

Universidade de Coimbra

Faculdade de Ciências e Tecnologia

Departamento de Engenharia Eletrotécnica e de Computadores

Daniel Alexandre Simões Lopes

Indicadores para análise e caracterização da qualidade da energia da rede de distribuição

Dissertação submetida para obtenção do grau de Mestre em Engenharia Eletrotécnica e de Computadores, Área de Especialização em Energia

Junho/2017

Universidade de Coimbra

Indicadores para análise e caracterização da qualidade da energia da rede de distribuição

Daniel Alexandre Simões Lopes

Dissertação para obtenção do Grau de Mestre em Engenharia Eletrotécnica e de Computadores

Júri

Presidente: Doutor Álvaro Filipe Peixoto Cardoso de Oliveira Gomes

Orientador: Doutor Humberto Manuel Matos Jorge Vogal: Doutor Pedro Manuel Soares Moura

Junho de 2017

Agradecimentos

Quero começar por agradecer aos meus pais, Germano e Paula, o apoio incondicional que me deram, tornando possível a concretização desta etapa. Fica também um agradecimento especial ao meu irmão, João, pela ajuda e conselhos. Deixo um grande abraço aos meus avós, mas em especial ao meu avô Alcides, por nos ter emprestado casa em Coimbra.

Agradeço ao meu orientador, Humberto Manuel Matos Jorge, pela ajuda e conselhos prestados.

Deixo uma palavra de amizade aos meus colegas. Aos mais estudiosos agradeço a partilha de conhecimentos e resolução de problemas. Aos mais velhos não posso deixar de agradecer os conselhos que ajudaram imenso para a realização do curso. Não posso deixar de agradecer ao Diogo Bacalhau e Matias pela amizade e companheirismo que revelaram ao longo deste tempo.

Por fim, agradeço a todos que contribuíram direta e indiretamente para a concretização desta fase da minha vida.

A todos, o meu muito obrigado.

Daniel Alexandre Simões Lopes

Resumo

A qualidade de serviço engloba a continuidade de serviço, a qualidade da energia elétrica e os aspetos de comunicação com o cliente e a serviços prestados. Para a continuidade de serviço já existem muitos indicadores definidos que qualificam e permitem a comparação entre vários sistemas de energia elétrica. Em relação à qualidade de energia, apenas existem normas que estabelecem limites que a onda da tensão de alimentação deve possuir (*European Norm* EN 50160). As cavas de tensão são o distúrbio que mais impacto tem na qualidade da onda de tensão e são classificadas segundo a EN 50160. Devido à sua pluridimensionalidade, não é fácil definir indicadores que as transformem numa dimensão e atribuam um determinado nível de qualidade de energia. No entanto, é importante classificar as subestações, que fazem parte da rede de distribuição, com o objetivo de informar os consumidores acerca da qualidade de energia.

Nesta dissertação, apresentam-se algumas propostas de indicadores que caracterizam a qualidade da energia elétrica da rede de distribuição. Os indicadores *System Average RMS Variation Frequency Index* (SARFI) e os associados à energia e severidade das cavas encontram-se definidos na norma do IEEE Std 1564-2014 – "Guia de indicadores para cavas de tensão". Os indicadores foram calculados através dos dados publicados pela EDP Distribuição relativos à monitorização da qualidade da energia elétrica nas subestações. Foram analisadas 77 subestações do ano de 2015 e 40 com monitorização nos anos de 2014 e 2015. No fim, são apresentadas algumas conclusões acerca dos indicadores e quais as subestações com melhor qualidade de energia.

Palavras chave

Qualidade de energia, Rede de distribuição, Monitorização, Cavas de tensão, Indicadores

Abstract

The quality of service includes continuity of supply, voltage quality and commercial quality. For continuity of supply there are already many defined indices that qualify and allow the characterization between various electric power systems. Regarding voltage quality, there are only standards that establish limits that voltage supply must have (European Norm EN 50160). Voltage sags are the disturbance that has the most impact on voltage waveform and are classified according to EN 50160. Due to their multidimensionality, it is not easy to define indices that transform them into a dimension and assign a certain level of voltage quality. However, it is important to classify the substations, which are part of the distribution network, in order to inform consumers about voltage quality.

In this dissertation, are presented some proposals of voltage sag indices that characterize the voltage quality of distribution network. The System Average RMS Variation Index (SARFI), the voltage sag energy and the voltage sag severity are defined in the standard IEEE Std 1564-2014 – "Guide for Voltage Sag Indices". The voltage sag indices were calculated using the data published by EDP Distribuição regarding the monitoring of the voltage quality in the substations. A total of 77 substations of the year 2015 and 40 with monitoring in the years 2014 and 2015 were analysed. In the end, some conclusions about the voltage sag indices and which substations had the best voltage quality are presented.

Keywords

Voltage quality, Distribution network, Monitoring, Voltage sags, Voltage sag indices

Conteúdo

1.	In	trod	ução	1
	1.1	Mo	tivação e objetivos	2
	1.2	Est	ruturação	3
2.	Ol	E e r	egulamentação	5
			eresse crescente na QE	
			Equipamentos causam preocupação com a QE	
			Necessidade de regulamentação e elevado nível de fiabilidade	
			Qualidade do produto	
	2.2	Coı	nsequências da fraca QE	7
	2.3	Еин	ropean Norm 50160	9
	2.	.3.1	Revisão e melhorias na EN 50160	10
	2.4	Car	racterização das cavas de tensão	13
3.	In	dica	dores para caracterização de cavas	17
	3.1		odução	
	3.2		racterização de cada evento	
		.2.1	Indicador associado à energia da cava	
	3.	.2.2	Indicador associado à severidade da cava	
	3.3	Ind	icadores locais	21
	3.	.3.1	System Average RMS Variation Frequency Index-X	21
	3.	.3.2	SARFI-curva	21
	3.	.3.3	Tabela de classificação	22
	3.	.3.4	Indicador de energia	23
	3.	.3.5	Indicador de severidade	23
	3.4	Ind	icadores para o SEN	24
4.	Re	esult	ados	25
	4.1	Intr	odução	25
	4.2	Cál	culo dos indicadores de energia e de severidade	25
	4.3	Sub	pestações AT/MT e a sua área de abrangência	26
	4.4	Res	sultados para as subestações AT/MT monitorizadas em 2015	29

	4.4.1	Indicador de energia	29
	4.4.2	Indicador associado ao valor médio de energia	30
	4.4.3	Indicador de severidade	32
	4.4.4	Indicador associado ao valor médio de severidade	33
	4.4.5	Indicador SARFI-90	35
	4.4.6	Indicador SARFI-40	36
	4.4.7	Indicador SARFI-classe 3	37
4	.5 Sul	bestações AT/MT em monitorização permanente	39
	4.5.1	Indicador de energia	39
	4.5.2	Indicador associado ao valor médio de energia	41
	4.5.3	Indicador de severidade	42
	4.5.4	Indicador associado ao valor médio de severidade	43
	4.5.5	Indicador SARFI-90	44
	4.5.6	Indicador SARFI-40	45
	4.5.7	Indicador SARFI-classe 3	46
4	.6 Ag	regação em NUTS II dos resultados de monitorização	47
4	.7 Co	nclusões acerca dos indicadores	49
4	.8 Res	sumo geral da caracterização da QE das SE	51
5.	Concl	usões e trabalho futuro	55
		abalho futuro	
	D:Ll:	ava fi a	<i>57</i>
		grafiagrafia	
A.	Valore	es calculados dos indicadores	1
В.	Locali	zação e ano de monitorização das SE AT/MT	19
C.	Dados	de monitorização de 2014 e 2015	23
		•	
D.	Locali	zação das SE AT/MT e rede por área de abrangência de cada SE	39
E.	Locali	zação das SE AT/MT, MT/MT e rede AT e MT por nível de tensão	o43

Lista de figuras

2.1	Indice de satisfação das empresas inquiridas no estudo	9
2.2	Cava de tensão	14
2.3	Cava de tensão num sistema trifásico e respetivo limite (90% de V_N)	15
3.1	Curva SEMI-F47	20
4.1	N.º total de SE AT/MT do SEN	27
4.2	Área média de abrangência de uma SE AT/MT por distrito	27
4.3	N.º de barramentos monitorizados por distrito, no biénio 2014-2015	28
4.4	Resultados do indicador associado à energia não distribuída	29
4.5	Resultados obtidos para o indicador associado ao valor médio de energia	31
4.6	Resultados obtidos para o indicador de severidade	32
4.7	Resultados obtidos para o indicador associado ao valor médio de severidade .	34
4.8	Resultados obtidos para o indicador SARFI-90	35
4.9	Resultados obtidos para o indicador SARFI-40	36
4.10	Valores obtidos para o indicador SARFI-classe 3	37
4.11	Valores obtidos para o indicador SARFI-classe 3	38
4.12	Indicador de energia – algumas SE	40
4.13	Indicador associado ao valor médio de energia – algumas SE	41
4.14	Indicador de severidade – algumas SE	42
4.15	Indicador associado ao valor médio de severidade – algumas SE	43
4.16	Indicador SARFI-90 – algumas SE	44
4.17	Indicador SARFI-40 – algumas SE	45
4.18	Número de barramentos monitorizados por região de NUTS II	47
4.19	Indicador de energia por região de NUTS II	48
4.20	Indicador associado ao valor médio de energia por região de NUTS II	48
4.21	Indicador de severidade por região de NUTS II	48
4.22	Indicador associado ao valor médio de severidade por região de NUTS II	48
4.23	Indicador SARFI-90 por região de NUTS II	48
4.24	Indicador SARFI-40 por região de NUTS II	48
4.25	Indicadores de energia, de severidade e SARFI-90 (algumas SE)	49
A.1	Resultados obtidos para o indicador de energia	2

A.2	Resultados obtidos para o indicador associado à energia média das cavas	3
A.3	Resultados obtidos para o indicador de severidade das cavas	4
A.4	Resultados obtidos para o indicador associado à severidade média das cavas	5
A.5	Resultados obtidos para o indicador SARFI-90	6
A.6	Resultados obtidos para o indicador SARFI-40	7
A.7	Resultados obtidos para o indicador SARFI-classe 3, ano de 2014	8
A.8	Resultados obtidos para o indicador SARFI-classe 3, ano de 2015	9
A.9	Resultados obtidos para o indicador SARFI-classe 3, ano de 2014	10
A.10	Resultados obtidos para o indicador SARFI-classe 3, ano de 2015	11
A.11	S _{CC} das 40 SE AT/MT permanentes	12
A.12	Resultados obtidos para o indicador SARFI-classe 3, ano de 2014	13
A.13	Resultados obtidos para o indicador SARFI-classe 3, ano de 2015	13
A.14	Resultados obtidos para o indicador SARFI-classe 3, ano de 2014	13
A.15	Resultados obtidos para o indicador SARFI-classe 3, ano de 2015	14
A.16	SE AT/MT ordenadas de acordo com os indicadores de energia	15
A.17	SE AT/MT ordenadas de acordo com os indicadores de severidade	16
A.18	Indicadores de energia, de severidade e SARFI-90	17

Lista de tabelas

Estimativas de estudos sobre a fraca QE	7
Classificação das cavas de tensão segundo a norma EN 50160:2010	.11
Distúrbios da onda de tensão agrupados em fenómenos contínuos ou eventos ão	
Parâmetros de cálculo do indicador de severidade para a curva SEMI-F47	.20
Área de imunidade de um equipamento de classe 2	.22
Área de imunidade de um equipamento de classe 3	.22
Tabela de cálculo do indicador associado à energia das cavas de tensão	.26
Tabela de cálculo do indicador associado à severidade das cavas de tensão	.26
Alguns dados da figura A.16	.50
	Classificação das cavas de tensão segundo a norma EN 50160:2010

Lista de acrónimos

AML área metropolitana de Lisboa

ASEI Average Sag Energy Index

AT alta tensão

CC curto-circuito

CEER Council of European Energy Regulators

CENELEC European Committee for Electrotechnical Standardization

EDP Energias de Portugal

EN European Norm

ERGEG European Regulators Group Electricity and Gas

ERSE Entidade Reguladora dos Serviços Energéticos

EURELECTRIC Union of the Electricity Industry

E_{VS} Voltage Sag Energy characteristic

IPMA Instituto Português do Mar e da Atmosfera

ITIC Information Tecnology Industry Council

MT média tensão

NUTS "Nomenclatura das Unidades Territoriais para Fins Estatísticos"

pu valores por unidade

QE qualidade de energia

REN Redes Energéticas Nacionais

RND Rede Nacional de Distribuição

RNT Rede Nacional de Transporte

SAIDI Duração Média Anual das Interrupções do Sistema por Consumidor

SAIFI Frequência Média de Interrupções do Sistema por Consumidor

SARFI System Average RMS Variation Frequency Index

S_{Average} Average Voltage Sag Severity

S_{CC} potência de curto-circuito

S_e severidade

SE subestação

SEE sistema de energia elétrica

SEI Sag Energy Index

SEMI-F47 Semiconductor Equipament and Materials International Group-F47

SEN sistema elétrico nacional

S_{Site} Total Average Sag Severity

TIE Tempo de Interrupção Equivalente

1. Introdução

Durante muitos anos, o objetivo das empresas verticalmente integradas foi a eletrificação dos territórios concessionados, ou seja, produzir e transportar a energia elétrica a todas as zonas, fossem elas urbanas ou rurais. Durante esta fase, o principal foco foi expandir as redes o mais rápido possível e com custos reduzidos sem ter atenção à qualidade de energia (QE), porque os clientes não eram particularmente exigentes (consumidores de baixa tensão, indústria, etc.) [1].

Depois de concluído o processo de eletrificação, a única preocupação que existia com a QE residia no indicador de continuidade de serviço, ou seja, o mais importante era a fiabilidade do sistema de energia elétrica (SEE). Este indicador consiste no tempo de indisponibilidade do fornecimento elétrico de um determinado SEE.

A partir do ano 2000, iniciou-se a liberalização do mercado energético com o objetivo de introduzir competição no setor da geração e comercialização da energia elétrica [2]. O sector do transporte e distribuição elétricos são geridos em monopólio porque seria muito oneroso replicar as infraestruturas já existentes. Em Portugal, as empresas Energias de Portugal (EDP) – Distribuição de Energia, S.A. e Redes Energéticas Nacionais (REN), S.A. gerem a Rede Nacional de Distribuição (RND) e a Rede Nacional de Transporte (RNT), respetivamente por conceção exclusiva atribuída pelo Estado Português.

Desde há alguns anos para cá, iniciou-se uma nova fase que consiste numa maior preocupação com a QE porque, assistiu-se a uma crescente proliferação de cargas não lineares em consequência do grande desenvolvimento da eletrónica de potência [1].

As cavas de tensão são um distúrbio, entre vários, que influenciam o nível de qualidade da onda de tensão. São descritas como uma redução temporária da tensão para valores entre os 90% e os 5% do valor nominal, seguida do restabelecimento da mesma após um curto espaço de tempo. Existem várias dimensões passíveis de as caracterizar, mas as mais utilizadas são a tensão residual (u, em %) e duração (d, em ms). Normalmente, uma cava de tensão surge após a ocorrência de um curto-circuito (CC) ou outro qualquer aumento da corrente no sistema, causado por defeitos ou manobras na rede, anomalias nas instalações dos consumidores ou comutações de cargas importantes nas instalações domésticas. Os CC podem ter origem em: descargas atmosféricas, roturas

no isolamento dos equipamentos, más condições climatéricas (ventos fortes, neve, gelo), animais, inundações e incêndios.

Não é possível extinguir as cavas de tensão das redes porque, as redes são aéreas e como tal, estão sujeitas a múltiplos eventos que degradam a QE. Para além disso, seria necessário um enorme investimento que se iria traduzir num maior custo da energia elétrica para todos os consumidores.

Hoje em dia, existe uma grande competitividade entre empresas o que levou a uma redução das margens de lucro. Assim, qualquer perturbação ao funcionamento destas pode traduzir-se em enormes perdas financeiras. As indústrias mais afetadas são as que possuem processos de produção contínuos. Posto isto, as cavas de tensão podem causar prejuízos significativos, relacionados com: custos de paragem, custos com perda de produto com defeito e custos com avaria de equipamentos.

Atualmente, não existem indicadores uniformemente estabelecidos, a nível europeu, que avaliem e comparem o comportamento dos SEE em relação à ocorrência de cavas de tensão. A definição desses indicadores é importante porque, nos últimos anos, tem-se incentivado a monitorização da QE e já existem metas definidas quanto ao número de SE a monitorizar no futuro. Além disso, os indicadores são um meio de concluir e informar a sociedade sobre as zonas com melhor QE.

1.1 Motivação e objetivos

Para se saber o nível da QE é necessário estabelecer requisitos e critérios de avaliação. Tais critérios poderão ser, por exemplo, os seguintes: parâmetro a ser monitorizado, período de monitorização, cálculo de indicadores e comparação dos resultados obtidos com padrões previamente definidos [3].

O plano de monitorização da EDP, aprovado pela Entidade Reguladora dos Serviços Energéticos (ERSE) pressupõem apenas a monitorização de subestações (SE) que transformam alta tensão (AT) em média tensão (MT). Posto isto, para a realização deste trabalho apenas foram consideradas as SE AT/MT do sistema elétrico nacional (SEN).

Nos anos de 2014 e 2015, o número de SE AT/MT monitorizadas foram 70 e 77, respetivamente. No entanto, apenas 40 SE AT/MT são comuns aos dois anos.

Devido a bidimensionalidade das cavas de tensão, não é fácil analisar os dados monitorizados numa SE da rede de distribuição e afirmar se esta tem uma boa QE. O

objetivo deste trabalho consiste na transformação das cavas em valores de indicadores de forma a tornar mais fácil a análise e atribuição de níveis de QE das SE monitorizadas.

Com este trabalho pretende-se propor alguns indicadores que analisam a performance das várias SE AT/MT monitorizadas e consequentemente da rede de distribuição. Serão analisados os dados relativos à monitorização da QE das 77 SE AT/MT e, também será realizada uma análise comparativa às 40 SE AT/MT que se encontraram em monitorização permanente, no biénio 2014-2015. Para além disso, tem-se a ambição de poder concluir qual/quais os melhores indicadores previamente definidos e as SE com melhor QE.

1.2 Estruturação

Este trabalho está dividido em 5 capítulos: o primeiro introduz o tema e apresenta objetivos a alcançar; o segundo aborda a atualidade e consequências de uma fraca QE, apresentando alguma regulamentação em vigor a nível europeu e, caracteriza as cavas de tensão; no terceiro apresentam-se alguns indicadores que qualificam as cavas, as SE AT/MT e o SEN; no quarto capítulo calculam-se e mostram-se os resultados dos indicadores para as 77 SE monitorizadas em 2015, e para as 40 SE comuns aos dois anos; no último capítulo são apresentadas as conclusões.

2. QE e regulamentação

2.1 Interesse crescente na QE

Durante os últimos anos, a QE assumiu tal importância que incentivou muitas entidades e investigadores a trabalhar no sentido de obterem mais informação sobre este tema e, de certa forma, adequarem as normas existentes. De acordo com [4], existem várias explicações para este facto que serão enumeradas de seguida.

2.1.1 Equipamentos causam preocupação com a QE

Com a evolução da eletrónica de potência, os equipamentos elétricos estão mais sensíveis do que há alguns anos atrás, mas não foram apenas os equipamentos que se tornaram mais sensíveis, as empresas/indústrias, estão também, mais sensíveis às consequências da falta de QE. As empresas têm cada vez mais as suas margens de lucro reduzidas e os custos associados às falhas de QE têm impactos importantes na sua saúde financeira.

No setor doméstico, a eletricidade é considerada como um bem essencial. Atualmente, uma interrupção no fornecimento elétrico irá causar mais reclamações, do que há alguns anos atrás, mesmo não provocando prejuízos.

O incorreto funcionamento dos equipamentos elétricos, provocado pelas perturbações presentes na onda de tensão de alimentação, é considerado pelos consumidores como uma fraca QE. Por outro lado, os distribuidores estão cientes que os equipamentos dos clientes têm impacto na QE. De facto, todos os aparelhos que, na sua constituição possuem eletrónica de potência, são sensíveis à qualidade da onda de tensão. O problema é que também estão na origem de algumas perturbações que afetam outros consumidores. O grande inconveniente da utilização dos conversores de potência (retificadores, inversores, etc), traduz-se nas correntes elétricas não sinusoidais que originam, ou seja, a corrente elétrica absorvida por estes, não contém apenas a componente fundamental, também possui harmónicos cuja frequência é múltipla da frequência nominal do SEE (50 ou 60 Hz). Além disso, a distorção da corrente elétrica origina harmónicos na tensão de alimentação.

Nos últimos anos, tem-se assistido ao aumento exponencial dos equipamentos que utilizam conversores de frequência (computadores, variadores de velocidade, pequenos eletrodomésticos, etc). Se se considerar, o impacto individual destes equipamentos na QE é desprezável. No entanto, é necessário ter em consideração a influência do conjunto de todos, que podem contribuir para uma distorção considerável da onda da tensão elétrica de alimentação.

2.1.2 Necessidade de regulamentação e elevado nível de fiabilidade

O consumidor tradicional de eletricidade era visto, pela maioria dos operadores de rede, como uma simples carga. As interrupções e outros tipos de distúrbios faziam parte do contrato e ficava ao critério do distribuidor decidir o que era razoável. Os consumidores mais exigentes que queriam melhores índices de QE, teriam de pagar ao distribuidor por essa melhoria acrescida ou criar condições nas suas instalações para reparar as falhas de QE.

Hoje em dia, os distribuidores têm que cumprir determinados requisitos mínimos no que diz respeito à continuidade de serviço e QE. Mesmo que estes não tenham que reduzir o número de perturbações, têm que quantificar e monitorizar a QE do SEE.

A reforma no setor elétrico para a introdução de competição na geração e na comercialização da eletricidade, veio introduzir algumas interrogações sobre quem é o responsável por manter e melhorar a QE. É certo que os reguladores têm um papel fundamental na definição de regras e requisitos que a onda de tensão de alimentação deve possuir, assim como limites razoáveis para as perturbações que afetam os consumidores, mas não são os únicos com responsabilidades neste tema.

Parte do interesse neste tema advém do facto de alguns SEE, dos países desenvolvidos, terem atingido um elevado nível de fiabilidade, ou seja, os indicadores de continuidade de serviço atingiram patamares muito bons, sendo muito difícil continuar a melhorá-los.

2.1.3 Qualidade do produto

Muitas vezes, durante as discussões sobre este tema, não se tem em conta que os SEE foram desenvolvidos para terem um alto nível de fiabilidade com um custo limitado. Do ponto de vista conceptual, é um enorme desafio consegui-lo. Além disso, é do interesse dos distribuidores disponibilizar aos clientes um bom produto, ou seja, energia elétrica com qualidade.

O aparecimento de dispositivos capazes de monitorizarem a onda da tensão elétrica de alimentação, certamente incentivou ainda mais o interesse no tema. No passado, os harmónicos de corrente e as cavas de tensão eram difíceis de monitorizar em larga escala. Durante esse tempo, a monitorização estava restrita ao valor eficaz da tensão de alimentação, frequência e interrupções longas.

2.2 Consequências da fraca QE

Ao longo das últimas três décadas assistiu-se a um grande avanço tecnológico que se traduz, hoje em dia, numa economia globalizada. Devido ao crescimento da procura da energia elétrica por parte da sociedade e aos requisitos de QE mais estreitos por parte das indústrias, a disponibilidade e qualidade da onda de tensão são fundamentais para uma maior competitividade de todos os setores económicos. Além disso, o número de consumidores que necessitam de uma maior QE tem vindo, e prevê-se que, continue a aumentar [5].

Em conjunto com as interrupções, as cavas de tensão são as perturbações que mais prejuízo causam aos consumidores industriais [6].

Cada vez mais, se assiste ao incentivo à monitorização permanente da onda de tensão para prevenir e reduzir os efeitos que os vários distúrbios têm na QE [7].

Os impactos da fraca QE têm sido alvo de estudo nas grandes economias. De seguida, serão apresentadas estimativas de custos, realizados na Noruega, Suécia e Itália. Esses resultados encontram-se presentes na tabela 2.1.

Tabela 2.1 – Estimativas de estudos sobre a fraca QE [6].

País	Habitantes	Estimativa dos custos anuais
Noruega (2002)	5 milhões	Estima-se que o custo anual para os consumidores finais, devido ás cavas de tensão, esteja entre 120 e 440 milhões de NOK.
Suécia (2003)	9.5 milhões	Estima-se que o custo anual para os consumidores industriais, devido às cavas de tensão e interrupções, seja de 157 M€.
Itália (2006)	60.6 milhões	Estima-se que o custo anual para todo o sistema de produção, devido às cavas de tensão e interrupções (<1 s), esteja entre 465

As indústrias são as mais afetadas pela fraca QE. Mas nem todas são afetadas da mesma forma. As mais afetadas são as que possuem processos de produção contínuos e as que utilizam as tecnologias de informação para comunicação e transmissão de dados de forma intensiva (Data Centers). Estas são dimensionadas para funcionarem sem qualquer tipo de interrupção. Quando ocorre alguma perturbação, com origem na tensão

de alimentação, que comprometa o funcionamento normal destas empresas, são gerados enormes prejuízos a nível financeiro.

De acordo com [5] e [8], os custos gerados pela falta de QE podem-se dividir do seguinte modo:

- Interrupção no processo produtivo: se uma fábrica possui um processo de fabrico contínuo e nesse processo existem equipamentos sensíveis, quando a onda de tensão de alimentação apresentar falta de qualidade, naturalmente que esse processo irá parar. São gerados custos de não produção, ou seja, produtos/serviços que não são vendidos.
- Produtos com defeito: alguns distúrbios provocados pela falta de QE, podem causar defeitos em produtos que se encontram em fabrico. O custo associado a este fenómeno é calculado através da diferença entre os produtos que podem ser reutilizados e dos que são considerados perda total.
- Reinício do processo produtivo: existem muitas indústrias que requerem um período de tempo longo para o processo de fabrico ser reposto. Para reiniciar o processo produtivo é necessário realizar algumas tarefas, tais como: limpar, realizar diagnósticos, reparar, etc. Estas operações são efetuadas com o processo de fabrico parado, que tem os seus custos associados, mas os custos poderão ser superiores se se tiver em atenção o tempo de paragem forçado dos empregados.
- Avaria de equipamentos: os distúrbios que afetam a QE, para além de provocarem a paragem de um determinado equipamento, podem também provocar a avaria deste. Depois de efetuado um diagnóstico, o proprietário pode incorrer num de dois custos: custos de reparação ou custos de substituição.
- Custos indiretos: estes são os custos mais difíceis de quantificar associados à
 falta de QE. Uma cava de tensão pode causar erros no controlo de um determinado
 processo produtivo, produzindo produtos com defeito que só são detetados após o
 produto entregue ao cliente. Poderão existir dois tipos de custos: custo de
 substituição do produto e degradação da imagem da empresa.

Em [5], realizou-se um estudo acerca dos custos que as principais empresas portuguesas incorrem pela falta de qualidade da onda de tensão elétrica de alimentação. Neste estudo foi proposto um inquérito ao qual as empresas teriam de responder. Nesta pesquisa participaram 20 empresas, de 8 setores diferentes, com necessidades de energia

elétrica que vão desde 1 até 14 MVA e com receitas anuais de 6,5 até 100 milhões de euros.

A primeira conclusão que se obteve foi a seguinte: em média, cerca de 90% dos distúrbios que influenciam a QE têm uma duração inferior a 1 minuto (cerca de 70% têm uma duração inferior a 1 segundo). A indústria do papel é das mais afetadas pela falta da QE. Segundo [5], a explicação para este facto poderá ser a má localização destas empresas (zonas onde a QE é fraca).

Nesse inquérito, a maioria das empresas atribui responsabilidades, pelo grande número de perturbações presente no SEN, às condições atmosféricas adversas (29,27%) e ao distribuidor (24,39%) [5].

Também foi questionado qual o nível de satisfação acerca da QE fornecida pelo comercializador de energia elétrica. A resposta consistia na atribuição de um número de 1 (não satisfeito) a 6 (totalmente satisfeito). Na figura 2.1 encontram-se representadas as respostas obtidas.

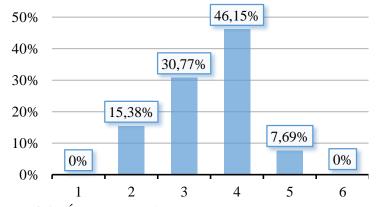


Figura 2.1 – Índice de satisfação das empresas inquiridas no estudo.

Ainda através de [5], as empresas inquiridas relatam cerca de 61 minutos de tempo de paragem por evento, em média, e um custo total estimado de 4.888 Euros (cerca de 5,89% da despesa mensal de eletricidade). As indústrias farmacêuticas e do plástico são as que apresentam uma maior despesa gerada por este tipo de distúrbio. No setor farmacêutico, o produto final não pode ser reutilizado/refeito, e sendo assim, a perda é total [5].

2.3 European Norm 50160

A European Norm (EN) 50160, intitulada "Voltage characteristics of electricity supplied by public electricity networks", define, descreve e especifica as principais

características que a onda de tensão de alimentação deve possuir, sob condições normais de funcionamento, nas redes elétricas de baixa, média e alta tensão [6].

A norma EN 50160 foi publicada pela primeira vez em novembro de 1994. Mais tarde, surgiram duas outras edições nos anos de 1999 e 2007. A mais recente edição foi ratificada no dia 1 de março de 2010 [6].

Esta norma, fornece uma visão geral sobre os possíveis distúrbios que reduzem a qualidade da onda de tensão e especifica limites indicativos para a maioria das perturbações [9]. Além disso, o documento EN 50160 é a base utilizada para efeitos regulatórios sobre a qualidade da onda de tensão por todos os países que fazem parte do *Council of European Energy Regulators* (CEER).

O principal objetivo do CEER, no que diz respeito à regulação sobre a qualidade da onda de tensão, é garantir que o funcionamento dos equipamentos elétricos não é afetado pelas perturbações provenientes da rede elétrica, mas tendo a perfeita noção que não é possível eliminar todos os distúrbios desta porque, grande parte da rede é aérea e, como tal, está sujeita a todo o tipo de eventos.

Os reguladores nacionais europeus adaptaram este documento consoante a realidade de cada país. Alguns países colocaram requisitos mais rigorosos do que a norma impõe.

2.3.1 Revisão e melhorias na EN 50160

Devido à crescente preocupação com a qualidade da onda de tensão, os reguladores energéticos dos vários países Europeus (que fazem parte do CEER), realizaram bastantes esforços com o objetivo de melhorarem as normas Europeias no que diz respeito à qualidade da onda de tensão elétrica de alimentação. Um exemplo de tal esforço foi a recente revisão e republicação do documento (EN) 50160:2010 [1]. Para se chegar ao consenso para a revisão e reedição da norma, foi necessário consultar todos os intervenientes envolvidos neste meio.

A partir de 2006, iniciou-se uma discussão acerca da revisão desta norma que envolveu vários organismos europeus. Um exemplo disto foi o processo de consulta realizado pela *European Regulators Group Electricity and Gas* (ERGEG) entre 21 de dezembro de 2006 e 22 de fevereiro de 2007. No fim do processo de consulta, chegou-se a um documento onde constavam as posições dos reguladores europeus acerca do que haveria de ser melhorado na EN 50160 e as formas como se haveria de lá chegar [10]. No entanto, durante este processo de consulta verificou-se que a posição dos consumidores

não foi devidamente representada. Tal facto, poderia levar à subestimação dos benefícios de revisão da norma. Era imperativo ouvir todas as partes envolvidas neste tema [10].

A publicação do documento EN 50160:2010 foi possível graças à cooperação do CEER, do *Union of the Electricity Industry* (EURELECTRIC) e do *European Committee for Electrotechinal Standardization* (CENELEC) [6].

A colaboração do CENELEC foi muito importante porque permitiu uma uniformização nos testes dos equipamentos elétricos contra os diferentes distúrbios que afetam a qualidade da onda de tensão, de que são exemplo as reedições das normas EN 61000-4-11 e EN 61000-4-34 [6]. Além disso, esta colaboração também permitiu uma revisão das diferentes classes eletromagnéticas definidas no documento EN 61000-2-4 [6].

Um dos pontos mais importantes que a última versão da norma EN 50160 incorpora é a tabela de classificação de cavas de tensão (tabela 2.2). Esta tabela permite uma maior harmonização, a nível Europeu, no que diz respeito à monitorização e recolha de dados sobre este tipo de perturbação [6].

Os dados que são públicos sobre a monitorização da QE são na forma da tabela 2.2 e é com estes dados que serão calculados os indicadores que serão apresentados no próximo capítulo. Devido à ausência de valores exatos de duração e tensão residual, serão utilizados os valores médios dos intervalos de classificação de duração e tensão residual.

Tabela 2.2 – Classificação das cavas de tensão segundo a norma EN 50160:2010 [6].

	Duração d [ms]				
Tensão residual u [%]	10 - 200	200 - 500	500 - 1000	1000 - 5000	5000 - 60000
$90 > u \geq 80$	CELL A1	CELL A2	CELL A3	CELL A4	CELL A5
$80 > u \geq 70$	CELL B1	CELL B2	CELL B3	CELL B4	CELL B5
$70 > u \geq 40$	CELL C1	CELL C2	CELL C3	CELL C4	CELL C5
$40 > u \geq 5$	CELL D1	CELL D2	CELL D3	CELL D4	CELL D5
5 > <i>u</i>	CELL X1	CELL X2	CELL X3	CELL X4	CELL X5

Como será visível mais adiante, é necessário utilizar duas dimensões para classificar as cavas de tensão: duração e tensão residual. As células da tabela representam o número de cavas de tensão que são classificadas com aquela duração e tensão residual. Por exemplo, uma cava que esteja posicionada na célula A1 significa que tem uma duração entre os 10 ms e os 200 ms e uma tensão residual entre os 90% e 80% da tensão nominal.

Outra grande melhoria que o documento EN 50160:2010 apresenta é a distinção entre fenómenos contínuos e eventos de tensão [9]:

- Fenómenos contínuos: são pequenos desvios da tensão elétrica do seu valor nominal que ocorrem continuamente ao longo do tempo. Ocorrem devido a variações de carga e há existência de cargas não lineares.
- Eventos de tensão: são variações abruptas na forma da onda da tensão elétrica de alimentação. Ocorrem devido a interrupções do fornecimento elétrico, cavas de tensão, sobretensões transitórias, etc.

