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Abstract 

Understanding protein-protein interfaces is at the foundation of studying molecular interactions 

in living organisms and in determining their relevance in high-order protein networks. However, 

the most detailed information on protein complexes – the three-dimensional structure – is often 

unavailable, mainly due to difficulties in their experimental determination. As such, 

computational methods rise as increasingly valid alternatives by using the information already 

retrieved from previous experiments as a driving key factor of protein structure study. This thesis 

work focuses on protein-protein interfaces and how computational tools can be used to aid in 

their understanding. As such, four main tasks were conducted. The first was the development 

of a computational pipeline for the prediction of important residues in protein-protein 

interfaces (Hot-spots (HS)) using an ensemble of machine-learning algorithms. The final model, 

SpotOn, had an Accuracy of 0.95 and a Sensitivity of 0.98 for an independent test set and is 

available online in http://milou.science.uu.nl/cgi/services/SPOTON/spoton/. The second task 

involved a global assessment of protein-protein interfaces and HS using a non-redundant 

database of protein complexes and an adapted version of the computational pipeline developed 

in the previous task. By doing so, structural features, the number of intermonomer neighbouring 

residues and neighbouring HS came out as essential in defining HS. The third task was the 

development of an algorithm capable of predicting interfacial residues from monomer structure 

information using deep-learning. The final model was not able to predict interfacial residues, 

probably due to the absence of relevant features. The fourth and final task aimed at 

understanding how dynamics affect protein-protein interfaces using normal mode analysis 

(NMA) and interhelical distance in a case study based on G-protein coupled receptor (GPCR)-

partner binding. While GPCR fluctuation values from NMA were able to distinguish different G-

proteins and different arrestins, they were not as useful in distinguishing G-proteins from 

arrestins. Interhelical distance did the opposite – G-proteins were easily distinguished from 

arrestins, but different G-proteins and different arrestins were undistinguishable. Results from 

the second and fourth tasks are available online in 45.32.153.74/spotondb and 

45.32.153.74/gpcr, respectively.  

Keywords: protein-protein interfaces, machine-learning, bioinformatics, structural biology 

  



viii 
 

Resumo 

Compreender as interfaces proteína-proteína é a base do estudo das interações molecular em 

organismos e na determinação da sua relevância em redes proteicas complexas. Contudo, a 

informação mais detalhada sobre complexos proteicos – estruturas tridimensionais – é muitas 

vezes inexistente, principalmente devido a dificuldades na sua determinação experimental. 

Como tal, métodos computacionais surgem como cada vez mais válidos e capazes de atingir o 

mesmo desempenho demonstrado por métodos experimentais ao utilizarem a informação 

disponível de experiências anteriores como um fator chave no estudo da estrutura proteica. 

Como tal, esta tese focou-se nas interfaces proteína-proteína e na maneira como ferramentas 

computacionais podem ser utilizadas para ajudar na sua compreensão. Para atingir isto, quatro 

tarefas foram realizadas. A primeira consistiu no desenvolvimento de um método 

computacional para prever resíduos importantes em interfaces proteína-proteína (Hot-spots 

(HS)) através de uma combinação de algoritmos de machine-learning. O modelo final, SpotOn, 

tem uma precisão de 0.95 e uma sensibilidade de 0.98 para um conjunto de dados independente 

e está disponível em http://milou.science.uu.nl/cgi/services/SPOTON/spoton/. A segunda 

tarefa envolveu uma aferição global de interfaces proteína-proteína e HS com uma base de 

dados não redundante de complexos proteicos e uma versão adaptada do método 

computacional desenvolvido na tarefa anterior. Características estruturais, o número de 

resíduos próximos intermonoméricos e de HS próximos foram determinantes na caracterização 

de HS. A terceira tarefa consistiu no desenvolvimento de um algoritmo capaz de prever resíduos 

interfaciais a partir de informação estrutural de monómeros com ferramentas de deep-learning. 

O modelo final foi incapaz de prever resíduos interfaciais, provavelmente devido à ausência de 

características relevantes para o problema. A quarta tarefa pretendia perceber como é que a 

dinâmica proteica afeta as interfaces proteína-proteína usando análise de modos normais 

(AMN) e distâncias inter-hélice num caso de estudo baseado na ligação de recetores acoplados 

a proteínas-G (RAPG) a parceiros intracelulares. Enquanto que valores de flutuação de RAPGs 

obtidos através da AMN eram capazes de distinguir diferentes proteínas-G e diferentes 

arrestinas, não eram úteis na distinção entre proteínas-G e arrestinas. Nas distâncias inter-hélice 

acontecia o oposto – as proteínas-G era facilmente distinguidas das arrestinas, mas diferentes 

proteínas-G e diferentes arrestinas eram indistinguíveis. Os resultados da segunda e terceira 

estão disponíveis online em 45.32.153.74/spotondb e 45.32.153.74/gpcr, respetivamente. 

Palavras-chave: interfaces proteína-proteína, machine-learning, bioinformática, biologia 

estrutural 

http://milou.science.uu.nl/cgi/services/SPOTON/spoton/


 
 

A. Introduction 

1) Proteins structure fundamentals 

Proteins are the fundamental units of cells and higher order organisms, representing high 

diversity in function, which can be closely associated with their structural and sequence 

composition 1. A key aspect of protein function is their interaction with small molecules, 

peptides or other proteins. For example, substrate binding is an essential step for catalysis in 

enzymes, peptide binding is necessary to trigger signalling cascades in some receptors and 

protein-protein interactions are fundamental in the activation of some proteins 2. Structural 

elucidation of proteins is the first approach to understand how they interact with different 

systems. However, experimental determination of protein structure, especially complexes, can 

be challenging, leading to the emergence of high-throughput but low-information methods 3.  

Experimental protein structure determination is typically done through nuclear magnetic 

resonance (NMR), X-ray crystallography and cryo-electron microscopy (Cryo-EM). However, 

these techniques have distinct problems which make them much more complicated, expensive 

and time-consuming, than high-throughput methods. The main advantage of NMR is the ability 

to determine not only protein structure but also protein dynamics 4. However, when it comes to 

large protein structure, spectral crowding becomes a problem due to insufficient sensitivity – 

while relevant motions might still be captured, structure determination becomes more 

challenging 5,6. Nonetheless, some methods such as more refined data analysis 7 and solid-state 

NMR 8 have been developed to tackle this problem. X-ray crystallography is fairly well-developed 

concerning sensitivity – several structures have been resolved with subatomic resolution (< 1 Å) 

9. Its major drawback is how time-consuming and expensive it can become – the structural 

determination of the aspartate protease, which required 160.000 different conditions in order 

to achieve good, analyzable crystals 10; the determination of the high resolution crystal structure 

of an engineered human β2-adrenergic GPCR, which took 15 years 11; and the 13 year-long 

structure determination of the membrane-integral diacylglycerol kinase 12, as noted by Leman 

et. al. in their 2015 review paper 13. Cryo-EM is characterized by imaging radiation-sensitive 

entities – cells, viruses and macromolecules – under cryogenic conditions using a transmission 

electron microscope 14. While Cryo-EM does not require protein crystal synthesis, it has 

relatively low resolution for membrane proteins (around 3 Å) when compared with X-ray 

crystallography. However, some recent cases show that Cryo-EM can provide highly informative 

structures of membrane proteins – the transient receptor potential channel 1 at 3.4 Å 15 and the 

chloride conducting (CLC) ion channel at 3.7 Å 16 are examples of the potential underlying this 
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technique. EMDataBank 17 – publicly available at http://emdatabank.org/index.html – is a 

database of protein structures solved through Cryo-EM.  

Despite recent advances in protein structure determination, Membrane Proteins (MPs), a rather 

large protein group with particular characteristics, stand out as one of the biggest challenges in 

protein structure determination 18,19. This aspect is largely derived from the influence exerted 

by the membrane on the proteins and vice-versa 20, which might be a consequence of the 

membrane’s cholesterol content 21,22 and/or thickness of the lipid bilayer’s hydrophobic region 

20,23-25. This leads to a relatively low abundance of structural information on MPs when compared 

with soluble proteins in protein databases even though MPs represent a considerable 

proportion of the human proteome 26. Furthermore, deriving information on how proteins 

interact is much harder when considering MPs and the amount of structural information 

available.  

Luckily, computational methods – the alternative to experimental methods – are a particularly 

advanced field, concerning both variety and efficacy 27-41. They rely on several different 

approaches, such as homology modelling and Molecular Dynamics (MD) 42 and de novo protein 

structure determination 43,44. As such, considering the available computational tools, methods 

for the prediction of protein structure and interaction should be developed, and they should be 

utilized to better understand the complex structure-function relationships in MPs.  

Concerning what has been described previously, this thesis will focus on: 

i. Describing MPs, the biggest challenge in the determination of protein structure and 

protein-protein interactions; 

ii. Reviewing the state-of-the-art on protein structure and interaction prediction; 

iii. Describing a new method for the prediction of Hot-Spots (HS) in protein complexes; 

iv. Understanding the patterns underlying protein-protein interactions through a big-

data high-throughput analysis of protein interfaces; 

v. Attempting to develop a new method to predict protein interfacial patches using 

Deep-Learning; 

vi. Understanding how the interface might be affected by receptor dynamics using a 

GPCR-partner case study. 

http://emdatabank.org/index.html
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2) Membrane Proteins 

MP are key representative of the challenges associated with protein structure determination 

and mechanistic understanding. Here, we also focused on GPCR-partner case study. MPs are 

proteins associated to lipid domains involved in communication, regulation and structural 

coherence. In fact, proteins that entirely or partially span the membrane (intrinsic/trans-

membrane (TM) proteins), as well as proteins that are peripherally membrane-bound 

(peripheral MPs – PMPs), can carry out these functions. Considering that most computational 

methods for MPs are focused on TM proteins, the literature review presented in this thesis work 

will focus heavily on TM proteins and MPs and TM proteins will be used interchangeably. If the 

reader is interested on PMPs, specialized reviews covering this class of membrane proteins 45, 

their interaction with the membrane 46 and a review on experimental and computational 

methods for their study 47 can be consulted.  

Understanding protein structure-function relationships is essential to understand common 

pathologies at a molecular level and to develop improved pharmacological approaches 48, 49, 50. 

One of the most functionally relevant MP type are membrane receptors 51,52. Membrane 

receptors, comprising GPCRs – which will be considered and reviewed further ahead –, olfactory 

receptors and nuclear receptors 53 play many roles in biochemical and signaling pathways, and 

in triggering environment, immune, hormonal and neurological responses, making them highly 

interesting targets for therapeutic investigation. They often share common structural traits 

among different functional protein groups, allowing for their classification into protein families 

or superfamilies.  

MPs typically consist of several domains: extracellular (typically involved in cell-cell signaling 

and/or interactions), intracellular (performing a wide range of functions such as activating 

signaling pathways and anchoring cytoskeletal proteins) and intramembrane (such as pores and 

channels) 54. TM proteins generally have different electronegativity and hydrophobicity profiles 

along their structure – they are amphipathic –, allowing them to be in contact with both water 

(hydrophilic) and the membrane (hydrophobic). The structure and function of many proteins – 

including TM proteins – depend on post-translational modifications (PTM) such as 

phosphorylation and glycosylation. The two major recurrent protein structure motifs in MPs are 

TM α-helices 55, repeatedly crossing the membranes in α-helical bundles and β-strands arranged 

into super-secondary structures known as β -barrels 56.  
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Despite their functional importance, only 4012 MP structures can be found among the 131205 

determined protein structures deposited at the Protein Data Bank (PDB) 7 (statistics from June 

27th 2017) – less than 1%, including multiple submissions of the same protein under a variety of 

experimental conditions and relatively small domains of MPs. In contrast to the number of 

available MP structures, there are 199.322 MP sequence clusters according to UniProt’s UniRef 

(June 27th 2017).  

Two major factors can explain this discrepancy: i) difficulties in both expression – done in several 

organisms 57 but mostly in Escherichia coli 58 – and purification processes and ii) challenges 

associated with 3D structure determination of purified MPs. Concerning the first factor, 

overexpression of MPs usually leads to cytoplasmic aggregates and changes in the cell 

metabolism. A few methods have been devised to avoid the associated cytotoxicity, such as 

using and tuning E. coli strains that are not as affected by the protein overexpression – a well-

known example being “Walker strains” 59. Protein extraction and purification is also challenging 

as different protein extraction conditions provide different outcomes when it comes to protein 

stability, state and viability for structure determination 60 (these conditions may come down to 

something as apparently simple as choosing the right detergent for MP isolation 61).  

MP structures solved by X-ray crystallography are often the result of a high amount of time 

invested in fine tuning the best experimental conditions possible. After the optimal initial 

conditions have been determined, further optimization is required 62 – detergent addition, 

utilization of different 3D continuous lipid phases (allowing the protein to freely flow) 63 or 

antibody fragments addition for the stabilization of protein structure 64 are examples of what 

might be needed to determine a MP 3D structure. Even data collection per se can be 

problematic, as the variability of crystals and their conditions (i. e. hydrophobic protein regions 

are camouflaged by hydrophobic solvent, making it difficult to assess the transmembrane MP 

structure) are responsible for preventing automated and stable data acquisition and processing 

62.  

NMR spectroscopy has progressed steadily, but some major drawbacks can still be identified: 

low sensitivity, relatively small protein size cap and the intrinsic motions of the system under 

investigated. Considering MPs, challenges such as sample preparation and spectral crowding 

arise besides those already mentioned 65. Despite this, NMR has been somewhat efficient when 

it comes to studying the dynamics (e.g. relative population and conformation of different states, 

and exchange rates) of MPs with intrinsic conformational changes, such as channels, 

transporters and receptors 66. Recently, solid state NMR have provided much better results 



5 
 

when compared to liquid phase NMR by preventing a molecular weight cap. Unfortunately, 

spectral crowding is still a problem in solid state NMR. These techniques are crucial as they 

enable the determination of MP structure in an actual membrane and not in a “detergent 

simulation” of a membrane as in X-ray crystallography 67-69. Recently, MPs have been studied by 

solid state NMR in their native cellular environment 70. 

i) G-protein coupled receptors 

GPCRs are involved in a myriad of important functions, such as vision, taste and mood regulation 

71,72 and their ligands can range from a single photon to a protein 73. While several different 

extracellular ligands can be identified, they share a restricted number of intracellular ligands – 

G-proteins, arrestins and GPCR-interacting proteins (membrane-inserted GPCR-binding 

proteins) 74. G-proteins are composed of three different subunits (α, β and γ) and the α subunit 

acts by activating (Gαs) 75 or inhibiting (Gαi) 76 the cyclic adenosine monophosphate (cAMP) 

pathway, stimulating the membrane bound phospholipase C-beta (Gαq/11) 77 or modulating the 

Rho family GTPase signaling (Gα12/13) 78. The β and γ subunits constitute the βγ complex whose 

function stood unknown for several years. However, some roles have been identified for this 

complex, such as modulating the function of phospholipase C-beta 79 and activating G-protein 

coupled inwardly rectifying potassium channels 80. A key aspect in G-proteins is that binding is 

preferential – some complexes are much more frequent than others and, while the binding 

interface might be similar, some key differences are likely to give rise to this differential binding. 

Arrestins are mostly responsible for stopping G-protein signaling through direct competition for 

the binding site, receptor internalization and resensitization 81. They are, however, involved in 

other roles such as stress responses 82 and have, recently, gained some interest as drug targets 

83,84. The lipid environment also has an active role in modulating GPCR structure and function. 

For example, interaction with cholesterol significantly changes GPCRs conformational flexibility 

85 and modulates their interactions. As such, it was suggested that rather than “binding sites”, 

GPCRs, many times, have “high occupancy sites”, when associated to these cholesterol “hot-

spots” in the membrane.  

Structurally, GPCRs share a typical pattern consisting of seven TM helixes (TMH – TMH1-7) and 

a perimembranar intracellular helix (HX8), and similar intracellular binding partners. Intracellular 

loops (ICL) and extracellular loops (ECL), which interact with different intracellular and 

extracellular partners and ligands, respectively, bridge TMHs in the following order: TMH1-ICL1-

TMH2-ECL1-TMH3-ICL2-TMH4-ECL2-TMH5-ICL3-TMH6-ECL3-TMH7-HX8. Three High Variability 

Regions (HVR) have been identified in ICL3 and at the N- and C-terminal regions 8,86. All ICLs and 
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HX8 have been involved in different GPCR-associated roles, such as ICL1 in receptor export from 

the endoplasmatic reticulum 87,88 to the cellular membrane, ICL2 in modulating dimerization and 

partner interaction 89 and ICL3 – the most disordered ICL – in G-protein interaction 90, and HX8 

in chemokine interaction 91 and in PDZ-domain interaction 92. As such, these should be held in 

high regard when studying GPCR-intracellular partner interaction, as they must be responsible 

for propagating the signal generated by GPCRs. Figure 1 displays the 3D structure of a GPCR 

concerning the aforementioned structural features. 

 

Figure 1 - The 3D structure for opsin (PDBID: 4J4Q 86). The main structural features are easily observable and labelled. 

Legend: TM1 – TransMembrane Helix 1; ICL1 – IntraCellular Loop 1; TM2 – TransMembrane Helix 2; ECL1 – 

ExtraCellular Loop 1; TM3 – TransMembrane Helix 3; ICL2 – IntraCellular Loop 2; TM4 – TransMembrane Helix 4; ECL2 

– ExtraCellular Loop 2; TM5 – TransMembrane Helix 5; ICL3 – IntraCellular Loop 3; TM6 – TransMembrane Helix 6; 

ECL3 – ExtraCellular Loop 3; TM7 – TransMembrane Helix 7; HX8 – Perimembranar Helix. 
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Considering their structure conservation and high representation and ubiquity in the human 

organism in both physiological functions and disease, it is no surprise that GPCRs sprouted a 

myriad of studies to understand their structure, especially at a computational level. Parkinson’s 

disease (PD), for example, has harnessed comprehensive interest for the development of new 

drugs, and computational methods became key in doing so. GPCRs-targeted agents represent 

approximately 30-40% of current marketed drugs for human therapeutics and these receptors 

have been subjected to a substantial number of computational studies 93, namely as PD targets. 

