. c© 2001 John Wiley
& Sons, Inc. Int J Quantum Chem 83: 279–285, 2001
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Introduction

I n 1963, Herzberg and Longuet-Higgins [1]
proved that a real-valued adiabatic electronic

wave function changes sign when the nuclear coor-
dinates traverse a closed path that encircles a conical
intersection. This change implies a breakdown of
the standard Born–Oppenheimer (BO) treatment [2]
whenever such an intersection is present [1, 3 – 8].
Two decades ago, Mead and Truhlar [9 – 11] showed
that the single-surface BO treatment could be gen-
eralized by introducing a vector potential into the
nuclear Schrödinger equation. A few years later,
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Berry [12] proved the geometric phase (GP) effect
(which had then become known also as the Berry
phase effect) in a wider context by showing that it
can be present on the adiabatic evolution of other
quantum systems. Moreover, Aharonov and Anan-
dan [13] removed the restriction of adiabaticity and
defined the geometric phase for any cyclic quan-
tum evolution. They also explained the Aharonov–
Bohm [14] effect for a charged particle moving in
the presence of a magnetic solenoid, which is of-
ten [15, 16] taken to be synonymous with the GP
effect due to the similarity of the involved differen-
tial equations.

It is well established that the GP effect plays a sig-
nificant role in molecular spectra [17 – 21] and scat-
tering [22 – 29]; for reviews, see Refs. [15] and [16]
(see also Ref. [30] and references therein). In fact,
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as shown many years ago [31] by ab initio calcula-
tions, the GP effect may be present even when the
system has no symmetry, such as is the case for
the ground electronic state of LiNaK. Two alterna-
tive possibilities have been suggested to account for
the GP effect in the case of an X3 molecule. One
consists of multiplying the real double-valued elec-
tronic wave functions by a complex phase factor
that changes sign when it encircles the conical in-
tersection and, hence, makes the resulting complex
electronic wave function single-valued [24, 32, 33].
In fact, such a complex phase factor leads to the
previously mentioned vector potential of Mead
and Truhlar [9, 11]. The other approach is owing
to Billing and Marković [34], who utilized hyper-
spherical coordinates to include the GP effect in
X3 molecules that have a single D3h conical inter-
section seam. A similar method was employed by
us [17, 20, 21] to study the resonance and vibrational
spectra of H3 and Li3; this work was recently re-
viewed [35]. The most recent J = 0 calculations
of the vibrational states of Li3 in its lowest elec-
tronic doublet state, performed using a reliable dou-
ble many-body expansion [36, 37] potential energy
surface [38, 39] and a minimum-residual filter di-
agonalization (MFD) technique [40], both without
consideration (NGP) and with consideration (GP) of
the GP effect, can be found elsewhere [20, 21]. Of
course, H3 and its isotopic variants also have been
very extensively studied [17, 20, 21, 25, 26, 41 – 50].
In particular, the articles by Varandas and Yu [17, 47]
focused on the role of the GP effect in the transition
state resonances and vibrational states of H3, which
were investigated using a time-dependent wave-
packet approach. However, a complication arises
when the GP effect is investigated in isotopomers
of such X3 systems. This complication is due to the
mass scaling involved in defining the hyperspheri-
cal coordinates. Kuppermann and Wu [25] studied
the GP effect in DH2 using a mass-scaled Jacobi
vectors [51] formula. More recently, we proposed
a novel split basis technique [52] to treat the same
problem. In these treatments, the geometric phase
is assumed to be path-independent and, hence, an-
other restriction must be added to the boundary
condition on the nuclear wave functions for non-
symmetric isotopomers of X3 systems.

Recently, we followed a strategy similar to Baer
and Englman [53, 54], and derived novel single-
surface Born–Oppenheimer equations [49]. (A re-
buttal to their work was published [55], but the
arguments involved do not concern our work. Thus,
we admit our formalism to be strictly valid in the

