José Manuel Ribeiro Rosa

Indoor Perception and Navigation
Strategies for Assistive Robotics

Coimbra 2017

UNIVERSIDADE DE COIMBRA

FCTUC FACULDADE DE CIENCIAS
ETECNOLOGIA
UNIVERSIDADE DE COIMBRA

Indoor Perception and Navigation

Strategies for Assistive Robotics.

José Manuel Ribeiro Rosa

Coimbra, October 2017

Indoor Perception and Navigation

Strategies for Assistive Robotics.

Supervisor:

Prof. Dr. Urbano José Carreira Nunes

Jury:
Prof. Dr. Gabriel Pereira Pires
Prof. Dr. Joao Pedro de Almeida Barreto

Prof. Dr. Urbano José Carreira Nunes

Dissertation submitted in partial fulfillment for the degree of Master of Science in

Electrical and Computer Engineering.

Coimbra, October 2017

Agradecimentos

Quero comecar por agradecer ao orientador desta dissertacao de Mestrado, Professor Doutor
Urbano Nunes pela orientacao e disponibilidade providenciada em todos os momentos da sua
elaboracao. Quero também fazer um agradecimento ao Instituto de Sistemas e Roboética, por
todo o material e meios disponibilizados, bem como aos colegas do Laboratorio de Sistemas
de Tempo real pelos momentos de descontracao e por toda a ajuda prestada, em especial
ao Luis Garrote por todos os conselhos, ajuda e preocupacao ao longo deste ano. Um
agradecimento a todos os meus amigos, aos de sempre e aos que este percurso académico
me foi dando, em especial ao Daniel, Maiel e José por toda a for¢a, ajuda e por todos os
momentos bons e menos bons que partilhamos ao longo destes anos que garantidamente nao
irei esquecer. Por fim um especial agradecimento aos meus pais José e Maria por todo o
amor e ajuda que sempre me deram, por estarem sempre presentes e preocupados e pelo
esforco dedicado a formacao dos filhos, as minhas irmas, Eduarda e Sofia, e & Susana por
todo o amor e apoio dados. A eles devo tudo o que sou hoje e sem eles nada disto teria sido
possivel.

Um grande Obrigado!

Resumo

O desenvolvimento de tecnologias de percepcao é um dos principais focos de investigacao em
robotica. Com o aumento da aplicacao da robética em ambiente humano, existe uma maior
preocupagcao em garantir a seguranca de todos os agentes que podem interagir com o robdo.

Considerando o caso em que um rob6 é um elemento de suporte na reabilitacdo de um
paciente, mais especificamente um andarilho, a prevencao de acidentes surge como a maior
dificuldade a superar, mas um requesito absoluto. Para superar este problema, o andarilho
deve garantir que segue todas as instrugoes de acordo com as regras de seguranga e tome
todas as decisoes com base no conhecimento do ambiente envolvente.

Esta dissertacao teve como objectivo propor o desenvolvimento de um sistema de nave-
gacao seguro aplicado a um andarilho robotico, desenvolvido no Instituto de Sistemas e
Robotica (ISR), chamado “ISR-ATWALKER”. Para alcangar o nosso objectivo, dois méto-
dos distintos foram desenvolvidos durante esta dissertacao: percepcao do ambiente local e
navegacao robo-assistida. A percepcao do ambiente local é a responsavel por identificar to-
dos os obstaculos, enquanto a navegacao robo-assistida pelo rob6 garante que a plataforma
roboética nao colide com eles, e reencaminha o utilizador para um caminho seguro. Além
dos sensores ja incorporados no ISR-AIWALKER, foram introduzidos dois novos sensores
(Microsoft Kinect One e Leddar Tech Leddar IS16) para recolher dados sobre o ambiente
envolvente da plataforma robotica a fim de garantir a seguranca do paciente e de outros
dentro do mesmo espaco.

Todos os algoritmos propostos foram desenvolvidos em ambiente ROS (Robot Operat-
ing System) e testados em locais onde podemos encontrar obstaculos que tornam dificil ao
utilizador se deslocar diariamente (calhas, escadas, rampas).

Palavras-chave: Robd autonomo, Navegacao, Localizacao, ROS, Plataforma Roboética

Movel, Microsoft Kinect One, Leddar, Deteccao de Planos, Mapeamento.

v

Abstract

The development of perception technologies is one of the main focuses of research in robotics.
With the increasing application of robotics in human populated environments, there is a
heightened concern to ensure the safety of all agents who may interact with the robot.

Considering the case where a robot is a support element in the rehabilitation of a patient,
more specifically with a walker, the accidents prevention emerges as the strongest difficulty to
overcome, but an absolute requirement. To overcome this problem, the walker must ensure
that follows all instructions accordingly with safety rules and makes all decisions based on
the knowledge of the surrounding environment.

This dissertation aimed to propose the development of a safe navigation system ap-
plied in a robotic walker, developed at the Institute of Systems and Robotics (ISR) called
"ISR-ATWALKER". To achieve our goal, two distinct software architectures were developed
during this dissertation: local environment perception and robot-assisted navigation. The
local perception module is the one responsible for detecting the environment obstacles while
the robot assisted navigation ensures that the robotic platform will not collide with them,
rerouting the user to a safe path.

In addition to the sensors already incorporated in the ISR-AIWALKER, two new sensors
(Microsoft Kinect One and LeddarTech Leddar IS16) were introduced to collect information
about the surrounding environment of the robotic platform in order to guarantee the safety
of the patient and others within the same space.

All of the proposed algorithms were developed in a ROS environment (Robotic Operating
System) and tested in places where we can find obstacles that make it difficult for the user
to move on a daily basis (gutters, stairs, ramps).

Keyword: Autonomous robot, Navigation, Localization, ROS, Mobile Robotic Plat-
form, Microsoft Kinect One, Leddar, Plane Detection, Mapping.

vi

“Scientists have become the bearers of the torch of discovery in our

"

quest for knowledge.
— Stephen Hawking

viii

Contents

Agradecimentos ii
Resumo iv
Abstract vi
List of Acronyms xiii
List of Figures Xiv
List of Tables xvii
1 Introduction 1
1.1 Motivation and context 1
1.2 Goals. e 2
1.3 Implementations and key contributions 2

2 State of the art 4
2.1 Sensors for environment perception 4
2.1.1 Microsoft Kinect 360 and Kinect One 5

2.1.2 LeddarTech’s Leddar IS16 6

2.2 Environment representations L. 7
2.2.1 Direct Representation 7

2.2.2 Topological Representation 7

2.2.3 Grid Based representations 8

2.3 Segmentation 10
2.3.1 Region growing segmentation 10

2.4 Plane detection 12
2.4.1 Planar Polygon Extraction and Merging 12

2.4.2 Random Sample Consensus 13

2.5 Path planning 14
Local Environment Perception 16
3.1 3D Point Cloud data to 2D occupancy grid map: Proposed method 16
3.1.1 25D Mapping 17
3.1.2 Rapidly exploring random tree based ground-plane detection (RRT-
GPD) . 18
3.1.3 2.5D to 2D convertiono 21
Robot Assisted Navigation 24
4.1 Dynamic Window Approach 24
4.1.1 Search space 25
4.1.2 Proposed Method 26
Experimental Results 29
5.1 Experimental Setup 30
5.2 Software Overview 31
5.2.1 Physical Layer. 32
5.2.2 Userinterface o 32
5.2.3 Perception Node 33
5.2.4 Navigation Node o oo 33
5.3 Local Environment Perception 0L 34
5.3.1 Test Scenario 1 35
5.3.2 Test Scenario 2 37
5.3.3 Test Scenario 3 39
5.3.4 Test Scenario 4 40
5.3.5 Test Scenario b 43
5.4 Robot Assisted Navigation 0oL 44
5.4.1 Static environmento 45
5.4.2 Dynamic environmento 48
Conclusion 51
6.1 Conclusion L 51
6.2 Future work 52

pal

7 Bibliography

A

xii

53

56

List of Acronyms

1D
2D
3D
FCT
1/0
ISR
PCL
RANSAC
RGB
ROS
DWA

HMI

One Dimensional

Two Dimensional

Three Dimensional

Fundacao para a Ciéncia e Tecnologia
Input and Output

Institute of Systems and Robotics
Point Cloud Library

RANdom SAmple Consensus
Red, Green and Blue

Robot Operating System
Dynamic Window Approach

Human Machine Interface

xiii

List of Figures

1.1

2.1

2.2
2.3

3.1
3.2

3.3

4.1
4.2

5.1

Main modules and key contributions developed. 3

Used sensors to represent the surrounding environment of the ISR-AIWALKER.

... 4
LeddarTech’s Leddar IS16 illumination area from the sensor datasheet 6
Left: 2.5D in polar grid of urban environment from [26]. Right: Elevation
map of rough terrain with space-carving kernels from [15] 10
Stages of the proposed method. 17
Representation of the conversion from 3D point clouds to 2.5D environment
representation. From left to right, the input 3D point cloud (given by a Mi-
crosoft’s Kinect One), the projection step where each point in the point cloud
is projected into the corresponding cell, and the final result where each cell
resembles a voxel defined by the diference between maximum and minimum
elements projected onto thecell.00 18
The algorithm developed for local perception consists of three blocks: 1) Con-
version of the 3D point cloud to a 2.5D elevation map; 2) Ground plane
detection; 3) Conversion of the 2.5D elevation map to a 2D occupancy grid
map using the inverse sensor model.o 0oL 23
Trajectories created by the linear and angular velocities. 27
Complete velocity setup: 1) Desired trajectory of the user in blue; 2) Trajec-
tory chosen by the DWA algorithm in green; 3) Complete set of trajectories
inred. 28
Robotic platforms: (a) ISR-ATWALKER used for validation of the perception
module; (b) ISRobot2 used for validation of the navigation module. 30

Xiv

0.2

2.3
5.4
5.9
5.6
2.7

5.8
2.9

5.10

5.11
5.12
5.13

5.14
5.15
5.16

5.17
5.18
5.19

5.20

0.21

5.22

0.23

5.24
5.25

Software architecture representing all of the inputs and outputs of the per-

ception and navigation modules.o 0oL 31
Physical layer architechture. 0000 32
Perception module representation. 33
Navigation module representation. oL 34
Standard ROS package solution overview. 34

Considered scenarios for the first test. (a) Amphitheater ramp down, (b)
Amphitheater ramp up. 35
Results for the first scenario. o000 36
Comparison between the proposed method (a) and the available ROS method
(b) for the descent of the amphitheater. 37

Comparison between the proposed method (a) and the available ROS method

(b) for the upward ramp of the amphitheater. 37
Test Scenario for the second test. 38
Results for the second scenario. 38

Comparison between the proposed method (a) and the available ROS method

(b) in a office environmento 39
Test Scenario for the third test. 39
Results for the third scenario. 40

Comparison between the proposed method (a) and the available ROS method

(b) for a partially open door. 40
Considered scenarios for the fourt test. (a) Staircase down, (b) Staircase up . 41
Results for the fourth scenario. 42

Comparison between the proposed method (a) and the available ROS method
(b) for downward stairs. L 42
Comparison between the proposed method (a) and the available ROS method
(b) for upward stairs 43
Results obtained from experiment 5 with Microsoft Kinect One and the pro-

posed method (a), Leddartech Leddar IS16 (b) and standard ROS package

solution using Microsoft Kinect One (¢). 44
Test Scenario for the first test. oL 45
Key phases of the first scenario. o000 45
Test Scenario for the second test. 46
Key phases of the second scenario. 46

XV

5.26 Third scenariomap e e 47

5.27 Test Scenario for the first test. 48
5.28 Dynamic test scenario map for the first test. 49
5.29 Dynamic test scenario map for the second test.. 49

XVi

List of Tables

2.1 Specifications of the used sensors.
2.2 Microsoft Kinect 360 and Kinect One specifications.
2.3 LeddarTech’s Leddar IS16 specifications.

3.1 Main modules parameters of the 3D Point Cloud data to 2D occupancy grid

map proposed approach.

5.1 Configuration Parameters L.

XVii

1 Introduction

This chapter provides an overview of this dissertation. We provide the motivation and
context of the developed work as well as the goals and key contributions, summarizing each

chapter in order to contextualize the reader.

1.1 Motivation and context

In the last years, robotics has been one of the engineering areas with intensive research
and remarkable evolution, for example as regards autonomous navigation of mobile robots.
However there are still some limitations, such as the ability to properly model and predict
possible dangers for users. Despite the recent advances in the area, the development of robust
models for representation of the surrounding environment of the robot is still an open problem
and a topic with great challenges, mostly on the "interpretation" of uncertainty in sensor
measurements and their correct representation. Common environment model representations
follow an approach based on occupancy grid maps, which makes it possible to determine,
based on the probabilistic models of the used sensors, specific information about the existence
of free and occupied space in the surrounding environment.

Inside the broad scope of Mobile Robotics, the Assistive robotics research has gained
in recent years a special focus since, in this area, research topics are addressed aiming to
improve the quality of life for the elderly and for people with debilitating diseases.

When we talk about assistive robots one of the main concerns is the safety of the user,
since it must be ensured that the user does not crash or fall into non-trivial obstacles, for
example that a semi-autonomous wheelchair does not lead the user to fall from stairs or to
collide with obstacles, like tables or walls. To ensure safety the assistive robots must be
equipped with robust algorithms and diverse sensors such as sonars and cameras that allow
the system to make decisions when it comes to planning the best path to follow.

This dissertation proposes a new approach to the problem of mapping collision-able non-

trivial obstacles from a 3D point cloud into a 2D environment representation throughout an
intermediary 2.5D representation, that may be useful for motion planning either by direct
computation or throughout cost maps.

The proposed method can enhance safety in mobile robot applications since dangerous
obstacles that are not normally detected but can originate disastrous consequences for the
user will be mapped (e.g., stairs, gutters or floor outlets) and avoided in real-time using

motion planning.

1.2 Goals

The purpose of this dissertation was to design modules for perception and navigation of the
ISR-ATWALKER platform to ensure safe navigation in indoor environments. The defined
objectives encompass the development and implementation of several methods/algorithms,

computationally efficient, and respective validation in real scenarios:
e Algorithms for detection of non-trivial obstacles such as stairs and gutters ;

e An algorithm for the conversion of 3D point clouds in a model/representation of the

environment suitable for motion and path planning;

e An algorithm for local navigation using the generated occupancy grid maps.

