

Generative Game

Design: A Case Study

Generative Game

Design

João André Carvalho da Silva
jacds@student.dei.uc.pt

é Carvalho da Silva
jacds@student.dei.uc.pt
Adviser:

Licínio Gomes Roque
Date: 5th September 2017

Advisor:

Licínio Roque
Date: January 23, 2017

Master’s Degree in Informatics Engineering
Dissertation
Final Report

UNIVERSITY OF COIMBRA

FACULTY OF SCIENCES AND TECHNOLOGY

DEPARTMENT OF INFORMATICS ENGINEERING

MASTER’S DEGREE IN INFORMATICS ENGINEERING

Generative Game Design: A Case Study

Author:
João Silva

Adviser:
Licínio Roque

September 5, 2017

https://www.uc.pt/
http://www.uc.pt/fctuc
http://www.uc.pt/fctuc/dei/

iii

“A game is an opportunity to focus our energy, with relentless optimism, at something we’re
good at (or getting better at) and enjoy. In other words, gameplay is the direct emotional
opposite of depression.”

Jane McGonigal, 2011

v

University of Coimbra

Abstract
Faculty of Sciences and Technology

Department of Informatics Engineering

Master’s Degree in Informatics Engineering

Generative Game Design: A Case Study

by João Silva

Correctly defining video game parameters to evoke an intended gameplay experi-
ence is not an easy task, and doing it wrong may sometimes lead to a ruined ex-
perience. This project aims at employing procedural content generation methods
to generate adaptive game environments of an original video game, based on gath-
ered user data and thus allowing to find interesting parameter ranges to elicit the
desired gameplay experience. To achieve this, a prototype with a procedural con-
tent generation algorithm responsible for creating game worlds was designed and
implemented. After an integration with a framework used to analyse game data,
several people performed gameplay tests. These tests helped in understanding the
parameters to use in the generation method, eliciting the intended gameplay experi-
ence. The results allowed us to retrieve values that currently seem the best fit for the
desired experience, but that can also be improved with more testing sessions. The
framework had its issues but also aided in improving the parameters for the gener-
ation algorithm. This dissertation allowed me to learn to design and prototype both
a video game and a generation algorithm while integrating them with an external
framework.

Keywords: procedural content generation, video games, game design, experience-
driven.

https://www.uc.pt/
http://www.uc.pt/fctuc
http://www.uc.pt/fctuc/dei/

vii

Acknowledgements
First, I would like to thank my adviser, Prof. Licínio Roque, for allowing me to work
on a theme I am passionate about. Besides that, he helped me succeed during this
thesis, providing valuable suggestions and guidance, and allowing me to conclude
this dissertation.

Second, I would like to thank my colleagues from LabC62, at the Department
of Informatics Engineering of the University of Coimbra, for sharing with me their
feedback and enthusiasm during this thesis. More specifically, I have to thank Pedro
Oliveira, Elisabete Simões, and Nuno Barreto for all their support. I have to make
a special mention to Rui Craveirinha, for continuously helping me during this dis-
sertation (especially during the integration with the server), for all the discussions
about video games, and for his fun company.

Third, I would like to thank all my friends who helped and supported me dur-
ing most of this dissertation: Joana Lopes, Fernando Rocha, Filipe Sequeira, Noé
Godinho, João Tiago Fernandes, Tiago Andrade, Bruno Rodrigues, Ricardo Fonseca,
Ana Oliveira, Eliana Carvalho, Sandra Silva, Luís Rocha, and many others I proba-
bly forgot to mention.

Fourth, I would like to thank my Italian friends from the course of Game Design
for their constant support and enthusiasm for my thesis.

Fifth, I would like to thank everyone who tested my game, both during the us-
ability phase and the gameplay phase. Without your help and time, I would not be
able to have any data to analyse.

Finally, and probably most importantly, I have to thank with all my heart to my
parents and sister. Without their support, I would not be the person I am today, and
I would not have been able to come this far.

ix

Contents

Abstract v

Acknowledgements vii

1 Introduction 1

2 State of the Art 3
2.1 Play and Games . 3
2.2 Video Games . 4
2.3 The Making of Video Games . 6

2.3.1 Concept . 6
2.3.2 Pre-Production . 6
2.3.3 Production . 7
2.3.4 Post-Production . 8
2.3.5 Summary . 8

2.4 Game Design . 8
2.4.1 Mechanics, Dynamics, and Aesthetics 9
2.4.2 Summary . 11

2.5 Procedural Content Generation . 11
2.5.1 What is Procedural Content Generation? 11
2.5.2 Why use Procedural Content Generation? 11
2.5.3 Desirable properties of a Procedural Content Generation solu-

tion . 14
2.5.4 Taxonomy by Togelius et al. 14
2.5.5 Taxonomy by Gillian Smith . 17
2.5.6 Taxonomy by Craveirinha et al. 17
2.5.7 Summary . 19

2.6 Experience-Driven Procedural Content Generation 20
2.6.1 Player Experience Modelling . 21
2.6.2 Content Quality . 22
2.6.3 Content Representation . 23
2.6.4 Content Generator . 23
2.6.5 Summary . 24

2.7 Author-Centric Approach to Procedural Content Generation 24
2.7.1 Purpose . 24
2.7.2 Process . 25
2.7.3 Summary . 26

2.8 Procedural Content Generation Cases 26
2.8.1 Spelunky . 26
2.8.2 No Man’s Sky . 27
2.8.3 Summary . 28

x

3 Objectives and Methodology 29
3.1 Objectives . 29
3.2 Design Science Research . 30
3.3 Work Plan . 31

4 DSR Initial Design Proposal: Game Concept 33
4.1 Characteristics . 33
4.2 Interaction . 34

5 Development 37
5.1 Game Engine: Unity . 37
5.2 Game Architecture . 37
5.3 Map Generation Algorithm . 40
5.4 Integration with the Crowdplay Server 46
5.5 Game Interface . 48
5.6 Development Activities . 53
5.7 Work Management and Prioritisation 53

6 Evaluation 55
6.1 Usability Testing . 55

6.1.1 Test Setup . 55
6.1.2 Results and Analysis . 57
6.1.3 Proposed Design Corrections . 60

6.2 Gameplay Testing . 62
6.2.1 Test Setup . 62
6.2.2 Problems . 63
6.2.3 Results and Analysis . 64

7 Further Work 69
7.1 Critical Aspects to Correct . 69
7.2 Future Developments . 69

8 Conclusions 71

References 73

A Server Configuration 79

B Development Log 81

C Work Backlog 87

D Usability Testing Data 89

E Gameplay Testing Data 93

xi

List of Figures

2.1 Tennis for Two being played on a osciloscope. (Wikipedia, 2013b) . . . 5
2.2 Spacewar! being played on a PDP-1 computer. (Wikipedia, 2010) . . . 5
2.3 A screenshot of the video game Pong. (Wikipedia, 2006) 5
2.4 Computer Space being played on its cabinet. (Pinterest, n.d.) 5
2.5 Components of game consumption and their design counterparts. (Hu-

nicke, LeBlanc, and Zubek, 2004) (Adapted) 9
2.6 Designer and Player perspective on games. (Hunicke, LeBlanc, and

Zubek, 2004) . 10
2.7 Elite, released in 1984. (Wikipedia, 2007) 13
2.8 Rogue, originally developed around 1980. (Ritzl, 2016) 13
2.9 Dwarf Fortress, with its text-based graphics. (Bay 12 Games, n.d.) 13
2.10 Galactic Arms Race, that adapts the weapons created to the player.

(Wikipedia, 2013a) . 13
2.11 Left 4 Dead, released in 2008. (Electronic Arts, 2009a) 16
2.12 Spore, released in 2008. (Electronic Arts, 2009b) 16
2.13 Super Mario Bros., released in 1985. (Wikipedia, 2011) 16
2.14 The Binding of Isaac: Rebirth, released in 2014. (PlayStation, n.d.) 16
2.15 Yavalath, a board game generated by a computer. (Browne, 2007b) . . . 16
2.16 Tanagra, a mixed-authorship tool. (Smith, Whitehead, and Mateas, 2010) 16
2.17 Taxonomy proposed by Craveirinha et al. (Craveirinha, Barreto, and

Roque, 2016) . 20
2.18 Architecture for an Author-Centric approach to PCG. (Craveirinha,

Santos, and Roque, 2013) . 25
2.19 Spelunky in its 2012 enhanced version. (Spelunky World, n.d.) 27
2.20 La-Mulana, originally released in 2005. (Wikipedia, 2009) 27
2.21 No Man’s Sky, released in 2016. (No Man’s Sky, n.d.) 28

3.1 Cognition in the Design Science Research Cycle. (Vaishnavi and Kuech-
ler, 2008) . 31

3.2 Initial Gantt diagram for the dissertation. 31
3.3 Revised Gantt diagram for the dissertation. 31

5.1 Ontology diagram containing the relations between each game com-
ponent. 38

5.2 Flowchart depicting the data flow on the prototype. 39
5.3 Map generated using Perlin Noise. (Red Blob Games, 2015) 41
5.4 Map generated using a Cellular Automata. (Envato Tuts+, 2013) (Gen-

erated) . 41
5.5 Map generated using a Fractal. (Donjon, 2011) (Generated) 41
5.6 Moore neighbourhood with the player in the middle. (Wikipedia, 2012a) 44
5.7 Von Neumann neighbourhood with the player in the middle. (Wikipedia,

2012b) (Adapted) . 45

xii

5.8 Diagram of the AGE-powered design process. (Craveirinha and Roque,
2016) . 47

5.9 Prototype’s screenshot of the initial screen, with directions. 48
5.10 Prototype’s screenshot of the initial screen, without directions. 49
5.11 Prototype’s screenshot of the overworld map, with the player in the

middle. 50
5.12 Prototype’s screenshot of the minimap. 50
5.13 Prototype’s screenshot showing cells containing food (animal) and

fresh water (well). 51
5.14 Prototype’s screenshot showing cell containing wood (tree). 51
5.15 Prototype’s screenshot showing the end point. 52
5.16 Prototype’s screenshot showing the winning screen. 52
5.17 Prototype’s screenshot showing the losing screen. 52

6.1 Prototype’s screenshot showing the first version of the tutorial. 56
6.2 Questions classifications by each tester. 57
6.3 Average and standard deviation of the classification per question. . . . 58
6.4 Average and standard deviation of the classifications per tester. 58
6.5 First version of the prototype’s user interface. 61
6.6 Final version of the prototype’s user interface. Note how the inter-

face has new icons, new placements, new colors, and two previously
missing buttons. 61

xiii

List of Tables

5.1 Possible values for each number of a matrix cell. 43
5.2 Probabilities for each water cell subtype, depending on the neighbour

land cell. 46

6.1 Usability testing phase problems and their corrections. 60
6.2 Successful candidates, across two generations. 64
6.3 Session times and distances from start to end, for each successful can-

didate. 65
6.4 Number of times each parameter’s value was successful. 66

A.1 Game objects and events required for the server. 79
A.2 Game objects required for the server, events connecting them, and

additional information. 80

D.1 Testers (T) classifications to each question (Q). 90
D.2 Average and standard deviation values for each question (Q). 90
D.3 Average and standard deviation values for each tester (T). 90

E.1 Candidates with their values, score, and times played. 93
E.2 Winning sessions from Generation 1. 94
E.3 Winning sessions from Generation 2. 95
E.4 All sessions, with the successful ones highlighted. 96

xv

List of Abbreviations

AGE Authorial Game Evolution
EDPCG Experience-Driven Procedural Content Generation
GA Genetic Algorithm
HTTP Hypertext Transfer Protocol
MDA Mechanics, Dynamics, and Aesthetics
PCG Procedural Content Generation
PEM Player Experience Modelling
UI User Interface
UTC Coordinated Universal Time

1

Chapter 1

Introduction

Today, games, specifically video games, have become an ordinary activity in peo-
ple’s daily lives. Ranging from games developed to play in small breaks to long
games with complex narratives or challenging gameplay, all of them are played by
many people starting with children and going up to older people, leading to a game
being better fit for some people, but sometimes being too difficult or uninteresting
for a particular group of individuals. Also, with all the advances in hardware avail-
able to play games, these have become more and more complex, making them harder
and more demanding to develop, resulting in continuously growing teams. This is
the main reason why it is important to create new technologies that may help to ex-
plore a game design space and its adaptiveness to enable specific forms of gameplay
with several target audiences.

The Interaction Design and Game Design areas constitute rich fields of study,
with many challenges and open methodological issues. The particular context of
generative digital gameplay has been a target of research in previous studies, es-
pecially in combination with the goal of giving game designers ways to promote
specific flavours of gameplay. A promising area of entertainment computing is the
use of generative design techniques and algorithms to dynamically generate game
content (e.g. graphics models and textures, music, sound) and the definition of game
contexts themselves (game scenarios, interactions, flow, and conditions). These tech-
niques can potentially be used as a basis for building self-adaptive playable media
when coupled with monitoring and analysis of player behaviour.

Procedural Content Generation (PCG) is a powerful set of tools, providing a
rather big variety of possible utilities in Game Design, being in supporting the de-
velopers in content creation, or during gameplay taking into account how the player
interacts with the game.

In this thesis, we will study the potential for employing procedural content gen-
eration techniques together with gameplay analytics in the context of the design of
an original game, to create engaging and playful experiences. This enables the gen-
eration of adaptive game environments, based on gathered user gameplay data, in
order to better adjust the intended gameplay experience.

Overall we aim to develop a complete case of generative game design, to test the
techniques together within a realistic setting of producing a new game prototype for
which we do not yet know the details of how to elicit the desired gameplay experi-
ence. This case will also work as a practical test for the AGE framework.

2 Chapter 1. Introduction

The remainder of this report is structured as follows: Section 2 encompasses the
State of the Art, where it is presented the research done on the field of Play, Games
and Videogames, and Procedural Content Generation. Section 3 refers to the Ob-
jectives and Methodology, starting by describing the objectives and planned game
concept, the methodology that is going to be used, and the work plan to be followed.
Section 4 presents the initial game concept, depicting its characteristics and interac-
tion. Section 5 documents the development process and outcome of the engineering
of the game prototype featuring the PCG techniques and mechanisms to collect data
and accept parameters from the AGE framework. Section 6 contains the evaluation
information and its analysis, divided into usability testing and gameplay testing.
Section 7 details future work. Finally, Section 8 concludes the dissertation while re-
vealing lessons learned.

As appendices, this document includes the data required for the server configu-
ration (A), the development log depicting all the tasks done during the prototype’s
development (B), a list containing the work backlog (C), and all the data gathered
during both usability and gameplay testing phases (D and E, respectively).

3

Chapter 2

State of the Art

2.1 Play and Games

A game is a structured form of play, usually requiring one or multiple players, in
which some key components must exist, such as rules, challenge and interaction.
Games can be used to many ends and most of the times require some mental or
physical aptitudes.

Huizinga, in his book “Homo Ludens”, shows the importance of play in culture
and society (Huizinga, 1944). Play can be considered older than culture, and not just
human culture, but the culture in general, because all animals play and it was not
the man that taught them so, leading to the conclusion that humans have not added
anything new and essential to the core idea of play. Even on the animal level, play
is not just a physiological or psychological aspect, going beyond that and becoming
a significant function, and having some sense in it. Play can be seen as having three
main characteristics:

1. Play is a voluntary activity, and with this freedom alone it marks itself away
from the natural process, being something added to it as if it were an orna-
ment. Children and animals play because they enjoy it, not because someone
tells them to, and that is the freedom of play. The need for it comes from the
enjoyment taken from it, turning itself away from the labor tasks, since it is
done at leisure when someone has free time.

2. Play is not real life. Instead, it is a stepping out of that, into some kind of own
world of activities. Every child playing knows she is only pretending, but that
does not mean that play cannot have some seriousness in it since one always
turns to the other.

3. Play is secluded and limited, since it is always within certain time and space
limits, containing its own course and meaning. Once something is played, it
will endure in the memory, and possibly be transmitted, and it does not matter
how many times it repeats itself because it holds good not only as a whole but
also within its structure.

In Play, there is always a tension element, meaning that the player is never cer-
tain of how to decide and end the issue because he always wants to accomplish or
end something. But, besides his intentions, he is obliged to follow the rules of the
game. Those rules are very important in the act of play, and if the player breaks or
ignores them, the game loses its illusion. Inside a game, the laws and customs of real
life become less important, since players do actions they probably would not do in
real life. But in a game, many players end up forming communities with others, and
even if real life rules do not apply to the game, some of those communities can carry

4 Chapter 2. State of the Art

on even after the game is over, highlighting the play’s social feature.

In its higher forms, play can derive from two aspects, being a contest for or a
representation of something, being also possible to merge both. If there is a repre-
sentation, then it means that there is a displaying of an object or mimicry of some
phenomena to someone and, if we leave children’s games and focus on sacred per-
formances, an element of play can be found in them. With this in mind, we can say
that play can, in fact, have seriousness to it.

Because the sphere of play is contained in the real-life world, at any moment
the latter can impact the act of play, interrupting the game, affecting its rules or
collapsing the play spirit. This brings one very essential feature, that the player
must be aware that he is only pretending, and not in the real life.

2.2 Video Games

A video game has the characteristics of a traditional game, with the difference of
being electronic. In this sense, it allows the human interaction to be done with the
help of a user interface, providing visual feedback through a video device, such as a
TV screen.

The origin of video games takes us back to the early 1950s, but they only became
trendy in the 1970s and 1980s, with the introduction of arcade video games, gaming
consoles and home computer games to the general public.

The first computer games were merely created for training and instructional
ends, research, and demonstration. Since their systems were often dismantled af-
ter serving their purposes, they did not influence further developments in the in-
dustry. The first video game created only for entertainment was Tennis for Two
(Higinbotham and Dvorak, 1958), figure 2.1, but was never considered to adapt into
a commercial product, due to the impractical technology of the time. After that,
the first widely available and influential computer game was Spacewar! (Russel,
1962), figure 2.2, but could not be turned into a commercial game, since the hard-
ware needed to run it was costly. It was only in 1972 with the release of the arcade
video game Pong (Atari, 1972), figure 2.3, that a video game was commercially re-
leased with a significant success and popularity. However, others came before it,
such as Computer Space (Syzygy Engineering, 1971), figure 2.4, but did not reach
any mainstream popularity (Wikipedia, 2017a).

Video games continued to span over the following years, with the console market
having several generations, even splitting to the handheld consoles. With each new
device, the hardware was always superior to the previously used, allowing games
to be even more complex and complete, being it visually or technically.

Today, video games are a popular form of entertainment and a part of the world
culture. Not only that, but the video game industry is one of the most profitable,
and it keeps growing and gripping the audience without a break (Wikipedia, 2017a).
(Wikipedia, 2013b)

2.2. Video Games 5

FIGURE 2.1: Tennis
for Two being played
on a osciloscope.

(Wikipedia, 2013b)

FIGURE 2.2: Space-
war! being played
on a PDP-1 computer.

(Wikipedia, 2010)

FIGURE 2.3: A screen-
shot of the video game
Pong. (Wikipedia,

2006)

FIGURE 2.4: Computer
Space being played on
its cabinet. (Pinterest,

n.d.)

6 Chapter 2. State of the Art

2.3 The Making of Video Games

The video game development process starts with an idea, but it must be worked
on to become a good game concept. However, developing a game is not only about
conception. Game development is a process integrated with the conception while in-
cluding several other aspects of game production. Knowing this, said development
process usually divides into four phases: the concept phase, the pre-production
phase, the production phase, and the post-production phase. (Martinho, Santos,
and Prada, 2014)

2.3.1 Concept

In this phase, an idea is worked on to define a game concept. It is usually done by
a small team or even one person. However, many other people can be heard, and
some ideas might come up from group discussions.

The objective is to have a sketch of the game, and convince someone (usually
with the decision-making power) that the game is worth it, and should be invested
in. To lead other people to believe in our game concept, it is important (and essential)
to have a game prototype and a document that briefly describes it. Said document
should describe the gameplay and highlight the innovative aspects of the game. The
prototype should reinforce and illustrate what is written in the document. If ev-
erything goes well, the concept will be approved, going on to the pre-production
phase.

2.3.2 Pre-Production

The objective of this phase is to show that it is indeed possible to develop the game.
This means proving that it is conceivable to get and manage the needed resources
and that there is a good work plan. Besides that, it is in this phase we define ev-
ery detail in the game, such as the mechanics, challenges, characters, among others,
with all of those details being written in a document. The process should be itera-
tive, building various prototypes to test ideas.

During this phase, the team will grow because there will be a need for people
from different areas, such as programmers and artists. After the team assembly,
there should be work planning, allocating different tasks, planning important dates,
and estimating the costs for the project.

One of the most important tasks of the pre-production is to choose the develop-
ment tools, always dependent on the target platforms for the game. As such, there
should be a clear list of platforms where the game should run right from the be-
ginning. The programmers should assess the capabilities of said platforms building
some technological prototypes, allowing for a better understanding of what tools are
available to use. Artists should also look for tools to create artistic materials, making
sure the game’s necessities are met. However, usually, the majority of the constraints
appear on the programmers’ side, since there are usually bigger limitations, and as
such these should be identified as soon as possible. Those limitations can include for
example the graphic capabilities of the available tools, the algorithms’ performance,
or even the network performance.

2.3. The Making of Video Games 7

What is expected to come out from this pre-production phase, and that will be
the object of evaluation by the investors, is:

• A new document describing in detail the game concept.

• A document with a careful planning of the project, identifying all the team
members.

• A document with the budget for the game, which may also include a business
plan.

• A prototype of the game, with more quality and more complete than the one
presented in the concept phase.

If no problems arise and the project is accepted, it advances to the production phase.