vicinity of the conical intersection, but convey gen-
erality to it by invoking the well known [1, 4 – 7]
fact that such regions influence the nuclear dy-
namics in a dominant way, even when energetics
allows us to sample areas of configurational space
far away from the crossing seam.) We found [49]
that the geometric phase A(R) is defined by the ar-
gument of the complex electronic vector state in
the complex plane spanned by the two real-valued
electronic components. Such an angle is identi-
cal (up to a constant) to the mixing angle γ (R)
in the two coupled-state problem. By employing
a line-integral technique [54, 56 – 66] to study the
GP effect in two coupled-state hydrogenic systems,
we also showed [50] that the adiabatic–diabatic-
transformation angle [56 – 59, 61] is identical (up to a
constant) to the geometry-dependent mixing angle
γ (R) of the orthogonal transformation that diag-
onalizes the diabatic potential matrix [47, 67 – 71].
Most recently, we discussed [72] the singularities
that arise in the Hamiltonian at the crossing seam
and we established the relationship between the
magnetic vector, the electric scalar gauge potentials,
and the mixing angle.

This article is organized as follows. In the next
section, we briefly survey the theory. Using the rele-
vant generalized Born–Oppenheimer (GBO) equa-
tion, calculations of the vibrational spectrum for
HD2 are reported in the third section. The conclu-
sions are given in last section.

Theory

GENERALIZED BORN–OPPENHEIMER
EQUATION

The time-independent Schrödinger equation (rel-
ativistic effects are ignored) for a coupled multistate
electronic manifold assumes the form [9, 48, 53, 54,
73, 74]{

− h̄2

2µ

[∇2 +2F(R) ·∇+G(R)
]+V(R)

}
χ(R) = Eχ(R),

(1)
where µ = [(1/M)

∏N
i = 1 mi]1/(N−1) is the character-

istic reduced mass of the system, χ(R) denotes a
column vector whose components are the nuclear
wave functions χI(R), and the matrix elements of
F(R), G(R), and V(R) are defined by

FIJ(R) = 〈
ψI(r; R)

∣∣∇ψJ(r; R)
〉
, (2)

GIJ(R) = 〈
ψI(r; R)

∣∣∇2ψJ(r; R)
〉
, (3)

VIJ(R) = 〈
ψI(r; R)

∣∣He
∣∣ψJ(r; R)

〉
, (4)
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where (and hereafter) the bra–ket notation 〈 | 〉 is
used to specify integration over the electronic co-
ordinates r only, and ∇ implies taking the gradient
with respect to the nuclear internal degrees of free-
dom R. After some algebraic manipulation, Eq. (1)
may assume the simplified single-surface equation
form{

− h̄2

2µ
[∇2 − (∇γ (R)

)2] + V2 − E
}
χ̃

= −i
h̄2

2µ

[∇2γ (R) + 2∇γ (R) · ∇]
χ̃ , (5)

where, following Longuet-Higgins [5] and Baer and
Englman [53], we have defined the complex nuclear
wave function χ̃ as

χ̃ = 1√
2

(χ1 + iχ2). (6)

Note that to obtain Eq. (5), we have neglected the
term (V1 − V2)χ1/

√
2 based on the assumption that

the dynamics is dominated by the behavior of the
two potential energy surfaces in the vicinity of the
conical intersection (where V1  V2). Note also
that V2 stands for the upper adiabatic potential
energy surface and that Eq. (5) leads to the Born–
Oppenheimer approximation when the derivative
coupling elements are constant or zero. We further
point out that Eq. (5) differs from an equation de-
rived earlier by Baer and co-workers [53, 75] for the
lower adiabatic sheet in that the mixing angle now
appears in it explicitly. Moreover, because Eq. (5)
has been derived under the assumption that the dy-
namics is controlled by the vicinity of the conical
intersection, it should be valid to describe also the
nuclear dynamics in the upper adiabatic potential
energy surface provided that the appropriate adia-
batic potential function is used.

Similarly to the case of the nuclear wave func-
tion, Eq. (6), we now define the complex electronic
wave function (for the use of a similar definition, see
Ref. [76]) as

ψ̃ = 1√
2

(ψ1 + iψ2), (7)

where ψI are the real-valued electronic wave func-
tions that correspond to the wave functions χI for
the Ith nuclear state. In the complex plane spanned
by the two electronic vector states, {|ψ1〉, i|ψ2〉}, the
complex vector state |ψ̃〉 has, therefore, an argument
equal to A(R) = arg |ψ̃〉. Of course, the same is
true for the complex nuclear wave functions: in the
complex plane {|χ1〉, i|χ2〉}, the complex vector state

|χ̃〉 is characterized by the same argument A(R) =
arg |χ̃〉 as |ψ̃〉.

