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ABSTRACT: Some new properties of the nonadiabatic coupling elements are
derived, in particular the orthogonality and gauge invariance of their longitudinal and
transverse components. A method for constructing a strictly diabatic basis set that
makes both the transverse and longitudinal components of the nonadiabatic coupling
elements of the two-state problem vanish identically and is based on introducing
overlap between the electronic states in the vicinity of the crossing seam is proposed.
© 2002 Wiley Periodicals, Inc. Int J Quantum Chem 89: 255–259, 2002
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Introduction

M any molecular processes involve two adia-
batic potential energy surfaces that get close

to each other and eventually intersect along a cross-
ing seam. Their inclusion within the Born–Oppen-
heimer or Born–Huang–Oppenheimer approxima-
tion [1, 2] requires us to solve separately the
electronic and nuclear problems. Within such an
approximation, the total Hamiltonian is split into
the electronic Hamiltonian He and the kinetic en-
ergy operator Tn of the nuclei. The electronic prob-

lem depends parametrically on the nuclear geome-
try leading to the appearance in the nuclear
Schrödinger equations of the so-called nonadiabatic
coupling matrix elements (NACMEs) between the
states of interest. These NACMEs are nonlocal and
singular, giving rise to an intricate computational
problem. The traditional solution consists of find-
ing an electronic basis set that converts the
NACMEs into nonsingular operators or eventually
fully removes them. Such a basis set is called dia-
batic [3–19] by comparison with the former adiabatic
one. Two types of diabatic bases are apparently
possible: the diabatic I basis that removes only the
singular part of the NACMEs, and the strictly dia-
batic [10, 11, 13, 15, 17] (diabatic II) basis that fully
removes the NACMEs decoupling the nuclear
equations of motion.

Adiabatic and diabatic basis sets are linked by
some orthogonal transformation. Despite the wide

Correspondence to: A. J. C. Varandas; e-mail: varandas@
qtvs1.qui.uc.pt

E. S. Kryachko is on leave from Bogoliubov Institute for
Theoretical Physics, Kiev, Ukraine 03143. E-mail: eugen@gluk.
org

International Journal of Quantum Chemistry, Vol 89, 255–259 (2002)
© 2002 Wiley Periodicals, Inc.



use of diabatic basis sets, the existence of an orthog-
onal transformation leading to a strictly diabatic
basis has been a problematic issue since the seminal
works by McLachlan [3, 20], Mead and Truhlar [10]
(see also Refs. [11, 13, 15, 17]), and Baer [7–9] (for a
recent debate, see Refs. [21, 22]). In particular, Mead
and Truhlar [10] (see also Ref. [17]) have shown that
an orthogonal transformation of two coupled states
can eliminate only the longitudinal component of
the corresponding nonadiabatic coupling (NAC),
leaving nonvanishing the transverse component.
This might lead to fewer approximate techniques to
handle the removable and nonremovable compo-
nents of the nonadiabatic coupling and define most
diabatic basis sets (Refs. [18, 19, 23–26] and refer-
ences therein).

Nonexistence vs. Existence of Strictly
Diabatic Basis Sets

The electronic eigenvalue problem assumes the
form

He�k�r; R� � Ek�R��k�r; R�, (1)

where He � Te � Vee � Ven � Vnn, and common
notations are employed for the electronic kinetic
energy operator, Te, interelectronic Coulomb poten-
tial, Vee, and electron–nuclear and nuclear–nuclear
Coulomb potentials, respectively Ven and Vnn. In
turn, �k(r; R) is the real-valued kth electronic eigen-
function of He associated to the Ek eigenvalue. All
adiabatic basis functions �k(r; R) form a complete
orthonormalized set; as usual, the parametric de-
pendence on the nuclear configuration space is in-
dicated by the semicolon. We reserve hereafter Ro-
man letters for the electronic quantities while Greek
letters are used for the nuclear ones.

Let us now apply the gradient operator �R�
with

R� � R to Eq. (1). The result is

��R�
He��k�r; R� � He��R�

�k�r; R��

� ��R�
Ek�R���k�r; R� � Ek�R���R�

�k�r; R��, (2)

from which we can easily obtain

fkl
��� � 		�k��R�

�l

r �
		�k��R�

He��l

r

El � Ek
, (3)

where the double bracket notation in Eq. (3) implies
integration over all electronic degrees of freedom r;
here and when free of ambiguity, we omit the ex-
plicit dependence on r and R. By definition, fkl

(�) is
the NAC between the electronic states k and l rela-
tive to the �th nuclear radius vector. If it vanishes
identically for all pairs k and l and all R� � R, the
electronic functions form a diabatic II basis set.
They will no longer be eigenfunctions of He.