Drug discovery efforts targeting GPCRs have focused on the development of orthosteric 

agonists/antagonists to modulate receptor activity. However, the high structural conservation 

of orthosteric binding sites across subtypes of GPCR subfamilies stands as the limiting factor for 

the design of orthosteric therapeutic agents with high receptor subtype selectivity. Additionally, 

orthosteric ligands interacting with some GPCRs, namely peptide or protein receptors, have 

physicochemical and pharmacokinetic properties that render drug discovery of small-molecule 

ligands unsuitable. This sparked interest in novel therapeutic agents acting as allosteric 

modulators of GPCRs, providing an alternative approach for subtype selectivity in treating 

disorders such as PD. Allosteric modulators interact with topographically distinct binding sites - 

allosteric sites – from the orthosteric sites of the endogenous ligands, increasing (positive 

allosteric modulators) or reducing (negative allosteric modulators) receptor responsiveness to 

ligands or the activity of the receptor. Some allosteric sites do not present high structural 

conservation, enabling higher subtype selectivity. Overall, exploring allosteric sites of GPCRs for 

drug design is of utmost importance in medicinal chemistry, enabling the possibility of targeting 

selective GPCR-signaling pathways without modulating others that may lead to adverse effects 

and to search for considerable diversity of chemical scaffolds for the optimization of the 

pharmacological profile of likely drug candidates 94,95. Considering the importance of this topic, 

my group did a highly comprehensive review on in silico methods for GPCR therapy in PD 96. 

Dopamine receptors, which are also involved in PD, are an important GPCR family and are 

divided into two major subclasses – D1-like receptors (D1R and D5R) and D2-like receptors (D2R, 

D3R and D4R) – based on their intracellular ligands, anatomical distribution and physiological 

effects. They are involved in a wide array of neurological functions such as voluntary movement, 

sleep, attention and learning, and other roles such as mediating hormone and immune system 

regulation 97-99. Furthermore, its deregulation has been implied in several diseases, namely 

Parkinson’s disease 100,101, by the far the best studied disease involving dopamine receptors, 

Huntington’s disease and schizophrenia 102. As such, studying these GPCRs and, more 

importantly, their interaction with intracellular partners, as many other MPs, is crucial for the 
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understanding of the molecular mechanisms underlying cellular functions and disease.  

Considering that structure is of crucial importance to understand mechanisms from a molecular 

perspective and that experimental methods are not capable of handling a high demand, fast and 

accurate computational methods should be developed to make sense of the high amounts of 

data being generated about protein complexes.  

3) Machine-learning – general aspects 

Most of the work I developed in my thesis work was based on Machine-Learning (ML) 

techniques. ML, fundamentally, gives the computer, through the use of algorithms, the ability 

to learn a pattern or a stream of actions without being explicitly programmed to do so 103. 

Canonically, it is has become an iterative optimization process – by repeating the same step 

several times (epochs), it can achieve the best possible solution. However, some more simple 

models, such as linear regressions, can be considered ML techniques and require only one 

simple mathematical function with no apparent repetition. A simple scientist/ML parallel can be 

established: to solve a problem using ML methods, a model first faces a problem without the 

necessary knowledge on how to solve it. To harness it, repeated experience is used, adapting 

itself – training the algorithm using a training set – and scoring its own performance iteratively 

(using a validation set) until the best possible predictions are reached. The validation set is used 

to assess whether the training of the model is progressing in the right direction. After this step, 

the model is tested using an independent test set. All three mentioned sets – training, testing 

and validation – are extracted from the original dataset. Figure 2 summarizes ML as a simple, 

understandable workflow.  
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Figure 2 - The typical machine-learning workflow. The dataset is first split into training, validation and testing. Then, 

the algorithm is trained using the training set and after each iteration it is validated using the validation set. 

 

ML can use either regression or classification algorithms and both are able to handle both 

categorical and continuous data 104. Regression algorithms – such as linear regressions – try to 

find a relation between one (univariate) or more (multivariate) independent variables and a 

dependent variable. As such, input and output correlate with each other in a continuous fashion. 

While a univariate linear regression can be easily calculated using the least-squares method, for 

example, more complex methods might involve random forests (RFs, which can also be utilized 

for classification), which use typically several data subsets drawn randomly with replacement 
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into several decision trees to train a model to provide an optimal output 105. This process of using 

random data subsets with replacement to train the model is known as bootstrap aggregating or 

bagging. Furthermore, techniques such as tree pruning (eliminating or greatly reducing the 

impact of some variables) render RFs as a very powerful algorithm in machine-learning. 

Classification algorithms use data to provide categorical outputs. This includes binary outputs, 

such as classifying a surface residue as interfacial or non-interfacial based on several of its and 

the protein’s characteristics as it will be demonstrated further ahead, or multiclass outputs, such 

as identifying the intracellular localization of a protein from several protein characteristics 106. 

To do so, algorithms such as Support Vector Machines (SVMs), which separate classes using an 

artificial hyperplane, or the k-nearest neighbours algorithm, which determines the class of a new 

object by identifying the classes of the nearest k neighbours 107. 

The previously described methods – both for regression and classification – are considered 

supervised learning. Supervised learning is a type of ML in which the output is known and the 

task is to predict that output. Unsupervised learning, on the other hand, is a bit more esoteric – 

without any output, the algorithm creates an artificial division, sorting the data into different 

groups known as clusters based on the similarity of the different samples (clustering) or 

attempts to identify underlying patters to simplify the dataset (dimensionality reduction). For 

clustering, several methods can be utilized. The most popular approach is likely to be the k-

means algorithm, which assigns the data to one of k user-determined clusters. It iteratively 

determines the best mean for each cluster, typically defined as the centroid (the mean position) 

for the data points belonging to a cluster. New observations are then assigned to the nearest 

cluster (centroid) 108. As for dimensionality reduction, the most commonly used approach is 

Principal Component Analysis (PCA), which will be described in the methods section. Figure 3 is 

a representation that aims to simplify these ML algorithm classifications. Annex 1 contains all 

ML algorithms mentioned along this thesis work, as well as a short explanation on each.  
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Figure 3 - Typical classification of machine-learning techniques: classification and regression (supervised), and 

clustering and dimensionality reduction (unsupervised). 

 

4) Computational methods for membrane protein structure 

To understand protein structure and interaction using computational tools, it was necessary to 

first know and understand the available methods. As such, this Introduction section will highlight 

important computational methods for protein structure study. It will address the relevance of 

sequence information for protein structure prediction and will be covering bioinformatics tools 

to study: soluble proteins, membrane proteins, protein-protein interactions, MP-partner 

interaction and GPCR-related computational methods.  

i) Sequence importance for protein structure prediction 

Two key concepts are necessary to understand how protein sequence can determine protein 

structure – Position-Specific Scoring Matrices (PSSMs) and Multiple Sequence Alignmens (MSA). 

PSSMs provide an easy way of determining how likely an amino acid is to be represented at a 

position or as having a functional property by constructing MSAs, which can, ideally, match 

residue pairs or vectors and reveal common sequence patterns underlying protein function and 
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structure. To do so, they use three different classifications for each aligned residue pair – match 

(when the residues are the same), mismatch (when residues are different) and gap (when there 

is no corresponding residue). Given their central role, it is important to consider the general 

aspects underlying MSAs and PSSMs.  

MSAs started off as techniques performing global alignment 109, which tries to match sequences 

using their full length. This leads to some problems, since some sequences might share 

homology only on some regions and, even if there are several highly homologous regions, these 

can be shuffled, distant or repeated 110,111. To address this problem, local alignment techniques 

were developed 112, which do not require the full length of the protein. Instead, they focus on 

finding only the common subsequences across different proteins. Methods capable of finding 

subsequences with common residue pairs 113 or using only “exclusive” – nonintersecting – 

residue pairs 114 were developed. Even though the theory underlying local alignment makes it 

seem as a more capable algorithm when finding common subsequences in different protein 

sequences, these methods are often incapable of dealing with highly gapped common 

subsequences 115, making them a poor alternative.  

Simossis et al. 116 consider three essential steps when performing MSAs: i) selecting sequences 

(building a database of sequences to be aligned and compared), ii) selecting an adequate scoring 

function that allows the comparison of sequences or subsequences and iii) iteratively applying 

this scoring function to build and optimize the alignment. When comparing already known 

proteins, sequence selection is typically not needed, unless some sequences are detrimental for 

the result of the final MSA due to clear differences. However, when using MSAs in order to 

calculate PSSMs, for example, databases comprehending thousands or millions 117 of sequences 

can be used to search for protein sequences. This search is usually done considering homology, 

using methods such as Basic Local Alignment Search Tool (BLAST) 118. Selecting the appropriate 

scoring function is key in constructing the optimal MSA. These typically work column-wise 

(analysing each column of aligned residues at a time) and are usually the summation of all pair-

wise scores. 

Several scoring functions are available to consequentially evaluate the MSA through iterations 

– to do so, one can use scoring matrices, which either quantify the likelihood of a residue to 

show at a given position or use pre-calculated likelihoods, both of which are used to assess the 

global score of the MSA. Possibly, the best-known pre-calculated scoring matrices are 

substitution matrices, which are based on the observed substitution frequencies in sequence 

alignments. For example, mutations occurring between residues with identical nature can be 
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considered – hydrophobic-hydrophobic mutations (leucine and isoleucine, for example) – are 

more likely to occur than those not keeping the position’s nature. One of the earliest pre-

calculated scoring matrices is the Point Accepted Mutation (PAM) matrix 119, which generates 

each residue pair score considering the probability of one residue mutating to a different one 

over a course of some mutations (alanine can mutate directly to arginine or it can first mutate 

to isoleucine and only then to arginine) – this led to the creation of several PAM matrices, such 

as PAM250, which considers 250 mutations for 100 residues in the sequence, or PAM1 which 

considers only 1 mutation for the same sequence length. BLOcks of amino acid Substitution 

Matrix (BLOSUM) 120 is a different pre-calculated substitution matrix, used in BLAST. Instead of 

using global alignments, local alignments are used using several different sequence databases 

with different homology percentages – generating different BLOSUMs, such as BLOSUM80, with 

a database composed of sequences with 80% homology, and BLOSUM52, with a database 

composed of sequences with 52% homology. To calculate likelihoods from the MSA itself and 

combine it with the information from the pre-calculated scoring matrices, the frequency or 

count of a given residue in a column can also be calculated and combined with BLOSUM scores. 

The combination of both calculated and pre-calculated counts or likelihoods renders what is 

known as pseudocounts or pseudolikelihoods, respectively. This enables the combination of 

context information (from the MSA itself) and previously obtained knowledge. Additionally, it 

prevents scores from being 0 when the MSA-derived counts and likelihoods are 0 (for example, 

if at a given position in a MSA no leucine residues are observed, its count and likelihood is 0, but 

its pseudocount and likelihood is never 0). This is important as it would be extremely unlikely 

for a residue to never be represented at a given position of a MSA if enough sequences were 

presented and can prevent mathematical complications (such as accidentally dividing something 

by 0). Hidden Markov Models (HMM) are increasingly popular algorithms in bioinformatics that 

can also be used to derive MSA profiles. They offer great advantage – theoretically, HMMs can 

work with both aligned and unaligned data, and provide a solid statistical basis to sequence 

alignment. To generate profiles, HMMs are trained with a set of sequences to determine how 

likely a transition (passing from a residue to the next) is in an MSA, considering its current state 

and next state. The available states are deletion – a position is skipped in the MSA for a 

single/minority of available sequences – insert – a position is skipped in the MSA for most 

available sequences – and match – all sequences have a residue in that position. By deriving 

these probabilities for each position and for each possible residue at that position, a HMM can 

be built to score a sequence and build its profile. Furthermore, if the HMM is good enough, it 

can also be used to actually build the alignment for new sequences, considering the transition 

probabilities for each state 121. After scoring all residues, techniques such as the sum-of-pair 
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score 120, which sums every residue pair score to render a global MSA score, can be used to 

obtain a global MSA score that effectively evaluates the fitness of an MSA. 

Upon selecting or constructing an appropriate scoring function, the MSA algorithm will then 

iteratively construct and improve a MSA. To build an order according to which sequences are 

aligned, phylogenetic trees can be used, placing more homologous sequences closer to each 

other and sequentially aligning each sequence according to the previous 116. Besides doing this, 

it can focus on performing local alignments and considering those subsequences as starting 

points in global alignments. After having constructed this preliminary MSA, other techniques can 

be used, most of which function iteratively. To better illustrate what has been discussed, a 

practical example will be described – the Tree-based Consistency Objective Function for 

alignment Evaluation (T-Coffee) algorithm. First, T-Coffee will retrieve pairwise global and local 

alignments from ClustalW 122 and Lalign 123, respectively, and alignments are weighted according 

to pairwise sequence identity. To combine both libraries, the scores for two identical residue 

pairs from ClustalW and Lalgin for the same position are summed and considered as a single 

entry, while unique residue pairs for the same position are considered as separate entries. This 

will create a series of constraints, which will provide better MSAs overall. Then, it performs what 

the authors refer to as library extension, a heuristic process which calculates the likelihood of a 

pair based on triplets of matched residues – if two sequences share the same residue at a given 

position and, if other sequences have the same residue in that position, the weight for this 

residue pair will as high as the number of triplets considering the initial residue pair. Residue 

pairs which do not occur are given a weight of zero. By using a tree to calculate sequence 

similarity, the two most similar sequences are selected and the weights calculated during library 

extension are used to maximize the MSA score. Then, sequence pairs are added and residues 

are shifted until the final MSA is constructed. During this process, no gaps are removed after 

being added to the MSA.  

Upon performing an MSA, a convenient and comprehensive way to represent is created – 

typically called “profiles”. Numerically, this can be done using PSSMs, which constructs vectors 

with 20 elements for each single residue in a specific position of the MSA, resulting in a 20x20 

matrix per position. This comprehends a heavy amount of information – 20x20xN, with N as the 

length of the MSA (for a MSA with 200 residues, 80000 likelihoods are determined). Visually, 

platforms such as Consurf 124 use colour to represent the conservation of a residue at a specific 

position. Although one can argue some correlation between both, PSSMs are not the same as 

conservation – while a PSSM, for a specific residue at a specific position, comprehends 20 
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different values, one for each residue, a conservation score – such as Rate4Site 125 – is a single 

value for each residue. Given its utilization during my thesis project, the Rate4Site algorithm for 

functional conservation calculation will be briefly described to provide a clearer understanding 

of how computational calculation of residue conservation can be done. Starting with an MSA, 

Rate4Site calculates phylogenetic trees using the Neighbour-Joining (NJ) algorithm. This 

algorithm sequentially joins sequences that are closer and therefore more similar, with each 

other by creating a new node in each iteration. This node always connects to the tree 

constructed up that point in the algorithm. Considering that a single position in the MSA has the 

same evolutionary rate, Rate4Site determines the maximum rate that would explain the 

conditional probability of the data given that rate. All rates are then normalized and 

standardized, resulting in a rate distribution with mean = 0 and standard deviation (sd) = 1. It 

becomes easy to understand why PSSMs and conservation scores are used extensively in 

different ML methods and how MSAs became key players in bioinformatics and computational 

biology. 

ii) Computational methods for soluble protein structure 

Computational methods for the study of soluble protein structure are considerably more 

developed than those for MP structure. This arises due to the much higher availability of data 

for both result validation and method development. For this subsection, I focused on soluble 

protein structure prediction techniques, which can be spread across four classes: (i) knowledge-

independent ab initio methods, (ii) knowledge-dependent ab initio methods (machine-learning 

methods), (iii) fold recognition via threading and (iv) comparative modelling methods and 

sequence alignment techniques – homology modelling 126. 

Theoretically, Molecular Dynamics (MD) simulations are the best possible solution when 

considering solely accuracy. It is a knowledge-independent ab initio method that simulates a 

physical atomic/molecular system, rendering the best structure prediction of a protein by using 

its sequence. However, even though MD is widely used and have proven to be effective in 

understanding protein motion 127,128 and other molecular mechanisms 129-133, they should be 

disregarded when predicting most protein structures as they require immense computational 

power to correctly predict the structure of a protein based solely on its sequence 134. The first 

MD software to be developed, Chemistry at HARvard Macromolecular Mechanics (CHARMM) 

135, is regularly updated, making it a highly capable program in terms of both MD analysis and 

model building tools. CHARMM has several energy functions, comprising quantum-mechanical 

force fields and all-atom classical potential energy functions with explicit solvent, among others 
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135. Furthermore, the conditions in which molecular systems are simulated are highly 

customizable, enabling both soluble and membrane-bound systems with different types of 

biomolecules. Assisted Model Building with Energy Refinement (AMBER) 136, another example 

of a MD simulation package, is widely used by other packages as force field. GROningen MAchine 

for Chemical Simulations (GROMACS) 137 is one of the packages that uses force fields provided 

by AMBER and other MD software programs. It is currently capable of functioning with limited 

computational power, through the use of several algorithmic optimizations and other methods, 

such as the united-atom model, reducing the complexity of the representation of the molecular 

system and removing some degrees of freedom 126,138.  

Knowledge-dependent ab initio methods uses data retrieved from experimental studies to 

predict 3D protein structures. To do so, it relies heavily on the assumption that structural 

domains, subdomains or motifs are conserved across proteins and are highly related with 

protein sequence information 139. A 2014 review by Dorn et al. on computational strategies for 

three-dimensional protein structure prediction 126 summarizes knowledge-dependent ab initio 

in 5 essential steps: i) dividing the target sequence into fragments, ii) searching for similar 

sequences to each fragment in a known structure database, iii) scoring the different fragments, 

iv) assembling the three-dimensional structure from the fragments, and v) refining the final 

structure. The major drawback for this process is step iv) – combining different protein 

fragments has to satisfy several physicochemical constraints and can be a heavy computational 

burden. ROSETTA 140 is a computer software initially created for the determination of some 

protein structures as a part of the third edition of the Critical Assessment of protein Structure 

Prediction (CASP3), a worldwide effort to determine new methods for protein structure 

determination, as well as new proteins structures 141. A Monte Carlo simulated annealing 

strategy is utilized to assemble short protein fragments from known proteins with typical 

accuracies of 3-6 Å root mean square deviation from the experimentally determined structures. 

