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Abstract 

The effectiveness of sheet metal forming simulation is strongly affected by the 

accuracy of the friction model used. Studies about the cause and mitigation of friction have 

been developed over the last two millennia. Despite all the information reported, numerical 

simulation still relies on Coulomb’ law, which considers only a single parameter obtained 

by experimental tests. 

The main objective of this work is to study numerically the contact between 

rough surfaces. In order to develop this study, two- and three-dimension finite element 

models of an asperity were created and the simulations were carried out by the in-house 

finite element code DD3IMP. Several materials are compared by changing the mechanical 

material parameters (Young’s modulus, yield stress and Poisson’s ratio) and different 

geometrical parameters (height of the asperity’s tip) are studied. This allows covering a 

wide range of contact situations, highlighting the role of each parameter on the asperity 

deformation.  

In both models studied, for an asperity with the highest tip, the material reaches 

the yield inception at a lower interference and, consequently, the contact area is smaller. 

Based on the load parameter   and the plasticity index  , it is possible to predict the 

actual material regime (elastic or plastic). Regarding the 3D model, with the exception of 

Poisson’s ratio, all the material parameters considered greatly influence the value of 

contact radius to the plastic regime. The ratio between the effective contact area and the 

apparent contact area, which is very low, presents a linear increase as a function of the real 

contact area. Besides, this ratio is higher when predicted with the 2D model than in the 3D 

model. 

 

 

 

Keywords: Surface Roughness, Finite Element Analysis, Plastic 
Inception, Frictionless Contact, Sinusoidal Profile, Elastic-
Plastic deformation. 
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Resumo 

A eficácia da simulação numérica de um processo de estampagem está 

intrinsecamente ligada ao modo como o contacto com atrito é modelado. Nos últimos dois 

milénios, têm sido desenvolvidos muitos estudos para perceber as causas do aparecimento 

de atrito e como o reduzir. No entanto, a simulação numérica ainda recorre à lei de 

Coulomb, expressando as forças de atrito apenas por um parâmetro obtido 

experimentalmente. 

O principal objectivo deste trabalho é estudar numericamente o contacto entre 

superfícies rugosas. Para concretizar esta análise, construíram-se dois modelos de 

elementos finitos de uma asperidade, um em duas dimensões e outro em três dimensões, 

sendo as simulações realizadas com recurso ao programa académico de elementos finitos 

DD3IMP. Vários materiais foram testados, comparando a influência dos vários parâmetros 

(módulo de Young, tensão de cedência e coeficiente de Poisson) assim como a geometria 

(altura) da asperidade. Este procedimento permite estudar uma vasta gama de situações de 

contacto e perceber qual a importância de cada parâmetro na deformação da asperidade. 

 Em ambos os modelos estudados verificou-se que a transição do regime 

elástico para o regime plástico ocorre mais cedo quando a ponta da asperidade é mais alta, 

resultando numa área de contacto menor. Com base no parâmetro de carga   e no índice 

de plasticidade  , é possível prever o regime do material (elástico ou plástico). Em 

relação ao modelo 3D, à excepção do coeficiente de Poisson, todos os parâmetros do 

material apresentam uma forte influência no raio de contacto aquando da transição para o 

regime plástico. A razão entre a área de contacto real e a aparente revela-se bastante 

pequena e pode ser descrita por uma função linear quando representada em função da área 

real de contacto. Para além disso, o rácio é mais elevado quando é obtido usando o modelo 

2D. 

 

Palavras-chave: Rugosidade Superficial, Análise de Elementos 
Finitos, Inicio da Plastificação, Contacto sem Atrito, 
Perfil Sinusoidal, Deformação Elástico-Plástica. 
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1. INTRODUCTION  

In the relative motion of solid surfaces we can find a resistance force called 

friction force (Archard, 1957). The studies about the cause and mitigation of friction go 

back to Aristotle, 384-322 B. C.. In his book Physics is introduced an analogy with the first 

law of motion: “No one could say why a thing …, in motion should stop anywhere; for 

why should it stop there rather than here? So that thing will either be at rest or must be 

moved ad infinitum, unless something more powerful gets in its way”. In On the Heavens, 

Aristotle hints at the second and third laws of motion stating “as to the cause of such 

acceleration… the bodies are endowed with a greater force” and “The agent is itself acted 

upon by that on which it acts.”  (Feeny, Guran, Hinrichs, & Popp, 1998). The classic laws 

of sliding friction were developed by Leonardo da Vinci in 1493,  but remained unknown 

until 1699, when they were published by Guillaume Amontons (Feeny et al., 1998; 

Hutchings, 2016). 

Amontons published the result of his experimental investigation about friction 

of unlubricated solids. According to his work, the frictional force is directly proportional to 

the normal load and is independent of the contact area of the surfaces, concluding that the 

frictional force is always equal to 1 3  of the normal load. These results are based on the 

assumption that irregularities on the surfaces of the two bodies interlocked, and the relative 

motion required lifting the load from one interlocking position to another, which leads to a 

loss of energy characterized by the arising of a friction force  (Bowden & Leben, 1939).   

In 1750, Euler adopted the Greek letter  , for the friction coefficient, which is 

still used nowadays and define the friction cone, first mentioned by Parent in 1708 (Feeny 

et al., 1998). Charles-Augustin Coulomb studied the influence of a large number of 

variables on the friction. He agreed with Amontons on the friction force value being 

proportional to the load and made a new observation: friction force is independent of the 

velocity of sliding (Bowden & Leben, 1939). In 1785 Coulomb formulated a law for dry 

friction, dictating that the magnitude of the kinetic friction is independent of the velocity of 

sliding. Therefore, the model for kinetic friction was born, based on Coulomb’s and 

Amontons’s laws, and is represented by: 



 

 

Numerical Modelling of Contact between Rough Surfaces 

 

 

2  2017 

 

 

 a nF F   (1.1) 

where   is the coefficient of friction given by the ratio between the friction force ( aF  ) 

and the normal force ( nF  ) (Dupont, 1992). 