Nonadiabatic couplings fkl
(�) for all pairs of elec-

tronic eigenstates �k and �l form an antisymmetri-
cal matrix F(�) with nonzero nondiagonal NACMEs,
Fkl

(�) � fkl
(�) (k � l ). In fact, fkl

(�) is a vector field. Thus,
according to Helmholtz’s theorem [27, 28], it can be
decomposed into two components: fkl

(�) � fkl
(�)� �

fkl
(�)�. The component fkl

(�)� of fkl
(�) is such that its curl,

�R�
� fkl

(�)�, is identically zero. This is the longitudi-
nal or irrotational component and can be repre-
sented as fkl

(�)� � �R�
Pkl

(�)�, where Pkl
(�)� is a scalar

function of R. The other transverse or rotational
component fkl

(�)� has zero divergence: �R�
� fkl

(�)� � 0.
Thus, fkl

(�)� � �R�
� Pkl

(�)�. This decomposition is
valid if the vector field fkl

(�) is finite and unique if
�R�

� Pkl
(�)� � 0, limR�3Pkl

(�)� � 0, and limR�3Pkl
(�)�

� 0 for all �. One then easily derives that

�R�
� �Pkl

�����R�
� Pkl

����� � �R�
Pkl

���� � �R�
� Pkl

����. (4)

Integrating each side of Eq. (4) over all space R�
3 and

applying Gauss’ theorem yields

�
R�

3

d3R�fkl
���� � fkl

���� � 0. (5)

Equation (5) represents an orthogonality relation
between the longitudinal and transverse compo-
nents of the vector field fkl

(�). Note that fkl
(�)� is gauge

invariant: Any transformation of Pkl
(�)� into Pkl

(�)� �
�R�

� leaves fkl
(�)� unchanged for an arbitrary func-

tion �. A particular choice of � is the so-called
gauge origin where � � 1/2[fkl

(�)� � (R � R�)] � R�.
Such a gauge invariance of the transverse compo-
nent is interesting in view of the recent work by
Buenker and Li [29] on the independence of NAC
on the choice of the origin of the coordinate frame.

Let us now apply the curl operator to f12
(�). The

result is

�R�
� f12

��� � 		�R�
�1� � ��R�

�2

re � ��
n�3

f1n
��� � fn2

���.

(6)
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This equation is readily generalized to an arbitrary
nonadiabatic coupling, yielding

�R�
� fkl

��� � ��
n

fkn
��� � fnl

��� (7)

or, by virtue of Eq. (3),

�R�
� fkl

��� � � �
m�k,l

		�k�r; R���R�
He�r; R���m�r; R�

r

Em�R� � Ek�R�

�
		�m�r; R���R�

He�r; R���l�r; R�

r

El�R� � Em�R�
. (8)

Thus, P12
(�)� and P12

(�)� satisfy the following equations:

�R�
��R�

� P12
����� � �R�

2 P12
���� � �

n�3

f1n
��� � fn2

��� (9)

�R�

2 P12
���� � �

n�3

fn1
��� � fn2

��� � 		�1��R�

2 �2

r. (10)

Equation (6) is actually the compact form of Eq.
(19) derived by Mead and Truhlar [10]. In particu-
lar, it tells that the curl of f12

(�) is expressed in terms
of nonadiabatic couplings of the two involved ei-
genstates with the rest of the eigenstates of He (two-
state problem). If the latter are ignored, it then
follows directly from Eq. (6) that the nonadiabatic
coupling possesses only a longitudinal component.
Moreover, it is also seen from Eq. (10) that in this
case �R

2 P12
� � 		�1��R

2 �2

re
(the subscript � will be

hereafter removed). In this case, the nonadiabatic
couplings in the “old” (�1, �2) and “new” ( �̃1, �̃2)
2-D basis sets satisfy the following relationship [10].

f̃21 � f21 � �R�, (11)

where � is the rotation angle. The tilded NACME
vanishes if � satisfies the equation

�R� � f21, (12)

with � being called the adiabatic-to-diabatic trans-
formation (ADT) angle [7, 8, 17]. In general, when
there is a coupling between the two states and the
rest of the eigenstates of He, Eq. (12) demonstrates
that the orthogonal transformation enables us to
remove only the longitudinal component of the f12
NACME between the two intersecting potential en-
ergy surfaces, leaving the transverse component
nonremovable. In other words, the diabatic II basis

does not in general exist [10]. It is then interesting to
note from Eq. (8) that the transverse component of
NAC is not singular unless there is at least an
intersection of one of the coupled potential surfaces
under study with a third one.

Strictly Diabatic Basis for the
Generalized Two-State Problem

Starting from Eq. (1), we have always operated
with the adiabatic basis set �k(r; R), which was
suggested to be orthonormal:

		�k��l

r � �kl. (13)

Such a condition can be easily relaxed while keep-
ing �k(r; R) as the kth electronic eigenfunction of
the electronic Hamiltonian He that contains only
local multiplicative R-dependent operators. This
can be done by assuming that the overlap matrix
between the electronic eigenstates takes the form

		�k��l

r � ak�R��kl, (14)

which is a natural assumption in the vicinity of the
crossing seam, where the degenerate electronic
states are physically nonseparable.