Assembling all fragments is made possible by the influence local sequence preference has on 

the local structure of a protein 140. Several interactions are considered, such as solvation, 

electrostatic interactions and disulphide bonds, hydrogen bonds (HB), arrangement of sheets 

and packing into helixes. The final score for the prediction is then obtained by combining all 

functions into a single value. The scoring function – the potential energy surface – separates the 

total energy into several Bayesian components describing the likelihood of a particular structure 

independent of the sequence 140,142. ROSETTA has been utilized for other functions as well, such 

as protein-protein docking 142 and loop modelling 143, among others. 
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FRAGFOLD 144 is another knowledge-dependent ab initio method for protein structure prediction 

assessed on the fourth edition of CASP program, CASP4 145. It is based on the assembly of 

supersecondary structural fragments taken from highly resolved proteins. First, there is a folding 

simulation to identify favourable supersecondary structure fragments. PSIPRED 146 is used to 

determine secondary structures, which will then be needed to predict supersecondary 

structures. Then, several random conformations are calculated for the fragments until all atoms 

satisfy a minimum distance between different amino acid residue atoms. These conformations 

are then sampled by randomly selecting different fragment conformations. The component 

energy terms and their standard deviations are then calculated and used as weights. The 

optimization process is then followed, through a simulated annealing approach, which aims to 

minimize all weights. To keep the structure from getting stuck on local optima, 50% of all 

simulations are performed on a free (non-optimum) conformation.  

Fold recognition via threading is a technique relying on the existence of conserved and 

sequence-independent protein regions and motifs 147,148. As such, a limited number of possible 

protein regions and motifs have been discovered 149. This method is particularly useful when not 

enough sequence information is available, thus complementing sequence-dependent methods. 

According to an assessment of protein folding methods done by Abual-Rub and Abdullah in 2008 

150, four steps characterize the method of fold recognition via threading: i) construction of a 

protein structure template library, ii) constructing a scoring function that measures the fitness 

between the target sequences and the templates, iii) devising an efficient, computational cost-

effective algorithm to search for the best possible template(s) and iv) minimizing the scoring 

function in order to get the best fit possible for the selected template. Steps iii) and iv) might 

have to be repeated several times in order to achieve the best possible solution, making this an 

iterative process. GenTHREADER is a fold recognition via threading platform which used only 

Class, Architecture, Topology, and Homologous superfamily (CATH) 151 as its scoring function, 

and  alignment score, length information and energy potentials as its features 152. It 

comprehended a simple artificial neural network (ANN) trained to combine these three factors 

into a single score. As of 2003 153, it started to include Position-Specific Iterative Basic Local 

Alignment Search Tool (PSI-BLAST) 154 scores – a protein sequence feature – with the help of 

Families of Structuraly Similar Proteins (FSSP) 155 – a database of known and aligned protein folds 

– and PSIPRED  146. The sequence alignments are utilized to calculate pair wise potentials and 

solvation potentials as inputs to a multi-layer feed-forward ANN with the previous score. Two 

novel components were introduced in 2013 156 – pGenTHREADER and pDomTHREADER. The first 

is recommended for fold recognition and is used to identify distant homologues, while the 
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second is useful in discriminating superfamilies. The latter uses both sequence and structural 

data, making it a much more sensitive and selective method.  

Homology modelling is a method which predicts the structure of a protein sequence using a 

high-sequence homology template. The main and most utilized databank for this is the PDB 157. 

A good example of one relatively well known and used software is MODELER 158, which, through 

comparative protein structure modelling satisfies special restraints, enabling several of the 

processes employed currently in homology modelling, such as sequence search in databases and 

optimization of various protein structures using an objective flexibility function. One of the main 

aspects to consider in homology methods and other computational methods is that amino acids 

have physical properties which can be divided across two categories: (i) properties that favour 

sequentially localized interaction clusters and (ii) properties that favour globally distributed 

interactions 159 – this means that for protein structure prediction tasks it is not enough to 

consider the amino acid residue per se, but also its neighbouring residues and other interactions 

with remotely positioned amino acids.  

Even though there have already been developed several methods for the determination of 

protein structures, most of these cannot be considered for membrane proteins. Knowledge-

independent ab initio methods require the modelling of membrane, which is completely 

different from a cytosolic environment – while the former is an amphiphilic layer where the 

protein is inserted, the latter is generally a strictly hydrophilic environment. As for all knowledge-

dependent methods, membrane protein-specific databases have to be constructed due to the 

highly different structures occurring in membrane proteins (for example, while most cytosolic 

proteins have a hydrophobic core and hydrophilic residues in their surface, hydrophobic amino 

acid residues are likely to be found in the membrane protein surface. This elicits the need to 

create different tools to determine the structure of membrane proteins, which will be further 

addressed in the next chapter. 

iii) Computational methods for membrane protein structure 

To understand how to adapt the methods used for cytosolic proteins to MP, a short summary is 

presented for some method categories: 

i. Knowledge-independent de novo methods should consider both cytosolic and 

membrane environment, which makes MD simulations more computationally 

expensive. Since MD was not used in the vast majority of this thesis project, the reader 
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can access a review which covers some uses of MD in MP structure prediction and 

contact interaction study 160; 

ii. Knowledge-dependent de novo methods can be developed considering information on 

secondary structures and trans-membrane segments, for example, and how to 

assemble each region into a MP structure. The number of MP structures available to 

construct a database is, however, a limiting factor for these methods; 

iii. Threading methods and homology modelling are the best techniques if homologs are to 

be found, since it provides good results without requiring much time. MP homologues 

are, however, much less abundant than those for cytosolic proteins, which complicates 

these methods. 

As mentioned above, methods for the prediction of membrane protein structure should 

consider most steps mentioned for cytosolic protein structure with some key adaptations, such 

as the prediction of the MP’s transmembrane segments and residue hydrophobicity. For 

example, the already mentioned PSIPRED 146 is an online platform, using PSSMs and artificial 

neural networks (ANN) to predict secondary protein structure and orientation – also known as 

protein topology. The aforementioned methods for topology prediction are not ideal for 

membrane proteins. As such, the laboratory that developed PSIPRED also developed MEMSAT-

SVM 161, a topology prediction tool based on SVMs specific for MPs and which is able to 

discriminate between cytosolic and membrane proteins, resulting in much better predictions 

overall. Combining hydrophobicity scales with the prediction of secondary structures is also 

recommended. The most well-known scale is the White hydrophobicity scale 162, but several 

others have been recently developed, such as the Unified Hydrophobicity Scale 163.  

Further addressing topology prediction, OCTOPUS 164, one of the best transmembrane α-helical 

segment predictors, combines four different ANN, each focused on predicting membrane, 

interface, loops and globular residues, through a HMM. Concerning β-barrels, an important 

supersecondary structure in MPs, BOCTOPUS 165 is a highly popular method by the same group 

that developed OCTOPUS. BOCTOPUS combines local predictions through SVMs and an HMM to 

combine all local SVM predictions. SPOCTOPUS 166, yet another method by the same group, can 

distinguish signal peptides from membrane proteins and predict their topology. These three 

different methods for MP topology prediction – OCTOPUS, BOCTOPUS and SPOCTOPUS – are 

ideal to highlight the rich variability of approaches and algorithms used to deal with specific 

problems. The methods mentioned in this paragraph are knowledge-dependent and, as such, 
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must have access to consistent and robust databases. ExTopoDB 167 is a comprehensive database 

with topology information on 2143 MPs across 158 organisms (accessed in July 28th). 

To combine topology prediction with hydrophobicity, Light Interfaces of High Polarity (LIPS) 168 

uses hydrophobicity scales to predict helices and amino acid residue orientation, PRIMSIPLR 169, 

a knowledge-dependent method which uses PSSMs, hydrophobicity scales, flexibility scales and 

evolutionary conservation to train a SVM to identify central pore residues, and MemBrain 170, an 

online server capable of predicting transmembrane α-helices and how they interact by 

predicting their contacts.  

While methods to predict α-helices and β-sheets and their association in MP seem to be present, 

some secondary structures with lower occurrence are harder to predict. According to Leman et 

al. 13, these are re-entrant helices (sometimes mentioned as “P-loops”), half-helices (α-helices 

that do not span the entire membrane), amphipatic helices (α-helices that lie on the surface of 

the membrane), trans-membrane helix kinks and β-barrels composed by more than one protein 

chain. The methods presented for topology prediction typically present poor results for these 

situations. There are, however, some methods which address some of the mentioned problems, 

such as TMkink 171 for the determination of helix kinks. The main problem with these sorts of 

methods is that they depend on the available information to make accurate predictions, which 

might not be enough to develop a reliable tool. 

To calculate MP tertiary structure, the most popular methods are with no doubt homology 

modelling and ML methods (knowledge-dependent de novo methods). While the previous 

paragraphs focused more on the latter, the following remainder of this chapter will review 

homology modelling tools for MPs. The availability (or rather scarcity) of homologues is 

particularly relevant for homology modelling in MPs since the number of unique MP 3D 

structures is significantly lower than that of cytosolic proteins. Some methods have been 

developed specifically for membrane protein modelling, namely MEMOIR (Membrane protein 

modelling pipeline), 172 which can model the 3D structure of a protein of known sequence 

provided there are available homologous MPs with determined 3D structures, and MEDELLER 

173, which has provided interesting results thanks to its tailor-made MP structure prediction – a 

sequential prediction of protein core and loops. MEDELLER will not generate 3D coordinates for 

regions for which the prediction is uncertain. This has the advantage of rendering more accurate 

models. On the other hands, these models are also slightly more incomplete. Structural 

homology modeling (threading) can overcome the lack of homologues for given sequences, 

however, as already mentioned, the small number of experimentally available MP structures 
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can lead to insufficient sampling. An example of a pipeline using threading is TMFoldWeb 174, a 

web implementation of TMFoldRec 175. Upon topology prediction, systematic sequence to 

structure alignment is performed, resulting in the selection of several templates which are 

ordered according to energy and reliability.  Rosetta has also been widely applied to MP 

prediction 176. The main improvement over soluble protein prediction was the implementation 

of a new membrane-specific version of the original Rosetta energy function, which considers the 

membrane environment as an additional variable next to amino acid identity, inter-residue 

distances and density 176. Rosetta has been used to reveal important structural details in voltage 

sensor MPs, namely the potassium channels K(v)1.2 and KvAP channels 177, and gain insight into 

voltage-dependent gating 178. Recently, RosettaMP was developed as a general framework for 

membrane protein modeling, featuring modeling tools developed in the past few years 179.  

iv) Computational methods for protein-protein interactions and complexes 

To understand how proteins interact and what drives the formation of a protein-protein 

complex from a computational perspective, it is first necessary to know what methods are 

available to study interface-related features in protein complexes. As such, this Introduction 

subsection focus on: i) interface prediction, ii) interface-related properties prediction and iii) 

docking.  

Concerning interface prediction, an aspect that is widely regarded as critical for the 

identification of interfacial residues is evolutionary conservation since interfacial residues are 

typically more conserved when compared with non-interfacial surface residues 180. To 

understand evolutionary conservation, one has to consider how evolution shapes protein 

sequence and structure – while residues which favour the protein structure/function are present 

in several proteins at specific motifs/positions, those that are detrimental are usually more 

variable 181. As such, some tools that can calculate evolutionary conservation can be considered 

as extremely helpful when seeking to predict interfacial residues, such as Consurf 124 and 

Scorecons (available in: https://www.ebi.ac.uk/thornton-srv/databases/cgi-

bin/valdar/scorecons_server.pl). Both these tools are based heavily on MSA 118,182-184. Consurf 

provides a structural perspective for this problem, as it models the provided sequence using 

homology modelling and further determines residue conservation. A method which combines 

MSA with interface prediction is EVComplex 185. Using sequences from two interacting proteins, 

EVComplex will use EVCouplings 186 to predict intramonomer and intermonomer interactions, 

using this information to predict the structure of a protein complex using only the sequence of 

both interacting proteins. A key aspect of EVComplex and EVCouplings is that it considers co-

https://www.ebi.ac.uk/thornton-srv/databases/cgi-bin/valdar/scorecons_server.pl
https://www.ebi.ac.uk/thornton-srv/databases/cgi-bin/valdar/scorecons_server.pl
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occurring mutations as accurate predictors for intramonomer and intermonomer contacts. They 

happen when mutations in an apparently conserved region are accompanied by a mutation in 

another protein region or in a different complex – since evolution drives mutation permanence, 

if two residues are considered to mutate together, it is likely that they interact with each other.  

PS-HomPPI and NPS-HomPPI 187 uses only sequence as well, and predicts interfacial residues 

based on the interfacial residues of homolog proteins with data on interfacial residues. This 

method can depend be partner-specific (PS-HomPPI) or non-partner-specific (NPS-HomPPI), but 

data suggests that partner specificity increases the accuracy of the results. In fact, an important 

note made by Xue et al. in their 2015 review 188 is that partner information is very valuable for 

protein interface prediction, which is often overlooked. A comparison of the results obtained 

through PPIPP and PAIRpred – with partner information – with the ones from PSIVER 189 

(sequence-based) and SPPIDER 190 (structure-based) – which will discussed briefly – proved that 

partner information greatly improves the predictions made. As for methods using monomer 

structure, SPPIDER 190 is a machine-learning approach that predicts interfacial residues based on 

the predicted relative solvent accessibility (which uses the unbound monomer solvent 

accessibility and other structural features), WHat Information Does Surface Conservation Yield? 

(WHISCY) 191 uses structure to define surface residues and to smooth the prediction and 

calculates conservation for all surface residues, and Consensus Prediction Of interface Residues 

in Transient complexes (CPORT) 192 uses several other methods that predict interfacial residues 

to make its own predictions, making it a meta-server. Evolutionary features, regardless of their 

popularity, have a considerable disadvantage – they are quite successful only when a high 

number of homologs are available 193,194. As such, methods which are able to abstract from 

evolutionary conservation are bound to be more robust across all sorts of protein sequences. 

One example is the method developed by Wang et al. 194 for intramonomer contact prediction. 

It processes sequences using an ultra-deep ANN and convolutional neural networks (CNN) to 

accurately predict protein contacts without using evolutionary conservation.  

Interface-related characteristics are plentiful and necessary to describe the interface – these can 

range from H-bonds, salt bridges, hydrophobic interactions, solvent accessible surface area 

(SASA), number of nearby atoms, total number of interface atoms, polar and apolar energy in 

the interface, hot-spots (HS), hot-regions and so forth. To predict H-bonds, salt bridges and 

hydrophobic interactions, one can use software programs such as Visual Molecular Dynamics 

(VMD) 195 and PyMol 196, which provide several built-in tools to do so and are easily scriptable, 

making these characteristics easy to determine at a high-throughput level. SASA can also be 

calculated using VMD, but some servers are able to provide better results, such as bioCOmplexes 
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COntact Maps (COCOMAPS) 197, which calculates several interface features, such as total SASA, 

SASA in terms of independent residues, total interface polar and apolar area, as well as H-bonds 

and number of nearby atoms, making it a relatively comprehensible and quick method for 

interface characterization. HS, defined as residues which, upon alanine mutation, cause an 

alteration of over 2 kcal/mol in the free binding energy difference (ΔΔG ≥ 2), represent residues 

which are highly important for the protein-protein interface 198, while null-spots (NS) are all 

interfacial residues which are not HS. As such, to understand which protein-protein interface 

regions or residues are important without using experimental methods, computational tools can 

be used. SpotOn 199, a tool developed during this thesis project which will be described shortly, 

representing the highest sensitivity and accuracy for HS prediction so far, makes use of several 

features such as the ones previously described for the characterization of the protein-protein 

interface to predict which residues should be considered HS or NS200. As for hot-regions – 

characterized as HS clusters (HS are not randomly distributed across the protein-protein 

interface but rather clustered 201) – HotRegion 202 can be used, which uses HotPoint 203 to predict 

HS across all PDB entries. 

Docking is the process focused on finding the best possible conformation for two proteins 

interacting with each other. Typically, it starts by finding the best orientation possible through 

rigid docking – both monomers remain unaltered as several orientations are sampled. Then, it 

refines the structure by semi-flexible or flexible docking, which enables some coordinate 

fluctuations on one or both proteins, respectively 204. The key aspect that typically differentiates 

docking algorithms is how they perform the rigid docking (search phase) and how they rank each 

of the complex structures (scoring phase). As for other structural tasks, several computational 

methods have been developed. For example, ZDOCK 205 is a docking algorithm with a search 

phase based on the Fast Fourier transformation and a scoring phase based on shape 

complementarity, electrostatics and statistical potential terms, and High Ambiguity Driven 

protein-protein DOCKing (HADDOCK) 206 is a docking algorithm whose main feature is the 

integration of information on interfacial residues, greatly reducing the search phase and 

improving the scoring phase, rendering better, more realistic complexes.  

While some of the methods described – especially those that use previous information on the 

interface, such as interface characterization methods and HADDOCK 206 – work in MPs without 

the need for any major adaptations, interface prediction and standard docking tools are much 

more challenging endeavours in MP study. As such, the following chapter will focus on methods 

developed specifically for this. 
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v) Computational methods for membrane protein-protein partner interactions 

As with MP structure prediction, MP interface prediction typically requires tools different from 

those for cytosolic proteins. Methods for MP-MP complexes and MP-cytosolic protein 

complexes will be considered in the following paragraphs. 