We proceed by evaluating the derivative cou-
pling for the complex electronic wave function de-
fined in Eq. (7). We get [49]

〈ψ1|∇ψ2〉 = ∇A(R), (8)

which shows that the derivative coupling is given
by the gradient of the geometric phase. A similar
result (except for the sign) was obtained by Baer [54]
using a different approach. Of course, Eq. (8) holds
exactly in the vicinity of the crossing seam where the
phase A(R) obeys the relationship A(R) = A1(R) =
A2(R). On the other hand, it is easy to show [49] that

〈ψ1|∇ψ2〉 = ∇γ (R). (9)

By comparing Eq. (9) with Eq. (8), we then get

∇A(R) = ∇γ (R). (10)

This is a key result for the present work, because
it shows that the geometric phase A(R) is identical
to the mixing angle γ (R) except for a constant term
that has no physical implications. Thus, provided
that we chose such a constant term to be zero, we
get

A(R) = γ (R). (11)

We now recall [50] that the mixing angle γ (R) has
the correct sign-change behavior: �γ = π for a
closed path that encircles the crossing seam;�γ = 0
for a closed path that does not encircle such a seam.
Note that the phase A(R) corresponds to the phase
change accumulated over a cyclic path where the
dynamical phase vanishes [13, 77, 78], and this will
be denoted the geometric phase. Note further that
the phase defined from Eq. (11) will display the
correct sign-change behavior. In other words, γ (R)
can be used to avoid artificial impositions of proper
boundary conditions in the nuclear wave functions,
as most authors have done so far.

Vibrational Spectrum of HD2

CROSSING SEAM OF POTENTIAL
ENERGY SURFACES

As shown elsewhere [50], for any isotopomer of a
X3 system, the crossing seam in hyperspherical co-
ordinates (ρ, θ ,φ) is generally defined at an arbitrary
value of the hyperradius ρ by

φs = tan−1( cosχAC − t cosχAB − (dA/dC)2

+ t(dA/dB)2)(sinχAC + t sinχAB)−1 (12)
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θs = 2 sin−1
{

(dA/dB)2 − 1
cos(φs − χAB) − (dA/dB)2 cosφs

}
, (13)

where t is given in the form

t =
[(

dA

dC

)2

− 1
][(

dA

dB

)2

− 1
]−1

(14)

and

d2
X = mX

µ

(
1 − mX

M

)
, χXY = 2 tan−1

(
mZ

µ

)
,

µ =
√

mAmBmC

M
, M = mA + mB + mC

(15)

with X, Y, and Z standing for atoms A, B, and C
with masses mA, mB, and mC. In case two atomic
masses are equal, namely mB = mC, we get for θs

the simplified expression

θs = 2 sin−1
∣∣∣∣ mB − mA

mB + 2mA

∣∣∣∣, (16)

whereas φs assumes the value π when mA > mB

and assumes the value zero when mA < mB. For
the case of HD2, the equation for the (straight line)
seam is therefore defined [50] by (θs = 0.5048 rad,
φs = 0). Since θs is different from zero, only closed
paths with θ ≥ θs will enclose the seam: all other
loops that correspond to θ < θs will not satisfy such
a requirement.

CALCULATIONS AND DISCUSSION

The rovibrational energy states can be calculated
by solving Eq. (5), namely

Ĥχ̃ = Eχ̃ , (17)

where Ĥ = Ĥ0 + iĤ1, where Ĥ0 is the system Hamil-
tonian without consideration of the GP effect. In
modified hyperspherical coordinates [17, 79] (see
also Refs. [80] and [81]) and neglecting all spin–orbit
and spin–spin interactions, we have

Ĥ0 = − h̄2

2µ

{
∂2

∂ρ2 + 16
ρ2

[
1

sin θ
∂

∂θ
sin θ

∂

∂θ

+ 1

4 sin2(θ/2)

∂2

∂φ2

]}

+ Ĵ2 − Ĵ2
z

µρ2 cos2(θ/2)
+ Ĵ2

z + 4ih̄Ĵz cos(θ/2)(∂/∂φ)

2µρ2 sin2(θ/2)

+ 15h̄2

8µρ2 + sin(θ/2)
µρ2 cos2(θ/2)

1
2

[
Ĵ2
+ + Ĵ2

−
]

