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Resumo

Com o potencial desenvolvimento de um dispositivo portátil capaz e robusto o su-

ficiente para detetar odores variados em mente e para ajudar aqueles que não são

capazes de cheirar, esta tese focou-se no desenvolvimento de um pequeno nariz

eletrónico composto por um conjunto de quatro sensores diferentes com alvos e sen-

sibilidades heterogéneas. O nariz eletrónico constrúıdo contém um grupo de quatro

sensores de gás dentro de uma câmara de gás. O ar é extráıdo de dentro da câmara

através de uma bomba de ar. As leituras dos sensores passam por um conversor

analógico-digital e seguem para um computador de placa única onde são recebidos e

armazenados. A metodologia de amostragem é controlada pela placa referida. Uma

alargada coleção de odores do dia-a-dia foi selecionada para expor esta tecnologia a

um complexo conjunto de odores bem como para desafiar as capacidades discrim-

inativas do nariz eletrónico desenvolvido. Duas técnicas diferentes de escalamento

de dados foram aplicadas à informação recolhida: normalização de 0 a 1 e normal-

ização logaŕıtmica. Redução de dimensionalidade foi aplicada pela PCA(Análise de

Componentes Principais) e LDA(Análise de Discriminantes Lineares). Das vinte e

cinco amostras para cada odor adquiridas, a metodologia de validação cruzada de

75-25% foi aplicada. Vinte amostras foram escolhidas aleatoriamente para servirem

como grupo de treino e cinco como grupo de teste. A variância cumulativa das cinco

primeiras componentes do PCA é 96.50% para dados não processados, 98.20% para

dados escalados de 0 a 1 e quase 100.00% para dados normalizados logaritmica-

mente. Devido a processos internos do algoritmo, os primeiros cinco discriminantes

do LDA atingem 98.30% da informação do grupo de dados, independentemente do

estado dos dados. Rede Neuronal de Retropropagaçao(BPNN e Máquina de su-

porte de vetores(SVM) são os classificadores utilizados nesta tese.) Dos resultados

do SVM, foi obtida uma exatidão de 92.50% com dados não processados e 75.00%

com dados escalados de 0 a 1. Dos components do PCA, uma exatidão de 85.00%

nos dados não processados foi o melhor resultado. Dados escalados logaritmica-

mente conseguiram uma exatidão de 34.90% para ambos os estados de projeção.
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Resumo

Os discriminantes LDA alcançaram 92.50% de exatidão. Considerando agora os

resultados de exatidão da BPNN, classificação com dados não processados obteve

53.12% e 82.50% com dados normalizados de 0 a 1. Os componentes PCA dos dados

não processados conseguiram uma exatidão de 82.50%, 67.50% com dados escalados

de 0 a 1 e 80.00% com dados escalados logaritmicamente. Discriminantes da LDA

conseguiram 97.50% de exatidão.
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Abstract

With the potential development of a portable device capable and robust enough to

detect different odours in mind and to help those who are not able to smell, this thesis

focused on the development of a small electronic nose comprised of an array of four

different sensors with dissimilar targets and sensitivities. The eletronic nose assem-

bled contemplates an array of four gas sensors inside a gas chamber. Air is extracted

from inside with an air pump. Sensor readings pass through and analog-to-digital

converter and follow towards a single-board computer where they are collected and

stored. Sampling methodology is controlled by the latter. A broad collection of

daily life odours was selected to expose the technology to a quite complex set of

odours as well as to challenge the discriminative capabilities of the electronic nose

developed. Two different data scaling techniques were applied to the collected data:

0 to 1 normalization and logarithmic normalization. Dimensionality reduction was

enabled by both PCA(Principal Component Analysis) and LDA(Linear Discrim-

inant Analysis). From twenty-five samples from each odour collected, a 75-25%

cross-validation methodology was applied. Twenty samples were picked randomly

to serve as the training set and five as the testing set. PCA cumulative variance

of the first five components is 96.50% for raw data, 98.20% for data scaled from

0 to 1 and almost 100.00% for logarithmic normalized data. Due to intrinsics of

the algorithm, LDA first five discriminants amount to 99.80% of the dataset infor-

mation, regardless of data status. Backpropagation Neural Network(BPNN) and

Support Vector Machines(SVM) are the classifiers applied in this thesis. From the

SVM results, an accuracy of 92.50% was obtained with raw data and 75.00% with

data scaled 0 to 1. From PCA components, 85.00% accuracy on raw data was the

best result. Logarithmic scaled data accomplished an accuracy of 34.90% for both

data projection status. LDA discriminants achieved 92.50% of accuracy. Regarding

BPNN accuracy results, classification with raw data achieved 40.00% and 82.50%

with normalized data from 0 to 1. PCA components from raw data had an accuracy

of 82.50%, 67.50% from data scaled 0 to 1 and 80.00% from logarithmic scaled data.
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Abstract

Discriminants from LDA reached 97.50% of accuracy.
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Chapter 1

Introduction

The olfactory system is one of the main functions of the brain. This sensory system

was and still is essential to mammals along their evolution and survival. With

the odoriferous information gathered in our environment cooperatively with other

senses we are able to react emotionally in accordance towards our olfactory memory.

Considering the human nose is able to detect around 400000 volatile compounds with

different chemical structures may they be monomolecular odours or multimolecular

ones [1], the task to identify what is the logic behind the neuronal pathways used

to be able to perceive a certain behaviour becomes highly complex. Recent progress

in molecular biology showed that there are around 400 separate types of olfactory

receptors genes in the olfactory human system [2] . It’s highly believed that the

connection between odour molecules and the correspondent receptors does not follow

the lock-key model, considering that those just recognize partial structures of the

odours they connect to.

1.1 Motivation

1.1.1 Portrayal of odours visually

In our daily life we experience a large amount of different smells, volatile organic

compounds emanated from organic entities around us and due to the olfactory sense

we are able to detect them. Usually odours spread around in the environment as

a plume like form that is subject to air and wind actions. This constant move-

ment gives them a really complex structure to analyse because the concentration

of compounds in the air mixture is constantly changing. Spatiotemporal detection

1



1. Introduction

of this information is a real necessity for both animals and humans alike in their

environment contextualization. Different types of hints about food or eminent dan-

gers is information too valuable to be ignored by the other senses. In order to

face these challenges, the scientific community has been developing different types

of chemical sensors to be able to detect and even visualize the odoriferous space.

Despite their weak spatiotemporal resolution, those sensors can be incorporated in

both immobile and mobile robots so that they can, to a certain extent, behave like

an animal searching for food, detecting potential mating partners and predators.

Considering this technological asset, those smart robots may be deployed to reveal

gas leaks, dangerous chemicals and diverse types of pollutant sources. They may be

also used in a healthcare context, namely in the detection of chemical compounds

that are preponderant indicators of a certain diagnosis. Unfortunately, in contrast

to audition and vision, olfactory information communication is particularly hard

considering there is not a standardized way of interpreting the same odours and

the individual memory in the odour caption is a factor that differentiates how the

olfactory stimulus is processed by the brain. Therefore, if we able to develop ways

of depict visually the odoriferous space, the most intuitive procedure to transmit

information about the olfactory perception is through its visual portrayal.

1.1.2 Impact of odours in daily routine

According to recent questionnaires measuring changes related to olfactory loss, there

are a large different number of daily life problems reported by participants in those

studies. The areas of daily life included on those reports range from the decreased

enjoyment of food, greater risk of failure to perceive a gas, unawareness of spoiled

food and burnt smells, difficulties achieving what is asked for them on their pro-

fessional lives as well as lacking awareness of their personal hygiene. In Figure 1.1

eight different studies are condensed. [3–10]. Suffering from a type of olfaction mal-

function disables a sensitive layer of experience of the daily life so this together with

age might lead to depressive symptoms and a poor quality of life [11] .

2



1. Introduction

Figure 1.1: Daily life problems of patients with smell disorders from eight different
studies referenced above. The error bar represents the lowest and highest reported
percentage [12].

1.2 Sniff Rhythm

Olfactory perception mechanisms start with a discrete respiration, often called sniff.

A sniff is defined as a reflex provoked by chemicals – either irritants or odours. In

Figure 1.2, a sniff response in the olfactory receptor neurons of a rat is displayed.

According to recent behavioural studies in rats, each sniff might contain enough

information to provide a complete snapshot of the local olfactory environment [13].

After a sniff, odorants captured are drawn, together with air, into the nasal cavity

promoting the activation of olfactory sensory neurons in the nose.

1.3 Olfaction Disorders

A significant fraction of the populations experiences some sort of olfactory malfunc-

tion, although this is many times neglected. There are two different classifications

that can be applied to olfactory disorders, quantitative and qualitative. From the

quantitative group, the disorder that stands out is anosmia, which can be a total in-

eptitude of detecting smells and hyposmia, a partial unawareness specific to certain

odours. This lack of ability to smell is due to a physiological phenomenon that can

be caused by a variety of reasons described in the next section. In the qualitative

side, parosmia is a olfactory dysfunction that is characterized by identifying odours

incorrectly often describing them as unpleasant aromas. Phantosmia, which is also

3



1. Introduction

Figure 1.2: Olfactory receptor neurons inputs responses promoted by an inhalation
of an odorant in five different glomeruli, imaged in an awake rat. Traces are “sniff-
triggered averages” of presynaptic calcium signals (shaded areas indicate variance
around the mean response). Vertical lines below trace indicate the time stamp in
which the responses reached half the maximum in respect towards their respective
glomeruli [14].

considered a type of parosmia, is an olfactory hallucination that consists of smelling

an odour when there is none present at all [15].

1.3.1 Impact

Population based studies pinpoint an olfactory loss of 22% in individuals with ages

between 25 and 75 years [16]. Lee et. al [17] reported a prevalence of olfactory

dysfunction of 4.5%. In other study, there was found that this percentage achieves

24.8% in individuals with ages between 60 and 90 years old, free of neurodegenerative

disease [18]. Rawal et al. [19] outlined a self-reported smell alteration of 23% for

adult aged 40+ years. Lafreniere et. al [20] estimated prevalence rates of olfactory

disorders of more than 50% for people aged above 80 years old. Unawareness of

olfactory loss is one major problem that researchers face analysing population based

studies and unfortunately, it is quite common [21–23]. One reason that might explain

this issue is the fact that olfactory stimuli and interactions are processed not in a

conscious way but more like an experience after-effect. Considering this there is no

surprise in the fact that the self-reported smell deficiency oscillates between 1,4%

and 15% [24].

There are several potential causes that may lead to smell loss. The most impactful

one is post viral upper respiratory infection that is responsible for 18-45% of the

4



1. Introduction

clinical population. Nasal/sinus diseases, where conditions like rhinitis [25], chronic

rhinosinusitis with polyps [26] and sinonasal tumors are included albeit the latter

low presence [27], comes second with percentages between 7 and 56%, followed by

head trauma (8-20%). Exposure to toxins/drugs (2-6%) and congenital anosmia (0-

4%) are the last less prevalent known smell loss causes [28]. It is also worth noting

that, olfactory disorders caused by neurodegenerative diseases like Alzheimer’s are

considered one of the first clinical symptoms [29] and Hori et. al [30] found that

Alzheimer’s disease patients score significantly lower on odour tests than an age-

matched group with healthy individuals.

Considering smell loss among different medical conditions, the percentage of pa-

tients with clinically proven smell loss is rather high: 76-95 % in post viral upper

respiratory infection, 72-98 % in nasal/sinus disease, 86-94 % in head trauma, 67 %

in exposure to toxins/drugs and 100 % in congenital cases [28]. Loss due to post

viral upper respiratory infection, head trauma and exposure to toxins/drugs is to

some degree reversible [31], whereas many cases of nasal/sinus disease can be treated

with medication or with a combination of conservative and surgical treatments [32].

Congenital anosmia prevalence is estimated at 1:5000 - 10000 [33]. Patients that

carry this disorder have their final diagnosis approximately 13 years after the first

time they noticed it, at about 10 years of age according to Bojanowski et al. [34].

Although quantitative disorders are the most widespread, qualitative ones are still

quite significant. In the general population the prevalence of phantosmia(odour

perceptions in an absence of odour) [35] is estimated between 0.8 % and 2.1 % [36]

and parosmia(distorted odour perception of an odour) is estimated to be around

4% [37]. Among patients with olfactory disorders, parosmia oscillates between 10-

60 % [38–41].