Pode-se concluir que os eventos de tensão podem ter origem em causas externas (fenómenos meteorológicos ou ações de animais) ou devido a causas internas imprevisíveis (falhas de equipamentos ou da rede) [6]. Alguns exemplos são: CC, descargas elétricas atmosféricas, ligar/desligar bancos de condensadores, variações abruptas de carga, cargas não lineares (conversores de frequência, retificadores, ...), equipamento eletrónico e arranque direto da rede de motores de grande potência [3].

Como é expectável, os fenómenos contínuos irão existir sempre num SEE. Hoje em dia, existem muitos mecanismos disponíveis para os operadores do sistema manterem as variações contínuas dentro do limite predefinido. Se os limites forem ultrapassados, os fenómenos contínuos podem originar graves problemas nos clientes.

Por outro lado, os eventos de tensão podem originar interrupções em processos de fabrico ou avarias nos equipamentos. Consequentemente, os clientes que estiverem sujeitos a eventos de tensão poderão ficar com elevados prejuízos. Além disso, não existem formas de prever os eventos de tensão, a ocorrência destes é bastante aleatória [3].

Na tabela 2.3 encontram-se agrupados os vários distúrbios que afetam a qualidade da onda de tensão.

Tabela 2.3 – Distúrbios da onda de tensão agrupados em fenómenos contínuos ou eventos de tensão [3].

Fenómenos contínuos	Eventos de tensão	
Desvios na frequência	Cavas de tensão	
Variações na tensão de alimentação	Sobretensões (swells)	
Desequilíbrios de tensão	Sobretensões transitórias	
Tensões harmónicas (incluindo interharmónicas e sub-harmónicas)	(Variações rápidas de tensão)	
Flicker (flutuações de tensão)		
(Variações rápidas de tensão ¹)		

_

¹ Para as variações rápidas de tensão, a diferença entre fenómenos contínuos e eventos de tensão é dúbio. De facto, estas perturbações são associadas a um dos dois grupos consoante a frequência com que se repetem.

As definições de cava de tensão e sobretensão foram melhoradas. Uma cava de tensão é classificada como um distúrbio eletromagnético que possui duas dimensões: tensão residual e duração temporal. No entanto, é reconhecido que existem outros parâmetros passíveis de caracterizar esta perturbação (modificação de ângulos do fasor da tensão de referência, forma de onda) [4] e [11]. Também foram definidos limites a partir dos quais se considera que se está perante uma cava de tensão, ou seja, quando a tensão de alimentação assume valores inferiores a 90% e superiores a 5% da tensão de referência [1].

Na nova edição da norma, removeram-se as expressões vagas relativas aos limites indicativos dos eventos de tensão. Os limites para os fenómenos contínuos, em média tensão, foram melhorados [1] e [6].

O aparecimento da tabela 2.2 e a definição de padrões de ensaios para os testes a que são sujeitos os equipamentos elétricos, permitiu a introdução do conceito de partilha de responsabilidade entre os consumidores, os fabricantes dos equipamentos e os operadores das redes de distribuição [6] e [10].

2.4 Caracterização das cavas de tensão

As cavas de tensão definem-se como uma redução temporária da tensão de alimentação e surgem devido há ocorrência de falhas (CC) ou devido a grandes variações de carga tais como, por exemplo, o arranque direto de motores de grande potência ligados à rede [6] e [12]. Na origem deste distúrbio poderão estar fatores atmosféricos, ações de animais, falha humana, etc. Após a ocorrência de um CC, não só surgem cavas de tensão como também, depois de as proteções atuarem, ocorre uma interrupção do fornecimento de energia elétrica [12]. Portanto, uma cava de tensão mantém-se na rede enquanto o defeito que a originou não for anulado, ou seja, até as proteções atuarem.

Estes fenómenos são completamente aleatórios na Natureza e a sua amplitude e duração podem assumir uma grande variedade de valores porque dependem de vários fatores [12]. Entre eles há a destacar os seguintes:

A profundidade da cava de tensão depende da potência de curto-circuito da linha
(S_{CC}) e da distância da SE monitorizada à zona onde ocorreu o defeito. A sua
duração depende do tempo de atuação das proteções.

 Grandes variações de carga, como por exemplo o arranque direto de motores de grande potência ligados à rede, podem resultar em cavas de tensão com uma duração até alguns segundos.

De acordo com [13], uma cava de tensão deve ser caracterizada pela sua duração (d) e tensão residual (u). A sua duração corresponde ao tempo, que o valor eficaz da tensão de alimentação, é inferior a um determinado limite. A tensão residual corresponde ao valor mínimo eficaz que a tensão de alimentação assume durante o evento. Também se pode usar a profundidade para caracterizar uma cava de tensão. A profundidade de uma cava de tensão corresponde há diferença entre a tensão nominal (V_N) e a tensão residual (u) [13].

Para determinar a sua duração é necessário definir um limite a partir do qual se considera que se está na presença de uma cava de tensão. Esse limite pode ser definido de múltiplas maneiras, tais como: uma percentagem da tensão nominal, uma percentagem da tensão média de longo prazo no local monitorizado ou uma percentagem do valor eficaz da tensão antes do início do evento [13].

A legislação em vigor em Portugal consiste na tradução da norma EN 50160. Sendo assim, todo o evento que assuma uma tensão entre 90% e 5% de V_N é considerado uma cava de tensão [14]. Esta termina quando o valor da tensão ultrapassa 91% de V_N . A esta diferença de 1% entre os limites definidos para o início e o fim de uma cava de tensão denomina-se de tensão de histerese [15]. Na figura 2.2, encontra-se representada uma cava de tensão com os limites definidos anteriormente. Como é percetível, o valor eficaz da onda da tensão, durante uma cava de tensão, não é constante.

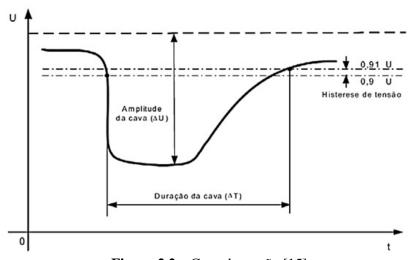
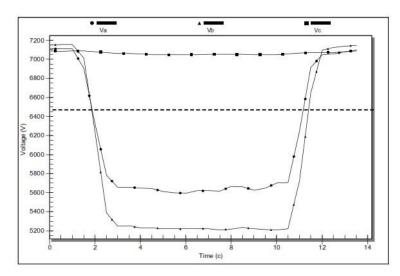



Figura 2.2 – Cava de tensão [15].

Na verdade, existe outra característica que muitas vezes é ignorada quando se trata de classificar as cavas de tensão. Essa característica é denominada como *phase-angle jumps*. Como é do conhecimento geral, a tensão elétrica é caracterizada por possuir um determinado valor eficaz e um ângulo associado, ou seja, trata-se de uma grandeza complexa (sistemas com frequência igual 50 ou 60 Hz). Após a ocorrência de um CC, o fasor da tensão elétrica sofre uma mudança nos seus valores, ou seja, o valor eficaz e o ângulo sofrem uma alteração. Esta alteração depende do tipo de CC. Esta característica é muitas vezes ignorada porque, a maioria dos equipamentos não sofre com a alteração do ângulo do fasor da tensão [4].

A informação exposta nos parágrafos anteriores corresponde a uma cava de tensão que ocorre num circuito monofásico. Na presença de um circuito trifásico, o valor da tensão residual da cava de tensão será obtido a partir da fase que apresentar o menor valor de tensão, ou seja, a fase que apresentar a maior profundidade. Aplicam-se os mesmos limites que foram descritos para o caso da cava de tensão num circuito monofásico [13]. Na figura 2.3 encontra-se representada uma cava de tensão num circuito trifásico.

Figura 2.3 – Cava de tensão num sistema trifásico e respetivo limite (90% de V_N) [13].

3. Indicadores para caracterização de cavas

3.1 Introdução

Neste capítulo propõem-se um conjunto de indicadores que avaliem o comportamento da rede de distribuição em relação às cavas de tensão.

Os indicadores SAIDI (Duração Média Anual das Interrupções do Sistema por Consumidor) e SAIFI (Frequência Média de Interrupções do Sistema por Consumidor) estão estabelecidos globalmente e, embora tenham algumas limitações, permitem a comparação entre os SEE de diferentes países [16].

Por outro lado, não existem indicadores estabelecidos a nível europeu nem normas europeias a propor indicadores para as cavas de tensão [16]. Apenas existem sugestões de eventuais indicadores [13], [16] e [17]. Os reguladores nacionais que fazem parte do CEER utilizam os seus próprios indicadores. A principal razão deve-se ao facto de as cavas de tensão serem multidimensionais, ou seja, existem vários parâmetros que as caracterizam tal como já foi referido anteriormente.

Em [13], são propostos vários indicadores que são passíveis de avaliar a performance de uma rede de distribuição. Além disso, são fornecidos alguns métodos de caracterização de cada cava de tensão, de cálculo para cada SE monitorizada e para o SEE.

Para se conseguir avaliar a performance do SEN em relação a este distúrbio será necessário percorrer três etapas:

- Caracterizar e calcular o valor do indicador para cada evento, ou seja, é necessário converter a tensão residual e duração das cavas num único valor;
- 2. Calcular valores dos indicadores para cada SE AT/MT monitorizada, ou seja, determinação dos indicadores locais;
- Cálculo dos valores dos indicadores relativos à rede de distribuição global ou parcial, através de médias aritmética e ponderadas dos indicadores locais, ou seja, determinação dos indicadores gerais.

3.2 Caracterização de cada evento

3.2.1 Indicador associado à energia da cava

O indicador *voltage sag energy characteristic* (E_{VS}) encontra-se definido na equação 3.1. Como é percetível pela análise desta, este indicador relaciona a tensão em função do tempo. É expresso em unidades de tempo, podendo ser em ciclos, milissegundos ou segundos [13].

$$E_{VS} = \int_{0}^{T} \left[1 - \left(\frac{V(t)}{V_N} \right)^2 \right] dt \tag{3.1}$$

Onde

V(t) é o valor eficaz da tensão durante o evento;

 V_N é a tensão de referência.

A integração da equação anterior ocorre durante a duração do evento, ou seja, para todos os valores eficazes da tensão que são inferiores ao limite definido [13].

Para aplicar a equação 3.1 é necessário conhecer a evolução da onda da tensão durante o evento. Infelizmente, com os dados que a EDP disponibiliza sobre a qualidade da onda de tensão, não é possível aplicar com precisão a equação anterior e obter os dados deste indicador. No entanto, de acordo com [13], para casos onde apenas estão disponíveis os valores da tensão residual e a duração da cava de tensão, assume-se que o valor eficaz da tensão durante o evento é constante. Sendo assim a equação 3.1 simplifica e obtém-se o seguinte:

$$E_{VS} = \left[1 - \left(\frac{u}{V_N}\right)^2\right] \times d \tag{3.2}$$

Onde

d é a duração do evento;

u é a tensão residual da cava de tensão.

De acordo com [13], considere-se uma carga de impedância constante com uma potência ativa dado por P_0 , à tensão V_N . Quando a tensão de alimentação baixa para o valor u, durante uma cava de tensão, a potência ativa da carga baixa de acordo com a seguinte expressão:

$$P = \left(\frac{u}{V_N}\right)^2 \times P_0 \tag{3.3}$$

A redução na potência ativa entregue à carga (ΔP) é dada pela seguinte equação:

$$\Delta P = P_0 \left[1 - \left(\frac{u}{V_N} \right)^2 \right] \tag{3.4}$$

Como a energia é a integração da potência num intervalo de tempo, desta forma a energia não fornecida à carga durante uma cava de tensão é dada pela expressão 3.5 [13].

$$\Delta E = \int_{0}^{T} \Delta P \, dt = P_0 \int_{0}^{T} \left[1 - \left(\frac{V(t)}{V_N} \right)^2 \right] dt \tag{3.5}$$

Se se aplicar a definição deste indicador (equação 3.1) à equação 3.5 obtém-se o seguinte resultado:

$$\Delta E = P_0 \times E_{VS} \tag{3.6}$$

Através da equação 3.6, conclui-se que a energia não fornecida à carga pela existência da cava, pode ser diretamente calculada através do indicador de energia E_{VS} e da potência absorvida pela carga imediatamente antes do evento que provocou a cava [13].

Este indicador, apesar de ser medido em unidades de tempo, pode considerar-se estar associado à energia não distribuída durante o evento, à semelhança da informação fornecida pelo indicador Tempo de Interrupção Equivalente (TIE). O TIE define-se como o quociente entre a energia não fornecida num dado período e a potência média do diagrama de cargas nesse período, calculada a partir da energia total fornecida e não fornecida no mesmo período.

3.2.2 Indicador associado à severidade da cava

O indicador de severidade (S_e), de acordo com [13], é definido através da tensão residual (u) em pu e a duração do evento (d). Além disso, para a sua determinação é necessário utilizar uma curva de referência V_{curve} (d). A equação seguinte fornece a expressão de cálculo da severidade de uma cava de tensão.

$$S_e = \frac{1 - u}{1 - V_{curve}(d)} \tag{3.7}$$

Segundo [13], as curvas de referência recomendadas para o cálculo deste indicador são a *Information Tecnology* Industry *Council* (ITIC) e *Semiconductor Equipament and*

Materials International Group-F47 (SEMI-F47), mas existem outras curvas que também se podem aplicar.

Um evento que tenha um valor de severidade inferior ou igual a um, é suposto que não cause problemas de funcionamento, ou seja, a cava de tensão está na zona imune do equipamento. Caso a cava de tensão caia na área inferior à curva, a sua severidade será superior a um.

Na figura 3.1 está representada a curva SEMI-F47, usada no método de cálculo do indicador de severidade das cavas. A zona que se encontra colorida a verde, é a denominada zona de imunidade, ou seja, cavas de tensão que se situem naquela área não devem causar problemas aos equipamentos que aplicam esta norma.

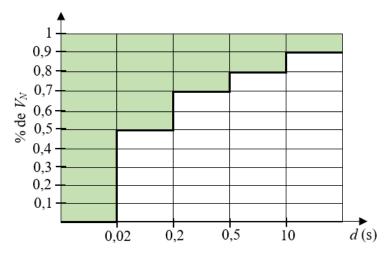


Figura 3.1 – Curva SEMI-F47.

De acordo com [13], deve-se utilizar o algoritmo presente na tabela 3.1 para o cálculo deste indicador quando a curva SEMI-F47 é usada como curva de referência.

Em suma, este indicador usa também apenas uma dimensão, neste caso a severidade, para caracterizar as cavas de tensão, ou seja, converte-se a tensão residual e a duração num valor de severidade.

Tabela 3.1 – Parâmetros de cálculo do indicador de severidade para a curva SEMI-F47 [13].

Gama de duração	Cálculo da severidade
$d \le 20 \text{ms}$	$S_e = 1-u$
$20 \text{ms} < d \le 200 \text{ms}$	$S_e = 2 \times (1-u)$
$200 \text{ms} < d \le 500 \text{ms}$	$S_e = 3.3 \times (1-u)$
$500 \text{ms} < d \le 10 \text{s}$	$S_e = 5 \times (1-u)$
d > 10s	$S_e = 10 \times (1-u)$

3.3 Indicadores locais

Na secção 3.2 procurou-se caracterizar cada evento atribuindo um valor de severidade e de tempo equivalente de interrupção. Desta forma, podem-se usar dois indicadores para caracterizar cada uma das SE AT/MT monitorizadas. Usando estes indicadores individuais, podem-se obter indicadores agregados que caracterizam o comportamento da rede elétrica relativamente a este tipo de distúrbio em função da severidade e do tempo equivalente de interrupção.

Através do indicador de energia, definido anteriormente, é possível calcular dois indicadores que representam a performance geral de um conjunto de locais monitorizados. Os dois indicadores são o Sag Energy Index (SEI) e o Average Sag Energy Index (ASEI).

Em relação ao indicador associado à severidade das cavas de tensão, também é possível obter dois indicadores locais que são o *Total Average Sag Severity* (S_{Site}) e o *Average Voltage Sag Severity* ($S_{Average}$).

3.3.1 System Average RMS Variation Frequency Index-X

De acordo com [13], o indicador *System Average RMS Variation Frequency Index* (SARFI-X) representa o número de eventos que têm tensão residual abaixo de um determinado valor de tensão de referência (X), independentemente da sua duração. Por exemplo, o SARFI-90 representa o número de eventos com uma tensão residual inferior a 90% de V_N . Da mesma forma, SARFI-70 representa o número de eventos com uma tensão residual inferior a 70% de V_N .

Este indicador pode ser útil para uma eventual desagregação por nível de tensão das cavas de cada SE AT/MT monitorizada. Além disso, permite que seja realizada uma comparação entre diferentes locais.

Na Itália é utilizado o indicador *SARFI-90* para determinar o número de cavas de tensão por ano do sistema de transmissão [9].

3.3.2 SARFI-curva

É possível definir outro indicador combinando a utilização do *SARFI* com uma curva de imunidade de equipamentos a cavas de tensão [13]. Sendo assim, o *SARFI-curva* fornece o número de eventos que estão posicionados abaixo da zona de imunidade de uma determinada curva de equipamentos. Para a determinação deste indicador poderão ser

utilizadas as curvas de imunidade classe 2 e classe 3 que se encontram definidas em EN 61000-4-11 e EN 61000-4-34 [9].

Para uma determinada classe de imunidade, um equipamento deve suportar determinadas células da tabela de classificação de cavas de tensão (tabela 2.2) sem comprometer o seu normal funcionamento. Um equipamento de classe 2, em condições normais de funcionamento, não deve ser afetado por cavas de tensão presentes nas células A1, A2, B1 e B2 [9]. Estas células representam a sua área de imunidade. Já a imunidade de um equipamento de classe 3 contém as células: A1, A2, A3, A4, B1, B2 e C1 [6] e [9]. As tabelas 3.2 e 3.3 ilustram as áreas de imunidade de um equipamento classificado com classe 2 e classe 3, respetivamente.

Tabela 3.2 – Área de imunidade de um equipamento de classe 2 [9].

_	Duração d [ms]				
Tensão residual <i>u</i> [%]	10 - 200	200 - 500	500 - 1000	1000 - 5000	5000 - 60000
$90 > u \ge 80$	A1	A2	A3	A4	A5
$80 > u \geq 70$	B1	B2	В3	B4	B5
$70 > u \geq 40$	C1	C2	C3	C4	C5
$40 > u \ge 5$	D1	D2	D3	D4	D5
5 > u	X1	X2	X3	X4	X5

Tabela 3.3 – Área de imunidade de um equipamento de classe 3 [6] e [9].

	Duração d [ms]				
Tensão residual u [%]	10 - 200	200 - 500	500 - 1000	1000 - 5000	5000 - 60000
$90 > u \geq 80$	A1	A2	A3	A4	A5
$80 > u \geq 70$	B1	B2	В3	B4	B5
$70 > u \geq 40$	C1	C2	C3	C4	C5
$40 > u \geq 5$	D1	D2	D3	D4	D5
5 > u	X1	X2	X3	X4	X5

3.3.3 Tabela de classificação

Para se ser rigoroso, a tabela de classificação de cavas de tensão não é um indicador, mas é um meio de apresentar um determinado número de indicadores. Cada célula pode representar um indicador, assim como existem muitas possibilidades de utilizar o *SARFI* como indicador, tal como já foi analisado.

Como referido anteriormente, a tabela 2.2 permite que sejam realizadas comparações entre SE/regiões ou até entre SEE.

3.3.4 Indicador de energia

Através do indicador associado à energia das cavas, definido anteriormente, podemse definir dois indicadores locais, a saber: o valor total da energia não fornecida associada às cavas registadas numa determinada SE monitorizada e o respetivo valor médio por cava.

De acordo com [13], define-se o indicador *Sag Energy Index (SEI)* como a soma da energia não fornecida de uma determinada SE monitorizada, durante um determinado tempo [13]. A equação seguinte faculta o método de cálculo deste indicador.

$$SEI = \sum_{i=1}^{n} E_{VS_{-i}}$$
 (3.8)

Onde

i representa o número do evento, de 1 a n;

Como já foi referido, apesar do *SEI* ser expresso em unidades de tempo, este está associado à energia não fornecida provocado pela totalidade das cavas registadas numa determinada SE, durante um determinado período de tempo.

Tendo como base o indicador *SEI*, pode-se definir um outro indicador denominado *Average Sag Energy Index (ASEI)* [13]. O *ASEI* é o valor médio de energia não distribuída numa determinada SE, durante o período de tempo monitorizado. A equação seguinte fornece a expressão de cálculo do indicador *ASEI*.

$$ASEI = \frac{1}{n} \sum_{i=1}^{n} E_{VS_{-}i}$$
 (3.9)

Para se saber qual o número de eventos monitorizados numa determinada SE é utilizado o indicador *SARFI-90*.

De acordo com [13], é possível relacionar o *SEI*, o *ASEI* e o *SARFI-90* de acordo com a seguinte expressão:

$$SEI = ASEI \times SARFI - 90 \tag{3.10}$$

3.3.5 Indicador de severidade

O método de definição e cálculo dos indicadores locais relacionados com a severidade das cavas é similar ao realizado para o indicador associado à energia não distribuída. Sendo assim, e segundo [13], introduzem-se dois indicadores locais: *total voltage sag*

severity (S_{Site}) e average voltage sag severity ($S_{Average}$). As equações seguintes fornecem as expressões para o cálculo destes dois indicadores.

$$S_{Site} = \sum_{i=1}^{n} S_{e-1} \tag{3.11}$$

$$S_{Average} = \frac{S_{Site}}{n} \tag{3.12}$$

Note-se que o valor de *n*, referido ao número de cavas, é o valor que se obtém quando se aplica o *SARFI-90* a um determinado local.

De acordo com [13], também para este caso existe uma relação entre os três indicadores dada pela equação seguinte:

$$S_{Site} = S_{Average} \times SARFI_{90} \tag{3.13}$$

3.4 Indicadores para o SEN

Para se chegar aos indicadores que caracterizam a performance do SEN foi preciso ultrapassar algumas etapas. A primeira etapa passava pela caracterização de cada evento atribuindo um determinado valor de severidade e de energia não distribuída.

Em segundo lugar obtiveram-se os indicadores locais que forneciam os dados relativos ao comportamento da rede elétrica em cada SE AT/MT monitorizada.

Por fim, os indicadores relativos ao SEN são apenas médias aritméticas ou ponderadas dos indicadores definidos para os locais monitorizados.

No próximo capítulo, com base nos dados de monitorização disponíveis para os anos 2014 e 2015, encontram-se calculados os indicadores que foram aqui apresentados neste capítulo.

4. Resultados

4.1 Introdução

Neste capítulo, são apresentados os valores dos indicadores previamente definidos na secção anterior, calculados utilizando os dados disponíveis da monitorização da QE das 77 SE AT/MT do ano de 2015, e fez se a análise de modo a se poder inferir algumas conclusões acerca destes. Na análise dos valores dos indicadores por distrito procurou-se dar uma expectativa da QE por zonas de Portugal continental e assim dar a informação de quais apresentam melhor QE. Neste estudo, teve-se em conta o número de barramentos monitorizados em cada distrito por forma a se poder efetuar uma comparação do valor dos indicadores tendo em conta o número de barramentos monitorizados de cada distrito de modo a uniformizar os resultados.

Aplicou-se o mesmo raciocínio quando se realizou uma análise comparativa às 40 SE AT/MT agregadas por regiões de NUTS II², que estiveram em monitorização permanente, nos anos de 2014 e 2015, afim de concluir qual a evolução que existiu e quais as SE que apresentam melhor QE.

Para os resultados que são apresentados de seguida, não foram incluídos os dados relativos aos eventos excecionais.

Os dados de monitorização da QE são de acesso público e estão disponíveis na página da EDP-Distribuição [18]. Para consulta na dissertação, os dados encontram-se no anexo C.

4.2 Cálculo dos indicadores de energia e de severidade

Para se conseguir obter valores precisos para os indicadores de energia e de severidade, era necessário possuir valores de profundidade e duração de cada evento. Como já referido anteriormente, esses dados não são públicos. Sendo assim, de forma a ultrapassar este obstáculo na obtenção de dados de cada evento, foi usado o valor médio de cada intervalo tanto da tensão residual e como da duração de cada uma das células da tabela de classificação de cavas.

² "Nomenclatura das Unidades Territoriais para Fins Estatísticos" (NUTS II)

Nas tabelas 4.1 e 4.2 encontra-se representado o peso de cada célula para o cálculo dos indicadores em questão. Na tabela 4.1, a unidade utilizada é o milissegundo para manter a coerência de como a tabela de classificação de cavas é apresentada. Contudo, os resultados do indicador de energia serão apresentados com a unidade de segundos.

Tabela 4.1 – Tabela de cálculo do indicador associado à energia das cavas de tensão.

	Duração d [ms]				
Tensão residual <i>u</i> [%]	10 - 200	200 - 500	500 - 1000	1000 - 5000	5000 - 60000
$90 > u \geq 80$	29	97	208	833	9019
$80 > u \geq 70$	46	153	328	1313	14219
$70 > u \geq 40$	73	244	523	2093	22669
$40 > u \geq 5$	100	332	712	2848	30855
5 > u	105	349	750	2993	32419

Tabela 4.2 – Tabela de cálculo do indicador associado à severidade das cavas de tensão.

	Duração d [ms]				
Tensão residual u [%]	10 - 200	200 - 500	500 - 1000	1000 - 5000	5000 - 60000
$90 > u \ge 80$	0,3	0,5	0,8	0,8	1,5
$80 > u \geq 70$	0,5	0,8	1,3	1,3	2,5
$70 > u \geq 40$	0,9	1,5	2,3	2,3	4,5
$40 > u \geq 5$	1,6	2,6	3,9	3,9	7,8
5 > u	2,0	3,2	4,9	4,9	9,8

Através da observação da tabela 4.1, é percetível que o indicador associado à energia das cavas é muito mais influenciável pelo aumento da duração das cavas de tensão do que pelo aumento da profundidade destas. Além disso, as células A5, B5, C5, D5 e X5 têm um grande impacto no valor deste indicador, suscetível de distorcer o resultado do somatório, isto se houver cavas classificadas nestas células.

Na tabela 4.2 verifica-se precisamente o contrário. O indicador associado à severidade das cavas, leva mais em conta o aumento da profundidade destas e não tanto o aumento da duração. Obviamente que quanto maior a duração e a profundidade da cava, mais severa esta é. No entanto, da maneira como o método de cálculo se encontra definido, as células A3, A4, B3, B4, C3, C4, D3, D4, X3 e X4 possuem valores iguais de severidade.

4.3 Subestações AT/MT e a sua área de abrangência

Na figura 4.1 encontra-se representado a distribuição das SE AT/MT existentes em 2015, encontrando-se em funcionamento 388 SE AT/MT.

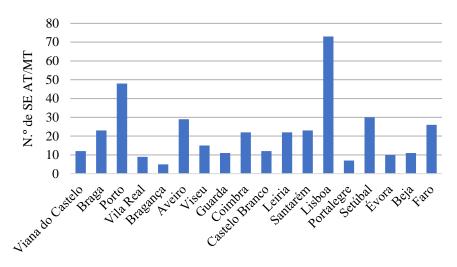
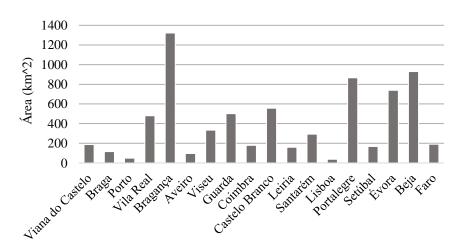


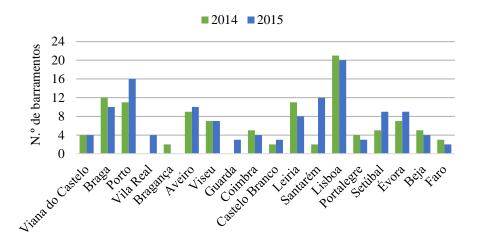
Figura 4.1 – N.º total de SE AT/MT do SEN.

Da observação da figura 4.1 é possível retirar duas conclusões. A primeira é a diferença que se verifica entre o número de SE AT/MT nos distritos do litoral e do interior. Repare-se que o número de SE AT/MT do Alentejo (28) é inferior ao distrito de Setúbal (30). Se tivermos em conta a área do Alentejo (Portalegre, Évora e Beja) e do distrito de Setúbal facilmente se conclui que a área que uma SE AT/MT abrange no Alentejo é muito superior à área de influência no distrito de Setúbal. Tal facto deve-se, essencialmente, à desertificação do interior e consequente dispersão das populações representando uma muito baixa densidade de carga elétrica.

Para mais informação, encontra-se disponível no anexo D a localização das SE AT/MT, MT/MT e rede por nível de tensão.

Na figura 4.2, encontram-se representadas as áreas médias de abrangência das SE AT/MT por distrito de Portugal continental. No anexo E encontra-se disponível uma informação semelhante, mas mais pormenorizada.




Figura 4.2 – Área média de abrangência de uma SE AT/MT por distrito.

Quanto maior for a área que cada SE AT/MT abrange, maiores são os comprimentos das linhas da rede MT. Devido ao exposto, fará todo o sentido que os distritos que apresentam maiores áreas de influência sejam os que apresentam piores resultados em consequência dos maiores comprimentos das linhas, dado que estas estão sujeitas a um maior número de eventos que degradam a QE.

A figura 4.2 é uma consequência das disparidades verificadas na figura 4.1.

Deve-se salientar que, para a elaboração deste gráfico apenas se teve em conta a localização geográfica de cada SE AT/MT.

Na figura 4.3, encontra-se representado o número de barramentos monitorizados em cada distrito, ao longo do biénio 2014-2015.

Figura 4.3 – N.º de barramentos monitorizados por distrito, no biénio 2014-2015.

Os critérios, que a EDP aplica para colocar uma determinada SE AT/MT em monitorização, estão relacionados com o número de queixas dos consumidores de uma dada região e respeitam um plano de monitorização previamente definido. Além disso, à medida que as SE AT/MT vão sendo remodeladas ou entram em serviço são sempre equipadas com monitorização permanente. Pode acontecer que, de um ano para o outro, ocorra uma grande diferença entre o número de barramentos monitorizados num determinado distrito, tal como aconteceu no distrito de Santarém, nos anos de 2014 e 2015.

É natural que se verifique um maior número de SE AT/MT em monitorização nos distritos onde o seu número é mais elevado porque, e como já referido antes, são os locais onde se encontra a maior carga elétrica.

4.4 Resultados para as subestações AT/MT monitorizadas em 2015

4.4.1 Indicador de energia

Na figura 4.4, encontram-se representados os resultados obtidos para o indicador associado à energia não distribuída.

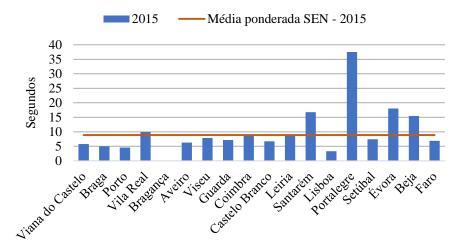


Figura 4.4 – Resultados do indicador associado á energia não distribuída.

Optou-se por agregar as SE AT/MT monitorizadas por distrito porque, desta forma, consegue-se ter uma melhor perceção da QE pelas diferentes zonas de Portugal continental. Um possível inconveniente desta solução será o reduzido número de barramentos monitorizados em alguns distritos. Desta forma, não é possível aferir grandes conclusões em consequência da reduzida amostra usada em algumas zonas. Posto isto, o distrito de Bragança não teve qualquer barramento em monitorização, no ano de 2015.

Através da observação da figura 4.4, constata-se que os distritos que fazem parte do Alentejo são os que possuem os valores mais elevados no indicador em questão. Tal facto está relacionado com a maior área de abrangência de cada SE AT/MT. Tal como referido, a maior área de abrangência traduz-se no maior comprimento das linhas, estando assim sujeitas a um maior número de eventos que degradam a QE. Além disso, nesta zona de Portugal continental, as SE AT/MT que alimentam as SE MT/MT possuem proteções mais lentas, para garantia de seletividade, mas que se traduz em cavas de tensão com maiores durações.

Como é natural, o distrito de Lisboa destaca-se pela positiva em virtude das condições excecionais que possui. A rede MT em Lisboa possui os seguintes níveis de tensão: 10 e 30 kV. A maior parte da rede de 10 kV caracteriza-se por ser enterrada, diminuindo bastante os fatores naturais passíveis de afetar a QE. Para além disso, é o distrito que

possui o maior número de SE AT/MT, e com área de abrangência reduzida devido à grande densidade de carga elétrica na região.

Os resultados obtidos pelos distritos da Guarda e Castelo Branco são aceitáveis tendo em consideração a informação presente na figura 4.2. No entanto, é necessário ter em conta que as SE AT/MT monitorizadas nestes distritos estão localizadas nas cidades. A exceção é a SE AT/MT do Sabugueiro (distrito da Guarda). Sendo assim, os barramentos que se encontraram em monitorização alimentam zonas urbanas.

O distrito de Santarém possui um valor elevado no resultado deste indicador. Tal situação pode ser explicada pela monitorização de determinadas SE AT/MT que possuem linhas que estão encadeadas com postos de corte. Esta situação traduz-se em cavas de tensão com maiores durações por causa de questões de seletividade das proteções.

O distrito de Faro obtém um bom resultado neste indicador. Este facto pode ser justificável por vários fatores. Primeiro, apenas estiveram em monitorização SE AT/MT que se encontram no litoral algarvio. Segundo, a rede MT do litoral algarvio é caracterizada por ser enterrada, eliminando vários fatores que degradam a QE.

Os resultados fornecidos por este indicador não constituem nenhuma surpresa, ou seja, em geral, os distritos que pertencem ao litoral possuem melhores resultados que os distritos do interior. No entanto, pertencer ao litoral não é uma garantia de melhor QE. O resultado obtido pelo distrito de Leiria demonstra isso mesmo. Na região do Oeste, as linhas MT são longas. Para além disso, é uma zona muito ventosa e arborizada. Estes fatores aliados a uma S_{CC} elevada, traduzem-se em cavas de tensão profundas.

Relativamente ao SEN, a média ponderada do indicador de energia foi de 8,86s.

Em suma, deve-se olhar para estes resultados com alguma cautela porque ainda falta analisar os resultados fornecidos pelos restantes indicadores, principalmente o relacionado com o valor médio de energia não distribuída.

4.4.2 Indicador associado ao valor médio de energia

Na figura 4.5, encontram-se representados os resultados obtidos para o indicador associado ao valor médio de energia não fornecida.