2.3.3 Production

The production phase is the one with the greatest investment from the entire devel-
opment process. It is in this phase that game is going to be developed. The team
should follow an agile development methodology because the development process
should be flexible since there are always changes that were not earlier foreseen in
the pre-production phase.

Due to the dynamism of the process, it is crucial to identify and list all the in-
termediate components needed, identify all the dependencies, and define priorities.
Dependencies should be reduced to the essential, because the all the work should be
done, preferentially, in parallel. For example, a programmer should not have to wait
for graphical resources to continue his tasks.

However, even if working in parallel, there should be periodic integration be-
tween all the project components, having a playable prototype with all the elements
available until that moment. This means that every component should be progres-
sively developed, meaning that it should have some deliveries, with each one being
more detailed than the previous. On the other hand, the most difficult parts should
be the ones first worked on, not because of the time they take, but because of their
uncertainty and risk. Most of the time those tasks are connected with the innovative
or complex parts of the game. If they arise problems and are not relevant, the team
should not insist, because sometimes there is the need of giving up on some compo-
nents to prevent further harm to the project.

The production phase has three key goals, each one related to the creation of a
game prototype.

1. Alpha version, containing all the programming components. This does not
mean they will not be updated, but it is not expected any addition of new
functionalities. All that is left to do is fix some errors, tune some gameplay
components, add more content, and improve the visual part. With this ver-
sion, the game is ready for an intensive gameplay tests phase, to make sure it
complies with the concept.

2. Beta version, with no problems regarding programming, and the same goes
for the art components. Everything is ready and integrated within the game.
All the needed changes are related to refining the gameplay and experience. It

8 Chapter 2. State of the Art

is usually tested in two phases: private and public. The latter usually happens
after the former, also including the changes suggested during the private tests.

3. Final version, the game is no longer a prototype, and it is ready to release to
the market.

The prototype is usually changed during the presented phases, meaning that there
are usually many alpha and beta prototypes.

2.3.4 Post-Production

When a game reaches this phase, it means that it is ready to release to the market.
However, the game may need to meet some criteria.

• It may have to pass the platform’s quality control, and this usually happens
with the consoles.

• It must be registered in a video game content rating system.

• It must be localised, preparing the game to be released in many countries. This
implies not only translating the game but also adapting some details due to
cultural differences.

It is also during this phase that promotional content is created and marketing in-
vestments are made. There may also be a release of a demonstration to allow the
players to try the game before they decide to buy it. It is also good to communi-
cate with the players, and forums, social media, official site, and others help in that
regard. Also, this phase also includes the creation of all the commercial materials
for the game’s fans, such as manuals, strategy books, concept art books, and limited
editions. Sometimes, the production phase does not end before the post-production
phase starts.

2.3.5 Summary

As it would be expected, the developed prototype will not follow all the four steps
usually required for a commercial game. However, it will go through the concept
phase when it is decided what is going to be in the game and some possibilities for
it. After that, the pre-production and production phases will more or less merge to
develop said prototype. The alpha version will be the one used in the usability tests.
The beta version will be first tested in the laboratory, and if everything goes well,
it will then be tested by people outside it. Finally, our prototype will not go into a
post-production phase, since it is not seen as a commercial game by now.

2.4 Game Design

Because game design is in its core having ideas and making decisions, Jesse Schell
said that "Game design is the act of deciding what a game should be" (Schell, 2008).
Moreover, those decisions and ideas are written into a Game Design Document, aid-
ing in further discussions that may arouse given the decisions already taken, or even
when new ideas appear.

Game design is focused on deciding numerous elements related to the game,
such as its story, decisions about rules, look and feel, timing, pacing, risk-taking,

2.4. Game Design 9

rewards, punishments, and everything else that may impact the player experience
with the game.

For video games, even though it is not crucial in the process, it is helpful that
game design takes other areas of the development into account. This allows better
decisions to be made more quickly. As Schell said, "it is like the relationship be-
tween architects and carpenters: an architect does not need to know everything the
carpenter knows, but an architect must know everything the carpenter is capable of"
(Schell, 2008). Summarily, it is important for the game design process to take any
constraints and limitations that may exist during its development into account.

Notice the during its development expression, because the game design process
occurs during almost the whole time of development, since many decisions or ideas
can change during the development stage, or they can be discarded for example for
their unfeasibility, or even new ideas may appear. That said, game design is present
in almost all the game development, allowing to make decisions on how it should
be all along the way (Schell, 2008).

One of most used game design frameworks is MDA, standing for Mechanics, Dy-
namics, and Aesthetics. It is one of the few academic papers achieving wide expo-
sure within the game industry, probably due to having experienced game designers
as authors. (Schreiber and Sohn, 2013)

2.4.1 Mechanics, Dynamics, and Aesthetics

Mechanics, Dynamics, and Aesthetics, or MDA for short, was first presented by Hu-
nicke et al. in “MDA: A Formal Approach to Game Design and Game Research”
(Hunicke, LeBlanc, and Zubek, 2004). It is a formal approach to understanding
games, trying to connect game design, development, criticism, and technical re-
search. Games are different from other entertainment providers regarding its un-
predictability since the results of gameplay are usually unknown when the product
is finished. This framework breaks game consumption into three distinct compo-
nents (Rules, System, Fun) and establishing their design counterparts (Mechanics,
Dynamics, Aesthetics), as shown in figure 2.5.

FIGURE 2.5: Components of game consumption and their design
counterparts. (Hunicke, LeBlanc, and Zubek, 2004) (Adapted)

Each part of the MDA framework is linked to the others, even if separated from
them. But those relations have different meanings to designers and players, as

10 Chapter 2. State of the Art

shown in figure 2.6. Regarding the designer’s perspective, mechanics lead to dy-
namic system behaviour, leading in turn to aesthetic experiences. However, the
player has a different view on things, since aesthetics set the tone, leading to dy-
namics and usually to mechanics. As a result, it is important and helpful to consider
both perspectives.

FIGURE 2.6: Designer and Player perspective on games. (Hunicke,
LeBlanc, and Zubek, 2004)

Aesthetics can be seen as the desirable emotional responses stimulated in the
player during the interaction with the game. When describing this component, a
taxonomy can be considered, also helping us to describe games and understanding
how and why different games appeal to distinct players. The taxonomy is shown be-
low, with a definition of what a game aims to be with each term. (Hunicke, LeBlanc,
and Zubek, 2004)

• Sensation, the game as sense-pleasure.

• Fantasy, the game as make-believe.

• Narrative, the game as drama.

• Challenged, the game as an obstacle course.

• Fellowship, the game as a social framework.

• Discovery, the game as uncharted territory.

• Expression, the game as self-discovery.

• Submission, the game as a pastime.

Besides helping the aesthetics component, this taxonomy also allows the definition
of models for gameplay, which will then help to describe gameplay dynamics and
mechanics.

Dynamics describe the runtime behaviour of the player when mechanics act
upon him, leading to the creation of aesthetic experiences. Creating models for dy-
namics prevents common design flaws and allows the identification of feedback sys-
tems within gameplay, which will help to determine how some states or changes in
it affect the overall state of gameplay.

Mechanics are all the actions, behaviours and control mechanisms available to
the player during the game. Together with all the game’s content, they will support
the gameplay dynamics and, in order to tune the latter, it is needed that mechanics
are adjusted.

2.5. Procedural Content Generation 11

This framework allows the discussion of the goals related to the aesthetics, how
the dynamics will support them, and in the end, it helps figuring out the mechanics
needed to satisfy both dynamics and consequently aesthetics.

2.4.2 Summary

Almost from the start of the design process of the game, we wanted to arouse the
feeling of exploration and discovery in the player, while also presenting some diffi-
culties to the player, to keep him engaged. In this sense, MDA helped to get there,
because we knew what we wanted to arouse in the player, and what were the actions
available to the player. However, we did not know how we could make the game
respond to the player, while always keeping the desired feeling. MDA helped to con-
nect all the parts of the game design process, leading to a well-thought prototype.
Finally, it also helped on designing the procedural content generation algorithm to
create game maps, allowing us to decide what should be included in it to arouse
the feeling of exploration of uncharted territories while keeping the player aware of
dangers that could exist in the map.

2.5 Procedural Content Generation

One of the significant aspects of the developed prototype is the inclusion of proce-
dural content generation, allowing the game to generate a great part of its content.
Not only that, but it will also adapt the content using gameplay data gathered from
various sessions.

2.5.1 What is Procedural Content Generation?

In order to establish a good idea of what is Procedural Content Generation (PCG),
we will start with a definition stating that “PCG is the algorithmic creation of game
content with limited or indirect user input” (Togelius et al., 2011). Basically, PCG
refers to a computer software that creates game content alone, or together with hu-
man designers or players.

Content can be described as almost everything that a game contains, namely:
levels, maps, game rules, textures, stories, items, quests, music, weapons, vehicles,
characters, and others (Togelius, Shaker, and Nelson, 2016). It is also important not-
ing that the game engine and the non-player character artificial intelligence are not
considered content.

By games, we are not just talking about video games, but also board games, card
games, puzzles, etc. And because of that, a PCG system, in order to generate content
for a game, must consider its design, affordances and constraints, because, in the
end, that content must be playable.

2.5.2 Why use Procedural Content Generation?

Even though we now know what is Procedural Content Generation, one question
remains: why do we need these technologies in Game Design? This question does
not have a single answer, as it can depend on different reasons.

12 Chapter 2. State of the Art

In order to get to the first answer, we need to look at some historical data. In the
early days of home computers, in the 1980s, those machines had highly limited capa-
bilities, such as storage limitations, and that constrained the space available to store
game content. These factors were the main cause leading to an effort on developing
PCG techniques. One of the first games to address this was Elite (Braben and Bell,
1984), in figure 2.7, which stored various seed numbers that were used to generate
eight galaxies, each one with 256 planets different among them. Another example
of that period is Rogue (A.I. Design, 1980), in figure 2.8, a dungeon-crawling game
with randomly generated levels, every time a new game was started. Although this
enables generating compelling experiences, it comes with the trade-off of most of
the time lacking some visual appeal, for example in the video game Dwarf Fortress
(Adams and Adams, 2006), in figure 2.9.

Going to the second answer, it addresses the fact that with procedurally gener-
ated content, we no longer need to have a human designer or artist to generate vari-
ations on that same content, because it can sometimes end up being an expensive
and slow process. This is mainly due to the fact that the number of person-month
needed to develop AAA games has been increasing constantly, since the debut of
computer games, leading to the companies taking fewer risks in creating something
different. If one game development company empowered some of its artists and
designers with algorithms, it would have an advantage related to the amount of re-
sources needed and, possibly, the quality of the final product. But, of course, people
cannot be replaced with algorithms, instead, we can use those programs to help and
increase the humans’ creativity. In principle, this would make it possible for small
teams, with fewer resources than the top companies in the game development busi-
ness, to produce content-rich games.

Another possible answer is that the use of PCG may allow the creation of new
types of games and not just games based on what already exists. In fact, if we have
software that can generate game content at the same time it is being played, there
is no reason why games need to end. (Togelius, Shaker, and Nelson, 2016) Even
more, the generated content can ultimately adapt itself to the tastes and needs of the
player. For example, Galactic Arms Race (Evolutionary Games, 2010), in figure 2.10,
attempts to create and adapt weapons based on players statistics. These are called
player-adaptive games, focusing on maximising the enjoyment of players, but can
also focus on maximising other aspects, like the learning or addictive capacities of a
game.

One more reason, already mentioned above, is the fact that PCG could enable
creators to conceive different and original content since most of us tend to imitate
other people’s work in our own way. The given example was about empowering
artists and designers with PCG methods, that could not just help them to achieve
better content, but also new and original content.

The final answer and reason on why to use PCG stands in the fact of enabling us
to understand design, since creating a program that could accurately generate con-
tent would help in understanding the process humans go through when manually
creating content. And this can be seen as a loop, because if we develop PCG meth-
ods that better enables us to understand the design process and its results, then it
will be possible to create even better PCG algorithms.

2.5. Procedural Content Generation 13

FIGURE 2.7: Elite,
released in 1984.

(Wikipedia, 2007)

FIGURE 2.8: Rogue,
originally developed
around 1980. (Ritzl,

2016)

FIGURE 2.9: Dwarf
Fortress, with its text-
based graphics. (Bay

12 Games, n.d.)

FIGURE 2.10: Galactic
Arms Race, that adapts
the weapons created to
the player. (Wikipedia,

2013a)

14 Chapter 2. State of the Art

2.5.3 Desirable properties of a Procedural Content Generation solution

There are many and different implementations of PCG methods, regarding prob-
lems in content generation. Those problems may not be the same, since generating a
chunk of grass is not the same as generating a whole new idea for a game or helping
a designer polish game content, meaning that all take their time and have different
purposes. With this in mind, it is important to note that the desirable properties of
a solution depend on the situation at hands and, as already mentioned before, there
are always trade-offs, since it’s hard to generate something fast and with really good
quality.

Togelius et al. suggest a list of the most common desirable properties of PCG
solutions (Togelius, Shaker, and Nelson, 2016):

• Speed - requirements for speed vary very much with the moment we want the
content generated, amongst other factors. If we want to generate something
during gameplay, the speed has to be in the order of milliseconds, while if
we want content to be generated during development time, speed can go to a
maximum of months.

• Reliability - some generators produce content without ever worrying about
its quality, while others generate content always making sure it satisfies some
given quality criteria. For example, if a generated level does not have an en-
trance or an exit, it is a huge failure regarding game design. However, if some
generated grass looks weird, this will not automatically break the game.

• Controllability - most of the times the content generators need to be controlled
in some way, allowing some of the aspects of the content to be generated to be
specified by a human user or an algorithm. Most of this control will be based
on parameters or fitness functions, which can control, for example, the colour
of a vehicle or the number of rooms in a dungeon.

• Expressivity and diversity - in order to prevent content that seems like small
variations on a theme, it is often needed that there is a diverse set of gener-
ated content. At an extreme of non-expressivity, a level generator can always
create the same level, changing the colour of some element in it. On the other
extreme, the generator creates entirely different levels that do not even make
sense and are not playable. However, it is not easy to measure expressivity, and
developing level generators that create content taking into account its quality,
it is even harder.

• Creativity and believability - usually it is important to have PCG solutions
that create content which does not look as if it was made by a machine, rather
than a human.

2.5.4 Taxonomy by Togelius et al.

Togelius et al. originally presented a taxonomy, containing a number of classes,
where a method or solution usually supposedly lies at a point between the ends of
that class (Togelius et al., 2010). However, the taxonomy described here is a revised
version of the original. (Togelius, Shaker, and Nelson, 2016)

• Online versus Offline - this first class compares the different moments where
the PCG is applied: if the generation occurs while the player is playing the

2.5. Procedural Content Generation 15

game, it is online, otherwise if the content is generated during the develop-
ment of the game or before a game session, it is offline. An example of online
content generation can be found in Left 4 Dead (Valve Corporation, 2008), in
figure 2.11, providing a dynamic experience for the player, by analysing his
behaviour during gameplay and changing the game state accordingly. On the
offline side, most of the games that use some map generation before starting
the session apply. Not only those but also video games with content editors,
like Spore (Maxis, 2008), in figure 2.12, allowing the creation of game creatures.

• Necessary versus Optional - generated content can be necessary, if it is essen-
tial to complete a level of the game, or optional if it is auxiliary and can at any
time be discarded or exchanged. Necessary content must always be correct,
since it can be, for example, the structure of a level, for instance in Super Mario
Bros. (Nintendo Creative Department, 1985), in figure 2.13, and, as seen before,
a level without entry or exit is a failure. On the other hand, optional content
does not have those strict demands, imagine the different types of weapons in
a shooter game.

• Random Seeds versus Parameter Vectors - PCG can be controlled in many
ways, such as using random seeds or setting parameters. The first one helps
to gain control over the generation space, and if the same seed is used, most
of the previous game world will persist. For example, in The Binding of Isaac:
Rebirth (Nicalis, 2014), in figure 2.14, seeds define, amongst other things, the
items locations (Gamepedia, 2016). Setting parameters allows the generated
content to fit some specifications, for example in Infinite Mario Bros (Shaker,
Yannakakis, and Togelius, 2010), which used a vector of content features.

• Generic versus Adaptive - When generating content, the player’s actions and
behaviour may be taken into account, but most of the times, they are not. In the
latter situation, we call it generic content generation, mostly used in commer-
cial games. If player interaction with the game is taken into account to generate
content, then we say we have adaptive content generation. One example that
uses this type of generation is Left 4 Dead (Valve Corporation, 2008), having an
algorithm that adjusts the difficulty of the game, keeping the player interested
and engaged.

• Stochastic versus Deterministic - Most algorithms used in PCG are stochas-
tic, which leads to usually different content with the same input parameters.
However, some methods prefer to output the same content if given the same
starting point and method parameters. One example of this is the game Elite
(Braben and Bell, 1984).

• Constructive versus Generate-and-test - When using constructive PCG, all the
content will be generated in one pass, as usually done in roguelike games when
generating the dungeons (game levels). On the other hand, generate-and-test
methods alternate between generating and testing, repeating the process un-
til a suitable solution is found. Yavalath (Browne, 2007a), in figure 2.15, is a
board game that was completely generated by a computer program applying
generate-and-test techniques.

• Automatic generation versus Mixed authorship - Automatic generation al-
lows limited input from game designers, enabling them just to tweak some
algorithm parameters, controlling and guiding content generation. However,

16 Chapter 2. State of the Art

mixer authorship focuses on letting the designer or player cooperate with the
algorithm, to generate the desired content. One example of this is the game
Tanagra (Smith, Whitehead, and Mateas, 2010), in figure 2.16, where a designer
draws part of a 2D level, and an algorithm will generate the missing elements
while making sure the level is playable.

FIGURE 2.11: Left 4
Dead, released in 2008.
(Electronic Arts, 2009a)

FIGURE 2.12: Spore, re-
leased in 2008. (Elec-

tronic Arts, 2009b)

FIGURE 2.13: Super
Mario Bros., released
in 1985. (Wikipedia,

2011)

FIGURE 2.14: The
Binding of Isaac: Re-
birth, released in 2014.

(PlayStation, n.d.)

FIGURE 2.15: Yavalath,
a board game gener-
ated by a computer.

(Browne, 2007b)

FIGURE 2.16: Tanagra,
a mixed-authorship
tool. (Smith, White-
head, and Mateas,

2010)

2.5. Procedural Content Generation 17

2.5.5 Taxonomy by Gillian Smith

Gillian Smith, in “Understanding Procedural Content Generation: A Design-Centric
Analysis of the Role of PCG in Games” shows five main categories that a content
generator can fall into (Smith, 2014), shown below.

• Optimisation - This type of approaches considers the design process as a search
for the combination of elements that best fit some criteria. Those elements can
be specified mathematically by the system creator, or validated and curated
by a human. Most PCG approaches are usually computationally expensive,
which makes them difficult to use in games that require an extremely respon-
sive PCG system. Most of the time, these techniques are used with a human-
in-the-loop for the evaluation function and to generate personalised content
offline.

• Constraint Satisfaction - This approach involves specifying the properties and
restrictions of the generated content. The challenge is in determining a correct
representation of facts related to the content, and debugging the complex set
of constraints. This approach is usually used in tools for designers.

• Grammars - Using grammars that the algorithm should expand upon to create
content, these methods attempt to reach a balance between designer-specified
rules for how content components should fit together and computer explo-
ration of the design space through expanding the grammar. This approach has
been used in the offline content generation for games and tools for designers.

• Content Selection - There is still some disagreement whether picking content
from a library and piece together can be considered complex enough to qualify
as a content generation approach. However, Gillian Smith believes that no
matter how simple this method is since it is used to create an environment or
content for the player procedurally, it can be considered PCG (Smith, 2014).
As already said, content selection is a rather simple form of PCG. However,
it is also one of the fastest ways to generate content, being usually applied
to games where the generator must run during play time, such as “endless
runner” games.

• Constructive - A constructive generator builds content in an ad hoc way by
piecing together customised building blocks. Even though the algorithm may
perform some internal search, it does not test the results of the level against any
external heuristic to help guide the search process. Roguelike games usually
use this kind of methods.

2.5.6 Taxonomy by Craveirinha et al.

Craveirinha et al. in “Towards a Taxonomy for the Clarification of PCG Actors”
propose “a classification system that allows for a clarification of the multiple role
configurations that human designers, PCG algorithms and players can have in the
context of PCG-aided video-game design and production” (Craveirinha, Barreto,
and Roque, 2016).

For that, they divided the content-generation into two moments: solution gen-
eration and solution evaluation. Also, they divided the actors into designer, player
and computer. By designer, they meant every human creator that impacts the de-
sign of the game during production and before its release. A player is a human who

18 Chapter 2. State of the Art

plays the game typically after being released. The computer refers to the algorithms
applied either during game-production or gameplay that with complete or partial
autonomy are able to generate content. All the relations are shown in figure 2.17,
being also explained below.

We will first focus on the designer and state every aspect on how he can impact
evaluation and creative processes in a video game. Regarding evaluation, we have
three core divisions.

• None - no designer input will be considered by the computational agent, re-
garding the evaluation processes. This also assumes that the designer is not
the author of the PCG solution.

• Implicit - any aspect the designer might indirectly influence the solutions eval-
uation by the designer-computer-player complex. This approach divides into
Editorial Control, and PCG-Design.

• Explicit - all the possible ways in which the designer directly influences how
solutions are evaluated. This approach divides into Quality Assessment, and
Quality Definition.

Moving on to the generation part of the designer, we have five main categories.

• None - the computational system creates all the aspects of the generated con-
tent, with no help from the designer, including no designer-authored content.