1.4 Objectives

The main objective of this thesis is to classify and represent visually a series of

odours that might be useful to a individual that is not capable of detecting them

due to some dysfunction in its olfactory system or to detect odours that have a

dangerous presence in concentrations that a human cannot detect naturally.

If possible, this solution should be integrated in a smartphone application or con-

nected to a monitor to guarantee its coverage everywhere as long as the device is

available.
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1.5 Electronic Nose

An electronic nose is an electronic instrument that is able to detect certain chem-

ical characteristics of gases around it and is able to discriminate those gases with

an appropriate pattern recognition system. The properties of those characteristics

depend on which sensors are used in its conception.

Figure 1.3: Electronic nose mimicking the human olfactory system. (Adapted
from: [42])

1.5.1 Metal Oxide sensors

The principle of operation of metal oxide sensors is based on the change in conduc-

tance of the oxide in its composition on interaction with a gas and the change is

usually proportional to its concentration. When in the presence of a gas, there is

a vast amount of metal oxides that change their conductivity. What differentiates

them is their diversified electronic structures. Pre-transition metal oxides are usu-

ally inert because they have large electronic band gaps. The difficulty they present

in promoting electrical conductivity makes them one of the gas sensor materials of-

ten used. Transition metal oxides have an unstable structure and non-optimality of

important parameters for conductometric gas sensors because their electronic band

gaps are really small [43] so they are not applied in gas sensing systems very of-

ten [44] . Only two transition-metal oxide electronic configurations allows them to

be a realistic gas sensor operating material. One of them is the d0 configuration

that contemplates metal oxides such as TiO2 and WO3. The other one is the d10

configuration that can be found in oxides such as ZnO and SnO2 [45].

There are two types of metal oxide sensors; n-type (such as zinc oxide, tin dioxide or

titanium dioxide) which response to reducing gases and p-type(nickel oxide, cobalt

oxide) which respond to oxidising gases.

The n-type sensor operates as follows: oxygen in the air reacts with the surface of the
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Figure 1.4: Scheme of the reaction of the surface of a SnO2 sensor and a reducing
gas species (CO in this case). (Adapted from: [46])

sensor and traps any free electrons on the surface or at the grain boundaries of the

oxide grains. This produces large resistance in these areas due to the lack of carriers

and the resulting potential barriers produced between the grains inhibit carrier’s

mobility preventing electric current flow. However, if the sensor is introduced to a

reducing gas such as H2, CH4, C2H5 or H2S the resistance drops because the gas

reacts with the oxygen and releases an electron. This lowers the potential barrier

and allows the electrons to flow, thereby increasing the conductivity [47]. This flow

of electrons promotes the sensor resistance decrease. Gas concentration around the

sensor can be inferred by measuring its resistance change, which drop is similar to a

linear decrease in log space with the increase of concentration of a reducing gas [48].

An approximation of this process is shown in Equation 1.1.

Rs

R0

= KCα (1.1)

Where:

• Rs represents the sensor resistance

• R0 is the air resistance in clean air

• C is the concentration of the reducing gas
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• α represents the sensitivity of the sensor to that particular gas.

Gas concentration around the sensor can be inferred by measuring its resistance

change. Both reactivity of sensing materials, temperature and humidity influence

the sensor performance. 1.4 P-type sensors will not be described and are out of the

scope of this thesis. Usually, these type of sensors have a sensitive layer deposited

over a substrate provided with electrodes for the measurement of electrical charac-

teristics. The device has a embedded heater separated from the sensing layer and

the electrodes by an electrical insulating layer. [49]. A typical metal oxide sensor

response is shown in Figure 1.5. Starting from a constant response in ambient condi-

tions, there is a sensor voltage increase in response to an odour corresponding to the

internal resistance decrease followed by an odour recovery time when the odourants

slowly leave the sensor surface until the baseline is achieved once more.

Figure 1.5: Characteristic response of a metal oxide sensor. This specific case is
the response of a MiCS-5524 sensor to ethanol exposure.
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1.5.2 Applications

1.5.2.1 Environmental control

One of the main incentives to the development of electronic noses was environmental

control. Before this type of technology was around, this task was mainly performed

by trained personnel that had the responsibility to smell a specific area and report

their findings in order to evaluate the odours present. One of the problems of the

field was that there are many environmental pollutants that are odourless like carbon

monoxide or nitrogen monoxide. Those two are seriously toxic to human beings and

not being able to detect them is a real issue. [50] The development of gas sensors

sensible to these type of pollutants was a groundbreaking change in monitoring

field. Nowadays there are environmental monitoring stations spread around the

world equipped with this devices that are monitoring the environmental 24/7 and

reporting that data to governmental agencies that can analyse it and act towards a

safer environment to everyone and sanction those that pollute it.

1.5.2.2 Food quality control

There are several food related studies that use electronic noses to register product

odours fingerprints and to differentiate between different types of wines for example,

distinct types of tea (variations of the seeds), quality of ice stored meat and fish

products, type and quality of coffee beans and other types of fruits [51].

Those references prove that the usage of this device to perform quality control is only

going to have a wider range of applications in this area. It is a relatively affordable

way of doing quality control with minimum participation of human labour in the

process. It might not dispense professional evaluation and reporting but it might

take a more centric and powerful presence in the industry’s quality assessment work

flow [52].

1.5.2.3 Disease diagnosis

There are a couple of applications of electronic noses in disease diagnosis. To name a

few: urine evaluation [53,54], breath evaluation in order to diagnose diabetes [55,56],

respiratory problems that are detectable in the expired air like asthma [57], hepatic

diseases and several cancer types: lung [58–60], urinary track [61], prostate [62] and

colorectal [63]). This technology might be useful in helping robots to assist the most
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vulnerable aged segments of the population considering several other diseases show

a different volatile organic compound profile and thus can be characterized for a

diagnosis [64].
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Chapter 2

Materials and Methods

Several materials had to be gather in order to develop an experimental setup capable

of achieving the goals of this thesis. A series of data handling methodologies were

selected with the objective of accomplish classification tasks. In the section 2.1,

the group of elements needed for the experiment are presented along with the rea-

sons behind their selection. In the succeeding section, section 2.2, data processing

methods and algorithms are shown and explained.

2.1 Hardware Elements

In subsection 2.1.1 the process of design and inception of a gas chamber is presented,

2.1.2 goes in depth about sensor picking and designs, 2.1.4 reflects on the reasoning

behind the assortment of the odours chosen and 2.1.5 describes the odour containers

used. Subsection 2.1.6 shows the analog-to-digital converter used in this experiment

and 2.1.7 gives a detailed report on the specifics and properties of the Orange Pi, a

single-board computer selected to orchestrate the system.

2.1.1 Gas exposure chamber

In order to develop an experimental electronic nose, a low dimensions chamber

was designed to take the role of a artificial nostril. The chamber was designed

via 3d software design tool SolidWorks R©. A stable and odourless aluminium alloy

was picked as the constituent of the chamber to neglect major interferences with

odours to be tested. Avoiding gas leaks from inside was a crucial issue in the

design process. A opening in the middle of the chamber, from top to bottom, was
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(a)
(b)

(c)

Figure 2.1: Three different views of the aluminium chamber: a) top view , b) front
view and c) side view.

included to facilitate the sensors attachment afterwards. The 3d designs are present

in Appendix C and chamber views are presented in 2.1.

This aluminium chamber was designed in order to accommodate the sensors chosen

and to have a reasonable area of contact between them and the odour molecules that

would be pumped inwards via an air pump coupled with it. Chamber dimensions

were chosen to be as small as possible in order to facilitate increased odour detection.

The material itself does not partake a substantial role in the exposition process and

the air flow and concentration of odours inside the chamber are not perturbed by

it. Each side of the chamber has a circuit plate with two different sensors attached

and they are presented in Figure 2.2.

2.1.2 Sensor boards

Four different metal oxide gas sensors were chosen to partake in this experiment:

MiCS 5524, 5914, 2614 and 4514. Their printed circuit boards schematics can be

consulted in Appendix B. The selection of these specific type of sensors was made

in order to maximize the scope of the volatile spectre covered taking into account

laboratory resources availability. Their target analytes are presented in Table 2.1 and

their volatile detection capability seemed robust enough to the desired experiment.

These sensors were then soldered to the circuit boards accordingly as depicted in

Figure 2.2.

Table 2.1: Characteristics of the sensors chosen developed by SGX Sensortech R©.

Sensor types Sensor number Target analytes

MiCS-5524 S1 Carbon monoxide, ethanol, hydrocarbons, VOCs

MiCS-5914 S2 Ammonia

MiCS-2614 S3 Ozone

MiCS-4514 S4 Carbon monoxide, nitrogen dioxide
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(a) (b)

Figure 2.2: The two different printed circuit boards attached to the aluminium
chamber. On a) MiCS 4514 on the left and MiCS 2614 on the right and on b) MiCS
5524 on the left and MiCS 5914 on the right.

Load resistors for each of the 4 sensors are placed externally in a breadboard. This

way it was possible to change and adapt the resistor values towards our experimental

goals and limitations. Aside from a initial tuning of the values those parameters were

not changed during the sampling phase.

Figure 2.3: Handling circuit for the air pump.

2.1.3 Air Pump

A small motor coupled with a diaphragm serve as an air pump to effectively withdraw

air from inside the gas chamber during the odour injection and to not overexpose

the gas sensors. This motor is powered and controlled by one of the generic pins of

the Orange Pi that powers both ADC and sensor boards as well. The flow which
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this pump is able to withdraw air from the chamber is the same throughout the

sampling procedure. The circuit present in figure 2.3 is the handling circuit needed

to make sure that voltage that flows through the pump does not affect the normal

functioning of the single-board computer used. The resistor is a security measure

in a case of a sudden voltage turn off. MOSFET works as an interrupter that is

controlled by the Orange Pi as mentioned earlier. The flyback diode in parallel with

the air pump has the function to eliminate flyback voltage spikes that may happen

due to an eventual pump’s motor shutdown or interruption. This could potentially

damage the circuitry involved.

2.1.4 Odours

In order to include several areas of daily life experiences as presented in Figure 1.1,

the nature of the group of odours chosen is very broad. Specific reasons to each one

are given in Table 2.2.

Table 2.2: Description of the odour sources and their main odorant components.

No Odour Major odour components Reasoning

1 Ethanol 96% Ethanol Toxic and inflammable

2 Garlic Aliin, Allicin Strong aroma, often used in food preparation

3 Window cleaner Ammonia, 2-Butoxyethanol Toxic

4 Gasoline Benzene, Xylene Inflammable and toxic

5 Lemon peels Limonene Pleasantness, food preparation

6 Bay leaf Myrcene Medium strong aroma, food preparation

7 Vinegar Acetic acid Strong aroma and pleasantness

8 Mothballs Naphtalene Toxic

2.1.5 Odour containers

Odour containers are bottles with odour inside that serve as the odour source for the

experimental setup. The set of odour containers selected is portrayed in Figure 2.4.

Each lid has one perforated hole where a plastic tube is attached to and serves as a

pathway towards the sensors nostril. Although there is a way to volatiles emanated

from the odour source to leave the bottle, the majority surface of the container

is sealed from the outside environment. This near complete isolation promotes an

accumulation of odour compounds in the headspace until there is a mass equilibrium

between the odour source and the air that surrounds it. This group of volatiles are

responsible for the odour that sensors are exposed to. It is also worth noting that
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organic odour sources do not emanate the same volatiles due to the action of internal

and external oxidation.

Figure 2.4: Group of odour containers and respective odours used in the experi-
ment. From right to left: ethanol, garlic, ammonia, gasoline, lemon peels, bay leaf,
vinegar and mothballs.

2.1.6 ADS1115

ADS1115 is a small, medium precision, four channel analog-to-digital converter. It

is well suited for power and space constrained sensor measurement applications.

It functions as a versatile acquisition module that is capable of connecting to any

computerized device such as microcontrollers or single-board computers. This de-

vice works as a converter of analog signals that are fed to it via its four channels,

transforms those signals into a digital state and, communicate this information to a

device afterwards.