O distrito de Vila Real é o que apresenta o pior resultado no indicador em questão. Este resultado, deve-se ao peso que a célula A5 possui no cálculo deste indicador. No total, este distrito possui duas cavas de tensão naquela célula o que tem um grande impacto no valor final dos indicadores associados à energia e energia média das cavas de tensão.

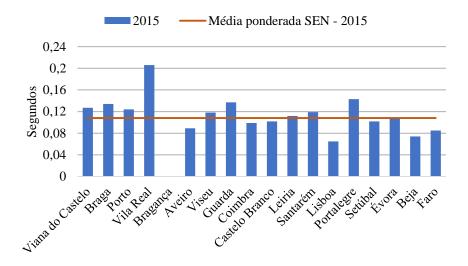


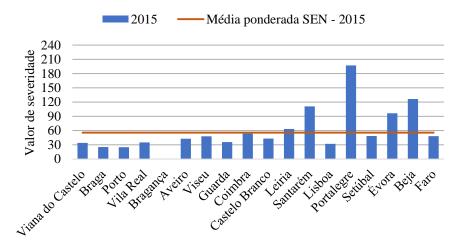
Figura 4.5 – Resultados obtidos para o indicador associado ao valor médio de energia.

O resultado do distrito de Beja pode ser surpreendente tendo em conta tudo o que já foi anteriormente referido. No entanto, este resultado surge porque, registaram-se muitas cavas de tensão que têm pouco impacto no cálculo do indicador de energia. Ou seja, são cavas profundas, mas de curta duração (até 200ms). Pode-se concluir que em Beja, verificaram-se muitas cavas (resultado do indicador energia) mas o seu valor médio de energia é baixo, o que significa que eventuais prejuízos causados por estas serão reduzidos.

Como seria de esperar, Lisboa verifica o melhor resultado devido ao facto de as cavas de tensão registadas serem poucas e de curta duração. No entanto, algumas são profundas. Ou seja, são cavas de tensão que têm pouco impacto no valor final do indicador.

Nos distritos de Viana do Castelo, Braga e Porto o valor médio do indicador associado à energia das cavas é superior à média do SEN. Este facto, deve-se ao registo de um número reduzido de cavas (resultado do indicador de energia) embora algumas tenham uma maior duração. Ou seja, apesar de se terem registado poucas cavas, quando estas ocorrem podem causar problemas aos consumidores alimentados nestas regiões.

Os resultados de Santarém e Portalegre demonstram que, nestas zonas, registam-se muitas cavas de tensão profundas e com elevadas durações.


Através da observação da figura 4.4, parecia que o resultado obtido pelo distrito da Guarda era bom. No entanto, com este indicador, verifica-se que este distrito possui um valor médio de energia elevado. Este resultado, advém do número baixo de cavas de tensão registado, aliado a estas possuírem uma duração razoável. Em média, são cavas que podem causar problemas aos consumidores alimentados nesta zona.

Relativamente ao SEN, a média ponderada do indicador associado ao valor médio de energia foi de 0,11s.

Em suma, os resultados obtidos por alguns distritos no indicador de energia pareciam bons. Contudo, em alguns casos, o valor médio de energia das cavas é superior à média do SEN. Posto isto, pode-se concluir que a análise em simultâneo dos dois indicadores é importante para a recolha de mais informação e melhor classificação dos distritos. Ou seja, estes indicadores complementam-se.

4.4.3 Indicador de severidade

Na figura 4.6 encontra-se representado os resultados obtidos para o indicador associado à severidade das cavas.

Figura 4.6 – Resultados obtidos para o indicador de severidade.

Através da observação da figura 4.6, constata-se que os distritos que pertencem à região do Alentejo detêm os piores resultados. Este facto não constitui qualquer surpresa devido às características da rede MT já enumeradas. Além disso, o distrito de Portalegre verifica, mais uma vez, o pior resultado.

Analisando a figura 4.6 com mais atenção, constata-se que o distrito do Porto tem o valor mais baixo de severidade (24,7), seguido por Braga (25,2) e Lisboa (31,8). Este resultado, deve-se à maior influência da profundidade das cavas no cálculo deste indicador e ao facto das cavas com durações entre os 500 e os 5000 ms terem o mesmo peso. Embora também leve em consideração a duração das cavas, o aumento do valor de severidade é influenciado pelo aumento da profundidade e não tanto com o aumento da duração destas (secção 4.2).

A região de Leiria também regista cavas de tensão com elevada profundidade. Esta situação sucede-se essencialmente porque, como referido anteriormente, esta zona é muito arborizada e com registos de ventos muito fortes e além disso, as SE possuem uma elevada S_{CC}.

As cavas de tensão registadas no distrito de Santarém, além de terem grandes durações, também são profundas.

No resultado obtido no indicador associado à energia não fornecida, o distrito de Beja tem o quarto pior resultado. Neste indicador tem o segundo pior resultado. Tal situação advém do número elevado de cavas profundas com duração até 200 ms que será visível numa análise mais à frente. Aliás, já foi visível, indiretamente, nos resultados fornecidos pelo indicador associado ao valor médio de energia não fornecida.

Relativamente ao SEN, a média ponderada foi de 55,5.

É necessário ter presente que para o cálculo deste indicador, as células das colunas 3 e 4 da tabela de classificação de cavas correspondente ao intervalo de duração de cava entre 500 e 5000 ms possuem o mesmo valor de severidade. Este facto é suscetível de adulterar os resultados porque, de certa forma, as cavas mais severas na duração não estão a ser contabilizadas de forma adequada. Contudo, deve-se destacar que o número de cavas de tensão com duração entre os 1000 e os 5000 ms é reduzido.

Em suma, é possível observar algumas diferenças nos resultados fornecidos pelos indicadores de energia e de severidade. Estas diferenças surgem devido ao peso diferente que a duração e a profundidade assumem no cálculo destes indicadores.

4.4.4 Indicador associado ao valor médio de severidade

Na figura 4.7, encontram-se representados os resultados obtidos para o indicador associado ao valor médio de severidade das cavas.

Através da observação da figura 4.7, constata-se que o valor de severidade média não tem uma grande variabilidade entre os vários distritos. Os resultados até são bastante uniformes.

Também é possível constatar que o os resultados obtidos assumem valores inferiores à unidade. Do ponto de vista da curva de imunidade utilizada, este facto significa que, em média, a maioria das cavas de tensão está situada na zona de imunidade do equipamento. Obviamente que nem todas as cavas registadas estão situadas nesta zona da curva.

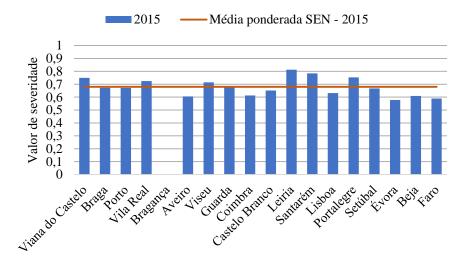
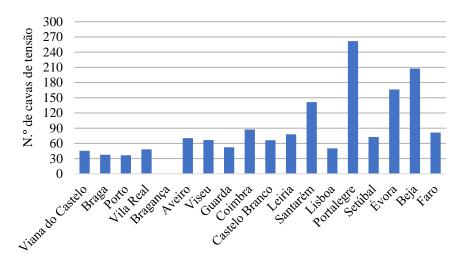


Figura 4.7 – Resultados obtidos para o indicador associado ao valor médio de severidade.

Na figura anterior (4.6), verificou-se que o distrito do Porto tinha o melhor resultado e justificou-se com o facto de Lisboa possuir mais cavas de tensão profundas. Posto isto, seria suposto que o distrito do Porto obtivesse um valor médio de severidade inferior aos outros distritos, uma vez que apresentou o melhor resultado. Tal facto não se sucede por causa do número de cavas de tensão inferior aos outros distritos. Ou seja, como o número de cavas de tensão é inferior, o valor médio de severidade sobe. Além disso, apesar de serem cavas menos profundas, algumas têm uma duração razoável que, como já foi referido, não são devidamente contabilizadas neste indicador. Esta situação já foi visível no indicador associado ao valor médio de energia.

No distrito de Beja, é possível uma vez mais, constatar que apesar do número elevado de cavas profundas, estas têm uma curta duração, o que se traduz num valor médio de severidade baixo.


Apesar dos indicadores de energia e de severidade serem diferentes, eles mostram uma tendência semelhante, ou seja, nos valores médios, os distritos do Norte, Leiria, Santarém e Portalegre obtêm os maiores valores, o que significa que, consumidores situados nestas zonas tiveram problemas, embora em alguns casos, o número de cavas seja baixo.

Relativamente ao resultado obtido para o SEN, o valor do indicador associado ao valor médio de severidade foi de 0,68.

Em suma, mais uma vez, fica claro que é importante a utilização dos dois indicadores de severidade para a melhor classificação das regiões em relação à QE.

4.4.5 Indicador SARFI-90

Na figura 4.8, encontram-se representados os resultados obtidos para o indicador *SARFI-90*.

Figura 4.8 – Resultados obtidos para o indicador *SARFI-90*.

Como seria de esperar, a região do Alentejo regista o maior número de cavas de tensão por causa dos maiores comprimentos das linhas que constituem a rede MT e, portanto, maior exposição a fatores naturais.

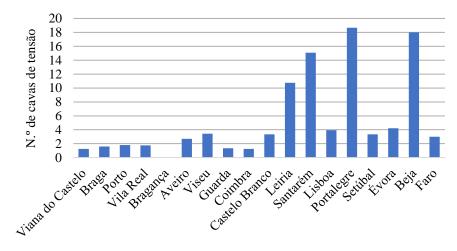
As SE AT/MT que pertencem ao litoral Norte (Viana do Castelo, Braga e Porto) foram as que registaram o menor número de cavas. No entanto, apesar de serem poucas, algumas têm grandes durações. É possível concluir este facto após a observação dos resultados anteriores.

O resultado do distrito de Lisboa poderá estar a ser inflacionado pela inclusão de uma SE AT/MT que regista um número elevado de cavas de tensão. A SE em questão é a da Lourinhã. Esta SE faz parte das 40 SE AT/MT que estiveram em monitorização permanente, durante os anos de 2014 e 2015, e será possível observar os seus resultados na secção 4.5.

O distrito de Vila Real verificou um número reduzido de cavas. No entanto, estas têm elevadas durações como foi possível constatar nos resultados observados dos outros indicadores.

Após os resultados já obtidos, confirma-se que as SE monitorizadas no distrito de Castelo Branco alimentam zonas urbanas.

A principal causa, para os valores obtidos nos indicadores de energia e de severidade, nos distritos de Santarém, Portalegre, Évora e Beja é o número elevado de cavas registado.


O distrito de Coimbra verificou um número elevado de cavas, aproximadamente 90 por barramento. No entanto, apenas uma SE AT/MT monitorizada pertence à cidade (SE Antanhol).

No ano de 2015, registaram-se 10468 cavas de tensão.

Em suma, com o indicador *SARFI-90* é possível constatar que as regiões que possuem SE AT/MT com maiores áreas de abrangência são as zonas que verificam mais cavas de tensão. Por causa dessa situação, existe uma grande variabilidade nos valores obtidos pelos diferentes distritos.

4.4.6 Indicador SARFI-40

Na figura 4.9, encontram-se representados os resultados obtidos para o indicador *SARFI-40*.

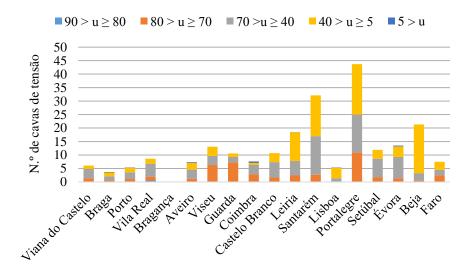
Figura 4.9 – Resultados obtidos para o indicador *SARFI-40*.

O maior número de cavas de tensão profundas está situado nos distritos de Leiria, Santarém, Portalegre e Beja.

A origem do número elevado de cavas profundas, no distrito de Leiria, já foi enunciada anteriormente. Contudo, os fatores determinantes são a elevada $S_{\rm CC}$, zona ventosa, relevo e áreas arborizadas.

O distrito de Portalegre não é caracterizado por ter uma elevada S_{CC} , bem pelo contrário. No entanto, é o distrito que regista o maior número de cavas de tensão profundas. Poderá estar na origem deste facto, a proximidade das SE AT/MT monitorizadas às zonas de defeito. Como já foi referido, quanto maior a proximidade ao defeito, maior a profundidade da cava de tensão. Também se poderá aplicar o mesmo raciocínio às SE AT/MT que pertencem ao distrito de Beja.

Em Beja, verificou-se um número anormal de cavas de tensão profundas, mas com uma duração até 200ms. Provavelmente, terá surgido algum problema na rede MT que não é comum acontecer. Só assim é possível explicar a origem destas cavas.


Na zona Norte, o número de cavas profundas é reduzido. Contudo, algumas têm durações elevadas como já foi possível constatar nos resultados anteriores.

Como já foi referido anteriormente, as cavas de tensão profundas registadas no distrito de Lisboa são uma consequência da elevada $S_{\rm CC}$.

Em suma, os resultados deste indicador dependem da S_{CC} , da proximidade da SE AT/MT monitorizada ao defeito e do tipo de defeito. Na região Oeste e de Lisboa, o fator determinante será a S_{CC} . No Alentejo, como esta não é muito elevada, uma explicação lógica será a menor distância entre os defeitos e as SE AT/MT monitorizadas.

4.4.7 Indicador SARFI-classe 3

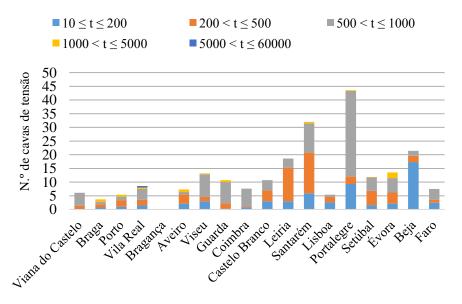
Aplicando o indicador *SARFI-classe 3*, ou seja, supondo que as cavas de tensão das células A1, B1, C1, A2, B2, A3 e A4 são desprezáveis, obtém-se a figura 4.10, que relaciona o número de cavas de tensão com os intervalos de classificação da tensão residual.

Figura 4.10 – Valores obtidos para o indicador *SARFI-classe 3*.

Observando a figura 4.10, verifica-se que os distritos de Leiria, Santarém, Portalegre e Beja são os que registam o maior número de cavas de tensão abaixo da curva de imunidade definida anteriormente

Em Lisboa, mais de 70% das cavas que se situam abaixo da curva de imunidade têm uma grande profundidade, tal como é possível observar na figura 4.10.

Pelo menos 50% das cavas de tensão registadas nos distritos de Viseu e da Guarda têm uma tensão residual entre os 80 e os 70% de V_N . Isto pode significar que as SE monitorizadas se encontram distantes dos locais onde ocorre a maioria dos defeitos. Além disso, estas cavas são as que são caracterizadas por terem grandes durações, ou seja, vão desde os 500 até aos 60000 ms.


Na região Norte (Viana do Castelo, Braga, Porto e Vila Real), o perfil dos resultados obtidos neste indicador é semelhante, ou seja, a maioria das cavas de tensão que caiem em zonas proibidas têm uma tensão residual entre os 70 e os 40% de V_N .

Na região Centro, verifica-se uma grande variabilidade nos resultados.

Em alguns distritos registaram-se cavas com uma grande profundidade (u>5% de V_N). Estas cavas estão associadas a defeitos muito graves cuja ocorrência não é frequente.

No global, os valores do indicador *SARFI-classe 3* são bons porque, apesar de existirem distritos que têm muitas cavas de tensão, 8 deles (50%) tem um número de cavas inferior a 10 num ano. Além disso, é necessário ter a noção que não é possível eliminar este distúrbio das redes, pelo menos através de um custo razoável.

Aparentemente, não é possível extrair mais informação deste indicador porque falta uma dimensão para a melhor compreensão dos valores. Para colmatar esta lacuna, optouse, também, por agregar as cavas de tensão por intervalos de classificação de duração, como representado na figura 4.11.

Figura 4.11 – Valores obtidos para o indicador *SARFI-classe 3*.

Analisando a figura 4.11, constata-se o número elevado de cavas de tensão com uma duração entre os 500 e os 1000 ms, no distrito de Portalegre.

Também é possível observar o número exagerado de cavas de tensão profundas e com uma duração até 200 ms, no distrito de Beja.

Em alguns distritos, mais de 50% das cavas têm uma duração superior a 500 ms.

É possível concluir, que a maioria das cavas registadas no distrito de Leiria são profundas e têm uma duração até 500 ms. Este resultado explica os valores obtidos nos indicadores de energia e de severidade.

Na maioria dos distritos, uma pequena percentagem das cavas são profundas e têm uma duração até 200 ms. As exceções são os distritos de Viana do Castelo e da Guarda.

Na figura 4.10, constatou-se que em Lisboa, mais de 70% das cavas são profundas. Através destes resultados, verifica-se que a grande maioria dessas cavas, tem uma duração até 200 ms.

Os distritos de Braga, Porto, Vila Real e Évora verificam o maior número de cavas com uma duração superior a 1000 ms. Apesar do número ser reduzido, pode-se concluir que na região Norte a maioria das cavas não é profunda, mas algumas têm elevadas durações como já se tinha constatado nos indicadores anteriores.

Os resultados do distrito de Santarém, como já foi referido anteriormente, resultam de questões de seletividade das proteções.

Nos resultados fornecidos por este indicador, verifica-se uma grande variabilidade, não existindo um padrão que defina as diferentes regiões.

4.5 Subestações AT/MT em monitorização permanente

4.5.1 Indicador de energia

Na figura A.1 (anexo A), apresentam-se os valores obtidos para o indicador associado à energia não distribuída, para as 40 SE AT/MT que se encontraram em monitorização permanente, nos anos 2014 e 2015. Na figura 4.12 encontram-se resultados similares, mas com menos SE representadas.

Após observação da figura 4.12, verifica-se que os piores valores foram obtidos por SE que se encontram nos distritos de Portalegre (Alter do Chão e Ponte Sor), Beja (Brinches), Évora (Vendas Novas), Viseu (Lamego), Leiria (Cela) e Lisboa (Lourinhã).

Também é possível constatar que existe uma grande variabilidade nos resultados obtidos, seja nos resultados entre SE, seja nos dois anos. Naturalmente, as SE que pertencem à Área Metropolitana de Lisboa (AML) registam valores muito similares porque a maioria da sua rede não se encontra exposta a eventos suscetíveis de afetar a

QE. No entanto, no ano de 2014, verificaram-se algumas cavas muito profundas e com uma elevada duração, que se traduzem em dois máximos relativos nesta zona (Caneças e Póvoa). Como já foi referido, estas cavas têm um grande impacto no valor final do indicador em questão.

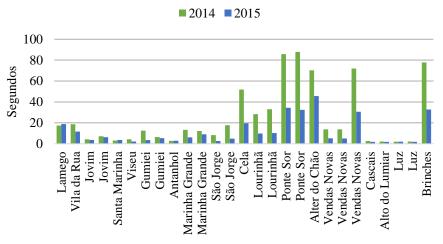


Figura 4.12 – Indicador de energia – algumas SE.

As SE que pertencem às grandes cidades não registam diferenças substanciais nos valores obtidos. Este facto não é surpreendente porque a rede MT nas cidades não deve estar exposta aos eventos que degradam a QE. Para além disso, deve ser caracterizada por possuir poucos quilómetros de comprimento.

Nas SE que possuem dois ou mais barramento em monitorização, é possível constatar a diferença entre a alimentação de zonas urbanas e rurais. São exemplos os casos de Cantanhede, Pombal, São Jorge e Vendas Novas. Existe um barramento que possui resultados bastante inferiores ao outro devido as linhas deterem maiores quilómetros e atravessarem zonas arborizadas. Na SE de Vendas Novas este facto é evidente, uma vez que dois barramentos são alimentados a 15 kV e o outro, que detém os piores resultados, é alimentado a 30 kV. Se ainda existiam dúvidas, fica aqui demonstrado o grande impacto do comprimento das linhas na QE.

No ano de 2015, registou-se uma melhoria muito substancial em quase todas as SE. O nível de melhoria obtido pela região Oeste e do Alentejo não deixa de ser surpreendente. Este resultado deve-se à diminuição do número de cavas registadas em praticamente todas as SE monitorizadas, como será possível observar no indicador *SARFI-90*.

Apesar da grande melhoria verificada no ano de 2015, mantém-se a tendência para as regiões do Oeste e Alentejo apresentarem os piores valores. Além disso, as SE que pertencem à AML ainda obtêm melhores resultados.

A média, do ano de 2014, foi de 15,3s. Já no ano de 2015, esta foi de 8,3s.

4.5.2 Indicador associado ao valor médio de energia

Na figura A.2 (anexo A), é possível ver os resultados obtidos para o indicador associado ao valor médio de energia não fornecida, para os anos de 2014 e 2015. Na figura 4.13 encontram-se representados resultados similares, mas com menos SE.

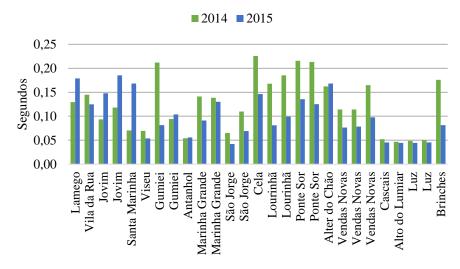
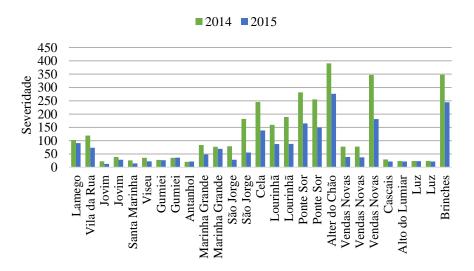


Figura 4.13 – Indicador associado ao valor médio de energia – algumas SE.

No ano de 2014, o elevado valor médio obtido por um barramento da SE de Gumiei, tem origem numa cava de tensão posicionada na célula A5. Acontece uma situação parecida na SE de Caneças.

Em algumas SE, regista-se uma melhoria dos valores obtidos no ano de 2015. Noutras verifica-se o contrário. Como se trata de um valor médio e o número de cavas de tensão baixou, principalmente as que têm uma baixa profundidade e curta duração, aliado ao facto de terem permanecido as cavas mais problemáticas, o valor médio aumenta. Isto claro, para as SE do Norte. Nas SE da zona Oeste e Alentejo, verificou-se a diminuição do número de cavas com grandes durações e profundas. Daí o valor médio inferior, no ano de 2015.


Apesar de em algumas SE o valor médio de energia se agravar, mantém-se a tendência de melhoria verificada no indicador anterior. Posto isto, a média, do ano de 2014, foi de 0,13s e, em 2015, foi 0,10s.

Em suma, como já foi referido anteriormente, existe uma grande variabilidade dos valores porque, o cálculo deste indicador, depende do valor do *SARFI-90* e da gravidade das cavas. Se o valor do indicador de energia tem uma pequena redução e se o número de cavas diminui, logicamente que o valor médio será superior (caso das SE do Norte) e significa que as cavas com baixa profundidade e de curta duração diminuíram. Se o valor de energia diminui muito e o número de cavas também, significa que as cavas com maior duração diminuíram (caso das SE que pertencem às regiões do Oeste e Alentejo).

Mais uma vez, conclui-se que é necessário olhar para os dois indicadores de energia para se deter mais informação, possibilitando uma correta classificação das SE quanto ao nível de QE.

4.5.3 Indicador de severidade

Na figura A.3, presente no anexo A, encontram-se os resultados obtidos para o indicador de severidade, para os anos de 2014 e 2015. Na figura 4.14 encontram-se representados resultados similares, mas com menos SE.

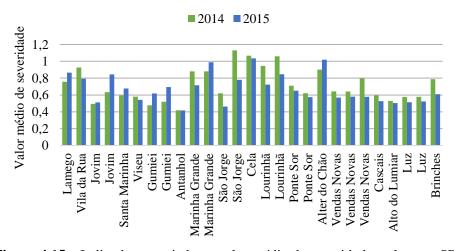
Figura 4.14 – Indicador de severidade – algumas SE.

Depois de se analisar a figura 4.14, constata-se que a tendência demonstrada pelo indicador de energia mantém-se, ou seja, as regiões do Oeste e Alentejo apresentam os piores valores. Já a AML possui dos melhores resultados.

É interessante constatar que as SE que são alimentadas a 30kV, são as que apresentam os piores resultados. Isto deve-se ao maior comprimento das linhas MT, como já foi referido anteriormente.

Também, neste indicador, se verificam melhores resultados no ano de 2015. Além disso, as SE que pertencem ao Alentejo e região Oeste são as que mais demonstram a melhoria devido à grande diminuição do número de cavas. No entanto, algumas SE não exibem esse nível de melhoria. Em alguns locais, poderão ter surgido problemas que tiveram impacto na QE.

É possível concluir que os resultados deste indicador apresentam uma grande variabilidade, tais como os do indicador de energia.


Os níveis de melhoria verificados nos valores dos indicadores de energia e de severidade, não têm a ver com investimentos de melhoria realizados na rede MT. Nos anos de 2014 e 2015, presenciam-se duas realidades opostas, ou seja, o Instituto Português do Mar e da Atmosfera (IPMA) classificou os anos de 2014 e 2015 como extremamente chuvoso e extremamente seco, respetivamente [19] e [20]. Posto isto, no ano de 2014, verificaram-se condições climatéricas excecionais tanto para a produção hídrica como para a eólica [21]. A REN afirma, no relatório de qualidade de serviço do ano de 2015, que não há memória de um ano com um número tão baixo de incidentes em linhas como em 2015 [22].

Em suma, está encontrada a justificação para a grande diferença verificada nos valores dos indicadores, nos anos de 2014 e 2015.

A média, para o ano de 2014, foi de 84. Já no ano de 2015, foi de 54,7.

4.5.4 Indicador associado ao valor médio de severidade

Os resultados obtidos, para o indicador associado ao valor médio de severidade das cavas, estão representados na figura A.4 (anexo A). Na figura 4.15 encontram-se representados resultados similares, mas com menos SE.

Figura 4.15 – Indicador associado ao valor médio de severidade – algumas SE.

Através da observação da figura 4.15, é possível constatar que existem algumas SE AT/MT que têm valores de severidade média superiores à unidade. Como já foi referido anteriormente, este facto significa que, em média, as cavas de tensão registadas nestas SE estão situadas abaixo da curva de imunidade, ou seja, situam-se na zona proibida.

Na subsecção 4.4.4, constatou-se que nenhum distrito tinha cavas com um valor médio de severidade superior à unidade. Nestes resultados, observam-se algumas SE com valores médios superiores à unidade. Posto isto, pode-se concluir que quando se agregam resultados perde-se detalhe e pode-se distorcer a informação. Mesmo que o nível de agregação seja reduzido.

No ano de 2015, em algumas SE, verificam-se valores médios de severidade mais elevados devido à diminuição do número de cavas, mantendo-se as mais severas. Resultado idêntico ao obtido para o indicador associado ao valor médio de energia.

Verifica-se uma concentração de valores médios elevados na zona Centro do país (Douro e Oeste) e no Alentejo (Portalegre). Segundo este indicador, é nestas zonas que se situam as cavas mais severas.

Neste indicador, não se verifica uma grande variabilidade nos resultados, ou seja, a média dos dois anos é bastante próxima (diferença de 0,6).

4.5.5 Indicador SARFI-90

Na figura A.5 (anexo A), encontram-se exibidos os resultados obtidos do indicador *SARFI-90*, para as 40 SE AT/MT que se encontraram em monitorização permanente, no biénio 2014-2015. Na figura 4.16 encontra-se representada informação similar, mas com menos SE.

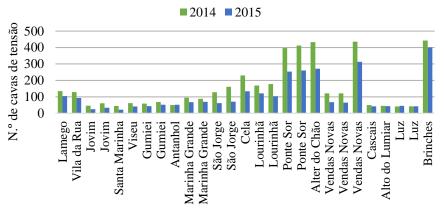
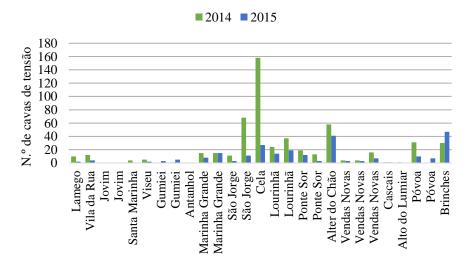


Figura 4.16 – Indicador SARFI-90 – algumas SE.

Como seria de esperar, o maior número de cavas de tensão é registado nas regiões do Oeste e do Alentejo, devido às causas já enumeradas anteriormente.

As SE que se encontram nos grandes centros urbanos, não verificam uma grande diferença no número de cavas de tensão.


Devido às melhores condições climatéricas verificadas no ano de 2015, registaram-se menos cavas de tensão em praticamente todas as SE monitorizadas. Em 2014, o número total de cavas de tensão foi de 6706, e em 2015, foram 4758, registando-se uma diferença de 1948 cavas.

Em algumas SE, a redução no número de cavas é mais notória que noutras. Mais uma vez, o fator que poderá justificar esta situação é o comprimento das linhas, ou seja, a aérea de abrangência de cada SE AT/MT. Por isso, nas SE que pertencem ao Alentejo nota-se mais a redução no número de cavas.

Os resultados obtidos pela SE de Brinches (Beja), demonstram que se registou um número elevado de cavas de tensão. Sem mais informação, parece que a QE da SE de Brinches é fraca. Contudo, os resultados dos indicadores relacionados com o valor médio de energia e de severidade demonstram que não são cavas problemáticas.

4.5.6 Indicador SARFI-40

Na figura A.6 (anexo A), encontram-se representados os resultados obtidos do indicador *SARFI-40*, para as 40 SE AT/MT que se encontraram em monitorização permanente, no biénio 2014 e 2015. Na figura 4.17 encontra-se representado uma informação similar, mas com menos SE.

Figura 4.17 – Indicador *SARFI-40* – algumas SE.

Como seria de esperar, o maior número de cavas de tensão profundas está situado na zona Oeste e do Alentejo, nos dois anos. Na região Oeste, este resultado advém da maior S_{CC}. Já na região do Alentejo, a maior proximidade das SE monitorizadas às zonas de defeito, poderá ser a causa para o número elevado de cavas profundas.

Na SE de Brinches (Beja), é mais uma vez possível constatar o grande número de cavas de tensão profundas. Contudo, estas são caracterizadas por terem curta duração.

Apesar das melhores condições climatéricas verificadas, no ano de 2015, existem algumas SE onde o número de cavas mais profundas aumenta. Como é sabido, o aparecimento de cavas de tensão não depende apenas das condições climatéricas. Existem outros fatores que influenciam a sua origem. Assim como, a distância do defeito à SE monitorizada e a sua gravidade influenciam na profundidade da cava.

No ano de 2014, registou-se um número exagerado de cavas de tensão profundas num barramento da SE de São Jorge (Leiria). Provavelmente, aquele resultado deve-se às condições climatéricas desfavoráveis que se fizeram sentir naquela zona.

Existe uma SE na AML de Lisboa (SE Póvoa), que tem um número relativamente elevado de cavas profundas. Perto desta SE, encontra-se uma indústria química que certamente terá impacto nestes resultados.

Em suma, no ano de 2015, verificaram-se menos cavas de tensão profundas. Efetivamente, vê-se uma maior concentração de cavas profundas nas regiões do Oeste e Alentejo. Há que salientar o facto de, em algumas SE monitorizadas, não se terem verificado cavas profundas.

4.5.7 Indicador SARFI-classe 3

Da figura A.7 à A.10 (anexo A), encontram-se representados os resultados obtidos para o indicador *SARFI-classe 3*.

Um dos primeiros factos que salta à vista é a variabilidade dos resultados. Além disso, as SE que registam mais cavas em zonas proibidas são as SE que pertencem à região Oeste e do Alentejo, como não poderia deixar de ser. Como seria de esperar, as SE que pertencem à AML verificam poucas cavas abaixo da curva de imunidade definida. No entanto, é possível constatar que estas são bastante profundas e de curta duração.

Há que salientar a grande diminuição verificada, em praticamente todas as SE AT/MT monitorizadas, no número de cavas que causam mais problemas, no ano de 2015.

É possível constatar que se mantém o perfil (maior número de cavas profundas) do ano de 2014 para 2015, nas SE que se situam na zona Oeste. Isto significa que a elevada

S_{CC} tem um grande impacto nesta região. Para além disso, é natural que em determinadas SE, não se mantenha o perfil, de um ano para o outro, porque a profundidade da cava depende da distância do defeito à SE monitorizada. Na base deste distúrbio está subjacente uma grande aleatoriedade dos locais de defeito e tipo de defeito.

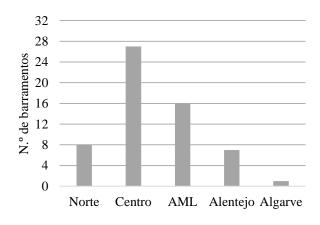
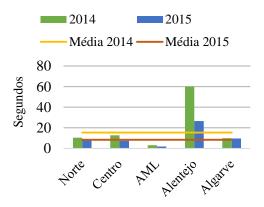
Após observação das figuras que contêm os resultados agregados por intervalos de duração (A.9 e A.10, anexo A), é possível reparar em duas situações. Uma delas é o maior número de cavas com duração entre os 200 e os 500 ms, na região Oeste. A outra é que a maioria das cavas de tensão, no Alentejo, tem uma duração entre os 500 e os 1000 ms. No Alentejo, as SE AT/MT que alimentam as SE MT/MT possuem proteções com tempos de atuação mais longos para garantia de seletividade. Quer isto dizer que, as cavas de tensão nesta zona possuem maiores durações. Também é possível concluir que as SE que pertencem à região do Douro (Vila da Rua e Lamego) têm um comportamento idêntico às do Alentejo.

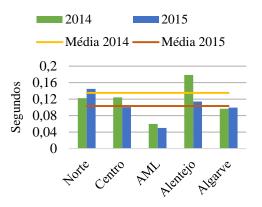
Nos resultados do ano de 2015, observa-se um comportamento idêntico, das SE que pertencem à zona Oeste, e uma melhoria que já foi, várias vezes, referida. Para além disso, continuam a predominar as cavas com uma duração entre os 500 e os 1000 ms na região do Alentejo.

Em algumas SE verificasse um aumento ligeiro do número de cavas que são mais problemáticas. Mas no geral, mantém-se a tendência de melhoria dos resultados.