• Configuration - when the games’ creators interact with a pre-programmed
PCG method, offering some degree of customisation to its functioning. This
approach divides into Method Selection, Method Parametrisation, and Con-
tent Parametrisation.

• Base-Design - the generation methods need human-authored content to find
new solutions. It is divided into Idea, Experiential Chunk, Template, Compo-
nent Patterns, and Subcomponent.

• Co-Design - PCG methods assign both computational and human actors deci-
sive intervention in the creative act.

• Meta-Design - designers create their PCG algorithm, that will, in turn, gener-
ate game content.

We will now talk about the evaluation and generation processes carried out by the
computational agent. Starting with the evaluation, we have three categories.

• None - PCG methods may not have any computational impact on the content
evaluation.

• Implicit - the algorithm biases the generation process, making it seem that
there is some form of computational content evaluation.

• Explicit - the computational agent enacts a formal act of content quality judge-
ment. It is divided into the subtypes Content-based, and Player Experience-
based. The former also divides into three other sub categories: Heuristics,
Simulation-based, and Experience Inference.

Still on the computational part, we will focus on the algorithmic processes compris-
ing the generation, and it divides into three categories.

2.5. Procedural Content Generation 19

• Content-type - nature of the generated content. It is divided into Derived,
Scenarios, Systems, Space, Decorative, and Design.

• Phase - about when the procedural generation happens, and it divides into
Design-Time, Pre-play, and Play-Time.

• Strategy - understanding how the computational agent proceeds to gener-
ate content, and it splits into Optimisation, Constraint Satisfaction, Grammar
Derivation, Content Selection, and Constructive.

Finally, it will be seen how the player can affect the evaluation of the generated
content, and how his/her interaction with the video game impacts the content gen-
eration. Starting with evaluation, we have three categories.

• None - the non-existence of any evaluation by the player, regarding generated
content.

• Implicit - evaluation based on the player’s behaviour, usually done by analysing
gameplay metrics. It is divided into Preference Inference, and Experience
Model-based.

• Explicit - the PCG system uses subject-data, typically in the form of question-
naires, to determine how to assess generated content and generate new con-
tent. It divides into Preference, and Experience Self-Evaluation.

Referring to every player interaction with a video game in the generation process,
we have a division into four categories.

• None - no player actions are taken into account when generating new solu-
tions.

• Gameplay - Play-time PCG considers in-game interactions in order to select
content to subsequently generate.

• Parameterisation - the player can adjust some input parameters to determine
some aspects of the generated content.

• Co-design - the player can create or edit content together with the computa-
tional agent.

2.5.7 Summary

After a long introduction to procedural content generation, we can connect some of
its points to what will exist in the prototype. Even if also being based on the first two
taxonomies presented, our approach will focus mostly on the third taxonomy, since
we will be using gameplay metrics to adjust the generated content. PCG will be used
to generate the game world before each game session, using input parameters in the
algorithm. Those parameters will vary to optimise their combinations and therefore
find the best ones. Also, because the generation occurs before a game session, it
can be seen as a generic, offline and necessary method. The algorithm will always
make sure that each world it generates is playable, meaning that a player can go
from the start to the end without being blocked along the way. Finally, we will take
into account gameplay metrics and the outcome of each session (e.g. if the player
successfully finished the level) to optimise the algorithm’s input parameters.

20 Chapter 2. State of the Art

FIGURE 2.17: Taxonomy proposed by Craveirinha et al. (Craveirinha,
Barreto, and Roque, 2016)

2.6 Experience-Driven Procedural Content Generation

Experience-Driven Procedural Content Generation (EDPCG) was originally men-
tioned by Yannakakis and Togelius (Yannakakis and Togelius, 2011), and later revis-
ited by the same authors (Yannakakis and Togelius, 2015).

With the proliferation of video games, players can be found in all parts of the
world, meaning that there is a long range of skills, preferences and emotion elicita-
tion to correspond to with one game. Because of that, there is an increasing need for
tailoring the game experience to the individual, consequently raising the difficulty
in user modelling and affective-based adaptation within games.

Although being able to use PCG in other domains, games are one of the best ex-
amples of rich and distinct content creation applications and provide unique user
experiences. Based on that, EDPCG is defined as a generic and efficient approach
to optimise user experience adapting the content (Yannakakis and Togelius, 2011).
However, even if based on game technology and affective computing, EDPCG has
managed to integrate other areas of research within human computer interaction.

Games are designed thinking in what affective experiences can be influenced by
player’s feedback, making them go through a range of emotions to heighten en-
gagement, offering the best and most meaningful realisation of the affective loop.
With this in mind, EDPCG offers complete realisation of affective interaction: elicit-
ing emotion as a result of variant game content types, integrating game content to
computational models of user affect and using game content to adapt the experience.

Since the quality of the generated content needs to be assessed, there are some
key components of EDPCG:

2.6. Experience-Driven Procedural Content Generation 21

• Player experience modelling - model player experience as a function of game
content and player.

• Content quality - assess the quality of the generated content and link it to the
modelled experience.

• Content representation - represent content accordingly, maximising search ef-
ficacy and robustness.

• Content generator - let the content search through the content space for con-
tent that optimises the experience for the player, taking the acquired model
into account.

The key components shown will be described in more detail next, surveying them,
presenting a taxonomy of approaches for each and, finally, outlining the main re-
search challenges faced.

2.6.1 Player Experience Modelling

There are many approaches to Player Experience Modelling (PEM), based on the
type of data retrieved from the players (Yannakakis and Togelius, 2011). Three
main classes allow us to model player experience in games: subjective PEM, ob-
jective PEM and gameplay-based PEM, which can also combine into more capable
hybrid methods (Yannakakis and Togelius, 2011). On a final point, PEM methods
can only be used when the retrieved data includes scalar representation of experi-
ence, or classes and annotated labels of user states since it allows the use of some
machine learning algorithms to build the affective models. Otherwise, if the experi-
ence is given in a pairwise preference format or ranking, we are facing a preference
learning problem, where decision trees, artificial neural networks and support vec-
tor machines can be applied.

With Subjective PEM, the player is directly asked about his playing experience,
building a model from the obtained data, and it may depend on either player’s free-
response during play or on forced data retrieved using questionnaires. Players can
be asked to rate their experience or to compare and rank their experience in two
or more different sessions of the game. Even if Subjective PEM provides accurate
models, it has some limitations. Player’s responses may be subjectively biased de-
pending on his experience and self-deception effects, among others Also, self-reports
can be intrusive, depending on when they appear, or sensitive to memory effects if
a player is asked to express his experience after a long game session.

Objective PEM incorporates access to multiple modalities of player input, to
model the affective state of the player during play. Most emotions reflect on the
player’s physiological and bodily behaviour, and monitoring it can assist in recog-
nising and synthesising the emotional responses of the player. Implementations of
this approach can be model-based, top-down with models deriving from emotion
theories, or model-free, bottom-up with the construction of unknown mapping be-
tween modalities of player input and an emotional state representation via anno-
tated data (e.g. facial expressions). However, these approaches are within a contin-
uum space, meaning that all the approaches can be seen as hybrids between model-
based and model-free. The main limitations of Objective PEM include its high intru-
siveness, low practicality (combined with high complexity), and questionable feasi-
bility since many modalities of player input are not plausible within the commercial

22 Chapter 2. State of the Art

game development.

In Gameplay-based PEM it is assumed that player actions and real-time pref-
erences link to player experience accepting that games may affect the player’s cog-
nitive processing patterns and focus, which may in turn influence emotions. The
basis of this approach is formed by the elements derived from the player-game in-
teraction, including parameters from player’s behaviour derived from responses to
system elements. This method classifies as model-based, model-free or a hybrid
between the two. Model-based are inspired by a general theoretical framework of
behavioural analysis or cognitive modelling, but there are game-specific theories
about user affect as well. Model-free approaches normally comprise the processing
and mining of the extensive sets of player data that modern games usually collect.
Most features extracted are mapped to levels of cognitive states such as attention,
challenge and engagement. Many measures have been used, such as performance
and time spent on a task, weapons selected, the number of times the player died,
but the chosen measures are usually game and genre related. Gameplay-based PEM
is the most computationally efficient and least intrusive of the three presented ap-
proaches, but that also results in low-resolution models of playing experience and its
affective component, since those models are usually based on assumptions relating
the player experience to gameplay actions and preferences.

2.6.2 Content Quality

The fundamental meaning of the acquired player models is to assess the quality of
game content items, being necessary for the generation phase, evaluating and using
candidate content to generate a new one. The evaluation function has the task of
evaluating the item and assigning it a scalar or vector of a real number, which will
show the suitability for use in the game and promote the desired experience, using
for that the PEM in some part (Yannakakis and Togelius, 2011).

Designing the evaluation function is not an easy task because we first need to
decide what should be optimised and how to formalise it, since it may be desired
to provide an entertaining, frustrating or challenging content. We can define direct,
simulation-based, and interactive functions as the three core classes regarding eval-
uation functions.

With direct evaluation functions, some features are extracted from the gener-
ated content, being directly mapped to a content quality value. This mapping can be
linear or nonlinear, usually not involving significant amounts of computation and
being specifically tailored for the game and content type. One important distinction
in this type of approaches is between theory-driven and data-driven functions. In
the first ones, the designer is guided by intuition or some qualitative theory of emo-
tion or player experience to derive a mapping between an experience model and the
quality of content. On the other hand, data-driven functions are based on collecting
data on the effect of various examples of content and the using automated means to
adjust the mapping from content to player experience and ultimately to evaluation
functions (Yannakakis and Togelius, 2011).

Simulation-based evaluation functions rely on an artificial agent playing through
some part of the game involving the content being evaluated. Features, mapped
to player experience models, are afterwards extracted from the observed gameplay

2.6. Experience-Driven Procedural Content Generation 23

and used to determine the quality value of the content. There is a worth mentioning
difference between static and dynamic simulation-based functions, since while in
the former the agent does not change while playing the game, in the latter the agent
changes and the quality value somehow incorporates this change. Even though sim-
ulations can be typically executed faster than real-time, simulation-based evaluation
functions are usually more computationally expensive than direct ones (Yannakakis
and Togelius, 2011).

In interactive evaluation functions, the fitness is evaluated during the actual
gameplay, assigning a score to content based on interaction with a player. Data can
be retrieved from the player explicitly (e.g. questionnaires) or implicitly (e.g. how
often does the player interact with a certain piece of content, the intensity of button
presses). This data allows tailoring the player experience models of that player, af-
fecting the evaluation function of the content presented to him. As said before, the
issue with explicit data is that it can interrupt gameplay, while implicit data can be
noisy, inaccurate, delayed and of low-resolution (Yannakakis and Togelius, 2011).

2.6.3 Content Representation

Content can be represented symbolically within a tree or a graph data structure, and
it is the common practice in the computational narrative community. While humans
can easily read this type of representation, sometimes non-symbolic representations
(e.g. artificial neural networks) might allow for more efficient search in many do-
mains.

EDPCG primary focus is bottom-up, search-based approaches for generating
content, and since most search-based PCG methods use evolutionary algorithms,
an important matter is the mapping of genotypes into phenotypes. An important
distinction is between direct and indirect encodings. In the first, the size of the geno-
type is linearly proportional to the scale of the phenotype, with each part of the
genome mapping a specific part of the phenotype. However, in indirect encodings,
the genotype maps nonlinearly to the phenotype, without the need of the former
being proportional to the latter.

As an example, a 2D platform game level can be represented:

• Directly as a matrix, with the contents of each cell being specified separately,
where mutation works by changing those cells directly.

• More indirectly as a list of positions and shapes of walls and pieces of ground,
occupying more than a single cell in the matrix, and another list of the enemies’
and items’ positions.

• Even more indirectly as a set of various reusable patterns of walls and free
space, and a list with the way those are scattered through the level.

• Very indirectly as a list of desirable properties (e.g. number of gaps).

• Most indirectly as a random number seed.

2.6.4 Content Generator

After the player experience is captured, content is adequately represented, and eval-
uation functions are designed, the content generator needs to find the content that

24 Chapter 2. State of the Art

maximises particular aspects of the player experience. In general, the more direct the
representation is, the larger the content search space becomes. In theory, the content
generator should know if, how much, and how often it should generate content for
a player.

2.6.5 Summary

In the developed prototype, we will analyse gameplay data retrieved during the
playing sessions, which leads us to a Gameplay-based PEM. However, there will
be no attempt to map players’ cognitive levels to any states, but rather evaluate the
input parameters that allow the players to successfully end the level. For that, it
will be used a direct evaluation function, attributing a quality value (fitness) to the
successful game sessions, and thus the used input parameters. Those parameters
will be scalar values, with different intervals, where the objective is to find the best
values for each one of those parameters.

2.7 Author-Centric Approach to Procedural Content Genera-
tion

Craveirinha et al. in “An Author-Centric Approach to Procedural Content Gener-
ation” state that game designers and producers are running the risk of thinking of
user satisfaction instead of user experience (Craveirinha, Santos, and Roque, 2013).
But, on the other hand, users can be superficial and incapable of expressing their
own thoughts and emotions.

Taking this into account, the work presented by the authors proposed an Author-
centric approach to EDPCG for games. In this way, it is possible to evaluate the
content quality taking into account the designer’s expectations of what gameplay
behaviours should be elicited.

2.7.1 Purpose

The authors aim to provide a procedural generation architecture that gives designers
a better way to get their game-artefact to match the desired gameplay experience. To
do that, they enable the designer choices to lead the end-result for gameplay, mean-
ing that only the elicitation of gameplay behaviour is meant to be improved by this
approach.

The data source for the experience model of architecture is based on Gameplay
Metrics, providing the “how” of gameplay, while also being quantitative, objective
and making possible large scale automatic data collection. With this approach, in-
stead of just pre-selecting what the player should take from the artefact, and even if
it is influenced by it, it still retains voluntary translation of its meaning.

This approach focuses on improving elements of an already existing game proto-
type (e.g. physics or structural level components), meaning that it is used to obtain
and validate improved versions of that prototype. However, there is no reason why
it cannot be generalised to generate other aspects of game’s content.

2.7. Author-Centric Approach to Procedural Content Generation 25

2.7.2 Process

Initially, the design team has to provide three items: a game Archetype (the base
prototype), a set of Target Indicators and their target values, and finally a defini-
tion of Parameters to generate new variations of the Archetype. Content quality
is measured as the inverse of the difference between the Target Gameplay Indica-
tor values chosen by designers, and the values for those Gameplay Indicators that
generated artefacts mediate to real players. All the elements require a configuration
process carried through a platform user-interface and direct integration using com-
putational interfaces.

Once all the elements have been gathered and integrated into a platform, it is
possible to start the actual process, being the A-cycle in figure 2.18.

1. In the Candidate Generation phase, we find new Parameter set values using
a search algorithm, more precisely a Genetic Algorithm (GA) with selection,
recombination and mutation procedures.

2. By integrating new Parameters into to Archetype, new candidate artefacts be-
come ready for playing, being play tested by players, which will, in turn, result
in extracted metrics, characterising their gameplay accurately.

3. Metrics are compiled into Gameplay Indicators defined by the designers, and
comparing to their target values, using a distance metric.

4. If the best candidate’s quality is not sufficiently close to the target values, then
this micro-cycle repeats with a new GA iteration, giving each chromosome a
fitness proportional to the candidate’s quality values.

Once the A-cycle ends, a candidate matching the target indicators is given as output
to designers, that must choose if the end-result is satisfactory. If it is not, designers
can fine-tune any of the elements provided, forwarding a new design specification
to the platform, in a new iteration of the B-cycle.

FIGURE 2.18: Architecture for an Author-Centric approach to PCG.
(Craveirinha, Santos, and Roque, 2013)

26 Chapter 2. State of the Art

2.7.3 Summary

We will be using this approach to evaluate and evolve the developed prototype. In-
put parameters can have a great impact on the performance of any algorithm and,
because of that, we need to understand how those parameters can be altered while
keeping the intended gameplay-experienced. Because of that, we will make an eco-
logically realistic case study, that is making and tuning a new game. In the end, we
will be evaluating the players’ performance against some criteria defined by us, al-
lowing the platform to proceed through its process of gathering the gameplay data
and attribute fitness values to the candidates that were previously provided to the
procedural generation algorithm.

2.8 Procedural Content Generation Cases

In this section, we will analyse two different games, both containing some sort of
procedural content generation in them, for the purpose of gaining a better grip on
the concrete challenges involved. Both cases utilise PCG techniques to generate their
worlds, but while doing it in different ways.

2.8.1 Spelunky

Derek Yu created Spelunky (Mossmouth, 2008, 2012), in figure 2.19, and originally
released it as freeware for Microsoft Windows, in 2008, and re-released it in 2012 as
an enhanced version with new content (e.g. graphics, music, monsters, items). The
game draws inspiration from many games, such as La-Mulana (GR3 Project, 2005),
in figure 2.20, and the Super Mario series (Nintendo Creative Department, 1985).
On its basis, it is a dungeon crawl with elements from the roguelike genre, including
randomly generated levels, no save points, frequent and easy death, and discovery
mechanics. Also, it gets inspiration from 2D platformers in the way of real-time in-
teractions with enemies (Wikipedia, 2016). Even though it generates random levels,
it also has a level designer, allowing levels to be shared (Wikidot, 2013).

The game uses PCG when generating its levels before the play starts, and the
first part of the algorithm, the solution path, is described in the website "Spelunky
Generator Lessons" (Kazemi, 2009). A level is composed by 16 rooms in a 4x4 grid,
having four different basic room types (0, 1, 2, 3) influencing the number of guaran-
teed exits it has and if it is on the solution path. It starts by placing a room in the top
row, usually of type 1 or 2, and every time a new room is placed, it is always a type 1
room. In order to decide which direction to take next, the algorithm picks a uniform
distribution random number between 1 and 5. If it is 1 or 2, it moves left, if 3 or 4 it
moves right, if it gets 5 it goes down, and if reaching the edge of the screen, it drops
down and changes its left/right direction. If we move left or right, there is no need
to do anything since the room is guaranteed to have left/right exits, but if we moved
down, the generator overrides the room type to 2, which always has a bottom drop.
After moving to the next room, it asks whether the last room was type 2, and if it was
this room has to be another type 2 bottom drop, or a type 3 upside-down T-shape,
and since both types have left/right exits, we can restart the algorithm. When we
are in the bottom row, and try to drop, instead of dropping we place the exit room.
Now that we have the solution path generated, we add some random type 0 rooms
to every grid space that is not a solution path, which may or may not have exits on
any side. If 3 or 4 type 0 rooms are making a vertical line, there is a chance they will

2.8. Procedural Content Generation Cases 27

become a snake pit. On a top-down manner, we can place a sequence of room type
7-8-9, or 7-8-8-9, depending on the depth wanted. Snakes and jewels are manually
placed at this point since they are part of the landscape.

Each room type has between 8 and 16 templates that it chooses from, consisting
of basic layouts, which include a mixture of static and probabilistic tiles, as well as
obstacle blocks. Static tiles are tiles that no matter what will always happen in that
place, while probabilistic tiles have probabilities of being different kinds of tiles. Fi-
nally, obstacle blocks are usually some structure the player has to manoeuvre around
(Kazemi, 2009).

FIGURE 2.19: Spelunky
in its 2012 enhanced
version. (Spelunky

World, n.d.)

FIGURE 2.20: La-
Mulana, originally
released in 2005.

(Wikipedia, 2009)

2.8.2 No Man’s Sky

No Man’s Sky (Hello Games, 2016), in figure 2.21, is an action-adventure survival
game. The gameplay is built on four pillars: exploration, survival, combat, and
trading, leaving the players free to perform within the entirety of a procedurally
generated deterministic open universe, including (as said by the developers) “18
quintillion planets, many with their own sets of flora and fauna” (Wikipedia, 2017b).

In No Man’s Sky, gameplay systems build on one another, existing an interde-
pendence between them, instead of each system building itself without taking the
other into account as it happens in most games. The results of one system become
parameters of another, which will in turn output more results that will be used as
parameters of yet another system, providing a wider range of gameplay-changing
possibilities. For example, the algorithm determines the planet distance to the near-
est star, if it has water, which in turn allows for life to exist, among others. The
second concept of the game is that everything is deterministic, making that when
the player flies near a planet, all its details are immediately generated, and even if
the player interacts with the world’s entities and leaves it, the planet will disappear
without being saved on disk. This determinism is possible since the world’s state
and behaviour of its inhabitants are determined by mathematical functions, which
with any point in space and time will always output the same results (Lee, 2015).

28 Chapter 2. State of the Art

FIGURE 2.21: No Man’s Sky, released in 2016. (No Man’s Sky, n.d.)

2.8.3 Summary

After analysing both games, and their procedural content generation methods, there
are some conclusions to be made. Technically, No Man’s Sky systems seem way
more complex than the ones used in Spelunky, since every system builds upon
another while making a significant number of calculations for each planet. How-
ever, Spelunky received many positive feedbacks from critics and players1, while
No Man’s Sky did not 2. Putting marketing and commercial points aside, it proba-
bly happened because even if the systems of one game were way more complex than
the other, the latter had a more captivating and interesting gameplay.

In the end, one of the things that make a good game is its gameplay. As such,
our produced prototype will have a PCG algorithm to generate its world, hopefully
making the players interested in exploring new and different worlds. However, its
gameplay will be something that will make players want to continue playing it, not
just because of the exploration, but for the combination of discovery and challenge
to keep playing it.

1Metascore: 90/100, User score: 7.2/10 (Metacritic, 2017b)
2Metascore: 61/100, User score: 2.6/10 (Metacritic, 2017a)

29

Chapter 3

Objectives and Methodology

This section presents the objectives, methodology and work plan taken for the real-
isation of the empiric work underlying this dissertation. It will begin by showing
the objectives defined at the beginning of the thesis, followed by the methodological
approach used to fulfil them, and the work plan applied during the dissertation.