1.3 Implementations and key contributions

The design of modules for 2.5D to 2D occupancy grid map conversion using 3D point clouds,
a navigation algorithm capable of helping the user to make decisions based on the occupancy
grid map created and the user’s own intent, the development and validation in ROS envi-
ronment as well as the publication in IEEE conference ICARSC were the key contributions
of this dissertation. Some ROS modules were used and others were developed or modified in
order to develop a fully functional assistive robotic platform system. Figure 1.1 illustrates

the main developed modules described in this dissertation.

r
1

Walker Interface

Walker's HMI User intent
Ipoint cloud

Sensory Data : > —

Acquisition | Laser Scan > Local Environment > Robot-Assisted

_ 1 Perception Navigation

Walker Driver I > >

(low level) [

$: Odometry

Linear and angular velocities

Figure 1.1: Main modules and key contributions developed.

The outline of this dissertation and content of each chapter is the following:

State of the Art (Chapter 2)

A description of the perception sensors used in this dissertation.

Brief description of the existing environment representations.

A description of the different methods of segmentation.

Brief description of the existing navigation methods for collision-avoidance.

A system overview of the ISR-AIWALKER platform containing a brief description of

the main modules that compose the software architecture.

Perception (Chapter 3)
e Description of the proposed method for environment perception.
Navigation (Chapter 4)

e Description of the developed local motion planning algorithm used for the ISR-ATWALKER

navigation.
Validation (Chapter 5)

e Experiments and validation of the proposed modules as well as the validation of the

complete system (perception and navigation).

2 State of the art

In this chapter we present the different concepts used during this work. This will serve as
theoretical background to better contextualize the approaches described in the rest of this

dissertation.

2.1 Sensors for environment perception

The ability of a robot to recognize and evaluate its surrounding environment is not possible
without sensors. The correct selection of sensors is an important topic because these sensors
must be chosen accordingly with the robot’s workspace. There are two types of sensors that

can be used: passive and active sensors.

SLacciar

(a) (b) (c)

Figure 2.1: Used sensors to represent the surrounding environment of the ISR-AIWALKER.

The selected sensors for the implementation of the perception algorithms were the ac-
tive sensors Microsoft Kinect 360, in Fig.2.1a, Microsoft Kinect One, in Fig.2.1b and Led-
darTech’s Leddar IS16, in Fig.2.1c. The Kinect outputs a 3D point cloud used in section III
to detect obstacles with different heights and shapes and we used the Leddar IS16 sensor
to ensure safety on close distances and in environments where the Kinect cannot detect the
obstacles, for example, on dark environments. The characteristics of the used sensors are

shown in Table2.1.

Sensor Leddar | Kinect 360 | Kinect One
Sampling rate 50H z 30H z 30H z
Field of vision 45° 43°/57° 60°/70°

Range Om —50m | 0.7m — 6m | 0.5m — 4.5m

Table 2.1: Specifications of the used sensors.

2.1.1 Microsoft Kinect 360 and Kinect One

The Microsoft Kinect 360 is a low cost camera that has the capability to provide RGB-D
images and depth information simultaneously, which make it suitable for robotic applications
in indoor environments. The Kinect 360, shown in Fig.2.1a, includes an RGB camera,
an infrared (IR) emitter, an IR depth sensor, a multi-array microphone and a motorized
tilt system. The IR emitter emits infrared light beams in a pattern of speckles that are
reflected back to the sensor and read by the IR camera. This reflected pattern is correlated
against a reference pattern stored in the memory of the Kinect, obtained by capturing a
plane at a known distance from the sensor. For each speckle projected on an object whose
distance is different than that of the reference plane, its position in the IR image will be
shifted, originating a disparity image. From the disparity image, it is possible to compute
the distance to the sensor, and therefore the 3D coordinates for each pixel, applying a

triangulation method.

Feature Kinect 360 Kinect One

RGB image resolution | 640 x 480 @30fps | 1920 x 1080 @30fps

Depth image resolution | 640 x 480 @30fps | 512 x 424 Q30fps

Depth operation range 0.7m-6m 0.5m-4.5m
Viewing angle 43°/57°FOV 60°/70°FOV
Vertical tilt range 27° -

Table 2.2: Microsoft Kinect 360 and Kinect One specifications.

The Kinect One sensor, in Fig. 2.1b, features a number of changes in comparison to the
first-generation presented in the previous section. The Kinect One uses infrared to read its
environment but it has greater higher accuracy compared to the original Kinect, processing

2 gigabits of data per second. The device features a 512x424 pixel time-of-flight (TOF)

5

camera, has an increased field of view, a 1080p resolution video camera that can be used for
video recording, better depth map pixel resolution and better robustness against sunlight.
This main difference makes the Kinect One more precise than the Kinect 360 but, on the
other side, it uses much more computational space when we are recording datasets due to
its higher resolution. In order to mitigate this problem we only used the standard definition,

SD, PointCloud provided by the Kinect One which has an average data rate of 10 Hz.

2.1.2 LeddarTech’s Leddar 1S16

The LeddarTech’s Leddar IS16, in Fig.2.1c, is a light detection and ranging (LiDAR) sensor
that uses led technology, instead of the traditional laser technology, to measure distances
between itself and obstacles in the sensor’s field of view. The software package used to
obtain the distances (LeddarTech ROS package) calculates the time taken by a pulse of light
to travel to an object and back to the sensor lent.

The output of the Leddar IS16 is a 16-channel array of segments that returns the distance
from every single channel to the obstacle in front of the sensor. With this information we
were able to see and track the profile of one or multiple objects that the sensor is detecting.

The Fig.2.2 illustrates the illumination area and detection segments of the sensor.

16 channels with
simultaneous acquisition
capability

l‘ :
» Light emitted

< Light reflected by the object

harnel T2 3 4 5 & 7T 8 P WM N TV UL W

vvvvvvvvvvvvvv

Figure 2.2: LeddarTech’s Leddar IS16 illumination area from the sensor datasheet

In the following table is possible to see the detailed characteristics of the sensor.

Feature Value

Range 0 - 50m
Field of view 45°
Sample Rate up to 50Hz

Number of segments | 16 independent segments

Table 2.3: LeddarTech’s Leddar IS16 specifications.

2.2 Environment representations

The representation of the environment has been the focus of many research publications,
with many representations being proposed in the last 30 years. This representation consists
in creating a representation of the surrounding environment based on sensors information so
that the robot can navigate knowing the hazards that surround it. We can categorize these

representations in 3 main classes: direct [23], topological [22| and grid-based [10].

2.2.1 Direct Representation

In the direct representation approach [23], the raw sensor measurements (e.g., provided by
LiDAR, stereo-cameras) are aggregated in a way that can be described as a point cloud 6],
without extracting any characteristics of the environment. This method does not model free
or unknown space, which makes the navigation of a mobile robot more difficult and can lead

to several collisions with unseen obstacles.

2.2.2 Topological Representation

The topological representation, represents locations or nodes in graphs where each node
can be attributed to landmarks, and metric or appearance-based places [30]. This type
of representation has the advantage of being compact and scalable (resolution corresponds
directly to the complexity of the environment), which allows fast planning (often in a global
scope) and integration in multiple hierarchical planning strategies. On the other hand, it

may be difficult to construct and maintain in large scale environments.

2.2.3 Grid Based representations

In a grid-based representation, the environment is subdivided into a set of smaller units
that form a grid. The unit size, update and structure are normally method and imple-
mentation dependent. Based on the unit structure, the grid-based representation can be
further extended into 2D cells, 2.5D cells (or voxels) and 3D voxels. Grid approaches are
easy to build, represent, maintain and facilitates computation of shortest paths. However,
grid-based representations present problems such as: is an inefficient representation for path
planning; require large memory space for modeling large environments; and make it difficult
to interface with most classical planning algorithms. In the literature, the 2D grid-map is the
most widespread representation used, providing at its core, a probabilistic framework [32],
with fast and constant-time access while being only applicable in planar environments (i.e.,
can not represent directly the concept of vertical obstacles). In this type of representation
each cell contains the probability of occupancy, where values near zero correspond to a free
cell, values near one an occupied cell and value in between may correspond to an unexplored
region of the environment. The value of probability depends on the successive readings from
sensors, increasing or decreasing according to sensor’s observation models.

Other representations such as 2.5D grid-maps, also known as height or elevation maps,
provide a framework to represent elevations and irregular terrain instead of occupancy, with
properties similar to 2D maps, but with additional information of height on each cell, and
a computationally lighter model than 3D grid-maps. However this type of representation
cannot fully represent vertical overlapping [26]. Solutions to the overlapping problem have
been proposed in the form of multi-layer maps [33]. More recently, 3D grid-maps, and
in particular solutions such as octomaps [17|, provide a reliable 3D representation at the
expense of variable access time, increased computational complexity and increased planning
complexity for ground robots.

In spite of the constant evolution, 2D grid-maps are still a viable choice for many cases in
indoor and outdoor scenarios composed by local flat ground surfaces, but fail to incorporate
vertical elements that are on a given robot pathway, even if they are trivially spotted by
humans. Methods for the conversion of 3D point clouds to 2D grid maps are described, for

example, in [1, 28|.

2D Occupancy Grid Map

2D occupancy grid maps are probabilistic maps, meaning that each cell contains a high
certainty probability of occupancy value between zero and one. This value of probability
depends on the successive readings of the sensors, increasing or decreasing according to
the surrounding environment of the robot, where this value can be changed frequently.
This method was first introduced by Alberto Elfes and Hans Moravec in [24], and some
development and testing were presented later in [9]. Years later, Sebastian Thrun, [32],[31],
brought contributions to this method, introducing an algorithm where the occupancy of each
grid cell is dependent of its neighbors in both two dimensions. This improvement reduced
the error from the sensor readings, resulting in more accurate maps than those generated

using traditional techniques.

2.5D Occupancy Map

The 2.5D map was developed in order to map non-flat surfaces, providing the height of
the obstacles. This two-dimensional occupancy grid representation, studied extensively in
the past two decades, unlike the traditional 2D maps provides additional information of
the height of each cell of the map, creating a map of occupation more detailed than the
traditional 2D maps and a lighter map than the 3D representation, being a middle term
approach that dominate current applications. One of the first applications of this method,
presented in [16], was developed for a planetary mission to map areas of the surface of Mars.
Another implementation of this method was presented in [26], where polar grids are used
since the rotary laser range finder returns distance measurements in a polar or “spherical-
like” coordinates. The method was also discussed and improved for the decrease in density
of points with the increase of distance by [15] for posterior mapping of rough terrains in

elevation maps. Some representations provided by these applications are shown in 2.3.

Figure 2.3: Left: 2.5D in polar grid of urban environment from [26]. Right: Elevation map

of rough terrain with space-carving kernels from [15]

2.3 Segmentation

Segmentation is the process of partitioning a set of data into multiple segments and a useful
tool in many areas including mobile robotics, industry, health care and astronomy. With
this process, the representation of objects becomes easier to analyze because a cluster is
assigned to every point accordingly with its characteristics (texture, color and so on) and
these characteristics can be further evidenced in a more appealing manner, for example
different colors for different depths of an image. These types of algorithms are usually based
on one of two basic principles: discontinuity and similarity. The first approach is based
on edge detection and the second are based on thresholding and region growing. When
we deal with sensor information based on pointclouds to perform safe navigation through
the environment, there is a need to analyze the output data of this type of sensor using
segmentation to make sure that the robot does not discard obstacles that it can overcome

(small bump or hill).

2.3.1 Region growing segmentation

The purpose of the region growing segmentation is to merge the points that are close enough
in terms of the smoothness constraint (such as texture, color, shape). This means that the
neighborhood of a pixel is examined and added to a region class if no edges are detected.
The process is then iterated for each boundary pixel in the region.

The first step in region growing is to sort the points by their curvature value, because
the region’s growth begins from the point that has the minimum curvature value. After this

sorting we are in condition to start the growth of the region and the point is added to the set

10

called seeds. The region growing segmentation analyzes the neighborhood of a pixel and this
process is done by measuring the angle between its normal and the normal of the current
seed point, adding the current point to the current region if the angle is smaller than the
threshold value. This process is then repeated for the curvature value and if this curvature is
less than the threshold value the pixel is added to the seed and the current seed is removed
from the seeds set. When the seeds set is empty it means that the region has finished its
growth and the process is then repeated from the beginning.

The pseudo code for this process is shown in Algorithm 1 (from [27|, considering the
point cloud, P, the point normals, N, the points curvatures, ¢, the neighbor finding function,

Q, the curvature threshold, ¢;;, and the angle threshold, ®,.

Algorithm 1: Region Growing Segmentation Algorithm from [27]
IHPUt: P; N y» Gy Q sy Cth ¢th

1 Initialization:
2 R~ P A+ 1,..,|P|
Algorithm:

w

IS

while {A} is not empty do

5 Current region R, < 0

6 Current seeds S, < 6

7 Point with minimum curvature in A — P,,;n
8 Se — S U Pin

9 R.+ R.U P,
10 A<+ A\ P
11 for i=0 to size (S.) do

12 Find nearest neighbors of current seed point B, — Q(S.1)
13 for j=0 to size (B.) do

14 Current neighbour point P;

15 if A contains P; and arccos(|(NSqi, NS.j|) < €, then
16 R.+ R.UP; A+ A\ P,

17 if ¢cP; < ¢y, then

18 t Se + S, UP;

19 Add current region to global segment list R < RU R,
Output: R

11

This type of region growing offers several advantages over conventional segmentation
techniques like the ability of separate regions with different properties like the height of the
points or the distance between points, the possibility of choosing different criteria at the same
time, and the capacity to grow the region with a small number of seed points. Moreover,
this method performs well with the respect to noise. On the other hand the algorithm is

computationally heavy for dense point clouds and must be tuned to deliver a usable result.

2.4 Plane detection

Several methods of plane extraction were developed in the last years [3| [29] [11], being
that plane detection is important in terms of mobile robotics because, with the development
of sensors capable of producing large datasets with millions of points, there is a need to
reduce the processed amount of data to increase the quality of the created applications.
Plane detection is important namely for ground plane detection where this method can be
used to map the free space on the ground plane, as will be demonstrated in Section ITI. A
more ambitious approach can be carried out if we combine the detection of planes with the
segmentation, which can allow to map ramps or obstacles that a robot is able to overcome,

improving the navigation safety of a robot.

2.4.1 Planar Polygon Extraction and Merging

The planar Polygon Extraction and Merging from Depth Images method, presented in [3],
is a solution used in indoor scenarios for multiple plane detection using depth images that
extract dominant planar features from 3D point clouds. This method considers that for each
observed depth image only planar regions are extracted in order to merge the model of the

environment. The approach can be divided in three steps|3]:

1. For each observed depth image, compute polygons to best approximate the dominant

planes in that image.

2. Find correspondences between the polygons in the current image with the polygons in

the map.

3. Iteratively merge corresponding polygons from successive images, thus growing the

map.