Let us now consider the generalized two-state
problem within the ansatz (14). The transformed
wave functions �̃̃1 and �̃̃2 may then be represented
as

�̃̃1 � �1cos �̃ � �2sin �̃

�̃̃2 � �1sin �̃ � �2cos �̃, (15)

where �̃ is the new R-dependent mixing angle.
Their overlap assumes the form

		�̃̃1��̃̃2

r �
1
2 sin 2�̃�		�1��1

r � 		�2��2

r�. (16)

This seems a plausible result because one may think
of building the total wave function from the over-
lapping single-surface ones at the crossing region.
However, such an overlap will vanish if a1(R) �
a2(R) � ao(R), an assumption adopted in the present
work. Note that 		�̃̃i��̃̃i

r � ao(R), while

STRICTLY DIABATIC BASIS SETS FOR THE TWO-STATE PROBLEM

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 257



		�̃̃i��R�̃̃i

r � 		�i��R�i

r �
1
2 �Rao i � 1, 2. (17)

In addition, the NACME between the new states
assumes the form

f̃21 � f21 � ao�R�̃. (18)

Thus, the strictly diabatic basis for this generalized
two-state problem exists if

f21 � ao�R�̃. (19)

This implies that the transverse component of f21
should obey the equation

�R � f21 � �Rao � �R�̃ (20)

while the longitudinal component satisfies

�R � f21 � ao�R
2 �̃ � �Rao � �R�̃. (21)

Both Eqs. (20) and (21) determine the unknown
functions ao(R) and �̃(R), which, in turn, result in
the strictly diabatic basis. These equations can be
solved in the following way: Substitution of �R�̃ �
f21/ao from Eq. (19) into Eq. (20) leads to

�R � f21 �
�Rao

a0
� f21. (22)

Without any loss of generality, we now assume that
f21 is parallel to the X axis, that is, f21 � f(R)i where
R � {X, Y, Z} and i is the unit vector along the
X-axis. It then follows from Eq. (22) that

	f
	Y �

1
ao

	ao

	Y f,
	f
	Z �

1
ao

	ao

	Z f. (23)

These equations have the solution ao(X, Y, Z) � f(X,
Y, Z). Thus, Eq. (19) rewritten now as 	�̃/	X � f/ao,
possesses the trivial solution �̃(X, Y, Z) � �̃o � X,
where �̃o is an arbitrary constant. Note that the
normalizing factor ao(R) coincides with the NAC
term and hence absorbs in principle the singularity
contained in its longitudinal component. This may
not be recommended for practical applications. To
avoid this unpleasant feature, we may think of first
applying Eq. (12) to define �, thus removing such a
singularity. The functions {�̃i} so obtained would
then be taken as the set {�i} in Eq. (13) and follow-

ing equations, leading to {�̃̃i}. This set of functions
would contain the parameters ao and �̃ that would
be extracted by solving Eq. (19), having now only
the transverse nonsingular part of the NAC. In this
case, Eqs. (20) and (21) are rewritten as

�Rao � �R�̃ � �R � f21 (24)

and

�Rao � �R�̃ � �ao�R
2 �̃. (25)

These equations imply {see Eqs. (5.2–17) of Ref.
[30]} the following relation between �̃ and ao:

��R�̃�2�Rao � ao�R
2 �̃�R�̃ � �R�̃ � �R � f21, (26)

which may be useful to determine the convenient ao

and �̃.

Conclusions

After reviewing the difficulties of constructing a
strictly diabatic basis set and proving some new
properties of the nonadiabatic coupling elements, a
novel approach has been proposed to show the
existence of such a basis within the generalized
two-state problem as the cornerstone issue in non-
adiabatic dynamics of molecules. An analytic pro-
cedure to derive such a basis has also been demon-
strated that may, however, be difficult for
implementation. Thus, both the transverse and lon-
gitudinal components of the nonadiabatic coupling
element for the generalized two-state problem have
been shown to vanish identically within such a
basis as implied by its definition. Moreover, the
overlap ao(R) and the ADT angle have been explic-
itly expressed in terms of such a nonadiabatic cou-
pling element. To conclude, we emphasize the fol-
lowing points: (1) with our proposed solution for ao,
one obtains a simple expression for the ADT angle;
(2) the normalization condition proposed in Eq. (14)
is innovative and natural in the vicinity of the in-
tersection because we are unable to separate there
the degenerate electronic states. We also note that
the proposed method for constructing a strictly dia-
batic basis set for the generalized two-state problem
assumes nonnormalized basis functions and hence
does not contradict the Mead–Truhlar theorem on
the nonexistence of such a basis, which was dem-
onstrated for the normalized case.
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