4.6 Agregação em NUTS II dos resultados de monitorização

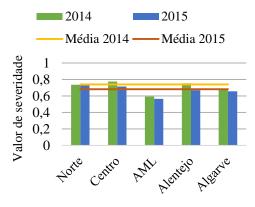
Na figura 4.18 encontra-se representado o número de barramentos monitorizados por região de NUTS II.

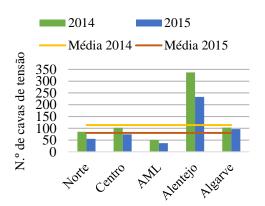




Figura 4.18 – Número de barramentos monitorizados por região de NUTS II.

Na região Centro foi onde se encontraram mais barramentos em monitorização (27), seguido pela AML (16), região Norte (8), Alentejo (7) e Algarve (1).

Na figura 4.19 até à 4.25 encontram-se alguns resultados obtidos para os indicadores de energia, de severidade e *SARFI*. No anexo A, na figura A.12 até à A.15, encontram-se os resultados obtidos para o indicador *SARFI-classe 3*.


Figura 4.19 – Indicador de energia por região de NUTS II.


Figura 4.20 – Indicador associado ao valor médio de energia por região de NUTS II.

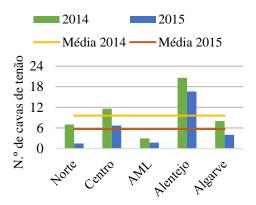
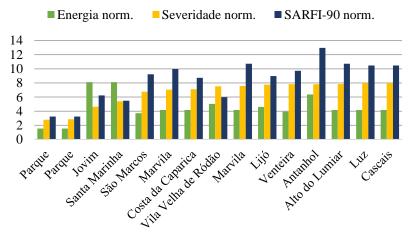

Figura 4.21 – Indicador de severidade por região de NUTS II.

Figura 4.22 – Indicador associado ao valor médio de severidade por região de NUTS II.

Figura 4.23 – Indicador *SARFI-90* por região de NUTS II.


Figura 4.24 – Indicador *SARFI-40* por região de NUTS II.

Após a visualização dos resultados obtidos, é possível concluir que a AML e o Algarve não são afetados pela inclusão de zonas onde a QE é pior. Já na região Norte, há uma distorção dos valores porque, inclui as SE do Douro e as SE de Trás-os-Montes (embora neste trabalho não existam SE monitorizadas nessa região). Na região Centro, existe uma grande agregação, o que não permite um conhecimento da realidade das diferentes sub-regiões.

Quando se agrega as SE monitorizadas por regiões de NUTS II, perde-se o detalhe e os resultados podem ser distorcidos. Este tipo de agregação não será a mais adequada para aferir os níveis de QE de Portugal continental.

4.7 Conclusões acerca dos indicadores

Depois da análise aos resultados, seria importante tirar conclusões sobre quais os indicadores mais interessantes para classificar as SE AT/MT quanto ao nível de QE. Para se chegar a algumas conclusões, elaboraram-se três gráficos (figuras A.16, A.17 e A.18, anexo A) utilizando os dados, do ano de 2015, relativos aos resultados dos indicadores das 40 SE AT/MT permanentes. A figura 4.25 é similar à figura A.18 (anexo A), mas com menos SE.

Figura 4.25 – Indicadores de energia, de severidade e *SARFI-90* (algumas SE).

Para se poder comparar os diversos indicadores num mesmo gráfico, foi necessário normalizar os valores dos indicadores, utilizando uma escala de 0 a 100, e desta forma garantir a comparabilidade dos valores dos diversos indicadores. Na figura A.16, encontra-se representado os indicadores de energia com os valores normalizados, na figura A.17 os indicadores de severidade e na figura A.18 os indicadores de energia, severidade e *SARFI-90*. Nas figuras A.16 e A.17, ordenaram-se (do valor mais pequeno

para o maior) as SE de acordo com os valores médios, tanto do indicador de energia e como do indicador de severidade. Na figura A.18, os resultados foram ordenados de acordo com os resultados do indicador de severidade e *SARFI-90*.

Analisando a figura A.16, verifica-se, mais uma vez, que os resultados dos dois indicadores de energia são importantes para a classificação das SE quanto ao nível de QE. Na tabela 4.3, encontram-se representados alguns dados dessa figura.

Tabela 4.3 – Alguns dados da figura A.16.

SE AT/MT	Energia normalizada	Valor médio de energia norm.
Jovim (Porto)	8,1	79,9
Cela (Leiria)	43	78,9
Brinches (Beja)	71,7	44
Jovim (Porto)	13,8	100

Da análise aos valores apresentados na tabela 4.3, constata-se que a SE de Jovim tem os melhores valores acumulados de energia porque, possui um número inferior de cavas de tensão. Em contrapartida, os dados das SE de Cela e Brinches são maus. Esta análise, feita com base apenas no indicador de energia, está incompleta porque, se analisarmos os valores do indicador médio de energia não transmitem a mesma informação. Ou seja, apesar da SE de Jovim registar poucas cavas, estas têm um valor médio elevado o que significa que podem causar graves problemas aos consumidores alimentados por esta SE (interrupções do processo produtivo). O valor médio de um barramento da SE de Jovim está ao nível da SE de Cela onde se registam muito mais cavas. Veja-se a enorme diferença no valor do indicador de energia. Na SE de Brinches, apesar de se registarem muitas cavas, estas não são tão graves. São cavas profundas e de curta duração.

Em suma, é importante fazer-se uma análise conjunta dos dois indicadores para uma caracterização da QE das SE mais efetiva e precisa. A utilização conjunta destes dois indicadores melhora a caracterização usando informações diferenciadas de cada um dos indicadores, que se complementam.

Na análise ao gráfico relativo aos indicadores de severidade podem-se retirar conclusões semelhantes, ou seja, a informação que cada um dos indicadores fornece são diferenciadas e complementam-se permitindo uma caracterização mais precisa e informada de cada SE sobre a QE observada. As primeiras 10 SE com melhor QE são semelhantes aos indicadores de energia e severidade, apesar de terem um posicionamento diferente no ranking. Estas diferenças estão relacionadas com a maneira diferente como os indicadores são calculados e o tipo de informação que disponibilizam.

Através da observação do gráfico da figura 4.25, conclui-se que os indicadores de energia, de severidade e *SARFI-90* fornecem informações distintas porque, assumem valores diferentes para as mesmas SE. Deste modo, será útil o cálculo dos três indicadores para uma caracterização mais detalhada da QE de cada SE. Alguns barramentos que se encontram no mesmo local geográfico possuem níveis de QE distintos. Este facto é visível nos barramentos das SE de Vendas Novas, Cantanhede, Pombal, etc. Isto deve-se à separação realizada nas SE da EDP, em barramentos diferentes, da alimentação de consumidores urbanos e de consumidores rurais, de modo a evitar que os consumidores urbanos sejam perturbados pelos eventos que surgem com mais frequência nas linhas que alimentam consumidores rurais, por estas serem mais longas e menos protegidas de fenómenos que têm impacto na QE.

Relativamente aos indicadores *SARFI-40* e *SARFI-classe 3*, como estes ignoram algumas cavas, não é possível relacioná-los diretamente com os indicadores de energia e de severidade. Contudo, estes podem ser úteis para a determinação do número de cavas de tensão profundas e para a determinação do número de cavas que se situam abaixo da curva de imunidade.

Em suma, os indicadores associados à energia não fornecida, severidade e *SARFI-90* são úteis para classificação da QE das SE. Para a elaboração de um ranking, talvez seja melhor ordenar as SE por valor médio de severidade ou de energia (do mais pequeno para o maior) uma vez que o indicador *SARFI-90* está presente nesses gráficos, de uma forma indireta, visto que, quanto maior for o valor acumulado de energia ou de severidade, maior em geral é o número de cavas ocorridas.

4.8 Resumo geral da caracterização da QE das SE

No ano de 2015, encontravam-se em exploração 388 SE AT/MT em Portugal continental. Cerca de 121 SE AT/MT estão localizadas nos distritos do Porto e Lisboa.

Na análise aos valores calculados para os indicadores utilizados nas 77 SE que se encontraram em monitorização no ano de 2015, verificou-se que os distritos de Santarém e os que pertencem à região do Alentejo têm os valores mais elevados para os indicadores acumulados de energia e de severidade. Este resultado deve-se ao maior número de cavas de tensão registado por causa do maior comprimento das linhas. Para além disso, em Santarém, algumas SE estão encadeadas com postos de corte e por causa da garantia de seletividade das proteções, as cavas têm maiores durações.

Os distritos da região Norte, Guarda e Portalegre verificam os valores mais elevados no indicador associado ao valor médio de energia das cavas. Na região Norte registam-se poucas cavas de tensão. No entanto, algumas têm grandes durações.

O distrito do Porto obteve o melhor resultado no indicador de severidade devido ao maior peso que as cavas profundas têm no cálculo deste indicador.

No indicador associado ao valor médio de severidade, os distritos de Leiria, Santarém e Portalegre verificam os valores mais elevados. Os distritos do Norte mantêm a tendência verificada no indicador associado ao valor médio de energia, ou seja, têm valores médios elevados, apesar do número reduzido de cavas.

Nas regiões do Oeste e do Alentejo verificam-se muitas cavas de tensão profundas. Na região do Oeste, a elevada S_{CC} tem impacto nos valores dos indicadores. Já no Alentejo, a explicação mais lógica poderá ser a maior proximidade das SE às zonas de defeito.

Em Lisboa registam-se os menores números de cavas de tensão. No entanto, foi visível que algumas são profundas, mas de curta duração. No global, o distrito de Lisboa tem a melhor QE.

Na análise às 40 SE AT/MT que se encontraram em monitorização permanente, constatou-se que as SE que pertencem à região do Oeste, Alentejo e Douro verificam valores elevados nos indicadores de energia e de severidade devido ao maior número de cavas de tensão.

Nas SE que pertencem à região Norte, constatou-se um agravamento do valor médio de energia e de severidade, no ano de 2015. Este resultado deve-se à diminuição do número de cavas pouco profundas e de curta duração aliado à permanência das cavas mais problemáticas.

Algumas SE têm valores médios de severidade superiores à unidade, nos anos de 2014 e 2015. Isto significa que estas cavas estão situadas abaixo da curva de imunidade e, portanto, são cavas muito severas.

As condições climatéricas, no ano de 2015, foram em geral melhores e isso explica os melhores valores dos indicadores de QE obtidos. As regiões que têm SE com maiores áreas de abrangência são as que mais demonstraram a melhoria em 2015. Pelo contrário, os resultados obtidos pelas SE da AML demonstram que as condições atmosféricas têm pouco impacto na QE porque a grande maioria da rede MT é enterrada.

Na AML registam-se poucas cavas de tensão. No entanto, algumas têm uma grande profundidade e curta duração. A maior profundidade das cavas poderá estar relacionada com a elevada S_{CC} existente nas SE desta zona.

As SE que pertencem à região do Douro e Alentejo são as que têm mais cavas com maiores durações.

As SE situadas nas regiões do Oeste e Alentejo registaram mais cavas profundas, comparativamente às outras regiões.

Quando se agregam os valores dos indicadores por regiões de NUTS II perde-se detalhe e pode-se distorcer a análise. Por exemplo, a região Norte pode ser penalizada pela inclusão das SE do Douro e de Trás-os-Montes (embora neste trabalho não existam SE monitorizadas nesta região). Na região Centro perde-se o detalhe por causa da grande agregação. Os resultados da AML não são influenciados pela inclusão de nenhuma região, ou seja, são bons porque apenas estão incluídas SE daquela área.

5. Conclusões e trabalho futuro

O trabalho desenvolvido no âmbito desta dissertação teve como objetivo propor alguns indicadores passíveis de serem utilizados para caracterizar a QE nas redes MT das várias regiões.

Foi possível observar alguns fatores que tentam justificar a atualidade do tema da QE. A razão principal deve-se à maior sensibilidade dos equipamentos das indústrias que se caracterizam por terem uma laboração contínua. As cavas podem causar elevados prejuízos sobretudo na indústria, no entanto, devido às características dos SEE não é possível reparar na rede as cavas de tensão, pelo menos a um custo razoável.

Após alguma pesquisa bibliográfica foi possível encontrar algumas propostas de indicadores. Foram selecionados os que pareciam fornecer mais informação. No entanto, estes indicadores ainda não são utilizados a uma escala europeia porque, não existe consenso em consequência da pluridimensionalidade desta perturbação na QE.

Após a escolha dos indicadores surgiu um obstáculo que era a inexistência de valores exatos de duração e tensão residual das cavas registadas. Ultrapassou-se esta situação utilizando os valores médios dos intervalos (de tempo e de amplitude) da tabela de classificação de cavas de tensão. Obviamente que esta situação condiciona o trabalho realizado e as conclusões acerca dos resultados, por não serem tão precisos.

Os indicadores relacionados com a energia não fornecida, a severidade e *SARFI-90* fornecem informações distintas. Assim, o seu cálculo é útil para a classificação da QE da rede MT. Foi possível observar que o indicador de energia é mais influenciável pelo aumento da duração das cavas e o indicador de severidade leva mais em conta o aumento da profundidade destas. Para além disso, constatou-se que existem células cujo impacto no valor final dos indicadores é elevado.

Os indicadores relacionados com o valor médio de energia e de severidade são importantes e complementam a informação dada pelos indicadores de energia e de severidade. Como foi possível constatar, a sua utilização é importante para a classificação das SE quanto ao nível de QE.

O indicador *SARFI-classe 3* permite ignorar as cavas de tensão presentes nas células A1, A2, A3, A4, B1, B2 e C1, que causam menor impacto nos consumidores e que são em maior número. As cavas que são suscetíveis de causar problemas, encontram-se

posicionadas abaixo da área de imunidade constituída pelas células anteriores. No entanto, não é fácil extrair conclusões dos resultados deste indicador.

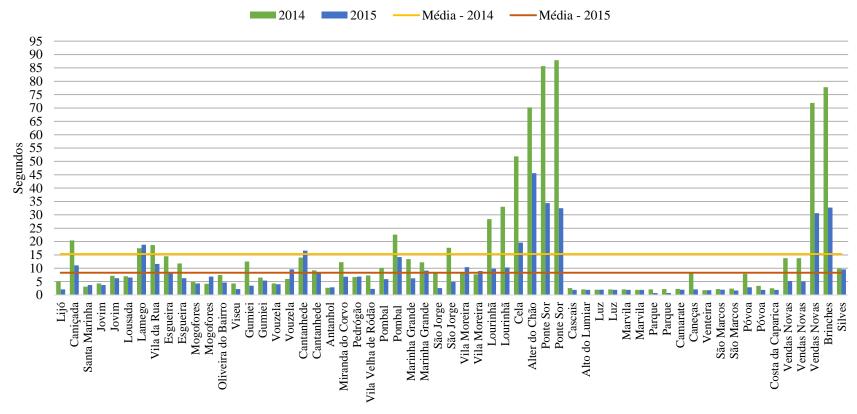
Para finalizar, este trabalho permitiu adquirir um conhecimento acerca das regiões que possuem uma melhor QE. Obviamente que estes resultados devem ser analisados com a devida cautela em consequência da ausência de dados reais. No entanto, deve-se observar a tendência fornecida por estes. Posto isto, as SE que pertencem à AML têm melhor QE. Em contrapartida, as SE que pertencem às regiões do Alentejo (Portalegre e Évora), Oeste e Douro possuem uma QE mais fraca. Embora na região Norte se registem poucas cavas, algumas têm elevadas durações que se traduzem em valores médios de energia e de severidade elevados.

A monitorização permanente de todas as SE que fazem parte da rede de distribuição de MT, permitiria uma melhor caracterização da QE do país.

5.1 Trabalho futuro

Futuramente, poder-se-ia aproveitar o trabalho desenvolvido nesta dissertação e aplicá-lo à rede MT. Seria do interesse dos consumidores a divulgação das SE que possuem melhor QE. Para isso, é preciso monitorizar todas as SE para se evitarem zonas escuras ou zonas onde existem poucos barramentos monitorizados. Também seria interessante calcular os indicadores utilizando dados exatos de monitorização, para evitar a introdução de imprecisões no cálculo dos valores dos indicadores, que decorrem da utilização de valores médios de duração e de amplitude, em vez dos valores reais de cada cava.

Bibliografia


- [1] C. Masetti, "Revision of European Standard EN 50160 on power quality: Reasons and solutions," in *Harmonics and Quality of Power (ICHQP)*, 2010 14th International Conference on. IEEE, 2010, pp.1-7.
- [2] EDP, "Liberalização do mercado de eletricidade e gás". [Online]. Available: http://www.edp.pt/pt/particulares/informacoesuteis/Pages/ALiberalizacao.aspx
- [3] CEER, "4th Benchmarking report on quality of electricity supply 2008," December 2008. [Online]. Available: http://www.autorita.energia.it/allegati/pubblicazioni/C08-EQS-24-04_4th_Benchmarking_Report_EQS_10-Dec-2008_re.pdf
- [4] M. Bollen, *Understanding power quality problems. Voltage sags and interruptions*, Piscataway, NJ, USA IEEE Press, 2000
- [5] C. Patrão, J. Delgado, A. de Almeida and P. Fonseca, "Power Quality Costs Estimation in Portuguese Industry," in *Electrical Power Quality and Utilisation (EPQU)*, 2011 11th Internation Conference on. IEEE, 2011, pp. 1-6.
- [6] M. Bollen, J. Esteves, K. Brekke, K.Niall and M. Delfanti, "Voltage quality monitoring, dips classification and responsability sharing," in *Harmonics and Quality of Power* (*ICHQP*), 2012 IEEE 15th International Conference on. IEEE, 2012.
- [7] M. Bollen, Y. Beyer, E. Styvactakis, J. Trhulj, R. Vailati and W. Friedl, "A European Benchmarking of Voltage Quality Regulation," in *Harmonics and Quality of Power* (ICHOP), 2012 IEEE 15th International Conference on. IEEE, 2012.
- [8] Leonardo ENERGY, "European Power Quality Survey Report," November 2008. [Online]. Available: http://www.leonardo-energy.org/resources/846/european-power-quality-survey-report-5835c642a4a68
- [9] CEER, "5th Benchmarking Report on Quality of Electricity Supply 2011," June 2011. [Online].
 http://www.ceer.eu/portal/page/portal/EER_HOME/EER_PUBLICATIONS/CEER_PAPERS/Electricity/Tab/CEER_Benchmarking_Report.pdf
- [10] "Towards Voltage Quality Regulation in Europe An ERGEG Conclusions Paper," 18
 July 2007. [Online]. Available:
 http://www.ceer.eu/portal/page/portal/EER_HOME/EER_PUBLICATIONS/CEER_P
 APERS/Electricity/2007/E07-EQS-15-03.pdf
- [11] J. Caicedo, F. Navarro, E. Rivas and F. Santamaría, "Voltage Sag Characterization with Matlab/Simulink," in *Engineering Applications (WEA)*, 2012 Workshop on. IEEE, 2012.
- [12] G. Brauner and C. Hennerbichler, "Voltage Dips and Sensitivity of Consumers in Low Voltage Networks," in *Electricity Distribution*, 2001 IEEE International Conference and Exhibition on. IEEE, 2001.
- [13] IEEE Guide for Voltage Sag Indices, IEEE Std 1564-2014.
- [14] ERSE, "Regulamento de Qualidade de Serviço do Setor Elétrico," Lisboa, Portugal, 2013.

- [15] ERSE, "Manual de Procedimentos da Qualidade de Serviço do Setor Elétrico," Lisboa, Portugal, 2013.
- [16] R. A. Barr, V. J. Gosbell and I.McMichael, "A New SAIFI Based Voltage Sag Index," in *Harmonics and Quality of Power (ICHQP), 2008 IEEE 13th International Conference on.* IEEE, 2008.
- [17] A. M. Dán, "Introducing a voltage dip severity index (a proposal)," in *Harmonics and Quality of Power (ICHQP), 2010 IEEE 14th International Conference on.* IEEE, 2010.
- [18] EDP Distribuição, "Qualidade de Energia Elétrica Resultados de monitorização Conforme requisitos RQS:2013." [Online]. Available: http://edp-distribuicao-qualidade.wntech.com/
- [19] IPMA, "Boletim Climatológico Anual 2014 Portugal Continental," 27 janeiro 2015. [Online]. Available: http://www.ipma.pt/resources.www/docs/im.publicacoes/edicoes.online/20150127/jawbvpqLKYsXxPvTfaAW/cli_20140101_20141231_pcl_aa_co_pt.pdf
- [20] IPMA, "Boletim Climatológico Anual 2015 Portugal Continental," 18 janeiro 2016. [Online]. Available: https://www.ipma.pt/resources.www/docs/im.publicacoes/edicoes.online/20160118/EHqOkNyqVxeHzzqfavaa/cli_20150101_20151230_pcl_aa_co_pt.pdf
- [21] REN, "Energia Eólica em Portugal 2014." [Online]. Available: http://www.centrodeinformacao.ren.pt/PT/publicacoes/EnergiaEolica/A%20Energia%20E%C3%B3lica%20em%20Portugal%20-%202014.pdf
- [22] REN, "Relatório de Qualidade de Serviço 2015." [Online]. Available: http://www.centrodeinformacao.ren.pt/PT/publicacoes/RelQualidadeServico/RLQS%202015.pdf
- [23] M. Bollen and D. Sabin, "International Coordination for Voltage Sag Indices," *in IEEE Engineering Society General Meeting*, 2005.
- [24] L. Tenti, R. Chiumeo, C. Gandolfi, L. Garbero, F. Malegori and M. Volta, "The origin of voltage dips monitored in MV network and its effect on the evaluation of MV voltage dips performances indices," *in 22nd International Conference on Electricity Distribution*, CIRED, Stockholm, paper 0655.
- [25] S. Arias-Guzman, A.J. Ustariz-Farfan, E.A. Cano Plata and A.F. Salazar-Jimenez, "Implementation of IEEE Std 1564-2014 for Voltage Sag Severity Analysis on Medium Voltage Substation," in *Power Electronics and Power Quality Applications (PEPQA)*, 2015 IEEE Workshop on. IEEE, 2015.
- [26] EDP Distribuição, "Relatório da Qualidade de Serviço 2014." [Online]. Available: https://www.edpdistribuicao.pt/pt/qualidade/Relatrios%20de%20Qualidade%20de%20Qualidade%20de%20Qualidade%20de%20Servi%C3%A7o%202014%20Final.pdf
- [27] EDP Distribuição, "Relatório da Qualidade de Serviço 2015." [Online]. Available: https://www.edpdistribuicao.pt/pt/qualidade/Relatrio%20Qualidade%20Servio%20201 3/Relat%C3%B3rio%20da%20Qualidade%20de%20Servi%C3%A7o%202015.pdf
- [28] EDP Distribuição, "Caracterização das Redes de Distribuição a 31. Dez. 2014." [Online]. Available: https://www.edpdistribuicao.pt/pt/mudancaComercializador/mercadoElectrico/Acesso

- <u>%20%20rede/Caracteriza%C3%A7%C3%A3o%20das%20Redes%20de%20Distribui</u>%C3%A7%C3%A3o%20a%2031%20de%20dezembro%20de%202014.pdf
- [29] EDP Distribuição, "Caracterização das Redes de Distribuição a 31. Dez. 2015." [Online]. Available: http://www.edpdistribuicao.pt/pt/rede/EDP%20Documents/Caracteriza%C3%A7%C3 http://www.edpdistribuicao.pt/pt/rede/EDP%20Documents/Caracteriza%C3%A7%C3 http://www.edpdistribuicao.pt/pt/rede/EDP%20Documents/Caracteriza%C3%A7%C3 http://www.edpdistribuicao.pt/pt/rede/EDP%20Documents/Caracteriza%C3%A7%C3 http://www.edpdistribuicao.pt/pt/rede/EDP%20Documents/Caracteriza%C3%A7%C3 http://www.edpdistribuicao.pt/pt/rede/EDP%20Documents/Caracteriza%C3%A3o%20a%2031.Dez.2 http://www.edpdistribuicao.pt/pt/rede/EDP%20Documents/C3%A7%C3%A3o%20a%2031.Dez.2 http://www.edpdistribuicao.pt/pt/rede/EDP%20Documents/C3%A7%C3%A3o%20a%2031.Dez.2
- [30] EDP Distribuição, "Plano de Monitorização da Qualidade de Energia Elétrica 2014-2015." [Online]. Available: https://www.edpdistribuicao.pt/pt/qualidade/natureza_tecnica/Documents/Plano%20de%20Monitoriza%C3%A7%C3%A3o%20da%20QEE%20internet.pdf
- [31] CEER, "Benchmarking Report 5.2 on the Continuity of Electricity Supply Data update," 12 February 2015. [Online]. Available: https://www.google.pt/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=0ahUKEwjtvcWw493RAhUCUhQKHV0-CScQFggbMAA&url=http%3A%2F%2Fwww.ceer.eu%2Fportal%2Fpage%2Fportal%2FEER_HOME%2FEER_PUBLICATIONS%2FCEER_PAPERS%2FElectricity%2FTab4%2FC14-EQS-62-03BMR-5-2Continuity%2520of%2520Supply_20150127.pdf&usg=AFQjCNHRqsu3vfIdmpDYjC2jQnQYUaRhXA&sig2=f7vdiNVfcoT1J8DvllzLQg
- [32] EURELECTRIC, "EURELECTRIC views and recommendations on Voltage Quality Monitoring," 27 September 2012. [Online]. Available: http://www.eurelectric.org/media/64393/0927 eurelectric views on vqm fin-2012-030-0801-01-e.pdf
- [33] EDP Distribuição, "Rede Nacional de Distribuição." [Online]. Available: http://edp-distribuição, "Rede Nacional de Distribuição." [Online]. Available: http://edp-distribuição, "Rede Nacional de Distribuição." [Online]. Available: http://edp-distribuição, "Rede Nacional de Distribuição." [Online]. Available: http://edp-distribuicao-rede.wntech.com/

Anexo A

Valores calculados dos indicadores

Figura A.1 – Resultados obtidos para o indicador de energia.

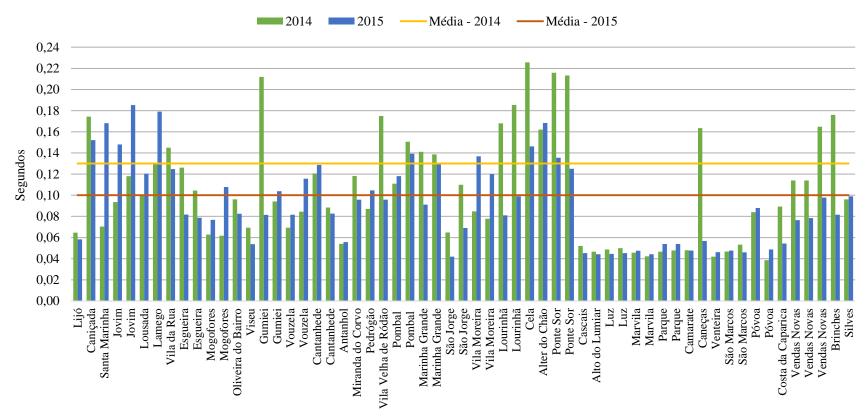
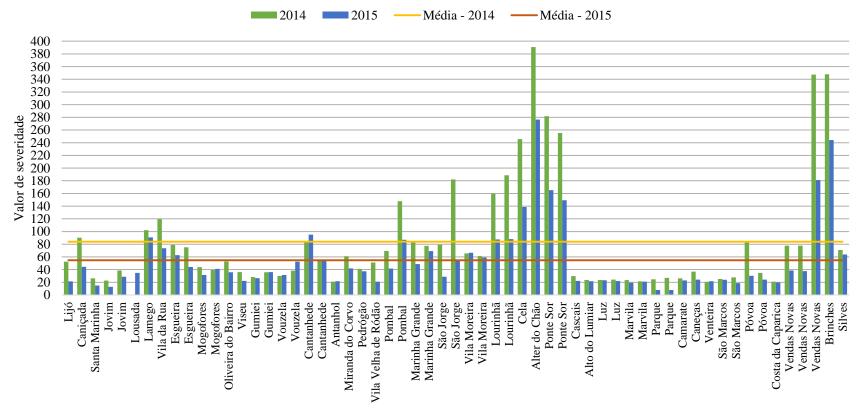



Figura A.2 – Resultados obtidos para o indicador associado à energia média das cavas.

Figura A.3 – Resultados obtidos para o indicador de severidade das cavas.

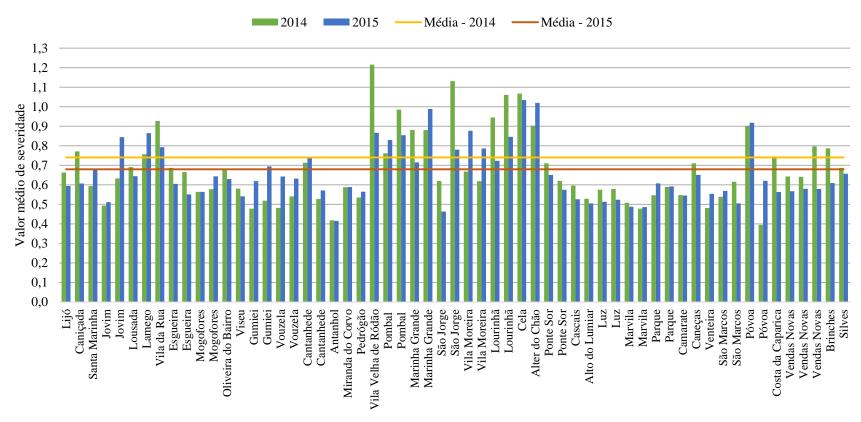
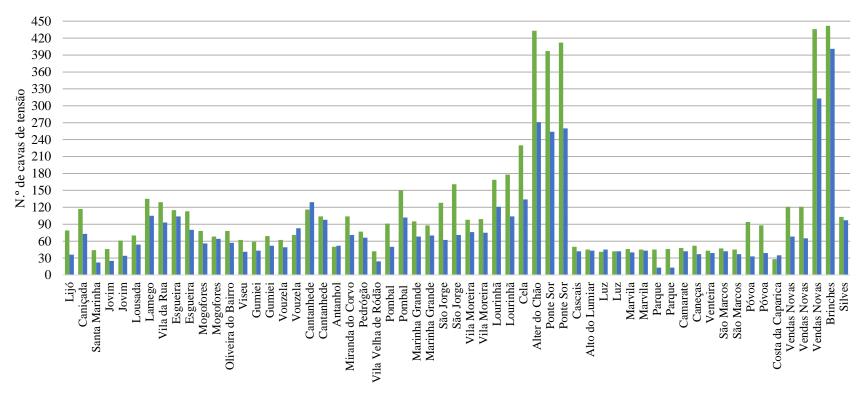
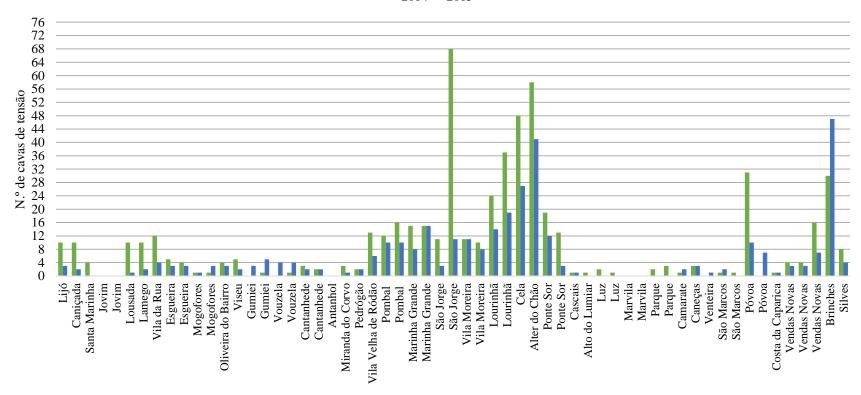
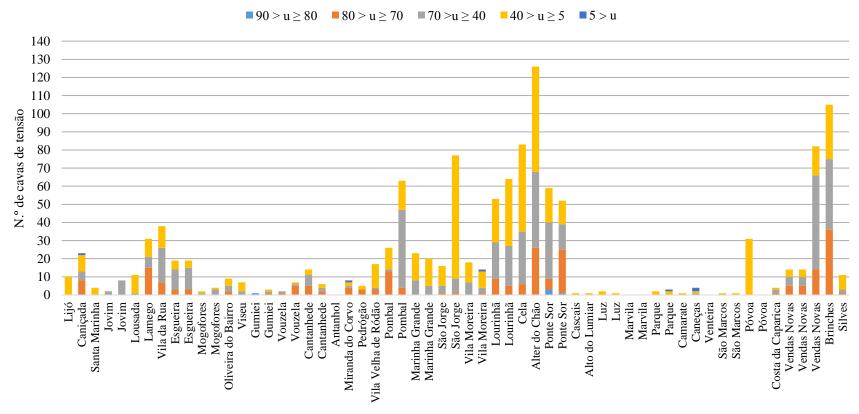
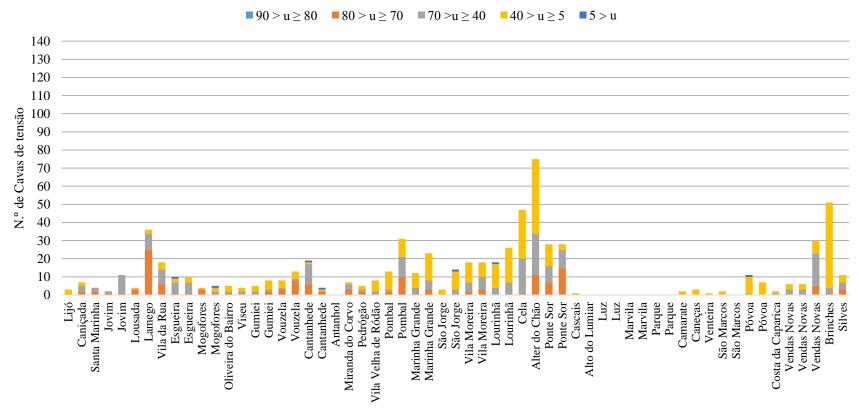
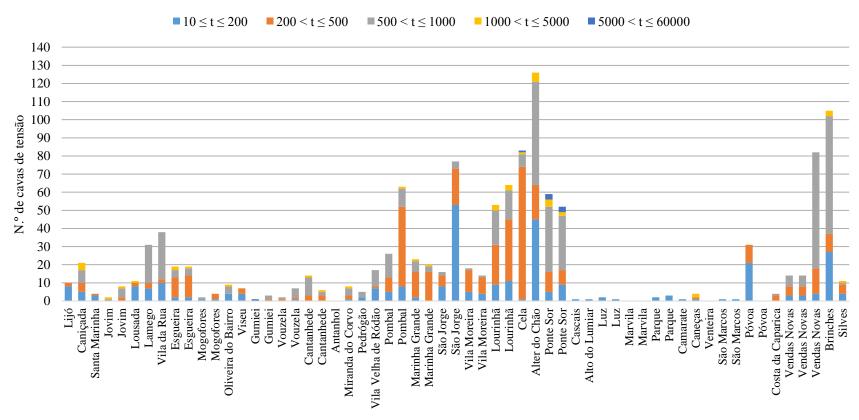
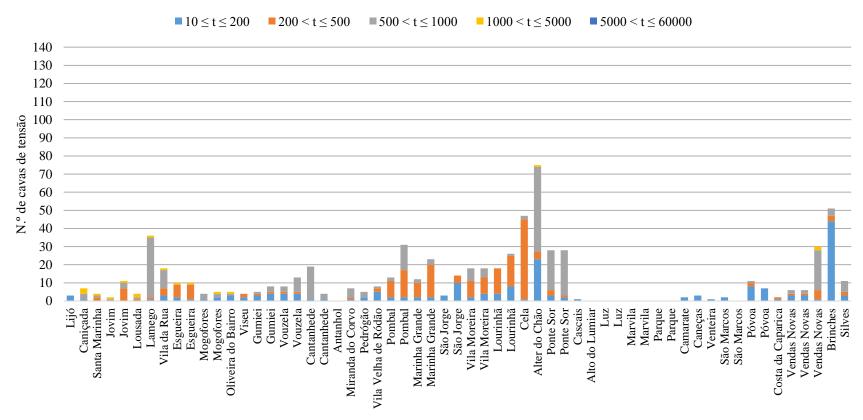




Figura A.4 – Resultados obtidos para o indicador associado à severidade média das cavas.