12

The approach starts by using the Fast Sampling Plane Filtering (FSPF) algorithm [2] to
extract points that belong to the local neighborhoods of planes from depth images. Then
computes the plane parameters of each neighborhood by eigenvector decomposition of the
scatter matrix and define the polygon boundary. Each scatter matrix of the created polygon
is then stored in a decoupled manner that allow to merge polygons over successive observa-
tions and compute the least square fit over all observed points, over time, without maintain
a list of them. After this, the correspondences between the polygons of the latest depth
image and the polygons in the map are determined, using an image render based raycasting
method, and if no match is found during this process then the polygons are added as new

polygons of the map.

2.4.2 Random Sample Consensus

The Random Sample Consensus algorithm (RANSAC), first introduced by Fischler and
Bolles in 1981 [11], is a re-sampling technique that estimates parameters of a mathematical
model by random sampling observed data assuming that all data is composed by inliers and
outliers. As pointed out in [11], the RANSAC algorithm uses the smallest possible set of
data and enlarges this set with consistent data points when it is possible, unlike conventional
smoothing techniques that use as much data as possible to obtain an initial solution and
then attempts to eliminate invalid data points.

RANSAC selects a random subset of data and uses it to estimate the model parameters
using a voting procedure to find the optimal fitting result. This result is achieved by training
a model that has the most count of samples and the smallest average error among the

generated models. The basic RANSAC algorithm can be summarized by the 2 [7].

13

Algorithm 2: RANSAC Algorithm obtained from [7]

1 Select randomly the minimum number of points § required to determine the model

parameters.;
2 Solve for the parameters of the model.;

3 Determine how many points from the set of all points inputData fit with a

predefined distance threshold ¢;

4 If the fraction of the number of inliers over the total number points in the set
exceeds a predefined threshold 7 , re-estimate the model parameters using all the

identified inliers and terminate.;

5 Otherwise, repeat steps 1 through 4 (maximum of M times).;

2.5 Path planning

Path planning can be described as the process of finding the optimal path from the start
point to a predetermined destination, or to a direction given by the user, while avoiding
collisions along the pathway. Path planning may require a robust localization and a map
in order to ensure that the robot will follow the computed path considering the velocity,
position and the surrounding environment. The path planning methods can be divided into
two main groups that can work alongside: global planners and local planners.

The global planning approach computes the complete path for the robot to follow from
an initial to a final location. There are two main approaches for global path planning:
sampling-based and search-based algorithms. Sampling based algorithms, such as proba-
bilistic roadmaps [19], randomized path planners [5| and rapidly-exploring random trees
[21], use a randomization of the configuration space. Search-based algorithms, for instance,
A* and D*, generate a graph representation of the planning problem.

Local planning approach uses local environment information stored in the costmap to
generate velocity commands for the robot navigation and do not require a robust robot’s lo-
calization. For this reason, these algorithms require much less computational time and allow
higher rates of sensor information than the global planning, which represents an advantage
for fast response of the system to the sudden changes in the surrounding environment of the
robot. Some examples of these approaches are: 1) potential field methods [20], where the

robot is attracted by a positive force in the direction of the goal and the obstacles impose

14

negative forces, resulting in a velocity given by the difference of these forces; 2) the vector
field histogram [4]|, which uses an occupancy grid of the environment to construct an his-
togram representing the free space around the robot and it is used to compute velocities;

and 3) The Dynamic Window Approach (DWA), which is addressed in Section 4.

15

3 Local Environment Perception

The perception of the robot’s surrounding environment is an important task in order to
provide a reliable model where safe motion primitives can be taken. Considering that the
robot is inserted in a three dimensional environment but its motion is in a 2D plane parallel
to the ground, it was necessary to create a method that generated a rich 2D representation
of the environment (more suitable for realtime application) without losing information of the
height of the obstacles, thus allowing to correctly map obstacles, such as tables, chairs and
stairs but also non trivial obstacles such as gutters, where a standard 2D approach could lead
to collisions or hazardous scenarios. In this section we will present the local environment

perception approach considered in this dissertation.

3.1 3D Point Cloud data to 2D occupancy grid map: Pro-
posed method

The development of a reliable and computationally efficient method for mapping 3D point
clouds into a 2D grid-map is the main focus of the proposed method. This is a very important
topic in terms of safe navigation because it allows us to correctly map obstacles that are in
the robot’s pathway but are neither trivially detected nor efficiently mapped by common 2D
mapping approaches. In Fig. 3.1 the proposed pipeline is presented with the different steps
of the 3D point cloud to 2D grid map proposed method: starting with a 2.5D representation
obtained from a 3D point cloud followed by a ground-plane detection and a 2.5D-to-2D

conversion, using a inverse sensor model (ISM).

16

3D point cloud downsampling method

Ground-plane
3D point cloud Mi Sti)n —» deteclion > 25(?83)20 [[,{ 2D OC(;‘il:jpancy
PPy (RRT-GPD) g

Figure 3.1: Stages of the proposed method.

The main modules parameters, including the inputs and outputs of every module, from

the proposed method are represented in table 3.1.

Obtained from Size Input Output
3D Kinect
512 x 424 - -
Point Cloud One
2.5D 3D 2.5D Elevation
- 300 x 300
Mapping Point Cloud Map
Ground Plane . 2.5D Elevation Ground Plane
Detection Map Detected
2.5D Elevation Map 2D Local
2.5D to 2D
- 300 x 300 & Occupancy
(ISM)
Ground Plane Detected Grid Map

Table 3.1: Main modules parameters of the 3D Point Cloud data to 2D occupancy grid map
proposed approach.

3.1.1 2.5D Mapping

The first module builds on the construction of a 2.5D environment representation from a 3D
point cloud [26]. The 2.5D representation discards the concept of occupancy and provides an
elevation measure for each cell. The proposed 2.5D grid is composed by mz x my cells with
constant resolution d,. Each cell ¢ 5p is addressed by ¢ and j indexes and has the elements
casp < {27,277, N,} where 2z~ is the minimum elevation value, z* the maximum elevation
value and N, the number of samples that contribute with information to the cell. Given a
3D point cloud composed by a set of 3D Cartesian points py = (2x, Uk, 21), k = 1,2,....,n
the values present in each cell are obtained by projecting the z and y components on the grid

cell with consequent update of the maximum and minimum elevation, z* and z~, and the

17

number of samples ||z|| projected to the given cell. The projection consists on the conversion
of the x and y component from p; into grid indexes ¢, 7 with : < mz, j < my, mx;my > 0.

The 3D to 2.5D maps conversion process is illustrated by an example in Fig 3.2.

Figure 3.2: Representation of the conversion from 3D point clouds to 2.5D environment rep-
resentation. From left to right, the input 3D point cloud (given by a Microsoft’s Kinect One),
the projection step where each point in the point cloud is projected into the corresponding
cell, and the final result where each cell resembles a voxel defined by the diference between

maximum and minimum elements projected onto the cell.

3.1.2 Rapidly exploring random tree based ground-plane detection
(RRT-GPD)

When we convert an elevation map into an occupancy grid the definition of free and occupied
2.5D cells can be a problem because there is no reference to the location of the ground plane.
This means that a robot will be unable to perceive what is navigable space and what is an
obstacle.

We can assume, for a given frame, that a robot moves locally in a 2D plane and based
on this constraint we present a new approach [13] to the problem of ground-plane detection
that operates with a 2.5D map. This approach is inspired by the rapidly-exploring random
tree (RRT) algorithm, which has been widely applied in motion planning [21]. The proposed
approach is also inspired by the region growing [27], in the way that it provides a rapid
flood-like expansion towards similar normals.

The inputs of the proposed RRT-GPD method include, the robot’s pose, the plane’s
normal threshold, elevation threshold, the 2.5D environment model, the maximum number
of iterations to find a suitable solution, and a node expansion distance. The RRT-GPD
Algorithm 3 starts by finding a valid seed to form the root of the RRT (nearestValidSeed);

it is to be noted that the use of an invalid seed could lead to an ill formed tree due to the

18

sparse nature of the 2.5D representation, as shown in Fig.3.2. This means that not all of
the cells provided by the 2.5D map, M, 5p, will contain information and besides that, a seed
far from a valid cell may be unable to expand.

During the process of finding a valid seed, the robot’s pose provides an initial guess and
every direction is explored to find a valid candidate. This is done because no assumptions are
made on the sensor’s configuration (i.e., transformation between sensor and robot). Although
it is important to find a valid candidate to initialize the exploration, the final solution may
discard the initial seed point, meaning that it is not guaranteed that the final solution will
contain the initial point. This description is based on the assumption that the 2.5D map is
computed with the sensor referenced to the robot’s frame and that exists a relation between
the robot and the environment, being this relationship given by transforming the robot
coordinates (x,y, z) in the coordinates (z,y, z) of the world for a local map, where a mobile
robot is centered in p,,. = (0;0;0)7, or for a representation in the referential of the sensor
the constraints are similar. In this particular case the concept of valid seed implies a valid
local plane, computed by the fitPlane function (see algorithm 3). After finding a valid seed
and a correspondent local plane, a new tree is generated in initializeTree, where the seed,
which corresponds to the center of the plane, and the plane normal define the base unit (or
node) of the RRT tree.

The algorithm then enters an iterative process to expand the RRT until it reaches K itera-
tions, being that the first step for each interaction involves sampling (sampleRandomDire-
ction) a point x4, in a search space window. For a given sample node 4,4, the nearest
node T,.q- already present in the tree is retrieved (nearestNode) and a new node Zcypansion
is created based on the direction between ., and ,q,q (provided that they do not overlap).

The direction is given by 3.1 (angleBetween),

xrand(iU) — Tnear (y))
xrand(x) — Tnear (I)

(3.1)

0 = arctan(

and the (z,y) component given by 3.2,

Tnear () + dy, cos(6)
xexpansion(-ra y) = (32)
Tnear(y) + dy sin(0)

where dn denotes the node expansion distance. For the new candidate node Zczpansion;
the z component is given by the function elevation. As we said before, given the sparse
nature of the 2.5D grid, not every Zegpansion Will correspond to a valid cell when projected

to 2.5D.

19

To provide a valid z component, a spatial interpolation method was applied on the
node neighborhood (a region of interest with dimensions (sx,sy) centered in Zeypansion) and
if an invalid z value is retrieved, i.e., no valid neighbors were found, the current iteration
is ended. With a valid Zczpansion, and applying a similar spatial interpolation method, a
set of neighborhood points P is extracted, where empty points missing the z component
are interpolated and discarded if the neighborhood does not contain valid elements. If
the neighborhood P contains at least three non-collinear points, a least squares regression is
performed to find the best planar fit to the points (fitPlane) of the form ax+by+cz+d = 0.
Given a valid plane planej,.q, the inner product of the normal stored in .., and the planes’
normal (normal(plane;y.,)) is computed and if it is less than a given threshold (Nth) the
plane is considered to be at least similar in orientation given the node ... In order to
analyze whether the new plane can connect or not with the nearest node, the variation in
height is also checked using the elevation threshold (Eth). If the normals are not similar,
the nodes near a radius dn from Ze,pansion are retrieved (nearestNodes) and the same
similarity thresholds are applied to validate further node connections. If a pair plane-node
is conformant, i.e., is valid for each threshold, a new node is added to the tree, containing
the parent connection (Z,eqr), the new center point (computed plane midpoint) and the
correspondent plane normal. Other tree expansion constraints such as elevation gradient
(also evaluated in this dissertation) can be employed.

The last step after adding a node to the tree is to update the search space window
(updateSearchSpace). The search space window starts centered on the seed node but
with each added node and each iteration, the search window grows and shifts towards the
average value (geometric center) of the explored nodes, slightly biasing the search process
to areas with similar properties where the expansion is more prominent, but without leav-
ing out unexplored areas. After K iterations, the center points of each node on the RRT
tree are extracted (a Kd-tree is used at the algorithm’s core to store each discovered node)
and a new plane fitting is performed. In this final step, we apply the random sample
consensus (RANSAC) algorithm [11| due to its robust estimation even in the presence of

outliers. The RRT-GPD algorithm is summarized in the pseudocode of Algorithm 3.

20

Algorithm 3: Rapidly exploring random tree based ground-plane detection (RRT-

GPD) algorithm [13].
Input: Robot pose (pzy.),Plane normal threshold (Nyy,)
Elevation threshold (Ey), 2.5D Map (M 5p)

Maximum number of iterations (K), Node expansion distance (d,,)

Initialisation:

=

2 Ppo < nearestValidSeed(pgy., Ma25p);
3 G + initializeTree(po);

a for k=1 to K do

5 Zrand < sampleRandomDirection();

6 Znear < nearestNode(G,Trqnd);

7 0 + angleBetween(Zpear,Trand);

8 Tewpansion(X) < Tnear(x) + dy, cos(0);

0 Texpansion(Y) < Tnear(y) + dn sin(0);

10 Teapansion(2) < elevation(Ms 5p, Tewxpansion) ;

11 P <+ interpolation(Ms 5, Tezpansion);

12 planejoeq; < fitPlane(P);

13 if | normal(planeiocar) - normal(z,eqr) | < Ny, then

14 if | planejocai(2) - Tnear(z) | < By, then

15 G + G U { Tnear Texpansion, normal(planejocar) };
16 L updateSearchSpace(Zegpansion);

17 else

18 Tneighbours < nearestNodes(G,Tegpansion,dn);

19 foreach node in x,cighvours do

20 if | normal(planeiocqi) - normal(node) | < Ny, then
21 if | planejoeai(z) - node(z) | < Ey, then

22 G +— G U { node,zczpansion, normal(planeocar) };
23 L updateSearchSpace(Zezpansion);

24 Gplane < RANSAC(Points(G))
OUtPUt: Iplane

3.1.3 2.5D to 2D convertion

The conversion from 2.5D to 2D follows the same principles introduced with the integration
of sensor readings for occupancy grid mapping [24|, [32]. In this case, our observations are
the elevation voxels present in the 2.5D grid-map, turning the representation into a virtual

sensor. The probability that a cell ¢ is occupied given the observations z;; is given in log

odds by:

plc| z) p(c) plc | z14-1)
L—plc|z) 1—=plc) 1—plc|z14-1)

21

with p (c) the prior probability, p (¢|z14_1) the previous estimate and p (c|z;) denotes the
probability that cell ¢ be occupied given the measurement z and it is computed using an
ISM. The log odds representation is used here due to its numerical stability. To solve the
2.5D to 2D conversion problem we propose an ISM that converts an observation in the form
of an elevation voxel ¢, to the probability that given the actual observation, the cell from
the 2D grid is occupied. Each elevation voxel can be defined as being in a valid state if
it contains more than one measurement (N, > 1). In order to determine the influence of
each voxel we rely on the concept of voxel density explored in [8]. An elevation voxel ¢, in
the 2.5D map (see Fig. 2) occupies the volume given by Viozer = hA, with h is the height
of the voxel (h = Az = 2T — z7) and A the base area of the voxel (i.e., based on the cell

resolution). The voxel density is given by pyozer = , where m is the voxel mass. The