Coulomb’s law is typically used to describe friction between bodies in 

numerical simulation, which depends only on a single parameter. However, the friction is 

in fact a very complex phenomenon which also varies with contact pressure, roughness of 

the surfaces and the velocity of sliding. Thus, it cannot be properly represented by a simple 

constant value (Feeny et al., 1998). 

1.1. Surface Roughness 

 

Most of the surfaces of engineering materials are unavoidably rough. The 

concept of asperity refers to the set of protrusions that constitutes a roughness surface. 

Figure 1.1 shows a set of experimentally evaluated asperities on a metallic material, which 

can be distinguished by their yellow or red colours, depending on their heights. Real 

surfaces contain geometric irregularities (asperities) with feature sizes ranging over many 

length scales (Gao, Bower, Kim, Lev, & Cheng, 2006). Surface roughness evaluation is 

very important for a fundamental problem as frictional contact. It is characterized by 

protuberances of the surface, i.e. small bumps (peaks) and re-entrances (valleys), which 

describe the surface: when there are large deviations, it’s a rough surface, if the deviations 

are small, it’s a smooth one. The roughness is typically quantified by the parameters aR  

and qR . 

 

Figure 1.1. Texture of a 3D surface (Hol, Meinders, de Rooij, & van den Boogaard, 2015). 
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The parameter aR  defines the arithmetic average height, also known as the 

centre line average (CLA), which is defined by:  

 

  
0

1
,

c

aR z x dx
c

    (1.2) 

 

where c is the sampling length and z denotes the function that describes the surface 

roughness. It defines the average absolute deviation of the roughness irregularities, from 

the mean line over one sampling length, as represented in Figure 1.2 (Gadelmawla, Koura, 

Maksoud, Elewa, & Soliman, 2002).  

 

 

Figure 1.2. Roughness parameters of a surface profile (Silva, Ribeiro, Dias, & Sousa, 2004). 

 

The root mean square roughness (
qR ), also known as RMS (equation (1.3)), 

represents the standard deviation of the distribution of surface heights. It is a more 

sensitive parameter than the arithmetic average height ( aR ) for larger deviations from the 

mean line (Gadelmawla et al., 2002). 

 

  2

0

1 c

qR z x dx
c

    (1.3) 

 

Roughness can be quantified by the parameter aR  and qualified into classes, as 

displayed in Table 1.1. 
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Table 1.1. Roughness classes (Silva et al., 2004) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.2. Objectives of the Study and Outline 

The main objective of this study is to simulate the contact between rough 

surfaces, evaluate the elastic and plastic behaviours and explore effects of geometrical and 

material parameters on critical variables at the yield inception. In order to simplify the 

analysis, it will only be analysed the case of contact between plane and rough surfaces, 

whose protuberances are described by sinusoidal functions. 

This dissertation is organized into four main chapters. For a better 

understanding and to improve the readability, this section briefly summarizes the content 

on each chapter. 

Chapter 1 presents the introduction on the subject of study with a brief 

background on the friction force considerations and their importance on the accurate 

results in numerical simulation. It proceeds with the clarification on the terms “surface 

roughness” and “asperity” and how to quantify and qualify it. 

Roughness 

Class 

aR   

 m  

N12 50 

N11 25 

N10 12.5 

N9 6.3 

N8 3.2 

N7 1.6 

N6 0.8 

N5 0.4 

N4 0.2 

N3 0.1 

N2 0.05 

N1 0.025 
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Chapter 2 is a brief review on asperities studies carried out since the last 

century. It is focused focus on the different approaches taken by many authors, their great 

achievements and difficulties.   

Chapter 3 presents the numerical study concerning the surface roughness 

between an asperity and a flat surface. Two different geometries are considered: the first in 

two dimensions and a second axisymmetric geometry in three dimensions. This section 

contains a description of the finite element model developed, comprising the asperity 

geometry, the finite element mesh and the simulation results. The number of finite 

elements and boundary conditions required for an accurate simulation are indicated, as 

well as the material parameters adopted. Each geometrical or material parameter is studied 

individually to evaluate their influence. The results obtained in this study are analysed and 

compared with previous studies in literature.  

Chapter 4 contains the main conclusions withdrawn from the study presented 

on previous chapters. 
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2. REVIEW ON ASPERITIES STUDIES 

This section contains a review of the theories and approaches that have been 

used to understand the surface roughness. In the last century, several researchers have been 

dedicating their time to comprehend the contact behaviour in both regimes, elastic and 

plastic (Liu & Proudhon, 2014). It is well known that surfaces are rough on a microscopic 

scale, which is the base for existence of many problems as sealing, friction, wear, thermal 

and electrical conductance. This dictates that the effective contact area is extremely small 

compared to the apparent area (Chang, Etsion, & Bogy, 1987; Ciavarella, Demelio, Barber, 

& Jang, 2000; Gao et al., 2006; Greenwood & Williamson, 1966). 

Hertz (1882) developed an analytical solution for frictionless non-adhesive 

elastic half-space contact between two bodies. The surface is assumed continuous and non-

conforming (Johnson, 1987). In 1966 Greenwood and Williamson cleared the path by 

introducing the “asperity-based model” which consists in a statistical approach of a rough 

surface represented by a collection of asperities with spherical tips. In their model, the 

rough surface is considered isotropic; all the asperities summits have the same radius R but 

their heights vary by a Gaussian distribution; the asperities’ peaks do not merge, they are 

assumed to be widely spaced; only the asperities can be deformed as the bulk suffers no 

deformation (see Figure 2.1)  (Chang et al., 1987; Gao et al., 2006; Greenwood & 

Williamson, 1966). 

 

 

Figure 2.1. Load being supported by the tips of the higher asperities in a contact between a flat and a rough 
surfaces (Greenwood & Williamson, 1966). 