3.1 Objectives

The primary objective of this dissertation is the production of a game prototype
whose purpose is to be played by several people and during many sessions. The
data from the game experience will be used to adapt the generated levels using pro-
cedural content generation techniques. In this way, it will be possible to tailor the
experience to the players, even though it is based on the same game concept. This
will help in optimising the parameters used to generate the levels, instead of hav-
ing some predefined values, which sometimes may be wrongly attributed. Getting
some data from the players will help to adapt those values, allowing the game to
feel more captivating and interesting for them. Summarily, the primary objective is
to show in which way PCG may enable a form of Generative Game Design, where a
scenario generation algorithm will be used to foster some level of perpetual novelty
while working within parameters boundaries that generate a playable and interest-
ing experience.

The developed prototype will have inspirations in the period of Portuguese Dis-
coveries when several navigators set sail towards the unknown. This theme seemed
like a good idea since we had an exploration game in mind, and thus we can do
that while creating an experience that models the kind of challenges felt in mapping
the unknown, managing risks, and keeping the resources to advance further. With
this in mind, each game level will have a map, with a starting and an arriving point,
represented by a square matrix with a not yet defined size, where the player will
ride with his/her ship. Each cell will consist of a single type of terrain having the
following variations:

• Water cells, subdivided in flat (with no obstacles to the movement), wavy
(with some obstacles to the movement), stormy (with several obstacles to the
movement, and damage to the ship), and windy (changing the course of the
movement).

• Land cells, subdivided in cliffs (the ship cannot dock, and receives damage),
plains and hills (the ship can dock safely), and mountains (not appearing on
the coast, so there will be no interaction with the ship). Each one of the safe
docking cells (plains/beach and hills) may also contain wells (providing fresh
water), forests (providing wood), or animals (providing food).

30 Chapter 3. Objectives and Methodology

The player will be able to move in any of the water cells, to any direction in a Moore
neighbourhood. However, he will be limited by the number of available resources,
these being fresh water, wood, food, and crew. The first three are obtained either by
making contact with cells containing those resources or by returning to the starting
point. The crew is only restored when the player returns to the starting point.

Procedural Content Generation will be used during loading time, creating sce-
narios between game iterations. This way, it will be possible to take into account
player events from previous sessions, which may lead to adjustments to the param-
eters given to the level generation algorithm.

3.2 Design Science Research

Design Science Research is a methodology aiming at the creation of new knowledge,
as a consequence of research made through design, which will help in solving a cer-
tain problem (Vaishnavi and Kuechler, 2008).

The Design Science Research, as shown in Figure 7, contains five steps: Aware-
ness of Problem, Suggestion, Development, Evaluation, and Conclusion, each one
producing its artefacts.

1. Awareness of Problem - this first step includes the definition and identification
of a problem. At this point, and to clarify the question at hands, State of the
Art research is conducted.

2. Suggestion - in this step, a proposal to solve the problem is made, based on
state of the art previously created. This part will output the game concept to
be used.

3. Development - the third step is the development itself, where the prototyping
is going to take place, given the game concept established before. This stage
can be seen as a Proof of Concept, showing that the proposed solution is indeed
possible.

4. Evaluation - this step aims at evaluating the prototypes created in the pre-
vious step, where players will be gathered to do so, providing the feedback
(circumscription) needed to adjust the prototype, making it an iterative and
incremental development process.

5. Conclusion - this final step refers to the close of the project when the knowl-
edge can be produced.

Before addressing the workplan, we should thus clarify the questions for which
we will be researching the answers, justifying the adoption of a Design Science Re-
search approach:

• What should be the design of a game that uses PCG methods to generate its
game scenarios?

• How can such a game be built?

• What would be useful parameters for generating interesting and playable game
scenarios?

3.3. Work Plan 31

FIGURE 3.1: Cognition in the Design Science Research Cycle. (Vaish-
navi and Kuechler, 2008)

3.3 Work Plan

The work plan devised for this dissertation was initially divided into 9 steps, or
activities, spread across both semesters, and it is presented in figure 3.2. As it is pos-
sible to see, the diagram follows the steps in the Design Science Research methodol-
ogy, with an evaluation phase always following the development parts, depicted as
Prototype #1 and #2 in the diagram. In the end, it is then possible to take conclusions
regarding the research done.

FIGURE 3.2: Initial Gantt diagram for the dissertation.

However, when starting the second semester, the initial planning was revised
to add the required time for the integration with the server that would help the
prototype in sending and receiving the data required in each game session. The
revised diagram is shown on figure 3.3, now divided into 10 steps.

FIGURE 3.3: Revised Gantt diagram for the dissertation.

32 Chapter 3. Objectives and Methodology

In the end, the planned schedule was not completely fulfilled, since there were
some issues during the final stages of development, regarding the integration with
the server. This delayed the start of the gameplay testing phase and, as a conse-
quence, the dissertation was extended until September. On this period, only the
gameplay testing phase and the final report writing occurred.

33

Chapter 4

DSR Initial Design Proposal:
Game Concept

4.1 Characteristics

The developed prototype gets inspirations from the Portuguese Discoveries era,
when many sailors left their country to the unknown, often without knowing what
awaited them along the way. The game world consists of cells, divided into water
and land, and each one of them contains subtypes. The land cell can also be a start
point and an end point, the latter being the objective the player must reach with his
ship. So, the prototype aims to be an exploration game, where it is possible for the
player to travel through the world, with this being previously generated by an algo-
rithm, containing several obstacles and help for the player.

The player can control his/her ship, and drive through the ocean of the game
world. The ship will be subject to different interactions with the ocean terrain, due
to the existence of winds and currents that can push the player into undesirable di-
rections, sometimes containing obstacles.

The obstacles along the way may be of several natures, for example, the cell
where the player is currently on can push him into a cliff, or on the other hand, it
can be a dead end that will force the player to return a long way on the path. The
help can be seen as all the cells that contain necessary resources for the player to
gather, or a path that does not present adversities to him.

The prototype comprises many components, as described above, each one with
unique characteristics, rightly described. As already mentioned, the player will sail
through the map using a ship, with the primary objective to depart from the start
point and reach the end point, whose location is always unknown to him. The
water cells have a probability formula that will influence the player’s movement,
taking into account the player’s intention, the flow’s (ocean current) direction, and
the wind’s direction, resulting in (intention, flow, wind), with the sum of all the
weights being always five. It is important to note that this value could easily be
changed to something else, all it would need was a readjustment of the weights
accordingly. These cells are divided into:

• Flat – with calm waters and movement without obstacles, having the calcula-
tion values (5, 0, 0).

• Wavy – with slightly wavy waters and presenting some obstacles to the player’s
movement, having the calculation values (3, 1, 1).

34 Chapter 4. DSR Initial Design Proposal: Game Concept

• Stormy – with stormy waters and presenting many obstacles to the player’s
movement while also damaging the ship, having the calculation values (1, 3,
1).

• Windy – with strong winds which may take the player to a completely differ-
ent direction than that was intended, having the calculation values (1, 0, 4).

The land cells can be interacted by the player, allowing it to dock or not (dam-
aging the ship), and to get resources from them, if they have any. These cells divide
into:

• Cliffs – the player cannot dock in these cells, suffering damage if he attempts
to.

• Plains and Hills – the player can dock safely in these cells and there may re-
sources in them.

• Mountains – the player cannot dock since these cells cannot be accessed by
him since they are in the middle of land agglomerates.

The resources are used when the player moves or repairs his ship. In the first
case, fresh water and food are consumed, which can be obtained from plains and
hills cells, and if the player does not contain any of those two resources, the number
of crew elements is reduced, since there are no resources to maintain it. Those re-
sources decrease in a certain number of movements ratio. In the second case, if the
player repairs the ship, wood will be consumed, which can be obtained from plains
and hills cells. If the player decides to return to the start point, then he will replenish
all the maximum amount of every resource, as well as repairing any damage taken
by the ship. Finally, the map will have a predefined size, where there will be all the
cells and resources, as well as the player’s ship.

There was the idea of including two more components to the game but were
under-prioritised in this simplified model due to time constraints. The first was ma-
rine obstacles, which included enemy ships and sea monsters, both damaging the
player’s ship and sometimes reducing its crew. The second component was trea-
sures, which were thought to increase the interest of the player into exploring the
game world.

4.2 Interaction

Since the beginning, the game was intended to be played on both on desktop and
mobile or touch devices, leading its interactions to be done through a touch screen.
So, to move the player will have to click or touch on adjacent water cells to the one
he is on, and to pick resources he will have to click on adjacent land cells that con-
tain them. To move the game’s camera, he will have to swipe the finger to the left
or right, and any other interaction available with the user interface will also be done
using touches on the respective buttons.

In the game’s screen, the player will be able to see part of the map and his ship,
since he can only perceive the cells he already went through while the others are
under fog circumstances, preventing him from knowing what cells are under it. Be-
sides that, the player can understand every cell’s subtype, and in case of land cells,
he can verify if they have resources and of what type. Since the ship is influenced by

4.2. Interaction 35

the flow and the wind, the player should be able to understand those two elements
through the direction the ship is facing, and the direction the sail is facing, respec-
tively. For example, if the flow is running north the ship will turn its front to north,
and if the wind is blowing east the sail will turn its tip to east.

Regarding the user interface, there are two buttons which the player can use, one
of them being to open/close the minimap (showing the map’s portion discovered
by the player), and the other to repair the ship. Regarding information given to the
player, he knows the quantity of all the resources he has in every moment, and there
is a compass that tells him the direction the camera is facing since both rotate at the
same time.

37

Chapter 5

Development

5.1 Game Engine: Unity

Unity is a general-purpose engine, comprising several visual tools and three differ-
ent custom scripting languages, while also having a proprietary online store called
asset store, where many plugins, either third party or official, can be downloaded
or bought. Adding to this comes the fact that the engine has a nice support for de-
velopers via tutorials, community forums where Unity’s employees answer to any
problems, and directly contacting Unity’s support team. The engine has four license
options including a free personal one, which lets the developer access all engine fea-
tures and platforms while also applying some restrictions to the product. However,
these limitations do not interfere with the objective of the application we are aiming
to develop.

Another important aspect when selecting this engine was related to the previ-
ous experience. Previously having developed some games and applications with it,
allowed me to better adapt to the current project, and to focus on the development
rather than the learning curve that I would face if the chosen engine was something
I have never worked with. Since the aim of the project was making a mobile appli-
cation, Unity seemed the right choice to take because it would be possible to easily
deploy to mobile, optimising the build for the selected platform, and when talking
about mobile applications this is a significant factor.

With all that was said above, Unity seemed from the beginning the right engine
to choose, and because of that we never had any discussion regarding other possi-
bilities.

5.2 Game Architecture

In this section, we will verify how the game concept can be built into an actual game.
Based on the description and core idea presented for the game, it ended up being di-
vided into several components that helped both having a better overall idea of how
the prototype would look and what would be the best way to divide tasks in its de-
velopment. Those components will now be described and can also be seen, along
with their different relations, in the diagram in figure 5.1.

We can reduce our diagram to the four core components of the game, since most
of the remaining components are children of those, with them being the player, the
map, the different map cells, and the resources. The player is the object that will be
controlled by the user itself, allowing him to do all the actions that he is allowed to,

38 Chapter 5. Development

such as moving through the game world. This game world, depicted as the map, is
composed of several cells, each one of these having different characteristics, types
of interaction by the player, and influence on the player. Besides that, and as already
seen above, these cells are also divided into water and land cells. The player can
only move through the first ones, having different weight on his movement, while
the latter cells can contain resources, and the interactions with the player will always
differ based on their cell subtype as described in 1.1. Finally, the resources can be
picked by the player if he is facing the cell containing them, and every different type
of resource will help the player in various ways, as already described in 1.1.

Summing it all up, the map can only have one player (and vice-versa), but it is
allowed to have multiple cells given its size limit. Those cells are divided into water
and land cells, with the latter being able to contain just one resource, with this being
also divided into fresh water, food, and wood.

FIGURE 5.1: Ontology diagram containing the relations between each
game component.

Moving to the Unity side, the prototype comprises many C# scripts with each of
them having a different objective. This scripts include HTTPManager, Algorithm,
gameMaster, playerMovement, FlashingCell, followPlayer, and Epoch, and a data
flowchart showing their connections is shown in figure 5.2.

5.2. Game Architecture 39

FIGURE 5.2: Flowchart depicting the data flow on the prototype.

• HTTPManager – this is the first script to run in the application since it will
try to retrieve initial parameters (also named as feature set) from the server to
start the session, and in case it is not able to retrieve them, default parameters
will be kept. Besides that, it manages all the connections to the server, as well
as all the information needed to achieve them. Also, instead of sending every
single line of the log file to the server, it keeps a local copy of the log file during
the session and sends it at the end of the game session. The script has public
functions that can be used to send and retrieve data from the server. After its
main process has ended, it will send the initial parameters to the Algorithm
script.

• Algorithm – when this script runs for the first time, it will get the initial param-
eters stored in the HTTPManager script, in order to execute the map generation
algorithm and generate a new map for the game session. After this map is cre-
ated, the script will log it so that it can later be sent to the server. Also, after
those actions occurred, the script will spawn all the clouds and map limiters,
the gameMaster object, and the player object (containing the playerMovement
script and the flashing cells). The script has public functions to get a cell’s in-
formation, get the matrix’s side size (and thus the size of all the sides since it is
a square matrix), check if a cell exists in the matrix, and get the direction from
the start point to the end. It needs to retrieve the current time from the Epoch
script, in order to send logs to the HTTPManager script.

• gameMaster – during the game, this script will check for swipes to move the
camera. Also, it has functions to start, end, reset, and exit the game, as well as
a function to open and close the minimap (and refresh it if needed). It retrieves

40 Chapter 5. Development

data from both the Algorithm and playerMovement scripts, and gets the cur-
rent time from the Epoch script to send logs to the HTTPManager script.

• playerMovement – this script is responsible for the player’s movement, for
example checking which cells the player can move to. It manages the player’s
resources, reducing them by a given decaying rate, and increasing them when
the player picks up a resource. Besides that, it is also responsible for showing
the amount of resources in possession of the player, and the respective anima-
tions anytime there is a change in their quantity. Finally, it is also responsible
for animating all the player’s movement, for example, the ship rotation. It
retrieves data from both the Algorithm and gameMaster scripts, and gets the
current time from the Epoch script to send logs to the HTTPManager script.

• FlashingCell – this script is always attached to various indicators above the
cells the player can directly move to, and will make them flash from fully
opaque white to fully transparent white.

• followPlayer – whatever object has this script attached will follow the GameOb-
ject depicted as the player.

• Epoch – this script is used to calculate the Epoch time, defined as the number
of seconds that have elapsed since 00:00:00 UTC, Thursday, 1 January 1970
minus the number of leap seconds that have taken place since then (Wikipedia,
2017c).

5.3 Map Generation Algorithm

Since one of the main goals of this work was to have some kind of level generation,
as it is implied in the title as generative game design, I needed to think in what
approaches I could follow to create an algorithm that would fit the game concept and
my own visions about the game. Initially, there was some research regarding some
types of map generation algorithms, and as it turned out there are some approaches
that are usually used, such as:

• Perlin Noise, where it generates a grid of values ranging from 0 to 1, making it
possible to adapt it into a height map, where on a 0-10 scale we could have for
example below 3 water, 3-4 beaches, 4-6 forests, 6-9 hills, and 9-10 mountains
(Red Blob Games, 2015). One example of this approach can be seen in figure
5.3.

• Cellular Automata, which is a grid of cells with their own state, but with the
same ruleset that determine state transitions. All these transitions happen at
the same time, and every cell looks at its neighbourhood and decides what
state it will transition to. This method is often used for dungeon generation,
mostly caves, since it creates organic looking patterns (Wikidot, 2016). One
example of this approach can be seen in figure 5.4.

• Fractals, describing a broad set of shapes, which characteristics like non-integer
dimension, and detail at all scales, which leads fractals to be used due to
their self-similarity simulating natural processes, like erosion and plant growth
(Wikidot, 2010). One exapme of this approach can be seen in figure 5.5.

5.3. Map Generation Algorithm 41

FIGURE 5.3: Map generated using Perlin Noise. (Red Blob Games,
2015)

FIGURE 5.4: Map generated using a Cellular Automata. (Envato
Tuts+, 2013) (Generated)

FIGURE 5.5: Map generated using a Fractal. (Donjon, 2011) (Gener-
ated)

42 Chapter 5. Development

However, besides these types of approaches being commonly used in map and
terrain generation, I ended up not using them. That happened because they did not
allow the customisation and singularity that I had in mind for the game, and some-
times being too complex for the game as well. I wanted for example to be able to
limit the amount of existing land right from the beginning, to limit the size of the
land agglomerates, without having to apply some post-processing method on the
map matrix and replace cells to fit into the wanted values. Furthermore, the Per-
lin Noise and Fractal methods seemed to be too complex for the purpose, creating
worlds with more detail than it was intended for the developed prototype. In the
end, those characteristics led me into creating my own algorithm to generate the
maps.

Before going into detail, we will first show an overview on how the algorithm is
supposed to work, showing its pseudocode, and after that, explaining the entirety
of the algorithm, since some parts of it require more functions or steps that do not
appear in the pseudocode algorithm. It is important to note that this is simply our al-
gorithm design proposal, and we plan to find out through research if this algorithm
is adequate and produces interesting and controllable results.

1 initialise map matrix with water cells;
2 while there are not enough land cells do
3 add land cell into available cell;
4 while there are not enough land cells and the size of the land

agglomerate is less or equal than the allowed do
5 if adding cell to the agglomerate then
6 add land cell;
7 else
8 end agglomerate cycle;
9 end

10 end
11 end
12 define start and end points;
13 define land cells subtypes;
14 define water cells subtypes, flow, and wind;
15 define resource distribution;

Now that we have a general understanding of how the algorithm works, we can
move on to a deep explanation on all its different parts, including the type of data it
works with and how it changes this data to create a map in the end.

The algorithm needs some input parameters to work, which will be explained
below:

• matrixSide – the side length of the square matrix used, meaning the number
of columns or rows it has.

• totalSize – the total number of cells in the matrix, which is given by

totalSize = matrixSide2

• percentageLand – the percentage of land available in the map, on a scale from
0 to 100.

5.3. Map Generation Algorithm 43

• amountLand - the number of land cells that will exist in the map, given by

amountLand = totalSize ∗ percentageLand

100

• maxLandSize – the maximum size allowed for a single land agglomerate, which
in our case will be thirty percent of the maximum number of cells allowed in
the map, and is given by

maxLandSize = amountLand ∗ 30

100

• minDistance – the minimum distance between the start and end points.

• maxDistance – the maximum distance between the start and end points.

• pickableFreshWater – the number of cells that will contain the resource fresh
water.

• pickableFood – the number of cells that will contain the resource food.

• pickableWood – the number of cells that will contain the resource wood.

As stated before, the algorithm uses a matrix that stores everything about each
cell in it. This is accomplished by using integers with a predefined format, allowing
the algorithm to know every information it needs from a cell. This format consists
of six numbers (which can be seen as categories) with the following order: type,
subtype, resource, enemy, flow, and wind. Before showing all the possible values
for each number, it is important to explain why there is a value for enemies: at the
start of the development there were thoughts of having water cells that could contain
enemies to difficult the player’s passage, but those were not implemented. Still, the
number for it was kept in case there was the possibility to include said enemies.
Moving on, in table 5.1 it is possible to check every value for each number, and what
they mean. So, if we had a plains cell with fresh water its value would be 221000,
and if we had a stormy cell with flow’s direction to the north and wind’s direction
to the south its value would be 130015.

Type Subtype Resource Enemy Flow Wind

1 - Water

1 - Flat
2 - Wavy
3 - Stormy
4 - Windy

0 - Non-existent 0 - Non-existent

1 - North
2 - Northeast
3 - East
4 - Southeast
5 - South
6 - Southwest
7 - West
8 - Northwest

1 - North
2 - Northeast
3 - East
4 - Southeast
5 - South
6 - Southwest
7 - West
8 - Northwest

2 - Land
2 - Plains
3 - Hills

1 - Fresh Water
2 - Food
3 - Wood

0 - Non-existent 0 - Non-existent 0 - Non-existent

1 - Cliff
4 - Mountain
5 - Start
6 - End

0 - Non-existent 0 - Non-existent 0 - Non-existent 0 - Non-existent

TABLE 5.1: Possible values for each number of a matrix cell.

Having now all the required data information, we will explain the algorithm in
more detail, including everything needed in each step shown in the pseudocode.

44 Chapter 5. Development

Initialise Matrix

Starting with line 1, the algorithm will initialise the world matrix, considering the
defined side length of the matrix. However, it will not initialise the matrix with ze-
ros. Instead, it will fill each cell the value for a standard water cell, meaning 100000.
This decision was made because most of the map will be water cells and only a small
percentage filled with land cells, leading me to change all the values to the base wa-
ter cell value.

Generate Land Mass

Moving onto line 2, the algorithm will start the process of placing land cells, which
is divided into two different phases. First, in line 3 it will try to pick an available spot
for a land cell and, when it finds one, will rightly place said land cell there. In line
4 the algorithm will try to create a land agglomerate until it reaches the maximum
size for the agglomerate or the maximum number of land cells, or until it is forced to
break the cycle, with a decreasing probability of adding another cell as it gets bigger.
To calculate this probability, it uses the formula

probability =
numerator

maxLandSize
∗ 100

with numerator having an initial value of maxLandSize-1 and decreasing by one every
time a new land cell is added to the agglomerate and while numerator is greater
than 1. The algorithm will then generate a value between 0 and 100 and check it is
below the probability value. If it is, it will then try to place a land cell in the Moore
neighbourhood (figure 5.6) of the land cell that is now being checked. Otherwise,
if the value is greater than the probability, it will cease the expansion of the land
agglomerate. It is important to note that all the land cells placed are added to a List,
so they can be easily accessed later, instead of searching the full matrix for land cells.