Figura A.5 – Resultados obtidos para o indicador *SARFI-90*.


Figura A.6 – Resultados obtidos para o indicador *SARFI-40*.


Figura A.7 – Resultados obtidos para o indicador *SARFI-classe 3*, ano de 2014.

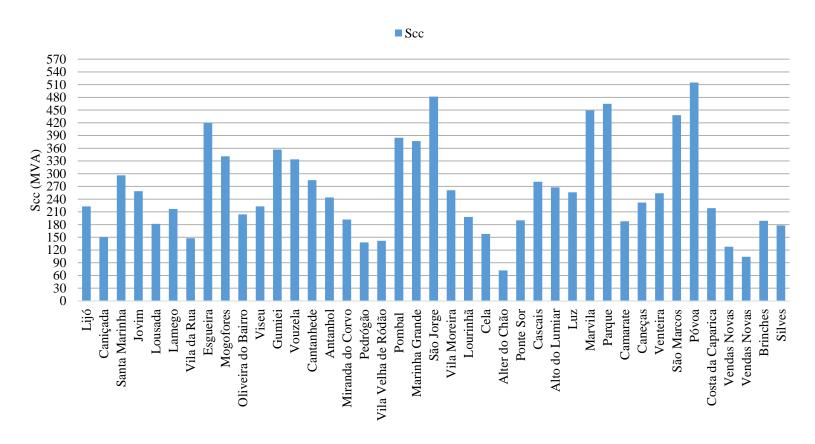
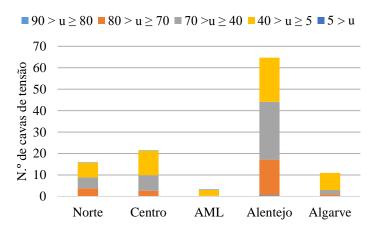
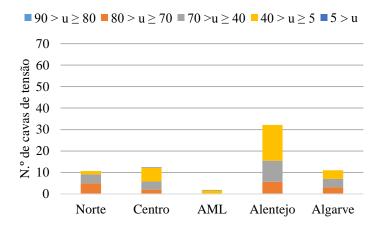
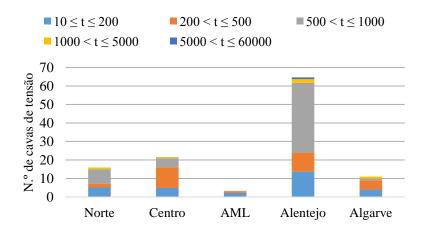
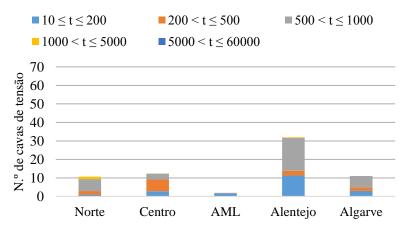

Figura A.8 – Resultados obtidos para o indicador *SARFI-classe 3*, ano de 2015.

Figura A.9 – Resultados obtidos para o indicador *SARFI-classe 3*, ano de 2014.

Figura A.10 – Resultados obtidos para o indicador *SARFI-classe 3*, ano de 2015.

Figura A.11 – S_{CC} das 40 SE AT/MT permanentes.


Figura A.12 – Resultados obtidos para o indicador SARFI-classe 3, ano de 2014.

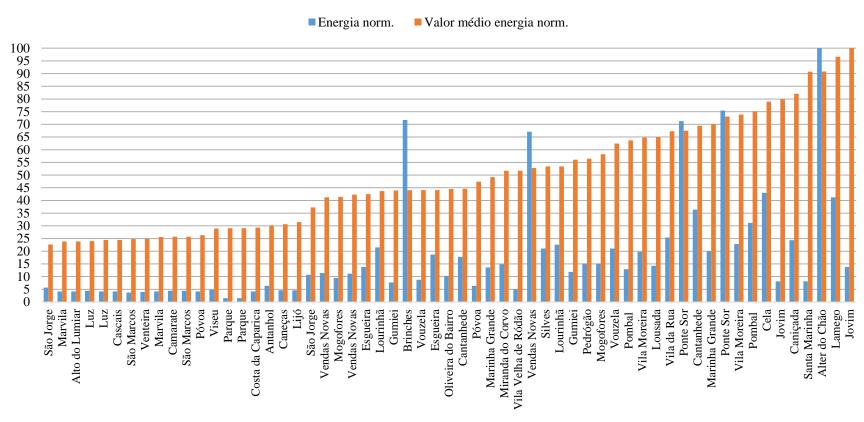

Figura A.13 – Resultados obtidos para o indicador *SARFI-classe 3*, ano de 2015.

Figura A.14 – Resultados obtidos para o indicador *SARFI-Classe 3*, ano de 2014.

Figura A.15 – Resultados obtidos para o indicador *SARFI-classe 3*, ano de 2015.

Figura A.16 – SE AT/MT ordenadas de acordo com os indicadores de energia.

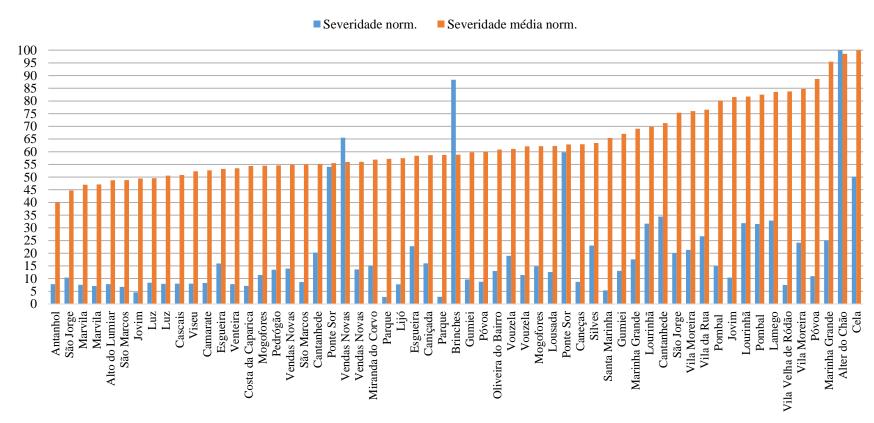
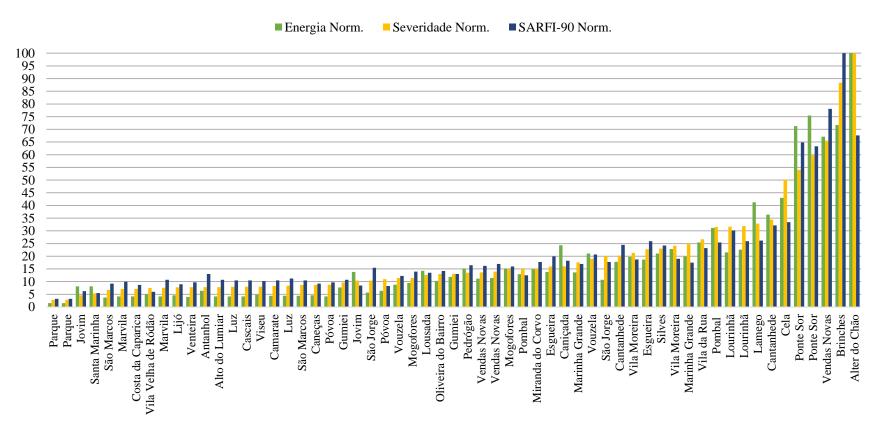



Figura A.17 – SE AT/MT ordenadas de acordo com os indicadores de severidade.

Figura A.18 – Indicadores de energia, de severidade e *SARFI-90*.

Anexo B

Localização e ano de monitorização das SE AT/MT

	aa	a	ANO DE	
NUTS III	CONCELHO	SE	MONITO 2014	RIZAÇÃO 2015
Minho-Lima	Ponte da Barca	Touvedo	X	
Minho-Lima	Valença	Valença		X
Minho-Lima	Viana do Castelo	Monserrate	X	
Minho-Lima	Viana do Castelo	Santa Marta de Portuzelo		X
Minho-Lima	Viana do Castelo	São Romão de Neiva	X	
Cávado	Barcelos	Alvelos	X	
Cávado	Barcelos	Lijó		P
Cávado	Braga	Braga	X	
Cávado	Braga	Lamaçães		X
Cávado	Esposende	Fonte Boa	X	
Ave	Guimarães	Guimarães		X
Ave	Guimarães	Pevidém		X
Ave	Vieira do Minho	Caniçada		P
Ave	Vila Nova de Famalição	Lousado	X	
Ave	Vila Nova de Famalicão	Requião	X	
Ave	Vila Nova de Famalição	Ruivães		X
Alto Trás-os-Montes	Bragança	Bragança	X	
Alto Trás-os-Montes	Chaves	Vidago		X
Douro	Lamego	Lamego		P
Douro	Moimenta da Beira	Vila da Rua		P
Douro	Vila Real	Telheira		X
Tâmega	Lousada	Lousada		P
Tâmega	Paredes	Lordelo		X
Tâmega	Paredes	Rebordosa		X
Grande Porto	Espinho	Espinho	X	
Grande Porto	Gondomar	Jovim	P	
Grande Porto	Maia	Gueifães	X	
Grande Porto	Maia	Maia		X
Grande Porto	Matosinhos	Santa Cruz do Bispo		X

Grande Porto	Santo Tirso	Areias Norte		X
Grande Porto	Santo Tirso	São Martinho do Campo	X	
Grande Porto	Valongo	Alfena	X	
Grande Porto	Vila do Conde	Mindelo	-	P
Grande Porto	Vila do Conde	Mosteirô	X	
Grande Porto	Vila Nova de Gaia	Santa Marinha	F)
Entre Douro e Vouga	Santa Maria da Feira	Feira	-	P
Baixo Vouga	Águeda	Águeda		X
Baixo Vouga	Águeda	Barrô		X
Baixo Vouga	Anadia	Mogofores	F)
Baixo Vouga	Aveiro	Esgueira	F)
Baixo Vouga	Estarreja	Avanca	X	
Baixo Vouga	Oliveira do Bairro	Oliveira do Bairro	F)
Dão-Lafões	Viseu	Gumiei	F)
Dão-Lafões	Viseu	Viseu	F)
Dão-Lafões	Vouzela	Vouzela	F)
Beira Interior Norte	Guarda	Guarda		X
Serra da Estrela	Seia	Sabugueiro		X
Baixo Mondego	Cantanhede	Cantanhede	F)
Baixo Mondego	Coimbra	Antanhol	F)
Pinhal Interior Norte	Lousã	Lousã	X	
Pinhal Interior Norte	Miranda do Corvo	Miranda do Corvo	F	•
Pinhal Interior Norte	Pedrógão Grande	Pedrógão	F)
Cova da Beira	Covilhã	Tortosendo	X	
Beira Interior Sul	Castelo Branco	Talagueira		X
Beira Interior Sul	Vila Velha de Ródão	Vila Velha de Ródão	F)
Pinhal Interior Sul	-	-	-	-
Médio Tejo	Alcanena	Vila Moreira	F)
Médio Tejo	Ourém	Ourém	-	P
Médio Tejo	Vila Nova da Barquinha	Almourol		X
Pinhal Litoral	Leiria	Pinheiros	X	
Pinhal Litoral	Marinha Grande	Casal da Lebre	X	
Pinhal Litoral	Marinha Grande	Marinha Grande	F)
Pinhal Litoral	Pombal	Pombal	F)
Pinhal Litoral	Porto de Mós	São Jorge	F)
Oeste	Alcobaça	Cela	F	<u> </u>
Oeste	Lourinhã	Lourinhã	F)
Lezíria do Tejo	Almeirim	Almeirim		X
Lezíria do Tejo	Benavente	Carrascal		X
Lezíria do Tejo	Coruche	Coruche		X
Alto Alentejo	Alter do Chão	Alter do Chão	F)

Alto Alentejo	Avis	Maranhão	X	
Alto Alentejo	Ponte de Soure	Ponte Sor	P	
Alentejo Central	Borba	Borba	-	P
Alentejo Central	Évora	Caeira		X
Alentejo Central	Évora	Évora	X	
Alentejo Central	Montemor-o-Novo	Montemor	X	
Alentejo Central	Vendas Novas	Vendas Novas	P	
Alentejo Central	Vila Viçosa	Vila Viçosa		X
Grande Lisboa	Amadora	Venteira	P	
Grande Lisboa	Cascais	Cascais	P	
Grande Lisboa	Lisboa	Aeroporto	X	
Grande Lisboa	Lisboa	Alto do Lumiar	P	
Grande Lisboa	Lisboa	Luz	P	
Grande Lisboa	Lisboa	Marvila	P	
Grande Lisboa	Lisboa	Parque	P	
Grande Lisboa	Loures	Camarate	P	
Grande Lisboa	Loures	Mercado	X	
Grande Lisboa	Odivelas	Caneças	P	
Grande Lisboa	Sintra	São Marcos	P	
Grande Lisboa	Vila Franca de Xira	Areias	-	P
Grande Lisboa	Vila Franca de Xira	Póvoa	P	
Península de Setúbal	Almada	Costa da Caparica	P	
Península de Setúbal	Almada	Portagem	X	
Península de Setúbal	Montijo	Montijo		X
Península de Setúbal	Montijo	Pegões		X
Península de Setúbal	Palmela	Carrascas	X	
Península de Setúbal	Seixal	Fogueteiro		X
Península de Setúbal	Sesimbra	Quinta do Conde		X
Alentejo Litoral	Odemira	Vila Nova Milfontes	X	
Alentejo Litoral	Santiago do Cacém	Santiago		X
Baixo Alentejo	Aljustrel	Aljustrel	-	P
Baixo Alentejo	Beja	Beja	X	
Baixo Alentejo	Ferreira do Alentejo	Ferreira do Alentejo		X
Baixo Alentejo	Serpa	Brinches	P	
Algarve	Loulé	Vilamoura B	-	P
Algarve	Monchique	Monchique	X	
Algarve	Silves	Silves	P	
Algarve	Silves	Tunes	X	

P – Permanente

Anexo C

Dados de monitorização de 2014 e 2015

2014

NUTS II	SE			Dado	os monitorização		
			$10 \le t \le 200$	$200 < t \le 500$	$500 < t \le 1000$	$1000 < t \le 5000$	$5000 < t \le 60000$
		$90 > u \ge 80$	32	3	1	0	0
	Lijó I5kV	$80 > u \ge 70$	16	3	0	0	0
	Li 151	$70 > u \ge 40$	14	0	0	0	0
		$40 > u \ge 5$	8	2	0	0	0
		5 > u	0	0	0	0	0
	_	$90 > u \ge 80$	49	5	3	2	0
	ada V	$80 > u \ge 70$	16	0	6	2	0
	niç 5k'	$70 > u \ge 40$	19	3	2	0	0
	Caniçada 15kV	$40 > u \ge 5$	5	2	1	1	0
	_	5 > u	0	0	0	1	0
	_	$90 > u \ge 80$	23	0	0	1	0
	Santa Marinha 15kV	$80 > u \ge 70$	8	0	0	0	0
	Santa Aarinha 15kV	$70 > u \ge 40$	8	0	0	0	0
	N Z T	$40 > u \ge 5$	3	1	0	0	0
		5 > u	0	0	0	0	0
		$90 > u \ge 80$	27	1	0	0	0
	Jovim 15kV - I	$80 > u \ge 70$	12	0	0	0	0
	0 v.i.	$70 > u \ge 40$	4	0	1	1	0
ę	J 15	$40 > u \ge 5$	0	0	0	0	0
Norte		5 > u	0	0	0	0	0
_	_	$90 > u \ge 80$	34	0	0	0	0
	H I	$80 > u \ge 70$	13	0	0	0	0
	Jovim 15kV - II	$70 > u \ge 40$	6	2	5	1	0
	J 15	$40 > u \ge 5$	0	0	0	0	0
		5 > u	0	0	0	0	0
	~	$90 > u \ge 80$	29	4	2	0	0
	ad S	$80 > u \ge 70$	12	4	0	0	0
	Lousada 15kV	$70 > u \ge 40$	8	0	0	1	0
	J.	$40 > u \ge 5$	8	2	0	0	0
		5 > u	0	0	0	0	0
	_	$90 > u \ge 80$	58	2	20	0	0
	Lamego 30kV	$80 > u \ge 70$	10	1	15	0	0
	am 301	$70 > u \ge 40$	13	1	5	0	0
	7	$40 > u \ge 5$	7 0	2 0	1	0 0	0
		$5 > u$ $90 > u \ge 80$	50	1	3	0	0
	- г	$80 > u \ge 80$ $80 > u \ge 70$	10	1	3 7	0	
	a dg na kV	$\begin{array}{c} 80 > u \ge 70 \\ 70 > u \ge 40 \end{array}$	26	1	18	0	0
	Vila da Rua 30kV	$40 > u \ge 40$ $40 > u \ge 5$	10	1	10	0	0
			0	0	0	0	0
 		5 > u	45	9		0	Ŭ
]	аЩ	$90 > u \ge 80$			2	0	0
0.	leir - I/	$80 > u \ge 70$ $70 > u \ge 40$	25 13	2 9	3 1	0 1	0 0
Centro	Esgueira 15kV - I/III	$70 > u \ge 40$ $40 > u \ge 5$	2	2	0	1	0
ŭ	E 15k	5 > u	0	0	0	0	0
		3 > u	U	U	U	U	U
I							

Esgueira 15kV - II	$\begin{array}{c} 90 > u \ge 80 \\ 80 > u \ge 70 \\ 70 > u \ge 40 \end{array}$	45 24 12	9 2 10	2 3 1	0 0 1	0 0 0
Es 15]	$40 > u \ge 5$ $5 > u$	2 0	2 0	0	0 0	0
Mogofores 15kV - I	$90 > u \ge 80$ $80 > u \ge 70$ $70 > u \ge 40$	36 12 21	3 0 0	4 0 1	0 0 0	0 0 0
Mog 15]	$40 > u \ge 5$ $5 > u$	1 0	0	0 0	0 0	0 0
fores - II	$90 > u \ge 80$ $80 > u \ge 70$	32 10	2 0	2 0	0	0
Mogofores 15kV - II	$70 > u \ge 40$ $40 > u \ge 5$	18 1	3 0	0	0	0
	$5 > u$ $90 > u \ge 80$	32	0	0	0	0
Oliveira do Bairro 15kV	$80 > u \ge 70$ $70 > u \ge 40$	14 23	0	2 2	0 1	0 0
[$40 > u \ge 5$ $5 > u$	4 0	0	0 0	0 0	0 0
₽>	$90 > u \ge 80$ $80 > u \ge 70$	33 12	1	0	1 0	0
Viseu 15kV	$70 > u \ge 40$ $40 > u \ge 5$	7 4	2 1	0	0	0 0
	$5 > u$ $90 > u \ge 80$	34	3	0	0	0
Gumiei 15kV - I	$80 > u \ge 70$ $70 > u \ge 40$	9 10	0	0	0 0	0 0
Gu 15k	$40 > u \ge 5$ $5 > u$	0 0	0	0	0 0	0 0
ei II	$90 > u \ge 80$ $80 > u \ge 70$	37 8	8	5	2 0	0
Gumiei 15kV - II	$70 > u \ge 40$ $40 > u \ge 5$	6 0	0	1 0	0	0
	$5 > u$ $90 > u \ge 80$	0 34	0 4	0 2	0	0
Vouzela 15kV - I	$80 > u \ge 70$ $70 > u \ge 40$	11	0	1 0	0	0 0
Vou 15k	$40 > u \ge 5$ $5 > u$	0	0	0	0	0 0
sela - II	$90 > u \ge 80$ $80 > u \ge 70$	36 10	6	2 5	1 0	0
Vouze 15kV -	$70 > u \ge 40$ $40 > u \ge 5$	9	1 0	0	0	0 0
	$5 > u$ $90 > u \ge 80$	0 47	<u>0</u> 5	0 5	0 0	0
nhede 7 - I	$80 > u \geq 70$	15 28	2	5 5	0 0	0 0
Cantanhede 15kV - I	$70 > u \ge 40$ $40 > u \ge 5$	0	2	0	1	0
	$5 > u$ $90 > u \ge 80$	0 66	0 4	0 4	0	0
Cantanhede 15kV - II	$80 > u \ge 70$ $70 > u \ge 40$	8 14	2 2	2 0	$0 \\ 0$	0 0
Cant 15k	$40 > u \ge 5$ $5 > u$	0 0	1 0	0	1 0	0 0
lo '	$90 > u \ge 80$ $80 > u \ge 70$	36 6	0	0	1 0	0
Antanhol 15kV	$70 > u \ge 40$ $40 > u \ge 5$	7 0	0	0	0 0	0 0
Α	$ \begin{array}{c} 40 > u \ge 3 \\ 5 > u \\ 90 > u \ge 80 \end{array} $	53	0 5	0 14	0 1	0 0
Miranda do Corvo 15kV	$80 > u \ge 80$ $80 > u \ge 70$ $70 > u \ge 40$	11 10	2 1	4 0	0	0 0
Mirand do Corv 15kV	$\begin{array}{c} 70 > u \ge 40 \\ 40 > u \ge 5 \\ 5 > u \end{array}$	10 1 0	1 1 0	0 0 0	0 0 1	0 0 0
	3 × a	<u> </u>	<u> </u>	<u> </u>		<u> </u>

	$90 > u \ge 80$	41	2	11	1	0
Pedrógão 15kV	$80 > u \ge 70$	8	0	3	0	0
edrógê 15kV	$70 > u \ge 40$	9	Ö	0	0	0
g d						
Pe	$40 > u \ge 5$	2	0	0	0	0
	5 > u	0	0	0	0	0
	$90 > u \ge 80$	13	3	0	0	0
Vila Velha de Ródão 30kV						
Vila Velha de Ródão 30kV	$80 > u \ge 70$	3	0	3	0	0
1 × 8 ×	$70 > u \ge 40$	6	0	1	0	0
ila e J	$40 > u \ge 5$	7	1	5	0	0
> p	5 > u	0	0	0	0	0
	3 / u					
	$90 > u \ge 80$	46	4	0	0	0
_ lad	$80 > u \ge 70$	8	2	13	0	0
' a ≥	$70 > u \ge 40$	5	1	0	0	0
Pombal 30kV - I	$40 > u \ge 5$	5	7	0	0	0
_ c		0				
	5 > u		0	0	0	0
	$90 > u \ge 80$	54	3	0	0	0
-в _П	$80 > u \ge 70$	10	0	4	0	0
da -	$70 > u \ge 40$	20	36	6	1	0
Pombal 30kV - II			0			
P 33	$40 > u \ge 5$	8	8	0	0	0
	5 > u	0	0	0	0	0
	$90 > u \ge 80$	47	8	0	0	0
e e I	$80 > u \ge 70$	12	1	0	0	0
liit l				2		0
Marinha Grande 30kV - I	$70 > u \ge 40$	4	4	3	1	0
3 G ⊠	$40 > u \ge 5$	2	10	3	0	0
	5 > u	0	0	0	0	0
	$90 > u \ge 80$	39	10	0	0	0
a e II		14		0	0	0
l da ag	$80 > u \ge 70$		1			
Marinha Grande 30kV - II	$70 > u \ge 40$	4	2	2	1	0
\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2}	$40 > u \ge 5$	0	14	1	0	0
_ (4)	5 > u	0	0	0	0	0
			4	0	0	0
е ц	$90 > u \ge 80$	71				
gre 	$80 > u \ge 70$	13	1	1	0	0
1 S	$70 > u \ge 40$	23	3	1	0	0
São Jorge 30kV - I	$40 > u \ge 5$	8	3	0	0	0
δy co	5 > u	0	0	0	0	0
0 -	$90 > u \ge 80$	40	1	0	0	0
l gi	$80 > u \ge 70$	15	2	1	0	0
of >	$70 > u \ge 40$	26	7	1	0	0
São Jorge 30kV - II	$40 > u \ge 5$	53	13	2	0	0
S2 3(
	5 > u	0	0	0	0	0
	$90 > u \ge 80$	59	7	2	0	0
ra · I	$80 > u \ge 70$	5	3	0	0	0
Vila Moreira 30kV - I						
[or]	$70 > u \ge 40$	4	6	1	0	0
3 Z	$40 > u \ge 5$	5	6	0	0	0
	5 > u	0	0	0	0	0
	$90 > u \ge 80$	58	15	1	0	0
па	$80 > u \ge 30$	4	2		0	0
la eir			3 3	1		
Vila Moreira 30kV - II	$70 > u \ge 40$	4	3	0	0	0
X ∑	$40 > u \ge 5$	3	6	0	0	0
I	5 > u	1	0	0	0	0
	$90 > u \ge 80$	61	5	0	0	0
ãН						
l da '.	$80 > u \ge 70$	21	18	8	1	0
<u>.</u> E S	$70 > u \ge 40$	11	8	10	2	0
Lourinhã 30kV - I	$40 > u \ge 5$	9	14	1	0	0
I I	5 > u	0	0	0	0	0
1						
Таў	$90 > u \ge 80$	68	5	3	0	0
Lourinhã 30kV - II	$80 > u \ge 70$	21	4	5	0	0
	$70 > u \ge 40$	13	17	4	1	0
) or OK	$40 > u \ge 5$	11	17	7	2	0
1 E		0	0	0	0	0
 	5 > u					
	$90 > u \ge 80$	70	34	8	1	0
- ~	$80 > u \ge 70$	15	15	4	1	1
ela k	$70 > u \ge 40$	4	29	Ö	0	0
Cela 30kV	10 > 0 = 40					
1	$40 > u \ge 5$	1	44	3	0	0
	5 > u	0	0	0	0	0
	1	·		·		·

1							
	_	$90 > u \ge 80$	126	19	34	7	0
	Alter do Chão 30kV	$80 > u \ge 70$	63	3	22	4	0
	ulter de Chão 30kV	$70 > u \ge 40$	55	13	29	0	0
	A O E	$40 > u \ge 5$	45	6	6	1	0
Alentejo	,	5 > u	0	0	0	0	0
		$90 > u \ge 80$	192	25	46	6	3
	Ponte Sor 30kV - I	$80 > u \ge 30$	53	1	6	0	0
	S S	$70 > \mathbf{u} \ge 70$	15	5	24	2	
)K at					2	0
	9. 3.	$40 > u \ge 5$	5	6	6	2	0
		5 > u	0	0	0	0	0
	- -	$90 > u \ge 80$	180	31	59	7	1
	So I -	$80 > u \ge 70$	63	3	22	0	2
	et >	$70 > u \ge 40$	17	5	8	1	0
	Ponte Sor 30kV - II	$40 > u \ge 5$	9	3	0	1	0
	Д (()	5 > u	0	0	0	0	0
		$90 > u \ge 80$	21	1	0	0	0
	sa .	$80 > u \ge 70$	7	0	0	0	0
	cai KV	$70 > \mathbf{u} \ge 70$	20	0	0	0	0
	Cascais 10kV						
		$40 > u \ge 5$	1	0	0	0	0
		5 > u	0	0	0	0	0
		$90 > u \ge 80$	25	0	0	0	0
	Alto do Lumiar 10kV	$80 > u \ge 70$	6	0	0	0	0
	Alto de Jumiai 10kV	$70 > u \ge 40$	13	0	0	0	0
	A J	$40 > u \ge 5$	1	0	0	0	0
		5 > u	0	0	0	0	0
		$90 > u \ge 80$	21	0	0	0	0
		$80 > u \ge 30$	5	Ö	0	0	0
	Luz 10kV - I	$70 > u \ge 70$	13	0	0	0	0
	동다	$40 > u \ge 40$ $40 > u \ge 5$	2		0		0
				0		0	
		5 > u	0	0	0	0	0
		$90 > u \ge 80$	19	0	0	0	0
	Luz 10kV - II	$80 > u \ge 70$	7	0	0	0	0
	Luz kV -	$70 > u \ge 40$	15	0	0	0	0
	101	$40 > u \ge 5$	1	0	0	0	0
		5 > u	0	0	0	0	0
		$90 > u \ge 80$	24	0	0	0	0
	la - I	$80 > u \ge 70$	9	0	0	0	0
	<u> </u>	$70 > u \ge 40$	13	0	0	0	0
	Marvila 10kV - I	$40 > u \ge 5$	0	Ö	0	0	0
	7 -	5 > u	0	0	0	0	0
AML			27	0	0	0	0
A A	ila - II	$90 > u \ge 80$					
,	Marvila 10kV - II	$80 > u \ge 70$	7	0	0	0	0
	[ar k	$70 > u \ge 40$	11	0	0	0	0
	≥ O1	$40 \ge u \ge 5$	0	0	0	0	0
		5 > u	0	0	0	0	0
		$90 > u \ge 80$	24	0	0	0	0
	ue - I	$80 > u \ge 70$	7	0	0	0	0
	urq cV	$70 > u \ge 40$	12	0	0	0	0
	Parque 10kV - I	$40 > u \ge 5$	2	0	0	0	0
		5 > u	0	0	0	0	0
		$90 > u \ge 80$	23	0	0	0	0
	ы п	$80 > u \ge 30$ $80 > u \ge 70$	7	0	0	0	0
	dan / -	$70 > u \ge 70$ $70 > u \ge 40$	13	0	0	0	0
	Parque 10kV - II					0	0
	1 71	$40 > u \ge 5$	2	0	0		
		5 > u	1	0	0	0	0
	e	$90 > u \ge 80$	24	0	0	0	0
	Camarate 10kV	$80 > u \ge 70$	8	0	0	0	0
	amara 10kV	$70 > u \ge 40$	15	0	0	0	0
	Ca 1	$40 > u \ge 5$	1	0	0	0	0
		5 > u	0	0	0	0	0
		$90 > u \ge 80$	24	0	0	0	0
	as	$80 > u \ge 70$	11	0	0	0	0
	ky ky	$70 > u \ge 40$	13	1	0	0	0
	Caneças 10kV	$40 > u \ge 5$	1	0	0	0	0
		5 > u	0	0	0	2	0
		3 / u	<u> </u>	<u> </u>		<u>~</u>	J
I	I	I					

							-
	_	$90 > u \ge 80$	26	0	0	0	0
	Venteira 10kV	$80 > u \ge 70$	6	0	0	0	0
	enteir 10kV	$70 > u \ge 40$	11	0	0	0	0
	Ve 1	$40 > u \ge 5$	0	0	0	0	0
		5 > u	0	0	0	0	0
		$90 > u \ge 80$	24	1	0	0	0
	SC - I	$80 > u \ge 70$	7	0	0	0	0
	São farcc kV .	$70 > u \ge 40$	14	0	0	0	0
	São Marcos 10kV - I	$40 > u \ge 5$	1	0	0	0	0
		5 > u	0	0	0	0	0
		$90 > u \ge 80$	17	1	0	0	0
	s II	$80 > u \ge 30$	7	0	0	0	0
	São farcc kV -	$70 > u \ge 40$	19	0	0	0	0
	São Marcos 10kV - II	$40 > u \ge 5$	1	0	0	0	0
	7 =	5 > u	0	0	0	0	0
		$90 > u \ge 80$	42	1	0	0	0
	′0a / -	$80 > u \ge 70$	11	0	0	0	0
	Póvoa 30kV -]	$70 > u \ge 40$	9	0	0	0	0
	1 %	$40 > u \ge 5$	21	10	0	0	0
		5 > u	0	0	0	0	0
		$90 > u \ge 80$	66	4	0	0	0
	Póvoa 30kV - II	$80 > u \ge 70$	8	0	0	0	0
	ó v KV	$70 > u \ge 40$	10	0	0	0	0
	P P 301	$40 > u \ge 5$	0	0	0	0	0
		5 > u	0	0	0	0	0
		$90 > u \ge 80$	9	1	0	0	0
	Costa da Caparica 15kV	$80 > u \ge 70$	4	1	1	0	0
	osta da aparica 15kV	$70 > u \ge 40$	9	2	0	0	0
	S <u>E</u>	$40 > u \ge 5$	0	1	0	0	0
		5 > u	0	0	0	0	0
		$90 > u \ge 80$	38	14	29	0	0
	as r	$80 > u \ge 70$	18	2	5	0	0
	Vendas Novas 15kV - I	$70 > u \ge 40$	6	4	1	0	0
	N N N	$40 > u \ge 5$	3	1	0	0	0
		5 > u	0	0	0	0	0
		$90 > u \ge 80$	39	14	29	0	0
	S I	$80 > u \ge 70$	17	2	5	0	0
	va V -	$70 > u \ge 40$	6	4	1	0	0
	Vendas Novas 15kV - II	$40 > u \ge 5$	3	1	0	0	0
Alentejo		5 > u	0	0	0	0	0
ent		$90 > u \ge 80$	174	24	63	10	0
ΨĬ	ν,	$80 > u \ge 80$ $80 > u \ge 70$	45	24	14	0	0
	nda vas kV		43 14	9	43	0	
	Vendas Novas 30kV	$70 > u \ge 40$		5	43 7	0	0
		$40 > u \ge 5$	4 0	5 0	0	0	0
		5 > u					
	S.	$90 > u \ge 80$	161	16	38	24	0
	She She	$80 > u \ge 70$	49	11	33	3	0
	Brinches 30kV	$70 > u \ge 40$	38	8	31	0	0
	B.	$40 > u \ge 5$	27	2	1	0	0
		5 > u	0	0	0	0	0
		$90 > u \ge 80$	39	3	2	1	0
rve	< es	$80 > u \ge 70$	21	0	1	0	0
Algarve	Silves 15kV	$70 > u \ge 40$	26	1	0	1	0
F	S T	$40 > u \ge 5$	4	4	0	0	0
		5 > u	0	0	0	0	0
-							

