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3D Point Cloud Downsampling for 2D Indoor
Scene Modelling in Mobile Robotics

Luı́s Garrote, José Rosa, João Paulo, Cristiano Premebida, Paulo Peixoto and Urbano Nunes

Abstract—Sensory perception and environment modelling are
important for autonomous navigation in mobile robotics. 2D
discrete grid representations such as the classic 2D occupancy
grid maps are a widely used technique in scene representation
because of the inherent simplicity and compact representation.
In recent years, many 2.5D and 3D grid based methods have
been proposed however, as for the 2D case, a compromise
between keeping a low computational bound and reliable sensor
interpretation must be kept in order to perform real-world tasks.
Assuming the input data in the form of a 3D point-cloud, in
this paper we propose a 2D scene modelling approach which
converts the 3D data to a 2.5D representation and then to
a 2D grid map in an efficient and meaningful manner. The
proposed approach incorporates a new rapidly exploring random
tree inspired ground-plane detection (RRT-GPD), and an inverse
sensor model (ISM) to correctly map 3D to 2.5D and then to 2D
grid cells. Experiments were conducted in indoor scenarios with a
robotic walker platform equipped with a Microsoft’s Kinect One
and a LeddarTech’s Leddar IS16 sensor. Reported results show
an improvement on the representation of non-trivial obstacles
(stairs, floor outlets) over the classical occupancy grid map, when
applied to a 3D point cloud input.

I. INTRODUCTION

The development of sensor-based perception systems is
one of the main focuses of research in robotics. Considering
the increasing introduction of robots in human populated
environments, there is an heightened concern to ensure the
safety of all agents who may interact with the robot. In
particular, when considering the case where the robot is a
physical support aid, such as a robotic walker used in gait
rehabilitation scenarios [1], the safety of all agents is crucial.
The robot must ensure that it follows all the user’s instructions
accordingly, while obeying safety rules taking into account the
knowledge of the surrounding environment.

Despite the recent advances in the area, the creation of
robust models for representation of the surrounding environ-
ment of the robot is still an open and challenging problem,
mostly because of the uncertainty processing of sensory mea-
surements and their correct representation in unpredictable en-
vironments. Usually such representation follows an approach
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based on occupancy maps, which makes it possible to deter-
mine, based on the probabilistic models of the used sensors,
specific information about the existence of free and occupied
space in the surrounding environment. In this work, we review
the 2D occupancy grid-map framework, and propose a new
approach to the problem of mapping collision-able non-trivial
obstacles from 3D point clouds into a 2.5D and then to a
2D environment representation for autonomous navigation.
Such obstacles may have can have disastrous consequences
for the user if not detected properly (e.g., stairs, gutters
or floor outlets). The main contributions are: 1) an inverse
sensor model (ISM) for 2.5D to 2D mapping, from 3D data
input, incorporating the ground-plane and the concept of voxel
density; 2) a new rapidly exploring random tree inspired
ground-plane detection (RRT-GPD) algorithm; 3) real time
execution (⇡ 30 frames per second).

An overview of the related work in environment represen-
tation is provided in section II. In Section III, the proposed
method is explained. Experiments are carried out in section IV,
using a differential mobile robot equipped with a Kinect and a
Leddar IS16 sensors, followed by discussions of the reported
results. Final conclusions are pointed in section V.