FIGURE 5.6: Moore neighbourhood with the player in the middle.
(Wikipedia, 2012a)

Define Start and End points

In line 12, the algorithm defines the start and end points and begins by picking two
different land cells from the list previously created. It will then check if both cells are
coast cells, and the algorithm does this by seeing if their Von Neumann neighbour-
hood (figure 5.7) has at least one water cell. If they both pass, then the algorithm will
check if the Euclidean distance, in this case given by

distance =
√
(start.x− end.x)2 + (start.y − end.y)2

with start and end being the points, is contained in the interval between the mini-
mum and maximum distances received as an input. If they are within those values,

5.3. Map Generation Algorithm 45

then all that is left is checking if we can get from the start to the end, preventing
any of those points from being in a lake created by the algorithm. It achieves it by
first creating an adjacency matrix initialised with zeros, with the size of the world
matrix and with each cell containing the Euclidean distance from that cell to the end,
and a List that will contain all the cells left to check. In the list, the algorithm uses
a Vector3, since the x and y values are equal to the cell’s but the z value is the Eu-
clidean distance to the end. The first cell to appear in both the matrix and the list
is the start point. The algorithm will then begin checking the cells in the list until
there is none, always by retrieving the first cell of the list. It then starts by verifying
if it is possible to reach the end point through the current cell, returning true in case
it happens. If not, it will add all the water cells contained in the current cell’s Von
Neumann neighbourhood (figure 5.7) to the matrix and list. However, since in our
game the player can move in all the Moore neighbourhood space we need to take
more cells into account, and thus the algorithm will check if the diagonal cells, in
relation to the current one, are both water cells and accessible. We cannot simply
add them without verifying their accessibility because the player cannot move if the
cell is blocked by two other land cells, for example if in figure 5.7 the top and right
red cells are land cells and the player wishes to go through them. After adding all
the available cells, and before starting another iteration of the cycle, the algorithm
sorts the cells by their distance to the end point, thus almost discarding those that
are far away from it. If the algorithm exits the cycle, it is because there is no path
from the start to the end, and will then return false. If any of the previous checking
phases failed to pass, the algorithm would need to pick two new points.

FIGURE 5.7: Von Neumann neighbourhood with the player in the
middle. (Wikipedia, 2012b) (Adapted)

Define Land Cells Subtypes

Regarding the land cells, what is left to do in line 13 is to define their subtypes. To
do this, the algorithm will go through the list containing the land cells, and if a cell
does not have a subtype defined, it will then start the process. It first verifies if we
have a coast cell, using the function described before. If it is a coast cell, then the
algorithm generates a value between 0 and 100 and checks if it is within the interval
for each of the cliff, hills, and plains subtypes, meaning that each of those subtypes
has approximately a 1

3 ∗ 100 percent chance of happening. In the case it is not a coast
cell, then it will directly become a mountain.

Define Water Cells Subtypes, Flow, and Wind

In line 14, the algorithm will start by defining the subtype for all the water cells, and
there are some criteria for doing it, only being applied to cells that do not have a
defined subtype. First, it will verify if the current cell belongs in a lake, meaning
that it is in a water agglomerate surrounded by land. To do this, the algorithm will

46 Chapter 5. Development

first set a maximum value maxWater for the size of the lake, using the formula

maxWater =
matrixSide2 − amountLand

5

The algorithm then creates a list where it will store every water cell contained in said
lake, and two integer variables: one to count the number of water cells in the list and
another to save the list’s index being checked, since it will constantly be adding new
elements to it. The verification starts in a cycle with the algorithm filling the list with
water cells contained in the Von Neumann neighbourhood of the current cell. The
cycle will stop if the number of water cells reached the maximum allowed or the in-
dex being checked reached the number of water cells it currently has. After ending
the cycle, if the number of cells in the list is less than the maximum allowed, then
it means there is a lake, and all the cells in it will have the subtype flat. Continuing
line 14, if the cell is not in a lake, then the algorithm will make verifications whether
it is near a land coast cell, and depending on this land cell’s subtype different prob-
abilities for the water cell’s subtype will occur, as seen in table 5.2.

Land Subtype Flat (%) Wavy (%) Stormy (%) Windy (%)
Plains 60 40 0 0
Cliffs 10 60 0 30
Hills 40 50 0 10

TABLE 5.2: Probabilities for each water cell subtype, depending on
the neighbour land cell.

If the water cell being checked is not in a lake or a coast cell, then it means it is in
high seas, being able to be any of the four possible subtypes, but the subtype attribu-
tion will be based on the Moore neighbourhood of the current cell. To do this, the al-
gorithm first creates two integer arrays: quantityArray and neighborArray. The first
is used to tell the probability of each subtype occurring, starting with 25% to every
subtype. The second array will store the number of neighbour water cells for each of
the four subtypes. After neighborArray has been filled with data, the algorithm will
sum its values to each subtype in quantityArray. For example, if neighborArray is 3,
0, 1, 0, quantityArray will then be 1+3, 2+3, 3+3+1, 4+3+1 = 4, 5, 7, 8. The algorithm
will then pick a value between 0 and the maximum value in quantityArray, which
will be compared to the values in the array to verify what interval (meaning sub-
type) contains it. Still in line 14, the algorithm will now define both flow and wind
of the current water cell, also considering its Moore Neighbourhood, similarly to the
previously explained method for defining high seas water cells’ subtypes.

Distribute Resources

Nearly finishing the algorithm, what is left to do in line 15 is to define the resources
distribution. The process is equal to all the three resources, and what the algorithm
does is place one resource until the amount reaches its maximum, moving on to the
next resource (if there is one).

5.4 Integration with the Crowdplay Server

During the final moments of development, there was a need to integrate the game
with a server, named CrowdPlay, which hosts a tool that works on improving an

5.4. Integration with the Crowdplay Server 47

existing base-game prototype, with the help of a procedural generation algorithm,
until it meets an author’s (designer) agenda for player’s experience. And as such,
this tool would fit in the developed prototype, since we needed to evolve our input
parameters for our algorithm to try and find the most suitable values for each pa-
rameter. The tool is named the Authorial Game Evolution (Craveirinha and Roque,
2016) tool (AGE for short), and three main elements must be provided: a Base-Game,
a set of Game Variations intended to evolve the base game, and a set of Design Goal
Tests being the designer’s player-experience objectives.

The Base-Game is the prototype integrated with AGE, leaving some aspects
open to evolution. The Game Variations are essentially the range of possible values
for each game variable defined by the designer. The Design Goal Tests are attribu-
tions of quality scores to the candidate solutions whose player experience indicators
pass a given test condition. Those indicators can be calculated based on gameplay
metrics, automated subject questionnaires or bio-metrics signals. The data is then
processed by the AGE, and the score is attributed based on formulae defined by
the designer. These design goal tests are the basis for helping the procedural algo-
rithm’s evaluation of prototypes, measuring their closeness to the intended player
experience.

The procedural algorithm starts by generating a new set of game variations with
a simple genetic algorithm. Then, when a player plays the game, AGE will send
one candidate to the prototype in order to generate game-content for the experience.
After that, the data is sent to the AGE tool and processed based on the defined in-
dicators. The scores for each candidate will then be attributed based on the design
goal tests. This cycle will repeat until a given end condition is achieved. The process
can be seen in figure 5.8.

FIGURE 5.8: Diagram of the AGE-powered design process. (Craveir-
inha and Roque, 2016)

The developed prototype will use the AGE tool to retrieve some of the initial pa-
rameters needed for the map generation algorithm, to send the game session’s data.
This allows the tool to process the data and attribute scores to the different candi-
dates, as seen above. The input parameters and design goals defined in the tool will
be later discussed in the document, in section 6.

48 Chapter 5. Development

In order to have the platform prepared for the developed prototype, we had to
register a project and a considerable number of objects that will be used as data
to describe the different game sessions. The data is sent to the server in a subject-
event-predicate format, but allowing more information such as time, position, and
values for the subject and predicate. This data is sent as text to the server, and each
line connects to an action in the game, and the line format is “session_id, date-
time, time_engine, x, y, z, id_subject, subject_value, id_event, id_predicate, pred-
icate_value”. As we can see in this format, every object needs its own ID, so we
needed to make a list of what objects the game needs in order to register them in the
server and get their identification (as seen in Appendix A).

5.5 Game Interface

The game interface and overall functioning will be now explained while showing
some screenshots of its final version, and explaining a bit of both the user and soft-
ware sides.

On Start

When the game is started, the first thing it will do is to retrieve the initial parameters
(feature set) from the server via an HTTP connection, since those are required for the
map generation algorithm. In the case the user does not have an internet connection,
those parameters will keep the default values defined in the application code. After
the parameters have been defined, they will be passed to the generation algorithm,
and so the world map will be created.

When the generation algorithm finishes, the user will be presented one screen
with instructions and, sometimes, the direction he should follow to get to the end
point of the game (figures 5.9 and 5.10). Notice the sometimes term, because the
decision to whether the user gets information on the initial directions or not is an
input parameter, and as such may not be available for some sessions. When the user
has finished reading all the provided information, he can continue by pressing the
button Play. It is important to note that every action that the user will make from
now on will be recorded in the data format required to send to the server.

FIGURE 5.9: Prototype’s screenshot of the initial screen, with direc-
tions.

5.5. Game Interface 49

FIGURE 5.10: Prototype’s screenshot of the initial screen, without di-
rections.

Interface Design

The user interface was thought to accomplish some objectives that allowed the player
to be aware of the state of the game.

• The interface should present to the player all the details about his/her re-
sources while being easily relatable to them.

• The interface should allow the player to detect when a resource’s quantity has
been changed.

• Since this is an exploration game, the interface should include a component
(for example, a compass) that ensures the player can perceive his/her direction
in the game.

• Since the game has to be played on devices with a touchscreen, there should
exist buttons with the objective of repairing the ship, and opening and closing
the minimap.

• The user interface should not occupy a significant portion of the game screen.
For example, it should not overlap the interactable cells.

Playing the Game

When the user starts playing, the first thing he will see is the overworld map, with
his ship slightly in the middle of the screen and near the start point (figure 5.11).
Besides that, he can also see all his resources in the top right corner just below the
compass indicating the camera’s direction, and two buttons in the bottom left corner
for opening/closing the minimap and for repairing the ship. Finally, he can also
notice the fog around him, preventing him from knowing what is further in his path
until he discovers it.

The user is allowed to click in any cell in its Moore neighbourhood, but can only
move to the water cells that are highlighted with a blinking white rectangle. When
he attempts to move into a water cell, the game will make some calculations to ver-
ify how the player’s movement will go. These calculations are made using the cur-
rent cell’s calculation values, stated in section 4. After he has wandered around the

50 Chapter 5. Development

FIGURE 5.11: Prototype’s screenshot of the overworld map, with the
player in the middle.

world, the player will most likely need to check his surroundings and the discovered
area so far, and thus he can open his minimap with the respective button, displaying
a screen showing the portion of the map discovered by the user (figure 5.12). He is
able to exit said display by pressing the mini-map button again.

FIGURE 5.12: Prototype’s screenshot of the minimap.

Managing Resources

Since getting to the end can prove to be a hard task, the user will need to gather
resources whenever he can. If he does not, he may run out of food and fresh water
(figure 5.13) to maintain his crew or can end up with a damaged ship and no wood
(figure 5.14) to repair it. So, it is important to the user to be aware of his surroundings
and to remember where he last found a certain type of resource, as he may need
them urgently. Of course, sometimes the generation algorithm can create maps with
resources concentrated in one place, or so far apart that it becomes a hard task to
gather them.

5.5. Game Interface 51

FIGURE 5.13: Prototype’s screenshot showing cells containing food
(animal) and fresh water (well).

FIGURE 5.14: Prototype’s screenshot showing cell containing wood
(tree).

Winning or Losing

Eventually, after a possibly difficult path, the user will find out the location of the
end point (figure 5.15), and thus will be able to finish the game successfully (figure
5.16). After he does, he can choose to play a new session with an entirely different
map, or to exit the game if he does not want to continue playing.

Of course, things may not go as expected, for many reasons, and the user may
end up losing all its resources and crew members or getting his ship destroyed. If
this happens, a game over screen appears, and the user can try to play the game
again in a new map, or exit the game (figure 5.17).

In both the winning and losing situations, the game will send the play session
data to the server, which will then be used in the AGE genetic algorithm to attribute
scores to the candidate (feature set) used in this session.

52 Chapter 5. Development

FIGURE 5.15: Prototype’s screenshot showing the end point.

FIGURE 5.16: Prototype’s screenshot showing the winning screen.

FIGURE 5.17: Prototype’s screenshot showing the losing screen.

5.6. Development Activities 53

5.6 Development Activities

The following list states the activities that took place in each iteration of the devel-
opment process. A list depicting all the performed tasks can be seen in Appendix
B.

• Iteration 1 (8/2 – 14/2) – Definition and documentation of the Game Design
Document, stating all the key characteristics of the game.

• Iteration 2 (15/2 – 21/2) – Definition of the system’s architecture. Definition
of the initial parameters of the generation algorithm, its steps, and the data
structure to be used.

• Iteration 3 (22/2 – 31/3) – Development of the first version of the prototype, in-
cluding the implementation of the generation algorithm, the visual translation
of the world map, and the gameplay elements of the game.

• Iteration 4 (1/4 – 11/4) – Usability testing. Analysis and conclusions about the
results.

• Iteration 5 (12/4 – 31/5) – Prototype revision based on the results taken from
the usability tests. Integration with the Crowdplay server.

• Iteration 6 (1/6 - 15/8) – Pilot gameplay tests of the integrated prototype. Def-
inition of the gameplay tests. Gameplay testing with AGE to understand how
what is generated with different PCG parameters influences the way players
explore the gameplay.

5.7 Work Management and Prioritisation

In order to manage how the development process took place, I adopted a backlog list
that contained what activities remained to be done. At the beginning of each week,
I would choose a subset of activities and divide them into tasks. During the week,
I would develop and complete said tasks and, if any of them were not completed
during that time, it would transition over to the next week. Otherwise, if everything
went as planned, I would select another subset from the list, based on the priority
of having a working and playable prototype. After the completion of each activity,
some tests were performed to access if it was working as intended with no defects.
Those tests were performed firstly by me, at the time of development, and later on
with colleagues from the laboratory. Also, as the development went on, some ele-
ments were added or removed from the worklist. This list is included in Appendix
C.

Prioritisation was given based on the previously described generation algorithm
steps and with the intention of experimenting the gameplay in order to test its con-
cept. Based on those criteria, the selecting order would be tasks that remained from
earlier weeks, tasks that could either be developed independently of others or served
as support for other tasks, dependent tasks. All these while making advances into a
playable prototype, ready to be tested by players.

55

Chapter 6

Evaluation

In this section, I will be talking about the testing done on the developed prototype.
It was divided into usability and gameplay testing, with the former happening first
to make sure the game was understandable and playable.

6.1 Usability Testing

These evaluations focused on understanding how well players understood how to
play the game, what was the purpose of each game’s component, the information
that was provided to them, among others relevant for control and interpretation of
the interface and the game.

At the moment of these tests, the prototype was not yet playable on a mobile
platform, but instead, it was played on a computer. That lead to game actions being
mapped to keyboard keys. Besides that, in this version of the prototype there were
not any animations in the game, and for example, the ship’s movement was simply
a “quick-jump” to the destination. The prototype, regarding feedback to the player,
was still in a raw stage, and that probably influenced the testing outcomes.

6.1.1 Test Setup

These tests consisted of individual sessions where each voluntary tester was asked
to play a build of the game prototype, with no previous information besides the one
provided by the prototype itself. During those sessions, testers were accompanied
by an evaluator, with the task of taking notes on any behaviour or events occurred
during the tests and forbidden to answer any questions regarding the game.

Each player was asked to play the game at least once, but after that, they were
allowed to play more times while still counting for any notes we could take. Each
time they started the game, there would be a tutorial message explaining a portion
of the game, as seen in figure 6.1. After that, the players could start the actual game.
Also, there was not any predefined script for the game session. Since it is a game,
we opted for letting the testers to play the game as they wanted, because restraining
them to a script would go against the wanted feeling of freedom and exploration,
and could influence the results. So, all the players were asked was to reach the des-
tination point, thus the end of the level.

After the playing session, each player was asked to fill a questionnaire about
their experience with the game, containing twelve questions with the first ten being
multiple choice, following a Likert scale with the values 1 to 5, respectively ranging
from strongly disagree to strongly agree. The questions are as follows:

56 Chapter 6. Evaluation

1. I understood what I had to do.

2. I understood how I could do my actions.

3. I understood what each game’s component meant.

4. I understood the outcome of each one of my actions.

5. I understood that flow and wind could influence my movement.

6. I understood the flow’s and wind’s directions.

7. I understood that different cells produced different results.

8. I was able to locate myself in world through the mini-map.

9. I perceived the world’s limits.

10. I understood I could pick up resources from land cells.

11. What visual aspects would you change, if any?

12. Any comment or suggestion?

Tests were performed with six subjects, and data was collected through the notes
taken during the game sessions and the questionnaires. From those six testers, only
five were able to reach the destination point, although none were able to do it on
the first try. The subject who was not able to reach the end gave up at the start of
the second try, as it was hard for the subject to understand the overall objective and
experience of the game. However, the results were still taken into account, including
the questionnaire’s answers.

FIGURE 6.1: Prototype’s screenshot showing the first version of the
tutorial.

6.1. Usability Testing 57

6.1.2 Results and Analysis

Since data was collected through questionnaires and my own notes, I will be analysing
the questionnaire results and, in the end, take conclusions based on results, sugges-
tions, and observations. Also, I ended up mixing testers’ suggestions and my own
observations in a document, which can be found in Appendix D, as well as the tables
containing every value depicted in this section.

Before going into the analysis, it is important to note that the objective is not to
make a statistic analysis, nor is it representative. This analysis together with the ob-
servations will only allow identifying problem areas that must be solved in order to
be able to advance to the gameplay testing phase.

The questionnaire’s objective was primarily to understand if the tester was able
to comprehend the intended gameplay experience, and how well that happened.
Regarding the multiple-choice questions, the results can be found in figure 6.2, with
each colour identifying a different tester. As it is possible to see, the results are too
dispersed, regarding each question. However, it is also possible to verify that some
players understood the prototype better than others. For example, based on the
answers, we can assume that tester 1 had a better understanding of the game when
compared to tester 5, which was the one who was unable to reach the end of the
game.

FIGURE 6.2: Questions classifications by each tester.

In order to help better understanding each question result, I calculated both the
average and the standard deviation of the classification per question, as shown in
figure 6.3. One of the first things that gets our attention in the graph is the fact that
question number six had the lowest average classification of all the questions, by a
considerable margin. This question refers to a critical point in the game, the under-
standing of the directions of both the flow and the wind, which sometimes dictates
the player’s movement.

It is possible to verify that the majority of questions (eight, to be precise) are
within the classification values 3 and 4, proven by the calculated average of 3.15 ±
0.55. This allows us to understand that even if the game is not completely under-
standable by now, it is also not impossible to play. Some design choices that maybe
caused some problems while playing the game were:

58 Chapter 6. Evaluation

• The lack of feedback whenever a resource changed, preventing the players
from noticing when their ship’s health was decreasing, leading to their loss,
for example.

• The absence of an explanation about the influence of the wind and flow, mak-
ing players wonder why the ship seemed to be spinning whenever they moved.

• The absence of any movement animations made it even harder to understand
what was happening to the ship while it moved.

FIGURE 6.3: Average and standard deviation of the classification per
question.

Finally, the graph in figure 6.4 contains the average and the standard deviation
for the classifications given by each tester. Based on those results, I was able to assess
that the answers to the questionnaire somewhat match the seen performance by each
player, and their understanding of the game, in the end of the test session. Again,
based on this graph we can verify that tester 1 was the one who better understood
the game, while tester 5 had the most difficulty to play and understand the game.

FIGURE 6.4: Average and standard deviation of the classifications per
tester.

With all the tests completed and several problems noted, some things came up
immediately and, therefore, were extremely urgent to fix, while other issues did not
impact the experience that much, making them not so urgent. Because of that, these

6.1. Usability Testing 59

problems that arose were divided into critical problems and noncritical problems,
specified below.

There were five critical problems identified, and besides just identifying them,
we also thought immediately of possible ways of fixing the issues, based on the notes
and suggestions.

1. All the testers were confused about the ship movement, due to the lack of
animations related to:

a. Movement between cells. Fixing this would probably also help on the
issue regarding the fluidity of the camera.

b. Ship rotation, influenced by the flow.

c. Mast rotation, influenced by the wind.

The last two are extremely important since most testers were not able to un-
derstand the influence of both flow and wind.

2. Some testers did not notice the initial directions. There are two ways to solve
this issue:

a. Highlight the direction in the initial menu with a more appealing way.

b. Allow the player to access the same initial menu, during gameplay. This
was also suggested by some testers.

3. Most of the testers tried to click on non-adjacent cells to move the ship. This
can be solved by highlighting the adjacent cells while considering restrictions
imposed by the gameplay rules.

4. Many testers did not notice the resources changing, either by losing or pick-
ing them. This can be solved by highlighting when something related to the
resources happens.

5. The need for a brief description of the game, giving a goal to the player. This
can be solved by adding information to the initial menu. This information
should include an explanation of the influence of the flow and the wind on the
ship and mast, respectively.