Figure 2.5: ADS1115 analog-to-digital converter developed by Texas
Instruments R©.
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2.1.7 Orange Pi

Orange Pi PC Plus is a single-board computer capable of achieving what is desired

from a mid to low end computer. Its price and availability makes it a good choice

to control and managing experiments like the electronic nose developed. This tech-

nology substitutes in part the usage of a microcontroller, avoiding low level software

development and configuration. It is also worth noting that the board is a high level

software platform and using a microcontroller would require deeper low level knowl-

edge that it was beyond this experiment. Data storage, sampling collection as well

as circuitry power supply and handling are its main functions in the experimental

setup. It is worth noting that, as can be seen in Figure 2.6, this board supports

wireless communicability and can take part of a potential future application of this

sensing technology in a real life context. HDMI port allows a graphic interface usage

of this computer via a monitor. It is also possible to access and configure it via SSH

protocol over a common shared network with security.

Figure 2.6: Orange Pi PC Plus single-board computer developed by Shenzhen
Xunlong Software CO., Limited R©.

2.2 Data Processing

Data samples collected from this assembled electronic nose need to be processed

before a search for insights is initialized. In order to implement a pattern recognition

system in a way it is possible to classify correctly an unseen odour sample, a similar

pipeline to the one presented in Figure 2.7 with those particular different steps needs
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to be implemented. In the following subsections, the strategy planned for each of

those steps is described and its fundamentals stated.

Figure 2.7: Data processing pipeline different steps.

2.2.1 Data Normalization

In order to better compare data from the four different gas sensors between them-

selves, two different data normalization strategies were chosen to be applied in the

dataset collected for different reasons explained in the subsections above.

2.2.1.1 Normalization 0 to 1

This type of normalization, also referred as min-max normalization, is applied to

datasets in order to transform their values maintaining their variance. Value di-

mensions alongside the features were very sparse and so normalization was applied

to ease that difference and place all the values between 0 and 1. Equation 2.1

mathematically describes this data transformation.
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zi =
xi − xmin
xmax − xmin

for i ε [1,3612] (2.1)

2.2.1.2 Logarithmic Normalization

Logarithmic normalization excels in the case of datasets with variables highly skewed

smoothing them. This methodology was chosen considering sensor responses in this

experiment are generally skewed towards the left due to the nature of the sampling

method and it is applied with the objective of counterbalancing this phenomenon.

It is also applicable to data that present high spikes of magnitude. Equation 2.2

describes the logarithmic transformation of base 10 applied to the data.

zi = log10(xi) for i ε [1,3612] (2.2)

2.2.2 Feature Extraction

Feature extraction takes a significant role on the performance of an electronic nose.

The aim of this procedure is to gather a non redundant and robust set of informa-

tion from the sensors response in order to improve the effectiveness of the ulterior

classification/pattern recognition tasks.

From the different types of transient features that can be extracted from an electronic

nose response signal, parameters directly extracted from the original response curve

are usually the first to be focused on considering its simplicity and they are usually

a decent start in order to ease the task of differentiating between different odours.

One sample example is shown in Figure 4.1e.

For the analysis of the data collected, several features were extracted from the data.

Some of these features are directly computed from the curve parameters of the

sensors response, others have their origin in the time or in the frequency domains

relating to them. The group of features selected are described in the following

subsections. Those were selected with basis on several literature approaches that

analysed related signals.
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Figure 2.8: Example of a lemon odour response from the sensors utilized.

2.2.2.1 Sample Mean

The mean of each data sample is obtained via Equation 2.3.

x̄ =
x1 + x2 + ...+ xn

n
, n = 3612 (2.3)

2.2.2.2 Upslope Mean

The upslope mean obtains the mean of the data samples between the end of the base-

line section of the sensor response, empirically defined as the 165th data point due

to the sampling method procedure intrinsics, till the maximum data point achieved.

Equation 2.4 describes this method.

x̄upslope =
x165 + x166 + ...+ xmax

imax − 165
i ε [165,imax] (2.4)
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2.2.2.3 Downslope mean

The downslope mean, as opposed to the upslope, is a mean characterization of

the slope of the data from the maximum data point until the 300th one. This

number is defined empirically as well from data inspection taking into account sensor

desorption and stabilization.

x̄downslope =
xmax + ...+ x299 + x300

300− imax
i ε [imax,300] (2.5)

2.2.2.4 Upslope Derivatives Mean

Similarly to the mean described in the subsection 2.2.2.2, the same methodology

is applied but computing the mean of the derivatives in the same dominion, as is

described in equation 2.6.

(xiupslope)′ =
(xi+1)

′ − (xi)
′

xi+1 − xi
, i ε [165, imax] (2.6)

2.2.2.5 Downslope Derivates Mean

The mean of the derivatives of the data points in the downslope section considered

is described in equation 2.7.

(xidownslope)′ =
(xi+1)

′ − (xi)
′

xi+1 − xi
, i ε [imax, 300] (2.7)

2.2.2.6 Derivatives Mean

The mean of the derivatives from the whole sample is computed as well, as presented

in equation 2.8.

(xi)′ =
(xi+1)

′ − (xi)
′

xi+1 − xi
, i ε [1, 3612] (2.8)
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2.2.2.7 Discrete Wavelet Transform

Wavelet transform [65] is an extension of Fourier transform. It maps the signal into

a new space with basis functions quite localizable in time and frequency space. They

are usually of compact support, orthogonal/biorthogonal and have proper Lipschitz

regularity and vanishing moment. The wavelet transform decomposes the original

response into the approximation (low frequencies) and details(high frequencies).

Using the wavelet coefficients of certain sub-bands as features might improve further

pattern recognition techniques considering this discrete transform has reasonable

anti-interference ability [66].

Mathematically speaking, a wavelet is a type of waveform with limited duration

and has a average value of zero. A wavelet Ψ(t) is defined in equation 2.9 and its

intrinsic characteristics are show in equation 2.10.

Ψ ε L2(R) and

∞∫
−∞

Ψ(t)dt = 0 (2.9)

Ψj,k =
1√
j

Ψ(
t− k
j

) (2.10)

Where:

• L2(R) is finite energy function
∞∫
−∞
|f(t)|2dt < +∞

• j is a scaling factor

• k is a shifting factor

Discrete wavelet transform emerged with the objective of tackling the heavy cost

of computing this type of waveform. It is implemented by selecting a group of

restricted values for the scaling and translation parameters. In this type of analysis,

a wavelet system is created by scaling (j ) and shifting(k) a scaling function and a

wavelet function as shown below in Equations 2.11 and 2.12.

φj,k = 21/2φ(2jt− k) (2.11)
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ψj,k = 21/2ψ(2jt− k) (2.12)

Those functions are then used to generate a set of basis function such that any signal

or function f(t)εL2 can be expressed by equation 2.13.

f(t) =
∑
k

aj0(k)φj0,k(t) +
∑
k

∞∑
j=j0

dj(k)ψj,k(t)

=
∑
k

aj0(k)2j0/2φ(2j0t− k)

+
∑
k

∞∑
j=j0

dj(k)2j/2ψ(2jt− k)

(2.13)

(2.14)

Where:

• aj(k) is designated a scaling/approximation coefficient

• dj(k) is designated a wavelet/detail coefficient

• j,k ε Z (integer number)

In a multi-resolution analysis, the scaling and wavelet functions can be defined as

presented in equation 2.15 and 2.16.

φ(t) =
∑
n

h0[n]
√

2φ(2t− n) (2.15)

ψ(t) =
∑
n

h0[n]
√

2ψ(2t− n) (2.16)

Where:

• h0[n] correspond to the coefficients for creating the scaling/approximation

function

• h1[n] correspond to the coefficients for creating the wavelet/detail function

Solving f(t) for aj and dj,
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aj(k) =
∑
m

h0[m− 2k]aj+1(m) (2.17)

dj(k) =
∑
m

h1[m− 2k]dj+1(m) (2.18)

where m = 2k + n.

The decompositions presented in equations 2.17 and 2.18 can be computed by apply-

ing a low pass and a high pass filter, also called filter bank algorithm. Consecutive

decompositions processes on approximation coefficients can be applied in order to

obtain the various multilevel DWT decompositions. This decomposition process is

depicted in Figure 2.9.

Figure 2.9: Multilevel wavelet decomposition, where aj correspond to the approx-
imation coefficients and dj to the details coefficients.

According to [67], the best wavelet family type to apply in this electronic nose

context is Daubechies 6(db6), portrayed in figure 2.10 considering gas sensors signals

are often affected by various type of noise, which appears mostly in high frequency

components.

Figure 2.10: The Daubechies 6 wavelet function.
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Taking this into consideration, approximation coefficients give better transient fea-

ture extraction and focus on low frequencies. A reasonable decomposition level is

required as well to avoid high frequency presence in the coefficients obtained, so

a wavelet decomposition of 8 levels is applied, the maximum possible taking into

account the size of the data samples collected.

As an overview, Table 2.3 describes the features extracted with an abbreviation

associated to facilitate references to a certain feature in specific. To this end, sensors

order from 1 to 4 is identical to the one present in Table 2.1: MiCS-5524, MiCS-5914,

MiCS-2614 and MiCS-4514.

Table 2.3: Overview of the features extracted.

Abbreviation Description
mx Mean of the response of sensor x.
umx Mean of the upslope of sensor x from the end of baseline until the

maximum of the response.
dmx Mean of the downslope of sensor x from the maximum of the re-

sponse until the following 300 points.
dvmx Derivatives mean of response of the sensor x.
udmx Derivatives mean of the upslope of sensor x from the end of baseline

until the maximum of the response.
ddmx Derivatives mean of the downslope of sensor x from the maximum

of the response until the following 300 points.
wvxy Five most discriminative approximation coefficients from

Daubechies 6 (db6) discrete wavelet transform from sensor x
and corresponding index y.

2.2.3 Feature ranking/transformation

2.2.3.1 Recursive Feature Elimination

Recursive Feature Elimination is a feature ranking method that takes an external

estimator that has weights assigned to the features and recursively selects them

considering smaller and smaller sets. In each iteration, the trained estimator ranks

each feature in the data according to their importance and cuts a set of features

only to repeat this process until a desire number of features selected is reached.

Selecting one feature only enables the algorithm to construct an organized ranked

list of feature importance [68].
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2.2.4 Dimensionality reduction

Dimensionality reduction is often applied to datasets with a large amount of features

in order to remove redundant information and to decrease the computational hassle

of processing several dozens of features. Principal Component Analysis and Linear

Discriminant Analysis are both described in the following subsections.

2.2.4.1 Principal Component Analysis

Principal component analysis is a simple and non-parametric dimensionality reduc-

tion technique often used when the data considered is sparse and multidimensional

with minimal loss of information. The main objective of this algorithm is to order

the data according to their maximum variance. This analytic method calculates

which two of the features (dimensions) of the data are most discriminative (contain

more variety, the largest variance possible) of the information contained in it. Each

principal component has the maximum variance possible considering they must be

orthogonal towards the preceding components. One example of a two dimensional

PCA projection is shown in Figure 2.11. Taking in consideration that data can be

hard to find in high dimensional data, PCA is a powerful tool in order to circumvent

this problem and analyse the data [69].

Figure 2.11: Data plot example where it is clear the directions of the two main
principle components of this dataset.

Assuming the goal of its application is to reduce d -dimensional dataset by project-

ing it into a k -dimensional subspace (where d<k), this mathematical transformation

starts by computing the d -dimensional mean vector out of the initial dataset. Af-
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terwards the scatter matrix of this dataset is computed. This process is show in

Figure 2.19.

S =
n∑
k=1

(xk −m)(xk −m)T (2.19)

Where m is the mean vector

m =
1

n

n∑
k=1

xk (2.20)

In the following step, eigenvectors and corresponding eigenvalues are computed.

Eigenvectors are sorted by decreasing eigenvalues and k eigenvectors with the largest

eigenvalues are chosen to form a d x k dimensional matrix w. At last, the dataset

samples are projected onto the new subspace via Equation 2.21.

y = wT × x (2.21)

Where:

• w is dxk dimensional matrix. d is the dataset dimensions and k is the desired

subspace dimensions.

2.2.4.2 Linear Discriminant Analysis

Linear discriminant analysis is a method used in statistics and in pattern recognition

tasks to find a linear combination of features that characterizes or separates two or

more classes of the problem considered searching for the in-between-class maximum

separation. The result of this method can be used as a linear classifier (more pre-

cisely in binary classification problems) or as a dimensionality reduction technique.