II. RELATED WORK

Environment representation and modelling have been the
focus of many research works in mobile robotics [2], [3], with
many representations being proposed in the last 30 years. We
can categorize scene representations in 3 main classes: direct,
topological or grid-based. The approach presented in this paper
follows a grid-based representation in which the environment
is subdivided into a set of smaller units that form a grid.
Based on the unit structure, the grid-based representation can
be further extended into 2D cells, 2.5D cells (or voxels) and
3D voxels. In the literature, the 2D grid-map is a well-known
representation, providing a probabilistic framework [4], with
fast and constant-time access while being usually only appli-
cable in planar environments. In this type of representation
each cell contains the probability of occupancy, where values
near zero correspond to free cells, values near one occupied
cells and a middle value corresponds to an unexplored region.
These probabilistic values depend on the successive readings
from sensors, increasing or decreasing according to sensor
observation models. On the other hand, representations such
as 2.5D grid-maps provide a framework to represent eleva-
tions and irregular terrain instead of just occupancy, having
properties similar to 2D maps but with information regarding978-1-5090-6234-8/17/$31.00 c�2017 IEEE
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the height of each cell, and a computationally lighter model
than 3D grid-maps. However, a 2.5D representation can not
fully represent vertical overlapping. Solutions to this problem
have been proposed in the form of multi-layer maps. These
grid-map approaches are easy to build, represent, maintain and
facilitate computation of shortest paths but, on the other hand,
they present downsides such as being memory consuming for
large environments and presenting poor interfaces with most
classic planning algorithms. More recently, 3D grid-maps, and
in particular solutions such as octomaps [3], provided a reliable
3D representation at the expense of variable access time,
increased computational complexity and increased planning
complexity for ground robots. In spite of the constant evo-
lution, 2D grid-map is still an usefull and somehow efficient
representation for indoor and outdoor scenarios but, due to its
own limitations, fails to incorporate vertical elements that are
in the robot’s pathway, even if they can be trivially spotted
by humans. A solution to this problem could be the use of
a ground reference and/or a mapping strategy in order to
distinguish between obstacles and drivable space. The ground
reference could be provided by elevation tresholds or by a
ground-plane detection algorithm. In [5], [6] 2D grid-maps are
created from 3D point clouds and stereo images where a fusion
model incorporates vertical penalization based on elevation
thresholds. In [7] a 3D voxel representation is created from
stereo images and converted to 2D grid-maps using a voxel
observation model. Some solutions available in the Robot
Operating System (ROS) provide a medium of converting
3D point clouds into 2D laser scan messages using elevation
thresholds and can be trivially converted into 2D grid-maps.
In [8], 2D grid-maps are computed from stereo sequences
using a intermediary 2.5D representation to generate elevation
thresholds. Solutions for multiple plane detection [9] have
been proposed in indoor scenarios from depth images, which
can be adapted for ground-plane detection. For ground-plane
detection in point clouds, region growing methods [10] can
provide good results, but their computational cost becomes
prohibitive in denser point clouds.

In this paper, we propose an approach for 2D scene repre-
sentation and modelling, from a 3D point-cloud input, to allow
autonomous navigation in real-world (indoor) conditions. The
approach takes advantage of 2.5D representation to detect non-
trivial obstacles. Moreover, a ground detection solution, using
a RRT algorithm, is also addressed.

III. PROPOSED METHOD

In this section we detail the proposed method and its
functional modules. The key motivation here is to develop a
reliable and computationally efficient method for mapping 3D
point clouds into a 2D grid-map and consequently, the correct
mapping of collision-able non-trivial obstacles. Such obstacles,
are defined in the context of this work as obstacles that are in a
given robot’s pathway but are but are neither trivially detected
nor efficiently mapped by common 2D mapping approaches
(e.g., stairs, small boxes or electric wiring). The proposed
method depends on a 2.5D representation, followed by the

Fig. 1. Depiction of the proposed method including the modules: 2.5D
mapping; ground-plane detection; 2.5D to 2D conversion.

ground-plane detection and then the final (enhanced) 2D grid-
map is obtained using a 2.5-to-2D ISM.

A general overview of the proposed method is presented in
Fig. 1 which includes 2.5D mapping, ground-plane detection
and 2.5D to 2D conversion.

A. 2.5D Mapping

The first module builds on the construction of a 2.5D
environment representation from a 3D point cloud [11]. The
2.5D representation discards the concept of occupancy and
provides an elevation measure for each cell. The proposed
2.5D grid is composed by m

x

x m
y

cells with constant
resolution d

r

. Each cell c2.5D is addressed by i and j indexes
and has the elements c2.5D  {z�, z+, N

z

} where z� is the
minimum elevation value, z+ the maximum elevation value
and N

z

the number of samples that contribute with information
to the cell. Given a 3D point cloud composed by a set of
3D Cartesian points (p

k

= (x
k

, y
k

, z
k

)

T , k = 1, 2, ..., n) the
values present in each cell are obtained by projecting the x
and y components on the grid cell with consequent update
of the maximum and minimum elevation (z+ and z�) and
the number of samples (kzk) projected to the given cell. The
projection consists on the conversion of the x and y component
from p

k

into grid indexes i, j with i  m
x

, j  m
y

,
m

x

,m
y

> 0. The 3D to 2.5D maps conversion process is
illustrated by an example in Fig. 2.