+ V2(ρ, θ ,φ) + h̄2

2µ
[∇γ (ρ, θ ,φ)

]2, (18)

where Ĵ, Ĵz, and Ĵ± are the total angular momen-
tum, its component along the z axis, and the rais-
ing/lowering operators in the body-fixed frame,
respectively, which are defined by the set of external
coordinates (α, β, γ ). In turn, V2 is the potential en-
ergy surface of the system, which depends only on
the three internal coordinates (ρ, θ ,φ). The hyperan-
gles θ and φ are related [17] to the Smith–Whitten
(�,�) hyperangles [82] through the relationships
θ = π − 4� and φ = 2π − 2�. Hence, the range
of θ is extended from 0 to π and, hence, Legen-
dre (or Jacobi) polynomials in cos θ , ϕj(cos θ ), can
be used as the finite basis representation in θ . To
include the GP effect, we employ the generalized
Born–Oppenheimer formulation described earlier,
i.e., we take into consideration the imaginary oper-
ator iĤ1, where

Ĥ1 = − h̄2

2µ
[∇2γ (ρ, θ ,φ) + 2∇γ (ρ, θ ,φ) · ∇]

. (19)

Note that we can still use Eq. (17) in the present case
because the dynamics should be dominated by the
GP effect which is dictated by the conical intersec-
tion. Indeed, even if this is not the case, we note that
all previous GP calculations have been based on a
similar type judgement.

Following previous work [20, 21], the action of
the Hamiltonian Ĥ on the wave function (Lanczos
vector) was carried out using a mixed grid-basis
method. Uniform grids were employed for the coor-
dinates ρ and φ, while the actions of the associated
kinetic energy operators were performed by using a
prime-factor fast Fourier transform technique [17].
Calculations of the eigenenergies were carried out
by using the MFD technique. Similarly to the sim-
ple Lanczos algorithm, the MFD approach has low
storage requirements (only two iteration vectors)
and utilizes just a single Lanczos recursion for the
eigenvalue problem. Furthermore, it can eliminate
spurious and ghost eigenvalues [83].

In addition to the NGP calculations reported be-
fore [52], we present two sets of novel results: one
uses the present formalism (set I) and the other is
based on the common assumption that A(R) = φ/2
(set II) by using a split basis approach [52]. In this
case, for θ < θs, we expand the nuclear wave func-
tion in terms of a single-valued basis

χ(ρ, θ ,φ) =
∑

n

Cn(ρ)f (θ ) cos(nφ), (20)

where Cn are expansion coefficents and f (θ ) is a
θ -dependent orthonormal polynomial type basis.
Instead, for θ > θs, we carry out the expansion using
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the doubled-valued basis

χ(ρ, θ ,φ) =
∑

m

Cm(ρ)f (θ ) sin
[(

m + 1
2

)
φ

]
, (21)

where Cm are also expansion coefficients. The calcu-
lated numerical values are reported in Tables I and II
for the lowest 100 calculated levels.

The differences between these two sets of GP cal-
culations are illustrated graphically in Figure 1 and
also compared with the NGP calculations. As can
be seen, there are differences between them: In set I,
using Eq. (17), we have 50 levels below the energy
value of 4.7850 eV, whereas in set II, only 49 levels
appear. Note that level number 17, which corre-
sponds to an energy of 4.5054 eV, is missing in set II.

TABLE I
Vibrational energy levels (in electronvolts) of HD2
calculated using Eq. (17).

1 3.5939 35 4.7650 69 4.8107
2 3.7591 36 4.7661 70 4.8124
3 3.9150 37 4.7686 71 4.8134
4 4.0614 38 4.7697 72 4.8154
5 4.0851 39 4.7727 73 4.8169
6 4.1158 40 4.7729 74 4.8186
7 4.1981 41 4.7750 75 4.8215
8 4.2285 42 4.7758 76 4.8231
9 4.2571 43 4.7760 77 4.8251