Linear discriminant analysis is related to PCA considering they both look for linear

combinations of variables which best explain the data [70]. LDA attempts to model

the difference between the classes of the data while PCA does not take into account

any difference in the classes.

26



2. Materials and Methods

2.2.5 Classification

There are several possible classification algorithms available and there are new al-

gorithms being developed and polished everyday. Some of the most used and more

reliable will be briefly presented below and are applied in the next section of this

thesis.

2.2.5.1 Support Vector Machine

Support vector machine is a classification method that tries to find a maximum-

margin hyperplane that lies in a transformed input space and splits the classes,

while maximizing the distance to the nearest cleanly split examples.

Considering a set of training data (xi,yi), i=1,..., n, yi ε (-1,1), xi ε R
d, where xi are

the feature values and yi the class labels. Hypothesising there is a hyperplane that

separates the two classes, the points x which lie on the hyperplane satisfy Equation

2.22.

Figure 2.12: Schematics of SVM applied to a linear separable binary class problem.

It is also known that the distance from the hyperplane to the origin is |b|/||w||. An

example of this type of hyperplane is shown in Figure 2.12. The distance of any

data point xi to the hyperplane is |w′xi + b|/||w||. The vectors corresponding to the

closest points are called support vectors and their distance from the hyperplane is

1/||w||.
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w · x + b = 0 (2.22)

Where:

• w is the normal vector to the hyperplane

The principle of this algorithm is to maximize the separation margin 2/||w||, which

is described by the minimisation criterion Ψ(x), given by the following equation.

Ψ(w) =
1

2
||w||2 + C

n∑
i=1

ξi yi(w
′xi + b) ≥ 1− ξi, i = 1, ..., n (2.23)

Where C is a constant that is highly related with the accuracy on the training set

and the margin width. This variable plays the role of regularization constant. It

is only used in non-linearly separable classes. ξ represents the separation margins.

In a case that this value is less than zero, the data points could be in separation

region between the hyperplane and the margin, otherwise misclassification of some

points is allowed. C controls the influence of ξ in the minimisation criterion Ψ. An

high tolerance to misclassification corresponds to a large value of C, whereas if C is

small the influence of ξ will be increased, leading to data points being misclassified

with overall shorter margins. This description above focused on the binary cases in

which this algorithm was designed for and it is applied to. In order to apply it to a

multi-class problem like this one, a combination of several binary SVM classifiers is

employed. From the various strategies that exist to combine those, this thesis uses

the one-vs-one scheme. A separate classifier is created for each different pair of class

labels.

2.2.5.2 Backpropagation Neural Network

A feedforward neural network with backpropagation is the most widespread and

more generally used artificial network architecture. An artificial neural network is

an algorithm that is loosely modelled after the neural structure of the mammalian

cerebral cortex although on a small scale. They are organized in layers which in turn

have a series of interconnected nodes also called neurons. A pattern is presented to

the network in its input layer, which communicates to one or more hidden layers
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where a system of weighted connections performs the pattern processing. Every

node does a summation of their respective weights and it passes through a non-

linear function known as a transfer function that is commonly shared with their

counterparts in the same layer. The structure of a neural network is shown in

Figure 2.13

Figure 2.13: Schematics of the structure of a neural network and its neuron struc-
ture (Adapted from: [71])

Afterwards, the hidden layers share their outcomes to an output layer that is respon-

sible to present the output obtained. The loss function of this process provides the

error rate which in turn is used to backpropagate over the neural network so it can

minimize the learning error and thus learn better and deeper the training cases it

has been fed with. This property gives the network feedback about its current learn-

ing procedure and it is the main advantage of this type of architecture. Although

there are several methodologies to perform backpropagation, the most common is
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the generalized version of the Delta rule that is capable of dealing with networks

with hidden layers [72]. Gradient descent is the optimization algorithm often used

to search the net weights that minimize its learning error [73].

The backpropagation takes place after the feedforward computation of the artifi-

cial neural network. The process starts in the output layer, where the first set of

derivatives is calculated. Then it goes throughout all the hidden layers in order to

compute the error that it is trying to minimize [74].

Gradient descent is the most used optimization algorithm in the backpropagation

step of a neural network and has as objective the objective the minimization of the

loss function considered and this, the learning error.

Generally a standard error function of a neural network is presented in equation

2.24, where p is the size of the training set, oi is the output pattern and ti is the

desired target pattern.

E =
1

2

p∑
i=1

||oi − ti||2 for i = 1,..,p (2.24)

The gradient alongside every dimension of the error is calculated via equation 2.25.

Derivatives of the error give the algorithm the direction in which the minimization

should follow.

∇E = (
∂E

∂w1

,
∂E

∂w2

, ...,
∂E

∂wl
) (2.25)

Then, the algorithm searches the neighbourhood of a weight w in which the error

function can decrease the fastest if one goes from w in the direction of the negative

gradient of E at w, ∇E(w), as mentioned in equation 2.26.

∆wi = −γ ∂E
∂wi

for i = 1, ..., l (2.26)

Where l is the number of weights and γ is the learning constant and dictates the

quality of the gradient descent. With different values the step length of each iteration

differs and so if the step is too large the algorithm might discover a local minimum
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labelling it as the global minimum because the search step was too large. If the

parameter is too low, the step might be so small that the duration of this search for

the global minimum would take a considerate amount of time and processing power.

This process is repeated until the error is not decreasing anymore.

2.2.6 Evaluation

In order to validate our results in the subsequent classification procedures we need

to essentially make sure the results are not influenced too much with overfitting,

which would decline our models capacity to generalize when new data is provided.

Cross-validation is a technique used to divide the data available for training in small,

balanced sets. Classifiers are trained with each different set of the original data and,

at the end, classification results are obtained using the mean of all those results. In

this case, the dataset was shuffled and 75% of the samples were randomly selected

as training data and the other 25% as the testing data. K-fold cross validation was

not applied but it certainly is a good strategy for future work. Accuracy will be the

main metric of evaluation of classifiers applied in this thesis.
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Chapter 3

Implementation

In this chapter, details about implementation of the experimental setup and sam-

pling methodology employed are shown in Sections 3.1 and 3.2 respectively. How the

data acquisition took place is described in Section 3.3 and data processing applied

scripts are focused on the last Section, 3.4.

3.1 Experimental Setup

Taking into account the materials described in the previous chapter of this thesis,

the experimental setup assembled is presented in Figure 3.1. In figure 3.2 the var-

ious steps and procedures of the setup are shown and more details about them are

described in the following section.

3.2 Sampling Methodology

The methodology used to extract samples from the experimental setup was dynamic

headspace sampling in which a motor coupled with a diaphragm is used as an air

pump. The concept of this methodology consists in air being effectively drawn from

an odour bottle towards the target sensing chamber via a thin tube. This motion

promotes a sweep of volatile compounds released by the sample into the air stream

that subsequently flows through the chamber. Scenario conditions in which the

samples were collected is described in Table 3.1.

In order to obtain a guaranteed reaction from the sensors, one bottle is softly at-

tached to the acquisition chamber with a tube. On the other side of the chamber,
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Figure 3.1: Experimental setup implemented: A - Electronic nose (sensor boards
coupled with gas chamber); B - ADS1115 analog-to-digital converter; C - Air pump
handling circuit; D - Air pump; E - Orange Pi PC Plus.

Figure 3.2: Experimental setup pipeline.

an air pump together with a soft and steady bottle squeeze ensure that the passage

of airflow is facilitated as required. At the same time, the internal resistance values

of the sensor array that are attached to the chamber are constantly being monitored
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Table 3.1: Scenario and material specifications and conditions.

Parameters Specifications

Chamber size 40 x 20 x 10 mm

Chamber gas volume 2585 mm3

Sampling rate 9 Hz

Sampling time 420 s

Purging time 30 s

Working voltage ∼ 5 V

ADC resolution 16-bit (ADS1115)

Temperature 19 ∼ 31 C◦

Pressure Ambient pressure

and registered with the ADS1115 analog-to-digital converter with 16 bit resolution

in order to obtain a precise response value of each sensor for that specific odour. A

pipeline that shows the various steps of the sampling procedure is shown in 3.2.

After the acquisition, there is a sensor desorption time in which the chamber loses

its previous odour presence with the ambience odours replacing it and reaching a

stable baseline. Each sample comprises 420 seconds, in which the first 20 seconds are

dedicated to obtain the current baseline response; the pump works for 10 seconds

extracting air out of the odour bottle and the last 390 seconds are dedicated to

give time to the sensors approach their baseline values. An extra purging time

of 30 s was applied between consecutive sample measurements. This procedure

occurred for 8 different odours with 25 samples for each one of them. The Orange

Pi is responsible for the electrical supply of the sensors chamber, the ADC and

the air pump. The analog-to-digital converter is connected to an Orange Pi board

and sends 16 bits data to the card-size computer. This board was configured for the

purpose of being a controller board for the experiment, a data storage for the various

samples collected and, eventually, a data processing platform in which the pattern

recognition algorithms would be applied and a decision would be made about the

odour facilitated. During sampling time, values arriving in the Orange Pi are printed

in a monitor connect to it via HDMI port facilitated by the sampling acquisition

script below presented in Code Snippet 3.1. This way it was possible to disregard

sampling anomalies and impactful errors that would damage the next steps of this

work.

Code Snippet 3.1: Some Py code

import time

35



3. Implementation

import Adafruit ADS1x15

from pyA20 . gpio import gpio

from pyA20 . gpio import port

%

t s t a r t = time . time ( ) +20;

t end = time . time ( ) +30;

t f i n i s h = time . time ( ) +420;)

gpio . i n i t ( )

gpio . s e t c f g ( port .PG6, gpio .OUTPUT)

# Create an ADS1115 ADC (16− b i t ) i n s t a n c e .

# Bus number used i s 0

adc = Adafruit ADS1x15 . ADS1115( address=0x48 , busnum= 0)

GAIN = 2/3

print ( ’ Reading ADS1x15 values , p r e s s Ctrl−C to qu i t . . . ’ )

# Print n ice channel column headers .

print ( ’ | {0:>6} | {1:>6} | {2:>6} | {3:>6} | ’ . format (∗range

(4 ) ) )

print ( ’− ’ ∗ 37)

odourname = raw input ( ”Odour : ” )

f i l ename = time . s t r f t i m e ( odourname+’−−− ’ +”%Y−%m−%d %Hh%Mm%

Ss” , time . gmtime ( ) )+’ l o g . txt ’

f = open( f i l ename , ’w ’ )

data = [ ]

while True :

i f time . time ( )>=t s t a r t or time . time ( )<t s t a r t +1:

gpio . output ( port .PG6, HIGH) ;

# Read a l l the ADC channel v a l u e s in a l i s t .

va lue s = [ 0 ] ∗ 4

for i in range (4 ) :

# Read the s p e c i f i e d ADC channel us ing the

p r e v i o u s l y s e t gain v a l u e .

va lue s [ i ] = adc . read adc ( i , ga in=GAIN,

da ta ra t e = 128)

s=str ( va lue s [ 0 ] )+’\ t ’+str ( va lue s [ 1 ] )+’\ t ’+str ( va lue s

[ 2 ] )+’\ t ’+str ( va lue s [ 3 ] )+’\ t ’+time . s t r f t i m e ( ”%Hh%

Mm%Ss” , time . gmtime ( ) )+’\n ’

36



3. Implementation

print ( s )

i f ( len ( data )==1000) :

for d in data :

f . wr i t e (d)

f . wr i t e ( s )

data =[ ]

else :

data . append ( s )

i f time . time ( )>=t end and time . time ( )<t end+1

gpio . output ( port .PG6, LOW) ;

i f time . time ( )>=t f i n i s h :

break ;

time . s l e e p ( 0 . 1 )

f . c l o s e ( )

3.3 Data Acquisition

When the data collecting script is running, sensor voltage differences pass from

sensors to the circuit board that, in turn sends to the breadboard where adequate

load resistors are allocated. Then, new transformed differences are sent to the

analog-to-digital converter, where the data is transformed to a digital state. This

device gather the sensor differences in one single stream of data that is communicated

through a specific GPIO pin - PA12/SDA, that stands for serial data - of the Orange

Pi utilising the I2C (inter-integrated circuit) protocol, where this data stream is

controlled by a clock pulse sent also by the ADC to the serial clock pin PA11/SCK.