 

The Greenwood and Williamson model was extended to study curved surfaces 

(Figure 2.2), using two spheres, considering one of them to be rough (Greenwood & Tripp, 

1967). Later, the contact between two flat rough surfaces was analysed, concluding that the 
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results are equal to the contact between a rough and a flat surface (Greenwood, JA and 

Tripp, 1970). 

 

 

 

(a) (b) 

Figure 2.2. Contact between rough plane and smooth sphere: (a) Surface roughness representation; (b) 
Contact marks left by a steel ball being pushed against a glass block (Greenwood & Tripp, 1967). 

 

However, it has been difficult to apply the Greenwood-Williamson model to 

realistic surfaces due to the incapacity to measure accurately the average curvature 

(distribution of curvature) of asperities, since real surfaces have approximately fractal 

geometry (Gao et al., 2006). Fractal representation seems to be a perfect fit for describing a 

real surface topography (Figure 2.3), providing an excellent match to experimentally 

measured profiles (Gao et al., 2006). The term “fractal” was introduced by Benoit 

Mandelbrot and is described as a non-Euclidean geometric figure with a never ending 

pattern displayed at every scale (Mandelbrot & Pignoni, 1983). The first rigorous 

calculations of elastic contact between surfaces with fractal roughness was performed by 

Ciavarella et al. (2000).  On the other hand, there are some questionable points in their 

approaches, such as the surface roughness spectrum being perfectly fractal and contacting 

solids being perfectly plastic (Gao et al., 2006). 

 



 

 

  REVIEW ON ASPERITIES STUDIES  

 

 

Mariana Moura  9 

 

 

 

(a) (b) 

Figure 2.3. Surfaces with fractal roughness: (a)  Schematic of an indenter on a fractal surface (Bobji & 
Biswas, 1998); (b) Roughness measurements of surface topography (Majumdar & Bhushan, 1990). 

 

Mihailidis, Bakolas, & Drivakos (2001) categorize the models for the 

determination of real contact area, pressure and surface stress field, in two major 

categories. The first one has models that treat the real rough surface as a smooth one 

covered with asperities of known geometry, as in the studies of Greenwood and Ciavarella. 

This method relies mostly on the Hertzian solution and only the individual asperity 

deformation is taken into account, neglecting the bulk deformation of the contact bodies. In 

the second category can be found the models that determine the pressure distribution, the 

contact area and the subsurface stress field using roughness profiles, which can be obtained 

by measurements or generated numerically. 

Numerical analysis started to be developed in order to model asperities contact 

for real rough surfaces. Several finite element models were conceived consisting in a large-

scale of numerical computations of rough surfaces. The basic principles for digitized 

measurements from rough surfaces, in numerical elastic contact techniques, were described 

in detail by Sayles, (1996), for two- and three-dimensional topography data. Polonsky & 

Keer, (1999) promised a fast numerical method for surface samples with 510 - 610  data 

points (Figure 2.4), that can be solved on a personal computer in a few hours.  
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(a) (b) 

Figure 2.4. Rough contact problem: (a) Composite shape of the contacting surfaces; (b) Contact pressure 
distribution (grid dimensions: 121 x 103 nodes) (Polonsky & Keer, 1999). 

 

It is a common approach to model elastic-plastic contact of realistic surfaces 

recurring to a hybrid scheme, i.e. the bulk and the asperity are modelled separately (Gao et 

al., 2006). In literature there are models with different shapes of asperities. The typical 

ones are sinusoidal, paraboloid, ellipsoid and conic, as shown in Figure 2.5. Yastrebov, 

Durand, Proudhon, & Cailletaud, (2011) compared all the four shapes in matters of contact 

area and free volume evolutions. As demonstrated in Figure 2.6 (a), the contact area 

increases linearly with the load rise, presenting identical evolutions for each geometry. In 

the case of free volume, presented in Figure 2.6 (b), it is clear that, for the largest asperities 

(with parabolic and elliptical shape), the load required to reach the same free volume is 

higher than with conic or sinusoidal shapes. It also can be concluded that asperities with a 

tiny top crush faster than those with a larger summit. 
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Figure 2.5. Comparative representation of Sinusoidal, Conic, Paraboloid and Ellipsoid shapes (Yastrebov et 
al., 2011) 

 

  

(a) (b) 

Figure 2.6. Influence of the shape: (a) Contact  area  evolution; (b) Free volume evolution (Yastrebov et al., 
2011). 

Many studies have been showing that the surface roughness can be strongly 

simplified into a sinusoidal wave function (Bowden & Leben, 1939; Dundurs, Tsai, & 

Keer, 1973; Gao et al., 2006; Liu & Proudhon, 2014). It is applied to the elastic-plastic 

contact study between a periodic sinusoidal surface and a rigid flat in two-dimensions 

(Dundurs et al., 1973; Gao et al., 2006) and an elastic contact in three-dimensions (Liu & 

Proudhon, 2014).  
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3. FINITE ELEMENT SIMULATION 

The numerical model developed in this study considers a single deformable 

asperity interacting with a rigid flat surface. Since the contact between two identical rough 

surfaces is equivalent to the contact between a rigid flat and a rough deformable surface 

with the combined topography of the two contacting surfaces, its simplification is taken 

into account (Bucher, Knothe, & Theiler, 2002; Greenwood, JA and Tripp, 1970). The 

numerical simulations presented in this study were carried out with the in-house finite 

element code DD3IMP
1
 (Menezes & Teodosiu, 2000). An updated Lagrangian scheme is 

used to describe the evolution of the deformation. In each increment, an explicit approach 

is used to obtain a trial solution of the nodal displacements and then a Newton-Raphson 

algorithm is used to correct the first trial solution, which finishes when a satisfactory 

equilibrium state is achieved. This procedure is repeated until the end of the process. The 

Newton-Raphson algorithm is used to solve both the non-linearities associated with the 

friction contact and the elastoplastic behaviour of the deformable body, in a single iterative 

loop (Oliveira, Alves, Chaparro, & Menezes, 2007).   