_m__
Viozel

mass of a voxel in this context can be defined as the amount of data the voxel contains and
can be extrapolated using the number of samples Nz of an elevation voxel. To represent a
normalized voxel density, the following sigmoidal function is proposed,

K,

p’UOZ‘(:‘l (C’U) = 7(Kn(CU(N2)7d7nin>) (3'4)
]_ —I— (A Vvowel

where K, denotes an amplitude gain, K, a sample normalization factor, and d,,;, the

minimum number of points. The voxel is composed by 3 explicit parameters and an implicit
one related to the distance |c,| defined by the voxel position in relation to the base frame
(e.g., sensor frame, robot frame or local frame). In the previous subsection we presented the
RRT-GPD method to extract the ground plane that from now on is denoted by gpiane-

The proposed ISM takes into account the voxel distance to the base frame, decreasing the
elevation voxel occupancy probability as voxels move away from the base frame. Knowing
a valid ground-plane allows for the definition of free or occupied values in the sense that
a specific cell contains a high or low probability of being occupied, for instance, if a voxel
is near the detected ground plane it may be considered as part of the ground and thus
contribute to decrease the cell’s probability. On the other hand, if an elevation voxel is
above the ground, it may be considered to be an obstacle and thus contributes to increase

the cell’s probability. The ISM is expressed by,

o If |c| e [0, |] :

(el=leu])?
max(pyoger; 0.5) € 202 Jif d> dp,
pclz) =

0.5-K, .
Ky + et tan Jif d < dp,

22

o If|cf €] col, feo[™]

D2

(el=lew
max(pyozer € 202 ,0.5) Lif d>dp
p(clz) = { P (3.6)

0.5 ,1f d S dpth

where 02 denotes the Gaussian variance, K, an amplitude and bias gain with 0 < Kg <
0.5, dp, a distance threshold and d the distance between the plane gpqne and the voxel c,.
The distance between the voxel cv and the plane is computed using the maximum plane
distance to the points p* = (z;y; z+)T and p~ = (z;y; z_)T where x and y represent the
voxel position. The 2D grid-map structure is identical to the 2.5D counterpart introduced

in ITI-A with each cell cop composed only by an occupancy value.

i Ground-
3D Pointcloud | 7 5p plane 2.5D-to-2D | 2D Occupancy
Mapping detection (ISM) map
(RRT-GPD)
| |
&

Figure 3.3: The algorithm developed for local perception consists of three blocks: 1) Conver-
sion of the 3D point cloud to a 2.5D elevation map; 2) Ground plane detection; 3) Conversion

of the 2.5D elevation map to a 2D occupancy grid map using the inverse sensor model.

Finally, we were able to obtain a 2D occupancy grid map capable of modeling obstacles
with irregular shapes and heights that will be used in the following section for the robot’s
motion planning. An overview of the output from each step of the algorithm is represented

in Fig. 3.3, representing at the last stage the resulting 2D occupancy grid map.

23

4 Robot Assisted Navigation

Navigation in complex and unknown environments is a major challenge for people with
walking or visual disabilities. This includes path planning and obstacle avoidance, which
has been investigated since the beginning of robotics. The difficulty to solve this problem
increases when the detection and avoidance of dynamic elements in the environment becomes
one of the main requirements. When considering the case where the robot is a physical
support aid, such as in gait rehabilitation scenarios, the safety of all agents is even more
crucial. The robot must ensure that it follows all the users instructions accordingly, while
obeying safety rules taking into account the knowledge of the surrounding environment. The
mobile robot planning problem differs from the specific scenarios involving most assistive
robots such as walkers or wheelchairs as it is also important to incorporate the user’s intent
in the decision process.

In this chapter we will talk about the navigation strategies used in this work to safely

avoid obstacles.

4.1 Dynamic Window Approach

The dynamic window approach [12] is a local path planning algorithm that provides opti-
mal local solutions to collision avoidance. This approach reduces the search space to the
translational and rotational velocities which are reachable considering the kinematic and
dynamic constrains of the robot. In addition to this restriction, this model only considers
velocities that can be reached without putting the robot on a collision trajectory with an
obstacle, choosing the rotational and translational velocities that maximize the efficiency of
the model.

The DWA approach can react very quickly to sudden changes in the surrounding scenario
due to its low computational complexity, providing an excellent choice for the navigation of

robotic platforms (including but not limited to assistive robotic walkers).

24

4.1.1 Search space

With the dwa method there is a need to reduce the velocity search space to a set of trans-
lational and rotational velocities (v, w), that are achievable by the robot in a short period
of time, that guaranties that the robot will not hit any obstacles. Restricting the velocity

search space can be done using the following three steps:

Circular trajectories (V)

The generation of a trajectory to a given goal point for the next n time intervals can be
approximate by a sequence of circular arcs trajectories. For this purpose the velocities
(v;, w;) must be determinate for each n time intervals between t0 and tn, considering that
the resulting trajectory does not intersect any obstacle. This results in a two-dimensional

velocity search space.

Admissible Velocities (V)

Obstacles in the vicinity of the robot impose restrictions on the rotational and translational
velocities. For example, the translational speed decreases according to the decrease of the
distance of the robot to an existing obstacle in its pathway, on the other hand the rotational
velocity will increase to avoid the collision to the obstacle and if there are any alternative
paths the robot will stop and move back to find a valid trajectory to follow. This means
that a pair of velocities (v, w) is considered admissible if the robot is able to stop before it
reaches the obstacle.

Considering that the term dist(v,w) represents the euclidean distance to the closest obsta-
cle in the robot’s trajectory and v, and w, are maximal translational and rotational breakage

decelerations, then the set of admissible velocities Va is defined as

Vo = (v,w)|v < y/2dist(v, w)v, Aw < \/2dist(v,w)w, (4.1)

Dynamic Window (V)

Taking into account the limited accelerations that are possible to perform by the motors,
the overall search space is reduced to the dynamic window that contains the set of velocities
that are possible to archive within the next time interval . Let v and w be the accelerations

applied and (v,, w,) the actual velocity during the time interval ¢, then the dynamic window

25

V18 defined as

Vi= (v,w)|v € [vg, — 0.t,0, + 0.t] ANw € [w, — w.t, w, + W.1] (4.2)

Resulting Search Space

Combining the given restrictions imposed on the search space, result in the following inter-

section of restricted areas, V,., used to compute the objective function.

V,=V,nV,NVy (4.3)

4.1.2 Proposed Method

The DWA approach applied in this dissertation, presented in Algorithm 4, begins by
transforming the local map, obtained from the perception package and explained in the
previous section, in a cost map. This needs to be done because the probability value of
the local map is given in logarithmic values and in terms of navigation it makes more sense
to have values from 0 to 100 to represent the occupancy of a given cell, being that for
navigation purposes we consider that values below 25 represent a free cell, values higher
than 75 a occupied cell And the values in between are considered unknown space.

The proposed algorithm of the DWA approach starts by computing the feasible velocity
space. Considering v,,q, and wy,,, the linear and angular maximum speeds, @e: and Gymas
the respective maximum accelerations, v; and v,,, the robot actual linear and angular speeds
and At the simulation time step, then the linear and angular maximum velocities, Viq.

and Vw,,,. of the feasible velocity space are given by:

Vimae = Min(Vmaz, Uy + Gmae X At); (4.4)

VWmae = Min(Wmaz, Ve + QWiae X At); (4.5)

Considering then the linear and angular minimum velocity, v,,;, and w,,;,, the minimum

linear and angular velocities, Vi,,;, and Vw,,;,, of the feasible velocity space are given by:

Viin = max(Umin, U — Qmag X At); (4.6)

VWmin = Max(Wiin, U — GWmaz X At); (4.7)

26

This approach continues by simulating a pre-defined number of trajectories, n4.4;, ob-
tained from the previous velocities, by incrementing the acceleration of linear and angular
velocities, in (4.6) and (4.7), during a period of time At¢. This increment is given by:

dvlinear _ Vlmax - Vlmm (48)

ntraj

for the linear increment and by

V maxr ~ V min
dvangular = < v (49)

ntraj

for the angular increment. The number of trajectories, ny.,;, chosen was obtained by

trial and error, being that the ideal number of trajectories that best suited the navigation.

Figure 4.1: Trajectories created by the linear and angular velocities.

The algorithm then checks for collisions and verifies if any of this trajectories will go off
the map, updating costs along the way accordingly with the number of steps that the robot
must take along it’s trajectory to guarantee the safety of the user. Finally, the cost of a
trajectory is computed and compared with every trajectory cost created, applying to the
walker the respective linear and angular velocities from the trajectory that has the smallest

cost. The cost, C, of a given trajectory can be expressed as follows:

k. 1
C:|Vl_vz7t7vw_ku|+Cocc*ks+C,O(jjs+k51+k2*1+dp

Where VI, VI,, Vw, Vw, are the linear and angular velocities of the robot and the user,

(4.10)

respectively, Co.. is the occupational cost, Cys, the cost of the nearest obstacle, d,, is the
cost of the pose distance, ks, kg, k2, the scaling factors and £ the scaling factor that changes

if the direction of the trajectory sample is different from the desired direction of the user.

27

Figure 4.2: Complete velocity setup: 1) Desired trajectory of the user in blue; 2) Trajectory
chosen by the DWA algorithm in green; 3) Complete set of trajectories in red.

A graphical environment was then developed with the purpose of helping to understand
the trajectory that the algorithm had chosen and, in Fig. 4.1, it is possible to see in red the 24
trajectories considered, 12 forward and 12 backwards and in Fig. 4.2 the desired trajectory
of the user in blue and the trajectory chosen and applied to the walker in green. This was

an important tool for the validation of the method, as we will demonstrate in the next section.

Algorithm 4: Dynamic Window approach algorithm

Input: Occ map, (v, w)user, (U, W)ropot, Odom

1 Initialisation:

2 while Odom = true do

3 CreateCostMap(rows, columns, cellsize, base, freeValue, occupiedValue);
4 ComputeVelocities((v, W)robots Umazy Wmazs Vmins Wmin, dt);

5 for i=1 to i < Vsampies do

6 Usample = Min, + (i * dv;

7 for j=1 to j < Wsampies dO

8 Wsample = MiNy + (1 * dw];

9 ComputeTrajectories(CostMap, Usampie, Wsamples b, (U, W)user);
10 if cost > 0 then

11 L SelectBestTrajectory(bestira;, COMPiraj);

Output: BestTrajectory(v,w)

28

5 Experimental Results

This chapter describes the experimental setup and the test scenarios developed to validate the
proposed methods. Validation was carried out in two sets of experiments, first the validation
of the local environment perception and finally the navigation of the robotic platform (ISR-
ATWALKER). The first one was made using a series of datasets recorded in places where
this type of robot can be found on a daily basis. The experimental results of the second
part was also divided into two parts, testing the navigation of the robot using static and
dynamic obstacles. The validation of the navigation also incorporates the local environment
perception because it requires a environment representation (2D occupancy map) for the
navigation of the robot, being that in this part the two methods are combined and validated
in different environments and conditions.

The experiments were carried out in a mid-range laptop with Kinect and Leddar data
acquired at the frequency of 10Hz, the average time per frame for the proposed method was
less than 30ms, and the ground-plane detection less than 3ms. The configuration parameters
used for the robot assisted navigation package, represented in Table 5.1, were suited for the

ISR-AIWALKER in order to guarantee a smooth navigation for the user.

Table 5.1: Configuration Parameters

Maximum Maximum
Forward safe | Simmulation | Simulation Time
Speed Acceleration)))
distance time time step | constant 0t

Linear | Rotational | Linear | Rotational
(m) (s) (s) (s)

(m/s) (rad/s) (m/s?) | (rad/s?)
0.3 0.75 0.5 1.0 0.325 7.0 0.1 0.5

29

5.1 Experimental Setup

Microsoft
Kinect One

Leddartech
Leddar I1IS16

Figure 5.1: Robotic platforms: (a) ISR-AIWALKER used for validation of the perception

module; (b) ISRobot2 used for validation of the navigation module.

The experimental evaluation of the proposed methods was carried out in two platforms;the
ISR-AIWALKER and the ISRobot2 (see Fig.5.1). The ISR-AIWALKER [18] (walker plat-
form) is composed by a differential mobile robot at the base, two grips interfaced with Leap
Motion sensors for the command velocities of the user and a gait perception module aided by
a 3D sensor. The ISR-AIWALKER was used for the validation of the local environment per-
ception module presented in Section 5.3. The ISRobot2 platform has the same dimensions as
the ISR-AIWALKER, is composed by a differential mobile robot at the base and a joystick
was used to simulate user speed commands. The ISRobot2 was used for the validation of the
robot assisted navigation presented in Section 5.3. Both platforms were equipped with two
sensors, the Microsoft Kinect One and the Leddartech Leddar IS16, for environment per-
ception, assessment of hazardous situations and safety purposes. The Kinect One outputs
a 512 x 424 point cloud and the Leddar IS16 delivers a 16-channel distance array, but the
first one cannot output distances less than 50cm while the second can, ensuring in this way
that the platform will not collide with obstacles that may appear in the way, for example,

during a rotation.

30

User (v,w)

Pointcloud >

Local Map (v,w) Motors (v,w)

Local map DWA ISR-AIWALKER

Y

YYVY

>
>

Robot (v,w)

Odometry

Figure 5.2: Software architecture representing all of the inputs and outputs of the perception

and navigation modules.

The perception, navigation and visualization modules used on both platforms run in ROS
nodes, and all experiments reported in this section were carried out in the same environment
with C' + 4+ implementations. The following diagram shows how the system software is

connected.