The disposition of the GPIO pins used is shown in Table 3.2.

This pulse dictates when the receiver reads the data from the data stream sent by

the ADC. Considering the data transmitter originates both the data and the reading

timing pulses, the Orange Pi only reads the data when the ADC determines, enabling

a guaranteed synchronization and a lossless data transmission. Afterwards, this data

is stored in the single-board computer labelled by odour name prompted by the user.
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Table 3.2: GPIO bus pin information from Orange Pi PC Plus.

3.4 Methods For Classification

In order to apply the various data processing steps defined on the previous chap-

ter to the data collected, a series of scripts were developed in Python. One that

contains the features extraction techniques implemented and a second script that

as 8 clones for each different odour, in which the data is visually represented and

normalized if desired, samples are assembled together in an odour specific matrix,

features are extracted and added to a new file labelled accordingly. There is also

one script that is responsible for the feature ranking algorithm implemented and one

for dimensionality reduction application to the newly extracted datasets. It is also

prepared to build 2D or 3D visualizations of subspace vectors that result from either

PCA or LDA and it may also store projected data on one of the referred subspaces

in order to feed the classifiers afterwards. At last, in the sixth one, classifiers are

built and introduced to the datasets and their performance is evaluated.

The series of scripts developed during this thesis are presented in Appendix D.

3.5 Visualization

Although the visualization objective of this thesis was not implemented, a projected

view of a potential application is shown in Figure 3.3.
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Figure 3.3: Scheme of a intended electronic nose application. A garlic clove is used
as an example.

The envisioned objective was a deployment of the electronic nose assembled with a

fully trained recognition model that would be doing consequent timed air scans 24/7

and would be capable of detecting the odour set considered and communicating that

information in a monitor, either via a HDMI cable or via a SSH wireless connection,

allowing the localization of recognition display to be flexible.
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Chapter 4

Test and Results

In this section the results obtained applying the previous described methodology

are shown. Visual data exploration of the samples collected is presented in 4.1,

feature ranking results with normalized 0 to 1 data are shown in 4.2, dimensionality

reduction techniques employed on the dataset and their results are displayed in 4.3

and classifiers are evaluated in 4.4.

4.1 Data Exploration

As mentioned in the previous chapter, 25 samples were collected from each of the 8

odours amounting to a 200 samples dataset. A sample of sensor responses for each

one of the odours in the experiment is shown in Figure 4.1. From a visual analysis of

the graphs, it is somewhat clear that the responses of the four sensors for each odour

are quite distinct which, in turn, is encouraging to the application of the following

data processing steps. There is clearly a similarity of sensor responses between

lemon and bay leaf samples. MiCS-5524 response might be the main difference

between those two odours, considering that its conductivity increases at a higher rate

when exposed to bay leaf even if this odour promotes lower response in magnitude

in comparison with the lemon sample. In resemblance, gasoline and naphthalene

provoke similar response traits in the sensor array and it can be argued that MiCS-

5524 makes the difference, although the gasoline response shows higher magnitude

and that factor can be reason for that difference. Ethanol and garlic responses

both share similar MiCS-2614, MiCS-4514 and even MiCS-5914 responses however,

MiCS-5524 does seem to differentiate them. Both ammonia and vinegar appear to

have some similarities but their response profiles are still moderately distinct.
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(a) Ethanol (b) Garlic

(c) Ammonia (d) Gasoline

(e) Lemon (f) Bay leaf

(g) Vinegar (h) Naphthalene

Figure 4.1: Examples of sensor responses for each of the odours: a) Ethanol;
b) Garlic; c) Ammonia; d) Gasoline; e) Lemon; f) Bay leaf; g) Vinegar and h)
Naphthalene.
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Figure 4.2: Response curves of MiCS-5914 to ethanol exposure (25 responses).

So far, one sample of each odour was presented but that information does not

really provide any information about the variability inside the group of samples

from the same odour. In a attempt to obtain some insight about this issue, all

25 responses of MiCS-5914 in exposure to ethanol are normalized around a time

stamp where the sensor starts to react, is displayed in Figure 4.2. From a initial

analysis standpoint, it is safe to say that the magnitude of the responses oscillates

reasonably across the sample spectre which in turn points out to sampling method

intrinsic issues, namely the absence of control in the force applied during the initial

bottle squeeze. When to stop it and the rate in which the bottle is uncompressed

might unravel other types of variability in the collection of responses shown like late

peak responses and soft secondary peaks during desorption phase. Although this

might be perceived as systematic error, variability of the dataset is crucial to create

a robust dataset capable of containing reasonable discriminative power and, as a

result, help preventing classification overfitting.

4.2 Feature Ranking

In the following subsection, the results of the methodology chosen for feature ranking

is described. It is worth noting that the dataset was already divided in two groups,

as mentioned in subsection 2.2.6: a training group encapsulating 75% of the data

and a second group, a testing set with the remaining 25%.
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4.2.1 Recursive Feature Elimination

A ranking of the different features was created applying this algorithm and the

results for the 10 most discriminatory features are shown in Table 4.1. The reason

for selecting the first ten and not a smaller number is linked to the fact that the

main objective for this algorithm application was to try to understand to which

extent each sensor contributes to the differentiation of the odours considered.

Table 4.1: Ten most discriminative features for 0 to 1 normalized data according
to recursive feature elimination.

Feature Ranking Feature Abbreviation Corresponding sensor

1 m3 MiCS-2614

2 dm2 MiCS-5914

3 um4 MiCS-4514

4 udm1 MiCS-5524

5 udm3 MiCS-2614

6 wv410 MiCS-4514

7 wv211 MiCS-5914

8 ddm2 MiCS-5914

9 dvm4 MiCS-4514

10 wv29 MiCS-5914

All four different sensors are represented in this ranking with more than one feature

each which implies that all sensors have a substantial contribution in the discrimina-

tion of the odours they were exposed to. From the number of features in the first ten,

sensor MiCS-5914 seems to be the most dominant one with four features out of ten.

A more individual sensor focused research with information like this ranking taken

into consideration may improve the overall results of similar experiments. Feature

removal with basis on this ranking was not performed on the dataset although it

might be a reasonable enhancement in classifications tasks that come ahead.

4.3 Feature Transformation

Dimensionality reduction techniques are applied in the following subsection and

their results presented.
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4.3.1 Dimensionality reduction

Normalization of the data vastly improves PCA results in most cases. Since PCA

is a variance maximizing methodology, having all the features in the same scale

increases the reliability of the projection of the data onto directions that maximize

the variance. From the explained variances of the first five principal components

presented in Table 4.2 it can be inferred that the dimensionality reduction algorithm

was able to condense the majority of the dataset information in the first five compo-

nents. The most discriminative component is the first from logarithmic scaled data

with 89.7% of the variance explained followed by 74.5 % in min-max normalization.

It is also worth mentioning that the three data statuses contain more then 95.0% of

cumulative variance in the first five components.

Table 4.2: First five principal components explained variances for each of the
feature normalization status of the data.

Data normalization Component Explained Variance Cumulative Variance

Raw PC 1 0.526 0.526

PC 2 0.236 0.762

PC 3 0.098 0.860

PC 4 0.071 0.931

PC 5 0.034 0.965

Scaled 0 to 1 PC 1 0.745 0.745

PC 2 0.157 0.902

PC 3 0.042 0.944

PC 4 0.022 0.966

PC 5 0.016 0.982

Log scaled PC 1 0.897 0.897

PC 2 0.089 0.986

PC 3 0.007 0.993

PC 4 0.006 0.999

PC 5 0.000 1.000

Due to linear discriminant analysis intricate mathematics operations, normalization

of the data prior to the analysis does not take any toll in the final outcome of

its discriminants are shown in Table 4.3. The cumulative variance of the first five

linear discriminants is 99.8% which is similar to the previous results of the PCA

counterpart.
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Table 4.3: First five principal components explained variances for each of the
feature scaling status of the data.

Discriminant Explained Variance Cumulative Variance

LD 1 0.573 0.573

LD 2 0.208 0.781

LD 3 0.127 0.908

LD 4 0.064 0.972

LD 5 0.026 0.998

PCA components projected in 2D and 3D in Figure 4.3 show that the classes of

odours including in the experiment are somewhat distinctive aside from a specific

group that overlaps quite a lot. Ethanol, gasoline and ammonia are perceived as

discriminable but there is a clear overlap between garlic, bay leaf, vinegar, lemon

and naphthalene to a certain extent.

On the other hand, LDA discriminants projection that can be consulted in Figure

4.4 shows better discriminative performance. Ethanol, gasoline and ammonia have

a distinct position in the projection as well as vinegar and naphthalene to a lesser

extent. Garlic and bay leaf overlap in several samples and lemon ones are presented

really close to this pair of odours.

Concluding, the results seem to indicate that, for the collected dataset, the classes

seem to be more separable using a linear discriminant transformation than its princi-

pal component counterpart, which is expected considering this algorithm maximizes

the distance inter-class. Perhaps a more adequate feature extraction or a more

robust number of samples can dictate a different outcome.
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(a)

(b)

(c)
(d)

(e) (f)

Figure 4.3: 2D and 3D PCA discrimination of the odours dataset collected with
different data normalization procedures: raw data a)2D b)3D; 0 to 1 normalized
data c)2D d)3D and logarithmic normalized data e)2D f)3D.
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(a) (b)

Figure 4.4: 2D and 3D LDA discrimination of the odours dataset collected.

4.4 Classification

Different supervised models were built to predict the classes of the testing data as-

sembled. For each classifier, three different sets of data were used: raw data, first

five principal components projected data and first five linear discriminant analysis

projected data. Within each set, three different normalization procedures were ap-

plied a priori. The results obtained for each model are presented in the following

chapters.

4.4.1 Support Vector Machine

After algorithmic tuning trying several combinations of hyper-parameters, the group

of hyper-parameters for the support vector machine classifier applied are as follows:

linear kernel, penalty parameter C is 1 and the kernel coefficient gamma is 0.001.

Surprisingly, as can be seen in 4.4, the most accurate classification results come

from both raw data analysis and raw data projected in linear discriminant subspace

with 92.50% of accuracy. Data normalized 0 to 1 projected in principal components

subspace achieved 85.00%. Results from logarithmic normalization are overall poor

with just 34.90% accuracy with non projected and data projected in the principal

component subspace.
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Table 4.4: SVM results with different data processing techniques.

Data projection Data normalization Accuracy(%)

Raw Raw 92.50

Scaled 0 to 1 75.00

Log scaled 34.90

PCA Raw 85.00

Scaled 0 to 1 62.50

Log scaled 34.90

LDA Raw 92.50

4.4.2 Backpropagation Neural Network

Regarding hyper-parameter tuning, several combinations were tested and overfitting

was taking into consideration to avoid loss of discriminative capability from the

model. The parameters chosen are the following: two hidden network layers with 15

neurons on the inner and 7 on the outer layer; tanh as activation function; adam as

the learning methodology; alpha as 0.00001 and 10000 as the maximum of iterations.

Similarly to what has been shown in SVM results, Figure 4.5 describes the best

results of this classifier that correspond to LDA projected data without normaliza-

tion with 97.50% of accuracy and 82.50% from both raw data projected with PCA

and non projected data with min-max normalization. PCA projected data with

logarithmic normalization reaches 80.00% and 67.50% with data scaled from 0 to

1. Data without any type of transformation reaches 40.00% of accuracy with this

algorithm.

Table 4.5: BPNN results with different data processing techniques.

Data projection Data normalization Accuracy(%)

Raw Raw 40.00

Scaled 0 to 1 82.50

Log scaled 12.50

PCA Raw 82.50

Scaled 0 to 1 67.50

Log scaled 80.00

LDA Raw 97.50

From the two best accuracy results of both classifiers, Table 4.6 describe how each

odour was classified and which misclassification occurred. As can be seen, this
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Table 4.6: Classification results of the raw test samples LDA projected with a
BPNN as classifier with 97.50% accuracy.

Samples Classified as

Ethanol Garlic Ammonia Gasoline Lemon Bay leaf Vinegar Naphthalene

Ethanol 5/5 5/5

Garlic 5/5 5/5

Ammonia 5/5 5/5

Gasoline 5/5 5/5

Lemon 5/5 5/5

Bay leaf 5/5 5/5

Vinegar 5/5 4/5 1/0

Naphthalene 5/5 6/5

misclassification was a vinegar sample that was classified as a naphthalene one.