 

3.1. Materials 

In order to assess the effect of the material behaviour on the asperity 

deformation, different materials are studied. Therefore, the values assigned to elastic 

parameters as yield stress y , Young’s modulus E  and Poisson’s ratio   will vary, taking 

into account that, for realistic materials, 
*10 1000yE   , where *E  is the plane strain 

modulus of the substrate, given by (Gao et al., 2006): 

 
*

21

E
E





. (3.1) 

 

                                                 
1
 DD3IMP- Contraction of “Deep Drawing 3D IMPlicit finite element code” (Menezes & 

Teodosiu, 2000) 
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 The plastic behaviour of the asperity, namely the hardening law, can be 

modelled by Voce or Swift hardening laws (see equation (3.2) and (3.3), respectively). In 

order to simplify the finite element model, the mechanical behaviour of the asperity is 

assumed linear elastic and perfectly plastic. Thus, it was concluded that both hardening 

laws can be applied without influence on the results. 

    0 0 1 exp
p

sat yY Y Y Y C       
  

 (3.2) 

  0

n
p

Y K     (3.3) 

 

All the simulations presented in this work considered an elastic ( E  e  ) and 

perfectly plastic isotropic material. The hardening law adopted was Voce’s (equation (3.2)) 

and the material parameters are presented in Table 3.1. 

 

Table 3.1. Mechanical properties of the materials used in numerical simulations. 

 

 

 

 

 

3.2. Asperity Geometry  

The finite element model is composed of two bodies: a rigid flat surface and a 

deformable asperity featuring a sinusoidal profile, as shown in Figure 3.1. Only the upper 

region of the asperity is modelled, since the deformation is limited to the asperity tip and 

plastic yielding initiating at a very small interference with the rigid body (Liu & Proudhon, 

2014). On the other hand, the flat surface is considered perfectly rigid in the numerical 

model. Thus, only the asperity is described as a deformable body in the numerical model. 

In this work, the flat surface is discretized with quadrilateral elements and is then 

smoothed with Nagata patches (D. M. Neto, Oliveira, Menezes, & Alves, 2014). The 

discretization of the asperity was carried out with isoparametric, 8-node hexahedral finite 

E (GPa) ν σy (GPa) 

600 0.42 5 

400 0.4 1 

200 0.3 0.6 

60 0.2 0.3 
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elements associated with a selective reduced integration (Hughes, 1980; Menezes & 

Teodosiu, 2000). 

 

Figure 3.1. Representation of the interaction between the two bodies (Gao et al., 2006). 

 

The rough surface is represented by the sinusoidal periodic function ( )z x  in 

equation (3.4). g  is the amplitude of the function and, since the referential is fixed at the 

base of the asperity’s tip, the height of the tip is given by 2g ;   is the period of the 

surface waviness and H  refers to the height of the asperities substrate. To guarantee 

independence between the tip of the asperities and their substrate, H  must be bigger than 

3  (Gao et al., 2006). All the measurement unites are considered in nanometres ( 910  m).  

 

   cos 2z x g x     for    0 2x     
(3.4) 

 

According to the definition of surface roughness presented in section 1.1, for a 

certain sample length, c , its value is given by the arithmetic average height aR , equation 

(1.2) and the RMS qR , in equation (1.3) . Replacing the function  z x  by the expression 

in equation (3.4), equations (3.5) and (3.6) are obtained. 

2
a

g
R


  

(3.5) 

2

2
q

g
R   

(3.6) 

Based on this information it is concluded that g  is the only parameter that 

influences the surface roughness and the asperity width is not to be taken into account. For 

realistic materials 0.01 0.1g    (Gao et al., 2006). Asperities may present several 

shapes, being elongated, flattened or pointed, for example. In sections 3.3 and 3.4, are 

exhibited the geometries that were adopted, taking into account two different forms of 

asperities. 
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3.3. 2D Finite Element Model 

The first model analysed considers a two dimensional geometry of an asperity, 

taken into account plane strain conditions. The asperity model was constructed using the 

pre-processing software GID® and represents 1 2  asperity due to symmetry conditions, 

exercising the principle that all the results are equal for each half, since the asperity has 

vertical symmetry. With the purpose of studying the influence of the geometry, three 

different models were constructed with 100  nm and varying the parameter g  (height of 

the tip), as shown in Figure 3.2. The three values selected in this study are 1g   nm, 5g   

nm and 10g   nm. The radius of curvature at the tip of the sinusoidal asperity is obtained 

by (3.7):  

2

22
R

g




 . 

(3.7) 

Considering the three values of the tip height and using equation (3.7), the radius of 

curvature is exposed in Table 3.2. 

 
Table 3.2. Radius of curvature at the tip for different heights of the asperities. 

   
(a) (b) (c) 

Figure 3.2. Detail of the asperity’s tip’s curve, with H=400 nm, varying the parameter g: (a) for g=1 nm; (b) 
for g=5 nm; (c) for g=10 nm. 

g  [nm] 1 5 10 

R [nm] 506.61 101.32 50.66 
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The contact surface (sinusoidal) was generated through a parametric surface 

definition in GID. For the numerical simulation with this geometry, it was used a finite 

element mesh with approximately 30,000 elements, with a progressive distribution along 

the vertical direction, refined at the asperity’s tip, as shown in Figure 3.3. The computing 

time ranges between 1.5 to 2.5 hours. 

 

 

 

Figure 3.3. Mesh appearance at the upper part of the asperity. Particular attention to the progressive mesh 
used along the vertical.  

 

3.4. 3D Finite Element Model 

The second model, also developed using the pre-processing software GID® 

considers a three dimensional axisymmetric geometry for the asperity. Due to symmetry 

conditions, this model illustrates 1 4  of asperity (Figure 3.4) and allows collecting 

information on several directions. The contact surface was generated through a parametric 

line and posteriorly revolved. 
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Figure 3.4. Top view of the 3D geometry on GID®. 