Concerning MP-MP complexes, Some algorithms have been developed for this purpose, such as 

SVMs 207 and RFs 208 with residue type distribution and evolutionary conservation features using 

a MP structure as input and residue averaging (areas with several residues classified as 

interfacial are more likely to be predicted as interfacial). The number of contacts can also be 

decisive in identifying protein-protein interfaces (PPI) – by knowing how many contacts exist in 

a protein-protein interface, excluding regions incorrectly classified as interfacial becomes much 

easier. TMH-Expo 209 is method developed for intramonomer contact prediction in multi-

spanning helical MPs using ANNs. Even though this method is used for intramonomer contacts, 

an adaptation of this algorithm for MP interfaces could be of great use in MP complex prediction.  

Concerning MP-cytosolic protein interactions, ProMate 210 is an interesting example of a 

structure-based method, which uses several features such as secondary structure, length of non-

secondary structure protein regions and pairwise amino acid residues distribution to calculate 

an interface propensity value for each residue. Part of the development of ProMate involved the 

elimination of redundant or highly correlated features, which reduces computation and search 

space. Protein-Protein Interaction Prediction Platform (PPIPP) 211 is a good example of a 

sequence based method by using propensity scores based on the presence of a given residue 

compared to any other residue at the interface. To solve the lack of partner information, the 

model was trained by comparing residues in intermolecular protein-protein interface with intra-

protein contacts.  PPIPP is built on 24 ANN and returns the average score as final score, using 

PSSMs as one of its main features. PAIRpred 212 is an hybrid approach, using both sequence and 

structure-based features: the structure-based features consist of relative Surface Accessible 

Surface Area (SASA), residue depth, half sphere amino acid composition and a protrusion index, 

while the sequence-based features are based on PSSMs and predicted relative accessible surface 

area. All these are combined through a SVM to predict protein-protein interactions.  

Docking in MPs has also been improved in recent years. Memdock 213 (specific for α-helical MPs) 

and docking tools in RosettaMP 179 take into consideration the lipid bilayer environment for both 

search and scoring phases. The key aspect of these algorithms is how they reduce the search 

space by considering that MP complexes are structurally confined and do not have the same 
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conformational flexibility as cytosolic protein complexes. These assumptions are key when 

dealing with MP complex structure prediction as they allow researchers to overcome the lack of 

experimental knowledge on the subject by using trustworthy assumptions that eliminate several 

incorrect conformations. Scoring functions are also adapted considering these structural 

restrictions – while exposed surface hydrophobic residues/regions might be favoured in 

membrane-inserted regions, they are considered detrimental in solvent-facing protein regions, 

and hydrophilic residues/regions in membrane inserted regions are more likely to be considered 

for interfaces in MP complexes. 

This particular subsection should alert the reader to a particularity – computational methods 

become scarcer as MPs are further considered. However, some MP groups are highly studied 

due to their relevance and specific methods for these MP groups became widely available. One 

such example is GPCRs, for which several computational methods have been developed. Some 

of these methods are reviewed in the following subsection, highlighting GPCRdb 214, one of the 

most ambitious bioinformatics efforts to date. 

vi) Computational methods for GPCRs 

GPCRs have been extensively considered from a computational perspective, leading to one of 

the most well-known online interfaces for computational biology – GPCRdb 214. Some of the most 

relevant and tailor-made tools are reviewed in this chapter.  

Alignments are one of the key tools in studying GPCRs, particularly due to the Ballesteros-

Weinstein (BW) nomenclature 215, a residue identification system based on the most conserved 

residue of each TMH. This makes comparisons across several different GPCRs much easier as 

common and conserved residues are much more easily identified when analysing heavy 

amounts of data. GPCRdb provides a platform for automatic residue numbering, including the 

BW nomenclature. One other key aspect when studying GPCRs through computational methods 

is, upon the absence of a resolved 3D structure, to find a template sufficiently adequate to 

accurately model GPCRs. GPCRdb provides tools for high homology template selection, as well 

as a database of known homology models to aid in this task. Nonetheless, some tools such as 

GPCR-ModSim 216 have been developed. GPCR-ModSim models GPCRs considering 

active/partially active/inactive states using homology modeling and includes a MD refining step 

using the membrane-inserted GPCR.  

Concerning GPCR partners, GPCRdb provides several tools to study GPCR-G-protein coupling and 

G-protein alignments. Phylogenetic maps are also provided to help the user understand how 
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evolution drove this sort of interaction. Another interesting tool available in the website is the 

Interface Mapping tool, which uses the resolved structure of the β2-adrenergic receptor upon 

complex formation with a Gs-protein (PDBID: 3SN6 217) to infer the GPCR-Gs-protein interaction 

site for all G-proteins. This approach, however, is not reliable – using a single template to derive 

interacting residues across several different G-proteins is not robust as key differences will 

probably arise and explain how differently the Gs-protein interacts with different GPCRs. 

Furthermore, it leaves other GPCR-G-protein interactions unexplained. 

While computational tools for cytosolic protein and MP structure have been widely regarded, 

studying protein interfaces is still challenging. As such, this project focused on some key aspects 

of protein interface computational study, namely the development of SpotOn 199, a method for 

the prediction of HS, which are thought to be essential in interfacial characterization, building 

the SpotOnDB, a comprehensive overview of PPI concerning structural and evolutionary 

features using the PPI4DOCK non-redundant complex dataset 218, using ML to predict interfacial 

residues in monomer structures, and using dopamine receptor-partner interactions as a case 

study to understand how receptor dynamics affects partner differential binding. By doing so, 

this project covers method development, utilization of high-throughput methods to make sense 

of high amounts of data, and focusing on a set of complexes between similar proteins to 

understand how differential binding is affected by what are apparently small nuances.  
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B. Methodology 

1) SpotOn – prediction of Hot-Spots from complex structural information 

During this thesis I participated in the development of SpotOn 199, a method for HS prediction 

from 3D complex structure  It relied on the collaboration by researchers from the Center for 

Neuroscience and Cell Biology from the University of Coimbra, the Bijvoet Center for 

Biomolecular Research from the Utrecht University, the Centro de Ciências e Tecnologias 

Nucleares from the University of Lisbon, Department of Genetics and Genomics and Icahn 

Institute for Genomics and Multiscale Biology from the Icahn School of Medicine at Mount Sinai 

and Centro de Matemática da Universidade do Porto. 

As described previously, all ML based methods comprehend some essential steps:  

i. Compiling all known cases into a comprehensive dataset – for this case, all known 

complexes with experimentally determined structure and experimental information 

on HS were gathered in a non-redundant database; 

ii. Training the prediction model – this step should use a fraction of the dataset to 

determine what are the best parameters of a ML algorithm, enabling it to perform 

the best for the prediction of novel cases; 

iii. Testing the prediction model – after the model training step, an independent test 

set should be used to confirm the model’s best parameters. 

i) Dataset construction 

By combining the Alanine Scanning Energetics database (ASEdb) 219, the Binding Interface 

Database (BID) 220, Protein-protein Interactions Thermodynamic database (PINT) 221 and 

Structural database of Kinetics and Energetics of Mutant Protein Interactions (SKEMPI) 222 

databases to construct a non-redundant dataset of mutations, 534 mutations were compiled 

across 53 different non-redundant complexes. These databases gather information on ΔΔG 

values and residues were considered as HS if, upon alanine mutation, ΔΔG ≥ 2.0 kcal/mol. 3D 

structures were retrieved from the PDB 223. To ensure maximum variability across all complex 

interfaces, all sequences were filtered to ensure at most 35% sequence homology in each 

interface. Hydrogens were added by an in-house VMD 195 script and only protein atoms were 

considered. 
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ii) Structural/sequence features 

Concerning structural features, ten SASA-related features were calculated from unbound, bound 

and standard SASA values (monSASAi, compSASAi and resSASAi, respectively) in Equations 1-10 and 

monSASAi and compSASAi were used as well. Twenty features corresponding to interfacial residue 

count were also added, one for each residue. Intermolecular atomic contacts within 2.5 Å and 

4.0 Å, and the number of intermolecular hydrophobic interactions were also used as features. 

These were calculated using in-house VMD software 195 scripts, which are incorporated in the 

SpotOn pipeline.  

∆𝑆𝐴𝑆𝐴𝑖 = | 𝑆𝐴𝑆𝐴𝑖𝑐𝑜𝑚𝑝 − 𝑆𝐴𝑆𝐴𝑖𝑚𝑜𝑛 | (1) 

𝑆𝐴𝑆𝐴𝑟𝑒𝑙 𝑖 =
∆𝑆𝐴𝑆𝐴𝑖

𝑆𝐴𝑆𝐴𝑖𝑚𝑜𝑛

 (2) 

𝑆𝐴𝑆𝐴𝑐𝑜𝑚𝑝/𝑟𝑒𝑠 𝑖 =
𝑆𝐴𝑆𝐴𝑖𝑐𝑜𝑚𝑝

𝑆𝐴𝑆𝐴𝑟𝑟𝑒𝑠

 (3) 

𝑆𝐴𝑆𝐴𝑚𝑜𝑛/𝑟𝑒𝑠 𝑖 =
𝑆𝐴𝑆𝐴𝑖𝑚𝑜𝑛

𝑆𝐴𝑆𝐴𝑟𝑟𝑒𝑠

 (4) 

𝑆𝐴𝑆𝐴∆/𝑟𝑒𝑠 𝑖 =
∆𝑆𝐴𝑆𝐴𝑖

𝑆𝐴𝑆𝐴𝑟𝑟𝑒𝑠

 (5) 

𝑆𝐴𝑆𝐴𝑟𝑒𝑙/𝑟𝑒𝑠 𝑖 =
𝑆𝐴𝑆𝐴𝑖𝑟𝑒𝑙

𝑆𝐴𝑆𝐴𝑟𝑟𝑒𝑠

 (6) 

𝑆𝐴𝑆𝐴𝑐𝑜𝑚𝑝/𝑎𝑣𝑒 𝑖 =
𝑆𝐴𝑆𝐴𝑖𝑐𝑜𝑚𝑝

𝑆𝐴𝑆𝐴𝑟𝑎𝑣𝑒

 (7) 

𝑆𝐴𝑆𝐴𝑚𝑜𝑛/𝑎𝑣𝑒 𝑖 =
𝑆𝐴𝑆𝐴𝑖𝑚𝑜𝑛

𝑆𝐴𝑆𝐴𝑟𝑎𝑣𝑒

 (8) 

𝑆𝐴𝑆𝐴∆/𝑎𝑣𝑒 𝑖 =
𝑆𝐴𝑆𝐴𝑖∆

𝑆𝐴𝑆𝐴𝑟𝑎𝑣𝑒

 (9) 

𝑆𝐴𝑆𝐴𝑟𝑒𝑙/𝑎𝑣𝑒 𝑖 =
𝑆𝐴𝑆𝐴𝑖𝑟𝑒𝑙

𝑆𝐴𝑆𝐴𝑟𝑎𝑣𝑒

 (10) 
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As for sequence features, PSSMs and the corresponding weighted observed percentages were 

computed using BLAST 118,224, providing forty additional features. Sequence related features 

were extended to include those 805 extracted from the protr 225 package from R:  

i. Amino Acid Composition (AAC) of the protein (fraction of each amino acid type within 

the protein); 

ii. Pseudo Amino Acid Composition (PAAC) 226 (adds up to the standard 20 amino acid 

definition with information on residue motifs),  

iii. Amphiphilic PAAC (a set of the twenty original amino acids, plus descriptors regarding 

the hydrophobicity/hydrophilicity of the sequences that have often displayed positive 

effects regarding protein-protein interaction prediction algorithms);  

iv. BLOcks Substitution Matrix (BLOSUM) (evolutionary features in the form of a scoring 

matrix upon sequence alignment taking into account amino acid substitution at a 62% 

level of similarity); 

v. Protein Fingerprinting (the identification and differentiation of proteins by unique 

characteristics using the amino acid index and PCA (which will be described ahead));  

vi. ProteoChemometric Modeling (PCM) 227 (PCA of 2D and 3D descriptors to describe 

protein dynamics and ligand interaction).  

PAAC is highly informative as it does not include residue composition solely, but also long-range 

correlations of the physicochemical properties between two residues, with valuable results in 

protein classification tasks 228-232 . A final number of 881 features were therefore calculated for 

all 534 observations, composed of 127 HS and 407 NS. 55 features are based on the amino acid 

residue, while the remaining are based on the whole protein.  

As observable, this dataset has more features than observations and more negative cases (NS) 

than positive cases (HS) – this is known as an unbalanced dataset, since there is more 

information on one class than the other. As such, overfitting becomes a problem. Overfitting 

happens when the trained model is only able to explain the data used to train it. By having too 

many features characterizing each observation or too many of one class, overfitting becomes 

much more likely. The following subsection will explain how to deal with these problems, as well 

as some considerations on ML. 

iii) Machine-learning techniques  

The R programming language 233 was used to perform ML and most statistical analysis, together 

with the Classification And Regression Training (caret) 234 package, which provides an elegant 



30 
 

and high-throughput way of doing machine-learning. The dataset was randomly split into 

training (70% (374) of all observations) and testing (30% (160) mutations/observations) sets. An 

equal proportion of positive/negative cases is maintained across all subsets. 51 different 

algorithms in the caret package were tested: Boruta, C5.0, C5.0Rules, C5.0Tree, LogitBoost, 

ORFlog, ORFpls, ORFridge, ORFsvm, RRF, RRFglobal, ada, adaboost, amdai, avNNet, bagEarth, 

bagEarthGCV, bagFDA, bagFDAGCV, ctree, ctree2, dwdPoly, dwdRadial, evtree, fda, gamboost, 

glm, glmboost, hdda, knn, lda, lda2, loclda, multinom, nb, pda, plr, qda, ranger, rda, rf, stepLDA, 

stepQDA, svmLinear, svmLinear2, svmPoly, svmRadial, svmRadialCost, svmRadialSigma, 

svmRadialWeights and wsrf.  

Overcoming overfitting can be done using several techniques. Down- and up-sampling were 

both used – in the first a random subset of all classes in the training is generated so that each 

class size matches the size of the least prevalent class, while in up-sampling, random sampling 

of the minor class with replacement is performed so that the size of the minor class (HS) matches 

that of the major class (NS). Both down- and up-sampling are techniques that help in dealing 

with overfitting by equalling the number of positive and negative classes. To further prevent 

overfitting, 10-fold cross validation repeated 10 times was used. This technique splits the 

training subset 10 times into training (80%) and validation (20%) subsets. The latter is used to 

assess how the model is performing across each iteration. By using several different validation 

subsets to validate the model, it is guaranteed to fit no particular subset of the data.  

A dimensionality reduction technique – PCA – was also used to prevent overfitting. To do so, it 

first characterizes the first principal component (PC) by determining the data projection with 

the largest variance. Consequently, it determines the following PCs by considering the 

orthogonal data projections relatively to the already calculated PCs with the greatest variance. 

By doing so, it is able to describe the data using a greatly reduced number of dimensions 235. 

Apart from PCA, all data was scaled according to Equation 11, in which N is the normalized vector 

(feature), V is the original vector, and m and σ are the vector’s mean and sd, respectively. This 

allows us to consider each feature has having a similar distribution, with mean = 0 and sd = 1.  

𝑁 =
𝑉 − 𝑚

𝜎
 (11) 

Considering the previously described data treatments, six pre-processing conditions were tested 

to explore the best possible results:  

a. Scaled – normal scaling of the variables; 
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b. ScaledDown – normal scaling of the variables with down-sampling of the 

negative class; 

c. ScaledUp – normal scaling of the variables with up-sampling of the positive class; 

d. PCA – normal scaling of the variables and PCA of the dataset with down-

sampling of the negative class; 

e. PCADown – normal scaling of the variables and PCA of the dataset; 

f. PCAUp – normal scaling of the variables and PCA of the dataset with up-sampling 

of the positive class. 

The best pre-processing condition, according to average Area Under Receiver Operating Curve 

(AUROC) and sensitivity (which will be explained shortly ahead) was chosen to further develop 

the method. Validity and performance in machine-learning was done using several methods, 

namely the AUROC, the Accuracy (equation 1.1), the Sensitivity, the Specificity, Positive 

Predictive Value (PPV), Negative Predictive Value (NPV), False Discovery Rate (FDR), False 

Negative Rate (FNR), F1-score and Mathew’s Correlation Coefficient (MCC). Except for AUROC, 

all values are calculated using the model’s predictions, considering four distinct cases: true 

positives (TP – the model’s prediction for the positive class is correct), true negatives (TN – the 

model’s prediction for the negative class is correct), false positive (FP – the model predicts an 

observation as belonging to the positive class while it is in fact a negative class) and false 

negative (FN – the model predicts an observation as belonging to the negative class while it is in 

fact a positive class), are described in Equations 12 – 20 and, just as the AUROC, were calculated 

using R. AUROC uses a plot with 1 – Sensitivity in the x-axis and the Specificity in the y-axis. Three 

points are considered: (0,0), (1 – Specificity, Sensitivity) and (1,1) and the area underneath this 

“curve” is calculated, thus rendering a metric that considers both Sensitivity and specificity.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 (12) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (13) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (14) 
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𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (15) 

𝑁𝑃𝑉 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 (16) 

𝐹𝐷𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑃
= 1 − 𝑃𝑃𝑉 (17) 

𝐹𝐷𝑅 =
𝐹𝑁

𝐹𝑁 + 𝑇𝑁
= 1 − 𝑁𝑃𝑉 (18) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (19) 

𝑀𝐶𝐶 =
𝑇𝑃 ∗ 𝑇𝑁 − 𝐹𝑁 ∗ 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
= 1 − 𝑁𝑃𝑉 (20) 

The final algorithm used an ensemble of the 5 best performing methods to further reduce 

overfitting and improve performance by combining the prediction of several different 

techniques 236 using a logistic regression function. To do so algorithms were clustered into 5 

groups according to caret’s tags 234, and a detailed explanation can be found at Moreira et al. 