5.2 Software Overview

This work has been developed in ROS mainly because it supports C' + + implementations
and there is a great community that provides useful and updated open-source tools and
documentation for the most of the robotic applications. There are some concepts such as
package node, topic, message, subscriber and publisher, defined in [14], that are important
to understand since all ROS packages work with these elements. A package can contain one
or several nodes (processes) defined as publishers, subscribers or both. For example, one
node controls a Kinect One, one node controls the wheel motors, other node performs the
navigation and so one. A publisher node publishes topics containing messages, for exam-
ple the Kinect One node publishes a pointcloud, and a subscriber node subscribes topics
from publishers, processing this information, for example the Local Map node receives the
pointcloud, processes the information and then publishes the result to other node. Other im-
portant topic is the relationship between coordinate frames of the packages used in a robotic
system. This relationship gives us the location and orientation of the different components
of the robot so that it is possible to process the sensory data according to the location of the

sensors on the robot, for example the height and orientation of the Kinect on the platform

31

5.2.1 Physical Layer

The physical layer module is responsible for linking the hardware and software, being in
charge of receiving the information of the used sensors and delivering commands, in our case
velocity commands, to the platform. This linking is accomplished using drivers to connect
the hardware devices, such as Leddar IS16 and Kinect One, to the software modules that
process the received information and generate velocity commands to move the platform.
The iai_kinect2, freenect lauch and leddartech are drivers provided by the ROS commu-
nity responsible for publish topics containing pointcloud messages from the Kinect One and
Kinect 360 and scan messages from Leddar IS16. The walker driver receive encoder mesure-
ments from the powerdriver and using the kinematic model of the walker the odometry data
is computed. This driver also receives velocity commands that are sent to the low-level
part of the platform. This driver is based on the driver developed for the ISR intelligent
wheelchair Robchair [14] and, although the robchair driver was made for a different platform,
it can be adapted to other platforms with low-level architecture not much different from the

wheelchair.

Velocity
comands

IJoystick

gamepad_userintent

Figure 5.3: Physical layer architechture.

5.2.2 User interface

Our system was created to help the navigation of the user and there is a need for the user
to interact with the system. With this in mind the gamepad_userintent package was used
to receive velocity commands from the user and publish this information that will be used
by the robot assisted navigation package to plan the best trajectory. A similar package,
walker _userintent, was also used to receive user commands using the handles of the ISR-
AIWALKER. This package is connected by TCP / IP to the HMI module proposed in [25]
and provides the user intent on the ROS platform. We use the Rviz package, included in
the ROS platform, to be able to see the available topics like the occupancy grid map, the

32

trajectories generated and the user intent.

5.2.3 Perception Node

The type of mobile robot used in this dissertation as the need to perceive the surrounding
area and find a way to localize itself in the environment. For this propose it was developed the
local_map package that receives data from the sensors and odometry information from the
walker _driver and then transform this information into an occupational map. The package
also receive information about the system transforms in order to compute the information
accordingly with its location source. This package was adapted from the original local_map
package available in the ROS community that takes an input from a laser scan message and
output a local map as occupancy grid. An overview of the perception module is represented

in the following figure.

/Pointcloud2

/leddar_scan /local_map

Local_map
package

Figure 5.4: Perception module representation.

/odometry

5.2.4 Navigation Node

The navigation package dwa_nav provides an implementation of the Dynamic Window Ap-
proach to local navigation. This package receives Odometry information from the Robchair _driver,
velocity information from the gamepad userintent or walker userintent and a map created
in the local map package and then computes trajectories. The package then outputs the
command velocities that lead to the best trajectory and the visualization messages of the
computed trajectories, the best trajectory and the trajectory chosen by the user. The inputs

and outputs of the navigation module are represented in the following figure.

33

/ecmd_vel

/OccupancyGrid

Ivisualization_dwa

-
ui
package
/visualization_solution

/odometry

Nvisualization_goal

Figure 5.5: Navigation module representation.

5.3 Local Environment Perception

Five experiments were carried out, using the ISR-AIWALKER presented in the previous
section, with the propose of validating the local environment perception module of this dis-
sertation. The experiments were carried out in environments where a user may manifest
some difficulties, such as ramps, and in environments where navigation is not permitted,
such as stairs or obstacles that the user may not be able to overcome. All of these ex-
periments were then compared with an available solution based on standard ROS package
solution, presented in figure 5.6 in a local map framework. This available solution converts

the point cloud to a laser-like scan and then projects the result to a local occupational map.

Kinect one o Pointcloud Point cloud /scan Occupation maj
iai_kinect2 > to Local map P P

laser scan

Y

Figure 5.6: Standard ROS package solution overview.

The results were also compared with a PCL-based algorithm, inspired on the LIDAR
sensor model presented in [1]. The PCL-based algorithm divides the point cloud into two
stages: mapping of obstacles with height (z) between 0.2 and 1.5 meters and mapping of
elements near the ground plane, considering for this heights smaller than 0.2 meters. The
first one considers the coordinates (z,y, z) of the point, p, of the point cloud, assigning a
probability of occupancy to points with height, z, between 0.2 and 1.5 meters. Using a ray
tracing approach (Bresenham’s line algorithm), it was possible to define a free path from the
coordinate (S;, Sy) of the sensor source to the coordinates (p,, p,) of the detected point. The

second stage uses the points the point cloud for heights smaller than 0.2 meters to define the

34

ground plane used as a reference for motion planning. For this, it uses the region growing
algorithm to segment the points of the chosen region. These segments serve as inputs to
the RANCAC algorithm where for each segment the correspondent plane is extracted. The
ground plane is then selected taking into account the closest plane to the robot. Using the
selected ground plane, as threshold is used to map the points (z < 0.2). In this way we can
compute the occupation map by marking the points as free near the ground plane, and the
reaming points with heights above or below the ground threshold are marked as occupied.
Qualitative results are shown in the respective images of each scenario being that the
sequence of images describing the procedures (from image (a) to (e)) is the same for all of
the scenarios. This sequence is given from left to rigth with real image (a), input pointcloud
(b), occupational grid map with normal RTT Evaluator (c), occupational grid map with

normal RTT Gradient Evaluator (d), occupational grid map with pcl method (e).

5.3.1 Test Scenario 1

The first scenario considered for the validation of the local environment perception module
was a common amphitheater, where the user is faced with an access ramp from the entrance
door, through the benches and ending on the stage. Two cases were then considered in this
scenario, where in the first the user intends to descend the ramp and in the second where he

intends to climb the ramp.

Figure 5.7: Considered scenarios for the first test. (a) Amphitheater ramp down, (b) Am-
phitheater ramp up.

Each test lasted approximately five seconds and the results were analyzed separately.

The results obtained for each of the methods considered are represented in the following

figure.

35

Figure 5.8: Results for the first scenario.

Results from 5.8 proves that the local map from Kinect One, using the RRT-GPD,
Fig.A—1II and Fig. B—11, and the RRT-GPD with Gradient constraints, Fig. A— 1] and
Fig. B — III, provided by the proposed method, generate very similar results, being that
the difference between them is reduced to some pixels that will not influence the navigation
of the platform. The proposed method provided a reliable environment model by detecting
the general scenario outline and the considered hazards as it correctly mapped the access
ramp as well as the benches and the space between them. It is possible to verify that the
result generated form the pcl method, Fig. A — IV and Fig. B — IV, does not contain
the same amount of occupancy information as the proposed method. This method correctly
detects the wall and part of the tables, Fig. A — I and Fig. B — I, but cannot properly
detect the amphitheater chairs as well as the space between them. The biggest difference
between the methods is the time each takes to generate results. The proposed method takes
about 30 milliseconds to return the occupation map, contrary to the results obtained by the
pcl method that took about a second to process the occupation map.

Then, the result of the proposed method for each of the sensors used was compared with
the method provided by the ROS community using a laser scan obtained through the kinect

One sensor. These results are shown in Fig. 5.9b for the descent of the amphitheater,

36

(a) (b)
Figure 5.9: Comparison between the proposed method (a) and the available ROS method

(b) for the descent of the amphitheater.

and in Fig. 5.10 for the downward ramp of the amphitheater.

(a) (b)

Figure 5.10: Comparison between the proposed method (a) and the available ROS method
(b) for the upward ramp of the amphitheater.

As expected the proposed method using Microsoft Kinect One provides a detailed map,
which is the closest to reality, correctly detecting the wall and the chairs of the amphitheater,
allowing safe navigation for the user of the walker.

The standard ROS solution provided only an outline of the scenario since the point
cloud was converted to a laser-like scan and important points relevant to the detection of
near ground objects were discarded because the laser scan does not provide information of

obstacle heights, which in this case could lead to the collision of the walker with the tables.

5.3.2 Test Scenario 2

The second scenario considers an office environment that includes several tables and chairs,
as well as a gutter on the floor. This was an important scenario precisely because it contains a

gutter, which represents a dangerous obstacle because the user may not realize its existence,

37

since it takes the walker in front of him, and therefore can get stuck or fall because of this
obstacle, while the incorrect mapping of the remaining obstacles could not have such harmful

effects as a fall.

Figure 5.11: Test Scenario for the second test.

Through the analysis of the occupation map presented in 5.12 generated by each of the
methods, it is possible to conclude that the proposed method, using RRT-GPD and RRT-
GPD with Gradient constraints, in Fig. A—ITI and Fig.A—111, generate very similar results.
Again, the results obtained through the PCL method in Fig. A — IV were unsatisfactory
because the method, besides taking about a second to process the map, is not able to correctly
map the gutter nor the tables at the bottom of the scene, unlike the maps generated in Fig.
A —1II and Fig. A — I11 where is possible to have a clear view of the obstacles and the free

space between them.

Figure 5.12: Results for the second scenario.

The results shown in 5.13 proves, once again, that the local map provided by our method
presents the best result as it correctly detects the shape of the obstacles and the correctly
mapped the floor outlet, providing a safer navigation for the user. The ROS approach
correctly detects the table but can not detect the gutter, and as it is a laser scan does not
provide as detailed information as the pointcloud since it can not detect the most distant

obstacles, making it more difficult to find a valid trajectory for navigation propouses.

38

(a) (b)

Figure 5.13: Comparison between the proposed method (a) and the available ROS method

(b) in a office environment

5.3.3 Test Scenario 3

The third scenario, showed in Fig. 5.16a, considers a partially open door being that this
scenario is one of the most difficult for most of the mobile robots, since the type of materials
used in the floor may be different in each of the sides of the door, what makes the light
reflection is different what It may lead to wrong calculation of the map of occupation if
a sensor is used that collects data through the reflection of the light, which is the case of

Kinect One used in this dissertation.

Figure 5.14: Test Scenario for the third test.

This test was not conclusive since there were times when the method worked correctly,
especially in the cases tested during the night, and failed in cases where the difference of light
between the two sides of the door, i.e. during the day, leading to an inconsistent mapping,

which causes the robot to not go through the door every time the test was performed.

39

Figure 5.15: Results for the third scenario.

Considering the case where the method correctly mapped the occupied space, represented
in 5.15, it was verified that the results obtained in the different methods are quite similar,
since we have obstacles with very simple forms having been correctly detected the door and
the space between it and the wall, as well as the foot of another user that opened the door

for the user of the walker to pass.

(b)

(a)

Figure 5.16: Comparison between the proposed method (a) and the available ROS method
(b) for a partially open door.

The same result is verified when we use the method available in ROS, and in this case we
find the same reflection problems because this method uses the point cloud of kinect One,

which causes it to have the same problems as the method proposed using this sensor.

5.3.4 Test Scenario 4

The following scenario was the one that led to the development of this method because it
is a very important scenario regarding the safety of navigation when rehabilitation devices

are used. The scenario, divided in two, represents a descending and ascending staircase, in

40

a scenario where it is important to ensure that the user does not fall from the stairs in the

case of descent, and does not collide with the stairs to climb.

Figure 5.17: Considered scenarios for the fourt test. (a) Staircase down, (b) Staircase up .

It is possible to verify through the analysis of figure 5.19 that the developed method, in
Fig. A—II and Fig. A — I1I, correctly represents the downward stairs, the railing and the
walls, thus creating a occupation map where it is clearly possible to visualize the mentioned
obstacles, which guarantees that there will be no doubt during navigation that there is a
staircase and that this represents an obstacle that the walker will not be able to transpose.
As for the ROS method, Fig. A — IV, correctly represents the stairs and a little of the walls
but fails in the handrail, marking this space as free. This approach prevents the user from
falling down the stairs but may lead to a colision with the rails. As for the second scenario,
both methods, Fig. B — II and Fig. B — 11, can correctly represent the staircase, which
would be expected since it is a scenario where it is possible to detect the vertical plane of
the first step. Even though the map created by the proposed method is more perceptible
than the map generated by the PLC method, Fig. B — IV, since it clearly detects that
the stairs and the handrail are different obstacles, while the PLC method detects a plane
between them, which leads to incorrect mapping of these two obstacles and, at the limit,

this representation could lead the walker to a local minimum.

41

Figure 5.18: Results for the fourth scenario.

We can also verify from Figure 5.19 and 5.20 that the navigation using the available
ROS method cannot be allowed in this type of scenario since none of the methods can map
stairways because these methods uses 2D sensors and this type of sensors do not provide

z-axis information of the surrounding environment.

(a) (b)

Figure 5.19: Comparison between the proposed method (a) and the available ROS method

(b) for downward stairs.

42

(a) (b)

Figure 5.20: Comparison between the proposed method (a) and the available ROS method

(b) for upward stairs .

We conclude that in the first scenario only 3D sensors can be used in conjunction with
the proposed method since the information collected through the sensors is not discarded,
unlike the ROS approach that can only represent the walls correctly. This means that the
navigation system will not allow the navigation of the walker in the direction of the stairs,
guaranteeing the safety of the user in one of the most dangerous indoor scenarios for the

navigation of a mobile robot.

5.3.5 Test Scenario 5

In order to compare the proposed method using the two considered sensors and the solution
provided by the ROS community, a last test was conducted in a scenario that includes three
floor outlets, represented at the top of the scenario, and some chairs and tables at the bottom

of the scenario.

43

kR
¥

|
o -
* |
" i
| i i | lﬁ :
N l
i f | r
- |
(a) (b) (c)

Figure 5.21: Results obtained from experiment 5 with Microsoft Kinect One and the proposed
method (a), Leddartech Leddar IS16 (b) and standard ROS package solution using Microsoft
Kinect One (c).

The results, represented in 5.21, show that the proposed method using the Kinect One
provides a reliable environment representation that is able to detect the general outline of
the scenario as well as the three floor outlets, resulting in a valid occupational map. The
results using the Leddar IS16 sensor, along with the proposed method, provided a rough
outline representation of the scenario, being unable to represent the floor outlets. This was
an expected result once the Leddar IS16 is a 2D sensor and for that reason can only detect
obstacles that are in the direction of the light emitted beam. However this type of sensor
is important in a safety-oriented scenario because it is able to provide a reliable local free

space map

5.4 Robot Assisted Navigation

Several experiments were carried out, using the ISRobot2 platform, in order to validate
the robot assisted navigation module proposed in this dissertation. The validation of this
module is in fact the validation of the complete system since it uses the perception and the
navigation module to assist the user to navigate through the chosen scenarios. Static and
dynamic scenarios were used to perform these tests, since users of this type of platform are
faced with these scenarios on a regular basis. It is important to refer that the user can stop

the platform at any time by simply stop giving commands to the platform.