 

The plastic yield occurs for a small interference value, thus, for it to be possible 

to analyse the material behaviour in the elastic regime, a refined finite element mesh at the 

asperity’s tip was necessary (Figure 3.5). Due to the high computational cost associated 

with a large number of elements, eight volumes were constructed to enable the use of a 

refined FE mesh just at the tip, about a 3 3 nm square (Figure 3.4), taking into account 

that all finite elements must be hexahedral. In order to capture detailed information of 

initial contact, the FE size is about 0.05 nm in the refined square at the asperity’s tip. To 

smooth the transition between FE in different volumes, a progressive mesh was created in 

order to refine only the tip, for x , y  and z directions.  

 
 

(a) (b) 

Figure 3.5. Axisymmetric geometry of the asperity: (a) Concentrated and progressive mesh; (b) Detail of 
refined zone at the edge of the asperity.  
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Two models were created, for 5g  nm and 10g  nm (Figure 3.6), with 

400H   nm. The radius of curvature  R, (see equation (3.7)), are indicated in Table 3.3. 

 

Table 3.3. Radius of curvature at the tip for different heights of the asperities. 

 

 

 

 

Their respective meshes have 62,016 to 87,855 finite elements, for the small 

value of g, and, for the largest, 144 703 finite elements. This has an adjacent cost of 

computational time ranging between 3.5 hours to 11.33 hours. 

 

  

(a) (b) 

Figure 3.6. Detail of the asperity’s geometry cross-section, varying the parameter g: (a) For g=5 nm; (b) For 
g=10 nm. 

 

 

g  [nm] 5 10 

R [nm] 101.32 50.66 
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3.5. Boundary Conditions 

Considering the 2D
2
 model, the contact nodes are contained in the yellow 

surface of Figure 3.7 (a). The displacement of the nodes is constrained in the x  direction, 

for 0x   and 2x  (green surfaces in Figure 3.7 (a)) and restricted in the y direction for 

all nodes due to the plane strain deformation mode (burgundy surfaces in Figure 3.7 (b)) . 

For z H  , at the base of the asperity, the nodes are constrained in z  direction (blue 

surface in Figure 3.7 (a)). 

 

  

(a) (b) 

Figure 3.7. Schemes of the 2D geometry: (a) In yellow is the contact surface and blue the base surface. 
Green represents the surfaces defined by x=0 and x=λ/2; (b) Surfaces with finite elements constrained in y 

direction. 

Considering the 3D
3
 model, the nodes located in 0x   (green surface in Figure 

3.8 (a)) were restricted in the x  direction, the nodes located in 0y   (blue surface, as 

shown in Figure 3.8 (a)) were restrained in the y  direction, while the cylindrical surface 

was radially restrained (brown surface in Figure 3.8 (b)). At the base of the asperity, for 

z H  , the nodes are constrained in z  direction (blue surface in Figure 3.8 (c)). 

                                                 
2
 2D – refers to an entity with two dimensions 

3
 3D – refers to an entity with three dimensions in space 
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(a) (b) (c) 

Figure 3.8. Schemes of the 3D geometry: (a) Blue represents the plane xz and green refers to the plane yz; 
(b) Cylindrical surface marked with brown; (c) The top surface is yellow and the base is blue.   

 

In both cases (2D and 3D models), the flat surface is initially fixed at 2z g  

and then is pressed downwardly against the asperity’s tip, as represented in Figure 3.9. 

There is no friction between the rigid plane and the sinusoidal asperity. 

 
Figure 3.9. Scheme of the two parts model and positions. 

 

After the parametric models are constructed, the parametric FE meshes created 

and the boundary conditions defined, simulations are ready to proceed. The computer used 

had the following characteristics: 

 

Processor: Intel®Core™ i7-5930K CPU @ 3.50GHz 

Installed memory (RAM): 64.0 GB 

System type: 64-bit Operating System 
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3.6. 2D Simulation  

 

The contact between the asperity and the flat surface leads to an increasing 

affective contact area, rA , which is represented by the red zone in Figure 3.10 (a). In the 

same figure it is possible to define the parameter a , the half-width of the contact area, 

which is a distance measured in the x  direction and can be obtained by: 

2 1
2

nnc
a

nef

 
     

   
 

 (3.8) 

 

where nef is the number of finite element in x direction and nnc denotes the number of 

finite element nodes in contact with the rigid surface. Figure 3.10 (b) presents the vertical 

displacement of the edge of the asperity’s tip, called interference, d . The value of the 

interference is directly linked with the vertical displacement of the flat rigid surface. All 

the numerical simulations presented in this section were conducted until the sinusoidal 

surface reached full contact with the rigid surface. 

 

 

 
 

(a) (b) 

Figure 3.10. Criteria to study the contact between surfaces: (a) Contact area and contact length; (b) 
Interference. 
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3.6.1. Influence of the Geometry 

 

Just as it was discussed in section 3.2, g  (height of the tip) seems to be the 

only geometrical parameter with influence on the surface roughness. Consequently, three 

different values were attributed to g  (Figure 3.11). 

 

Figure 3.11. Overlap of the three different asperities in this study. 

 

Table 3.4. Mechanical properties of the materials used to study the role of geometry in surface roughness. 

 

 

 

 

 

The mechanical properties of the materials used to study the asperity 

deformation are presented in Table 3.4. The influence of the parameter g on the average 

mean pressure, Pm, predicted by finite element simulations is presented in Figure 3.12. Pm 

is obtained by the ratio between the force applied by the rigid plane on the asperity’s tip 

and the real contact area, rA .  Comparing the blue curve, for 5g  nm, and the red curve, 

with 1g  nm, it is verified that, for the same value of y ,  the average mean pressure is 

always higher for the highest value of g  (blue line). For the largest y  (Figure 3.12 (a)) 

E (GPa) ν σy (GPa) 

60 0.3 

3 

0.6 

0.3 
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it’s observed the higher mean pressure as for the small y  the pressure value registered is 

the smallest (Figure 3.12 (c)).  