This error happened for both instances but the misclassified sample was different.

The second overall best accuracy is a tie between two different SVM classifier results:

data not normalized nor projected and raw data projected in linear discriminants

subspace. Both achieved an accuracy of 92.50%. Although both present the same

accuracy, the misclassified samples are different but one, a vinegar sample that is

classified wrongly as a naphthalene one. This same sample is misclassified as well in

the best BPNN result shown in Table 4.6. SVM classifier best classification details

are present in Tables 4.7 and 4.8. Aside from the mentioned vinegar sample, in the

former table, one lemon sample is misclassified as garlic and one naphthalene one is

wrongly classified as bay leaf. On the latter table, a gas sample is misclassified as

garlic and a bay leaf sample is considered a naphthalene one wrongly.

Table 4.7: Classification results of the test samples without normalization and
projection with a SVM as classifier with 92.50% accuracy.

Samples Classified as

Ethanol Garlic Ammonia Gasoline Lemon Bay leaf Vinegar Naphthalene

Ethanol 5/5 5/5

Garlic 5/5 6/5

Ammonia 5/5 5/5

Gasoline 5/5 5/5

Lemon 5/5 1/0 4/5

Bay leaf 5/5 6/5

Vinegar 5/5 4/5 1/0

Naphthalene 5/5 1/0 5/5
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Table 4.8: Classification results of the test samples without normalization and
projected in linear discriminants subspace with a SVM as classifier with 92.50%
accuracy.

Samples Classified as

Ethanol Garlic Ammonia Gasoline Lemon Bay leaf Vinegar Naphthalene

Ethanol 5/5 5/5

Garlic 5/5 6/5

Ammonia 5/5 5/5

Gasoline 5/5 1/0 4/5

Lemon 5/5 5/5

Bay leaf 5/5 4/5 1/0

Vinegar 5/5 4/5 1/0

Naphthalene 5/5 7/5
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Chapter 5

Conclusions

In this final chapter, discussion of the work done in this thesis is presented, with

focus on what particularly was a success and, more importantly, what failed so in

the future researchers do not make the same mistakes and build up on what was

achieved. Discussion about the experiment takes place in section 5.1 and future

work and ideas are referenced in section 5.2.

5.1 Discussion

Nowadays there is an urgent need of personal care devices that are useful to the

daily life as well as affordable and robust. The experimental setup developed in this

thesis is an attempt in achieving a reasonable proof of concept and with further more

controlled experiments, it may be possible to aspire to fully imitate a human nose

condition and decision wise and perhaps surpass its capabilities. The platform devel-

oped to collect, treat and analyse data is modular and can be modified for different

experiments with other sensors and technologies. The data sampling procedure in

this experiment was not controlled as it could be. Temperature and humidity were

not supervised and this type of variations may affect the experiment results consid-

ering this condition promotes different behaviours from the sensors exposed. A soft

squeeze in order to facilitate the air flow from the odour containers headspace to

the gas chamber is not a controlled mechanism which in turn produced variability

that a more restrained procedure would not. However, this variability enriches the

dataset collected and counterbalances to some extent the low amount of samples ob-

tained. Baseline manipulation of the samples collected was not conducted because

comparatively speaking the outcome of that action would not differ much from the
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raw status of the data and from the other samples as well. The features extracted in

this experiment may be suitable in part for classification considering the reasonable

results presented in the previous chapter. A good result was achieved on both classi-

fiers with linear discriminant analysis projected data and that may be an argument

in favour of a good feature extraction methodology although logarithmic scaling of

the data in its raw state and its projections in PCA subspace achieved uninspiring

results except on the neural network with PCA projection data. Is it also worth

noting that features like the sample mean and derivatives mean for the whole sam-

ple might have had a negative impact in the information extraction for the dataset.

One of the constraints of this experiment is the small number of samples collected

and analysed. With a quantity so small it is difficult to make a conclusion even

about good classification results. Overfitting of the data is a common phenomenon

in similar classification tasks and the only way to dampen its influence is to collect

more data and apply an adequate cross-validation strategy. The fact that sample

length is exceedingly vast, it is safe to say that significant information present on

the sensor responses might have been diluted.

5.2 Future Work

In the following subsections, several areas in which this experiment can improve are

exposed.

5.2.1 Sensor Drifting

For future works and an eventual deployment or development of a portable electronic

nose, sensor drifting should be taken seriously. After long periods of time, sensor

projected characteristics start to change due to large amounts of time of exposure

to the most varied chemical compounds. This exposure enables the deterioration of

sensor coatings and their sensitivity drifts from the projected initially. Among the

possibilities to tackle this problem, software workarounds usually are applied to try

to soften this phenomenon.

5.2.2 Sensor Load Resistance

In the specific case of the electronic nose developed, changing load resistance values

can enable the sensor array to detect different layers of information that may be
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valuable in the presence of certain odours.

5.2.3 Odour Chemical Composition and Concentration

Controlling or having a deeper understanding about the chemical compounds present

in an odour and their threshold for the human olfaction is a clear future enhancement

in this type of analysis. With this chemical information, it should be possible to

evaluate different types of certain odour enablers and even make inferences about the

living stage of certain organic items like plants, fruits or bakery products. Having

this type of information may be crucial to identify and discriminate odour mixtures.

5.2.4 Different Array of Sensors

A different array of sensors with distinct target sensitivities might increase the sens-

ing capability and the overall scope of the device. Not only metal oxide gas sensors

but joining different technologies like polymer based sensor will broaden the target

odour space.

5.2.5 Larger Amount of Odours

Applying different odours from the most variate sources to this sensing chamber is

one of the next steps to improve this technology. With a larger odour space we

should be able to be nearer a fully functional portable electronic nose. Once an

electronic nose is fully trained to recognize daily life smells, it could then detect

unusual odours related to forgotten disposables, burning food, expired refrigerator

contents, or even the individual’s personal hygiene.

5.2.6 Integration with smart phone

One of the partial objectives of this thesis was the integration of the electronic nose

with a mobile application that could be accessible in a smart phone by anyone. In

this scenario, an electronic nose would either be placed or carried around and the

monitoring of odours could be performed and communicated 24/7.
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[26] T Metin Önerci. Nasal physiology and pathophysiology of nasal disorders.

Springer, 2013.

[27] D Nunes, E Janz, and A Naumann. An atypical etiology of anosmia. J Oto-

laryngol ENT Res, 6(1):00146, 2017.

[28] Steven Nordin and Annika Brämerson. Complaints of olfactory disorders: epi-

demiology, assessment and clinical implications. Current opinion in allergy and

clinical immunology, 8(1):10–15, 2008.

[29] Yong-ming Zou, Da Lu, Li-ping Liu, Hui-hong Zhang, and Yu-ying Zhou. Olfac-

tory dysfunction in alzheimer’s disease. Neuropsychiatric disease and treatment,

12:869, 2016.

59



Bibliography

[30] Yuriko Hori, Osamu Matsuda, and Sachiko Ichikawa. Olfactory function in el-

derly people and patients with alzheimer’s disease. Psychogeriatrics, 15(3):179–

185, 2015.

[31] Jens Reden, Antje Mueller, Christian Mueller, Iordanis Konstantinidis, Jo-

hannes Frasnelli, Basile N Landis, and Thomas Hummel. Recovery of olfac-

tory function following closed head injury or infections of the upper respiratory

tract. Archives of Otolaryngology–Head & Neck Surgery, 132(3):265–269, 2006.

[32] AM Seiden, HJ Duncan, and DV Smith. Office management of taste and smell

disorders. Otolaryngologic clinics of North America, 25(4):817–835, 1992.

[33] Ilona Croy, Simona Negoias, Lenka Novakova, Basile N Landis, and Thomas

Hummel. Learning about the functions of the olfactory system from people

without a sense of smell. PLoS One, 7(3):e33365, 2012.

[34] V Bojanowski, T Hummel, and I Croy. Isolated congenital anosmia–clinical

and daily life aspects of a life without a sense of smell. Laryngo-rhino-otologie,

92(1):30–33, 2013.

[35] J Frasnelli, BN Landis, S Heilmann, B Hauswald, KB Hüttenbrink, JS Lacroix,
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Appendix A

Sensors in Electronic Noses

Table A refers to various type of sensors and their detection principles incorporated

in different electronic noses works.

Sensor type Sensitive material Detection Principle

Metal oxide semi-

conducting (MOS)

Doped semiconducting

metal oxides (Sn2, WO3,

GaO)

Resistance change

Electrochemical Solid or liquid elec-

trolytes

Current or voltage

change

Conducting polymer Modified conducting

polymers

Resistance change

Acoustic: Quartz crys-

tal microbalance (QMB);

surface & bulk acoustic

wave (SAW,BAW)

organic/inorganic film

layers

Mass change (frequency

shift)

Calorimetric; catalytic

bead (CB)

Pellistor Temperature or heat

change (chemical reac-

tion)

Catalytic field-effect

(MOSFET)

Catalytic metals Electric field change

Colorimetric Organic dyes Colour changes, ab-

sorbency

Fluorescence Fluorescence-sensitive

detector

Fluorescence-light emis-

sions
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Infra-red IR-sensitive detector Infra-red radiation ab-

sorption

Electro-optical Photodiode, light sensi-

tive

Light modulation, opti-

cal changes
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Appendix B

Printed Circuits Boards

In this appendix PCB circuit designs are presented.

Figure B.1: Circuits of the printed circuit boards aimed for the sensors.
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(a) (b)

Figure B.2: Printed board circuit designed to supply the sensors. a) Board for
MiCS-5524 and MiCS-5914 and b) Board for MiCS-4514 and MiCS-2614.
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Appendix C

Gas Chamber

This appendix is dedicated to the 3d chamber designs.

Figure C.1: 3D aluminium chamber designs in SolidWorks R©.
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Appendix D

Python Scripts

In this appendix, the scripts developed with data processing as aim during the

development of this thesis are presented.

D.1 Feature Extraction

The group of functions that implement the selected feature extraction techniques

are described in this script.

import numpy as np

import matp lo t l i b as mpl

import pywt

from pywt import wavedec

from s c ipy . f f t p a c k import f f t , r f f t

import re

def mean ( data ) :

# Mean o f the data prompted when c a l l i n g t h i s f u n c t i o n

cenas = np . array ( data ) ;

mean data = np . mean( cenas ) ;

return mean data

def s lope mean ( data ) :

# Mean o f the data p o i n t s conta ined in the s l o p e when the

sensor response
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# k i c k s in .

maxim= np . amax( data )

maxindex = np . where ( data==maxim) ;

sample = str ( maxindex ) ;

maxind = re . f i n d a l l ( r ’ \ [ ( [ ˆ ] ] ∗ ) \ ] ’ , sample ) ;

maxinde = map( int , maxind [ 0 ] . s p l i t ( ’ , ’ ) )

maxi = maxinde [ 0 ] ;

da ta s l ope = data [ 1 6 5 : maxi ] ;

mean slope = np . mean( da ta s l ope ) ;

return mean slope

def downslope mean ( data ) :

# Mean o f the data p o i n t s conta ined in the downwards s lope ,

from the maximum p o i n t

# t i l l t he 300 s p o i n t

maxim= np . amax( data )

maxindex = np . where ( data==maxim)

sample = str ( maxindex ) ;

maxind = re . f i n d a l l ( r ’ \ [ ( [ ˆ ] ] ∗ ) \ ] ’ , sample ) ;

maxinde = map( int , maxind [ 0 ] . s p l i t ( ’ , ’ ) )

maxi = maxinde [ 0 ] ;

po in t e r=maxi+300

da ta s l ope = data [ maxi : po in t e r ] ;

mean slope = np . mean( da ta s l ope ) ;

return mean slope

def upderiv mean ( data ) :

# Mean o f the d e r i v a t i v e s data p o i n t s conta ined in the

upwards s lope , from the maximum p o i n t

# t i l l t he 300 s p o i n t

maxim= np . amax( data )

maxindex = np . where ( data==maxim)

sample = str ( maxindex ) ;

maxind = re . f i n d a l l ( r ’ \ [ ( [ ˆ ] ] ∗ ) \ ] ’ , sample ) ;

maxinde = map( int , maxind [ 0 ] . s p l i t ( ’ , ’ ) )

maxi = maxinde [ 0 ] ;

da ta s l ope = data [ 1 6 5 : maxi ] ;
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dx=1;

datader iv=np . array ( da ta s l ope ) ;

dy = np . d i f f ( datader iv ) /dx ;

mean deriv = np . mean( dy ) ;

return mean deriv

def downderiv mean ( data ) :