44

5.4.1 Static environment

Test Scenario 1

In the first scenario considered, the platform was place positioned in the middle of the hall
and it was placed an obstacle close to the right wall. The objective of this test was to prove
that the robot can avoid the obstacle without colliding with the other side of the hall. The

experimental scenario for this second test is showed in the Fig.5.22.

Figure 5.22: Test Scenario for the first test.

(a) (b)

Figure 5.23: Key phases of the first scenario.

From the first image it’s possible to understand that the user only gave command to walk
straight forward and when the obstacle is detected the robot shows the chosen trajectory to
avoid colliding with the obstacle, and then starts to move to this direction. The platform then
detects the left wall and readjusts again the trajectory to avoid the collision with the wall.
From the second image it is possible to perceive that the user continues to give commands

to the platform to move forward and the avoidance was performed by the proposed dwa

45

algorithm, proving in this case that the method successfully avoids collisions.

Test Scenario 2

For the second scenario, the platform was placed in the same place as the previous tests, and
one more obstacle was placed. This obstacle was placed on the left side of the scenario, as
shown in Fig.5.24, to test the collision avoidance considering two obstacles in opposite sides

one after the other and, once again, the user only gave commands to move forward.

(a) (b) (c)

Figure 5.25: Key phases of the second scenario.

It is possible to understand, form the first image, that the robot detects the first obstacle
and chooses the trajectory that avoids the collision, being that as soon as the second obstacle
is detected the trajectory changes and the platform successfully avoids the two obstacles, as
it can be seen in the second image. The third image shows the moment that the platform
detects the right wall and once again recalculates the trajectory avoiding the wall, successfully

completing this second scenario.

46

Test Scenario 3

The last scenario was the most complete of them all because this test was conducted on
a real scenario where regular obstacles, like garbage cans and potted plants can be found,
as well as some windows and different surfaces that can confuse the system. This test was
performed on the first floor of the ISR where a path was defined that includes obstacles and

90 degrees curves like the corridor corners and to enter or leave rooms.

s

()

Figure 5.26: Third scenario map

The test started on the Automation LAB where the platform needs to pass through a
doorway followed by a right curve, as shown in Fig. 5.26a and Fig. 5.26b. Right after this
curve the user commanded the platform to move to the left, entering in the main corridor
of this test. We can see in Fig. 5.26¢ that the platform doesn’t choose a different trajectory
from the user because the user chooses one that doesn’t have any obstacles, and because of

this, the system performed what the user required without any constrains. After this curve

47

the platform was positioned by the user in a trajectory that contained one potted plant
and when the system detects the obstacle it corrects the trajectory correctly and avoids the
collision, Fig. 5.26e, returning then to the direction that the user intended. The platform
then moves until it reaches an intersection, where the user choose, once again, a trajectory
that do not contain any obstacles and then stopped in front of a closed door where the
platform did not allow the user to move forward because it would lead to a collision.

This test proves that the system was well designed and allows the user to move safely in
an everyday environment, correcting trajectories that lead to collisions while allowing free

navigation in the remaining cases.

5.4.2 Dynamic environment

The following tests were conducted to assess the system’s behaviour in a dynamic environ-
ment, considering two cases.

Test Scenario 1

The first scenario consist in a hall with one user moving straight forward on the left side of

the scenario and the platform moving on the opposite direction on the right side.

Figure 5.27: Test Scenario for the first test.

48

r

As it can be seen in Fig. 5.28b, the robot start moving and when the person was

(a) (b) (c)

Figure 5.28: Dynamic test scenario map for the first test.

detected the user pushes the platform to the wall to move away from the user. The system
then computes the trajectory and concludes that the current trajectory will not collide with
the person or the wall, assuming the control until the person passes though the platform and

then return to the command of the user, completing with success the test.

Test Scenario 2

In the second scenario the person moves as in the previous test but then passes to the front
of the platform and then stops. As we can see in the Fig. 5.29b the system detects the
change in position of the obstacle and recalculates a new trajectory to avoid the collision

with the person and then with the left wall, completing this test sucessfully.

(a) (b)

Figure 5.29: Dynamic test scenario map for the second test.

It is important to note that the second scenario is not a usual situation because normally

a person will not try to disturb someone with walking disabilities, being that the test will

49

probably fail if a higher speed was used by the person. In this situation the system would
not take the time to apply a trajectory that would avoid collision without using high speeds,
which is not recommended in this type of platforms. In this case the platform will stop
because it is the only way to avoid the collision with the other user, ensuring the safety of

all involved parts.

50

6 Conclusion

6.1 Conclusion

This work was focused on designing modules for the local environment perception and robot-
assisted navigation to be applied to the ISR-AIWALKER in order to ensure that it follows all
of the user’s instructions, while obeying to safety rules, taking into account the knowledge of
the surrounding environment. This was a challenge because the type of approach chosen for
this dissertation was little explored in terms of assistive robotics, which makes this work a
good starting point for future real applications, thus contributing to a future where a patient
rehabilitation process will be aided by assistive robots and ensure, at the same time, their
safety throughout the process. This assistive system showed good results despite the fact that
sometimes some collisions were verified due to the sampling period chosen for the navigation
approach. Other drawback on the navigation side is the existence of local minimum, despite
of the fact that the user can readjust the walker and continue its navigation. It was verified
(see Chapter 5) that the architecture developed for the local environment perception, when
compared to other methods, can provide a richer representation and a solution to map non-
trivial obstacles with more realistic contour information, contributing to the resolution of
some key pitfalls on the handling of walkers. To accomplish the main goal, several sub-goals

were attained:

e Study of different methods for the representation of local environments and navigation

strategies;

e Research and Development of a local map solution and a moddified dynamic window

approach in ROS environment;

e Adaptation of the ISR-ATWALKER for the sensors used during the implementation of

this work and conversion of the platform to the ROS environment (driver packages);

o1

e The local environment perception and the robot-assisted navigation were successfully

tested proving that the method is robust.

6.2 Future work

The navigation method can be improved to guarantee that collisions are minimized. For
this, the complete setup must be rearranged to ensure that there are no loose parts, such as
cables. A multisensory approach, by integrating new sensors, can lead to the enhancement
of the perception module. The perception module can be enhanced to detect if the user is
falling, thus increasing the degree of safety provided by the robotic walker, and finally the

overall system should be validated with users suffering from reduced motor skills.

52

7 Bibliography

[1] Juan David Adarve, Mathias Perrollaz, Alexandros Makris, and Christian Laugier.
Computing occupancy grids from multiple sensors using linear opinion pools. IEEE

ICRA, 2012.

[2] Joydeep Biswas and Manuela M. Veloso. Depth camera based indoor mobile robot
localization and navigation. In ICRA, pages 1697-1702. TEEE, 2012.

|3] Joydeep Biswas and Manuela M. Veloso. Planar polygon extraction and merging from

depth images. In TROS, pages 3859-3864. IEEE, 2012.

|4] Johann Borenstein and Yoram Koren. The vector field histogram-fast obstacle avoidance

for mobile robots. IEEFE transactions on robotics and automation, 7(3):278-288, 1991.

[5] James Bruce and Manuela Veloso. Real-time randomized path planning for robot nav-
igation. In Intelligent Robots and Systems, 2002. IEEE/RSJ International Conference
on, volume 3, pages 2383-2388. IEEE, 2002.

[6] David M Cole and Paul M Newman. Using laser range data for 3D slam in outdoor
environments. In Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE
International Conference on, pages 1556-1563, 2006.

[7] Konstantinos G Derpanis. Overview of the ransac algorithm version 1.2. May 2010.

|8] Ivan Dryanovski, William Morris, and Jizhong Xiao. Multi-volume occupancy grids: An
efficient probabilistic 3D mapping model for micro aerial vehicles. In Intelligent Robots
and Systems (IROS), 2010 IEEE/RSJ International Conference on, pages 1553-1559.
IEEE, 2010.

[9] A. Elfes. Using occupancy grids for mobile robot perception and navigation. Computer,

22(6):46-57, June 1989.

53

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

Alberto Elfes. Sonar-based real-world mapping and navigation. Robotics and Automa-

tion, IEEE Journal of, 3(3):249-265, 1987.

Martin A. Fischler and Robert C. Bolles. Random sample consensus: A paradigm for
model fitting with applications to image analysis and automated cartography. Commun.

ACM, 24(6), June 1981.

Dieter Fox, Wolfram Burgard, and Sebastian Thrun. The dynamic window approach to

collision avoidance. IEEE Robotics & Automation Magazine, 4(1):23-33, 1997.

Luis Garrote, José Rosa, Joao Paulo, Cristiano Premebida, Paulo Peixoto, and Urbano J
Nunes. 3d point cloud downsampling for 2d indoor scene modelling in mobile robotics.
In Autonomous Robot Systems and Competitions (ICARSC), 2017 IEEE International
Conference on, pages 228-233. IEEE, 2017.

Diogo Manuel da Silva Gongalves. Robchair 2.0: Simultaneous localization and mapping

and hardware/software frameworks. Master’s thesis, DEEC-FCTUC 2013.

Raia Hadsell, J. Andrew Bagnell, Daniel F. Huber, and Martial Hebert. Accurate rough

terrain estimation with space-carving kernels. In Robotics: Science and Systems, 2009.

M. Herbert, C. Caillas, E. Krotkov, I. S. Kweon, and T. Kanade. Terrain mapping for
a roving planetary explorer. In Proceedings, 1989 International Conference on Robotics

and Automation, May 1989.

Armin Hornung, Kai M. Wurm, Maren Bennewitz, Cyrill Stachniss, and Wolfram Bur-
gard. OctoMap: An efficient probabilistic 3D mapping framework based on octrees.
Autonomous Robots, 2013.

Urbano J. Nunes Joao Paulo, Paulo Peixoto. Isr-aiwalker: Robotic walker for intu-
itive and safe mobility assistance and gait analysis. In IEEE Transactions on Human-

Machine Systems, 2017.

Lydia E Kavraki, Petr Svestka, J-C Latombe, and Mark H Overmars. Probabilistic
roadmaps for path planning in high-dimensional configuration spaces. IEFFEFE transac-

tions on Robotics and Automation, 12(4):566-580, 1996.

Oussama Khatib. Real-time obstacle avoidance for manipulators and mobile robots.

The international journal of robotics research, 5(1):90-98, 1986.

54

[21]

22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

31]

32]

33]

Steven M LaValle. Rapidly-exploring random trees: A new tool for path planning. 1998.

J.J. Leonard and H.F. Durrant-Whyte. Simultaneous map building and localization
for an autonomous mobile robot. In IEEE/RSJ International Workshop on Intelligent
Robots and Systems IR0OS’91., pages 1442-1447, 1991.

F. Lu and E. Milios. Globally consistent range scan alignment for environment mapping.

Auton. Robots, 4(4):333-349, 1997.

H. Moravec and A. Elfes. High resolution maps from wide angle sonar. In Proceedings

of the 1985 IEEFE International Conference on Robotics and Automation, March 1985.

Joao Paulo, Paulo Peixoto, and Urbano Nunes. A novel vision-based human-machine

interface for a robotic walker framework. In ITEFE RO-MAN, Japan, 2015.

Cristiano Premebida, Joao Sousa, Luis Garrote, and Urbano Nunes. Polar-grid rep-
resentation and kriging-based 2.5D interpolation for urban environment modelling. In

IEEE ITSC, Spain, 2015.

Tahir Rabbani, Frank Van Den Heuvel, and George Vosselmann. Segmentation of point
clouds using smoothness constraint. International archives of photogrammetry, remote

sensing and spatial information sciences, 36(5):248-253, 2006.

Tiana Rakotovao, Julien Mottin, Diego Puschini, and Christian Laugier. Multi-sensor

fusion of occupancy grids based on integer arithmetic. IEFEE ICRA, 2016.

Carolina Raposo, Michel Antunes, and Joao P Barreto. Piecewise-planar stereoscan:
structure and motion from plane primitives. In Furopean Conference on Computer

Vision, pages 48-63. Springer, 2014.

Sebastian Thrun. Learning metric-topological maps for indoor mobile robot navigation.

Artificial Intelligence, 99(1):21 — 71, 1998.

Sebastian Thrun. Learning occupancy grid maps with forward sensor models. Auton.

Robots, 15(2):111-127, September 2003.
Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic robotics, 2005.

R. Triebel, P. Pfaff, and W. Burgard. Multi-level surface maps for outdoor terrain
mapping and loop closing. In IEEE/RSJ IROS, Oct 2006.

99

Appendix A

56

in "IEEE International Conference on Autonomous Robot Systems
and Competitions (ICARSC), Coimbra, 2017".

3D Point Cloud Downsampling for 2D Indoor
Scene Modelling in Mobile Robotics

Luis Garrote, José Rosa, Jodo Paulo, Cristiano Premebida, Paulo Peixoto and Urbano Nunes

Abstract—Sensory perception and environment modelling are
important for autonomous navigation in mobile robotics. 2D
discrete grid representations such as the classic 2D occupancy
grid maps are a widely used technique in scene representation
because of the inherent simplicity and compact representation.
In recent years, many 2.5D and 3D grid based methods have
been proposed however, as for the 2D case, a compromise
between keeping a low computational bound and reliable sensor
interpretation must be kept in order to perform real-world tasks.
Assuming the input data in the form of a 3D point-cloud, in
this paper we propose a 2D scene modelling approach which
converts the 3D data to a 2.5D representation and then to
a 2D grid map in an efficient and meaningful manner. The
proposed approach incorporates a new rapidly exploring random
tree inspired ground-plane detection (RRT-GPD), and an inverse
sensor model (ISM) to correctly map 3D to 2.5D and then to 2D
grid cells. Experiments were conducted in indoor scenarios with a
robotic walker platform equipped with a Microsoft’s Kinect One
and a LeddarTech’s Leddar IS16 sensor. Reported results show
an improvement on the representation of non-trivial obstacles
(stairs, floor outlets) over the classical occupancy grid map, when
applied to a 3D point cloud input.

I. INTRODUCTION

The development of sensor-based perception systems is
one of the main focuses of research in robotics. Considering
the increasing introduction of robots in human populated
environments, there is an heightened concern to ensure the
safety of all agents who may interact with the robot. In
particular, when considering the case where the robot is a
physical support aid, such as a robotic walker used in gait
rehabilitation scenarios [1], the safety of all agents is crucial.
The robot must ensure that it follows all the user’s instructions
accordingly, while obeying safety rules taking into account the
knowledge of the surrounding environment.

Despite the recent advances in the area, the creation of
robust models for representation of the surrounding environ-
ment of the robot is still an open and challenging problem,
mostly because of the uncertainty processing of sensory mea-
surements and their correct representation in unpredictable en-
vironments. Usually such representation follows an approach

Authors are with Institute of Systems and Robotics, Electrical and Com-
puter Engineering Department, University of Coimbra, Coimbra, Portugal.