Regarding the non-critical problems, there were three issues identified. Again,
instead of just identifying these issues, I also wrote down some notes of my own.

1. Many testers tried different keys to do some actions. One possible way of
solving this was to change the keys related to some game actions. However,
this will probably be discarded because the game is going to be touch-based.

2. Some testers suggested changing the water cells colours. Specifically, the windy
and flat water cells should be coloured a bit more different from one another.

3. Some testers tried to check the resources on the mini-map while playing the
game.

60 Chapter 6. Evaluation

6.1.3 Proposed Design Corrections

With all the problems identified, it was time to start fixing them. To help keep track
of each issue progress, I created a table containing all the problems, including critical
and non-critical. I would write on the said table all that has been done in order to fix
each problem, and if it was corrected or not. This information can be seen in table 6.1.

Problem Corrected How was it corrected

Critical #1 Yes
All the identified animations were added. Besides those, I also
implemented an animation when the player is pushed into a place he cannot go,
for example, a land cell or a blocked diagonal water cell.

Critical #2 Yes
The directions text was changed to different colour from the rest of the
text (black), as well as bolded.

Critical #3 Yes
Implemented flashing white cells, that would be placed above the cells
the player was able to move to.

Critical #4 Yes
Implemented a colouring and zoom each time a resource has changed. For
example, if the player picked any resource its number would blink green and
zoom out. If the player lost any resource, it would blink red and zoom out.

Critical #5 Yes
A more in-depth description was added to the initial menu, explaining
the controls and the interactions between player-game.

Non-critical #1 Yes

Since the game was aimed at mobile touch-based devices, this issue was
not considered. However, it is important to note that in the transition to
touch-based controls, two buttons were added to open and close the minimap and
to repair the ship. Also, the camera rotation, originally on the right and left
keys, was implemented into swiping right and left.

Non-critical #2 Yes The windy cell colour was slightly softened.

Non-critical #3 No
In my idea, it was more interesting to make the player remember his
whereabouts, and thus knowing where the nearest resources were.

TABLE 6.1: Usability testing phase problems and their corrections.

Besides the changes related to problems identified, I ended up changing the user
interface, in order to make it more relatable to the gameplay experience and easier to
understand. Those changes are explained below, and the differences can be verified
in figures 6.5 and 6.6.

• Replaced the resources names with pictures depicting each one of them.

• Repositioned the resources display and compass, moving them to the top right
corner of the screen.

• Added some transparency to the panels containing the resources and compass
information.

Besides those user interface changes and disregarding the different scenarios on
the figures, it is also possible to notice other differences:

• The start point had its texture changed.

• It is possible to notice the flashing cells on the top and bottom cells regarding
the player, in figure 6.6.

• The buttons to open and close the map, and to repair the ship, can be seen in
the bottom left corner of figure 6.6.

6.1. Usability Testing 61

FIGURE 6.5: First version of the prototype’s user interface.

FIGURE 6.6: Final version of the prototype’s user interface. Note how
the interface has new icons, new placements, new colors, and two

previously missing buttons.

62 Chapter 6. Evaluation

6.2 Gameplay Testing

These tests focused on trying to get intervals containing the best values or value
ranges for each of the algorithm input parameters. The current prototype was al-
ready playable on a mobile platform, with all the corrections to problems that arose
in the usability testing phase.

6.2.1 Test Setup

In order to prepare the tests, I had first to decide which input parameters for the
generation algorithm were going to be targeted during this testing phase, to register
them in the server. The chosen input parameters were as follows, indicating each
interval. The intervals were defined based on the default values used by the pro-
totype, which are applied if no internet connection exists when trying to reach the
server. These default values were initially based on the map side size value of 30,
proving to be reasonable values for the parameters.

• Minimum Distance – the minimum distance between the start and end points.
Its interval is [5, 15], and its default value is 10, which is 1

3 of the map side
size. The interval limits were obtained by decreasing and increasing the de-
fault value by 50%.

• Maximum Distance – the maximum distance between the start and end points.
Its interval is [16, 30], and its default value is 20, which is 2

3 of the map side
size. The interval limits were obtained by decreasing and increasing the de-
fault value by 50%, but to avoid an overlap with the minimum distance inter-
val, the lower limit was increased to 16.

• Fresh Water – the number of cells containing fresh water. Its interval is [7, 23],
and its default value is 15, which is 1

2 of the map side size. The interval limits
were obtained by decreasing and increasing the default value by 50% while
making sure the values remained integers.

• Food – the number of cells containing food. Its interval is [7, 23], and its default
value is 15, which is 1

2 of the map side size. The interval limits were obtained
by decreasing and increasing the default value by 50% while making sure the
values remained integers.

• Wood – the number of cells containing wood. Its interval is [7, 23], and its
default value is 15, which is 1

2 of the map side size. The interval limits were
obtained by decreasing and increasing the default value by 50% while making
sure the values remained integers.

• Directions – variable depicting if the player would receive the initial directions
or not. Its interval is [0, 1], and its default value is 1. From now on, I will be
using [No, Yes] instead of [0, 1].

To use AGE, we also needed to set a design goal required to be met for a game
session to be considered successful. Moreover, because we targeted a casual game-
play setting, we intended for the players to finish each scenario within five to ten
minutes.

With the parameters and design goals defined, the simulation in the server was
ready to be started, so that players could connect to it and start playing. After the

6.2. Gameplay Testing 63

simulation started, the platform generated ten candidates, which were the feature
sets containing the input parameters for the algorithm that met the range criteria.
All the candidates are stated in table E.1 in Appendix E, containing their feature set
values, their generation, and their score based on the design goal.

These tests consisted of individual sessions where each voluntary tester was
asked to play a build of the game prototype, usually in their mobile platform, with
no information besides the one provided by the prototype itself. The testers got ac-
cess to the prototype when we sent them the application so that they could install it
on their device.

Each player was asked to play the game at least once and connected to the inter-
net, but since the game was on their personal device, they were allowed to play as
many times as they wanted. Each time they started the game, the server would pick
a candidate and send it back to the game session requesting it. After the game ses-
sion ended, the game would send the log containing all the actions taken, including
the elapsed time and travelled distance, to the server, and then the candidate would
be attributed a success or not, depending on its time and winning condition. Every
candidate had to be evaluated ten times until it was not selected anymore during
that generation.

6.2.2 Problems

During this testing phase, many problems arose either from issues regarding the
server, because sometimes data was not correctly sent to or received by the server,
or because the number of necessary evaluations was far too high for the current
needs.

Regarding the server, sometimes it would crash the evaluation system because of
issues regarding the database connection. During the testing phase, this led to some
evaluations not being accounted for in the candidate, allowing for some candidates
to require more actual game sessions than they should. This can be verified in table
E.1 in Appendix E, wherein generation one the maximum evaluations were ten and
some candidates have greater numbers than this. Another issue that appeared dur-
ing the second generation of candidates was the server sending the best candidate
from the first generation for game sessions, even though it was not in the current
population. One of the successful sessions from Generation 2 had this candidate
and, because of that, was not accounted into the total successful sessions.

About data not being correctly sent to or received by the server, it was because
some game sessions did not have the information they should at the end. This prob-
ably happened because one of three factors: either the game was unable to send said
data to the server, the player closed the game during the session, preventing the data
from being then sent to the server, or the server was not able to process the data and
then rejecting it. However, we still could not yet assess clearly why this happened.

Finally, regarding the number of evaluations, during the first generation of can-
didates, we realised that ten evaluations per candidate required more availability
from players than we could easily get at the time. This lead us to change the re-
quired number of evaluations to five, which did not influence any value in the first
generation since all the candidates were above five evaluations by that time.

64 Chapter 6. Evaluation

6.2.3 Results and Analysis

Since the candidates are generated through a genetic algorithm, the initial popula-
tion plays a big role when trying to find the best candidates, sometimes helping the
algorithm to converge faster to them. However, in this case, there was not just a
computational agent doing some calculations on the candidates. We needed people
to play the game and, in that sense, it made things go at a slower pace and increas-
ing the importance of the initial population. Besides that, since we are working with
people, they usually need some time to get used to a game and, of course, that fact
can influence the results. Finally, some players may think more than others, taking
their time to act upon the game, influencing the elapsed time. That is the reason why
we initially set 10 gameplays per instance (rule of thumb and statistical reasons).

By the end of the testing phase, 162 game sessions were evaluated out of 198
played sessions. Moreover, out of those, 59 sessions were won, with only 15 of those
being successful regarding the design goal. As it is possible to verify, the number
of successful sessions was not too high, and that lead us to decide to gather data
related to all the sessions in which the player won. Since all the winning sessions
and candidates are stated on tables E.2 and E.3, in Appendix E, I chose to show just
the candidates with a fitness value different than zero in table 6.2, being identified
by their server identification number.

Generation Candidate Score
Times
Played

Successful
Sessions

Minimum
Distance

Maximum
Distance

Fresh
Water

Food Wood Directions

1

15468 8.33 12 1 10 17 19 12 15 No
15469 13.33 15 1 14 29 8 11 17 Yes
15470 10 10 1 12 19 17 20 11 Yes
15472 10 10 1 14 25 19 11 16 No
15476 9.09 11 1 13 22 13 21 13 Yes

2

15486 20 5 1 14 29 8 20 11 Yes
15488 28.57 7 2 14 29 19 11 16 Yes
15489 20 5 1 14 25 8 11 17 No
15490 14.29 7 1 10 21 15 13 15 No
15492 20 5 1 14 25 19 20 11 No
15494 60 5 3 12 19 17 20 11 Yes
15495 16.67 6 1 12 19 17 20 11 Yes

TABLE 6.2: Successful candidates, across two generations.

Looking at table 6.2, we can verify that out of the twenty candidates, only twelve
were attributed some fitness value different from zero, meaning that they were suc-
cessful at least one time. However, relating the number of successes and their times
played, we can verify that there is a rather significant disparity between those val-
ues. The candidates score is calculated by summing all their achieved scores and
dividing them by the number of times each candidate was used in a play session.

In Generation 1, even though there were theoretically ten evaluations needed for
each candidate, the number of successes per candidate was no more than one. Even
though it is too early to get concrete conclusions, it is possible to get some ideas
through the presented results from this generation:

• Some parameters could have their intervals changed, to better fit the evalua-
tions results. For example, even though the lowest value available for Mini-
mum Distance was 7, the best candidates did not have a value lower than 10.

• Showing the initial directions seems to be the most favourable option in the
successful sessions, appearing in 60% of them.

6.2. Gameplay Testing 65

In Generation 2, even though the required number of evaluations was reduced to
five, some candidates were played more times again due to server problems. How-
ever, even with only 57 evaluated sessions against 105 of the first generation, the
second generation was able to get more successful generations than the first, with
ten versus five. Also, two candidates from this generation were successful more
than once, with two times for candidate 15488 and three times for candidate 15494,
allowing them to reach the highest fitness values (score) of this population, respec-
tively 28.57 and 60. It is possible to go further on the previous conclusions from
Generation 1.

• As suspected in the first generation, some parameters could indeed have their
intervals changed. For example, taking the same parameter as before, Mini-
mum Distance still seems to perform better with values above or equal to ten.

• Showing the initial directions got a slight increase in its presence in the suc-
cessful sessions, increasing its quantity to 70%. On the other hand, this also
signals that it is possible to solve several scenarios without this information.

In the following analysis, I will be using Generation 2 as my basis for results,
since being the last completed generation, it can be considered to be the one having
the most favourable candidates.

Since the defined design goal had a time constraint, it is also important to analyse
how each candidate performed in that regard and see if there are any conclusions to
take from it (table 6.3).

Candidate
Session
Time (s)

Average
Time (s)

Start-End
Distance

Average
Distance

15486 343 343 16.55 16.55

15488
373

456
24.21

25.35
539 26.48

15489 318 318 20.22 20.22
15490 492 492 10.44 10.44
15492 455 455 16.97 16.97

15494
382

359.67
14.56

16.79383 18.6
314 17.2

15495 368 368 12.17 12.17

TABLE 6.3: Session times and distances from start to end, for each
successful candidate.

Analysing table 6.3, we can point off some important aspects regarding session
times and distance from the start to the end.

• 70% of the successful sessions took between 300 and 420 seconds to finish,
meaning that it seems candidates are getting closer to the lowest time allowed
(300), rather than having a similar dispersion within the design goal interval
[300, 600]. In comparison, only approximately 28% of all sessions from Gener-
ation 2 had a time between 300 and 420 seconds, which is not a bad value since
almost 59% of the times are below 300 seconds.

• 70% of the successful sessions had a distance from the start to the end between
10 and 20, and 30% was above 20. In comparison, approximately 83% of all

66 Chapter 6. Evaluation

sessions from Generation 2 had a distance between 10 and 20, showing that
the successful sessions distances are not far from the global values.

• Notably, 50% of the sessions had both a time between 300 and 420 seconds and
a distance between 10 and 20. Even though I cannot create a definitive con-
nection between those time and distance intervals, they seem to be somehow
related.

• Out of all sessions, 20% had a time greater than 420 seconds while the player
did not know the initial directions to the end point. This means that hiding
those directions from the player may increase the time they spend to finish the
level successfully.

Considering the results from the second generation, I gathered all the parameters
in table 6.4 and accounted how many times each value occurred in a certain param-
eter. Based on the table values, if we were to pick the best combination of values
by choosing the most frequent ones, then it would be {14, 19, 17, 20, 11, Yes}. We
can notice that this combination is almost the candidate 15494 who got the highest
score on this generation, having only a different value for Minimum Distance. How-
ever, even if it seems that both the best candidate and the combination of the most
frequent values are heading in the same direction, it is important to note that some
parameters have other values that also appear frequently, usually with a difference
of one from the most frequent value.

Parameter Value Times

Minimum Distance
10 1
12 4
14 5

Maximum Distance

19 4
21 1
25 2
29 3

Fresh Water

8 2
15 1
17 4
19 3

Food
11 3
13 1
20 6

Wood

11 6
15 1
16 2
17 1

Directions
Yes 7
No 3

TABLE 6.4: Number of times each parameter’s value was successful.

So, taking into account that more value possibilities may exist, I will pick the two
most frequent values of each parameter from table 6.4, and see where that leads us.

• For Minimum Distance, the values are 14 and 12.

• For Maximum Distance, the values are 19 and 29.

6.2. Gameplay Testing 67

• For Fresh Water, the values are 17 and 19.

• For Food, the values are 20 and 11.

• For Wood, the values are 11 and 16.

• For Directions, the values are, of course, Yes and No.

So, from these values, it would be possible to make combinations of them and
see if that would give any significant results. However, since I would not want to
bias the generation algorithm and its results into accepting these values as the best,
we should let it go as it is now. Talking of which, the algorithm ended up generating
a third generation with nine candidates, stated in table E.1 in Appendix E. Even if
none of those candidates was tested, I will be stating their most common values for
each parameter, and compare those to the previous values taken from generation 2.

• Minimum Distance – 12 and 14.

• Maximum Distance – 19 and a draw between 25 and 29.

• Fresh Water – 17 and 19.

• Food – 20 and 11.

• Wood – 11 and a draw between 15, 16, and 17.

• Directions – Yes and No.

As expected, those values match almost perfectly with the most frequent values from
generation 2, and that may indicate that these values are the ones most likely to pass
on through future generations.

In conclusion, through two generations I found some frequent values that seem
to be performing well among the players. However, this cannot be seen as a final
statement, since more evaluation is needed. Also, most of the players that achieved
the design goal finished the game between 300 and 420 seconds, meaning that even
if the mentioned values are performing well, they are not covering all the intended
time range between five and ten minutes.

Quoting this thesis adviser, "we can look at this as a search for the parameters for
the best candidate, or, we can be searching for the intervals that are likely to elicit
gameplay within the boundaries defined, and still generate diverse play scenarios to
keep the player interested. Should the ranges be narrower, or larger, to allow for the
circumstantial difficulty loss? That can be a more interesting design consideration
as we learn to deal with PCG in the dark art of Game Design” (oral quote from
Licínio Roque, 2017). As pointed before, even with 162 evaluated sessions, only 15
were effectively successful, which can indicate that there is some difficulty inherent
to the game. Although this difficulty can be addressed varying the intervals that are
currently being used, it is not possible for us to determine if we should decrease or
increase said intervals, since that would require even more considerations through
more testing.

69

Chapter 7

Further Work

7.1 Critical Aspects to Correct

There were some aspects regarding this project that should be fixed as future work.
Firstly, as it was mentioned in Gameplay Tests, there were several problems regard-
ing the server containing the AGE platform. If the prototype would continue to use
this platform, it is almost needed that those issues need to be fixed to keep all the as-
pects of the testing phase running smoothly and with minor annoyances. Secondly,
since the game was targeted at mobile devices which sometimes are not that pow-
erful and capable of running demanding applications, the prototype should have
to go through a process of performance optimisations. Because even if Unity does
make some optimisations by itself, there are certainly some aspects that could be im-
proved by the developer, allowing the game to run in a more stable condition even
on low-end devices. Finally, although the game contains almost every visual aspect
needed, it was not developed as much as it should. It would be interesting, and
probably needed, to make the game look and feel more related to its concept, while
keeping it visually interesting to its audience.

7.2 Future Developments

After the corrections based on the usability testing phase results, there was no for-
mal verification that those changes did indeed improve the overall experience of the
game, mostly due to time constraints. For future development, it would be interest-
ing to verify how the interface changes impacted the current gameplay experience.

Regarding the generation algorithm, some aspects ended up not being imple-
mented, such as the addition of enemies, treasures, and resources distribution based
on land cells. Enemies would occupy certain water cells, having the player fight
them allowing him to reach those cells. Treasures were mentioned when there were
conversations of having different levels, with each one of those having a different
amount of treasures, and making the player replay the levels to gather all the trea-
sures. They would be found on certain land cells, being considered as achievements
for the player. Finally, there was also the idea of different land cells having different
probabilities of containing certain resources, since plains and hills acted essentially
the same way. These elements were not implemented because of their complexity
and the lack of available time.

70 Chapter 7. Further Work

Finally, and depending on what we want the PCG for, the gameplay testing
phase should continue to tune the current candidates further, and find the best val-
ues for each parameter given the current design goal since two generations are not
enough to do it.

71

Chapter 8

Conclusions

In this thesis, we studied the employment of procedural content generation methods
in the design of an original game, allowing for the adaptation of parameter values
used in the creation of game environments. For this, we developed a game prototype
focused on exploration, where the players must manage their resources and ship to
reach an end point. The prototype creates its environments using a map generation
algorithm, developed during this thesis.

To ensure that the prototype was easy to understand, usability tests were made
with six subjects. The results from these tests helped on improving the prototype,
with most changes being made to its user interface, controls, and animations.

During this thesis, the prototype was integrated with a server that contained a
tool that would help the evolution of the candidates containing the parameters, by
using a genetic algorithm. At the beginning of each game session, the server would
send a candidate set of parameters to the prototype for the map generation algo-
rithm. At the end of a session, the prototype would send a log file to the server,
which would then analyse it and attribute scores to the candidates based on prede-
fined design goals. At the end of each generation, the tool kept the best candidates
and generated new ones.

After the prototype-server integration was complete, several gameplay tests were
performed, helping the server tool to evolve the candidates with its genetic algo-
rithm. At the end of this testing phase, and with two completed generations, it was
possible to verify that some values performed better than others. For the defined
parameters, if we were to select the most successful values for each parameter, we
would end up with the set {14, 19, 17, 20, 11, Yes}. However, since playing a video
game is dependent on each person experience, more tests would be needed to arrive
at more conclusive values on the best value ranges for each parameter.

The AGE tool proved to be of good use because even with its flaws and insta-
bility, it helped us on having a range of values to test the generation algorithm with
while allowing us to define the desired gameplay experience. Besides that, its ge-
netic algorithm was important on achieving and evolving those values by attribut-
ing scores to each candidate set. Finally, it also gave us tools to store gameplay data
that could later be analysed, enabling us to retrieve data that could prove crucial
when analysing the game sessions.

The integration of PCG methods within a game right from the start proved to
create interesting outcomes, and we only scratched the surface of what can be ac-
complished using PCG methods. Even if we only used six initial parameters for the

72 Chapter 8. Conclusions

algorithm, it already created interesting and explorable scenarios. The addition of
more parameters, or even the inclusion of a PCG method during the game sessions
could prove to improve the experience even further.

At the end of this dissertation, it is possible to conclude that we successfully
designed a game that incorporates a PCG algorithm that generates its scenarios.
Moreover, the developed video game works as intended, allowing the players to
explore a vast world generated using the said algorithm, which contains parame-
ters that were defined with a desired gameplay experience in mind. The generation
algorithm proved to create adequate scenarios that seem fit for the wanted experi-
ence, but more elements could be added to it, such as the components that were
discarded due to time constraints, and verify if those elements improved the desired
experience.

During this thesis’ research and development, I had the opportunity to deepen
my knowledge base regarding several computer engineering topics. Most notably,
even though I had heard about procedural content generation before, it was only
with this thesis that I implemented an algorithm of this type, allowing me to learn
the design process and better predict the outcomes that can result from a map gen-
eration algorithm. Besides that, with some research in the game design field, I was
able to understand better how to concept a game and implement it given the con-
cept. The integration with the server also helped me realise that many problems can
occur when a software depends on other thirt-party systems, and that we must be
prepared for such issues. Finally, I improved my capability of devising and conduct-
ing usability tests, which can be rather difficult to perform. In conclusion, this thesis
helped me to grow my skills, hopefully leading me to become a better professional.

73

References

Adams, Tarn and Zach Adams (2006). Dwarf Fortress. Bay 12 Games.

A.I. Design (1980). Rogue. Epyx.

Atari (1972). Pong. Atari.