 

 

(a) 

 

(b) 

 

(c) 
Figure 3.12. Influence of the asperity’s geometry on the mean pressure as a function of the contact radius: 

(a) with σy=3 GPa; (b) for σy=0.6 GPa; (c) Considering σy=0.3 GPa. 
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3.6.2. Influence of the Material 

This section intends to display effects of material parameters on the variation 

of the average mean contact pressure, during elastic and initial plastic deformations. Table 

3.4 shows the material parameters considered to find out the role of y  in elastic and 

initial plastic deformations and its effect on the applied load. 

 

The relationship between the average asperity contact pressure and the half-

width of the contact ( a ) can be analiticaly defined assuming elastic behaviour of the 

material (Gao et al., 2006): 

 

 2 *sin

2

gE
Pm

 

 
    (3.9) 

where g ,   and 
*E are well known constant values and  , the fractional contact, is 

obtained by: 

a



 . (3.10) 

This relationship is represented by the black curve in Figure 3.13, which is almost 

coincident with the numerical result for g=1 nm and 3y   GPa. This asperity’s geometry 

and material allows the entire deformation of the asperity in the elastic regime. On the 

other hand, for g=5 nm and 0.3y   GPa, the numerical curve diverges quickly from the 

analytical tendency, as shown in Figure 3.13 (b). This occurs because the plastic strain 

arises early, leading to an almost constant average asperity contact pressure. The numerical 

simulation curves are coincident with the analytical solutions curves at an early stage, 

while there is elastic deformation. When the material starts to shows plastic behaviour, the 

curve obtained by simulation deviates from the analytical solutions. For the same values of 

yield stress it is concluded that, for a higher asperity, the plastic behaviour initiates at a 

smaller contact than smaller asperities.  
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(a) 

 

(b) 

Figure 3.13. Influence of the height of the tip on the mean asperity contact pressure as a function of the 
half-width of the contact: (a) Geometry with g=1 nm; (b) Geometry with g=5 nm. 

The mean contact pressure evolution is shown in Figure 3.13 (a), for the small 

value of the height of the tip (g=1 nm), and Figure 3.13 (b) for the largest one (g=5 nm). A 

tendency it’s observed for the mean pressure to be higher when the geometry’s tip is larger 

for the same value of yield stress. When the material transitions from the elastic to the 

elastic-plastic behaviour it is noticed that the mean pressure tends to stabilize until 45a 

nm, when the neighbouring material starts to interfere. 
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Table 3.5 indicates the values attributed to every material in four different 

simulations, namely the change of the Young’s modulus, E. 

 
Table 3.5. Mechanical properties of the materials considered to study the influence of Young’s Modulus. 

 

 

 

 

 

 

 

The mean pressure tends to have a similar behaviour for materials with higher 

Young modulus, considering that all Pm values stabilize for 10 18a  nm. However, the 

lower value of E leads to a Pm evolution that reaches the plateau later, as shown in Figure 

3.14.  When the Young’s Modulus presents a small value (E=60 GPa), the mean contact 

pressure never reaches the same Pm values as those obtained with higher values of E, 

because the elastic regime of deformation is more significant. Moreover, E has impact in 

the transition between elastic and plastic behaviour: the bigger is the Young’s Modulus, the 

lower is the contact (a) for which the transition occurs. 

 

 

Figure 3.14. Mean pressure evolution as a function of the half-width of the contact, for different values of 
Young’s Modulus, with g=5 nm and σy=3 GPa. Plastic behaviour occurs: for E=60 GPa at a≈8 nm; for E=200 

GPa at a≈3 nm; for E=400 GPa at a≈2 nm; for E=600 GPa, at a≈1 nm. 

 

 

0

5

10

15

20

25

0 5 10 15 20 25 30 35 40 45 50

P
m

 [
G

P
a]

 

a [nm] 

E=60

E=200

E=400

E=600

E (GPa) ν σy (GPa) 

600 

0.3 3 
400 

200 

60 



 

 

Numerical Modelling of Contact between Rough Surfaces 

 

 

28  2017 

 

Poisson’s ratio (i.e. the ratio between transverse strain and axial strain is known 

to represent elastic compressibility (Liu & Proudhon, 2014). In order to assess the effect of 

the Poisson’s ratio on the numerical solution, the values considered for the materials used 

in these simulations are listed in Table 3.6. The mean pressure evolution as a function of 

the half-width of the contact is shwon in Figure 3.15 for different values of Poisson’s ratio. 

This parameter has a small influence on the contact radius (a) at the transition between 

elastic to plastic regimes (7<a<9 nm). On the contrary, mean pressure increases as bigger is 

  at yielding and at the maximum value obtained. 

 

Table 3.6. Mechanical properties of the materials used to study the importance of Poisson’s ratio,  ,  in the 

material response. 

 

 

 

 

 

 

 

 

Figure 3.15. Mean pressure evolution as a function of the half-width of the contact, for different values of 
Poisson’s ratio, with g=5 nm and σy=3 GPa. Plastic behaviour occurs when the gradient changes, between 

7<a<9 nm.  
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3.6.1. Results and Discussion 

Gao et al., (2006) shows that, in general, characteristics of deformation can be 

made explicit primarily by two dimensionless parameters:  , the fractional contact, which 

characterizes the extent of contact, and  , which characterizes the resistance of the 

surface to plastic deformation (equations (3.10) and (3.11), respectively): 

 
*

y

E g


 
  (3.11) 

 

To fully characterize the behaviour it is important to take into account ν and a fourth 

variable, which could be either yE   or g   (Gao et al., 2006). 

Figure 3.16 plots the results of the simulations, represented by the points, 

which shows the critical value of   required to initiate plastic yield, as a function of the 

dimensionless parameter  . These results are valid only for 0 0.5  . A tendency can 

be observed by the asymptotic limits 0   and 0.265  , as documented by Gao et al. 