10 4.3248 44 4.7776 78 4.8262
11 4.3606 45 4.7803 79 4.8284
12 4.3870 46 4.7807 80 4.8304
13 4.4407 47 4.7812 81 4.8315
14 4.4475 48 4.7830 82 4.8338
15 4.4810 49 4.7837 83 4.8351
16 4.4974 50 4.7843 84 4.8368
17 4.5054 51 4.7854 85 4.8392
18 4.5449 52 4.7864 86 4.8408
19 4.5564 53 4.7873 87 4.8426
20 4.5718 54 4.7885 88 4.8449
21 4.5897 55 4.7901 89 4.8462
22 4.6114 56 4.7912 90 4.8475
23 4.6157 57 4.7925 91 4.8491
24 4.6360 58 4.7930 92 4.8513
25 4.6656 59 4.7945 93 4.8539
26 4.6815 60 4.7967 94 4.8553
27 4.6852 61 4.7977 95 4.8568
28 4.7037 62 4.7999 96 4.8590
29 4.7115 63 4.8010 97 4.8616
30 4.7193 64 4.8026 98 4.8622
31 4.7602 65 4.8042 99 4.8644
32 4.7607 66 4.8052 100 4.8665
33 4.7636 67 4.8073
34 4.7648 68 4.8089

Moreover, two levels with energies at 4.7830 and
4.7837 eV appear in set I, whereas levels with en-
ergies at 4.7814 and 4.7836 eV appear in set II. There
are additional differences at higher vibrational en-
ergies as indicated by the thicker bars shown in
Figure 1. By comparing our previours results for
H3 [49] with the present results, we also observed
that the GP effect has a more remarkable influence
for H3 than for its isotopic variants. This is due to
the fact that the crossing seam in H3 is characterized
by θs = 0, whereas in HD2, the equation for the seam
is defined by θs = 0.5048 rad, φs = 0. The wider the
region is on which the GP effect acts, the stronger
the influence is on the vibrational spectra (see also
Ref. [52]).

TABLE II
Vibrational energy levels (in electronvolts) of HD2
calculated using the assumption A(R) = φ/2.

1 3.5939 35 4.7661 69 4.8124
2 3.7591 36 4.7686 70 4.8136
3 3.9150 37 4.7697 71 4.8153
4 4.0614 38 4.7727 72 4.8180
5 4.0851 39 4.7729 73 4.8194
6 4.1158 40 4.7750 74 4.8211
7 4.1981 41 4.7758 75 4.8230
8 4.2285 42 4.7760 76 4.8245
9 4.2571 43 4.7776 77 4.8259

10 4.3248 44 4.7803 78 4.8277
11 4.3606 45 4.7807 79 4.8297
12 4.3870 46 4.7812 80 4.8309
13 4.4407 47 4.7814 81 4.8312
14 4.4475 48 4.7836 82 4.8337
15 4.4810 49 4.7843 83 4.8356
16 4.4974 50 4.7865 84 4.8367
17 4.5449 51 4.7872 85 4.8375
18 4.5564 52 4.7878 86 4.8409
19 4.5718 53 4.7889 87 4.8424
20 4.5897 54 4.7907 88 4.8437
21 4.6114 55 4.7917 89 4.8460
22 4.6157 56 4.7922 90 4.8475
23 4.6360 57 4.7944 91 4.8496
24 4.6656 58 4.7964 92 4.8515
25 4.6815 59 4.7971 93 4.8532
26 4.6852 60 4.7988 94 4.8563
27 4.7037 61 4.8007 95 4.8578
28 4.7115 62 4.8021 96 4.8562
29 4.7193 63 4.8025 97 4.8577
30 4.7602 64 4.8046 98 4.8587
31 4.7607 65 4.8063 99 4.8611
32 4.7636 66 4.8077 100 4.8639
33 4.7648 67 4.8090
34 4.7650 68 4.8104
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FIGURE 1. Comparison of the lowest “cone” states of
HD2 calculated without consideration (NGP) and with
consideration (GP) of the geometric phase effect. Shown
by the thicker lines indicated the extra levels that arise in
the two sets of GP calculations. See the text.

Conclusions

In the present work, we used a recently proposed
GBO equation to study the GP effect in the vibra-
tional spectra of HD2. Numerical calculations have
demonstrated that there are significant differences
between the results calculated from this GBO for-
mulation and those based on the assumption that
A(R) = φ/2. We also stress that using the formalism
of the present work allows us to avoid the diffi-
culties usually encountered when investigating the
GP effect in nonsymmetric isotopomers of X3. In-
deed, we no longer need to determine the boundary
line θs, which defines the position of the crossing
seam (and hence the closed loops for which the nu-
clear wave functions should change sign) in mass-
dependent hyperspherical coordinates [25, 52].
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