Bay 12 Games (n.d.). Dwarf Fortress. URL: http : / / www . bay12games . com /
dwarves/screens/adv44.png (visited on Aug. 22, 2017).

Braben, David and Ian Bell (1984). Elite. Acornsoft.

Browne, Cameron (2007a). Yavalath. URL: http://www.cameronius.com/games/
yavalath/.

— (2007b). Yavalath. URL: http://www.cameronius.com/games/yavalath/
yavalath-deluxe-1.jpg (visited on Aug. 22, 2017).

Craveirinha, Rui, Nuno Barreto, and Licínio Roque (2016). “Towards a Taxonomy
for the Clarification of PCG Actors’ Roles”. In: CHI PLAY ’16 Proceedings of the
2016 Annual Symposium on Computer-Human Interaction in Play.

Craveirinha, Rui and Licínio Roque (2016). “Exploring the Design-Space: The Au-
thorial Game Evolution Tool Case-Study”. In: Proceedings of the 13th International
Conference on Advances in Computer Entertainment Technology. ACE2016. Osaka,
Japan: ACM.

Craveirinha, Rui, Lucas Santos, and Licínio Roque (2013). “An Author-Centric Ap-
proach to Procedural Content Generation”. In: 10th International Conference on
Advances in Computer Entertainment.

Donjon (2011). Fractal World Generator. URL: https://donjon.bin.sh/world/
(visited on Aug. 22, 2017).

Electronic Arts (2009a). Left 4 Dead. URL: https://web- vassets.ea.com/
Assets/Richmedia/Image/Screenshots/l4d08.jpg (visited on Aug. 22,
2017).

— (2009b). Spore. URL: https://web-vassets.ea.com/Assets/Richmedia/
Image/Screenshots/spor-pc-creatureretai2-screenshot.png (vis-
ited on Aug. 22, 2017).

Envato Tuts+ (2013). Generate Random Cave Levels Using Cellular Automata. URL: https:
//gamedevelopment.tutsplus.com/tutorials/generate-random-

http://www.bay12games.com/dwarves/screens/adv44.png
http://www.bay12games.com/dwarves/screens/adv44.png
http://www.cameronius.com/games/yavalath/
http://www.cameronius.com/games/yavalath/
http://www.cameronius.com/games/yavalath/yavalath-deluxe-1.jpg
http://www.cameronius.com/games/yavalath/yavalath-deluxe-1.jpg
https://donjon.bin.sh/world/
https://web-vassets.ea.com/Assets/Richmedia/Image/Screenshots/l4d08.jpg
https://web-vassets.ea.com/Assets/Richmedia/Image/Screenshots/l4d08.jpg
https://web-vassets.ea.com/Assets/Richmedia/Image/Screenshots/spor-pc-creatureretai2-screenshot.png
https://web-vassets.ea.com/Assets/Richmedia/Image/Screenshots/spor-pc-creatureretai2-screenshot.png
https://gamedevelopment.tutsplus.com/tutorials/generate-random-cave-levels-using-cellular-automata--gamedev-9664
https://gamedevelopment.tutsplus.com/tutorials/generate-random-cave-levels-using-cellular-automata--gamedev-9664
https://gamedevelopment.tutsplus.com/tutorials/generate-random-cave-levels-using-cellular-automata--gamedev-9664
https://gamedevelopment.tutsplus.com/tutorials/generate-random-cave-levels-using-cellular-automata--gamedev-9664

74 REFERENCES

cave-levels-using-cellular-automata--gamedev-9664 (visited on
Aug. 22, 2017).

Evolutionary Games (2010). Galactic Arms Race.

Gamepedia (2016). Seeds. URL: http://bindingofisaacrebirth.gamepedia.
com/Seeds (visited on Jan. 7, 2017).

GR3 Project (2005). La-Mulana. GR3 Project.

Hello Games (2016). No Man’s Sky. Hello Games.

Higinbotham, William and Robert Dvorak (1958). Tennis for Two.

Huizinga, Johan (1944). Homo Ludens: A Study of the Play-Element in Culture. Rout-
ledge & Kegan Paul Ltd.

Hunicke, Robin, Marc LeBlanc, and Robert Zubek (2004). “MDA: A Formal Ap-
proach to Game Design and Game Research”. In: Game Design and Tuning Work-
shop.

Kazemi, Darius (2009). Spelunky Generator Lessons. URL: http://tinysubversions.
com/spelunkyGen/ (visited on Jan. 17, 2017).

Lee, Joel (2015). No Man’s Sky and the Future of Procedural Games. URL: http://
www.makeuseof.com/tag/no-mans-sky-future-procedural-games/
(visited on Jan. 18, 2017).

Martinho, Carlos, Pedro Santos, and Rui Prada (2014). Design e Desenvolvimento de
Jogos. FCA - Editora de Informática, Lda.

Maxis (2008). Spore. Electronic Arts.

Metacritic (2017a). No Man’s Sky. Metascore: 61/100, User score 2.6/10. URL: http:
//www.metacritic.com/game/pc/no-mans-sky (visited on Aug. 21,
2017).

— (2017b). Spelunky. Metascore: 90/100, User score 7.2/10. URL: http://www.
metacritic.com/game/pc/spelunky (visited on Aug. 21, 2017).

Mossmouth (2008, 2012). Spelunky. Mossmouth.

Nicalis (2014). The Binding of Isaac: Rebirth. Nicalis.

Nintendo Creative Department (1985). Super Mario Bros. Nintendo.

No Man’s Sky (n.d.). No Man’s Sky. URL: https://nmswp.azureedge.net/wp-
content/uploads/2017/02/NewEridu.png (visited on Aug. 22, 2017).

https://gamedevelopment.tutsplus.com/tutorials/generate-random-cave-levels-using-cellular-automata--gamedev-9664
https://gamedevelopment.tutsplus.com/tutorials/generate-random-cave-levels-using-cellular-automata--gamedev-9664
https://gamedevelopment.tutsplus.com/tutorials/generate-random-cave-levels-using-cellular-automata--gamedev-9664
http://bindingofisaacrebirth.gamepedia.com/Seeds
http://bindingofisaacrebirth.gamepedia.com/Seeds
http://tinysubversions.com/spelunkyGen/
http://tinysubversions.com/spelunkyGen/
http://www.makeuseof.com/tag/no-mans-sky-future-procedural-games/
http://www.makeuseof.com/tag/no-mans-sky-future-procedural-games/
http://www.metacritic.com/game/pc/no-mans-sky
http://www.metacritic.com/game/pc/no-mans-sky
http://www.metacritic.com/game/pc/spelunky
http://www.metacritic.com/game/pc/spelunky
https://nmswp.azureedge.net/wp-content/uploads/2017/02/NewEridu.png
https://nmswp.azureedge.net/wp-content/uploads/2017/02/NewEridu.png

REFERENCES 75

Pinterest (n.d.). Computer Space. URL: https://s-media-cache-ak0.pinimg.
com/originals/a7/d1/70/a7d170ea621d836047b73e42988cf1d5.
jpg (visited on Aug. 22, 2017).

PlayStation (n.d.). The Binding of Isaac: Rebirth. URL: https://media.playstation.
com/is/image/SCEA/the-binding-of-isaac-rebirth-screenshot-
01-ps4-psvita-us-15oct14?$MediaCarousel_Original$ (visited on
Aug. 22, 2017).

Red Blob Games (2015). Making maps with noise functions. URL: http : / / www .
redblobgames.com/maps/terrain- from- noise/ (visited on July 20,
2017).

Ritzl, Björn (2016). The Rogue Archive. URL: https : / / britzl . github . io /
roguearchive/images/rogue.png (visited on Aug. 22, 2017).

Russel, Steve et al. (1962). Spacewar!

Schell, Jesse (2008). The Art of Game Design: A Book of Lenses. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc. ISBN: 0-12-369496-5.

Schreiber, Ian and Sebastian Sohn (2013). Process of Design & MDA Framework. URL:
https://learn.canvas.net/courses/3/pages/level-4-dot-1-
process-of-design-and-mda-framework (visited on Aug. 12, 2017).

Shaker, Noor, Georgios Yannakakis, and Julian Togelius (2010). “Towards automatic
personalized content generation for platform games”. In: Proceedings of the Sixth
AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment.

Smith, Gillian (2014). “Understanding Procedural Content Generation: A Design-
Centric Analysis of the Role of PCG in Games”. In: CHI ’14 Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems.

Smith, Gillian, Jim Whitehead, and Michael Mateas (2010). “Tanagra: a mixed-initiative
level design tool”. In: Proceedings of the Fifth International Conference on the Foun-
dations of Digital Games.

Spelunky World (n.d.). Spelunky. URL: http : / / www . spelunkyworld . com /
images/spelunky-ss05.jpg (visited on Aug. 22, 2017).

Syzygy Engineering (1971). Computer Space.

Togelius, Julian, Noor Shaker, and Mark J. Nelson (2016). “Introduction”. In: Proce-
dural Content Generation in Games: A Textbook and an Overview of Current Research.
Ed. by Noor Shaker, Julian Togelius, and Mark J. Nelson. Springer, pp. 1–15.

Togelius, Julian, Georgios N. Yannakakis, Kenneth O. Stanley, and Cameron Browne
(2010). Search-based Procedural Content Generation.

https://s-media-cache-ak0.pinimg.com/originals/a7/d1/70/a7d170ea621d836047b73e42988cf1d5.jpg
https://s-media-cache-ak0.pinimg.com/originals/a7/d1/70/a7d170ea621d836047b73e42988cf1d5.jpg
https://s-media-cache-ak0.pinimg.com/originals/a7/d1/70/a7d170ea621d836047b73e42988cf1d5.jpg
https://media.playstation.com/is/image/SCEA/the-binding-of-isaac-rebirth-screenshot-01-ps4-psvita-us-15oct14?$MediaCarousel_Original$
https://media.playstation.com/is/image/SCEA/the-binding-of-isaac-rebirth-screenshot-01-ps4-psvita-us-15oct14?$MediaCarousel_Original$
https://media.playstation.com/is/image/SCEA/the-binding-of-isaac-rebirth-screenshot-01-ps4-psvita-us-15oct14?$MediaCarousel_Original$
http://www.redblobgames.com/maps/terrain-from-noise/
http://www.redblobgames.com/maps/terrain-from-noise/
https://britzl.github.io/roguearchive/images/rogue.png
https://britzl.github.io/roguearchive/images/rogue.png
https://learn.canvas.net/courses/3/pages/level-4-dot-1-process-of-design-and-mda-framework
https://learn.canvas.net/courses/3/pages/level-4-dot-1-process-of-design-and-mda-framework
http://www.spelunkyworld.com/images/spelunky-ss05.jpg
http://www.spelunkyworld.com/images/spelunky-ss05.jpg

76 REFERENCES

Togelius, Julian, Emil Kastbjerg, David Schedl, and Georgios N. Yannakakis (2011).
“What is Procedural Content Generation?: Mario on the borderline”. In: Proceed-
ings of the 2nd Workshop on Procedural Content Generation in Games.

Vaishnavi, Vijay and Bill Kuechler (2008). Design Science Research in Information Sys-
tems. URL: http://www.desrist.org/design-research-in-information-
systems/ (visited on Jan. 20, 2017).

Valve Corporation (2008). Left 4 Dead. Valve Corporation.

Wikidot (2010). Fractal. URL: http://pcg.wikidot.com/pcg-algorithm:
fractal (visited on July 20, 2017).

— (2013). Spelunky. URL: http://pcg.wikidot.com/pcg-games:spelunky
(visited on Jan. 17, 2017).

— (2016). Cellular Automata. URL: http://pcg.wikidot.com/pcg-algorithm:
cellular-automata (visited on July 20, 2017).

Wikipedia (2006). Pong. URL: https : / / en . wikipedia . org / wiki / Pong #
/media/File:Pong.png (visited on Aug. 22, 2017).

— (2007). Elite. URL: https://en.wikipedia.org/wiki/File:BBC_Micro_
Elite_screenshot.png (visited on Aug. 22, 2017).

— (2009). La-Mulana. URL: https://en.wikipedia.org/wiki/La-Mulana#
/media/File:La-Mulana_gameplay.png (visited on Aug. 22, 2017).

— (2010). Spacewar! URL: https://en.wikipedia.org/wiki/Spacewar!#/
media/File:Spacewar!-PDP-1-20070512.jpg (visited on Aug. 22, 2017).

— (2011). Super Mario Bros. URL: https://en.wikipedia.org/wiki/File:
NES_Super_Mario_Bros.png (visited on Aug. 22, 2017).

— (2012a). Moore Neighbourhood. URL: https://en.wikipedia.org/wiki/
File:CA-Moore.png (visited on Aug. 22, 2017).

— (2012b). Von Neumann Neighbourhood. URL: https://en.wikipedia.org/
wiki/File:CA-von-Neumann.png (visited on Aug. 22, 2017).

— (2013a). Galactic Arms Race. URL: https : / / en . wikipedia . org / wiki /
Galactic_Arms_Race#/media/File:Galactic_Arms_Race_Screenshot.
png (visited on Aug. 22, 2017).

— (2013b). Tennis for Two. URL: https://en.wikipedia.org/wiki/Tennis_
for_Two#/media/File:Tennis_For_Two_on_a_DuMont_Lab_Oscilloscope_
Type_304-A.jpg (visited on Aug. 22, 2017).

— (2016). Spelunky. URL: https://en.wikipedia.org/wiki/Spelunky (vis-
ited on Jan. 17, 2017).

http://www.desrist.org/design-research-in-information-systems/
http://www.desrist.org/design-research-in-information-systems/
http://pcg.wikidot.com/pcg-algorithm:fractal
http://pcg.wikidot.com/pcg-algorithm:fractal
http://pcg.wikidot.com/pcg-games:spelunky
http://pcg.wikidot.com/pcg-algorithm:cellular-automata
http://pcg.wikidot.com/pcg-algorithm:cellular-automata
https://en.wikipedia.org/wiki/Pong#/media/File:Pong.png
https://en.wikipedia.org/wiki/Pong#/media/File:Pong.png
https://en.wikipedia.org/wiki/File:BBC_Micro_Elite_screenshot.png
https://en.wikipedia.org/wiki/File:BBC_Micro_Elite_screenshot.png
https://en.wikipedia.org/wiki/La-Mulana#/media/File:La-Mulana_gameplay.png
https://en.wikipedia.org/wiki/La-Mulana#/media/File:La-Mulana_gameplay.png
https://en.wikipedia.org/wiki/Spacewar!#/media/File:Spacewar!-PDP-1-20070512.jpg
https://en.wikipedia.org/wiki/Spacewar!#/media/File:Spacewar!-PDP-1-20070512.jpg
https://en.wikipedia.org/wiki/File:NES_Super_Mario_Bros.png
https://en.wikipedia.org/wiki/File:NES_Super_Mario_Bros.png
https://en.wikipedia.org/wiki/File:CA-Moore.png
https://en.wikipedia.org/wiki/File:CA-Moore.png
https://en.wikipedia.org/wiki/File:CA-von-Neumann.png
https://en.wikipedia.org/wiki/File:CA-von-Neumann.png
https://en.wikipedia.org/wiki/Galactic_Arms_Race#/media/File:Galactic_Arms_Race_Screenshot.png
https://en.wikipedia.org/wiki/Galactic_Arms_Race#/media/File:Galactic_Arms_Race_Screenshot.png
https://en.wikipedia.org/wiki/Galactic_Arms_Race#/media/File:Galactic_Arms_Race_Screenshot.png
https://en.wikipedia.org/wiki/Tennis_for_Two#/media/File:Tennis_For_Two_on_a_DuMont_Lab_Oscilloscope_Type_304-A.jpg
https://en.wikipedia.org/wiki/Tennis_for_Two#/media/File:Tennis_For_Two_on_a_DuMont_Lab_Oscilloscope_Type_304-A.jpg
https://en.wikipedia.org/wiki/Tennis_for_Two#/media/File:Tennis_For_Two_on_a_DuMont_Lab_Oscilloscope_Type_304-A.jpg
https://en.wikipedia.org/wiki/Spelunky

REFERENCES 77

— (2017a). History of video games. URL: https://en.wikipedia.org/wiki/
History_of_video_games (visited on Jan. 17, 2017).

— (2017b). No Man’s Sky. URL: https://en.wikipedia.org/wiki/No_Man’
s_Sky (visited on Jan. 18, 2017).

— (2017c). Unix time. URL: https://en.wikipedia.org/wiki/Unix_time
(visited on July 18, 2017).

Yannakakis, Georgios N. and Julian Togelius (2011). “Experience-Driven Procedural
Content Generation”. In: IEEE Transactions on Affective Computing 2.3, pp. 147–
161.

— (2015). “Experience-Driven Procedural Content Generation (Extended Abstract)”.
In: International Conference on Affective Computing and Intelligent Interaction (ACII).

https://en.wikipedia.org/wiki/History_of_video_games
https://en.wikipedia.org/wiki/History_of_video_games
https://en.wikipedia.org/wiki/No_Man's_Sky
https://en.wikipedia.org/wiki/No_Man's_Sky
https://en.wikipedia.org/wiki/Unix_time

79

Appendix A

Server Configuration

Object Type ID
Player Game Object 193
FreshWater Game Object 191
Food Game Object 198
Wood Game Object 192
Health Game Object 190
Crew Game Object 199
WaterCell Game Object 188
LandCell Game Object 189
Minimap Game Object 196
World Game Object 194
Ship Game Object 197
Directions Game Object 195
TotalTime Game Object 200
DistanceTraveled Game Object 201
attemptedMoveTo Event 166
movedTo Event 167
picked Event 160
clicked Event 162
opened Event 163
closed Event 164
has Event 159
won Event 158
lost Event 161
repaired Event 165

TABLE A.1: Game objects and events required for the server.

80 Appendix A. Server Configuration

Subject Event Predicate Other

World has

WaterCell
Predicate value: Matrix value
(x,y,z): Position in the map

LandCell
Predicate value: Matrix value
(x,y,z): Position in the map

Player (x,y,z): Position in the map
FreshWater Predicate value: Quantity
Food Predicate value: Quantity
Wood Predicate value: Quantity

Player

has

FreshWater Predicate value: Quantity
Food Predicate value: Quantity
Wood Predicate value: Quantity
Health Predicate value: Quantity
Crew Predicate value: Quantity
Directions Predicate value: 0 or 1
TotalTime Predicate value: total time in the end, in seconds
DistanceTraveled Predicate value: distance travelled by the player, in cell units

clicked
WaterCell (x,y,z): Position in the map
LandCell (x,y,z): Position in the map

attemptedMoveTo WaterCell (x,y,z): Position in the map

movedTo WaterCell
(x,y,z): Position in the map
Predicate value: who had influence on ship’s movement
(1-Player, 2-Flow, 3-Wind)

picked
FreshWater

(x,y,z): Position in the map
Predicate value: amount picked

Food
(x,y,z): Position in the map
Predicate value: amount picked

Wood
(x,y,z): Position in the map
Predicate value: amount picked

opened Minimap -
closed Minimap -
won - -
lost - -
repaired Ship -

TABLE A.2: Game objects required for the server, events connecting
them, and additional information.

81

Appendix B

Development Log

8th February 2017 to 14th February 2017

Definition and documentation of the Game Design Document, specifying:

• Game concept;

• Game components:

– Player;

– Start point;

– End point;

– Water cells;

– Land cells;

– Resources;

– Map;

– Marine obstacles;

– Treasures

• Mechanics

15th February 2017 to 21st February 2017

Definition of the system architecture, describing the interactions between its differ-
ent entities.
Definition of the initial parameters for the procedural content generation algorithm.
Definition of the existent steps in the procedural content generation algorithm.
Definition of the data structure to use in the procedural content generation algo-
rithm.

22nd February 2017 to 28th February 2017

Implementation of the water and cells procedural generation (without subtypes).
Implementation of the land agglomerates.
Implementation of the land cells subtypes, given these criteria:

• Definition of the start and end points, making sure that it is possible to get
from one to the other.

82 Appendix B. Development Log

• Land cells without water cells in their Von Neumann neighbourhood become
mountain, not containing resources.

• The remaining cells (coast cells) will be defined taking into account that they
have 1/3 chance of becoming any of the remaining subtypes (plains, hills,
cliffs).

Implementation of the resources distribution for the different land cells, being that
not all land cells contain resources.

1st March 2017 to 7th March 2017

Implementation of the water cells subtypes, given these criteria:

• The subtype for the water cells near land is influenced based on the land cells
around them.

• The subtype for the water cells in the high seas is defined influenced by the
water cells around them.

Implementation of the lake detection algorithm, making sure that water cells in lakes
always have the “flat” subtype.
Beginning of the visual implementation of the game, starting to convert the matrix
values into a 3D map with cubes.

8th March 2017 to 14th March 2017

Implementation of the flow and wind for water cells, given these criteria:

• The flow/wind of one cell is influenced by the cells around it, allowing to
existence of small flow or wind paths. Implementation of the player’s ship:

• Initial movement mechanic, based on clicks.

• Camera rotation, currently using the right/left keys.

Research about ways of limiting the player’s vision of the terrain, followed by its
implementation.

15th March 2017 to 21st March 2017

Implementation of the ship’s health system, which is modified given these criteria:

• Reduced if player is in a stormy cell.

• Reduced if player is pushed against a cliff cell.

• Increased if the player uses wood to repair ship.

• Increased if player returns to start point.

Implementation of the interactions with each water cell, based on its subtype, flow,
and wind.
Implementation of the interactions with the ship’s health system.

Appendix B. Development Log 83

22nd March 2017 to 28th March 2017

Implementation of the interactions with the land cells:

• Plains and hills to gather resources.

• Cliffs to reduce ship’s health.

Research and implementation of the User Interface (UI) for the game:

• Information about each resource’s quantity.