Distrito	SE			Dado	os monitorização		
District	D.L.		$10 \le t \le 200$	$200 < t \le 500$	$500 < t \le 1000$	$1000 < t \le 5000$	$5000 < t \le 60000$
	a I	$90 > u \ge 80$	18	2	6	0	0
	Valença 15kV - I	$80 > u \ge 70$	6	1	3	0	0
	/al 5k	$70 > u \ge 40$	5	1	1	0	0
	1	$40 > u \ge 5$	0	0	2	0	0
		5 > u	0	0	0 13	0	0
	a II	$90 > u \ge 80$ $80 > u \ge 70$	30	3		0	0
elo	Valença 15kV - II	$70 > u \ge 70$	5 7	1	2 5	0	0
ast	/ald 5k¹	$40 > u \ge 40$	ó	0	1	0	0
0 C	1	5 > u	0	0	0	0	0
Viana do Castelo	1)	$90 > u \ge 80$	8	1	1	0	0
ian	S.Marta de Portuzelo 15kV - I	$80 > u \geq 70$	6	0	0	0	0
>	.Marta Portuz 15kV	$70 > u \ge 40$	5	2	1	0	0
	M Por 151	$40 > u \ge 5$	0	0	1	0	0
	S	5 > u	0	0	0	0	0
	le o I	$90 > u \ge 80$	8	13	5	0	0
	S.Marta de Portuzelo 15kV - II	$80 > u \ge 70$	6	0	0	0	0
	S.Mart: Portuz 15kV	$70 > u \ge 40$	8	1	2	0	0
	S.N Po 15	$40 > u \ge 5$	0	0	1	0	0
		5 > u	0	0	0	0	0
	es	$90 > u \ge 80$ $80 > u \ge 70$	21 3	4 1	1 3	0	0
	Lamaçães 15kV - I	$80 > u \ge 70$ $70 > u \ge 40$	3	0	0	0	0
	am; 5k	$40 > u \ge 40$ $40 > u \ge 5$	0	0	0	0	0
	$\frac{L_i}{1}$	5 > u	0	0	0	0	0
		$90 > u \ge 80$	21	2	0	0	0
	Lamaçães 15kV - II	$80 > u \ge 70$	4	0	1	0	0
	naç	$70 > u \ge 40$	2	0	1	0	0
	an 15k	$40 > u \ge 5$	0	0	0	0	0
	ī	5 > u	0	0	0	0	0
		$90 > u \ge 80$	18	3	1	0	0
	,	$80 > u \ge 70$	2	0	0	0	0
	Lijó 15kV	$70 > u \ge 40$	9	0	0	0	0
	, ,	$40 > u \ge 5$	3	0	0	0	0
		5 > u	43	3	0	0	0 0
	la	$90 > u \ge 80$ $80 > u \ge 70$	43 7	3 0	2	0	0
	Caniçada 15kV	$70 > u \ge 70$	13	0	1	2	0
	ani 15	$40 > u \ge 40$	1	0	0	1	0
	0	5 > u	0	0	ő	0	ő
Braga	S	$90 > u \ge 80$	12	2	0	0	0
Bra	rães - I	$80 > u \ge 70$	3	1	0	0	0
	Juimai 15kV	$70 > u \ge 40$	7	1	0	0	0
	Guimarães 15kV - I	$40 > u \ge 5$	2	1	0	1	0
)	5 > u	0	0	0	0	0
	es I	$90 > u \ge 80$	12	2	1	0	0
	Guimarães 15kV - II	$80 > u \ge 70$	3	1	0	0	0
	im: ikV	$70 > u \ge 40$	13	4	0	0	0
	Gu 15	$40 > u \ge 5$	0 0	0	0	1 0	0
		$5 > u$ $90 > u \ge 80$	10	5	<u> </u>	0	0
	u I	$80 > u \ge 80$ $80 > u \ge 70$	6	5 5	0	0	0
	idé V -	$70 > \mathbf{u} \ge 70$	7	3	0	0	0
	Pevidém 15kV - I	$40 > u \ge 5$	1	0	0	0	0
	II.	5 > u	0	0	0	1	0
		$90 > u \ge 80$	8	2	0	0	0
	Pevidém 15kV - II	$80 > u \ge 70$	4	0	0	0	0
	Pevidém 15kV - II	$70 > u \ge 40$	7	0	1	0	0
	Pe. 151	$40 > u \ge 5$	0	1	0	0	0
		5 > u	0	0	0	1	0

Rebordosa Lordelo Lordelo Norte Norte	Norte Norte 15kV - I 15kV - II 15kV - I	$\begin{array}{c} 90 > u \geq 80 \\ 80 > u \geq 70 \\ 70 > u \geq 40 \\ 40 > u \geq 5 \\ 5 > u \\ 90 > u \geq 80 \\ 80 > u \geq 70 \\ 70 > u \geq 40 \\ 40 > u \geq 5 \\ 5 > u \\ 90 > u \geq 80 \\ 80 > u \geq 70 \\ 70 > u \geq 40 \\ 40 > u \geq 5 \\ 5 > u \\ 90 > u \geq 80 \\ 80 > u \geq 70 \\ 70 > u \geq 40 \\ 40 > u \geq 5 \\ 5 > u \\ 90 > u \geq 80 \\ 80 > u \geq 70 \\ 70 > u \geq 40 \\ 40 > u \geq 5 \\ 5 > u \\ 90 > u \geq 80 \\ 80 > u \geq 70 \\ 70 > u \geq 40 \\ 40 > u \geq 5 \\ 5 > u \\ 90 > u \geq 80 \\ 80 > u \geq 70 \\ 70 > u \geq 40 \\ 40 > u \geq 5 \\ 5 > u \\ 90 > u \geq 80 \\ 80 > u \geq 70 \\ 70 > u \geq 40 \\ 40 > u \geq 5 \\ 5 > u \\ 90 > u \geq 80 \\ 80 > u \geq 70 \\ 70 > u \geq 40 \\ 40 > u \geq 5 \\ 5 > u \\ 90 > u \geq 80 \\ 80 > u \geq 70 \\ 70 > u \geq 40 \\ 40 > u \geq 5 \\ 5 > u \\ 90 > u \geq 80 \\ 80 > u \geq 70 \\ 70 > u \geq 40 \\ 40 > u \geq 5 \\ 5 > u \\ 90 > u \geq 80 \\ 80 > u \geq 70 \\ 70 > u \geq 40 \\ 40 > u \geq 5 \\ 5 > u \\ 90 > u \geq 80 \\ 80 > u \geq 70 \\ 70 > u \geq 40 \\ 40 > u \geq 5 \\ 5 > u \\ 90 > u \geq 80 \\ 80 > u \geq 70 \\ 70 > u \geq 40 \\ 40 > u \geq 5 \\ 5 > u \\ 90 > u \geq 80 \\ 80 > u \geq 70 \\ 70 > u \geq 40 \\ 40 > u \geq 5 \\ 5 > u \\ 80 > u \geq 5 \\ 80 > u \geq 70 \\ 70 > u \geq 40 \\ 40 > u \geq 5 \\ 80 > u \geq 70 \\ 70 > u \geq 40 \\ 40 > u \geq 5 \\ 80 > u \geq 70 \\ 70 > u \geq 40 \\ 40 > u \geq 5 \\ 80 > u \geq 70 \\ 70 > u \geq 40 \\ 40 > u \geq 5 \\ 80 > u \geq 70 \\ 70 > u \geq 40 \\ 40 > u \geq 5 \\ 80 > u \geq 70 \\ 70 > u \geq 40 \\ 80 > u \geq 70 \\ 70 > u \geq 40 \\ 80 > u \geq 70 \\ 70 > u \geq 40 \\ 80 > u \geq 70 \\ 70 > u \geq 40 \\ 80 > u \geq 70 \\ 70 > u \geq 40 \\ 80 > u \geq 70 \\ 70 > u \geq 40 \\ 80 > u \geq 70 \\ 70 > u \geq 40 \\ 80 > u \geq 70 \\ 70 > u \geq 40 \\ 80 > u \geq 70 \\ 70 > u \geq 40 \\ 80 > u \geq 70 \\ 70 > u \geq 40 \\ 80 > u \geq 70 \\ 70 > u \geq 80 \\ 80 > u \geq 70 \\ 70 > u \geq 80 \\ 80 > u \geq 70 \\ 70 > u \geq 80 \\ 80 > u \geq 70 \\ 70 > u \geq 80 \\ 80 > u \geq 70 \\ 70 > u \geq 80 \\ 80 > u \geq 70 \\ 70 > u \geq 80 \\ 80 > u \geq 70 \\ 70 > u \geq 80 \\ 80 > u \geq 70 \\ 70 > u \geq 80 \\ 80 > u \geq 70 \\ 70 > u \geq 80 \\ 80 > u \geq 70 \\ 70 > u \geq 80 \\ 80 > u \geq 70 \\ 80 > u \geq 80 \\ 80 > u \geq 70 \\ 80 > u \geq 80 \\ 80 > u \geq$	12 5 12 0 0 13 5 12 0 0 11 4 5 4 0 19 6 6 2 0 15 6 2 2 0 18 4 5	1 0 1 0 0 1 0 1 0 0 2 3 3 7 7 7 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Porto Rebordosa Rebordosa Lordelo Lordelo Norto Norto	15kV - I 15kV - II 15kV - II	$70 > u \ge 40$ $40 > u \ge 5$ $5 > u$ $90 > u \ge 80$ $80 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$ $5 > u$ $90 > u \ge 80$ $80 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$ $5 > u$ $90 > u \ge 80$ $80 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$ $5 > u$ $90 > u \ge 80$ $80 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$ $5 > u$ $90 > u \ge 80$ $80 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$ $5 > u$ $90 > u \ge 80$ $80 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$ $5 > u$ $90 > u \ge 80$ $80 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$ $5 > u$	12 0 0 13 5 12 0 0 0 11 4 5 4 0 19 6 6 2 0 0 15 6 2 2 0	1 0 0 1 0 1 0 0 2 3 7 7 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Porto Rebordosa Rebordosa Lordelo Lordelo Norto Norto	15kV - I 15kV - II 15kV - II	$40 > u \ge 5$ $5 > u$ $90 > u \ge 80$ $80 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$ $5 > u$ $90 > u \ge 80$ $80 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$ $5 > u$ $90 > u \ge 80$ $80 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$ $5 > u$ $90 > u \ge 80$ $80 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$ $5 > u$ $90 > u \ge 80$ $80 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$ $5 > u$ $90 > u \ge 80$ $80 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$ $5 > u$ $90 > u \ge 80$ $80 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$ $5 > u$	0 0 13 5 12 0 0 0 11 4 5 4 0 19 6 6 2 0 0 15 6 2 2 0	0 0 1 0 1 0 0 2 3 7 7 0 2 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Porto Rebordosa Rebordosa Lordelo Lordelo Norto Norto	15kV - I 15kV - II 15kV - II	$\begin{array}{c} 5 > u \\ 90 > u \ge 80 \\ 80 > u \ge 70 \\ 70 > u \ge 40 \\ 40 > u \ge 5 \\ 5 > u \\ 90 > u \ge 80 \\ 80 > u \ge 70 \\ 70 > u \ge 40 \\ 40 > u \ge 5 \\ 5 > u \\ 90 > u \ge 80 \\ 80 > u \ge 70 \\ 70 > u \ge 40 \\ 40 > u \ge 5 \\ 5 > u \\ 90 > u \ge 80 \\ 80 > u \ge 70 \\ 70 > u \ge 40 \\ 40 > u \ge 5 \\ 5 > u \\ 90 > u \ge 80 \\ 80 > u \ge 70 \\ 70 > u \ge 40 \\ 40 > u \ge 5 \\ 5 > u \\ 90 > u \ge 80 \\ 80 > u \ge 70 \\ 70 > u \ge 40 \\ 40 > u \ge 5 \\ 5 > u \\ 90 > u \ge 80 \\ 80 > u \ge 70 \\ 70 > u \ge 40 \\ 40 > u \ge 5 \\ 5 > u \\ 90 > u \ge 80 \\ 80 > u \ge 70 \\ 70 > u \ge 40 \\ 40 > u \ge 5 \\ 5 > u \\ 90 > u \ge 80 \\ 80 > u \ge 70 \\ 70 > u \ge 40 \\ 40 > u \ge 5 \\ 5 > u \\ 90 > u \ge 80 \\ 80 > u \ge 70 \\ 70 > u \ge 40 \\ 40 > u \ge 5 \\ 5 > u \\ 90 > u \ge 80 \\ 80 > u \ge 70 \\ 70 > u \ge 40 \\ 40 > u \ge 5 \\ 5 > u \\ 90 > u \ge 80 \\ 80 > u \ge 70 \\ 70 > u \ge 40 \\ 40 > u \ge 5 \\ 5 > u \\ 90 > u \ge 80 \\ 80 > u \ge 70 \\ 70 > u \ge 40 \\ 40 > u \ge 5 \\ 5 > u \\ 90 > u \ge 80 \\ 80 > u \ge 70 \\ 70 > u \ge 40 \\ 40 > u \ge 5 \\ 5 > u \\ 90 > u \ge 80 \\ 80 > u \ge 70 \\ 70 > u \ge 40 \\ 40 > u \ge 5 \\ 5 > u \\ 90 > u \ge 80 \\ 80 > u \ge 70 \\ 70 > u \ge 40 \\ 40 > u \ge 5 \\ 5 > u \\ 90 > u \ge 80 \\ 80 > u \ge 70 \\ 70 > u \ge 40 \\ 40 > u \ge 5 \\ 80 > u \ge 70 \\ 70 > u \ge 40 \\ 40 > u \ge 5 \\ 80 > u \ge 70 \\ 70 > u \ge 40 \\ 40 > u \ge 5 \\ 80 > u \ge 70 \\ 70 > u \ge 40 \\ 40 > u \ge 5 \\ 80 > u \ge 70 \\ 70 > u \ge 40 \\ 40 > u \ge 5 \\ 80 > u \ge 70 \\ 70 > u \ge 40 \\ 40 > u \ge 5 \\ 80 > u \ge 70 \\ 70 > u \ge 40 \\ 80 > u \ge 70 \\ 70 > u \ge 40 \\ 80 > u \ge 70 \\ 70 > u \ge 40 \\ 80 > u \ge 70 \\ 70 > u \ge 40 \\ 80 > u \ge 70 \\ 70 > u \ge 40 \\ 80 > u \ge 70 \\ 70 > u \ge 40 \\ 80 > u \ge 70 \\ 70 > u \ge 40 \\ 80 > u \ge 70 \\ 70 > u \ge 40 \\ 80 > u \ge 70 \\ 80 > u \ge 70 \\ 80 > u \ge 70 \\ 80 > u \ge 80 \\ 80 > u \ge 70 \\ 80 > u \ge 80 \\ 80 > u \ge 70 \\ 80 > u \ge 80 \\ 80 > u \ge 70 \\ 80 > u \ge 80 \\ 80 > u $	0 13 5 12 0 0 0 11 4 5 4 0 19 6 6 2 0 0 15 6 2 2 0	0 1 0 1 0 0 2 3 7 7 0 2 0 7 0 0 0 0 2 3 7 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Porto Rebordosa Rebordosa Lordelo Lordelo Norto Norto	15kV - I 15kV - II 15kV - I	$90 > u \ge 80$ $80 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$ $5 > u$ $90 > u \ge 80$ $80 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$ $5 > u$ $90 > u \ge 80$ $80 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$ $5 > u$ $90 > u \ge 80$ $80 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$ $5 > u$ $90 > u \ge 80$ $80 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$ $5 > u$ $90 > u \ge 80$ $80 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$ $5 > u$ $90 > u \ge 80$ $80 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$ $5 > u$	13 5 12 0 0 11 4 5 4 0 19 6 6 2 0 15 6 2 2 0 18 4 5	1 0 1 0 0 2 3 7 7 0 2 0 7 0 0 0 0 0	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Porto Rebordosa Rebordosa Lordelo Lordelo Norto Norto	15kV - I 15kV - II 15kV - I	$80 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$ $5 > u$ $90 > u \ge 80$ $80 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$ $5 > u$ $90 > u \ge 80$ $80 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$ $5 > u$ $90 > u \ge 80$ $80 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$ $5 > u$ $90 > u \ge 80$ $80 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$ $5 > u$ $90 > u \ge 80$ $80 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$ $5 > u$ $90 > u \ge 80$ $80 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$	5 12 0 0 0 11 4 5 4 0 19 6 6 2 0 15 6 2 2 0	0 1 0 0 2 3 7 7 0 2 0 7 0 0 0 0 1 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Porto Rebordosa Rebordosa Lordelo Lordelo Norto Norto	15kV - I 15kV - II 15kV - I	$70 > u \ge 40$ $40 > u \ge 5$ $5 > u$ $90 > u \ge 80$ $80 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$ $5 > u$ $90 > u \ge 80$ $80 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$ $5 > u$ $90 > u \ge 80$ $80 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$ $5 > u$ $90 > u \ge 80$ $80 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$ $5 > u$ $90 > u \ge 80$ $80 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$ $5 > u$ $90 > u \ge 80$ $80 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$	12 0 0 11 4 5 4 0 19 6 6 2 0 15 6 2 2 0	1 0 0 2 3 7 7 0 2 0 7 0 0 0 0 0 1 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 0 0 0 1 0 0 0 0 1 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Porto Rebordosa Rebordosa Lordelo Lordelo Norto Norto	15kV - I 15kV - II 15kV - I	$40 > u \ge 5$ $5 > u$ $90 > u \ge 80$ $80 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$ $5 > u$ $90 > u \ge 80$ $80 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$ $5 > u$ $90 > u \ge 80$ $80 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$ $5 > u$ $90 > u \ge 80$ $80 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$ $5 > u$ $90 > u \ge 80$ $80 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$ $5 > u$ $90 > u \ge 80$ $80 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$	0 0 11 4 5 4 0 19 6 6 2 0 15 6 2 2 0	0 0 2 3 7 7 0 2 0 7 0 0 0 0 0 1 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 0 0 1 0 0 0 0 1 0 0	0 0 0 0 0 0 0 0 0 0 0 0
Porto Rebordosa Rebordosa Lordelo Lordelo Norto Norto	15kV - I 15kV - II 15kV - I	$\begin{array}{c} 5 > u \\ \\ 90 > u \ge 80 \\ 80 > u \ge 70 \\ 70 > u \ge 40 \\ 40 > u \ge 5 \\ 5 > u \\ 90 > u \ge 80 \\ 80 > u \ge 70 \\ 70 > u \ge 40 \\ 40 > u \ge 5 \\ 5 > u \\ 90 > u \ge 80 \\ 80 > u \ge 70 \\ 70 > u \ge 40 \\ 40 > u \ge 5 \\ 5 > u \\ 90 > u \ge 80 \\ 80 > u \ge 70 \\ 70 > u \ge 40 \\ 40 > u \ge 5 \\ 5 > u \\ 90 > u \ge 80 \\ 80 > u \ge 70 \\ 70 > u \ge 40 \\ 40 > u \ge 5 \\ 5 > u \\ 90 > u \ge 80 \\ 80 > u \ge 70 \\ 70 > u \ge 40 \\ 40 > u \ge 5 \\ 5 > u \\ 90 > u \ge 80 \\ 80 > u \ge 70 \\ 70 > u \ge 40 \\ 40 > u \ge 5 \\ 5 > u \\ 90 > u \ge 80 \\ 80 > u \ge 70 \\ 70 > u \ge 40 \\ 40 > u \ge 5 \\ 5 > u \\ 80 > u \ge 70 \\ 70 > u \ge 40 \\ 40 > u \ge 5 \\ 5 > u \\ 80 > u \ge 70 \\ 70 > u \ge 40 \\ 40 > u \ge 5 \\ 5 > u \\ 80 > u \ge 70 \\ 70 > u \ge 40 \\ 40 > u \ge 5 \\ 5 > u \\ 80 > u \ge 70 \\ 70 > u \ge 40 \\ 40 > u \ge 5 \\ 5 > u \\ 80 > u \ge 70 \\ 70 > u \ge 40 \\ 40 > u \ge 5 \\ 5 > u \\ 80 > u \ge 70 \\ 70 > u \ge 40 \\ 40 > u \ge 5 \\ 5 > u \\ 80 > u \ge 70 \\ 70 > u \ge 40 \\ 40 > u \ge 5 \\ 5 > u \\ 80 > u \ge 70 \\ 70 > u \ge 40 \\ 40 > u \ge 5 \\ 5 > u \ge 40 \\ 40 > u \ge 5$	0 11 4 5 4 0 19 6 6 2 0 15 6 2 2 0 18 4 5	2 3 7 7 0 2 0 7 0 0 0 0 1 0 0	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 1 0 0 0 0 1 0 0	0 0 0 0 0 0 0 0 0 0 0
Porto Rebordosa Rebordosa Lordelo Lordelo Norta	15kV - I 15kV - II	$80 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$ $5 > u$ $90 > u \ge 80$ $80 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$ $5 > u$ $90 > u \ge 80$ $80 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$ $5 > u$ $90 > u \ge 80$ $80 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$ $5 > u$ $90 > u \ge 80$ $80 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$ $5 > u$	4 5 4 0 19 6 6 2 0 15 6 2 2 0 18 4 5	3 7 7 0 2 0 7 0 0 0 0 1 0 0	0 0 0 0 0 0 0 0 0 0 1 0 0 0	0 0 1 0 0 0 0 1 0 0 1 0 0	0 0 0 0 0 0 0 0 0 0 0 0
Porto Rebordosa Rebordosa Lordelo Lordelo Norta	15kV - I 15kV - II	$70 > u \ge 40$ $40 > u \ge 5$ $5 > u$ $90 > u \ge 80$ $80 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$ $5 > u$ $90 > u \ge 80$ $80 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$ $5 > u$ $90 > u \ge 40$ $40 > u \ge 5$ $5 > u$ $90 > u \ge 80$ $80 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$ $5 > u$ $90 > u \ge 80$ $80 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$	5 4 0 19 6 6 2 0 15 6 2 2 0 18 4 5	7 7 0 2 0 7 0 0 0 0 1 0 0	0 0 0 0 0 0 0 0 0 1 0 0 0	0 1 0 0 0 0 1 0 0 1 0 0	0 0 0 0 0 0 0 0 0 0 0
Porto Rebordosa Rebordosa Lordelo Lordelo Norta	15kV - I 15kV - II	$40 > u \ge 5$ $5 > u$ $90 > u \ge 80$ $80 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$ $5 > u$ $90 > u \ge 80$ $80 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$ $5 > u$ $90 > u \ge 40$ $40 > u \ge 5$ $5 > u$ $90 > u \ge 80$ $80 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$ $5 > u$	4 0 19 6 6 2 0 15 6 2 2 0 18 4 5	7 0 2 0 7 0 0 0 0 1 0 0	0 0 0 0 0 0 0 0 1 0 0 0	1 0 0 0 0 1 0 0 1 0 0	0 0 0 0 0 0 0 0 0 0
Porto Rebordosa Rebordosa Lordelo Lordelo Norta	15kV - I 15kV - II	$\begin{array}{c} 5 > u \\ 90 > u \ge 80 \\ 80 > u \ge 70 \\ 70 > u \ge 40 \\ 40 > u \ge 5 \\ 5 > u \\ 90 > u \ge 80 \\ 80 > u \ge 70 \\ 70 > u \ge 40 \\ 40 > u \ge 5 \\ 5 > u \\ 90 > u \ge 80 \\ 80 > u \ge 70 \\ 70 > u \ge 40 \\ 40 > u \ge 5 \\ 5 > u \\ \end{array}$	0 19 6 6 2 0 15 6 2 2 0 18 4 5	0 2 0 7 0 0 0 0 1 0 0	0 0 0 0 0 0 0 1 0 0 0	0 0 0 0 1 0 0 1 0 0	0 0 0 0 0 0 0 0 0
Porto Rebordosa Rebordosa Lordelo Lordelo	15kV - I	$90 > u \ge 80$ $80 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$ $5 > u$ $90 > u \ge 80$ $80 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$ $5 > u$ $90 > u \ge 80$ $80 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$ $5 > u$ $90 > u \ge 80$ $80 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$	19 6 6 2 0 15 6 2 2 0 18 4 5	2 0 7 0 0 0 0 1 0 0	0 0 0 0 0 0 1 0 0 0	0 0 0 1 0 0 1 0 0	0 0 0 0 0 0 0 0
Porto Rebordosa Rebordosa Lordelo Lordelo	15kV - I	$80 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$ $5 > u$ $90 > u \ge 80$ $80 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$ $5 > u$ $90 > u \ge 40$ $40 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$ $5 > u$ $90 > u \ge 80$ $80 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$	6 6 2 0 15 6 2 2 0 18 4 5	0 7 0 0 0 0 1 0 0	0 0 0 0 0 1 0 0 0	0 0 1 0 0 1 0 0 0	0 0 0 0 0 0 0 0
Porto Rebordosa Rebordosa Lordelo Lordelo	15kV - I	$70 > u \ge 40$ $40 > u \ge 5$ $5 > u$ $90 > u \ge 80$ $80 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$ $5 > u$ $90 > u \ge 80$ $80 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$ $5 > u$ $90 > u \ge 80$ $80 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$	6 2 0 15 6 2 2 0 18 4 5	7 0 0 0 0 1 0 0 0	0 0 0 1 0 0 0	0 1 0 0 1 0 0 0	0 0 0 0 0 0 0
Porto Rebordosa Rebordosa Lordelo Lordelo	15kV - I	$40 > u \ge 5$ $5 > u$ $90 > u \ge 80$ $80 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$ $5 > u$ $90 > u \ge 80$ $80 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$	2 0 15 6 2 2 0 18 4 5	0 0 0 0 1 0 0	0 0 0 1 0 0 0	1 0 0 1 0 0	0 0 0 0 0 0
Porto Rebordosa Rebordosa Lordelo	15kV - I	$5 > u$ $90 > u \ge 80$ $80 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$ $5 > u$ $90 > u \ge 80$ $80 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$	0 15 6 2 2 0 18 4 5	0 0 0 1 0 0 0	0 0 1 0 0 0	0 0 1 0 0	0 0 0 0 0
Porto Rebordosa Rebordosa Lordelo		$90 > u \ge 80$ $80 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$ $5 > u$ $90 > u \ge 80$ $80 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$	15 6 2 2 0 18 4 5	0 0 1 0 0	0 1 0 0 0	1 0 0 0	0 0 0 0
Porto Rebordosa Rebordosa Lordelo		$80 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$ $5 > u$ $90 > u \ge 80$ $80 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$	6 2 2 0 18 4 5	0 1 0 0 0	1 0 0 0	0 0 0	0 0 0
Porto Rebordosa Rebordosa Lordelo		$40 > u \ge 5$ $5 > u$ $90 > u \ge 80$ $80 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$	2 0 18 4 5	0 0 1 0	0 0 0	0 0	0
Porto Rebordosa Rebordosa Lordelo		$5 > u$ $90 > u \ge 80$ $80 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$	0 18 4 5	0 1 0	0	0	0
Porto Rebordosa Rebordosa	15kV - II	$90 > u \ge 80$ $80 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$	18 4 5	1 0	0		
Porto Rebordosa Rebordosa	15kV - II	$80 > u \ge 70$ $70 > u \ge 40$ $40 > u \ge 5$	4 5	0		0	
Porto Rebordosa Rebordosa	15kV -	$70 > u \ge 40$ $40 > u \ge 5$	5		2	1	0
Porto Rebordosa Rebordosa	15k	$40 > u \ge 5$		1	3	1 0	0
Porto Rebordosa Rebordosa	_		U	0	0	0	0
Porto Rebordosa		5 > u	0	0	0	0	0
Porto Rebordosa		$90 > u \ge 80$	18	1	0	0	0
Porto Rebordosa	- I	$80 > u \ge 70$	10	2	1	1	0
Porto Rebordosa	15kV - I	$70 > u \ge 40$	12	0	0	0	0
Porto Rebordosa	15	$40 > u \ge 5$	0	0	0	0	0
	1	5 > u	0	0	0	0	0
	Η	$90 > u \ge 80$	10	1	0	1	0
	15kV - III	$80 > u \ge 70$ $70 > u \ge 40$	2 3	2 0	2 3	0 1	0
	<u>K</u>	$40 > u \ge 40$ $40 > u \ge 5$	0	0	0	0	0
ada	H	5 > u	0	0	0	0	0
ada		$90 > u \ge 80$	18	6	2	0	0
, ,	>	$80 > u \ge 70$	7	2	1	2	0
ı sn	<u></u> %	$70 > u \ge 40$	15	0	0	0	0
L _c		$40 > u \ge 5$	0	1	0	0	0
		5 > u	0	0	0	0	0
		$90 > u \ge 80$	21	2	1 0	2	0
l del	15kV	$80 > u \ge 70$ $70 > u \ge 40$	3 2	0	0	$0 \\ 0$	0
Mindelo	15	$40 > u \ge 40$ $40 > u \ge 5$	0	0	0	0	0
		5 > u	0	Ö	0	0	0
		$90 > u \ge 80$	24	4	2	1	0
	Τ-	$80 > u \ge 70$	6	1	0	0	0
Mai	15kV -]	$70 > u \ge 40$	11	0	0	0	0
	15	$40 > u \ge 5$	2	0	0	0	0
<u> </u>		5 > u	0	0	0 2	0	0
	\Box	$90 > u \ge 80$ $80 > u \ge 70$	25 4	2 1	0	1 0	0
aia	_'	$80 > u \ge 70$ $70 > u \ge 40$	8	0	5	0	0
	>	$40 > u \ge 40$ $40 > u \ge 5$	3	0	0	0	0
	5kV	5 > u	0	2	0	0	0
	15kV - II	$90 > u \ge 80$	22	3	1	2	0
a			6	0	0	0	0
Maia		$80 > u \ge 70$	10	0	0	0	0
		$70 > u \ge 40$	1	0	0	0	0
<u> </u>	н		0	0	0	0	0

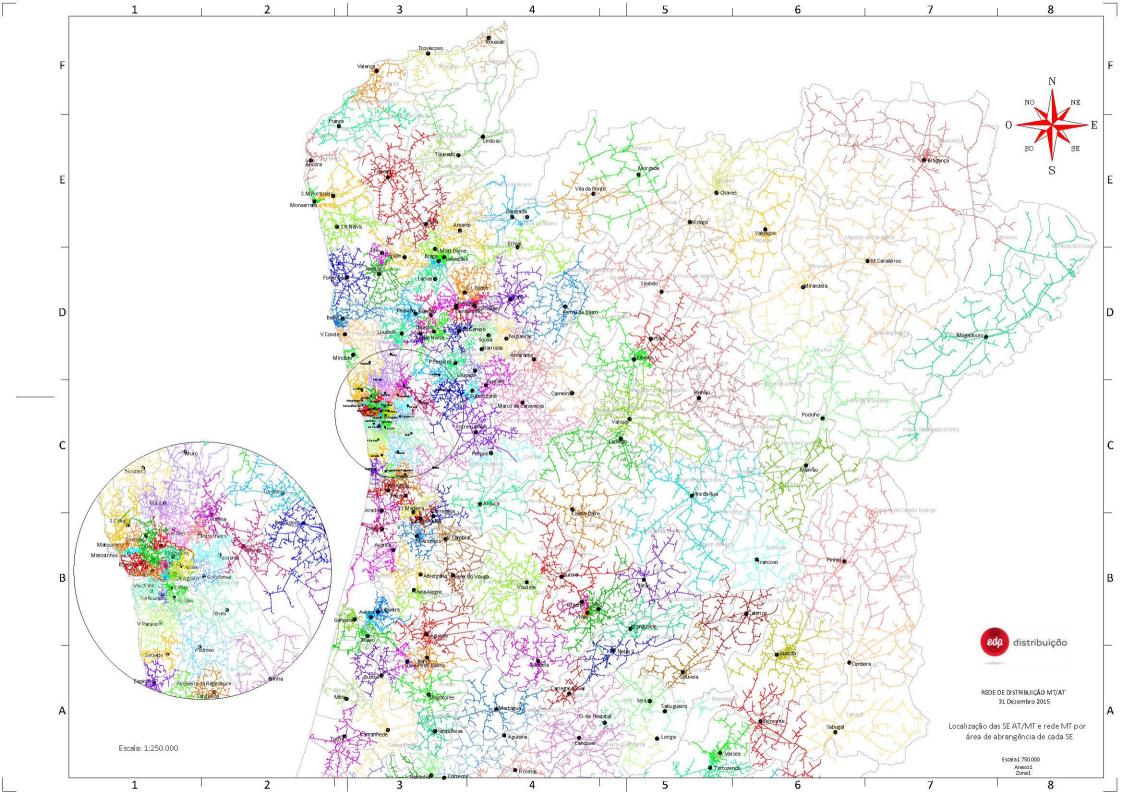
i	ī			_	_		
	ZT	$90 > u \ge 80$	15	0	2	0	0
	T. ge [-	$80 > u \ge 70$	7	0	0	0	0
	Santa Cruz do Bispo 15kV - I	$70 > u \ge 40$	1	0	0	0	0
	San do 15	$40 > u \ge 5$	1	0	0	0	0
	01	5 > u	0	0	0	0	0
	ZI C I	$90 > u \ge 80$	19	1	1	0	0
	Santa Cruz do Bispo 15kV - II	$80 > u \ge 70$	1	0	0	0	0
	ta (Bi	$70 > u \ge 40$	2	2	0	0	0
	an do 15]	$40 > u \ge 5$	1	1	0	0	0
	<i>O</i> 1	5 > u	0	0	0	0	0
		$90 > u \ge 80$	9	0	0	1	0
	Santa Marinha 15kV	$80 > u \ge 70$	3	0	1	1	0
	Santa 1arinha 15kV	$70 > u \ge 40$	5	2	0	0	0
	S M	$40 > u \ge 5$	0	0	0	0	0
		5 > u	0	0	0	0	0
		$90 > u \ge 80$	12	5	0	1	0
	Jovim 15kV - I	$80 > u \ge 70$	5	0	0	1	0
	Jovim [5kV -]	$70 > u \ge 40$	0	0	1	0	0
	Jc 151	$40 > u \ge 5$	0	0	0	0	0
		5 > u	0	0	0	0	0
		$90 > u \ge 80$	13	1	0	1	0
	n II ·	$80 > u \ge 70$	5	0	0	1	0
	Jovim 5kV - I	$70 > u \ge 40$	3	7	3	0	0
	Jovim 15kV - II	$40 > u \ge 5$	0	0	0	0	0
		5 > u	0	0	0	0	0
		$90 > u \ge 80$	18	4	0	0	1
	o T-	$80 > u \ge 70$	6	5		0	0
	Vidago 15kV - I	$70 > u \ge 40$	8	2	2 3	0	0
	Vic	$40 > u \ge 5$	1	0	0	0	0
		5 > u	0	0	0	0	0
		$90 > u \ge 80$	14	2	4	0	1
	ο, Π	$80 > u \ge 70$	7	1	0	0	0
	Vidago 15kV - II	$70 > u \ge 40$	8	2	7	0	0
-	Vic 5k	$40 > u \ge 5$	1	1	Ó	0	0
Şea	, –	5 > u	0	0	Ö	0	0
Vila Real		$90 > u \ge 80$	25	2	1	0	0
Ϋ́.	ra - I	$80 > u \ge 70$	5	0	2	1	0
	> \	$70 > u \ge 40$	13	3	2	0	0
	Telheira 30kV - I	$40 > u \ge 5$	4	0	0	0	0
	_ c.	5 > u	0	0	0	0	0
		$90 > u \ge 80$	25	1	0	0	0
	ira - II	$80 > u \ge 70$	4	0	0	1	0
	Jei V -	$70 > u \ge 40$	6	0	0	0	0
	Telheira 30kV - II	$40 > u \ge 5$	Ö	0	Ö	0	0
	_ c	5 > u	Ö	0	0	0	0
		$90 > u \ge 80$	22	0	9	0	0
	δ. ′	$80 > u \ge 30$ $80 > u \ge 70$	31	0	24	1	0
	neg ikV	$70 > u \ge 40$	7	0	9	0	0
	Lamego 30kV	$40 > u \ge 40$	1	1	0	0	0
		5 > u	0	0	0	0	0
		$90 > u \ge 80$	26	0	6	0	0
	ю.	$80 > u \ge 80$ $80 > u \ge 70$	19	1	5	1	0
	Vila da Rua 30kV	$70 > u \ge 70$ $70 > u \ge 40$	23	3	5	0	0
	Viil R 30	$40 > u \ge 40$ $40 > u \ge 5$	3	1	0	0	0
]	5 > u	0	0	0	0	0
Viseu		$90 > u \ge 80$	19	0	0	1	0
V _i	. <u>;;</u> –	$80 > u \ge 80$ $80 > u \ge 70$	11	0	0	0	0
	mie 	$70 > u \ge 70$ $70 > u \ge 40$	7	1	1	0	0
	Gumiei 15kV - I	$40 > u \ge 40$ $40 > u \ge 5$	3	0	0	0	0
	~ -	$40 > u \ge 3$ $5 > u$	0	0	0	0	0
		$90 > u \ge 80$	21	3	9	0	0
	: _Z =	$80 > u \ge 80$ $80 > u \ge 70$	6	0	2	0	0
	mie 7 -	$60 > u \ge 70$ $70 > u \ge 40$	5	1	0	0	0
	Gumiei 15kV - II	$40 > u \ge 40$ $40 > u \ge 5$	3 4	0	1	0	0
	1 2 1	$40 > u \ge 3$ $5 > u$	0	0	0	0	0
		<i>3 /</i> u	U	U	U	U	U
I	I						