( 2006), which gives an approximate estimate of the elastic limit by the condition 0.1   

(yellow line in Figure 3.16), for practical purposes. These results corroborate his theory 

that the transition from elastic to elastic-plastic behaviour ( 2  ) can be determined only 

by the values of   and  . 

Gao et al., (2006) reported two distinct types of behaviour, depending on the 

value of material parameter  : 

 for 2   the contact transition from elastic to elastic-plastic behaviour, 

as   increases, never reaching full plasticity (Figure 3.17 (a)). 

 for 2   (Figure 3.17) where there are four different regimes of 

behaviour: for a small   it is observed an elastic response, then a 

transition to elastic-plastic behaviour occurs ( Pm  increases monotony), 

followed by a constant plateau (the material hardness), and lastly, the 

contact pressure begins to rise sharply, consequence of the restrictions 

provided by the neighbouring.  
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Figure 3.16. Critical value of   required to initiate yield as a function of the dimensionless parameter  . 

The points show the results of finite element simulations and the line demonstrate an asymptotic solution 
to approximate an estimate of the elastic limit. 

Figure 3.17 (a) shows the average asperity contact pressure as a function of 

contact fraction   for 2  . Although   determines the general behaviour of the 

contact, it is noticed that the detailed response of the asperities depends on both yE  and 

g  . For a small  , the asperities begin to interact elastically, then a transition to a 

regime of elastic-plastic behaviour occurs, with the mean pressure increasing slowly until 

it reaches its maximum, when the zone of neighbouring asperities begins to interact, (

2 0.7  )  (Gao et al., 2006).  

For the second case, in Figure 3.17 (b), it’s exposed the mean asperity contact 

pressure as a function of the contact fraction for 2  , with material properties and 

loading conditions up to full plasticity. In this case, it is noticed no influence of the 

parameter 
*

yE   for 2 0.5   and a weak influence for the behaviour transitions. The 

transitions to the “interacting asperities regime” begins at 2 0.75  . In a careful 

observation of Figure 3.17 (a), it is possible to notice that some of the numerical simulation 

curves deviate slightly from the theoretical curve. This fact is attributed to the method used 
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to obtain the value a , from an approximate calculations considering the number of contact 

nodes at every moment based on the formula (3.8). 

 
(a) 

 
(b) 

Figure 3.17. Importance of α and Ψ in controlling the behaviour of a solid (a) Mean asperity contact 
pressure (normalized by E*g/λ) as a function of contact fraction for Ψ <2 ; (b) Mean asperity contact 

pressure (normalized by σy) as a function of contact fraction for Ψ >2. 

The contact pressure distribution is presented in Figure 3.18 for the same 

geometry and varying the yield stress. On the other hand, contact pressure distribution is 
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presented in Figure 3.19 for the same y  and for a different geometry. The maximum 

value of the contact pressure occurs always in the middle of the asperity, which increases 

as the interference increases. For low values of interference and consequently elastic 

deformation regime, the contact pressure distribution presents an elliptic shape, such as in 

Hertz theory. The contact pressure, progressively, approaches a uniform distribution as   

increases since the elastic regime is reserved for small values of   and as soon as the 

neighbouring interactions begin, the contact pressure approaches a constant distribution, as 

it happens in Figure 3.19 (b). Just as it was expected, comparing Figure 3.18 (a), 3y 

GPa, (b), 0.6y  GPa, and (c), 0.3y   GPa, the value of the contact pressure 

distribution decreases with the decreasing of y . The simulations in Figure 3.19 exhibit 

the contact pressure distribution to reach the total contact between the flat and the 

sinusoidal surfaces, for g=1 nm, Figure 3.19 (a) and g=5 nm Figure 3.19 (b). As well as a 

greater interference is needed for the highest asperity, it also requires a larger contact 

pressure. 
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(a) 

 

(b) 

 

(c) 

Figure 3.18. Asperity contact pressure distribution for g/λ=1/100: (a) E/σy=20, ψ=0.22; (b)E/σy=100,ψ=1.1; 
(c)E/σy=200, ψ=2.2. 
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(a) 

 

(b) 

Figure 3.19. Asperity contact pressure distribution for E/σy=100: (a) g/λ=1/100, ψ=1.1; (b) g/λ=1/20, ψ=5.5. 

 

From the contact between the flat surface and the sinusoidal surface of the 2D 

geometry results a rectangular contact area, rA . Hertz proposed a theory involving two 

cylinders with parallel axes that allows describing the elastic contact between both solids. 

Since the contact area is equivalent, an attempt was made to describe the elastic-plastic 

behavior, in this case, studied by the Hertz theory. Since small plastic deformations do not 

alter contact responses, Hertz theory can be applied to deformation with a strain as large as 

10%  and a must be small compared with the radius of curvature (Liu & Proudhon, 2014). 

The analytical contact pressure distribution is given by (D. M. S. Neto, 2014): 
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   2 2

2

2
n

f
p x b x

b
      for x b   (3.12) 

where f  is the force applied, r the radius of curvature and b is the half-width of the 

rectangular contact surface, obtained by: 

 21
2

fr
b

E






 . (3.13) 

The contact pressure predicted by numerical simulation is presented in Figure 3.20 (a), 

while the solution given by the Hertz theory is presented in Figure 3.20 (b). The 

comparison between them show that the elastic-plastic response cannot be predicted by the 

Hertz theory. Also Liu & Proudhon (2014) suggest that the difference between sinusoidal 

contact and Hertz solution is due to the non-uniform curvature of the contacting profile. 

 
(a) 

 
(b) 

Figure 3.20. Asperity contact pressure distribution for g/λ=1/100; E/σy=100; ψ=1.1: (a) Values obtained by 
numerical simulation; (b) Theoretical values given by Hertz theory. 
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Table 3.7. Mechanical properties of the materials used in simulations for g=10 nm. 