B. Rapidly exploring random tree based ground-plane detec-
tion (RRT-GPD)

One problem when converting an elevation map into an
occupancy grid is the definition of free and occupied 2.5D
cells. Given a 2.5D grid, the definition of what is an obstacle
or what is navigable space increases in difficulty because there
is no reference to the location of the ground plane. For a given
frame, we can assume that a robot moves locally in a 2D plane,
and based on this constraint we propose a new approach to
the problem of ground-plane detection that operates with a
2.5D map and is inspired by the rapidly-exploring random tree
(RRT) algorithm, which has been widely applied in motion
planning [12] and region growing [10], in the sense that
it implements a rapid flood-like expansion towards similar
normals.

The inputs of the proposed RRT-GPD method include, the
robot’s pose, the plane’s normal threshold, elevation threshold,
the 2.5D environment model, the maximum number of itera-
tions to find a suitable solution, and a node expansion distance.
The RRT-GPD (presented in Algorithm 1) starts by finding a
valid seed to form the root of the RRT (nearestValidSeed).



Fig. 2. Representation of the conversion from 3D point clouds to 2.5D environment representation. From left to right, the input 3D point cloud (given by a
Microsoft’s Kinect One), the projection step where each point in the point cloud is projected into the corresponding cell, and the final result where each cell
resembles a voxel defined by the maximum and minimum elements projected onto the cell.

The use of an invalid seed may create a ill formed tree. This
is due to the sparse nature of the 2.5D representation (see Fig.
2) meaning that not all cells of the provided 2.5D map M2.5D

will contain information. Besides, a seed far from a valid cell
may be unable to expand, a problem which can be solved using
a variable node expansion distance. In the process of finding a
valid seed, the robot’s pose provides an initial guess, and since
no assumptions are made on the sensors’ configuration (i.e.,
transformation between sensor and robot) every direction is
explored to find a valid candidate. Although it is important to
find a valid candidate to initialize exploration, the final solution
may discard the initial seed point (i.e., it is not guaranteed
that the final solution will contain the initial point). This
description is based on the assumption that the 2.5D map is
computed with the sensor referenced on the robot’s frame and
that exists a relation between the robot and the environment
(transformation between robot and world frame) but for local
maps (mobile robot centered in p

xyz

= (0, 0, 0)T ) or for a
representation in the sensor’s referential the constraints are
similar. The concept of valid seed implies in this particular
case, a valid local plane computed using fitPlane. After finding
a valid seed and a correspondent local plane, a new tree is
generated in initialiseTree where the seed, which corresponds
to the center of the plane, and the plane normal define the
base unit (or node) of the RRT tree. If a valid node is created,
the algorithm enters an iterative process to expand the RRT
until it reaches K iterations. For each iteration the first step
involves sampling (sampleRandomDirection) a point x

rand

in a search space window. For a given sample node x
rand

,
the nearest node x

near

already present in the tree is retrieved
(nearestNode) and a new node x

expansion

is created based on
the direction between x

near

and x
rand

(provided that they do
not overlap). The direction is given by (angleBetween),

✓ = arctan(

x
rand

(y)� x
near

(y)

x
rand

(x)� x
near

(x)
) (1)

and the (x, y) component is given by,

x
expansion

(x, y) =

⇢
x
near

(x) + d
n

cos(✓)
x
near

(y) + d
n

sin(✓)
(2)

where d
n

denotes the node expansion distance. For the
new candidate node x

expansion

, the z component is given by
the procedure elevation. As stated earlier, given the sparse
nature of the 2.5D grid, not every x

expansion

will correspond
to a valid cell when projected on 2.5D. To provide a valid

z component we employ a spatial interpolation method on
the node neighborhood (a region of interest with dimensions
(s

x

,s
y

) centered in x
expansion

) and if an invalid z value is
retrieved (no valid neighbors) the current iteration is ended.
With a valid x

expansion

, and applying a similar spatial inter-
polation method, a set of neighborhood points P is extracted
(interpolation) where empty points missing the z component
are interpolated and discarded if the neighborhood does not
contain valid elements. If the neighborhood P contains at
least three non-collinear points a least squares regression is
performed to find the best planar fit to the points (fitPlane) of
the form ax+by+cz+d = 0. Given a valid plane plane

local

,
the inner product of the normal stored in x

near

and the planes’
normal (normal(plane

local

)) is computed and if it is less than
a given threshold (N

th

) the plane is considered to be at least
similar in orientation given the node x

near

. In order to analyze
whether the new plane can connect or not with the nearest
node, the variation in height is also checked (using the eleva-
tion threshold (E