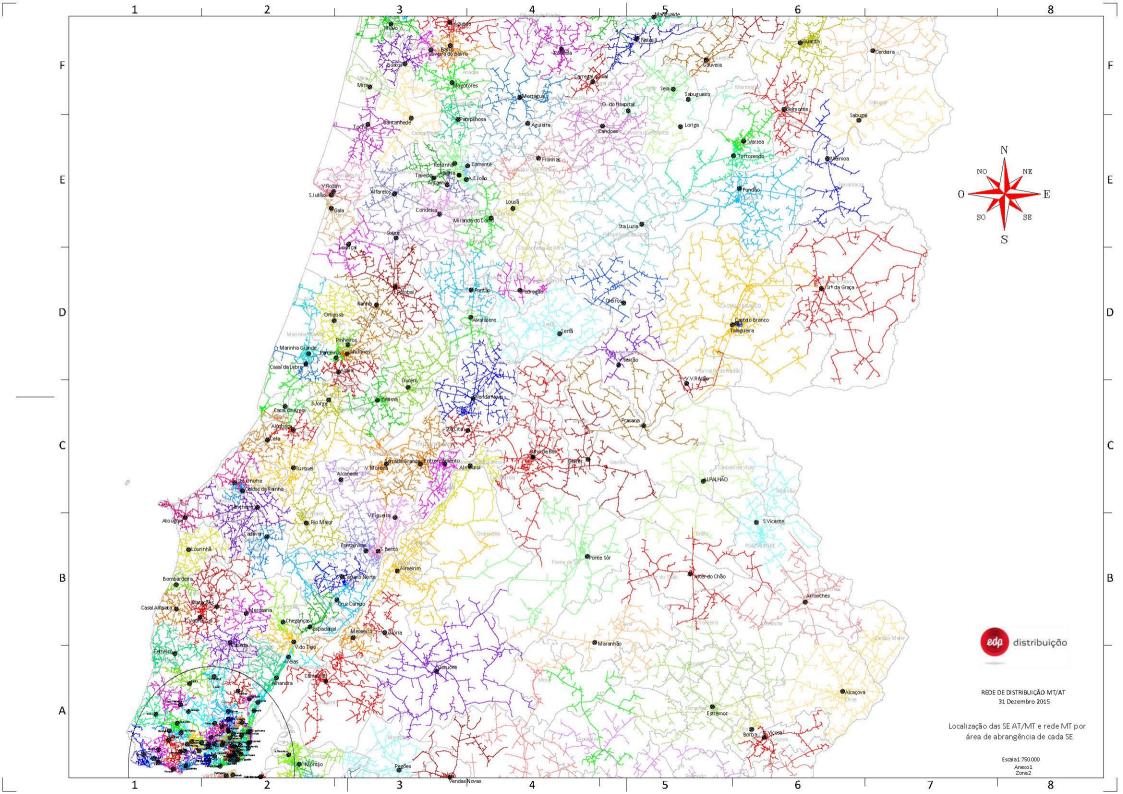
#####################################								
S U O O O O O O O O O			$90 > u \ge 80$	21				0
S > u		ela - J					~	0
S > u		uz KV		7				0
		Vc 15						0
Result R								0
S > U				35			0	0
S > U		ela - I		6	0		0	0
S > U		ăz S		4			0	0
S S S S S S S S S S		V _C	$40 > u \ge 5$	4	0	0	0	0
Note			5 > u	0	0	0	0	0
Sign			$90 > u \ge 80$	22	0	0	0	0
O		≅ >	$80 > u \ge 70$	10		0	0	0
O		ise 5k'	$70 > u \ge 40$	5		0	0	0
		> =	$40 > u \ge 5$		0	0	0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			5 > u	0	0	0	0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$90 > u \ge 80$	28	1	1	0	0
$ \text{DIANA} \\ \text{DIANA}$		æ /		15	0	0	0	0
OUTION A A A A A A A A A		eira SK					1	0
ODE Column Colu		Щ 11	40 > u > 5				0	0
OLIPAN								0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ľ							0
$ \begin{array}{ c c c c c c c c } \hline & 5 > u & 0 & 0 & 0 & 0 \\ \hline & 90 > u \ge 80 & 22 & 6 & 7 & 0 \\ \hline & 90 > u \ge 80 & 22 & 6 & 7 & 0 \\ \hline & 90 > u \ge 40 & 12 & 0 & 0 & 0 \\ \hline & 90 > u \ge 40 & 12 & 0 & 0 & 0 \\ \hline & 5 > u & 0 & 0 & 0 & 0 \\ \hline & 5 > u & 0 & 0 & 0 & 0 \\ \hline & u & 70 > u \ge 40 & 12 & 0 & 0 & 0 \\ \hline & 5 > u & 0 & 0 & 0 & 0 \\ \hline & 00 > u \ge 80 & 51 & 2 & 2 & 2 \\ \hline & 00 > u \ge 80 & 51 & 2 & 2 & 2 \\ \hline & 00 > u \ge 80 & 51 & 2 & 2 & 2 \\ \hline & 00 > u \ge 40 & 17 & 6 & 0 & 0 \\ \hline & 00 > u \ge 80 & 52 & 1 & 1 & 0 & 0 \\ \hline & 00 > u \ge 80 & 52 & 1 & 1 & 0 \\ \hline & 00 > u \ge 80 & 52 & 1 & 1 & 0 \\ \hline & 00 > u \ge 80 & 52 & 1 & 1 & 0 \\ \hline & 00 > u \ge 80 & 52 & 1 & 1 & 0 \\ \hline & 00 > u \ge 80 & 52 & 1 & 1 & 0 \\ \hline & 00 > u \ge 80 & 52 & 1 & 1 & 0 \\ \hline & 00 > u \ge 80 & 27 & 1 & 0 & 0 \\ \hline & 00 > u \ge 80 & 27 & 1 & 0 & 0 \\ \hline & 00 > u \ge 80 & 27 & 1 & 0 & 0 \\ \hline & 00 > u \ge 80 & 27 & 1 & 0 & 0 \\ \hline & 00 > u \ge 80 & 27 & 1 & 0 & 0 \\ \hline & 00 > u \ge 80 & 27 & 1 & 0 & 0 \\ \hline & 00 > u \ge 80 & 37 & 0 & 0 & 0 \\ \hline & 00 > u \ge 80 & 37 & 0 & 3 & 0 \\ \hline & 00 > u \ge 80 & 37 & 0 & 3 & 0 \\ \hline & 00 > u \ge 80 & 37 & 0 & 3 & 0 \\ \hline & 00 > u \ge 80 & 37 & 0 & 3 & 0 \\ \hline & 00 > u \ge 80 & 37 & 0 & 3 & 0 \\ \hline & 00 > u \ge 80 & 37 & 0 & 3 & 0 \\ \hline & 00 > u \ge 80 & 37 & 0 & 3 & 0 \\ \hline & 00 > u \ge 80 & 37 & 0 & 3 & 0 \\ \hline & 00 > u \ge 80 & 39 & 1 & 2 & 0 \\ \hline & 00 > u \ge 80 & 39 & 1 & 2 & 0 \\ \hline & 00 > u \ge 80 & 39 & 1 & 2 & 0 \\ \hline & 00 > u \ge 80 & 39 & 1 & 2 & 0 \\ \hline & 00 > u \ge 80 & 39 & 1 & 2 & 0 \\ \hline & 00 > u \ge 80 & 39 & 1 & 2 & 0 \\ \hline & 00 > u \ge 80 & 22 & 1 & 6 & 0 \\ \hline & 00 > u \ge 80 & 22 & 1 & 6 & 0 \\ \hline & 00 > u \ge 80 > u \ge 70 & 15 & 0 & 3 & 0 \\ \hline & 00 > u \ge 80 > u \ge 70 & 15 & 0 & 3 & 0 \\ \hline & 00 > u \ge 80 > u \ge 70 & 15 & 0 & 0 & 0 \\ \hline & 00 > u \ge 80 > u \ge 70 & 15 & 0 & 0 & 0 \\ \hline & 00 > u \ge 80 > u \ge 70 & 15 & 0 & 0 & 0 \\ \hline & 00 > u \ge 80 > u \ge 70 & 15 & 0 & 0 & 0 \\ \hline & 00 > u \ge 80 > u \ge 70 & 15 & 0 & 0 & 0 \\ \hline & 00 > u \ge 80 > u \ge 70 & 15 & 0 & 0 & 0 \\ \hline & 00 > u \ge 80 > u \ge 70 & 15 & 0 & 0 & 0 \\ \hline & 00 > u \ge 80 > u \ge 70 & 15 & 0 & 0 & 0 \\ \hline & 00 > u \ge 80 > u \ge 70 & 15 & 0 & 0 & 0 \\ \hline & 00 > u \ge 80 > u \ge 70 & 15 & 0 & 0 & 0 \\ \hline & 00 > $		da - I						0
$ \begin{array}{ c c c c c c c c } \hline & 5 > u & 0 & 0 & 0 & 0 \\ \hline & 90 > u \ge 80 & 22 & 6 & 7 & 0 \\ \hline & 90 > u \ge 80 & 22 & 6 & 7 & 0 \\ \hline & 90 > u \ge 40 & 12 & 0 & 0 & 0 \\ \hline & 90 > u \ge 40 & 12 & 0 & 0 & 0 \\ \hline & 5 > u & 0 & 0 & 0 & 0 \\ \hline & 5 > u & 0 & 0 & 0 & 0 \\ \hline & u & 70 > u \ge 40 & 12 & 0 & 0 & 0 \\ \hline & 5 > u & 0 & 0 & 0 & 0 \\ \hline & 00 > u \ge 80 & 51 & 2 & 2 & 2 \\ \hline & 00 > u \ge 80 & 51 & 2 & 2 & 2 \\ \hline & 00 > u \ge 80 & 51 & 2 & 2 & 2 \\ \hline & 00 > u \ge 40 & 17 & 6 & 0 & 0 \\ \hline & 00 > u \ge 80 & 52 & 1 & 1 & 0 & 0 \\ \hline & 00 > u \ge 80 & 52 & 1 & 1 & 0 \\ \hline & 00 > u \ge 80 & 52 & 1 & 1 & 0 \\ \hline & 00 > u \ge 80 & 52 & 1 & 1 & 0 \\ \hline & 00 > u \ge 80 & 52 & 1 & 1 & 0 \\ \hline & 00 > u \ge 80 & 52 & 1 & 1 & 0 \\ \hline & 00 > u \ge 80 & 52 & 1 & 1 & 0 \\ \hline & 00 > u \ge 80 & 27 & 1 & 0 & 0 \\ \hline & 00 > u \ge 80 & 27 & 1 & 0 & 0 \\ \hline & 00 > u \ge 80 & 27 & 1 & 0 & 0 \\ \hline & 00 > u \ge 80 & 27 & 1 & 0 & 0 \\ \hline & 00 > u \ge 80 & 27 & 1 & 0 & 0 \\ \hline & 00 > u \ge 80 & 27 & 1 & 0 & 0 \\ \hline & 00 > u \ge 80 & 37 & 0 & 0 & 0 \\ \hline & 00 > u \ge 80 & 37 & 0 & 3 & 0 \\ \hline & 00 > u \ge 80 & 37 & 0 & 3 & 0 \\ \hline & 00 > u \ge 80 & 37 & 0 & 3 & 0 \\ \hline & 00 > u \ge 80 & 37 & 0 & 3 & 0 \\ \hline & 00 > u \ge 80 & 37 & 0 & 3 & 0 \\ \hline & 00 > u \ge 80 & 37 & 0 & 3 & 0 \\ \hline & 00 > u \ge 80 & 37 & 0 & 3 & 0 \\ \hline & 00 > u \ge 80 & 37 & 0 & 3 & 0 \\ \hline & 00 > u \ge 80 & 39 & 1 & 2 & 0 \\ \hline & 00 > u \ge 80 & 39 & 1 & 2 & 0 \\ \hline & 00 > u \ge 80 & 39 & 1 & 2 & 0 \\ \hline & 00 > u \ge 80 & 39 & 1 & 2 & 0 \\ \hline & 00 > u \ge 80 & 39 & 1 & 2 & 0 \\ \hline & 00 > u \ge 80 & 39 & 1 & 2 & 0 \\ \hline & 00 > u \ge 80 & 22 & 1 & 6 & 0 \\ \hline & 00 > u \ge 80 & 22 & 1 & 6 & 0 \\ \hline & 00 > u \ge 80 > u \ge 70 & 15 & 0 & 3 & 0 \\ \hline & 00 > u \ge 80 > u \ge 70 & 15 & 0 & 3 & 0 \\ \hline & 00 > u \ge 80 > u \ge 70 & 15 & 0 & 0 & 0 \\ \hline & 00 > u \ge 80 > u \ge 70 & 15 & 0 & 0 & 0 \\ \hline & 00 > u \ge 80 > u \ge 70 & 15 & 0 & 0 & 0 \\ \hline & 00 > u \ge 80 > u \ge 70 & 15 & 0 & 0 & 0 \\ \hline & 00 > u \ge 80 > u \ge 70 & 15 & 0 & 0 & 0 \\ \hline & 00 > u \ge 80 > u \ge 70 & 15 & 0 & 0 & 0 \\ \hline & 00 > u \ge 80 > u \ge 70 & 15 & 0 & 0 & 0 \\ \hline & 00 > u \ge 80 > u \ge 70 & 15 & 0 & 0 & 0 \\ \hline & 00 > u \ge 80 > u \ge 70 & 15 & 0 & 0 & 0 \\ \hline & 00 > u \ge 80 > u \ge 70 & 15 & 0 & 0 & 0 \\ \hline & 00 > $		nec .						0
$ \begin{array}{ c c c c c c c c } \hline & 5 > u & 0 & 0 & 0 & 0 \\ \hline & 90 > u \ge 80 & 22 & 6 & 7 & 0 \\ \hline & 90 > u \ge 80 & 22 & 6 & 7 & 0 \\ \hline & 90 > u \ge 40 & 12 & 0 & 0 & 0 \\ \hline & 90 > u \ge 40 & 12 & 0 & 0 & 0 \\ \hline & 5 > u & 0 & 0 & 0 & 0 \\ \hline & 5 > u & 0 & 0 & 0 & 0 \\ \hline & u & 70 > u \ge 40 & 12 & 0 & 0 & 0 \\ \hline & 5 > u & 0 & 0 & 0 & 0 \\ \hline & 00 > u \ge 80 & 51 & 2 & 2 & 2 \\ \hline & 00 > u \ge 80 & 51 & 2 & 2 & 2 \\ \hline & 00 > u \ge 80 & 51 & 2 & 2 & 2 \\ \hline & 00 > u \ge 40 & 17 & 6 & 0 & 0 \\ \hline & 00 > u \ge 80 & 52 & 1 & 1 & 0 & 0 \\ \hline & 00 > u \ge 80 & 52 & 1 & 1 & 0 \\ \hline & 00 > u \ge 80 & 52 & 1 & 1 & 0 \\ \hline & 00 > u \ge 80 & 52 & 1 & 1 & 0 \\ \hline & 00 > u \ge 80 & 52 & 1 & 1 & 0 \\ \hline & 00 > u \ge 80 & 52 & 1 & 1 & 0 \\ \hline & 00 > u \ge 80 & 52 & 1 & 1 & 0 \\ \hline & 00 > u \ge 80 & 27 & 1 & 0 & 0 \\ \hline & 00 > u \ge 80 & 27 & 1 & 0 & 0 \\ \hline & 00 > u \ge 80 & 27 & 1 & 0 & 0 \\ \hline & 00 > u \ge 80 & 27 & 1 & 0 & 0 \\ \hline & 00 > u \ge 80 & 27 & 1 & 0 & 0 \\ \hline & 00 > u \ge 80 & 27 & 1 & 0 & 0 \\ \hline & 00 > u \ge 80 & 37 & 0 & 0 & 0 \\ \hline & 00 > u \ge 80 & 37 & 0 & 3 & 0 \\ \hline & 00 > u \ge 80 & 37 & 0 & 3 & 0 \\ \hline & 00 > u \ge 80 & 37 & 0 & 3 & 0 \\ \hline & 00 > u \ge 80 & 37 & 0 & 3 & 0 \\ \hline & 00 > u \ge 80 & 37 & 0 & 3 & 0 \\ \hline & 00 > u \ge 80 & 37 & 0 & 3 & 0 \\ \hline & 00 > u \ge 80 & 37 & 0 & 3 & 0 \\ \hline & 00 > u \ge 80 & 37 & 0 & 3 & 0 \\ \hline & 00 > u \ge 80 & 39 & 1 & 2 & 0 \\ \hline & 00 > u \ge 80 & 39 & 1 & 2 & 0 \\ \hline & 00 > u \ge 80 & 39 & 1 & 2 & 0 \\ \hline & 00 > u \ge 80 & 39 & 1 & 2 & 0 \\ \hline & 00 > u \ge 80 & 39 & 1 & 2 & 0 \\ \hline & 00 > u \ge 80 & 39 & 1 & 2 & 0 \\ \hline & 00 > u \ge 80 & 22 & 1 & 6 & 0 \\ \hline & 00 > u \ge 80 & 22 & 1 & 6 & 0 \\ \hline & 00 > u \ge 80 > u \ge 70 & 15 & 0 & 3 & 0 \\ \hline & 00 > u \ge 80 > u \ge 70 & 15 & 0 & 3 & 0 \\ \hline & 00 > u \ge 80 > u \ge 70 & 15 & 0 & 0 & 0 \\ \hline & 00 > u \ge 80 > u \ge 70 & 15 & 0 & 0 & 0 \\ \hline & 00 > u \ge 80 > u \ge 70 & 15 & 0 & 0 & 0 \\ \hline & 00 > u \ge 80 > u \ge 70 & 15 & 0 & 0 & 0 \\ \hline & 00 > u \ge 80 > u \ge 70 & 15 & 0 & 0 & 0 \\ \hline & 00 > u \ge 80 > u \ge 70 & 15 & 0 & 0 & 0 \\ \hline & 00 > u \ge 80 > u \ge 70 & 15 & 0 & 0 & 0 \\ \hline & 00 > u \ge 80 > u \ge 70 & 15 & 0 & 0 & 0 \\ \hline & 00 > u \ge 80 > u \ge 70 & 15 & 0 & 0 & 0 \\ \hline & 00 > u \ge 80 > u \ge 70 & 15 & 0 & 0 & 0 \\ \hline & 00 > $		Ág ISk						0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		7 —						0
September Sept	<u> </u>							0
S S S S S S S S S S		la II						0
S S S S S S S S S S		on C						0
S = 0		Ág SK						0
OLIDAY 90 > u ≥ 80 51 2 2 0 Hand Sign Hand Sign 14 8 0 1 Year 1 1 1 0 0 0 0 0 0 Hand Sign 1 1 0 0 0 0 0 0 0 Hand Sign 50 u 1 0 0 0 0 0 0 0 0 Hand Sign 70 vu ≥ 40 6 6 6 0 0 0 6 0 0 0 Hand Sign 70 vu ≥ 40 6 6 6 0 0 0 0 0 0 0 0 Hand Sign 70 vu ≥ 40 6 1 0 0 0 0 0 0 0 0 0 Hand Sign 70 vu ≥ 40 17 0 0 1 0 0 0 0 0 0 0 0 0 Hand Sign 40 vu ≥ 5 3 0 0 0 0 0 0 0 0 0 0 0 0 0 Hand Sign 40 vu ≥ 5 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		` —						0
$ \begin{array}{ c c c c c c c c } \hline \text{ONLY } & & & & & & & & & & & & & & & & & & $	F							0
$ \begin{array}{ c c c c c c c c } \hline \text{Solution} & 1 & 0 & 0 & 0 \\ \hline & 90 > u \ge 80 & 52 & 1 & 1 & 0 \\ \hline & 11 & 80 > u \ge 70 & 10 & 0 & 0 & 1 \\ \hline & 12 & 80 > u \ge 70 & 10 & 0 & 0 & 0 \\ \hline & 13 & 70 > u \ge 40 & 6 & 6 & 0 & 0 \\ \hline & 24 & 40 > u \ge 5 & 1 & 2 & 0 & 0 \\ \hline & 15 & 2 & 0 & 0 & 0 & 0 \\ \hline & 25 & 0 & 0 & 0 & 0 & 0 \\ \hline & 25 & 0 & 0 & 0 & 0 & 0 \\ \hline & 25 & 0 & 0 & 0 & 0 & 0 \\ \hline & 25 & 0 & 0 & 0 & 0 & 0 \\ \hline & 25 & 0 & 0 & 0 & 0 & 0 \\ \hline & 25 & 0 & 0 & 0 & 0 & 0 \\ \hline & 25 & 0 & 0 & 0 & 0 & 0 \\ \hline & 25 & 0 & 0 & 0 & 0 & 0 \\ \hline & 25 & 0 & 0 & 0 & 0 & 0 \\ \hline & 25 & 0 & 0 & 0 & 0 & 0 \\ \hline & 25 & 0 & 0 & 0 & 0 & 0 \\ \hline & 25 & 0 & 0 & 0 & 0 & 0 \\ \hline & 25 & 0 & 0 & 0 & 0 & 0 \\ \hline & 25 & 0 & 0 & 0 & 0 & 0 \\ \hline & 25 & 0 & 0 & 0 & 0 & 0 \\ \hline & 25 & 0 & 0 & 1 & 0 & 0 \\ \hline & 25 & 0 & 0 & 1 & 0 & 0 \\ \hline & 25 & 0 & 0 & 1 & 0 & 0 \\ \hline & 25 & 0 & 0 & 1 & 0 & 0 \\ \hline & 25 & 0 & 0 & 1 & 0 & 0 \\ \hline & 25 & 0 & 0 & 1 & 0 & 0 \\ \hline & 25 & 0 & 0 & 1 & 0 & 0 \\ \hline & 25 & 0 & 0 & 0 & 0 & 0 \\ $		ra -						0
$ \begin{array}{ c c c c c c c c } \hline \text{Solution} & 1 & 0 & 0 & 0 \\ \hline & 90 > u \ge 80 & 52 & 1 & 1 & 0 \\ \hline & 11 & 80 > u \ge 70 & 10 & 0 & 0 & 1 \\ \hline & 12 & 80 > u \ge 70 & 10 & 0 & 0 & 0 \\ \hline & 13 & 70 > u \ge 40 & 6 & 6 & 0 & 0 \\ \hline & 24 & 40 > u \ge 5 & 1 & 2 & 0 & 0 \\ \hline & 15 & 2 & 0 & 0 & 0 & 0 \\ \hline & 25 & 0 & 0 & 0 & 0 & 0 \\ \hline & 25 & 0 & 0 & 0 & 0 & 0 \\ \hline & 25 & 0 & 0 & 0 & 0 & 0 \\ \hline & 25 & 0 & 0 & 0 & 0 & 0 \\ \hline & 25 & 0 & 0 & 0 & 0 & 0 \\ \hline & 25 & 0 & 0 & 0 & 0 & 0 \\ \hline & 25 & 0 & 0 & 0 & 0 & 0 \\ \hline & 25 & 0 & 0 & 0 & 0 & 0 \\ \hline & 25 & 0 & 0 & 0 & 0 & 0 \\ \hline & 25 & 0 & 0 & 0 & 0 & 0 \\ \hline & 25 & 0 & 0 & 0 & 0 & 0 \\ \hline & 25 & 0 & 0 & 0 & 0 & 0 \\ \hline & 25 & 0 & 0 & 0 & 0 & 0 \\ \hline & 25 & 0 & 0 & 0 & 0 & 0 \\ \hline & 25 & 0 & 0 & 0 & 0 & 0 \\ \hline & 25 & 0 & 0 & 1 & 0 & 0 \\ \hline & 25 & 0 & 0 & 1 & 0 & 0 \\ \hline & 25 & 0 & 0 & 1 & 0 & 0 \\ \hline & 25 & 0 & 0 & 1 & 0 & 0 \\ \hline & 25 & 0 & 0 & 1 & 0 & 0 \\ \hline & 25 & 0 & 0 & 1 & 0 & 0 \\ \hline & 25 & 0 & 0 & 1 & 0 & 0 \\ \hline & 25 & 0 & 0 & 0 & 0 & 0 \\ $		ue. II ^K					0	0
$ \begin{array}{ c c c c c c c c } \hline \text{Solution} & 1 & 0 & 0 & 0 \\ \hline & 90 > u \ge 80 & 52 & 1 & 1 & 0 \\ \hline & 11 & 80 > u \ge 70 & 10 & 0 & 0 & 1 \\ \hline & 12 & 80 > u \ge 70 & 10 & 0 & 0 & 0 \\ \hline & 13 & 70 > u \ge 40 & 6 & 6 & 0 & 0 \\ \hline & 24 & 40 > u \ge 5 & 1 & 2 & 0 & 0 \\ \hline & 15 & 2 & 0 & 0 & 0 & 0 \\ \hline & 25 & 0 & 0 & 0 & 0 & 0 \\ \hline & 25 & 0 & 0 & 0 & 0 & 0 \\ \hline & 25 & 0 & 0 & 0 & 0 & 0 \\ \hline & 25 & 0 & 0 & 0 & 0 & 0 \\ \hline & 25 & 0 & 0 & 0 & 0 & 0 \\ \hline & 25 & 0 & 0 & 0 & 0 & 0 \\ \hline & 25 & 0 & 0 & 0 & 0 & 0 \\ \hline & 25 & 0 & 0 & 0 & 0 & 0 \\ \hline & 25 & 0 & 0 & 0 & 0 & 0 \\ \hline & 25 & 0 & 0 & 0 & 0 & 0 \\ \hline & 25 & 0 & 0 & 0 & 0 & 0 \\ \hline & 25 & 0 & 0 & 0 & 0 & 0 \\ \hline & 25 & 0 & 0 & 0 & 0 & 0 \\ \hline & 25 & 0 & 0 & 0 & 0 & 0 \\ \hline & 25 & 0 & 0 & 0 & 0 & 0 \\ \hline & 25 & 0 & 0 & 1 & 0 & 0 \\ \hline & 25 & 0 & 0 & 1 & 0 & 0 \\ \hline & 25 & 0 & 0 & 1 & 0 & 0 \\ \hline & 25 & 0 & 0 & 1 & 0 & 0 \\ \hline & 25 & 0 & 0 & 1 & 0 & 0 \\ \hline & 25 & 0 & 0 & 1 & 0 & 0 \\ \hline & 25 & 0 & 0 & 1 & 0 & 0 \\ \hline & 25 & 0 & 0 & 0 & 0 & 0 \\ $		3sg 15 1						0
$ \begin{array}{c} \text{Lipar} \\ L$		П						0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	F						0	0
$ \frac{1}{4} 1$		ira . II						0
$ \frac{1}{4} = \frac{1}{4} + 1$		ze z					0	0
$ \frac{1}{4} 1$		3.5g 5.k					0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	iro	H 1						0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ne		90 > 11 > 80					0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<.	ra rro '						0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		vei Sain KV						0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Oliv o E 15						0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		P						0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u> </u>							0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		· I						0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		irí V			5			0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		B ₂						0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		_	5 > u		=			0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ŀ		90 > 11 > 80					0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		П						0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		urrć V -					-	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		B ₂						0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-						0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ŀ							0
00 > 1 > 0 0 0 0		res			=			0
00 > 1 > 0 0 0 0		ofo V -						0
00 > 1 > 0 0 0 0		og. 5k						0
$0.0 > 1.5 \times 0.0$ 32 1 1 0		Ξ_{-1}						0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	}							0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		res						0
		ofc V -						0
$1 1 9 9 40 > 0 > 5 \qquad 2 \qquad 0 \qquad 0 \qquad 0$		ogc 5k	$40 > u \ge 40$ $40 > u \ge 5$	2	0	0	0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Σ Ξ					1	0
J Z W U U U I	<u> </u>		3 / u	U	U	U	1	U