This work was supported by the Portuguese Foundation for Science
and Technology (FCT) under the PhD grants SFRH/BD/88672/2012 and
SFRH/BD/88459/2012 with funds from QREN — POPH and the European
Social Fund from the European Union. It was also partially supported by the
FCT projects UID048 and AMS-HM12: RECI/EEI-AUT/0181/2012.

Email: {garrote, joserosa, jpaulo, cpremebida, peixoto, urbano}@isr.uc.pt

978-1-5090-6234-8/17/$31.00 (©2017 IEEE

based on occupancy maps, which makes it possible to deter-
mine, based on the probabilistic models of the used sensors,
specific information about the existence of free and occupied
space in the surrounding environment. In this work, we review
the 2D occupancy grid-map framework, and propose a new
approach to the problem of mapping collision-able non-trivial
obstacles from 3D point clouds into a 2.5D and then to a
2D environment representation for autonomous navigation.
Such obstacles may have can have disastrous consequences
for the user if not detected properly (e.g., stairs, gutters
or floor outlets). The main contributions are: 1) an inverse
sensor model (ISM) for 2.5D to 2D mapping, from 3D data
input, incorporating the ground-plane and the concept of voxel
density; 2) a new rapidly exploring random tree inspired
ground-plane detection (RRT-GPD) algorithm; 3) real time
execution (= 30 frames per second).

An overview of the related work in environment represen-
tation is provided in section II. In Section III, the proposed
method is explained. Experiments are carried out in section IV,
using a differential mobile robot equipped with a Kinect and a
Leddar IS16 sensors, followed by discussions of the reported
results. Final conclusions are pointed in section V.

II. RELATED WORK

Environment representation and modelling have been the
focus of many research works in mobile robotics [2], [3], with
many representations being proposed in the last 30 years. We
can categorize scene representations in 3 main classes: direct,
topological or grid-based. The approach presented in this paper
follows a grid-based representation in which the environment
is subdivided into a set of smaller units that form a grid.
Based on the unit structure, the grid-based representation can
be further extended into 2D cells, 2.5D cells (or voxels) and
3D voxels. In the literature, the 2D grid-map is a well-known
representation, providing a probabilistic framework [4], with
fast and constant-time access while being usually only appli-
cable in planar environments. In this type of representation
each cell contains the probability of occupancy, where values
near zero correspond to free cells, values near one occupied
cells and a middle value corresponds to an unexplored region.
These probabilistic values depend on the successive readings
from sensors, increasing or decreasing according to sensor
observation models. On the other hand, representations such
as 2.5D grid-maps provide a framework to represent eleva-
tions and irregular terrain instead of just occupancy, having
properties similar to 2D maps but with information regarding

in "IEEE International Conference on Autonomous Robot Systems
and Competitions (ICARSC), Coimbra, 2017".

the height of each cell, and a computationally lighter model
than 3D grid-maps. However, a 2.5D representation can not
fully represent vertical overlapping. Solutions to this problem
have been proposed in the form of multi-layer maps. These
grid-map approaches are easy to build, represent, maintain and
facilitate computation of shortest paths but, on the other hand,
they present downsides such as being memory consuming for
large environments and presenting poor interfaces with most
classic planning algorithms. More recently, 3D grid-maps, and
in particular solutions such as octomaps [3], provided a reliable
3D representation at the expense of variable access time,
increased computational complexity and increased planning
complexity for ground robots. In spite of the constant evo-
lution, 2D grid-map is still an usefull and somehow efficient
representation for indoor and outdoor scenarios but, due to its
own limitations, fails to incorporate vertical elements that are
in the robot’s pathway, even if they can be trivially spotted
by humans. A solution to this problem could be the use of
a ground reference and/or a mapping strategy in order to
distinguish between obstacles and drivable space. The ground
reference could be provided by elevation tresholds or by a
ground-plane detection algorithm. In [5], [6] 2D grid-maps are
created from 3D point clouds and stereo images where a fusion
model incorporates vertical penalization based on elevation
thresholds. In [7] a 3D voxel representation is created from
stereo images and converted to 2D grid-maps using a voxel
observation model. Some solutions available in the Robot
Operating System (ROS) provide a medium of converting
3D point clouds into 2D laser scan messages using elevation
thresholds and can be trivially converted into 2D grid-maps.
In [8], 2D grid-maps are computed from stereo sequences
using a intermediary 2.5D representation to generate elevation
thresholds. Solutions for multiple plane detection [9] have
been proposed in indoor scenarios from depth images, which
can be adapted for ground-plane detection. For ground-plane
detection in point clouds, region growing methods [10] can
provide good results, but their computational cost becomes
prohibitive in denser point clouds.

In this paper, we propose an approach for 2D scene repre-
sentation and modelling, from a 3D point-cloud input, to allow
autonomous navigation in real-world (indoor) conditions. The
approach takes advantage of 2.5D representation to detect non-
trivial obstacles. Moreover, a ground detection solution, using
a RRT algorithm, is also addressed.

ITII. PROPOSED METHOD

In this section we detail the proposed method and its
functional modules. The key motivation here is to develop a
reliable and computationally efficient method for mapping 3D
point clouds into a 2D grid-map and consequently, the correct
mapping of collision-able non-trivial obstacles. Such obstacles,
are defined in the context of this work as obstacles that are in a
given robot’s pathway but are but are neither trivially detected
nor efficiently mapped by common 2D mapping approaches
(e.g., stairs, small boxes or electric wiring). The proposed
method depends on a 2.5D representation, followed by the

3D point cloud downsampling method
Ground-plane
3D point cloud > Mg's?n > detection |—>f 2'5(%:3')2D L5 2D Occl:’itijpancy
pPing (RRT-GPD) g

Fig. 1. Depiction of the proposed method including the modules: 2.5D
mapping; ground-plane detection; 2.5D to 2D conversion.

ground-plane detection and then the final (enhanced) 2D grid-
map is obtained using a 2.5-to-2D ISM.

A general overview of the proposed method is presented in
Fig. 1 which includes 2.5D mapping, ground-plane detection
and 2.5D to 2D conversion.

A. 2.5D Mapping

The first module builds on the construction of a 2.5D
environment representation from a 3D point cloud [11]. The
2.5D representation discards the concept of occupancy and
provides an elevation measure for each cell. The proposed
2.5D grid is composed by m; x m, cells with constant
resolution d,.. Each cell ¢o 5p is addressed by ¢ and j indexes
and has the elements co 5p < {27, 27, N, } where 2~ is the
minimum elevation value, zT the maximum elevation value
and IV, the number of samples that contribute with information
to the cell. Given a 3D point cloud composed by a set of
3D Cartesian points (px = (Tk, Y, 2x) 7, k = 1,2,...,n) the
values present in each cell are obtained by projecting the x
and y components on the grid cell with consequent update
of the maximum and minimum elevation (z* and z~) and
the number of samples (||z]|) projected to the given cell. The
projection consists on the conversion of the x and y component
from pj into grid indexes 4,j with i < m,, 7 < my,
Mg, My > 0. The 3D to 2.5D maps conversion process is
illustrated by an example in Fig. 2.

B. Rapidly exploring random tree based ground-plane detec-
tion (RRT-GPD)

One problem when converting an elevation map into an
occupancy grid is the definition of free and occupied 2.5D
cells. Given a 2.5D grid, the definition of what is an obstacle
or what is navigable space increases in difficulty because there
is no reference to the location of the ground plane. For a given
frame, we can assume that a robot moves locally in a 2D plane,
and based on this constraint we propose a new approach to
the problem of ground-plane detection that operates with a
2.5D map and is inspired by the rapidly-exploring random tree
(RRT) algorithm, which has been widely applied in motion
planning [12] and region growing [10], in the sense that
it implements a rapid flood-like expansion towards similar
normals.

The inputs of the proposed RRT-GPD method include, the
robot’s pose, the plane’s normal threshold, elevation threshold,
the 2.5D environment model, the maximum number of itera-
tions to find a suitable solution, and a node expansion distance.
The RRT-GPD (presented in Algorithm 1) starts by finding a
valid seed to form the root of the RRT (nearestValidSeed).

Fig. 2. Representation of the conversion from 3D point clouds to 2.5D environment representation. From left to right, the input 3D point cloud (given by a
Microsoft’s Kinect One), the projection step where each point in the point cloud is projected into the corresponding cell, and the final result where each cell
resembles a voxel defined by the maximum and minimum elements projected onto the cell.

The use of an invalid seed may create a ill formed tree. This
is due to the sparse nature of the 2.5D representation (see Fig.
2) meaning that not all cells of the provided 2.5D map Ms 5p
will contain information. Besides, a seed far from a valid cell
may be unable to expand, a problem which can be solved using
a variable node expansion distance. In the process of finding a
valid seed, the robot’s pose provides an initial guess, and since
no assumptions are made on the sensors’ configuration (i.e.,
transformation between sensor and robot) every direction is
explored to find a valid candidate. Although it is important to
find a valid candidate to initialize exploration, the final solution
may discard the initial seed point (i.e., it is not guaranteed
that the final solution will contain the initial point). This
description is based on the assumption that the 2.5D map is
computed with the sensor referenced on the robot’s frame and
that exists a relation between the robot and the environment
(transformation between robot and world frame) but for local
maps (mobile robot centered in pgy. = (0,0,0)T) or for a
representation in the sensor’s referential the constraints are
similar. The concept of valid seed implies in this particular
case, a valid local plane computed using fitPlane. After finding
a valid seed and a correspondent local plane, a new tree is
generated in initialiseTree where the seed, which corresponds
to the center of the plane, and the plane normal define the
base unit (or node) of the RRT tree. If a valid node is created,
the algorithm enters an iterative process to expand the RRT
until it reaches K iterations. For each iteration the first step
involves sampling (sampleRandomDirection) a point .4,
in a search space window. For a given sample node z,qnd,
the nearest node .4, already present in the tree is retrieved
(nearestNode) and a new node Zcypansion 15 created based on
the direction between T, cq, and x,qnq (provided that they do
not overlap). The direction is given by (angleBetween),

Trand (y) — Tnear (y)

0 = arctan (1)
(‘Trand(l'> - ‘Tnem’(x)
and the (x,y) component is given by,
' | zpear(z) + dy, cos(0)
xewpanszon (‘T7 y) - {xnea’r (y) _"_ dn Sin(e) (2)

where d,, denotes the node expansion distance. For the
new candidate node Tezpansion, the z component is given by
the procedure elevation. As stated earlier, given the sparse
nature of the 2.5D grid, not every Tezpansion Will correspond
to a valid cell when projected on 2.5D. To provide a valid

z component we employ a spatial interpolation method on
the node neighborhood (a region of interest with dimensions
(82,8y) centered in Tegpansion) and if an invalid z value is
retrieved (no valid neighbors) the current iteration is ended.
With a valid Zezpansion, and applying a similar spatial inter-
polation method, a set of neighborhood points P is extracted
(interpolation) where empty points missing the z component
are interpolated and discarded if the neighborhood does not
contain valid elements. If the neighborhood P contains at
least three non-collinear points a least squares regression is
performed to find the best planar fit to the points (fitPlane) of
the form az + by +cz+d = 0. Given a valid plane plane;ocai,
the inner product of the normal stored in @4, and the planes’
normal (normal(plane;,qq;)) is computed and if it is less than
a given threshold (/Vy,) the plane is considered to be at least
similar in orientation given the node .. In order to analyze
whether the new plane can connect or not with the nearest
node, the variation in height is also checked (using the eleva-
tion threshold (E}y)). If the normals are not similar, the nodes
near a radius d,, from Tezpansion are retrieved (nearestNodes)
and the same similarity thresholds are applied to validate
further node connections. If a pair plane-node is conformant
(i.e., is valid for each threshold) a new node is added to the
tree, containing the parent connection (Z.q.), the new center
point (computed plane midpoint) and the correspondent plane
normal. The last step after adding a node to the tree is to
update the search space window (updateSearchSpace). The
search space window starts centered on the seed node but with
each added node and each iteration, the search window grows
and shifts towards the average value (geometric center) of the
explored nodes, slightly biasing the search process to areas
with similar properties where the expansion is more prominent,
but without leaving out unexplored areas. After K iterations,
the center points of each node on the RRT tree are extracted (a
Kd-tree is used at the algorithm’s core to store each discovered
node) and a new plane fitting is performed. In this final
step, we apply the random sample consensus (RANSAC)
algorithm [13] due to its robust estimation even in the presence
of outliers. The RRT-GPD algorithm is summarized in the
pseudocode of Algorithm 1.

C. 2.5D to 2D conversion

The conversion from 2.5D to 2D follows the same principles
introduced with the integration of sensor readings for occu-
pancy grid mapping [14], [4]. In this case, our observations

Algorithm 1: Rapidly exploring random tree based
ground-plane detection (RRT-GPD) algorithm.

Input: Robot pose (pzy-), Plane normal threshold (i) ,
Elevation threshold (E:p), 2.5D Map (Ma2.5p) ,
Maximum number of iterations (K) , Node expansion
distance (d,)

1 Initialization:
2 po < nearestValidSeed(pzy-, M2.5D);
3 (G < initializeTree(po);

4 for k=1 to K do

5 ZTrand < sampleRandomDirection();

6 Tnear < nearestNode(G,xrand);

7 0 < angleBetween(TnearsTrand);

8 Teapansion(T) = Tnear(T) + dyn cos(8);
9 Teapansion(Y) < Tnear(y) + dn sin(0);

10 Lexpansion (Z) <~ elevation(Mg‘g,D, xe:(:pa,nsion) 5

11 P < interpolation(M2.5p, Texzpansion);

12 planejocar < fitPlane(P);

13 if | normal(planeiocar) - normal(Tpeqr) | < Ny, then
14 if | planeiocai(2) - Tnear(2) | < Ein then

G % G U { m’”,eufl'7‘1651,'[)@7%5'7;()’”,3
normal(planeiocat) };
updateSearchSpace(Tezpansion);

15
16

17 else

18 Tneighbours < nearestNodes(G,Tezpansion,dn);

19 foreach node in Tyecighbours do

20 if | normal(planeiocar) - normal(node) | < Ny,
then

21 if | planejocai(z) - node(z) | < Ey, then

22 G+ G U { nOde,xempansiony
normal(planeiocal) };
23 updateSearchSpace(zezpansion);
24 gplane < RANSAC(Points(G))
Output: gpiane

are the elevation voxels present in the 2.5D grid-map, turning
the representation into a virtual sensor. The probability that a
cell ¢ is occupied given the observations z;.; is given in log
odds by:

p(c|zt) p(c) plclz1:-1)
l 4) =1 — I
(clzr:e) =l Ty T8 T p(e) %8 T plelere_)
———
=0, if p(c) = 0.5
3)

with p(c) the prior probability, p(c|z1.t—1) the previous
estimate and p(c|z;) denotes the probability that cell ¢ be
occupied given the measurement z and it is computed using
an ISM. The log odds representation is used here due to its
numerical stability.