th

)). If the normals are not similar, the nodes
near a radius d

n

from x
expansion

are retrieved (nearestNodes)
and the same similarity thresholds are applied to validate
further node connections. If a pair plane-node is conformant
(i.e., is valid for each threshold) a new node is added to the
tree, containing the parent connection (x

near

), the new center
point (computed plane midpoint) and the correspondent plane
normal. The last step after adding a node to the tree is to
update the search space window (updateSearchSpace). The
search space window starts centered on the seed node but with
each added node and each iteration, the search window grows
and shifts towards the average value (geometric center) of the
explored nodes, slightly biasing the search process to areas
with similar properties where the expansion is more prominent,
but without leaving out unexplored areas. After K iterations,
the center points of each node on the RRT tree are extracted (a
Kd-tree is used at the algorithm’s core to store each discovered
node) and a new plane fitting is performed. In this final
step, we apply the random sample consensus (RANSAC)
algorithm [13] due to its robust estimation even in the presence
of outliers. The RRT-GPD algorithm is summarized in the
pseudocode of Algorithm 1.

C. 2.5D to 2D conversion

The conversion from 2.5D to 2D follows the same principles
introduced with the integration of sensor readings for occu-
pancy grid mapping [14], [4]. In this case, our observations



Algorithm 1: Rapidly exploring random tree based
ground-plane detection (RRT-GPD) algorithm.

Input: Robot pose (p
xyz

), Plane normal threshold (N
th

) ,
Elevation threshold (E

th

), 2.5D Map (M2.5D) ,
Maximum number of iterations (K) , Node expansion
distance (d

n

)
1 Initialization:
2 p0  nearestValidSeed(p

xyz

, M2.5D);
3 G  initializeTree(p0);
4 for k=1 to K do
5 x

rand

 sampleRandomDirection();
6 x

near

 nearestNode(G,x
rand

);
7 ✓  angleBetween(x

near

,x
rand

);
8 x

expansion

(x)  x

near

(x) + d

n

cos(✓);
9 x

expansion

(y)  x

near

(y) + d

n

sin(✓);
10 x

expansion

(z)  elevation(M2.5D , x
expansion

) ;
11 P  interpolation(M2.5D , x

expansion

);
12 plane

local

 fitPlane(P );
13 if | normal(plane

local

) · normal(x
near

) |  N

th

then
14 if | plane

local

(z) - x
near

(z) |  E

th

then
15 G  G

S
{ x

near

,x
expansion

,
normal(plane

local

) };
16 updateSearchSpace(x

expansion

);

17 else
18 x

neighbours

 nearestNodes(G,x
expansion

,d
n

);
19 foreach node in x

neighbours

do
20 if | normal(plane

local

) · normal(node) |  N

th

then
21 if | plane

local

(z) - node(z) |  E

th

then
22 G  G

S
{ node,x

expansion

,
normal(plane

local

) };
23 updateSearchSpace(x

expansion

);

24 g

plane

 RANSAC(Points(G))

Output: g
plane

are the elevation voxels present in the 2.5D grid-map, turning
the representation into a virtual sensor. The probability that a
cell c is occupied given the observations z1:t is given in log
odds by:

l(c|z1:t) = log

p(c|z
t

)

1� p(c|z
t

)

�log p(c)

1� p(c)| {z }
=0, if p(c) = 0.5

+log

p(c|z1:t�1)

1� p(c|z1:t�1)

(3)
with p(c) the prior probability, p(c|z1:t�1) the previous

estimate and p(c|z
t

) denotes the probability that cell c be
occupied given the measurement z and it is computed using
an ISM. The log odds representation is used here due to its
numerical stability.

To solve the 2.5D to 2D conversion problem we propose an
ISM that converts an observation in the form of an elevation
voxel c

v

to the probability that given the actual observation,
the cell from the 2D grid is occupied p(c|z

t

). Each elevation
voxel can be defined as being in a valid state if it contains
more than one measurement (N

z

� 1). In order to determine
the influence of each voxel we rely on the concept of voxel
density explored in [15]. An elevation voxel c

v

in the 2.5D

map (see Fig. 2) occupies the volume given by V
voxel

= hA,
with h is the height of the voxel (h = �z = z+� z�) and A
the base area of the voxel (i.e., based on the cell resolution).
The voxel density is given by ⇢

voxel

=

m

V

voxel

, where m is
the voxel mass. The mass of a voxel in this context can be
defined as the amount of data the voxel contains and can be
extrapolated using the number of samples N

z

of an elevation
voxel. To represent a normalized voxel density, the following
sigmoidal function is proposed,