199. A logistic regression is handy when it comes to probabilities: its output equals 0 or 1 as its 

input approximates negative or positive infinity, respectively, and provides a smooth transition 

between 0 and 1. The method is publicly available in 

http://milou.science.uu.nl/cgi/services/SPOTON/spoton/ 199. 

 

2) SpotOnDB – understanding protein-protein interfaces through big data 

approaches 

SpotOnDB made extensive use of the SpotOn pipeline with some additional being calculated 

with bioinformatics and programming tools. It aimed to further characterize and understand 

PPIs using high-throughput data analysis in the PPI4DOCK 218 non-redundant dataset. 

i) Protein-protein Dataset 

Our dataset was composed by 1403 protein-protein complexes retrieved from the PPI4DOCK 

database, totalizing 66.710 interfacial residues 218. Even though 1.417 PDB entries are present 

in the original database, the remaining 14 complexes do not have sufficient homologs to 

http://milou.science.uu.nl/cgi/services/SPOTON/spoton/
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calculate PSSM values, an important feature of the SpotOn classifier. The complexes are non-

redundant (at the 70% sequence identity level) heterodimeric complexes with resolutions lower 

than 3.5 Å, with a biological assembly containing no more than 20 chains, classified as a 

biological entity, and with an interface size greater than 300 Å2. 

ii) Hot-spot classification 

SpotOn 199 is based on the previously described machine-learning ensemble which uses the 3D 

structure of a complex as input and determines several features for interfacial residues with the 

ultimate goal to classify them as HS or NS. Apart from the previously described features 

calculated for the SpotOn classification algorithm, some extra-features were calculated using 

this pipeline, namely Hydrogen-Bonds, Salt-Bridges 237 and hydrophobic interactions 238,239.  

iii) Protein-protein interfacial characterization 

All features calculated were compared in residues classified as HS and NS.  A few additional 

evolutionary- and structure-based features were calculated for a better characterization of PPIs. 

These were:  

Enrichment factors: Enrichment factors or values (𝐸. 𝐹𝑎𝑐𝑡𝑜𝑟) are an easy way of comparing the 

frequency of residues as HS using the average HS number on the interface. This feature 

(Equation 22) was first described by Bogan et al. 198: 

𝐸. 𝐹𝑎𝑐𝑡𝑜𝑟 =
 𝑝𝐻𝑆/𝑟𝑒𝑠

𝑝𝑟𝑒𝑠/𝑖𝑛𝑡𝑒𝑟
 (22) 

𝐸. 𝐹𝑎𝑐𝑡𝑜𝑟 is defined as the ration between the proportion or percentage of a particular residue 

as HS (𝑝𝐻𝑆/𝑟𝑒𝑠) and the proportion or percentage of that residue in the interface (𝑝𝑟𝑒𝑠/𝑖𝑛𝑡𝑒𝑟). 

Residue-wise HS were also calculated according to Equation 23: 

𝑅𝑒𝑠𝑖𝑑𝑢𝑒 − 𝑤𝑖𝑠𝑒 𝐻𝑆 =
 𝑛𝐻𝑆/𝑟𝑒𝑠

𝑛𝑖𝑛𝑡𝑒𝑟/𝑟𝑒𝑠
 (23) 

𝑛𝐻𝑆/𝑟𝑒𝑠 is the number of predicted HS for a given residue and 𝑛𝑖𝑛𝑡𝑒𝑟/𝑟𝑒𝑠 is the number of 

interfacial occurrences of that same residue. HS distribution was defined as the percentage of 

residues acting as HS out of the total number of HS. 

Propensities: Protein surface residues were considered as residues with SASA larger than 1 Å2 as 

calculated by the VMD software 195, core residues were considered as all non-surface residues 
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and interface residues were retrieved from the individual PDB files. Protein core, non-interface 

surface and interface residue propensities and normalized residue propensities were calculated 

as described in Yan et al. 240. 

B-factors: Values for individual atoms were retrieved from all PDB files using a Python 2.7 script. 

Values  were normalized for each complex following the protocol defined by Liu et al. 241, in 

which normalization is performed by considering individual PDB files instead of the entire 

dataset, as demonstrated in Equation 3: 

𝐵𝑛𝑜𝑟𝑚
𝑖 =

𝐵𝑖 − �̅�

𝛿𝐵 ∗ 1.645
 (24) 

where 𝐵𝑖  is the B-factor value of the atom, and �̅� and 𝛿𝐵 are, respectively, the mean and sd B-

factor values for the complex, rendering 𝐵𝑛𝑜𝑟𝑚
𝑖 , the normalized B-factor value. Mean normalized 

B-factor values for each interfacial residue were also calculated. 

HS regions: These regions were defined by Keskin et al. 201,242 as clusters of tightly packed HS that 

come in contact with each other. VMD 195 tailor-made scripts were utilized to calculate 

neighboring residues within 8 Å and 10 Å of all interfacial residues. A posterior distinction of 

neighboring residues as intramolecular (neighboring residues within the same monomer) or 

intermolecular (neighboring residues present in the partner protein) Hot-regions was also made.  

Evolutionary conservation: Residue sequence-conservation was retrieved for all complexes using 

Consurf 124, based on the Rate4Site algorithm 125 for calculating position-specific conservation 

scores for each amino acid residue. Only interfacial residues were considered. The selected 

program for multiple sequence alignment was MAFFT 183,184 using the BLAST 118 on the UNIREF90 

database 243. For each protein sequence a maximum of 150 selected sequences were retrieved, 

having between 35% and 95% homology.  

iv) Statistics, data visualization and webserver implementation 

Statistics presented in this paper, namely mean and sd values, as well as data visualizations plots 

(ggplot2 based 244) were calculated and displayed using the R-statistical package 233. Plotly 245 

was used for the dynamic visualization in the website, which was constructed using the shiny 

application package 246. It is freely available at http://milou.science.uu.nl/services/SPOTONDB/ 

or http://45.32.153.74/spotondb/. The complete dataset with all calculated features and 

residue classification will be publically available, with a summary description of the columns 

composing the dataset in Annex II.   

http://milou.science.uu.nl/services/SPOTONDB/
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3) Interface Prediction – using deep-learning to identify interfacial patches in 

protein surface 

Using a pipeline similar to the one utilized for SpotOn (described above), predicting the interface 

revealed itself as a more challenging endeavour. As such, more ambitious techniques and 

models were employed, namely Deep-Learning (DL) through the use of h2o package, an 

implementation of the h2o deep-learning framework 247, and the bio3d package 248 for the R 

programming language. The main advantage of using h2o is that it uses it performs 

computations using its own cluster, rather than in R memory, leading to much faster model 

training. bio3d was used to calculate distances between residues in PDB files to identify 

interfacial patches.  

i) Dataset construction and features 

The same dataset used for SpotOn was utilized for this part of my thesis work, with some 

changes: i) only H-bonds and salt-bridges were calculated concerning structural interactions and 

the total number of structural interactions in the interface and per residue were used as features 

in the construction of the final dataset, ii) only monomer-related SASA features were utilized 

(monSASAi, mon/resSASAi and mon/aveSASAi), iii) evolutionary conservation was used, as calculated by 

Consurf 124, and iv) all interfacial residues were considered. This resulted in a dataset with 15.508 

residues and 907 features, each classified as interfacial or non-interfacial. Features were filtered 

for near zero variability resulting in no removed features, and feature covariance was calculated 

across all features and a threshold of 75% was chosen to remove highly correlated features, 

which led to a final count of 655 features. 

ii) Model hyperparametrization, parametrization and training 

Concerning that h2o provides a highly rich environment for DL model concerning 

hyperparameters, a random discrete grid search was performed to determine the best 

possible hyperparameters.  

 

 

Table 1 describes the tested hyperparameters in the random discrete grid search, which was 

done with a training set – 50% of the full dataset (Train) – further divided into a training subset 

– 60% of the training set – and a validation set – 20% of the training set – trained for 5 epochs. 

AUROC was used used to select the best hyperparameters. The tested hyperparameters are 
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different activation functions (how each neuron determines the output considering its inputs), 

different hidden layer compositions (the number of layers (the number of elements in each 

array) and the number of hidden neuros in each layer), different input dropout ratios (how often 

should an input neuron be dropped out), and different values for L1 and L2 regularization. 

Activation functions are an important discussion topic and each should be described: 

• Rectifier functions are equal to 0 for any x < 0 and linear for any x > 0 249; 

• Tanh functions are hyperbolic tangent functions and are composed of two plateaus at -

1 and 1 when x approximates positive and negative infinity, respectively, and a smooth 

gradient from -1 to 1 250; 

• Maxout functions are composed of several linear models and the output is the maximal 

value out of all linear models for any given input 251; 

• RectifierWithDropout, TanhWithDropout and MaxoutWithDropout functions are the 

same as Rectifier, Tanh and Maxout functions, respectively, but neurons in the hidden 

layer are randomly eliminated. This prevents overfitting by stochastically removing 

neurons which might be fitting to closely with the data 249. 

L1 and L2 regularization are used to reduce overfitting and are described according to Equations 

24 and 25: 

𝐿1 = ||𝑤||
1

= ∑ |𝑤𝑖|

𝑛

𝑖=1

 (24) 

𝐿2 = ||𝑤||
2

2
= ∑ 𝑤𝑖

2

𝑛

𝑖=1

 (25) 

where L1 and L2 are the L1 and L2 regularizations and wi is the weight of a single neuron. This 

restraint ensures that the weights will not grow to excessively large values, which can be a cause 

of overfitting 249. Furthermore, a stopping tolerance of 5*10-2 was used considering 2 stopping 

rounds (if the method did not show an improvement superior to 5*10-2 in AUROC for 2 rounds 

the model being trained as a part of the grid search stops and the next one is trained) and the 

maximum squared sum of incoming weights per unit was set to 10. Concerning the search 

criteria, a maximum of 100 models were generated, with a maximum runtime of 360 seconds 

and a stopping tolerance of 10-2 for 5 stopping rounds. 
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Table 1 - Tested hyperparameters for the random discrete grid search for the deep-learning model. 

Hyperparameters Tested conditions 

Activation functions 
Rectifier, Tanh, Maxout, RectifierWithDropout, 
TanhWithDropout, MaxoutWithDropout 

Hidden layer composition 
[100,100], [200,200], [100,100,100], 
[200,200,100], [500,200,100], [200,200,200], 
[500,200,100], [500,500,100], [500,500,200,100] 

Input dropout ratio Values ranging from 0.01 to 0.1 with a step of 0.01 

L1 regularization Values ranging from 0 to 10-3 with a step of 10-6 

L2 regularization Values ranging from 0 to 10-3 with a step of 10-6 

 

Feature pre-processing consisted only down- and up-sampling the negative and positive class, 

respectively, and in using Synthetic Minority Over-sampling TEchnique (SMOTE) resulting in four 

datasets – Full, DownSample, UpSample and SMOTEd. SMOTE is a technique to generate 

synthetic entries by taking each underrepresented class sample and introducing examples along 

the line joining the k underrepresented class nearest neighbours 252. It is necessary to use SMOTE 

with some caution in this case as high-dimensionality might be a problem for SMOTE 253. The 

data was scaled as a part of the h2o DL function, which automatically scales the data upon user 

request. Deep-learning models ware trained with the same data subset used for the random 

discrete grid search for all four datasets for 20 epochs using 10-fold cross-validation with the 

optimal parameters obtained from the random discrete grid search, considering the AUROC as 

the metric to evaluate performance across each epoch. Testing was done using 25% of the full 

dataset (Test). The same metrics used for SpotOn were utilized to assess the models’ 

performance.  

iii) Interfacial patch prediction 

The number of α-carbons belonging to neighbouring predicted interfacial residues at different 

cut-off distances (5 Å, 8 Å, 10 Å, 15 Å, 20 Å and 25 Å) to test if this feature is relevant in interface 

prediction. The rationale behind this process is that interfaces are usually composed by more 

than 13 residues, as results from the SpotOnDB assessment showed. As such, the number of 

neighbouring predicted interfacial residues was used in an attempt to enhance interface 

prediction. To do so, distance matrices were calculated for all residues’ α-carbons in all PDB files 

using the bio3d package 248 for the R programming language and results were filtered for 

surface/interfacial residues only. Upon doing so, total predicted interfacial residues at 5 Å, 8 Å, 

10 Å, 15 Å, 20 Å and 25 Å cut-offs and the interface prediction were used as input to a logistic 

regression. The performance of the final pipeline (interfacial residue prediction and interfacial 
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patch prediction) was assessed using the same metrics as those for the SpotOn method and the 

remaining 25% of the full dataset (Test2).  

4) Beyond the interface – how complex structure dynamics and conformation 

affects the binding interface 

Understanding GPCR-partner interaction is of major relevance for molecular biology. As such, 

dopamine receptors were used as a case study to better understand how differential binding 

happens in GPCRs. To do so, homology models were made of several dopamine receptors, G-

proteins and arrestins, and several bioinformatics tools were used to characterize GPCR-partner 

complexes. 

i) Homology modelling 

Sequences for all proteins to be modelled were retrieved from the Universal Protein Resource 

(UniProt) database 254 and saved in the Fast Adaptive Shrinkage/Thresholding Algorithm (FASTA) 

format. The modelled proteins were dopamine receptor 1 (D1R – P21728), dopamine receptor 

2 (D2R – P14416), dopamine receptor 3 (D3R – P35462), dopamine receptor 4 (D4R – P21917) 

and dopamine receptor 5 (D5R – P21918) from the β2-adrenergic receptor in PDBID: 3SN6 217, 

the G-proteins Gq (P50148), Gz (P19086), Gt2 (P50149), Gi1 (P63096), Gi2 (P04899), Gi3 (P08754), 

Gs(sh) (P63092), Go (P04971), Gs(lo) (GI:20147687) and GoB (GI20147683) from the Gs in PDBID: 

3SN6 217, and arrestins 2 (P49407) and 3 (P32121) from the visual arrestin in PDBID: 4ZWJ 255. All 

modelling was performed using MODELLER 158. For every protein, 100 homology models and the 

best one was selected considering MODELLER’s molpdf and DOPE scores, and, for the dopamine 

receptors, the distance between ICL3 and the intramembrane domain of the dopamine 

receptor. 

ii) Structure refinement with HADDOCK 

Dopamine receptors and G-proteins and arrestins were oriented using 3SN6 217 and 4ZWJ 255, 

respectively using the alignment function in PyMol 196. Upon doing so, structures were submitted 

to the Refinement Interface of the HADDOCK webserver 206. This interface refines the structure 

of a complex submitted by the user, with focus on the interface. It simulates a thin water layer 

surrounding the protein with a cut-off distance preventing water molecule infiltration into the 

complex. To do so, it follows a three step process: i) a heating phase, during which the structure 

has no positional restraints (the atoms are allowed to move freely), ii) a high temperature phase, 

during which bond and improper torsion angle energy constants are reduced by a constant value 
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to ensure structural flexibility, and iii) a cooling phase, during which the constants are 

progressively returned to their original values. During these steps, MD simulations are 

responsible for structural alterations in non-bonded interactions, such as Van der Waals, 

electrostatic and Lennard-Jones interactions. 

iii) Interhelical distance 

TM3-TM5 and TM5-TM6 interhelical distances were calculated using VMD 195 using the α-

carbons belonging to the residues in Table 2. These residues were chosen based on Kruse et al. 

256, corresponding to 3.54, 5.62 and 6.37 in the Ballesteros-Weinstein nomenclature 215.  

Table 2 - Residues utilized for the interhelical distance calculation in TM3, TM5 and TM6 for D1R, D2R, D3R, D4R and 

D5R. 

 TM3 TM5 TM6 

D1R 108ILE 201TYR 241LEU 

D2R 108VAL 185TYR 225LEU 

D3R 108VAL 188TYR 228VAL 

D4R 108PRO 186PHE 226LEU 

D5R 108ILE 215TYR 255LEU 

 

iv) Comparative normal mode analysis 

Normal mode analysis (NMA) is a technique which aims at tracing the protein’s most relevant 

movements by considering the protein as a system of harmonic oscillators. This enables the 

calculation of the normal (orthogonal) modes of vibration – all the harmonic oscillators vibrate 

at the same frequency. Considering that the most relevant modes are usually the ones 

comprehending the largest movement, the modes with the lowest vibrational frequency are 

usually considered to be the most relevant 257.  

Comparative NMA was performed with the bio3d 248 for the R programming language. To do so, 

protein structure and sequence are both aligned using Multiple Sequence Comparison by Log-

Expectation (MUSCLE), a program used to align protein sequences. After doing so, normal mode 

analysis is carried out for all proteins and fluctuation values are registered for all residues. 

Fluctuation values correspond to the vibrational amplitude of each residue. Thanks to the 

protein sequence alignment, the output is highly informative since it allows the user to compare 

how residue movement changes for G-proteins, dopamine receptors and arrestins upon binding 

to different partners. 
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v) Data visualization and webserver implementation 

Data visualization plots using ggplot2 244 were calculated and displayed using the R programing 

language 233 and are presented in http://45.32.153.74/gpcr/, which was constructed using the 

shiny application package 246.  

  



41 
 

C. Results and Discussion 

This section is organized according to the methodology section. As such, it comprises results 

regarding the SpotOn prediction method, the global assessment of PPIs SpotOnDB, the method 

for interface prediction using DL and the computational case study on protein structure 

dynamics using dopamine receptors. 

1) SpotOn – from high dimensionality to a successful method 

i) ML Algorithms Clustering 

The various trained machine-learning algorithms were subjected to hierarchical clustering using 

the Jaccard similarity coefficient as a metric and presented at Moreira et al. 199. The dendrogram 

depicted in Figure 4, allows us to distinguish 5 main algorithm clusters: 

I) Cluster I (mostly RF-based models): avNNet, Boruta, ranger, rf, RRF, RRFglobal and 

wrsf;  

II) Cluster II (mostly adaptive algorithms, bagging algorithms and decision trees/RFs): 

ada, adaboost, bagEarth, bagEarthGCV, bagFDA, bagFDAGCV, C5.0, C5.0Rules, 

C5.0Tree, ctree, ctree2, evtree, fda, gamboost, LogitBoost, ORFlog, ORFpls, 

ORFridge and ORFsvm; 

III) Cluster III (mostly regression models): glmboost, multinom, glm and plr. 