To solve the 2.5D to 2D conversion problem we propose an
ISM that converts an observation in the form of an elevation
voxel ¢, to the probability that given the actual observation,
the cell from the 2D grid is occupied p(c|z:). Each elevation
voxel can be defined as being in a valid state if it contains
more than one measurement (N, > 1). In order to determine
the influence of each voxel we rely on the concept of voxel
density explored in [15]. An elevation voxel ¢, in the 2.5D

map (see Fig. 2) occupies the volume given by V,pze; = hA,
with h is the height of the voxel (h = Az = 2t — 2z7) and A
the base area of the voxel (i.e., based on the cell resolution).
The voxel density is given by pyozer = ﬁ , where m is
the voxel mass. The mass of a voxel in this context can be
defined as the amount of data the voxel contains and can be
extrapolated using the number of samples N, of an elevation
voxel. To represent a normalized voxel density, the following
sigmoidal function is proposed,

KTIL

Kn(Cv(Nz)—dmm))

“
]_ + 67(Vyozel

pv0$el(cv) =

where K, denotes an amplitude gain, K,, a sample nor-
malization factor, and d,,;, the minimum number of points.

The voxel is composed by 3 explicit parameters and an
implicit one related to the distance |c,| defined by the voxel
position in relation to the base frame (e.g., sensor frame, robot
frame or local frame). In the previous subsection we presented
the RRT-GPD method to extract the ground plane that from
now on is denoted by gpiane-

1) Inverse sensor model: The proposed ISM takes into
account the voxel distance to the base frame, decreasing the
elevation voxel occupancy probability as voxels move away
from the base frame. Knowing a valid ground-plane allows
for the definition of “free” or “occupied” values in the sense
that a specific cell contains a high or low probability of being
occupied, for instance, if a voxel is near the detected ground-
plane it may be considered as part of the ground and thus
contribute to decrease the cell’s probability. On the other hand,
if an elevation voxel is above the ground, it may be considered
to be an obstacle and thus contributes to increase the cell’s
probability. The ISM is mathematically expressed by,

o If el € [0, |ey]] :

_ Uel=lewD?

p(c|zt) = {nlax(p1)owel70-5) e 202

0.5—K,
Kq+ Tt+e—(el=Teo D)

7if d> dpth (5)
77;f d < dpth

o If |c] €] |eul, |co]™*®] :

_ (el=JewD?
2

p(clze) = {max(pvoacel € 20 ,0.5)
0.5

if d>dpen (6)
vif d < dpn

where o2 denotes the Gaussian variance, K ¢ an amplitude
and bias gain with 0 < K; < 0.5, dyy, a distance threshold
and d the distance between the plane g,iune and the voxel
cy. The distance between the voxel ¢, and the plane is
computed using the maximum plane distance to the points
pt = (z,y,27)T and p~ = (2,y,27)7 where z and y
represent the voxel position. The 2D grid-map structure is
identical to the 2.5D counterpart introduced in III-A with each
cell cop composed only by an occupancy value.

IV. EXPERIMENTAL RESULTS

Two experiments, using the mobile robot shown in Fig. 3,
were carried out with the purpose of validating the proposed
method. The first experiment consisted on the qualitative

TABLE 1
Kneerong LIST OF PARAMETERS
. i A A
Variable Value Variable Value
K 600 dptn 0.03
Nin 0.2 K, 0.3
Eun 0.05 o? 0.02
Sa»Sy 3 K, 0.0005
My, My 200 Admin 3
Fig. 3. The ISR- d, 0.05 K 0.8
AIWALKER experimental
platform. dn 0.4

comparison of the generated occupancy map on two static in-
door scenarios with a Microsoft’s Kinect One sensor mounted
onboard the robot. The second experiment consisted on the
comparison of the output from the proposed method in the
Kinect One sensor, a local-map approach using the Leddar
IS16 and a solution based on standard ROS packages in a
local map framework, using the Kinect One sensor.

A. Experimental Setup and Implementation details

Our experimental setup is a walker platform (ISR-
AIWALKER, see Fig. 3). The walker’s base is a differential
drive mobile robot and contains two grips interfaced with Leap
Motion sensors and a gait perception module aided by a 3D
sensor [1]. The robot platform is equipped with two sensors (a
Kinect One and a Leddar IS16) for environment perception,
assessment of hazardous situations and safety purposes. The
Kinect One outputs a 512 x 424 point cloud and the Leddar
IS16 delivers a 16-channel distance array. Throughout the
experimental evaluation of the method, the detection and
removal of outliers was an important step (as illustrated in Fig.
4). The detection and removal of outlier points belonging to
the point cloud were performed at the 2.5D elevation voxel
map. For a given voxel, the 30 method is applied to the
set of projected elevations and then all voxel elements are
recomputed. The spatial interpolation approach applied in this
work on the 2.5D map, for candidate plane computation, is the
inverse distance weighting (IDW). Also the IDW algorithm
is applied to interpolate the 2.5D representation in order to
obtain a more dense representation to qualitatively compare
the obtained results. The IDW is applied separately in the
absence of points (invalid elevation voxel) to 2~ and zT and
the sample count for those generated nodes is the number of
neighbour voxels which contributed to the IDW computation.
The ISR-AIWALKER perception modules run in ROS nodes,
and all experiments reported in this section were carried out
in the same environment with C++ implementations. Also,
visualization of results were provided by a in-house QT/C++
application. The experiments were carried out in a mid-range
laptop with Kinect and Leddar data acquisition frequencies of
10Hz, the average time per frame for the proposed method
was less than 30 ms, and the ground-plane detection less than

3 ms. The correspondent parameter values defined in this work
are presented in Table I.

B. Results and Discussion

Figure 4 shows two indoor scenarios, an uncovered floor
outlet and downward stairs, that were considered in the first
experiment. For each scenario, qualitative results are shown in
Fig.4 where column I gives the input raw data and column I/
shows the 2.5D. The 2.5D grid-map was generated without any
preprocessing or outlier removal. As it is noticeable on the first
scenario, only a reduced number of light-blue elevation voxels
correspond to erroneously generated voxels due to noise. The
2.5D to 2D map conversion was performed and the ground-
plane was correctly detected, as well as the floor gutter, but the
correspondent outlier voxels were mapped (column //7) and
produced a non-traversable map (i.e. on the context of motion
planning and considering only this map, the robot would
be unable to move). Applying the 30 method to the 2.5D
representation (column I'V') yields a cleaner 2D representation
with only a small portion of noise at the end of the traversable
path. The following result (column V') was generated directly
from the input point cloud for a z-axis layer (0.2 to 1.5 m)
using the sensor model described in [5]. It is noticeable that
the generated 2D representation does not contain the same
amount of occupancy information. Finally, in the result shown
in column VI, the 30 and IDW were applied to the 2.5D
representation which led to a dense representation, but with
inflated cells. By comparing the columns I/I, IV, and VI,
for both scenarios, the output generated with outlier removal
achieves the most satisfactory results, as it correctly maps the
floor outlet and detects the portion of floor before the stairs.

The second experiment, with corresponding results shown
in Fig. 5, presents three 600 x 600 2D local maps: the
proposed method with outlier removal, the classic sensor beam
model using the Leddar scan as input and a standard ROS
package solution (Kinect One acquisition — point cloud to
laser scan! — local map framework?). The scenario used
for this experiment included three floor outlets (on the left
side of the scenario), office chairs and tables (on the right
side of the scenario). Results show that the local map from
Kinect One, along with the proposed method, provided a
reliable environment model by detecting the general scenario
outline and the considered hazards (correctly mapped three
floor outlets). As expected, the standard ROS solution provided
only an outline of the scenario since the point cloud was
converted to a laser-like scan and important points relevant
to the detection of near ground objects were discarded. The
Leddar local map provided a rough outline representation of
the scenario. A comparison between the methods applied to
both sensors becomes somehow unfair since the sensors have
different fields of view and the quantity/quality of information
is very distinct. However, in a safety-oriented scenario, the
Microsoft’s Kinect One, when compared to the Leddar, has

I pointcloud_to_laserscan Package — http://wiki.ros.org/pointcloud_to_laserscan

2local_map Package — http://wiki.ros.org/local_map

117 VI

Fig. 4. Results obtained from experiment 1: first row corresponds to a scenario with a uncovered floor outlet (A), second row to a scenario with downward
stairs (B). From left to right - point cloud (I), 2.5 representation with outliers (/1), 2D representation with outliers (I11), 2D representation without outliers
(IV), 2D representation from mid-level point cloud (V') and 2D representation interpolated without outliers (V'I).

|

_-T] for local mapping, incorporating the Microsoft’s Kinect One
. l_,.r_ , and the Leddartech Leddar sensor, validating the framework
in terms of safe navigation in mobile robotics applications.

L

REFERENCES

. [1] J. Paulo, P. Peixoto, and U. Nunes, “A novel vision-based human-
* . | machine interface for a robotic walker framework,” in IEEE RO-MAN,
J 2015.
’ 3 [2] R. Triebel, P. Pfaff, and W. Burgard, “Multi-level surface maps for
X outdoor terrain mapping and loop closing,” in IEEE/RSJ IROS, Oct 2006.
[3] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard,
“OctoMap: An efficient probabilistic 3D mapping framework based on
wd octrees,” Autonomous Robots, 2013.
[4] S. Thrun, W. Burgard, and D. Fox, “Probabilistic robotics,” 2005.
Fig. 5. Results obtained from experiment 2 (from left to right): office traversal [5] J. D. Adarve, M. Perrollaz, A. Makris, and C. Laugier, “Computing
with Kinect One using the proposed method, Leddar IS16 llSiIlg local map occupancy grids from multip]e Sensors using linear opinion poo]s,” IEEE
and standard ROS package solution using Kinect. ICRA, 2012.

[6] T. Rakotovao, J. Mottin, D. Puschini, and C. Laugier, “Multi-sensor
fusion of occupancy grids based on integer arithmetic,” IEEE ICRA,
2016.

H. Ghazouani, M. Tagina, and R. Zapata, “Robot Navigation Map

| 1=l§

a minimum depth distance of 0.5 m which can become (4

problematic for close obstacles, while on the other hand, the Building Using Stereo Vision Based 3D Occupancy Grid,” Journal of
Leddar, while lacking much of the precision of the Kinect Artificial Intelligence: Theory and Application, vol. 1, no. 3, 2011.
[8] H. Lategahn, W. Derendarz, T. Graf, B. Kitt, and J. Effertz, “Occupancy

One, provides a reliable local free space mapping. grid computation from dense stereo and sparse structure and motion

points for automotive applications,” in IEEE IV, 2010.
V. CONCLUSION [9] J. Biswas and M. Veloso, “Planar polygon extraction and merging from
depth images,” in IEEE/RSJ IROS, Oct 2012.

In this paper, a novel approach for 2D environment mod- [10] T. Rabbani, F. A. van den Heuvel, and G. Vosselmann, “Segmentation

. . . of point clouds using smoothness constraint,” in JEVM06, 2006.
elhng, that maps 3D mput data into an enhanced 2.5D-to- [11] C. Premebida, J. Sousa, L. Garrote, and U. Nunes, “Polar-grid repre-

2D grid map, is proposed. The approach encompasses a new sentation and kriging-based 2.5d interpolation for urban environment
RRT-based ground-plane detection algorithm (RRT-GPD) and modelling,” in JEEE ITSC, 2015.

del th f el . 1 densi [12] S. M. Lavalle, “Rapidly-exploring random trees: A new tool for path
a new way to model the concept of elevation voxel density. planning,” Iowa State University, Tech. Rep. 98-11, Oct 1998.

We demonstrated in our work that the proposed method, [13] M. A. Fischler and R. C. Bolles, “Random sample consensus: A
when compared to the classic method adapted to point clouds, paradigm for model fitting with applications to image analysis and

id ich tati d luti " automated cartography,” Commun. ACM, vol. 24, no. 6, Jun. 1981.
can ijO.VI € a richer ¥epresen 4 101? a}n a so u.10n 0 I.nap [14] H. Moravec and A. Elfes, “High resolution maps from wide angle sonar,”
non-trivial obstacles with more realistic contour information. in IEEE ICRA, 1985.

We also applied the proposed algorithm in a walker-assisted ~[15] L Dryanovski, W. Morris, and J. Xiao, "Multi-volume occupancy grids:
nari full lidatine th " d aleorithm in An efficient probabilistic 3d mapping model for micro aerial vehicles,

scenario, successfully validating the proposed algo in IEEE/RSJ IROS, Oct 2010.

scenarios that are key pitfalls on the handling of walkers. For

future work, we plan to research on a multisensory approach

	Agradecimentos
	Resumo
	Abstract
	List of Acronyms
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation and context
	1.2 Goals
	1.3 Implementations and key contributions

	2 State of the art
	2.1 Sensors for environment perception
	2.1.1 Microsoft Kinect 360 and Kinect One
	2.1.2 LeddarTech's Leddar IS16

	2.2 Environment representations
	2.2.1 Direct Representation
	2.2.2 Topological Representation
	2.2.3 Grid Based representations

	2.3 Segmentation
	2.3.1 Region growing segmentation

	2.4 Plane detection
	2.4.1 Planar Polygon Extraction and Merging
	2.4.2 Random Sample Consensus

	2.5 Path planning

	3 Local Environment Perception
	3.1 3D Point Cloud data to 2D occupancy grid map: Proposed method
	3.1.1 2.5D Mapping
	3.1.2 Rapidly exploring random tree based ground-plane detection (RRT-GPD)
	3.1.3 2.5D to 2D convertion

	4 Robot Assisted Navigation
	4.1 Dynamic Window Approach
	4.1.1 Search space
	4.1.2 Proposed Method

	5 Experimental Results
	5.1 Experimental Setup
	5.2 Software Overview
	5.2.1 Physical Layer
	5.2.2 User interface
	5.2.3 Perception Node
	5.2.4 Navigation Node

	5.3 Local Environment Perception
	5.3.1 Test Scenario 1
	5.3.2 Test Scenario 2
	5.3.3 Test Scenario 3
	5.3.4 Test Scenario 4
	5.3.5 Test Scenario 5

	5.4 Robot Assisted Navigation
	5.4.1 Static environment
	5.4.2 Dynamic environment

	6 Conclusion
	6.1 Conclusion
	6.2 Future work

	7 Bibliography
	A