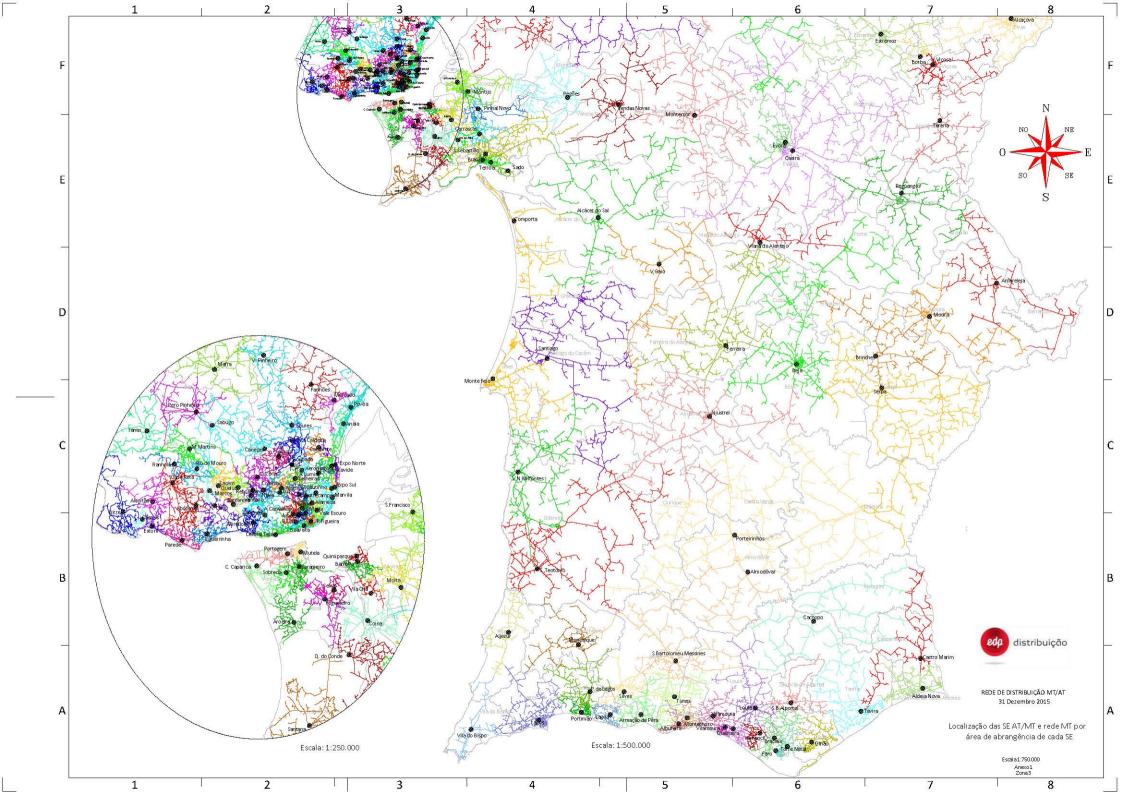
	-						
		$90 > u \ge 80$	22	4	6	0	0
	Guarda 15kV - I	$80 \ge u \ge 70$	5	0	1	0	0
	Guarda [5kV -]	$70 > u \ge 40$	4	0	0	0	0
	G 15	$40 > u \ge 5$	0	1	0	0	0
		5 > u	0	0	0	0	0
		$90 > u \ge 80$	24	1	2	0	0
la	да - п	$80 > u \ge 70$	6	1	0	1	0
Guarda	Guarda 15kV - II	$70 > u \ge 40$	3	0	0	0	0
ວັວ	<u>5</u> 5	$40 > u \ge 5$	0	1	0	0	0
	, ,	5 > u	0	0	0	0	0
	С	$90 > u \ge 80$	23	1	14	0	0
	eiro /	$80 > u \ge 70$	4	0	19	1	0
	Sabugueiro 15kV	$70 > u \ge 40$	5	3	3	0	0
	abr 13	$40 > u \ge 5$	1	1	0	0	0
	Š	5 > u	0	0	0	0	0
		$90 > u \ge 80$	37	4	0	1	0
	loi ′	$80 > u \ge 70$		0	0	0	0
	Antanhol 15kV	$70 > u \ge 40$	3 7	0	0	0	0
	15 km	$40 > u \ge 5$	0	0	0	0	0
	~	5 > u	0	0	0	0	0
		$90 > u \ge 80$	57	5	11	1	0
	Cantanhede 15kV - I	$80 > u \ge 30$ $80 > u \ge 70$	10	5	6	0	0
	antanhed 15kV - I	$70 > u \ge 40$	21	0	11	0	0
	nta 5k	$40 > u \ge 5$	1	0	0	0	0
ж	Ca 1	5 > u	0	0	1	0	0
Coimbra		$90 > u \ge 80$	48	6	13	0	0
.6	de I	$80 > u \ge 80$ $80 > u \ge 70$	10	3	2	0	0
	he I - I	$70 > u \ge 70$ $70 > u \ge 40$	14	0	0	0	0
	Cantanhede 15kV - II	$40 > u \ge 40$ $40 > u \ge 5$	14	0	0	0	0
	Zan 15						
		5 > u	0	0	1	0	0
	Miranda do Corvo 15kV	$90 > u \ge 80$	39	4	5	1	0
		$80 > u \ge 70$	3	0	3	0	0
		$70 > u \ge 40$	12	1	2	0	0
		$40 > u \ge 5$	1	0	0	0	0
		5 > u	0	0	0	0	0
	Vila Velha de Ródão 30kV	$90 > u \ge 80$	13	0	0	0	0
		$80 > u \ge 70$	1	0	0	0	0
	la Vel Ródâ 30kV	$70 > u \ge 40$	2	2	0	0	0
	Vilk de	$40 > u \ge 5$	5	0	1	0	0
0		5 > u	0	0	0	0	0
nc	.e	$90 > u \ge 80$	39	20	11	0	0
Bra	leii -	$80 > u \ge 70$	10	8	1	0	0
Castelo Branco	Talagueira 30kV - I	$70 > u \ge 40$	8	7	0	0	0
ste	Tal 30	$40 > u \ge 5$	2	0	0	0	0
Ca		5 > u	0	0	0	0	0
	I a	$90 > u \ge 80$	39	1	3	1	0
	uei - I	$80 > u \ge 70$	9	0	4	0	0
	agi kV	$70 > u \ge 40$	2	3	5	0	0
	Talagueira 30kV - II	$40 > u \ge 5$	2	0	0	0	0
	<u> </u>	5 > u	0	0	0	0	0
		$90 > u \ge 80$	36	1	4	3	0
	Pedrógão 15kV	$80 > u \ge 70$	6	0	2	0	0
	edrógâ 15kV	$70 > u \ge 40$	11	0	1	0	0
	Pe 1	$40 > u \ge 5$	2	0	0	0	0
		5 > u	0	0	0	0	0
		$90 > u \ge 80$	28	2	0	1	0
et	bal ' - j	$80 > u \ge 70$	4	0	2	0	0
Leiria	om KV	$70 > u \ge 40$	2	1	0	0	0
Lei	Pombal 30kV - I	$40 > u \ge 5$	2	8	0	0	0
		5 > u	0	0	0	0	0
	_ H	$90 > u \ge 80$	42	11	0	1	0
	baj	$80 > u \ge 70$	6	1	10	0	0
	Pombal 30kV - II	$70 > u \ge 40$	10	7	4	0	0
		$40 > u \ge 5$	2	8	0	0	0
		5 > u	0	0	0	0	0
	1						

		•						
S > u			$90 > u \ge 80$	29	7	0	0	0
S > u		nha de - J			1	1	0	0
S > u		iri di S	$70 > u \ge 40$	3	2	1	0	0
S > u		\$ £ \$			6	0	0	0
No 2 20 20 20 4 1 3 0 0 0 0 0 0 0 0 0		- C						0
		a II						
		nh nde '						
		k a						
### #### ############################		30 G						
Solution			5 > u		0			0
S > u			$90 > u \ge 80$	37	1	0	0	0
S > u		rge - I	$80 > u \ge 70$	16	0	0	0	0
S > u		Jo S		5	0	0	0	0
S > u		ão 30k					0	0
		δ						0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								
Solution		ise II						
Solution		org						
Solution		o J KV						
Solution		São 30			0			0
Solution			5 > u				0	0
Solution			$90 > u \ge 80$	44	14	3	0	0
To Section To							0	0
S S S S S S S S S S		ela 'k\						0
S S S S S S S S S S		30 C						
Hand								
S > u		10						
S > u		o arc						0
S > u		no Ok			5		0	0
S > u		Aln 30	$40 > u \ge 5$	5	1	6	0	0
			5 > u	0	0	0	0	0
######################################				39	6	7	0	0
### Solution Solution		Ourém 30kV - I						0
### Solution Solution								
### Solution Solution								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \text{ wath } \frac{\Pi}{\text{ or }} = \begin{cases} 80 > u \geq 70 \\ 26 \\ 1 \\ 2 \\ 1 \\ 3 \\ 40 > 2 \end{cases} = \begin{cases} 26 \\ 1 \\ 1 \\ 40 > u \geq 40 \end{cases} = \begin{cases} 26 \\ 1 \\ 1 \\ 40 > u \geq 5 \end{cases} = \begin{cases} 26 \\ 10 > u \geq 40 \end{cases} = \begin{cases} 26 \\ 10 > u \geq 40 \end{cases} = \begin{cases} 26 \\ 10 > u \geq 40 > u \geq 40 \end{cases} = \begin{cases} 26 \\ 10 > u \geq 40 > u \geq 40 > u \geq 40 \end{cases} = \begin{cases} 26 \\ 10 > u \geq 40 > u \geq 5 > u \geq 40 > u \geq 5 > u \geq 40 > u \geq 40 > u \geq 50 > u \geq 40 > u \geq 40 > u \geq 50 > u \geq 40 > u \geq 40 > u \geq 40 > u \geq 50 > u \geq 40 $								
S S O O O O O O O O		Ourém 30kV - II						
S S O O O O O O O O								0
S S O O O O O O O O					1	8	0	
S S O O O O O O O O			$40 > u \ge 5$	8	0	0	0	0
Watter Single Points of the state of th			5 > u	0	0	0	0	0
				34	6	1	1	0
Figure 2. Solution 1. Solution 1. Solution 2. Solutio		ra . I						0
Figure 2. Solution 1. Solution 1. Solution 2. Solutio		Vila Moreii 30kV -						
Figure 2. Solution 1. Solution 1. Solution 2. Solutio			40 > 11 > 5	2	7	2		
$ \begin{array}{ c c c c c c c c } \hline \vdots & \vdots$	8		5 \ n			0		
$ \begin{array}{ c c c c c c c c } \hline \vdots & \vdots$	ıré		00 > > 00					
$ \begin{array}{ c c c c c c c c } \hline \vdots & \vdots$	nta	a sira - II				2		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sa		$80 > u \ge 70$		2	3		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Vil ore	$7/0 > u \ge 40$			2		0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		30]	$40 > u \ge 5$					0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		(,,	5 > u			0		0
$ \begin{array}{ c c c c c c c c } \hline & & & & & & & & & & & & & & & & & & $			$90 > u \ge 80$	54	44	4	0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		ii - I						0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		le ii	70 > u > 40		7			0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		In The Signature of the	40 > 11 > 5					0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		\mathbb{A}_{ω}						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								
5 > u 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		E 11	$90 > u \ge 80$			2		
5 > u 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		I		2				
5 > u 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		me kV	$/0 > u \ge 40$					
5 > u 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		AI:	$40 > u \ge 5$	2				0
90 > u > 80 46 18 0 0		·	5 > u				0	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			$90 > u \ge 80$				0	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		im /	$80 > u \ge 70$	17	0	2	0	0
1 1 40 > n > 5 0 23 0 0		neii 3k\						0
The state of the s		Alme 151	$40 > u \ge 5$	0	23	0	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								0
			J / u	U	U	U	U	U

		$90 > u \ge 80$	106	16	3	1	0
	che	$80 > u \ge 70$	27	1	4	0	0
	Coruche 30kV - I	$70 > u \ge 40$	18	0	2	0	0
		$40 > u \ge 5$	1	0	0	0	0
		$5 > u$ $90 > u \ge 80$	0 150	0 19	0 4	0	0
	пе	$90 > u \ge 80$ $80 > u \ge 70$	24	19	0	0	0
	Coruche 30kV - II	$70 > u \ge 70$ $70 > u \ge 40$	24 16	0	3	0	0
) Ok v	$40 > u \ge 40$ $40 > u \ge 5$	6	1	1	0	0
		5 > u	0	0	0	0	0
		$90 > u \ge 80$	98	18	3	0	0
	cal - I	$80 > u \ge 70$	20	2	0	0	0
	Carrascal 30kV - I	$70 > u \ge 40$	8	0	4	0	0
	Сат 301	$40 > u \ge 5$	2	4	0	0	0
		5 > u	0	0	0	0	0
		$90 > u \ge 80$	93	7	3	0	0
	sca - I	$80 > u \ge 70$	26	2	1	0	0
	Carrascal 30kV - II	$70 > u \ge 40$	23	24	18	0	0
	30 30	$40 > u \ge 5$	27	16	1	0	0
		5 > u	0	0	0	0	0
	о г	$90 > u \ge 80$	81 29	9 4	17 10	3	0
	Alter do Chão 30kV - I	$80 > u \ge 70$ $70 > u \ge 40$	29 53	3	20	0	0
	를 를 돌	$40 > u \ge 40$ $40 > u \ge 5$	23	1	20 17	0	0
	3 &	5 > u	0	0	0	0	0
		$90 > u \ge 80$	139	9	40	8	0
Portalegre	Sor - I	$80 > u \ge 70$	25	1	7	0	0
ale	S te	$70 > u \ge 40$	4	3	6	0	0
Ort	Ponte Sor 30kV - I	$40 > u \ge 5$	3	0	9	0	0
Н		5 > u	0	0	0	0	0
	Ponte Sor 30kV - II	$90 > u \ge 80$	144	7	40	8	0
		$80 > u \ge 70$	24	3	15	0	0
		$70 > u \ge 40$	6	0	10	0	0
		$40 > u \ge 5$ $5 > u$	2 0	$\frac{1}{0}$	0 0	0	0
		$90 > u \ge 80$	21	0	0	0	0
	£ te	$80 > u \ge 80$ $80 > u \ge 70$	9	0	0	0	0
	Camarate 10kV	$70 > u \ge 70$	10	0	0	0	0
	, am 10	$40 > u \ge 5$	2	Ö	0	0	Ö
)	5 > u	0	0	0	0	0
		$90 > u \ge 80$	52	3	0	0	0
	nhã - I	$80 > u \ge 70$	26	6	0	0	0
	Lourinhã 30kV - I	$70 > u \ge 40$	16	4	0	0	0
	Lo 30	$40 > u \ge 5$	3	10	0	0	0
		5 > u	1	0	0	0	0
	ıã II	$90 > u \ge 80$	44	1	1	0	0
	Lourinhã 30kV - II	$80 > u \ge 70$	18 10	4 7	0 0	0	0
	Ino VXC	$70 > u \ge 40$ $40 > u \ge 5$	8	10	0 1	0	0
а	J &	5 > u	0	0	0	0	0
Lisboa		$90 > u \ge 80$	42	0	0	0	0
Ľ	sı - I	$80 > u \ge 30$	15	1	0	0	0
	Areias 10kV - I	$70 > u \ge 40$	5	0	0	0	0
	A 101	$40 > u \ge 5$	0	0	0	0	0
		5 > u	0	0	0	0	0
	I	$90 > u \ge 80$	42	0	0	0	0
	Areias 10kV - II	$80 > u \ge 70$	15	1	0	0	0
	Are kV	$70 > u \ge 40$	5	0	0	0	0
	10	$40 > u \ge 5$	0	0	0	0	0
	 	$5 > u$ $90 > u \ge 80$	0 37	0	0	0	0
	· .	$90 > u \ge 80$ $80 > u \ge 70$	37 15	2	4	0	0
	Areias 30kV	$70 > u \ge 70$ $70 > u \ge 40$	14	2	10	0	0
	Ar 30	$40 > u \ge 5$	16	4	0	0	0
]	5 > u	0	0	0	0	0

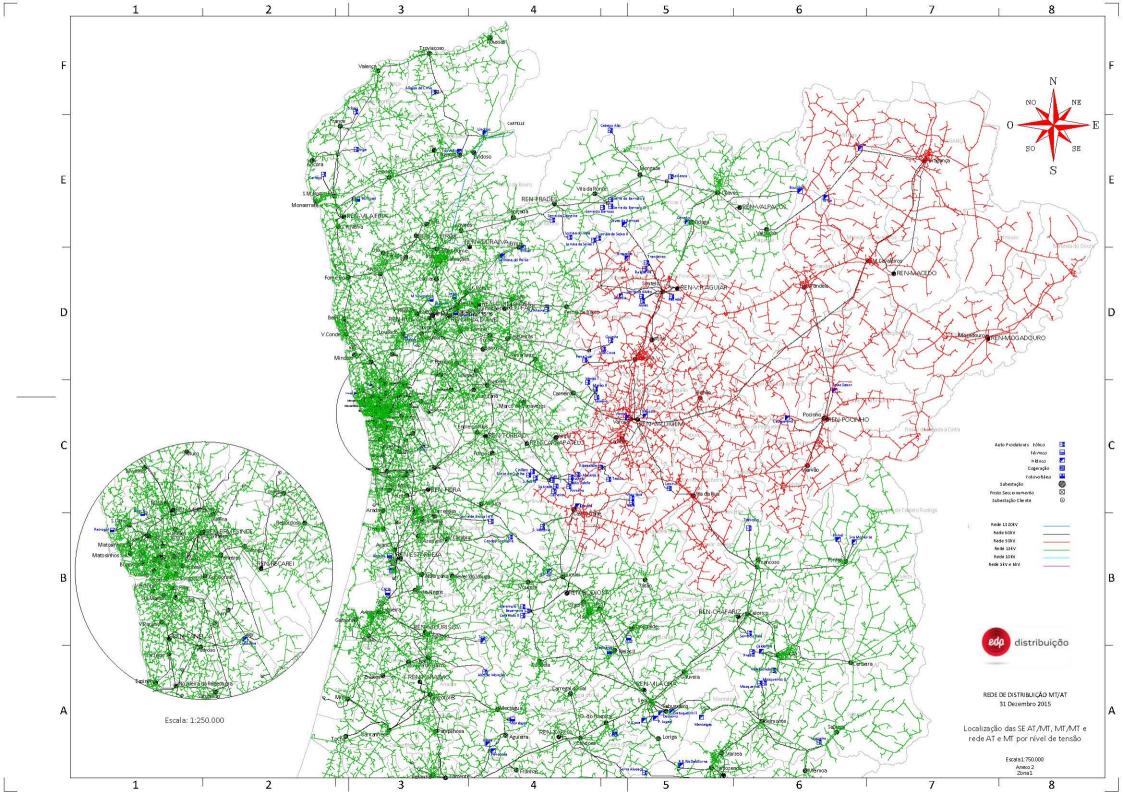

	$90 > u \ge 80$	8	0	0	0	0
Póvoa 30kV - I	$80 > u \ge 30$ $80 > u \ge 70$	12	0	0	0	0
	$70 > u \ge 40$	2	0	1	0	0
	$40 > u \ge 5$	7	2	0	0	0
	5 > u	1 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0	0	0	0
H	$90 > u \ge 80$	17	0	0	0	0
Ро́vоа 30kV - II	$80 > u \ge 70$ $70 > u \ge 40$	13 2	0 0	0 0	0	0 0
P6, 0k1	$40 > u \ge 40$ $40 > u \ge 5$	7	0	0	0	0
ω	5 > u	Ó	0	Ö	0	0
	$90 > u \ge 80$	15	0	1	0	0
ças	$80 \ge u \ge 70$	5	0	0	0	0
Caneças 10kV	$70 > u \ge 40$	13	0	0	0	0
¹ ٽ	$40 > u \ge 5$	3	0	0	0	0
	$5 > u$ $90 > u \ge 80$	0 25	0	0	0	0
о н	$90 > u \ge 80$ $80 > u \ge 70$	25 5	0	0	0	0
Alto do Lumiar 10kV	$70 > u \ge 70$ $70 > u \ge 40$	13	0	0	0	0
Alt Lu 10	$40 > u \ge 5$	0	0	0	0	0
	5 > u	0	0	0	0	0
	$90 > u \ge 80$	20	1	0	0	0
Marvila 10kV - I	$80 \ge u \ge 70$	10	1	0	0	0
far kV	$70 > u \ge 40$	8	0	0	0	0
Z 2	$40 > u \ge 5$	0	0	0	0	0 0
	$5 > u$ $90 > u \ge 80$	0 21	0	0	0	0
la II	$80 > u \ge 80$ $80 > u \ge 70$	12	0	0	0	0
Marvila IOkV - II	$70 > \mathbf{u} \ge 40$	9	Ö	Ö	0	Ö
Ma 10k	$40 > u \ge 5$	0	0	0	0	0
	5 > u	0	0	0	0	0
_	$90 > u \ge 80$	5	0	0	0	0
Parque 10kV - I	$80 > u \ge 70$	2	0	0	0	0
Parc Ok\	$70 > u \ge 40$ $40 > u \ge 5$	6 0	0 0	0 0	0	0 0
H 7	$40 > u \ge 3$ $5 > u$	0	0	0	0	0
	$90 > u \ge 80$	6	0	0	0	0
ле - П	$80 > u \ge 70$	1	0	0	0	0
Parque 10kV - II	$70 > u \ge 40$	6	0	0	0	0
P. 101	$40 > u \ge 5$	0	0	0	0	0
	5 > u	0	0	0	0	0
<u> </u>	$90 > u \ge 80$ $80 > u \ge 70$	25 6	0	0	0	0
nz V -	$70 > u \ge 70$ $70 > u \ge 40$	14	0	0	0	0
Luz 10kV -	$40 > u \ge 40$	0	0	0	0	0
	5 > u	0	0	0	0	0
	$90 > u \ge 80$	23	0	0	0	0
Luz 10kV - II	$80 > u \ge 70$	5	0	0	0	0
Luz kV -	$70 > u \ge 40$	14	0	0	0	0
10	$40 > u \ge 5$	0 0	0	0	0	0 0
	$5 > u$ $90 > u \ge 80$	21	0	0	0	0
ra '	$80 > u \ge 80$ $80 > u \ge 70$	4	0	0	0	0
Venteira 10kV	$70 > u \ge 70$ $70 > u \ge 40$	13	0	0	0	0
Ver 10	$40 > u \ge 5$	1	0	Ö	0	0
	5 > u	0	0	0	0	0
São Marcos 10kV - I	$90 > u \ge 80$	20	0	0	0	0
	$80 > u \ge 70$	8	0	0	0	0
	$70 > u \ge 40$ $40 > u \ge 5$	12	0 0	0 0	0	0 0
	$40 > u \ge 5$ $5 > u$	2 0	0	0	0	0
	$90 > u \ge 80$	19	0	0	0	0
os - II	$80 > u \ge 70$	8	Ö	Ö	0	0
São Marcos 10kV - II	$70 > u \ge 40$	10	0	0	0	0
, M. 10k	$40 > u \ge 5$	0	0	0	0	0
	5 > u	0	0	0	0	0

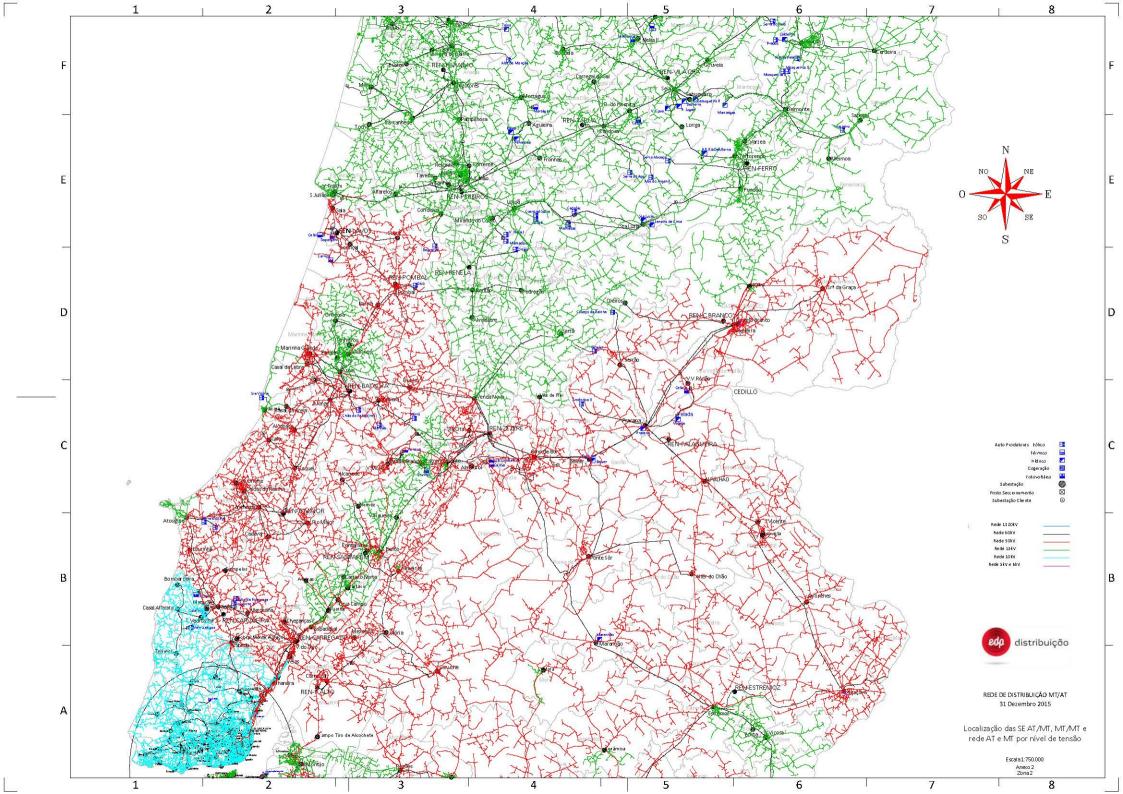

1	1	00 > > 00	22	0	0	0	0
	×	$90 > u \ge 80$	22	0	0	0	0
	Zascais 10kV	$80 > u \ge 70$ $70 > u \ge 40$	8 11	0 0	0	0 0	0 0
	Cascais 10kV	$40 > u \ge 40$ $40 > u \ge 5$	1	0	0	0	0
		5 > u	0	0	0	0	0
		$90 > u \ge 80$	17	1	0	0	0
	da ca	$80 > u \ge 30$ $80 > u \ge 70$	6	0	0	0	0
	Costa da Caparica 15kV	$70 > u \ge 40$	9	1	0	0	0
	Cap 15	$40 > u \ge 5$	1	0	0	0	0
		5 > u	0	0	0	0	0
	C	$90 > u \ge 80$	22	1	0	0	0
	ogueteir 15kV - I	$80 > u \ge 70$	8	0	0	0	0
	uet kV	$70 > u \ge 40$	10	0	0	0	0
	Fogueteiro 15kV - I	$40 > u \ge 5$	1	0	0	0	0
		5 > u	0	0	0	0	0
	2 H	$90 > u \ge 80$	23	2	0	0	0
	Fogueteiro 15kV - II	$80 > u \ge 70$	3	0	0	0	0
	gue 3kV	$70 > u \ge 40$	11	0	0	0	0
	Fo.	$40 > u \ge 5$ $5 > u$	1 0	0 0	0	0 0	0 0
		$90 > u \ge 80$	23	5	0	0	0
	op a I	$80 > u \ge 30$ $80 > u \ge 70$	5	0	2	0	0
	Quinta do Conde 15kV - I	$70 > u \ge 70$ $70 > u \ge 40$	11	1	0	0	0
	Co Ziri	$40 > u \ge 5$	1	0	0	0	0
	0	5 > u	0	0	0	0	0
		$90 > u \ge 80$	28	6	1	1	0
al	Quinta do Conde 15kV - II	$80 > u \ge 70$	10	0	5	0	0
Setúbal	Quinta do Conde 15kV - II	$70 > u \ge 40$	10	1	0	0	0
S	Out C 151	$40 > u \ge 5$	1	0	0	0	0
	_	5 > u	0	0	0	0	0
	Montijo 15kV	$90 > u \ge 80$	32	3	1	0	0
		$80 > u \ge 70$	10	0	0	0	0
		$70 > u \ge 40$	6	2	3	0	0
		$40 > u \ge 5$ $5 > u$	4 0	0 0	0	0 0	0 0
		$90 > u \ge 80$	32	1	0	0	0
	es - I	$80 > u \ge 30$	10	1	0	0	0
	gõe	$70 > u \ge 40$	3	6	4	0	0
	Pegões 30kV - I	$40 > u \ge 5$	3	5	7	0	0
		5 > u	0	0	0	0	0
	н	$90 > u \ge 80$	98	1	8	0	0
	es - II	$80 > u \ge 70$	12	1	2	0	0
	Pegões 30kV - II	$70 > u \ge 40$	4	1	1	0	0
		$40 > u \ge 5$	0	0	0	0	0
		5 > u	0	0	0	0	0
	Santiago 30kV	$90 > u \ge 80$	77	8	13	0	0
		$80 > u \ge 70$ $70 > u \ge 40$	11 0	1 27	7 13	0 1	0 0
	ant 30]	$70 > u \ge 40$ $40 > u \ge 5$	2	3	0	1	0
	N N	5 > u	0	0	0	0	0
		$90 > u \ge 80$	36	2	7	0	0
	as .s	$80 > u \ge 30$ $80 > u \ge 70$	11	0	ó	0	0
	Vendas Novas 15kV - I	$70 > u \ge 40$	6	1	2	0	0
	2 × × 151	$40 > u \ge 5$	3	0	0	0	0
		5 > u	0	0	0	0	0
	I	$90 > u \ge 80$	33	2	7	0	0
Évora	Vendas Novas 15kV - II	$80 > u \ge 70$	11	0	0	0	0
	en for kV	$70 > u \ge 40$	6	1	2	0	0
	> \(\cdot \)	$40 > u \ge 5$	3	0	0	0	0
		$5 > u$ $90 > u \ge 80$	0 197	9	0 22	0	0
	ο	$90 > u \ge 80$ $80 > u \ge 70$	197 39	9 6	3	0 2	0 0
	nda was kV	$60 > u \ge 70$ $70 > u \ge 40$	39 10	5	13	0	0
	Vendas Novas 30kV	$40 > u \ge 40$ $40 > u \ge 5$	10	0	6	0	0
		5 > u	0	0	0	0	0
•	•						

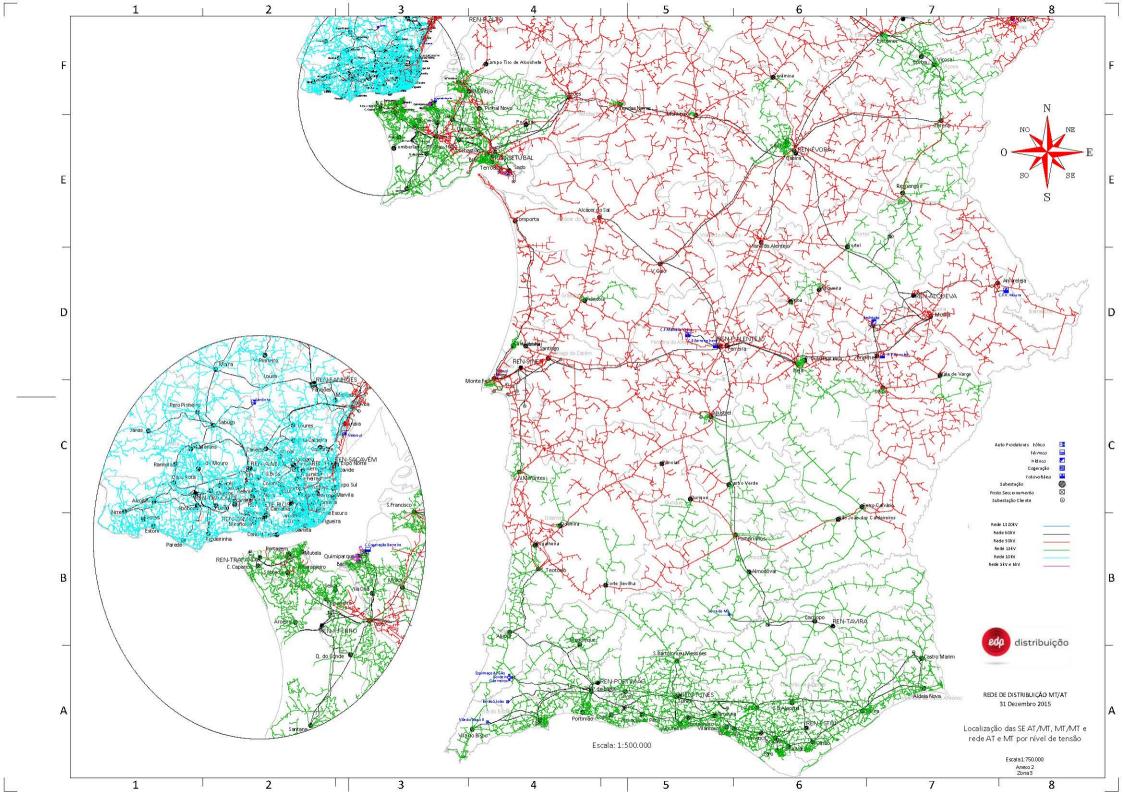

-	_						
		$90 > u \ge 80$	37	2	3	1	0
	- I	$80 > u \ge 70$	11	0	0	1	0
	Caeira 15kV - I	$70 > u \ge 40$	6	0	0	1	0
	Ca Sk	$40 > u \ge 5$	0	0	0	0	0
		5 > u	0	0	0	0	0
	_	$90 > u \ge 80$	38	2	3	1	0
	ra - I	$80 > u \ge 70$	10	0	0	1	0
	Caeira 5kV - I	$70 > u \ge 40$	6	0	0	1	0
	Caeira 15kV - II	$40 > u \ge 5$	0	0	0	0	0
	_	5 > u	0	0	0	0	0
		$90 > u \ge 80$	115	25	16	1	0
	_	$80 > u \ge 30$ $80 > u \ge 70$	44	10	1	0	0
	Caeira 30kV						
	30.	$70 > u \ge 40$	38	23	0	9	0
	0	$40 > u \ge 5$	9	1	2	1	0
		5 > u	1	0	0	1	0
		$90 > u \ge 80$	100	52	18	0	0
	- I	$80 > u \ge 70$	23	4	3	0	0
	Vila Viçosa 15kV - I	$70 > u \ge 40$	10	4	3	0	0
	V ₁ i, V	$40 > u \ge 5$	0	0	2	0	0
	-	5 > u	0	0	0	0	0
						-	
	_	$90 > u \ge 80$	106	46	16	0	0
	Vila Viçosa 15kV - II	$80 > u \ge 70$	12	2	1	0	0
	Vila ⁷ iços ikV -	$70 > u \ge 40$	13	2	0	0	0
	5. 5.	$40 > u \ge 5$	1	0	5	0	0
	_	5 > u	0	0	0	0	0
		$90 > u \ge 80$	100	57	30	0	0
	Borba 15kV	$80 > u \ge 70$	6	1	1	0	0
		$70 > u \ge 40$	7	0	4	0	0
	Щ	$40 > u \ge 5$	1	0	0	0	0
		5 > u	0	0	0	1	0
		$90 > u \ge 80$	231	2	11	12	0
	Brinches 30kV	$80 > u \ge 70$	29	2	1	0	0
		$70 > u \ge 40$	63	0	3	0	0
		$40 > u \ge 5$	44	3	0	0	0
							0
		5 > u	0	0	0	0	
	9 0	$90 > u \ge 80$	85	3	3	1	0
	Ferreira do Alentejo 30kV	$80 > u \ge 70$	37	0	1	0	0
		$70 > u \ge 40$	77	5	2	0	0
		$40 > u \ge 5$	4	0	0	0	0
<u>a</u> .		5 > u	0	0	0	0	0
Beja		$90 > u \ge 80$	45	0	1	3	0
1	el I	$80 > u \ge 30$	8	0	0	0	0
	str. V -	$70 > u \ge 70$ $70 > u \ge 40$	29		0	0	0
	Aljustrel 30kV - I	$40 > u \ge 40$ $40 > u \ge 5$	29	$\frac{1}{0}$	0	0	0
	A &						
		5 > u	0	0	0	0	0
		$90 > u \ge 80$	51	1	0	2	0
	Aljustrel 30kV - II	$80 > u \ge 70$	46	0	0	0	0
	ust V	$70 > u \ge 40$	4	0	0	0	0
	I i₹i	$40 > u \ge 5$	0	0	0	0	0
	¥ E	5 > u	0	0	0	0	0
Faro	1	$90 > u \ge 80$	38	4	4	0	0
	ıra						0
	lamou B 15kV	$80 > u \ge 70$	10	1	2	0	
	an B Sk	$70 > u \ge 40$	5	0	0	0	0
	Vilamoura B 15kV	$40 > u \ge 5$	2	0	0	0	0
		5 > u	0	0	0	0	0
Fa		$90 > u \ge 80$	36	4	13	0	0
	s ~	$80 > u \ge 70$	19	2	3	0	0
	ve KV	$70 > u \ge 40$	12	1	3	0	0
	Silves 15kV	$40 > u \ge 40$	3	1	0	0	0
		5 > u	0	0	0	0	0
		3 > u	U	U	U	U	U

Anexo D

Localização das SE AT/MT e rede MT por área de abrangência de cada SE







Anexo E

Localização das SE AT/MT, MT/MT e rede AT e MT por nível de tensão