# Mean o f the d e r i v a t i v e s data p o i n t s conta ined in the

downwards s lope , from the maximum p o i n t

# t i l l t he 300 s p o i n t

maxim= np . amax( data )

maxindex = np . where ( data==maxim)

sample = str ( maxindex ) ;

maxind = re . f i n d a l l ( r ’ \ [ ( [ ˆ ] ] ∗ ) \ ] ’ , sample ) ;

maxinde = map( int , maxind [ 0 ] . s p l i t ( ’ , ’ ) )

maxi = maxinde [ 0 ] ;

po in t e r=maxi+300

da ta s l ope = data [ maxi : po in t e r ] ;

dx=1;

datader iv=np . array ( da ta s l ope ) ;

dy = np . d i f f ( datader iv ) /dx ;

mean deriv = np . mean( dy ) ;

return mean deriv

def der ivat ive s mean ( data ) :

# Mean o f the d e r i v a t i v e s o f each data p o i n t

data = np . array ( data ) ;

dx=1;

dy = np . d i f f ( data ) /dx ;

mean deriv = np . mean( dy ) ;

return mean deriv

def wvt t rans f ( data ) :

# cA − approximation c o e f f i c i e n t s

# cD − d e t a i l s c o e f f i c i e n t s

# Decomposition o f l e v e l 8 i s the h i g h e r recommended

cons idered the l e n g t h o f the data samples
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# cA i s the array o f approximation c o e f f i c i e n t s

corresponding to low f r e q u e n c i e s

# cDs are arrays o f d e t a i l s c o e f f i c i e n t s corresponding to

h igh f r e q u e n c i e s

# db6

cA8 , cD8 , cD7 , cD6 , cD5 , cD4 , cD3 , cD2 , cD1 = wavedec ( data , ’

db6 ’ , l e v e l =8)

# Most d e s c r i m i n a t i v e c o e f f i c i e n t s : 7 ,8 ,9 ,10 ,11

mdcA = [ cA8 [ 6 ] , cA8 [ 7 ] , cA8 [ 8 ] , cA8 [ 9 ] , cA8 [ 1 0 ] ] ;

return mdcA

D.2 Individual Odour Dataset

This appendix is dedicated to programming code developed in Python where

individual odour data can be normalized and visualized. Feature extraction also

takes place in this script.

import pandas as pd

import numpy as np

import matp lo t l i b . pyplot as p l t

import csv

from prep roc e s s import ∗

## Load the data and Pandas column d e s i g n a t i o n

rawdata1 = pd . r e a d t a b l e ( ’ . . / a lc−−−2017−09−06 11h11m15s log .

txt ’ , sep=’\ t ’ , header=None ) ; rawdata1 . columns =

[ 1 , 2 , 3 , 4 , 5 ] ;

. . .

. . .

. . .

rawdata25 = pd . r e a d t a b l e ( ’ . . / a lc−−−2017−09−10 06h52m50s log

. txt ’ , sep=’\ t ’ , header=None ) ; rawdata25 . columns =

[ 1 , 2 , 3 , 4 , 5 ] ;

## Data j u n c t i o n in a s i n g l e matrix

d a t a l i s t = [ dataraw1 , dataraw2 , . . . , dataraw24 , dataraw25 ]
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data junct i on = d a t a l i s t . concat ( d a t a l i s t ) ;

## Drop the f i f t h col lumn ( timestamps )

data junct i on = data junct i on . drop (5 , 1 )

## Plot sensor r e a d i n g s . In t h i s case the sample cons iderd

i s the 18 th

x=np . arange (3612) ;

ce =data junct i on [0+(3612∗17) : 3612∗ (18 ) ]

y1=ce [ 1 ] ; y2=ce [ 2 ] ; y3=ce [ 3 ] ; y4=ce [ 4 ] ;

y1=(y1 ∗4.096/32200) ; y2=(y2 ∗4.096/32200) ; y3=(y3 ∗4.096/32200) ;

y4=(y4 ∗4.096/32200) ;

x=x/ f loat (9 )

p l t . f i g u r e ( )

p l t . p l o t (x , y1 , l a b e l=’MiCS−5524 ’ , )

p l t . p l o t (x , y2 , l a b e l=’MiCS−5914 ’ , )

p l t . p l o t (x , y3 , l a b e l=’MiCS−2614 ’ , )

p l t . p l o t (x , y4 , l a b e l=’MiCS−4514 ’ , )

p l t . x l a b e l ( ’Time( s ) ’ )

p l t . y l a b e l ( ’ Voltage (V) ’ )

p l t . l egend ( )

p l t . show ( )

procdata1 = [ ] ; procdata2 = [ ] ; . . . ; procdata25 = [ ] ;

p r o c l i s t =[ procdata1 , procdaaa2 , . . . , procdata25 ] ;

l a b e l = 1 ;

j =0;

for i in d a t a l i s t :

#0 to 1 Normal izat ion f o r each sensor f o r each

sample

## d a t a l i s t [ j ] [ 1 ] = ( d a t a l i s t [ j ] [ 1 ] − d a t a l i s t [ j

] [ 1 ] . min () ) /( d a t a l i s t [ j ] [ 1 ] . max ()−d a t a l i s t [ j ] [ 1 ] .

min () )
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## d a t a l i s t [ j ] [ 2 ] = ( d a t a l i s t [ j ] [ 2 ] − d a t a l i s t [ j

] [ 2 ] . min () ) /( d a t a l i s t [ j ] [ 2 ] . max ()−d a t a l i s t [ j ] [ 2 ] .

min () )

## d a t a l i s t [ j ] [ 3 ] = ( d a t a l i s t [ j ] [ 3 ] − d a t a l i s t [ j

] [ 3 ] . min () ) /( d a t a l i s t [ j ] [ 3 ] . max ()−d a t a l i s t [ j ] [ 3 ] .

min () )

## d a t a l i s t [ j ] [ 4 ] = ( d a t a l i s t [ j ] [ 4 ] − d a t a l i s t [ j

] [ 4 ] . min () ) /( d a t a l i s t [ j ] [ 4 ] . max ()−d a t a l i s t [ j ] [ 4 ] .

min () )

# Log norma l i za t ion

## d a t a l i s t [ j ] [ 1 ] =d a t a l i s t [ j ] [ 1 ] . app ly ( np . l o g ) ;

## d a t a l i s t [ j ] [ 2 ] =d a t a l i s t [ j ] [ 1 ] . app ly ( np . l o g ) ;

## d a t a l i s t [ j ] [ 3 ] =d a t a l i s t [ j ] [ 1 ] . app ly ( np . l o g ) ;

## d a t a l i s t [ j ] [ 4 ] =d a t a l i s t [ j ] [ 1 ] . app ly ( np . l o g ) ;

# Wavelet c o e f f i c i e n t s l i s t

w1=wvt t rans f ( d a t a l i s t [ j ] [ 1 ] )

w2=wvt t rans f ( d a t a l i s t [ j ] [ 2 ] )

w3=wvt t rans f ( d a t a l i s t [ j ] [ 3 ] )

w4=wvt t rans f ( d a t a l i s t [ j ] [ 4 ] )

p r o c l i s t [ j ] . extend ( ( mean( d a t a l i s t [ j ] [ 1 ] ) ,mean(

d a t a l i s t [ j ] [ 2 ] ) ,mean( d a t a l i s t [ j ] [ 3 ] ) ,mean(

d a t a l i s t [ j ] [ 4 ] ) ,

s lope mean ( d a t a l i s t [ j ] [ 1 ] ) , s lope mean ( d a t a l i s t [ j

] [ 2 ] ) , s lope mean ( d a t a l i s t [ j ] [ 3 ] ) , s lope mean (

d a t a l i s t [ j ] [ 4 ] ) ,

downslope mean ( d a t a l i s t [ j ] [ 1 ] ) , downslope mean (

d a t a l i s t [ j ] [ 2 ] ) , downslope mean ( d a t a l i s t [ j ] [ 3 ] ) ,

downslope mean ( d a t a l i s t [ j ] [ 4 ] ) ,

de r iva t ive s mean ( d a t a l i s t [ j ] [ 1 ] ) , de r ivat ive s mean (

d a t a l i s t [ j ] [ 2 ] ) , de r iva t ive s mean ( d a t a l i s t [ j ] [ 3 ] ) ,

de r iva t ive s mean ( d a t a l i s t [ j ] [ 4 ] ) ,

upderiv mean ( d a t a l i s t [ j ] [ 1 ] ) , upderiv mean ( d a t a l i s t [ j

] [ 2 ] ) , upderiv mean ( d a t a l i s t [ j ] [ 3 ] ) , upderiv mean (

d a t a l i s t [ j ] [ 4 ] ) ,
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downderiv mean ( d a t a l i s t [ j ] [ 1 ] ) , downderiv mean (

d a t a l i s t [ j ] [ 2 ] ) , downderiv mean ( d a t a l i s t [ j ] [ 3 ] ) ,

downderiv mean ( d a t a l i s t [ j ] [ 4 ] ) ,

w1 [ 0 ] , w1 [ 1 ] , w1 [ 2 ] , w1 [ 3 ] , w1 [ 4 ] , w2 [ 0 ] , w2 [ 1 ] , w2 [ 2 ] , w2

[ 3 ] , w2 [ 4 ] , w3 [ 0 ] , w3 [ 1 ] , w3 [ 2 ] , w3 [ 3 ] , w3 [ 4 ] , w4 [ 0 ] ,

w4 [ 1 ] , w4 [ 2 ] , w4 [ 3 ] , w4 [ 4 ] ,

l a b e l ) )

# At l a s t , data i s w r i t t e n in a . csv f i l e

with open( ” f e a t u r e s l o g . csv ” , ”w” ) as f :

w r i t e r = csv . w r i t e r ( f )

w r i t e r . wr i terows ( p r o c l i s t )

D.3 Training-Test Data Division

This script has as objective to separate randomly the initial dataset into training

and testing set, respecting the 75-25% proportion.

import numpy as np

import matp lo t l i b . pyplot as p l t

import pandas as pd

f e a t u r e s F i l e = pd . r e a d t a b l e ( ’ f e a t u r e s l o g . csv ’ , sep=’ , ’ ,

header=None ) ;

data = f e a t u r e s F i l e . i x [ : , 0 : 4 3 ]

l a b e l s = f e a t u r e s F i l e [ 4 4 ] ;

data . columns =

[0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 ,

22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 ] ;

# Random s e l e c t i o n o f 20 samples o f each odour to s e r v e as

the t r a i n i n g s e t

# and 5 samples o f each s e r v e as t e s t i n g s e t (75%−25%) .

k=0;
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t r a i n i n g s e t = pd . DataFrame ( ) ;

t e s t i n g s e t=pd . DataFrame ( ) ;

for p in range (8 ) :

data odour = data . i x [ k : k +24] ;

#Samples f o r the t r a i n i n g s e t

data 75 = data odour . sample (n=20)

#Samples f o r the t e s t s e t

data 25 = data odour . l o c [ ˜ data odour . index . i s i n (

data 75 . index ) ]

t r a i n i n g s e t=t r a i n i n g s e t . append ( d f 75 ) ;

t e s t i n g s e t = t e s t i n g s e t . append ( d f r e s t ) ;

k=k+25;

t r a i n i n g s e t . t o c s v ( ’ f e a t u r e s F i l e s t r a i n . csv ’ , sep=’ , ’ ) ;

t e s t i n g s e t . t o c s v ( ’ f e a t u r e s F i l e s t e s t . csv ’ , sep=’ , ’ )

D.4 Recursive Feature Elimination

The following script implements the feature ranking algorithm applied in this

thesis.

import numpy as np

import pandas as pd

from pandas import r ead c sv

from s k l e a rn . f e a t u r e s e l e c t i o n import RFE

from s k l e a rn . l i n ea r mode l import L o g i s t i c R e g r e s s i o n

t r a i n i n g s e t = pd . r e a d t a b l e ( ’ f e a t u r e s F i l e s t r a i n . csv ’ , sep=