IV) Cluster IV (mostly SVMs and distance weighted algorithms): dwdPoly, dwdRadial, 

svmLinear, svmLinear2, svmPoly, svmRadial, svmRadialCost, svmRadialSigma and 

svmRadialWeights; 

V) Cluster V (mostly discriminant analysis algorithms): amdai, hdda, knn, lda, lda2, 

loclda, nb, pda, qda, rda, stepLDA and stepQDA. 
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Figure 4 - Hierarchical clustering of the test machine-learning algorithms. 

 

ii) ML algorithms Cluster Performance  

The performance of the machine-learning algorithm clustering was assessed using Multivariate 

Analysis of Variance (MANOVA) described at Moreira et al. 199. Table 3 summarizes the 

performance on the independent test set by presenting the mean values for each metric for the 

best classifier of each cluster for the different pre-processing conditions. From the various pre-

processed datasets described above, the ScaledUp (dataset generated upon centering and 

scaling of variables and up-sampling of the minor class) was subsequently used since it yielded 

the best performance metrics, specifically the best mean value for AUROC and TPR (Sensitivity) 

in the training set.  
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Table 3 - Statistical metrics mean values attained for each cluster for all pre-processing conditions for both training 

set (Train) and testing set (Test). 

  Train Test Train Test 

  PCA Scaled 
AUROC 0.79 0.67 0.80 0.77 

Accuracy 0.89 0.78 0.90 0.81 

Sensitivity 0.60 0.31 0.67 0.40 

Specificity 0.98 0.92 0.97 0.94 

PPV 0.87 0.53 0.88 0.67 

NPV 0.89 0.81 0.91 0.83 

F1-score 0.67 0.38 0.75 0.49 

MCC 0.68 0.29 0.71 0.42 

  PCAUp ScaledUp 

AUROC 0.93 0.80 0.94 0.83 

Accuracy 0.93 0.79 0.97 0.79 

Sensitivity 0.95 0.55 0.98 0.48 

Specificity 0.93 0.86 0.96 0.88 

PPV 0.93 0.57 0.96 0.57 

NPV 0.94 0.87 0.98 0.85 

F1-score 0.94 0.55 0.97 0.52 

MCC 0.83 0.41 0.91 0.38 

  PCADown ScaledDown 

AUROC 0.79 0.70 0.81 0.74 

Accuracy 0.91 0.75 0.90 0.76 

Sensitivity 0.90 0.78 0.87 0.66 

Specificity 0.92 0.74 0.93 0.80 

PPV 0.92 0.48 0.92 0.51 

NPV 0.91 0.92 0.89 0.88 

F1-score 0.91 0.59 0.89 0.57 

MCC 0.78 0.46 0.78 0.42 

 

Ensembles of ML algorithms have shown to be quite valuable in improving classification when 

constructing ML models 236. The best algorithms of each cluster for the ScaledUp pre-processing 

condition (ORFsvm, pda, rf, svmPoly and plr) were used as input for a logistic regression model. 

ORFsvm is an oblique rf – a rf composed of oblique decision trees, which differ from regular 

trees by taking as input linear combinations of features instead of a single feature – pda is a 

penalized discriminant analysis – a form of discriminant analysis adapted to high-dimensionality 

datasets – rf is a standard rf, svmPoly is a polynomial kernel SVM – a form of SVM that represents 

the space with polynomials of the original variables instead of using the variables and plr is a 

penalized logistic regression – a regular logistic regression with L1 and L2 regularization. A 

stepwise selection of relevant variables (algorithms) was performed, leading to the selection of 

rf, svmPoly and pda as the most relevant classifications for the logistic regression model. 

Training and testing metrics are provided in Table 4. Logistic regression leads to improved results 

as reported by all metrics, for both the full (5 variable) and rf + svmPoly + pda regression models. 

Even though both share practically identical metrics, the latter was chosen as the final model, 

since it offers the best possible predictions in the least time and simplest way when compared 
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with the Full Regression model. The logistic regression was trained using the full dataset as it 

comprehends the largest amount of nonredundant protein structures and interfaces with HS 

information. 

Table 4 - Statistical metrics for the best algorithm of each cluster of method and their combined regression model, 

both the “Full Regression” and the stepwise-optimized regression model (rf + svmPoly + pda) for both training and 

testing set. 

  C5.0 pda plr rf svmPoly 
Full 

Regression 
rf + svmPoly 

+ pda 

  Train Test Train Test Train Test Train Test Train Test Train Test Train Test 

AUROC 0.88 0.83 0.85 0.84 0.83 0.85 0.93 0.83 0.89 0.83 0.91 0.91 0.91 0.91 

Accuracy 0.88 0.91 0.85 0.88 0.83 0.85 0.93 0.90 0.89 0.90 0.94 0.95 0.94 0.95 

Sensitivity 0.78 0.68 0.86 0.76 0.82 0.84 0.87 0.71 0.80 0.68 0.98 0.98 0.98 0.98 

Specificity 0.98 0.98 0.84 0.91 0.85 0.85 0.98 0.96 0.98 0.97 0.84 0.85 0.84 0.85 

PPV 0.98 0.90 0.84 0.73 0.84 0.64 0.98 0.84 0.97 0.87 0.95 0.95 0.95 0.95 

NPV 0.81 0.91 0.85 0.93 0.82 0.95 0.89 0.91 0.83 0.91 0.91 0.94 0.91 0.94 

FPR 0.22 0.32 0.14 0.24 0.18 0.16 0.13 0.29 0.20 0.32 0.02 0.02 0.02 0.02 

FNR 0.02 0.02 0.16 0.09 0.15 0.15 0.02 0.04 0.02 0.03 0.16 0.15 0.16 0.15 

F1 0.86 0.78 0.85 0.74 0.83 0.73 0.92 0.77 0.88 0.76 0.96 0.97 0.96 0.97 

 

In order to further assess the quality of the method, SpotOn was compared with other 

methods commonly used to perform HS prediction, namely SBHD2 (SASA-Based Hot-spot 

Detection) 258 (a previous version of the algorithm considering only SASA-related features), 

Robetta 259, K-FADE and K-CON models (KFC2-A and KFC2-B) 260, and CPORT (Consensus 

Prediction Of interface Residues in Transient complexes) 192, even though the latter is not a 

proper HS predictor but rather an interface predictor. All predictions were collected by using 

the respective web-servers. The performance of all tested methods is summarized in Table 5. 

The full dataset was used for the comparison since it is the richest nonredundant database of 

proteins with resolved structure and information on HS. SpotOn clearly outperforms all other 

methods, with a strong performance in identifying both HS and NS.  

Table 5 - Comparison of the performance of SpotOn with other common methods used for HS prediction for the full 

dataset. 

 SpotOn SBHD2 261 Robetta 259 KFC2-A 260 KFC2-B CPORT 192 

AUROC 0.91 0.69 0.62 0.66 0.67 0.54 

Sensitivity 0.98 0.70 0.29 0.53 0.28 0.54 

Specificity 0.84 0.71 0.88 0.81 0.96 0.47 

F1-score 0.96 0.62 0.39 0.56 0.42 0.42 
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2) SpotOnDB – a high-throughput method unravels new details on protein-protein 

interactions 

SpotOnDB proved to be quite successful in understanding PPIs by both confirming previous data 

high-throughput data and redefining some information on HS that was gathered in studies with 

low amounts of data by utilizing SpotOn, the method and pipeline developed and described in 

the previous section. All data is available on a webserver – SpotOnDB – in 

45.32.153.74/spotondb.  

i) Protein-protein interface characterization 

The PPIs in the dataset have between 13 and 156 residues with SASA between 458 and 7229 Å2. 

On average, the number of residues in the interface is 47.5 (sd = 24). The amino-acid residues 

propensities at PPIs were calculated from the relative frequency of the different types of 

residues in PPIs. HS and interfacial composition on the studied complexes were presented in the 

webserver under the tab “HS and Interface” as well as in Figure 7A. The PPI frequencies are in 

close agreement with previously published studies on heterodimeric 262,263 and antibody-antigen 

interfaces (138 at this dataset), as well as with larger studies with over 6.000 complexes 240, 

which are usually less hydrophobic than homodimers. Normalized propensities of individual 

residues in Figure 5 show that the residues which are most likely to be represented in the protein 

interface when compared to the remainder of the protein are valine, lysine, leucine and tyrosine. 

Concerning the actual presence residues in the interface, Figure 7A shows that interfaces are 

enriched in glycine, leucine, serine, threonine, tyrosine and charged residues (particularly 

arginine), and depleted in tryptophan, cysteine, histidine.  
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Figure 5 - Residue normalized propensity for the core, non-interface surface and interface protein regions. 

 

ii) Hot-spots Composition 

To better understand if the ML approach implemented in SpotOn would allow us to correctly 

classify interfacial residues as HS and NS, the algorithm specificity, sensibility and accuracy by 

amino-acid residue type was calculated and plotted in Figure 6. The performance of the method 

across all residue types is very high with accuracy values ranging from 88% to 100%.  

 

Figure 6 - Performance of SpotOn algorithm by amino-acid type. Sensitivity, specificity and accuracy are reported as 

well as the number of each amino-acid residue type in small boxes at the top. All values were calculated using the 

prediction outcomes from SpotOnDB – true positive (TP, correctly predicted HS), true negative (TN, correctly predicted 

NS), false positive (FP, NS predicted as HS) and false negative (FN, HS predicted as NS). The sensitivity was calculated 
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by dividing TP cases by the total number of predicted positives (Sensitivity = TP/(TP + FN)), the specificity by dividing 

TN cases by the total number of predicted negatives (TN/(TN + FP)) and the accuracy was calculated by dividing the 

total number of correct predictions by the total number of predictions ((TP + TN)/(TP + TN + FP + FN)). 

 

The average HS number detected by complex was 2.6 (5.4% of all interfacial residues) and 45.0 

for NS (93.6 % of interfacial residues). Bogan et al., also reported a 5.4% of HS within 2325 

interfacial residues analyses 198. However, their average number of HS was 5.7 by complex (125 

HS in 22 complexes), which is almost the double compared to the one attained in this study. 

Supported by large scale data (1403 complexes), HS are less abundant in protein-protein 

interface than what was initially thought. By analysing 𝐸. 𝐹𝑎𝑐𝑡𝑜𝑟 values (Figure 7B and Table 6), 

tryptophan comes across as the most common residue as HS (𝐸. 𝐹𝑎𝑐𝑡𝑜𝑟  = 2.07), followed by 

tyrosine (𝐸. 𝐹𝑎𝑐𝑡𝑜𝑟  = 2.00). Previous studies on HS  have reported both these amino-acids as 

some of the most represented residues (tryptophan 𝐸. 𝐹𝑎𝑐𝑡𝑜𝑟 calculated as 3.91 and tyrosine 

as 2.29 in a 22 complexes study), which further validates these conclusions 198,264. However, 

those studies reported tryptophan as having a much larger 𝐸. 𝐹𝑎𝑐𝑡𝑜𝑟 when compared to what 

was found (𝐸. 𝐹𝑎𝑐𝑡𝑜𝑟 calculated as 3.91 vs. 2.01, respectively). This can be due to the low 

amount of data on tryptophan presented by Bogan et al., with only 19 instances of alanine 

scanning mutation results for tryptophan being studied, 4 of which were HS (21.05%), as 

compared with, for example, 218 instances for arginine, of which 29 were HS (13.30%), and 122 

for tyrosine, of which 15 were HS (12.30%) 198. Concerning the high discrepancy of instances for 

each amino-acid residue, it becomes clear that tryptophan might be overrepresented as a HS 

due to the low amount of experimental information on its role as HS. Underrepresented residues 

include cysteine and methionine, widely regarded as low occurring as HS 198,264. Authors tend to 

group residues with similar chemical proprieties to improve statistics due to the reduced 

number of experimental HS/NS residues known but this could lead to error as, for example, HS 

are depleted in lysine but not in arginine residues (𝐸. 𝐹𝑎𝑐𝑡𝑜𝑟 = 1.00 vs 1.38, respectively). These 

results are also listed under the “HS and interface composition” tab. 
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Figure 7 - HS and residues in the protein interface. A. Interface and HS composition by amino-acid residue type. B. HS 

enrichment by amino-acid residue type. 
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Table 6 -  Interface and HS composition as well as HS enrichment for each amino-acid residue type. Interface (%) 

represents the percentage of each residue in the interface by dividing the number of each interfacial residue by the 

total number of interfacial residues; HS (%) represents the percentage of each residue acting as HS when compared to 

the total interface by dividing the number of each HS residue by the total number of interfacial residues; HS distribution 

(%) represents the percentage of each residue acting as HS when compared to the total number of HS in the interface 

by dividing the number of each HS residue by the total number of residues classified as HS; HS Enrichment represents 

how each residue is represented as a HS when compared to the average HS distribution as described in the Methods 

section; Residue-wise HS (%) represents the amount of each interfacial residue classified as a HS when compared to 

the presence of that residue in the interface. 

Residue Interface (%) HS (%) 
HS 

distribution 
(%) 

HS 
Enrichment 

Residue-wise 
HS (%) 

Ala 4.81 - - - - 

Arg 7.10 0.53 9.80 1.38 10.67 

Asn 5.18 0.26 4.82 0.93 5.25 

Asp 6.25 0.33 6.03 0.97 6.57 

Cys 1.74 0.04 0.74 0.43 0.81 

Gln 6.98 0.29 5.37 1.15 5.85 

Glu 4.66 0.33 6.14 0.88 6.69 

Gly 6.08 0.26 4.71 0.77 5.13 

His 2.76 0.18 3.36 1.22 3.66 

Ile 4.46 0.18 3.28 0.73 3.57 

Leu 7.47 0.39 6.94 0.96 7.79 

Lys 5.91 0.32 7.16 1.00 6.45 

Met 1.90 0.12 2.12 1.12 2.31 

Phe 4.15 0.31 5.64 1.36 6.15 

Pro 4.38 0.22 3.96 0.91 4.32 

Ser 7.09 0.29 5.26 0.74 5.73 

Thr 5.57 0.23 4.24 0.76 4.62 

Trp 2.20 0.25 4.57 2.07 4.98 

Tyr 6.04 0.66 12.06 2.00 13.13 

Val 5.28 0.26 4.84 0.92 5.28 

 

iii) Hot-regions 

Li et al. 265 evaluated for 18 complexes the composition of complemented pockets, not necessary 

Hot-regions, and concluded that tryptophan, glycine, proline, cysteine, tyrosine and glutamate 

were more likely to be conserved at these regions. Intramolecular and intermolecular packing 

around HS and NS was analysed using 2 different Cα-Cα distance cut-offs: 8 and 10 Å. With more 

than 60.000 interfacial residues classified as HS/NS in the database, there is not a meaningful 

difference of intramolecular packing between the two classification groups as on average 8.10 

neighbour residues are found for HS (sd = 0.53) versus 8.83 for NS (sd = 0.59), using an 8 Å cut-

off distance (Table 7). However, the situation completely changes when analysing 

intermolecular packing. On average, 2.34 (sd = 0.58) and 1.46 (sd = 0.36) residues surround HS 

and NS, respectively. Table 7 also shows the rather high sd values (around 25%) for the number 

of  both intra- and intermolecular neighbouring residues, illustrating the high variability that can 
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be found in the size of the hot-region, which was not previously found by other authors on 

previous studies 201,266.  

Further observation of these results is available in the SpotOnDB under the “HS regions” tab. 

Cysteine, glycine, serine, threonine and proline were the residues with a higher number of 

neighbours when acting as HS. Excluding threonine, these are mostly small residues and present 

shorter average rays – cysteine and glycine have two of the smallest average rays 267 – which 

should explain their high above average number of neighbouring residues both as HS and NS. 

Table 7 - Average number of neighbouring residues (Mean) and standard-deviation (sd) for intramonomer and 

intermonomer HS and HS. 

 Neighbouring residues 
 Mean sd 

Intramonomer HS 8.10 0.53 

Intramonomer NS 8.79 0.59 

Intermonomer HS 2.34 0.58 

Intermonomer NS 1.46 0.36 

 

On average, when compared to NS, HS have nearly three times as much HS as neighbours (0.97 

neighbouring HS for HS, when compared to 0.33 for NS (sd = 1.19 and sd = 0.69, respectively) as 

observable in Figure 8). When combined with the low prevalence of HS in the protein-protein 

interface, these findings are key in confirming the existence of the already reported cooperative 

hot-regions 201.  
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   -

 

Figure 8 - Hot-regions by residue type. The number of HS is plotted against the residue type with average HS, NS and 

global (all interfacial residues) values represented by dashed lines Normalizing was done by dividing the average 

number of HS neighbours by the number of neighbours. 

iv) B-factors 

The reported data on mobility of HS vs NS comes from a study on conserved vs non-conserved 

residues by Erdemli et al. 268 upon MD simulation of 17 protein-protein complexes. These 

authors concluded at the time, by analysis of Root-Mean-Square-Deviation (RMSD) of the two 

regions, that conserved ones’ show lower mobility. Whereas this result cannot be directly 

compared to our, as HS classification is not directly linked to conservation, it can be used as a 

guideline of the current knowledge in the field. Here, normalized B-factors for all atoms from 

their crystal structures were gathered and their averages over all atoms, solely for backbone or 

for side-chains of the individual residues were calculated. The illustrative plots can be found at 

the SpotOnDB webserver, under the “B-factors” tab. No significant difference between HS and 

NS backbone B-factor values were found.  There is, however, a slight decrease in the HS side-

chain B-factors values within the SD. These results point to a similar mobility between HS and 

any other interfacial residue.  

v) Evolutionary conservation 

Evolutionary conservation has been considered an important feature when studying protein 

structure as it explains the prevalence of some residues in key functional sites 269, namely in PPIs 

268,270. Normalized conservation scores (Cons) were calculated for all interfacial residues. A 
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positive value means that the residue is conserved at PPI whereas a negatives value means it is 

not. A total of 135 monomers (6.5%) did not yield any conservation scores due to the low 

availability of sequence homologues. Figure 9 shows that HS are more conserved than other 

residues (Average ConsHS = 0.17, sd = 1.29; Average ConsNS = -0.01, sd = 1.09). This suggests that 

HS occurrence in PPIs is evolution-driven, as previously suggested 264,265,271.  