⇢
voxel

(c
v

) =

K
m

1 + e
�(

K

n

(c
v

(N
z

)�d

min

)
V

voxel

)
(4)

where K
m

denotes an amplitude gain, K
n

a sample nor-
malization factor, and d

min

the minimum number of points.
The voxel is composed by 3 explicit parameters and an

implicit one related to the distance |c
v

| defined by the voxel
position in relation to the base frame (e.g., sensor frame, robot
frame or local frame). In the previous subsection we presented
the RRT-GPD method to extract the ground plane that from
now on is denoted by g

plane

.
1) Inverse sensor model: The proposed ISM takes into

account the voxel distance to the base frame, decreasing the
elevation voxel occupancy probability as voxels move away
from the base frame. Knowing a valid ground-plane allows
for the definition of “free” or “occupied” values in the sense
that a specific cell contains a high or low probability of being
occupied, for instance, if a voxel is near the detected ground-
plane it may be considered as part of the ground and thus
contribute to decrease the cell’s probability. On the other hand,
if an elevation voxel is above the ground, it may be considered
to be an obstacle and thus contributes to increase the cell’s
probability. The ISM is mathematically expressed by,

• If |c| ✏ [ 0, |c
v

| ] :

p(c|z
t

) =

8
<

:
max(⇢

voxel

, 0.5) e

� (|c|�|c
v

|)2

2�2
, if d > d

pth

K

g

+

0.5�K
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1+e

�(|c|�|c
v

|) , if d  d

pth

(5)

• If |c| ✏ ] |c
v

|, |c
v

|max

] :

p(c|z
t

) =

(
max(⇢

voxel

e

� (|c|�|c
v

|)2

2�2
, 0.5) , if d > d

pth

0.5 , if d  d

pth

(6)

where �2 denotes the Gaussian variance, K
g

an amplitude
and bias gain with 0  K

g

 0.5, d
pth

a distance threshold
and d the distance between the plane g

plane

and the voxel
c
v

. The distance between the voxel c
v

and the plane is
computed using the maximum plane distance to the points
p+

= (x, y, z+)T and p�
= (x, y, z�)T where x and y

represent the voxel position. The 2D grid-map structure is
identical to the 2.5D counterpart introduced in III-A with each
cell c2D composed only by an occupancy value.

IV. EXPERIMENTAL RESULTS

Two experiments, using the mobile robot shown in Fig. 3,
were carried out with the purpose of validating the proposed
method. The first experiment consisted on the qualitative



Fig. 3. The ISR-
AIWALKER experimental
platform.
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comparison of the generated occupancy map on two static in-
door scenarios with a Microsoft’s Kinect One sensor mounted
onboard the robot. The second experiment consisted on the
comparison of the output from the proposed method in the
Kinect One sensor, a local-map approach using the Leddar
IS16 and a solution based on standard ROS packages in a
local map framework, using the Kinect One sensor.

A. Experimental Setup and Implementation details

Our experimental setup is a walker platform (ISR-
AIWALKER, see Fig. 3). The walker’s base is a differential
drive mobile robot and contains two grips interfaced with Leap
Motion sensors and a gait perception module aided by a 3D
sensor [1]. The robot platform is equipped with two sensors (a
Kinect One and a Leddar IS16) for environment perception,
assessment of hazardous situations and safety purposes. The
Kinect One outputs a 512 x 424 point cloud and the Leddar
IS16 delivers a 16-channel distance array. Throughout the
experimental evaluation of the method, the detection and
removal of outliers was an important step (as illustrated in Fig.
4). The detection and removal of outlier points belonging to
the point cloud were performed at the 2.5D elevation voxel
map. For a given voxel, the 3� method is applied to the
set of projected elevations and then all voxel elements are
recomputed. The spatial interpolation approach applied in this
work on the 2.5D map, for candidate plane computation, is the
inverse distance weighting (IDW). Also the IDW algorithm
is applied to interpolate the 2.5D representation in order to
obtain a more dense representation to qualitatively compare
the obtained results. The IDW is applied separately in the
absence of points (invalid elevation voxel) to z� and z+ and
the sample count for those generated nodes is the number of
neighbour voxels which contributed to the IDW computation.
The ISR-AIWALKER perception modules run in ROS nodes,
and all experiments reported in this section were carried out
in the same environment with C++ implementations. Also,
visualization of results were provided by a in-house QT/C++
application. The experiments were carried out in a mid-range
laptop with Kinect and Leddar data acquisition frequencies of
10Hz, the average time per frame for the proposed method
was less than 30 ms, and the ground-plane detection less than

3 ms. The correspondent parameter values defined in this work
are presented in Table I.