’ , ’ , header=None ) ;

X values = t r a i n i n g s e t . va lue s [ 1 : 1 6 1 , 1 : 4 3 ]

Y values = t r a i n i n g s e t . va lue s [ 1 : 1 6 1 , 4 4 ]

model = L o g i s t i c R e g r e s s i o n ( )

r f e = RFE( model , 1)

f i t = r f e . f i t (X, Y)

print ( ” Feature Ranking : %s ” ) % f i t . rank ing
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D.5 Dimensionality Reduction

In respect to next script, data is projected and plotted in both dimensionality

techniques sub-spaces. It is also stored in external files.

import numpy as np

import pandas as pd

from s k l e a rn . decomposit ion import PCA

from s k l e a rn . d i s c r i m i n a n t a n a l y s i s import

LinearDi sc r iminantAna lys i s

import pylab as p l

from m p l t o o l k i t s . mplot3d import Axes3D

t r a i n i n g s e t = pd . r e a d t a b l e ( ’ f e a t u r e s F i l e s t r a i n . csv ’ , sep=

’ , ’ , header=None ) ;

t e s t i n g s e t = pd . r e a d t a b l e ( ’ f e a t u r e s F i l e s t e s t . csv ’ , sep=’ ,

’ , header=None ) ;

t r a i n i n g s e t . columns =

[0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 ,

22 ,23 ,24 ,25 ,26 ,27 ,28 ,29 ,30 ,31 ,32 ,33 ,34 ,35 ,36 ,37 ,38 ,39 ,

40 , 41 , 42 , 43 , 44 , 45 ] ;

t e s t i n g s e t . columns =

[0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 ,

22 ,23 ,24 ,25 ,26 ,27 ,28 ,29 ,30 ,31 ,32 ,33 ,34 ,35 ,36 ,37 ,38 ,39 ,

40 , 41 , 42 , 43 , 44 , 45 ] ;

t r a i n r e a d y = t r a i n i n g s e t . i x [ 1 : 1 6 1 , 1 : 4 4 ] ;

c l a s s e s = t r a i n i n g s e t . i x [ 1 : 1 6 1 , 4 5 ] ;

t e s t r e a d y = t e s t i n g s e t . i x [ 1 : 4 1 , 1 : 4 4 ] ;

c l a s s e s 1= t e s t i n g s e t . i x [ 1 : 4 1 , 4 5 ] ;

## PCA

pca = PCA( n components=5) . f i t ( t r a i n r e a d y )

p c a t r a i n = pca . trans form ( t r a i n r e a d y ) ;

p c a t e s t = pca . trans form ( t e s t r e a d y )

print ( pca . e x p l a i n e d v a r i a n c e r a t i o )
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e x p l a i n e d v a r i a n c e = pca . e x p l a i n e d v a r i a n c e r a t i o

## LDA

#l d a = LinearDiscr iminantAna lys i s ( n components =5, s o l v e r =’

e igen ’ , s h r i n k a g e =’ auto ’ ) . f i t ( t r a i n r e a d y , c l a s s e s )

#l d a t r a i n = l d a . transform ( t r a i n r e a d y ) ;

#l d a t e s t = l d a . transform ( t e s t r e a d y )

#p r i n t ( l d a . e x p l a i n e d v a r i a n c e r a t i o )

#e x p l a i n e d v a r i a n c e = l d a . e x p l a i n e d v a r i a n c e r a t i o

d1 = f loat ( ” { 0 : . 2 f }” . format ( e x p l a i n e d v a r i a n c e [ 0 ] ) )

d2 = f loat ( ” { 0 : . 2 f }” . format ( e x p l a i n e d v a r i a n c e [ 1 ] ) )

d3 = f loat ( ” { 0 : . 2 f }” . format ( e x p l a i n e d v a r i a n c e [ 2 ] ) )

## Plot PCA/LDA 2D. PCA in t h i s case

f i g = p l t . f i g u r e (1 , f i g s i z e =(4 , 3) )

for i in range (0 , p c a t r a i n . shape [ 0 ] ) :

i f c l a s s e s . i l o c [ i ] == 1 :

c1 = pl . s c a t t e r ( p c a t r a i n [ i , 0 ] , p c a t r a i n [ i , 1 ] , c=’ r ’ ,

marker=’+’ )

e l i f c l a s s e s . i l o c [ i ] == 2 :

c2 = pl . s c a t t e r ( p c a t r a i n [ i , 0 ] , p c a t r a i n [ i , 1 ] , c=’ g ’ ,

marker=’ o ’ )

e l i f c l a s s e s . i l o c [ i ] == 3 :

c3 = pl . s c a t t e r ( p c a t r a i n [ i , 0 ] , p c a t r a i n [ i , 1 ] , c=’b ’ ,

marker=’∗ ’ )

e l i f c l a s s e s . i l o c [ i ] == 4 :

c4 = pl . s c a t t e r ( p c a t r a i n [ i , 0 ] , p c a t r a i n [ i , 1 ] , c=’ y ’ ,

marker=’ v ’ )

e l i f c l a s s e s . i l o c [ i ] == 5 :

c5 = pl . s c a t t e r ( p c a t r a i n [ i , 0 ] , p c a t r a i n [ i , 1 ] , c=’m’ ,

marker=’ 1 ’ )

e l i f c l a s s e s . i l o c [ i ] == 6 :

c6 = pl . s c a t t e r ( p c a t r a i n [ i , 0 ] , p c a t r a i n [ i , 1 ] , c=’ k ’ ,

marker=’p ’ )

e l i f c l a s s e s . i l o c [ i ] == 7 :
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c7 = pl . s c a t t e r ( p c a t r a i n [ i , 0 ] , p c a t r a i n [ i , 1 ] , c=’ c ’ ,

marker=’ 8 ’ )

e l i f c l a s s e s . i l o c [ i ] == 8 :

c8 = pl . s c a t t e r ( p c a t r a i n [ i , 0 ] , p c a t r a i n [ i , 1 ] , c=’ r ’ ,

marker=’ 4 ’ )

p l . x l a b e l ( ’PC1 ( ’+ str ( d1 )+’%) ’ )

p l . y l a b e l ( ’PC2 ( ’+ str ( d2 )+’%) ’ )

p l . l egend ( [ c1 , c2 , c3 , c4 , c5 , c6 , c7 , c8 ] , [ ’ Ethanol ’ , ’

Gar l i c ’ , ’Ammonia ’ , ’ Gaso l ine ’ , ’Lemon ’ , ’Bay l e a f ’ , ’

Vinegar ’ , ’ Naphthalene ’ ] )

p l . show ( )

##Plot PCA/LDA 3D. PCA in t h i s case

f i g=pl . f i g u r e (2 )

ax = Axes3D( f i g , r e c t =[0 , 0 , . 9 5 , 1 ] , e l e v =48, azim=134)

for i in range (0 , p c a t r a i n . shape [ 0 ] ) :

i f c l a s s e s . i l o c [ i ] == 1 :

c1 = ax . s c a t t e r ( p c a t r a i n [ i , 0 ] , p c a t r a i n [ i , 1 ] ,

p c a t r a i n [ i , 2 ] , c=’ r ’ , marker=’+’ )

e l i f c l a s s e s . i l o c [ i ] == 2 :

c2 = ax . s c a t t e r ( p c a t r a i n [ i , 0 ] , p c a t r a i n [ i , 1 ] ,

p c a t r a i n [ i , 2 ] , c=’ g ’ , marker=’ o ’ )

e l i f c l a s s e s . i l o c [ i ] == 3 :

c3 = ax . s c a t t e r ( p c a t r a i n [ i , 0 ] , p c a t r a i n [ i , 1 ] ,

p c a t r a i n [ i , 2 ] , c=’b ’ , marker=’∗ ’ )

e l i f c l a s s e s . i l o c [ i ] == 4 :

c4 = ax . s c a t t e r ( p c a t r a i n [ i , 0 ] , p c a t r a i n [ i , 1 ] ,

p c a t r a i n [ i , 2 ] , c=’ y ’ , marker=’ v ’ )

e l i f c l a s s e s . i l o c [ i ] == 5 :

c5 = ax . s c a t t e r ( p c a t r a i n [ i , 0 ] , p c a t r a i n [ i , 1 ] ,

p c a t r a i n [ i , 2 ] , c=’m’ , marker=’ 1 ’ )

e l i f c l a s s e s . i l o c [ i ] == 6 :

c6 = ax . s c a t t e r ( p c a t r a i n [ i , 0 ] , p c a t r a i n [ i , 1 ] ,

p c a t r a i n [ i , 2 ] , c=’ k ’ , marker=’p ’ )

e l i f c l a s s e s . i l o c [ i ] == 7 :
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c7 = ax . s c a t t e r ( p c a t r a i n [ i , 0 ] , p c a t r a i n [ i , 1 ] ,

p c a t r a i n [ i , 2 ] , c=’ c ’ , marker=’ 8 ’ )

e l i f c l a s s e s . i l o c [ i ] == 8 :

c8 = ax . s c a t t e r ( p c a t r a i n [ i , 0 ] , p c a t r a i n [ i , 1 ] ,

p c a t r a i n [ i , 2 ] , c=’ r ’ , marker=’ 4 ’ )

ax . s e t x l a b e l ( ’PC1 ( ’+ str ( d1 )+’%) ’ ) ; ax . w xaxis .

s e t t i c k l a b e l s ( [ ] )

ax . s e t y l a b e l ( ’PC2 ( ’+ str ( d2 )+’%) ’ ) ; ax . w yaxis .

s e t t i c k l a b e l s ( [ ] )

ax . s e t z l a b e l ( ’PC3 ( ’+ str ( d3 )+’%) ’ ) ; ax . w zax i s .

s e t t i c k l a b e l s ( [ ] )

p l . l egend ( [ c1 , c2 , c3 , c4 , c5 , c6 , c7 , c8 ] , [ ’ Ethanol ’ , ’

Gar l i c ’ , ’Ammonia ’ , ’ Gaso l ine ’ , ’Lemon ’ , ’Bay l e a f ’ , ’

Vinegar ’ , ’ Naphthalene ’ ] )

p l . show ( )

D.6 Classification

At last, both classifiers are constructed and applied to the groups of data

considered.

import numpy as np

import pandas as pd

from s k l e a rn import svm

from s k l e a rn . neura l network import MLPClass i f i e r

from s k l e a rn . met r i c s import accu ra cy s co r e

# Data l o a d i n g

t r a i n = pd . r e a d t a b l e ( ’ f e a t u r e s F i l e s t r a i n . csv ’ , sep=’ , ’ ,

header=None ) ;

t e s t = pd . r e a d t a b l e ( ’ f e a t u r e s F i l e s t e s t . csv ’ , sep=’ , ’ ,

header=None ) ;

t r a i n n = t r a i n . i x [ 1 : 1 6 1 , 1 : 4 4 ] ;

t r a i n l a b e l s=t r a i n . i x [ 1 : 1 6 1 , 4 5 ] ;
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t e s t n = t e s t . i x [ 1 : 4 1 , 1 : 4 4 ] ;

t e s t l a b e l s=t e s t . i x [ 1 : 4 1 , 4 5 ] ;

## Support Vector Machine

c l g = svm .SVC( ke rne l = ’ l i n e a r ’ ) ;

svc = svm .SVC( ) ;

c l g . f i t ( t ra in n , t r a i n l a b e l s ) ;

acc = accu racy s co r e ( c l g . p r e d i c t ( t e s t n ) , t e s t l a b e l s ) ;

print ( ’SVM accuracy : ’ , acc )

print ( ’ Labe ls p r ed i c t ed : ’ , c l g . p r e d i c t ( t e s t n ) )

## Neural Network

c ln = MLPClass i f i e r ( a c t i v a t i o n =’ tanh ’ , s o l v e r=’adam ’ , alpha

=1e−5,

h i d d e n l a y e r s i z e s =(15 , 7) , random state =1, max iter =10000)

c ln . f i t ( t ra in n , t r a i n l a b e l s ) ;

print ( ’NN accuracy : ’ , a c cu ra cy s co r e ( t e s t l a b e l s , y pred ) )

print ( ’ Labe ls p r ed i c t ed : ’ , c ln . p r e d i c t ( t e s t n ) )
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