The most conserved residues in the interface are tyrosine, tryptophan and asparagine, while 

cysteine appears to be, by far, the least conserved residue as HS (ConsTyr = 0.33, sd = 1.42; ConsTrp 

= 0.12, sd = 1.54; ConsAsn = 0.10, sd = 1.20; ConsCys = -0.76, sd = 0.66). Tryptophan and tyrosine 

roles was already reported by other authors 201,271. Phenylalanine and arginine, on the other 

hand, have been reported as conserved by the same studies  201,271 whereas the data here 

presented shows low conservation score for both. Arginine conservation was already challenged 

as it was shown to be the  second least common residue in key positions of ligand binding 272. 

Leucine seems to be particularly conserved within HS residues. These results are present in the 

SpotOnDB server under the “Evolutionary Conservation” tab. 

 

 

Figure 9 - Average conservation by residue type. The conservation score from Consurf is plotted against the residue 

type with average HS, NS and global (all interfacial residues) values represented by dashed lines. 

 

vi) Solvent-accessible surface area of interfacial residues 

Solvent occlusion had already been demonstrated as a key aspect of HS by the O-ring theory 

established by Bogan et al. 268. Work done by Moreira  et al. 261,273-275 in a large number of 
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complexes and taking also into account dynamics supports this theory that SASA is considerably 

diminished upon complex formation in HS when compared with other interfacial residues. 

According to these results, average comSASAi for HS are nearly 7 times lower than those for NS. 

Furthermore, relSASAi, which provides a way of directly comparing bound and unbound SASA 

values and differentiate situations that lead to same ΔSASAi but in which the residue is full 

occluded upon complexation (check Martins et al. 261), is nearly 1.6 times larger in HS and NS 

(Figure 10). Further statistics on SASA values can be visualized in the SpotOnDB webserver, 

under the “SASA” tab. 

 

 

Figure 10 - Relative solvent-accessible surface area values. A. relSASAi average values by interfacial residue. Dashed 

lines represent the average values for HS, NS and global (all interfacial residues). 

 

vii) Structural interactions at protein-protein interfaces 

The number of atoms in short distances (2.5 or 4 Å cut-off) of HS seems to be higher than for 

NS, especially for positively charged and aromatic residues. Further information on atom 

abundance within both cut-offs can be found on the SpotOnDB web platform, under the 

“Structural Information” tab. Hydrophobic interactions appear to be key elements as well in HS, 

which present on average 2.19 times more hydrophobic interactions than NS, confirming 

findings by Liu et al. 241. While a study reports H-bonds and salt bridges as irrelevant in defining 

HS 201, the majority of previous studies reported polar residues as more important either for HS 

or as highly conserved and important interfacial residues 271,276-279. Here, both salt-bridges in 

charged residues and HB across all residues are 1.29 and 1.84 times more common, respectively. 
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These results contrast with those by Keskin et al. using a less accurate classification algorithm, 

that electrostatics, although relevant for PPIs, is not as relevant for HS formation as H-bonds and 

hydrophobic interactions 201. To facilitate visualization and comparison of the presented data on 

H-bonds, salt-bridges and hydrophobic interactions, Figure 11 shows the ratio of the average 

number of interactions between HS and NS.  

Concerning the distribution of the number of structural interactions per interface area, these 

results fall closely to those already determined, with 0.63 H-bonds for every 100 Å, which 

roughly translates to approximately 1 H-bond by every 100-200 Å, as reported by Jones & 

Thornton 277,278 and Janin 270. Additionally, high correlation between interface area, and H-bonds 

and hydrophobic interactions (r = 0.65 and r = 0.66, respectively) was also observed as backed 

by previous studies 237 and contrarily to the low correlation observed between interface area 

and salt-bridges and HS (r = 0.45 and r = 0.20, respectively). Furthermore, even though H-bonds 

and salt-bridges are more common around HS, hydrophobic interactions appear to be 4.52 times 

more common when considering HS. For more information on this topic, please refer to the 

“Area distribution” tab in the SpotOnDB webserver. 

 

 

Figure 11 - HS/NS ratio for H-bonds, hydrophobic interactions and salt bridges. Dashed lines represent the average 

values for H-bonds, hydrophobic interactions and salt bridges. 

To further understand contributions by the various structural interactions, Van der Waals and 

electrostatic energies were retrieved from all HADDOCK 206 experiments run until the moment 

(roughly 27.000). Interestingly, it was found that minimizing the electrostatic energy is far more 

important than minimizing other types of energy in docking processes using HADDOCK (in 
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average, electrostatic energy was 3.91 times lower than Van der Waals energy and 16.79 times 

lower than desolvation energy). Nonetheless, some complementarity might be useful in docking 

tools – using electrostatic interactions over other types of interactions to determine the best 

binding pose in rigid docking and then, using sequence-based methods for the detection of 

important residues and hot-spots to drive flexible docking and interface refinement, obtain a 

more realistic structure from computational methods. 

3) Interface prediction – a tentative application of DL  

i) Hyperparametrization and model training 

Grid search for the optimal parameters rendered are presented in  

Table 8. It is hard to determine the activation function responsible for the best results. A 2013 

study using back-propagation neural networks concluded that, while different activation 

functions rendered different results, variations in error were small when comparing all of them 

280. As such, it becomes different to actually state the reasons behind a better performance by 

an activation function.  The number of hidden layers and the number of neurons in each layer is 

a complicated matter as well – while some guidelines have been traced (the number of neurons 

on each hidden layer should be no more than those in the input layer (number of features) and 

no less than the output layer (number of classes) and the number of hidden layers should be 

determined regarding the problems complexity 281) and there have been some efforts to 

determine the best number of hidden neurons for tasks such as image classification 282, no actual 

rule of thumb can be found. Even when using web-forums such as Quora 

(https://www.quora.com), ResearchGate (https://www.researchgate.net/home) and 

stackoverflow (https://stackoverflow.com), which have a strong community of ML researchers, 

no absolute answer can be found. This lack of coherence and guidelines was one of the 

motivations to perform a grid search to determine the best possible hyperparameters. Input 

dropout is a fairly delicate process – while it prevents the network from overfitting, excessive 

dropout might cause underfitting by removing too much features 283. As such, it is 

understandable why no low values were assumed for Input Dropout Ratio. Similar to this, L1 and 

L2 regularization are also key in preventing overfitting but overestimation might lead to 

underfitting. Hence, it is understandable that fairly stable values are observable across all pre-

processing conditions for these hyperparameters, with few approaching the stipulated minima 

or maxima (excluding Input Dropout Ratio for DownSample and L2 regularization for UpSample) 

for random discrete grid search.  

https://www.quora.com/
https://www.researchgate.net/home
https://stackoverflow.com/
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Table 8 - Optimal hyperparameters according to the random discrete grid search for the deep-learning network. 

 
Pre-processing conditions 

Standard DownSample UpSample SMOTEd 

Activation 
functions 

Maxout TanhWithDropout RectifierWithDropout Rectifier 

Hidden layer 
composition 

[200,200,100] [500,500,200,100] [500,500,200,100] [100,100] 

Input dropout 
ratio 

0.05 0.09 0.06 0.08 

L1 regularization 7.40*10-4 7.23*10-4 3.40*10-5 1.71*10-4 

L2 regularization 1.44*10-4 8.20*10-4 9.40*10-4 1.01*10-4 

 

The network did not achieve the expected results, as observable in Table 9, while in some cases 

accuracy achieves good results as the network is able to correctly predict a high number of 

interfacial and non-interfacial residues correctly, but its PPV is far too high as it predicts many 

non-interfacial residues as interfacial residues. As such, the network is apparently overfitting in 

lower PPV cases (DownSample, UpSample and SMOTEd) and underfitting (not able to predict 

positive cases – interfacial residues in this case) in low-sensitivity cases (Standard). It should also 

be considered that interfacial residues were determined considering the known interface – the 

database has no knowledge on other possible interfaces in the protein. As such, FP (residues 

being predicted as interfacial but are represented as non-interfacial in the database) might in 

fact be TP because the database does not contain all the information on interfacial residues. 

Nonetheless, even considering this aspect, there is no practical way of assessing how far this 

might correct and, as such, while it can be considered as a valid explanation for a few incorrectly 

predicted interfacial residues (considering that the method is reliable), this factor will remain 

unaddressed for this case. 
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Table 9 - Statistical metrics values attained for all pre-processing conditions for both training set (Train) and testing 
set (Test). 

  Train Test Train Test 

  Standard DownSample 
AUROC 0.60 0.56 0.55 0.54 

Accuracy 0.93 0.92 0.74 0.73 

Sensitivity 0.53 0.30 0.91 0.78 

Specificity 0.94 0.94 0.73 0.73 

PPV 0.22 0.14 0.10 0.09 

NPV 0.98 0.98 1.00 0.99 

F1-score 0.31 0.19 0.19 0.16 

MCC 0.31 0.17 0.25 0.20 

  UpSample SMOTEd 
AUROC 0.56 0.55 0.58 0.55 

Accuracy 0.78 0.78 0.83 0.83 

Sensitivity 0.98 0.84 0.94 0.68 

Specificity 0.78 0.78 0.83 0.83 

PPV 0.13 0.12 0.16 0.12 

NPV 1.00 0.99 1.00 0.99 

F1-score 0.23 0.20 0.27 0.21 

MCC 0.31 0.26 0.35 0.24 

 

ii) Interfacial patch prediction 

The rationale behind this methodology was to: i) predict interfacial residues and ii) confirm the 

predicted residues by assessing their neighbouring interfacial residues with a logistic regression. 

However, given that the first step failed to provide good results, using the predictions from this 

step proved to be ineffective in the second and final step. In fact, predictions from the logistic 

regression were in fact worse than those coming from the DL network. As such, this approach, 

while supported by theory, has no practicality with this particular setting.  

4) Structural dynamics as influential in understanding GPCR-partner differential 

binding 

The method for interfacial analysis was developed by O. Sensoy, J. Shabbir, José G. Almeida 

(myself), Irina S. Moreira and G. Morra and has been submitted for publication 284. The 

calculations on structural and evolutionary characterization of protein GPCR-partner interface 

and resulting data treatment were performed by my colleague António José Preto, while I 

focused mostly on complex structure dynamics using NMA and considering interhelical 

distances.   

i) Normal mode analysis of complex structure 

Considering GPCR-arrestin interaction, interface residues appear consistently at the sites 

belonging to ICL1-3 (information retrieved by my colleague António José Preto). Information on 

this topic can be visualized on the server developed for this project (http://45.32.153.74/gpcr/), 
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in the “Comparative NMA” section. Concerning the first two ICLs (ICL1 and ICL2), no major 

differences are observable in residue fluctuation. However, for ICL3, the binding of arrestin 

affects differently all dopamine receptors. Concerning differences in arrestin residue fluctuation 

while binding different dopamine receptors, no major fluctuations can be observed. Regarding 

most G-proteins, GPCRs do not present a high number of interface residues at ICL1, however 

doing so at ICL2. However, when considering Gs, ICL1 features a higher number of interacting 

residues. Across all G-protein-GPCR interactions, ICL3 appears to be the most affected region 

concerning protein motion Further discussing G-proteins, no major interfacial residue 

fluctuation difference is observed across different GPCR binding interactions. Considering 

dopamine receptors, only Gs displays relevant fluctuations at residues around 50, which roughly 

corresponds to ICL1. 

NMA results for DR-Arr complexes have shown similar motion for ICL1 and ICL2, as suggested by 

structural images, while demonstrating higher fluctuation levels for ICL3, showing an important 

role for this protein region, as demonstrated for other GPCRs 285,286. When discussing DR-G-

protein interaction, ICL1 does not play a major role in the interface for most DR-G-protein 

complexes, excluding DR-Gs interactions, which concurs with the images in the “Comparative 

NMA” section of the webserver, where ICL1 is the furthest loop from G-proteins. This might 

point towards an important role for this region when considering DR-Gs interactions. 

Furthermore, no major fluctuation differences are observed in G-proteins, while large ones are 

observed in the ICL3 region of all GPCRs. This might point towards the predominant role of 

GPCRs – namely the ICL3 region – over G-proteins when determining binding affinity. D4R, which 

was shown to interact more strongly with arrestins, shows lower fluctuations in the ICL3 when 

compared to other dopamine receptors. Since lower fluctuations point towards reduced motion 

of a given protein region, these interactions might be stabilizing the DR-arrestin complexes. 

Following a similar logic, the opposite for the ICL3 can be concluded, whose interaction, due to 

its high motility, is a protein region with lower stability when complexed with Arrs. 

ii) Interhelical Distance 

Interhelical distance is a great tool to distinguish GPCR-G-protein binding from GPCR-arrestin 

binding – at least one of the measured interhelical distances is much larger in arrestin-bound 

GPCRs than in G-protein-bound ones. Particularly, all dopamine receptors excluding D2R show 

larger TM3-TM5 distances when bound to arrestin, while all dopamine receptors excluding D5R 

show larger TM5-TM6 distances when bound to arrestin. Furthermore, arrestins and G-proteins 

tend to cluster separately for each dopamine receptor, pointing towards common 
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conformational changes when bound to different partners, implying that these distances and 

the associated conformational alterations might be evolutionarily conserved.  

 

Figure 12 - Interhelical distances plotted according to TM3-TM5 distance and TM5-TM6 distance, both measured in Å. 

Even though results from interhelical distance measurements signal that clear and distinct 

structural changes happen across all dopamine receptors concerning TM movement, these are 

not as apparently distinguishable when considering fluctuations values from NMA. Nonetheless, 

it can be considered that fairly different TM movement might be giving rise to distinct structural 

patterns in important dopamine receptor regions that are highly relevant for GPCR-partner 

interaction – ICL3 has been described has having several important physiological roles, ranging 

from receptor activation to endocytosis regulation 285-288. As such, is no surprise that it may be 

involved in both arrestin and G-protein binding and that key conformational changes in TMs are 

leading to this sort of selectivity.   



60 
 

D. Conclusions 

During my thesis work I participated in the development of a method to predict HS in PPIs 

(SpotOn) 199, I performed  a high-throughput assessment of protein-protein interfaces and their 

HS, attempted to implement interfacial residue prediction using DL and performed studies to 

understand how global protein dynamics affect PPIs.  As a result of this work we have 

successfully published a review paper on membrane protein computational study 160 and a 

research paper on the SpotOn method 199. We have also a book chapter describing a 

computational pipeline for the study of GPCR-partner interactions 284 and a review article on in 

silico methods for drug development in PD-relevant GPCRs96. Another paper describing the 

SOPTONDB is in finalization 289, as well as a paper concerning the differential binding of 

dopamine receptors to their different partners 290 . Annex III contains a table with all 

papers and their abstract, as well as the first page of each of the papers.  

Results for the SpotOn webserver were relevant as this method outperforms all other 

computational knowledge-based methods for HS detection. A key aspect of this method is using 

a non-redundant database (all entries can be considered as valuable when training the 

algorithm) and all information is derived from experimental studies with structural information 

– as such, when testing the algorithm, it is possible to say with a high degree of confidence that 

the performance metrics are valid. By combining a high number of features, an ensemble of ML 

algorithms and methods to handle overfitting, such as cross-validation and intrinsic algorithm 

feature selection. ML upon PCA performed poorly when compared to a simple scaling 

procedure. This is likely to have occurred since PCA uses feature covariance as a way to reduce 

dimensions and does not consider feature importance (a feature might have lower variance but 

higher importance, which is detrimental in a PCA). The created pipeline will allow this method 

to be easily improved when additional experimental information is discovered. Furthermore, 

cold-spots can also be eventually implemented if their existence is proven and upon existence 

of sufficient data 291. 

SpotOnDB was also successful, resulting in new information of PPIs by combining a rather large 

database of non-redundant protein complexes 218 with the SpotOn pipeline. The most relevant 

results include the inter-monomer clustering of residues around HS and the high number of HS 

neighbours in residues classified as HS, which contributes to the existence of hot-regions 201, and 

the establishment of an importance order for structural interactions – hydrophobic interactions 

were more frequent in HS than H-bonds, which were more frequent in HS than salt bridges. All 

these interactions have been considered as important in interface residues 162,237,238,279,292, but 
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their relative importance had never been assessed in HS, which makes this novel finding highly 

relevant for the understanding of PPIs and HS. Generally, residues which are more common as 

HS have typically a higher number of structural features.  

Interface prediction was not as successful as it did not performed as expected. The features 

retrieved are likely to be not as important as initially considered to identify protein interfaces 

when compared with non-interfacial surface residues. To conclude this, the results from the 

different pre-processing conditions are highly relevant. DownSample has a lower number of 

negative class (non-interfacial surface) residues, which addresses the unbalanced dataset at the 

expense of losing the majority of the non-interfacial surface residues in the dataset. Results 

ailing from this pre-processing condition could be initially attributed to the loss of negative class 

entries in the dataset. However, upon considering the results for UpSample – which increases 

the number of positive class entries by random sampling with replacement – and SMOTEd – 

which generates synthetic entries through a k-nearest neighbours-based approach – the results 

do not improve as would be expected. For both cases, if the features are not the most 

appropriate for the problem, up-sampling is not expected to solve the problem – up-sampling 

simply repeats underrepresented class entries and SMOTE generates new entries in the dataset 

based on the feature space (if the features are not adequate for the problem, generating new 

entries based on those features is likely to have no relevant effect) and is inappropriate for high-

dimension datasets 253. As such, a better search for features should be performed. Future works 

using DL for interfacial prediction should include the utilization of convolutional networks for 

sequence feature extraction – which has been done for intraprotein contact prediction using 

only the protein sequence 293 and using both the protein sequence and evolutionary coupling 

scores 194 – and also for structural feature extraction – which has been recently used to assess 

the affinity of protein-ligand interactions, a construction which would be very useful in assessing 

the reliability of the prediction or in docking problems if adapted to protein-protein interactions 

294. Furthermore, implementing residue propensities such as those in Figure 5 can also be useful 

as a feature in interface prediction or as a way to understand if the prediction is reliable.   