B. Results and Discussion

Figure 4 shows two indoor scenarios, an uncovered floor
outlet and downward stairs, that were considered in the first
experiment. For each scenario, qualitative results are shown in
Fig.4 where column I gives the input raw data and column II
shows the 2.5D. The 2.5D grid-map was generated without any
preprocessing or outlier removal. As it is noticeable on the first
scenario, only a reduced number of light-blue elevation voxels
correspond to erroneously generated voxels due to noise. The
2.5D to 2D map conversion was performed and the ground-
plane was correctly detected, as well as the floor gutter, but the
correspondent outlier voxels were mapped (column III) and
produced a non-traversable map (i.e. on the context of motion
planning and considering only this map, the robot would
be unable to move). Applying the 3� method to the 2.5D
representation (column IV ) yields a cleaner 2D representation
with only a small portion of noise at the end of the traversable
path. The following result (column V ) was generated directly
from the input point cloud for a z-axis layer (0.2 to 1.5 m)
using the sensor model described in [5]. It is noticeable that
the generated 2D representation does not contain the same
amount of occupancy information. Finally, in the result shown
in column V I , the 3� and IDW were applied to the 2.5D
representation which led to a dense representation, but with
inflated cells. By comparing the columns III , IV , and V I ,
for both scenarios, the output generated with outlier removal
achieves the most satisfactory results, as it correctly maps the
floor outlet and detects the portion of floor before the stairs.

The second experiment, with corresponding results shown
in Fig. 5, presents three 600 x 600 2D local maps: the
proposed method with outlier removal, the classic sensor beam
model using the Leddar scan as input and a standard ROS
package solution (Kinect One acquisition ! point cloud to
laser scan1 ! local map framework2). The scenario used
for this experiment included three floor outlets (on the left
side of the scenario), office chairs and tables (on the right
side of the scenario). Results show that the local map from
Kinect One, along with the proposed method, provided a
reliable environment model by detecting the general scenario
outline and the considered hazards (correctly mapped three
floor outlets). As expected, the standard ROS solution provided
only an outline of the scenario since the point cloud was
converted to a laser-like scan and important points relevant
to the detection of near ground objects were discarded. The
Leddar local map provided a rough outline representation of
the scenario. A comparison between the methods applied to
both sensors becomes somehow unfair since the sensors have
different fields of view and the quantity/quality of information
is very distinct. However, in a safety-oriented scenario, the
Microsoft’s Kinect One, when compared to the Leddar, has

1pointcloud to laserscan Package – http://wiki.ros.org/pointcloud to laserscan
2local map Package – http://wiki.ros.org/local map
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Fig. 4. Results obtained from experiment 1: first row corresponds to a scenario with a uncovered floor outlet (A), second row to a scenario with downward
stairs (B). From left to right - point cloud (I), 2.5 representation with outliers (II), 2D representation with outliers (III), 2D representation without outliers
(IV ), 2D representation from mid-level point cloud (V ) and 2D representation interpolated without outliers (V I).

Fig. 5. Results obtained from experiment 2 (from left to right): office traversal
with Kinect One using the proposed method, Leddar IS16 using local map
and standard ROS package solution using Kinect.

a minimum depth distance of 0.5 m which can become
problematic for close obstacles, while on the other hand, the
Leddar, while lacking much of the precision of the Kinect
One, provides a reliable local free space mapping.

V. CONCLUSION

In this paper, a novel approach for 2D environment mod-
elling, that maps 3D input data into an enhanced 2.5D-to-
2D grid map, is proposed. The approach encompasses a new
RRT-based ground-plane detection algorithm (RRT-GPD) and
a new way to model the concept of elevation voxel density.
We demonstrated in our work that the proposed method,
when compared to the classic method adapted to point clouds,
can provide a richer representation and a solution to map
non-trivial obstacles with more realistic contour information.
We also applied the proposed algorithm in a walker-assisted
scenario, successfully validating the proposed algorithm in
scenarios that are key pitfalls on the handling of walkers. For
future work, we plan to research on a multisensory approach

for local mapping, incorporating the Microsoft’s Kinect One
and the Leddartech Leddar sensor, validating the framework
in terms of safe navigation in mobile robotics applications.
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