• Compass allowing the player to know the camera’s direction.

Preparation of the usability testing phase, to be discussed in the next meeting.
Implementation of a mini-map, showing only the cells where the player has passed,
allowing him to know the amount of map discovered, since it has a limited field of
view.

29th March 2017 to 4th April 2017

Changes to the method of limiting the player’s vision of the terrain, turning areas
not yet discovered to be under fog, only disappearing when the player passes near
them.
Implementation of both ship and mast rotation, based on flow and wind respectively.
Implementation of textures and 3D models in the world map:

• Textures for each water and land cells subtype.

• Models for each resource.

Creation of an initial tutorial for the player, taking into account that the usability
testing prototype will be played in a computer.

• Interaction using the mouse and right/left arrow keys.

• Initial directions the player should follow to get to the end.

Usability tests done with six people.

5th April 2017 to 11th April 2017

Analysis of the usability testing results and conclusions about them.

12th April 2017 to 18th April 2017

Modification of the User Interface (UI) positioning.
Implementation of 2D textures for the resources fresh water, food, and wood, based
on their 3D models. (UI)
Implementation of textures for the ship’s health and crew. (UI)
Modification of the ship’s movement, making that it slides to a cell instead of “jump-
ing” to it.
Implementation of highlighters indicating which cells the player is currently al-
lowed to move to.

84 Appendix B. Development Log

19th April 2017 to 25th April 2017

Modification of the compass, changing its colour to white on a grey background.
(UI)
Modification of the colours of the limiter clouds in the game world.
Modification of the start point texture for the Portugal’s flag.
Discussion about the utilisation of the Crowdplay server:

• How will it be used in the prototype.

• What will be sent and received by the server.

26th April 2017 to 2nd May 2017

Study about the functioning of the server requests, as well as all the required data.
Implementation of some functions for the communication with the server.
Incorporation of a framework used for reading JSON files, which will be used to
read the information obtained through the server communications.

3rd May 2017 to 9th May 2017

Implementation of buttons to open/close the mini-map, and repair ship.
Implementation of the remaining functions for the communication with the server.
Incorporation of external code to calculate the Epoch time for the dates, being re-
quired for the server.
Implementation of loggings required for the server.
Registration of objects and input parameters (feature set) in the server.

10th May 2017 to 16th May 2017

Implementation of the right and left swipes, used to move the game’s camera on
mobile devices.
Addition of sounds:

• Game’s ambiance.

• Repair ship.

• Open/close mini-map.

17th May 2017 to 23rd May 2017

Tests related to the functioning of the prototype with the server, allowing to find
some issues in the server.

24th May 2017 to 30th May 2017

Addition of two more objects to the server, related to travelled distance and elapsed
time.
Server was down for some days of this period.

Appendix B. Development Log 85

31st May 2017 to 6th June 2017

Server remained down for some days of this period.
Preliminary tests with laboratory colleagues, to make sure everything was working
as expected.

7th June 2017 to 13th June 2017

Some issues with the server which resulted on the impossibility of making tests.

14th June 2017 to 20th June 2017

Definition of the gameplay testing experience:

• Values for the input parameters.

• Success factor for the tests.

21st June 2017 to 22nd August 2017

Gameplay Testing
Data gathering and analysis.

87

Appendix C

Work Backlog

• Implement water cells

– Implement water cells subtypes

∗ Implement subtype based on surrounding land cells
∗ Implement subtype based on surrounding water cells
∗ Implement algorithm for lake detection to have flat water cells

– Implement water cells flow

∗ Implement flow based on surrounding water cells flow

– Implement water cells wind

∗
∗ Implement wind based on surrounding water cells wind

– Implement enemies that appear on water cells (discarded)

• Implement land cells

– Implement land agglomerates

– Implement start and end points

∗
∗ Implement algorithm to verify if there is a path between start and end

points

– Implement land cells subtypes

∗ Implement mountain land cells in the middle of land agglomerates,
cannot contain resources

∗ Implement coast cells: 1/3 chance of being any of the remaining three
subtypes

– Implement resources distribution

∗ Implement resources distribution based on the land cell

– Implement treasures distribution (discarded)

• Implement visual representation of the matrix, using coloured cubes.

– Implement textures for each cell subtype

– Implement 3D models for each resource (fresh water, food, wood)

– Add map limiters

∗ Change map limiters’ colour

– Change start point texture

88 Appendix C. Work Backlog

• Implement player’s ship

– Implement movement mechanics, through clicks/touches

∗ Implement ship’s animations for movement

– Implement camera rotation using directional keys (usability prototype)

– Implement camera rotation using swipes (final prototype)

– Implement player’s view limiter using a shader

– Implement player’s health system and resource management system

∗ Implement water cells’ interactions
∗ Implement land cells’ interactions

– Implement clouds to limit player view and that disperse on player’s pass-
ing (replacing previous view limiter method that used shader)

– Implement boat rotation, influenced by water cell’s flow

∗ Implement ship’s animations for boat rotation

– Implement mast rotation, influenced by water cell’s wind

∗ Implement ship’s animations for mast rotation

– Implement accessible cells’ highlighters

• Implement UI

– Implement resources information

– Implement compass to show direction

∗ Change compass colour

– Implement minimap

∗ Implement button to open minimap

– Implement initial tutorial for the player

– Replace UI resources text for 2D models of them

– Implement button to repair ship

• Implement functions to connect to the Crowdplay server

– Integrate JSON framework to parse server text

∗ Implement loggings to be sent to server

– Integrate Epoch time calculation to send times to server

– Register objects in the server

• Implement some sounds into the game

89

Appendix D

Usability Testing Data

Questionnaire Structure

Name:
Age:

Totally
Disagree

Totally
Agree

1 2 3 4 5
1. I understood what I had to do.

2. I understood how I could do my actions.

3. I understood what each game’s component meant.

4. I understood the outcome of each one of my actions.

5. I understood that flow and wind could influence my movement.

6. I understood the flow’s and wind’s directions.

7. I understood that different cells produced different results.

8. I was able to locate myself in world through the mini-map.

9. I perceived the world’s limits.

10. I understood I could pick up resources from land cells.

11. What visual aspects would you change, if any?

12. Any comment or suggestion?

90 Appendix D. Usability Testing Data

Questionnaire Results

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
T1 5 4 4 4 5 1 5 5 5 5
T2 4 2 3 3 1 1 3 2 3 3
T3 3 3 3 4 4 4 4 3 3 4
T4 4 4 3 3 4 3 4 4 5 5
T5 1 1 4 4 1 1 1 1 1 1
T6 3 5 3 2 3 1 2 2 5 5

TABLE D.1: Testers (T) classifications to each question (Q).

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
Average 3.33 3.17 3.33 3.33 3 1.83 3.17 2.83 3.67 3.83
Standard Deviation 1.37 1.47 0.52 0.82 1.67 1.33 1.47 1.47 1.63 1.6

TABLE D.2: Average and standard deviation values for each question
(Q).

T1 T2 T3 T4 T5 T6
Average 4.3 2.5 3.5 3.9 1.6 3.1
Standard Deviation 1.25 0.97 0.53 0.74 1.26 1.45

TABLE D.3: Average and standard deviation values for each tester
(T).

Appendix D. Usability Testing Data 91

Suggestions

Importance
Tester 1
Implement movement animations, specially related to the flow and wind directions. Critical
Give the option to restart the game. Noncritical
Initial information should appear in-game. Noncritical

Tester 2
None -

Tester 3
None -

Tester 4
Differentiate a bit more the navigable cells colors. Noncritical

Tester 5
Would change the mini-map, although did not explain how. Noncritical
A brief description of the game should exist. Critical
There should be feedback from hitting obstacles. Critical

Tester 6
Camera should be farther, and the boat shouldn’t be so close to a border of the screen. Noncritical
The camera’s movement has to be more fluid. Critical
The flow and wind direction and their influence on the boat and sail should be
well explained, since not everyone knows how it works.

Critical

Change the middle-button symbol from the initial menu. Noncritical

92 Appendix D. Usability Testing Data

Observations

Importance
Tester 1
Tried to look for resources on the mini-map. Noncritical
Due to experience in games, tried to click on the ‘Tab’ key to open the mini-map. Noncritical

Tester 2
Unsure about the objective of the game. Critical
Couldn’t figure out (initially) what was the boat’s front. Critical
Couldn’t figure out the boat’s rotations. Critical
Felt a little confused about the different game components. Critical

Tester 3
Tried to close the initial menu with the ‘Enter’ key. Noncritical
Tried to click non-adjacent cells. Critical
Not sure if the tester understood there were resources. Critical

Tester 4
Couldn’t perceive the destination point. Critical
Didn’t notice the initial directions. Critical
Tried to click on the “Escape” key to open the mini-map. Noncritical

Tester 5
Didn’t notice the direction to be followed. Critical

Tester 6
Couldn’t perceive the boat’s direction. Critical
Couldn’t perceive the wind’s influence. Critical

93

Appendix E

Gameplay Testing Data

Candidate Generation Score
Times
Played

Minimum
Distance

Maximum
Distance

Fresh
Water

Food Wood Directions

15467 1 0 11 7 23 19 12 15 No
15468 1 8.33 12 10 17 15 18 9 No
15469 1 13.33 15 14 29 8 11 17 Yes
15470 1 10 10 12 19 17 20 11 Yes
15471 1 0 12 10 20 17 17 20 Yes
15472 1 10 10 14 25 19 11 16 No
15473 1 0 7 9 20 16 16 12 No
15474 1 0 8 10 21 15 13 18 Yes
15475 1 0 9 14 20 13 10 19 Yes
15476 1 9.09 11 13 22 13 21 13 Yes
15486 2 20 5 14 29 8 20 11 Yes
15487 2 0 5 12 19 17 11 17 Yes
15488 2 28.57 7 14 29 19 11 16 Yes
15489 2 20 5 14 25 8 11 17 No
15490 2 14.29 7 10 21 15 13 15 No
15491 2 0 8 7 23 19 12 18 Yes
15492 2 20 5 14 25 19 20 11 No
15493 2 0 4 12 19 17 11 16 Yes
15494 2 60 5 12 19 17 20 11 Yes
15495 2 16.67 6 12 19 17 20 11 Yes
15496 3 0 0 12 19 17 20 11 Yes
15497 3 0 0 12 19 17 20 11 Yes
15498 3 0 0 12 19 17 20 17 No
15499 3 0 0 14 25 8 11 11 Yes
15500 3 0 0 10 25 19 20 11 No
15501 3 0 0 14 21 15 13 15 No
15502 3 0 0 14 29 19 11 16 Yes
15503 3 0 0 12 19 17 20 11 Yes
15004 3 0 0 14 29 14 20 11 Yes

TABLE E.1: Candidates with their values, score, and times played.

94 Appendix E. Gameplay Testing Data

Session Candidate Success Time (s) Distance
1051 15472 No 601 15.03
1053 15474 No 63 11.4
1057 15471 No 643 11.31
1059 15467 No 172 19.85
1060 15476 Yes 394 17.72
1071 15472 Yes 553 20
1072 15473 No 999 9.22
1075 15469 No 107 15.52
1076 15468 Yes 355 10.2
1078 15470 No 96 15.03
1083 15474 No 118 12.04
1085 15469 No 73 15.13
1086 15468 No 269 13.6
1093 15474 No 78 13.34
1095 15469 Yes 311 27.46
1096 15468 No 112 12.65
1098 15470 No 212 14.14
1099 15467 No 1025 20.62
1102 15469 No 60 18.25
1106 15467 No 113 7
1112 15469 No 98 19.24
1123 15468 No 102 11.05
1127 15476 No 82 14.76
1131 15475 No 130 17.09
1132 15469 No 108 22.47
1134 15471 No 656 19.03
1153 15468 No 127 10.05
1155 15470 Yes 588 12.65
1161 15475 No 56 14.32
1165 15470 No 40 13

TABLE E.2: Winning sessions from Generation 1.

Appendix E. Gameplay Testing Data 95

Session Candidate Success Time (s) Distance
1170 15488 Yes 373 24.21
1173 15487 No 171 14.04
1174 15494 Yes 382 14.56
1175 15495 Yes 368 12.17
1178 15469 Yes 366 14.87
1184 15487 No 221 15.3
1185 15494 Yes 383 18.6
1186 15495 No 210 18.87
1188 15493 No 126 17.26
1191 15491 No 140 15.03
1192 15488 No 115 18.25
1195 15487 No 281 12.04
1198 15492 No 675 18.44
1201 15490 Yes 492 10.44
1209 15492 No 99 22.2
1214 15488 No 252 19.7
1228 15469 No 199 16.76
1229 15490 No 204 19.8
1230 15491 No 104 10.44
1231 15488 No 226 21.59
1232 15486 Yes 343 16.55
1233 15489 Yes 318 20.22
1234 15487 No 85 14.56
1235 15494 Yes 314 17.2
1236 15495 No 118 17.89
1237 15492 Yes 455 16.97
1240 15490 No 126 14.56
1242 15488 Yes 539 26.48
1243 15486 No 87 14.21

TABLE E.3: Winning sessions from Generation 2.

96 Appendix E. Gameplay Testing Data

TABLE E.4: All sessions, with the successful ones highlighted.

Session Candidate Success Time (s) Distance
1046 15468 No 151 14.21
1047 15471 No 233 17.46
1048 15470 No 109 15.3
1049 15467 No 120 18.44
1050 15476 No 243 21.38
1051 15472 No 601 15.03
1052 15473 No 17 14.21
1053 15474 No 63 11.4
1054 15475 - - -
1055 15469 No 288 16.49
1056 15468 No 66 13.93
1057 15471 No 643 11.31
1058 15470 No 155 15.03
1059 15467 No 172 19.85
1060 15476 Yes 394 17.72
1061 15472 No 182 17.26
1062 15473 - - -
1063 15474 No 324 17.46
1064 15475 No 188 14.56
1065 15469 No 141 18
1066 15468 No 799 13.6
1067 15471 No 197 15
1068 15470 No 632 17.72
1069 15467 No 764 14.87
1070 15476 No 309 21.26
1071 15472 Yes 553 20
1072 15473 No 999 9.22
1073 15474 No 138 15.13
1074 15475 No 69 17.46
1075 15469 No 107 15.52
1076 15468 Yes 355 10.2
1077 15471 No 423 15.81
1078 15470 No 96 15.03
1079 15467 No 147 10.3
1080 15476 No 118 15.13
1081 15472 No 49 21.59
1082 15473 No 432 15.81
1083 15474 No 118 12.04
1084 15475 No 214 14.32
1085 15469 No 73 15.13
1086 15468 No 269 13.6
1087 15471 No 438 12.73
1088 15470 No 116 12
1089 15467 No 94 12.08
1090 15476 No 97 16.12

Continued on next page

Appendix E. Gameplay Testing Data 97

Table E.4 – continued from previous page
Session Candidate Success Time (s) Distance
1091 15472 No 337 17.12
1092 15473 - - -
1093 15474 No 78 13.34
1094 15475 No 357 17.09
1095 15469 Yes 311 27.46
1096 15468 No 112 12.65
1097 15471 No 206 15.65
1098 15470 No 212 14.14
1099 15467 No 1025 20.62
1100 15476 No 211 18.44
1101 15472 - - -
1102 15469 No 60 18.25
1103 15468 - - -
1104 15471 - - -
1105 15470 - - -
1106 15467 No 113 7
1107 15476 No 126 16.28
1108 15472 No 188 14.32
1109 15473 No 95 16.28
1110 15474 - - -
1111 15475 No 229 17
1112 15469 No 98 19.24
1113 15468 No 146 15.03
1114 15471 No 408 16
1115 15470 No 230 18.97
1116 15467 No 164 11.18
1117 15476 - - -
1118 15472 No 257 14.87
1119 15473 No 150 11.4
1120 15474 - - -
1121 15475 No 77 17.09
1122 15469 No 106 14.42
1123 15468 No 102 11.05
1124 15471 No 225 10.63
1125 15470 - - -
1126 15467 No 301 13.45
1127 15476 No 82 14.76
1128 15472 No 539 24.7
1129 15473 - - -
1130 15474 No 270 12.04
1131 15475 No 130 17.09
1132 15469 No 108 22.47
1133 15468 No 160 15.56
1134 15471 No 656 19.03
1135 15470 No 97 13
1136 15467 - - -

Continued on next page

98 Appendix E. Gameplay Testing Data

Table E.4 – continued from previous page
Session Candidate Success Time (s) Distance
1137 15476 No 151 20
1138 15472 No 146 17
1139 15473 No 192 17
1140 15474 No 123 12.17
1141 15475 No 159 17.12
1142 15469 No 72 18.36
1143 15468 No 236 11.05
1144 15471 No 183 17
1145 15470 - - -
1146 15467 - - -
1147 15476 No 239 14
1148 15472 - - -
1149 15473 - - -
1150 15474 - - -
1151 15475 - - -
1152 15469 No 484 24.84
1153 15468 No 127 10.05
1154 15471 No 246 13.04
1155 15470 Yes 588 12.65
1156 15467 No 163 8
1157 15476 No 55 13.42
1158 15472 No 462 15.3
1159 15473 No 277 11.18
1160 15474 No 188 16.12
1161 15475 No 56 14.32
1162 15469 No 152 14.32
1163 15468 No 229 12.04
1164 15471 No 67 14.87
1165 15470 No 40 13
1166 15467 No 104 10.63
1167 15469 - - -
1168 15490 No 129 18.97
1169 15491 No 308 20.25
1170 15488 Yes 373 24.21
1171 15486 No 285 25.06
1172 15489 No 255 18.87
1173 15487 No 171 14.04
1174 15494 Yes 382 14.56
1175 15495 Yes 368 12.17
1176 15492 - - -
1177 15493 No 358 18.44
1178 15469 Yes 366 14.87
1179 15490 - - -
1180 15491 No 104 8.6
1181 15488 No 293 28.18
1182 15486 - - -

Continued on next page

Appendix E. Gameplay Testing Data 99

Table E.4 – continued from previous page
Session Candidate Success Time (s) Distance
1183 15489 No 307 23.02
1184 15487 No 221 15.3
1185 15494 Yes 383 18.6
1186 15495 No 210 18.87
1187 15492 No 898 16.55
1188 15493 No 126 17.26
1189 15469 No 404 16.76
1190 15490 No 208 14.04
1191 15491 No 140 15.03
1192 15488 No 115 18.25
1193 15486 No 122 28.32
1194 15489 No 299 14.14
1195 15487 No 281 12.04
1196 15494 No 191 18.97
1197 15495 No 62 17
1198 15492 No 675 18.44
1199 15493 No 357 18.87
1200 15469 No 494 18
1201 15490 Yes 492 10.44
1202 15491 No 339 18.68
1203 15488 - - -
1204 15486 - - -
1205 15489 - - -
1206 15487 No 217 18.38
1207 15494 No 105 13
1208 15495 No 53 12.37
1209 15492 No 99 22.2
1210 15493 No 94 18.87
1211 15469 No 170 23.02
1212 15490 No 158 10.05
1213 15491 No 201 21.38
1214 15488 No 252 19.7
1215 15486 No 151 22.8
1216 15489 No 87 20
1217 15487 - - -
1218 15494 - - -
1219 15495 No 258 13.42
1220 15492 No 288 18.03
1221 15493 No 301 17.72
1222 15469 No 182 17.46
1223 15490 No 617 14
1224 15491 No 177 8.25
1225 15488 No 364 19.1
1226 15486 - - -
1227 15469 - - -
1228 15469 No 199 16.76

Continued on next page

100 Appendix E. Gameplay Testing Data

Table E.4 – continued from previous page
Session Candidate Success Time (s) Distance
1229 15490 No 204 19.8
1230 15491 No 104 10.44
1231 15488 No 226 21.59
1232 15486 Yes 343 16.55
1233 15489 Yes 318 20.22
1234 15487 No 85 14.56
1235 15494 Yes 314 17.2
1236 15495 No 118 17.89
1237 15492 Yes 455 16.97
1238 15493 No 170 16.28
1239 15469 No 98 17.69
1240 15490 No 126 14.56
1241 15491 No 152 15.3
1242 15488 Yes 539 26.48
1243 15486 No 87 14.21

	Abstract
	Acknowledgements
	Introduction
	State of the Art
	Play and Games
	Video Games
	The Making of Video Games
	Concept
	Pre-Production
	Production
	Post-Production
	Summary

	Game Design
	Mechanics, Dynamics, and Aesthetics
	Summary

	Procedural Content Generation
	What is Procedural Content Generation?
	Why use Procedural Content Generation?
	Desirable properties of a Procedural Content Generation solution
	Taxonomy by Togelius et al.
	Taxonomy by Gillian Smith
	Taxonomy by Craveirinha et al.
	Summary

	Experience-Driven Procedural Content Generation
	Player Experience Modelling
	Content Quality
	Content Representation
	Content Generator
	Summary

	Author-Centric Approach to Procedural Content Generation
	Purpose
	Process
	Summary

	Procedural Content Generation Cases
	Spelunky
	No Man's Sky
	Summary

	Objectives and Methodology
	Objectives
	Design Science Research
	Work Plan

	DSR Initial Design Proposal: Game Concept
	Characteristics
	Interaction

	Development
	Game Engine: Unity
	Game Architecture
	Map Generation Algorithm
	Integration with the Crowdplay Server
	Game Interface
	Development Activities
	Work Management and Prioritisation

	Evaluation
	Usability Testing
	Test Setup
	Results and Analysis
	Proposed Design Corrections

	Gameplay Testing
	Test Setup
	Problems
	Results and Analysis

	Further Work
	Critical Aspects to Correct
	Future Developments

	Conclusions
	References
	Server Configuration
	Development Log
	Work Backlog
	Usability Testing Data
	Gameplay Testing Data