Using protein dynamics to understand how interfaces change was also successful, as results 

from this study correspond to those obtained by our group considering structural interactions. 

However, to get a better understanding of protein motion and dynamics it is essential to perform 

actual MD, as NMA has its limitations 295. Nonetheless, NMA represents a good exploratory 

analysis and aids us in understanding protein dynamics when no computational resources are 

available to perform more demanding techniques such as MD for a high number of structures 

as the ones tested in this work.  
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I believe that throughout this thesis work I was able to not only learn many important aspects 

of bioinformatics – both at a theoretical and practical level – and structural biology, but to 

contribute to the scientific community with relevant knowledge and methodology for PPIs. 

Additional effort in the future to complement computational work with experimental work is 

highly important as well, as it will be crucial in understanding how molecular and structural 

changes affect cells and organisms. 
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G. Annex 

Annex 1 - This table comprehends the machine learning algorithms mentioned along this thesis work with a short 
explanation for each. 

Algorithm Explanation 

Artificial Neural 
Network (ANN) 

An ANN is a machine-learning algorithm inspired in how neurons connect and interact with 

each other. Essentially, it is composed of layers of neurons, which output information to all 

neurons in the following layer and receive information from all neurons in the previous layer. 

Each connection has two trainable parameters: weight (w) and bias (b), which function as 

follows: 

𝑂 = 𝑤 ∗ 𝑖(𝑂′) + 𝑏, 

where O is the output for the current layer and i is a function of the output of the previous 

layer. Three types of layers are essential to ANNs – the input layer, which takes direct input 

from the data, the output layer, which provides the prediction, and one or more hidden 

layers, which take data from a layer to the other. To train an ANN, using the most popular 

training algorithm – back-propagation – weights are adjusted iteratively depending on the 

error 1.  

Bagging 
algorithms 

Bagging is short for bootstrap aggregating and it is not a machine-learning algorithm per se 

but rather a meta-algorithm which uses other algorithms to achieve a better performance. 

Instead of training a machine-learning model using the entire training set, it creates several 

random subsets with replacement and trains various identical models using these subsets. 

Next, it averages the parameters of the resulting models to get a final, more robust model. 

Convolutional 
Neural Network 

(CNN) 

CNNs are a type of deep ANN which as gained a great deal of popularity in image processing 

and high-throughput gene analysis. Its main feature is the convolution of the data – a grid 

(bidimensional for images and unidimensional for genes) takes as input several pixels or DNA 

bases and, by progressively reducing the number of hidden layers, is able to reduce the 

number of dimensions of the input data 1.  

Deep-learning 

Deep learning can be considered more easily as an ANN architecture than actual machine-

learning algorithm. When an ANN has more than one hidden layer, it can be considered as 

having a deep architecture, thus being referred to as deep-learning. Deep-learning has 

spanned a field of its own when discussing machine-learning, with heavy investigation being 

pursued on both theoretical and practical aspects, particularly in bioinformatics 1-19. 

However, besides heavy investigation, its theoretical foundation is still lacking – 

understanding what hyperparameters are best, such as the number of hidden layers and the 

number of neurons in each hidden layer, is not well understood – and it can be rather difficult 

to determine what is it that makes deep learning a highly successful technique. Furthermore, 

it tends to require heavy amounts of data, making it hardly applicable to most biological 

problems where data retrieval can be challenging. 

Discriminant 
Analysis 

Discriminant analysis which aims to determine whether a set of independent variables are 

able to predict a dependent variable. To do so, it combines various noncorrelated functions 

of independent variables. 
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Hidden Markov 
Models (HMM) 

A Markov model is composed of several Markov processes – state transitions that depend 

solely on the current state and not on past states – in a chain or network of possible states. 

HMMs are similar processes but the sequence of state transitions is unknown – it is hidden, 

thus the term. The reason why they are so sought in computational biology is that they are 

able to address three distinct and highly relevant problems – scoring a sequence in a multiple 

sequence alignment by determining the probability of an HMM generating a sequence, 

finding the optimal state sequence for a HMM to generate a sequence and finding what is 

the proper structure and parameters for a HMM to be able to solve a problem as a machine-

learning model 20.  

k-means 
clustering 

k-means clustering is a machine-learning-based process to find the best possible fit for a 

given number of k clusters. It determines the best position of the centroid (average position) 

of all clusters. Through iterations, the squared error function is calculated: 

𝑆𝐸(𝑉) = ∑ ∑ (||𝑥𝑖 − 𝑣𝑗||)2𝑐𝑖
𝑗=1

𝑐
𝑖=1 , 

where ||xi-xj|| is the Euclidean distance between xi and vj, ci is the number of observations 

in cluster i and c is the number of centroids. By minimizing this function, the centroids with 

the least distance to each individual observation will be obtained. 

k-nearest 
neighbours 

The k-nearest neighbours algorithm uses Euclidian distance to attribute a class to a new 

observation. To do so, it calculates the distance to the nearest k labelled observations and, 

using a majority vote or other sort of operation (a logistic regression, for example) assigns 

the most likely class to the unlabelled observation. A common procedure is to consider 

labelled observations which are nearest to be more decisive than those that are distant. It is 

considered an instance-based (lazy) algorithm because all computation is done upon 

classification time 21. 

Logistic 
regression 

Logistic regressions are regression models utilized for categorical dependent variables. For 

multivariate cases, the output of a logistic regression works as follows: 

𝑂(𝑥) =
𝑒𝑎1+𝑎2𝑋1+𝑎3𝑋2+⋯+𝑎𝑛𝑋𝑛

1+𝑒𝑎1+𝑎2𝑋1+𝑎3𝑋2+⋯+𝑎𝑛𝑋𝑛
, 

Where 𝑋1, 𝑋2, … , 𝑋𝑛 and 𝑎1, 𝑎2, … , 𝑎𝑛 are the variables and their coefficients, respectively 22.  

Random Forest 
(RF) 

RFs are ensembles of binary decision trees (BDTs). BDTs provide one of two outputs based 

on the input. This decision can be triggered by simple Boolean decisions (True or False) or by 

more complex activation functions 23.  

Support Vector 
Machine (SVM) 

SVMs are non-probabilistic binary linear classifiers – they do not provide a probability if an 

object belongs to either class, they assign it to a single class. It features an n-1-dimensional 

hyperplane in an n-dimensional space dividing the data into two different classes. It became 

highly popular because it is very reliable and computationally inexpensive due to its simple 

construct – it only needs to determine which observations are the margins to draw the 

hyperplane. The optimal margins are  the observations which maximize the distance from 

the hyperplane thus allowing it to accurately separate the two classes with little information 

24.  

Synthetic Minority 
Over-sampling 

Technique 
(SMOTE) 

SMOTE is a technique which uses the k-nearest neighbours algorithm to generate new entries 

in the dataset. To do so it draws lines between this entry and all its k-nearest neighbours. 

Then, synthetic data points are generated along these lines 25. While this technique is 

file:///D:/MEGA_Backup/Dropbox/Jose/TESE_ANNEX.docx%23_ENREF_20
file:///D:/MEGA_Backup/Dropbox/Jose/TESE_ANNEX.docx%23_ENREF_21
file:///D:/MEGA_Backup/Dropbox/Jose/TESE_ANNEX.docx%23_ENREF_22
file:///D:/MEGA_Backup/Dropbox/Jose/TESE_ANNEX.docx%23_ENREF_23
file:///D:/MEGA_Backup/Dropbox/Jose/TESE_ANNEX.docx%23_ENREF_24
file:///D:/MEGA_Backup/Dropbox/Jose/TESE_ANNEX.docx%23_ENREF_25


C 
 

effective in low-dimension spaces, high-dimensionality has proven to decrease the 

performance of SMOTE 26.  

 
 

Annex 2 - This table comprehends an explanation of all columns in the dataset used to construct the SpotOnDB. 

Column number Explanation 

1 A unique identifier for each residue entry 

2 Protein Data Bank 27 entry chains considered for each PPI4DOCK 28 complex, separated by an underscore 

3:5 Chain, residue number and residue name 

6 Prediction of a residue as HS (1) or NS (0) according to the SpotOn algorithm 29 

7:18 Features related to Solvent Accessible Surface Area (SASA) 30,31 

19:58 Position-Specific Scoring Matrix (PSSM) values and PSSM proportions as calculated by PSI-BLAST 32 

59, 60 Number of atoms within 2.5 and 4.0 Å 

61 Number of hydrogen bonds being formed by the residue 

62 Number of hydrophobic interactions with the residue 

63 Number of π-π interactions (aromatic) with the residue 

64 Number of T-stacking interactions (aromatic) with the residue 

65 Number of cation-π interactions (aromatic) with the residue 

66 Number of salt bridges formed by the residue 

67:86 Number of monomeric interfacial residues 

87 Total number of interfacial residues 

88 Total ΔSASA 30,31 

89:168 Amphiphilic Pseudo-Amino Acid composition (features extracted with the protr package 33 from R) 

169:188 Amino Acid Composition (features extracted with the protr package 33  from R) 

189:888 

Scales-based descriptors derived by 20+ classes of 2D and 3D descriptors, including topological chemical 

descriptors, weighted holistic invariant molecular descriptors, vectors of hydrophobic, steric and electronic 

properties, among others (features extracted with the protr package 33  from R) 

889:891 Raw b-factor values for the whole residue, backbone atoms and sidechain atoms 

892:894 Normalized b-factor values for the whole residue, backbone atoms and sidechain atoms according to 34 

895 Normalized conservation scores from Consurf 35 

896:901 Number of intramonomer, intermonomer and HS neighbours at 8 Å and 10 Å 
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Annex 3 - Papers published during this thesis work. 

Reference Abstract 

Almeida JG, Preto AJ, Koukos P, Bonvin 
AJJM, Moreira IS, Membrane proteins 
structures: a review on computational 
modeling tools, BBA Biomembranes 
1859, 10, 2021-2039 (2017) (Review 
article) 37 

Background 
Membrane proteins (MPs) play diverse and important functions in living 
organisms. They constitute 20% to 30% of the known bacterial, archaean and 
eukaryotic organisms' genomes. In humans, their importance is emphasized as 
they represent 50% of all known drug targets. Nevertheless, experimental 
determination of their three-dimensional (3D) structure has proven to be both 
time consuming and rather expensive, which has led to the development of 
computational algorithms to complement the available experimental methods and 
provide valuable insights. 
Scope of review 
This review highlights the importance of membrane proteins and how 
computational methods are capable of overcoming challenges associated with 
their experimental characterization. It covers various MP structural aspects, such 
as lipid interactions, allostery, and structure prediction, based on methods such as 
Molecular Dynamics (MD) and Machine-Learning (ML). 
Major conclusions 
Recent developments in algorithms, tools and hybrid approaches, together with 
the increase in both computational resources and the amount of available data 
have resulted in increasingly powerful and trustworthy approaches to model MPs. 
General significance 
Even though MPs are elementary and important in nature, the determination of 
their 3D structure has proven to be a challenging endeavor. Computational 
methods provide a reliable alternative to experimental methods. In this review, we 
focus on computational techniques to determine the 3D structure of MP and 
characterize their binding interfaces. We also summarize the most relevant 
databases and software programs available for the study of MPs. 

Lemos A, Melo R, Preto AJ, Almeida JG, 
Moreira IS, Cordeiro MNDS, In silico 
studies targeting G-protein coupled 
receptors for drug research against 
Parkinson’s disease, Current 
Neuropharmacology, submitted (Book 
chapter) 38 

Parkinson’s Disease (PD) is a long-term neurodegenative brain disorder that mainly 
affects the motor system. The causes are still unknown, and even though currently 
there is no cure, several therapeutic options are available to manage its symptoms. 
The development of novel anti-parkinsonian agents and an understanding of their 
proper and optimal use are, indeed, highly demanding. For the last decades, L-3,4-
DihydrOxyPhenylAlanine or levodopa (L-DOPA) has been the gold-standard 
therapy for the symptomatic treatment of motor dysfunctions associated to PD. 
However, the development of dyskinesias and motor fluctuations (wearing-off and 
on-off phenomena) associated to long-term L-DOPA replacement therapy have 
limited its antiparkinsonian efficacy. The investigation for non-dopaminergic 
therapies has been largely explored as an attempt to counteract the motor side 
effects associated to dopamine replacement therapy. Being one of the largest cell 
membrane protein families, G-Protein-Coupled Receptors (GPCRs) have become a 
relevant target for drug discovery focused in a wide range of therapeutic areas, 
including Central Nervous System (CNS) diseases. The modulation of specific 
GPCRs potentially implicated in PD, excluding dopamine receptors, may provide 
promising non-dopaminergic therapeutic alternatives for symptomatic treatment 
of PD. In this review, we focused on the impact of specific GPCR subclasses, 
including dopamine receptors, adenosine receptors, muscarinic acetylcholine 
receptors, metabotropic glutamate receptors, and 5-hydroxytryptamine 
receptors, on the pathophysiology of PD and the importance of structure- and 
ligand-based in silico approaches for the development of small molecules to target 
these receptors. 

Moreira IS, Koukos P, Melo R, Almeida 
JG, Preto AJ, Schaarschmidt J, Trellet M, 
Gumus ZH, Costa J, Bonvin AMJJ, 
SpotOn: a web server for protein-
protein binding hot-spots, Scientific 
Reports 7, 8007 (2017) (Scientific 
article) 29 

We present SpotOn, a web server to identify and classify interfacial residues as 
Hot-Spots (HS) and Null-Spots (NS). SpotON implements a robust algorithm with a 
demonstrated accuracy of Ͷ.9ͻ and sensitivity of Ͷ.98 on an independent test set. 
The predictor was developed using an ensemble machine learning approach with 
up-sampling of the minor class. It was trained on ͻ complexes using various 
features, based on both protein D structure and sequence. The SpotOn web 
interface is freely available at: http://milou.science.uu.nl/services/SPOTON/. 

Almeida JG, Bonvin AMJJ, Moreira IS, 
SpotOnDB: a global assessment of 
protein-protein interfaces and binding 
hot-spots (in preparation) 

Understanding protein-protein interfaces is crucial to explain complex formation 
and determine the foundations that governs biological networks. One key aspect 
is the existence and prevalence of Hot-Spots (HS), residues which, upon alanine 
mutation, negatively impact the formation of protein-protein complexes. While 
several protein complexes have been individually studied regarding their interface 
and the existence of HS, studies comprising high amounts of data would be highly 
valuable in revealing relevant patterns. In this work, we use our computational 
pipeline, SpotOn, to determine several structural and sequence-related features 
of all predicted HS in the complexes of the non-redundant database PPI4DOCK 
(3.746 HS for 1.403 complexes with 66.710 interfacial residues). The resulting big 
data analysis, which is available as an interactive online database at 
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http://milou.science.uu.nl/services/SPOTONDB/, provides insights into HS 
structural and physico-chemical characteristics in protein-protein interfaces. 

Sensoy O, Almeida JG, Shabbir J, 
Moreira IS, Morra G, Computational 
studies of G-protein coupled receptor 
complexes: structure and dynamics, 
Molecular Biology Protocols, accepted 
(Book chapter) 36 

G-protein coupled receptors (GPCRs) are ubiquitously expressed transmembrane 
proteins associated with a wide range of diseases such as Alzheimer’s, Parkinson, 
schizophrenia and also implicated in several abnormal heart conditions. As such, 
this family of receptors is regarded as excellent drug targets. However, due to the 
high number of intracellular signaling partners, these receptors have a complex 
interaction networks and it becomes challenging to modulate their function.  
Experimentally determined structures give detailed information on the salient 
structural properties of these signaling complexes but they are far away from 
providing mechanistic insights into the underlying process. This chapter presents 
some of computational tools, namely molecular dynamics, molecular docking and 
molecular modeling and related analyses methods that have been used to 
complement experimental findings. 
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Elucidation of crystal structures pertaining to ternary complexes of 2-Adrenergic 
Receptor ( 2-AR) and Rhodopsin bound to Gs and Arrestin-1, respectively, has 
enhanced our understanding in the molecular determinants responsible for 
selective coupling of G-protein-coupled-receptor (GPCR)-G-protein or GPCR-
Arrestin (Arr) complexes. Nevertheless, these are single examples of an immense 
number of possible interfaces established between these molecular systems. 
In this study, we focus on catecholamine-bound GPCRs, in particular the 
Dopamine Receptor (DR) family, in order to bring new insights into the 
physiological and pharmacological properties of these important drug targets. A 
variety of computational methods were applied to investigate the putative 
interactions between the protein interfaces of all members of the DR family 
(D1R, D2R, D3R, D4R and D5R) and the protein interfaces of their binding 
partners (Arrs: Arr-2, Arr-3; G-protein: Gq, Gz, Gt2, Gi1, Gi2, Gi3, GsS, Go, GsL).  
To effectively compare DR-partner interactions, we calculated solvent 
accessibility, structural conservation, residue composition and propensity, 
packing density, interfacial residue mobility, and residue pairing. We have also 
employed elastic network model to understand their dynamics upon coupling, 
and the difference of behaviour between the DR binding partners. Elucidation of 
pharmacologically relevant interactions between DR complexes and their binding 
partners at the molecular level allows us not only to unlock the determinants of 
the functional selectivity, but also expedite designing of more selective and 
hence safer therapeutic molecules for treatment of GPCR-mediated diseases. 
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