 

 

 

 

Although the geometry with 10g  nm was also been built with the material 

parameters in Table 3.7, the obtained results were the ones considered in the analysis. 

Increasing the interference due to the flat plane compression, an amount of material was 

forced to drain to the empty space on the right side. Thus, the developed model of the 

asperity with the largest tip presents a great amount of material to be displaced. When this 

material reached the vertical surface, the nodes on the contact surface weren’t constrained 

to the horizontal displacement for 2x   so they kept moving with the continuous 

vertical displacement of the flat surface (see Figure 3.21). Therefore, the results obtained 

weren’t comparable with the others due to a limitation in finite elements simulation. 

 
(a) 

 
(b) 

 
(c) 

Figure 3.21. Vertical displacement for g=10 nm: (a) σy=3 GPa; (b) σy =0.6 GPa; (c) σy =0.3 GPa. 
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3.7. 3D Simulation  

From the contact between the asperity and the flat surface results a real contact 

area - rA  -  (represented by red in Figure 3.22 (a)). In the same figure it is possible to 

define the parameter a  , called contact radius, which is a distance measured in x  direction, 

given by the intersection of the plane xy  and the plane defined by the contact area. In 

Figure 3.22 (b) it is observed the interference, represented by d . In order to define the 

transition between elastic and elastic-plastic regimes, it’s considered yield inception 

whenever a nonzero equivalent plastic strain appears (about 610 ). 

  

(a) (b) 

Figure 3.22. Criterions to study the contact between surfaces: (a) Contact area and contact radius; (b) 
Interference. 

 

3.7.1. Influence of the Geometry 

 

In section 3.4 were introduced two different geometries (see Figure 3.23) to 

evaluate the elastic and plastic behaviours when subjected to a contact loading.  Since g  

seems to be the only geometrical parameter with influence on the value of surface 

roughness, as observed in section 3.2, two different values were attributed to it, as shown 

in Figure 3.23. 
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Figure 3.23. Overlap of the two different asperities in study.  

 
Table 3.8. Mechanical properties of the materials used to study the role of geometry in surface roughness. 

 

 

 

 

 

Table 3.8 indicates the characteristics of materials used in these simulations. 

Figure 3.24 presents the influence of the tip’s height on the mean contact pressure in three 

different cases: (a) for y =1 GPa; (b) for 0.6y   GPa; (c) for 0.3y   GPa. The blue 

line corresponds to 5g  nm and the red line refers to 10g  nm. In these three cases it is 

possible to conclude that the mean pressure, at the yield inception, is similar for different 

values of g, since y  is kept constant. The mean pressure is higher for larger values of y . 

For the same geometry it is verified that yield inception occurs for smaller values of a as 

the y  decreases. The contact radius values presented in this figure are obtained measuring 

the distance between nodes in contact. Due to the coarse mesh the values aren’t always as 

precise as it should be, creating an uneven evolution. The dashed line indicates when the 

material behaviour alters from elastic to plastic and how it prograde in plastic regime. 
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(a) 

 

b) 

 

(c) 

Figure 3.24. Influence of the asperity’s geometry on the mean pressure as a function on the contact radius: 
(a) with σy=1 GPa; (b) for σy=0.6 GPa; (c) Considering σy=0.3 GPa.  
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3.7.2. Influence of the Material 

This section intends to display effects of material parameters on the variation 

of the mean contact pressure, during elastic and initial plastic deformations. In order to 

observe the influence of the yield stress in the material behavior, this parameter was 

selected ranging between the values indicated in Table 3.8. 

The contact radius values presented in this section figures are obtained 

measuring the distance between nodes in contact. Due to the coarse mesh the values aren’t 

always as precise as it should be, creating an uneven evolution. The dashed line indicates 

when the material behaviour alters from elastic to plastic and how it evolves in plastic 

regime. 

The evolution of the mean contact pressure is given in Figure 3.25 (a) for 

5g  nm and in Figure 3.25 (b) for 10g  nm. For the same height of the asperity’s tip it 

is clear that yield stress has a large influence since the transition between regimes occurs 

for distinct values of a. At yield inception, the contact radius seems to be higher for larger 

values of g and increases with the increasing of y . 
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(a) 

 

(b) 

Figure 3.25. The influence of yield stress in mean pressure as a function of the contact: (a); for g=5 nm; (b) 
for g=10 nm. 
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Table 3.9. Mechanical properties of the materials considered to study the influence of Young’s Modulus, E. 

 

 

 

 

 

Table 3.9 summarizes the material characteristics considered to study the 

influence of the Young’s Modulus. Three different values of Young’s Modulus are 

analysed. The influence of the Young’s Modulus on the mean pressure evolution is shown 

in Figure 3.26. It’s observed that the mean pressure increases as the increasing of E. 

Besides, the transition from elastic to plastic behaviour occurs early for the highest E. 

Additionally, for the higher values of E, 400 GPa and 600 GPa, the mean pressure at yield 

inception is similar.  

 

 

Figure 3.26. Mean pressure evolution as a function of the contact radius for g=10 nm and σy=5 GPa.  
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Table 3.10. Mechanical properties of the materials used to study the importance of Poisson’s ratio, ν, in the 
material response. 

 

 

 

 

 

 

Table 3.10 introduces different values attributed to ν, E   and y  to the results 

exposed in this section for the Poisson’s ratio influence. Figure 3.27 highlights that the 

highest Poisson’s ratio requires a larger value of mean pressure in a transition from elastic 

to plastic behaviour. It’s also visible that, for the same value of ν, the transition from 

elastic behaviour to plastic occurs for higher values of contact radius, while for the smaller 

values of    it occurs with a smaller contact. 

 

 

Figure 3.27. Mean pressure distribution as a function of the contact, a, for different values of ν.  
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3.7.3. Results and Discussion 

For the 3D simulation results presented above, the values for the contact radius 

a  were obtained manually, measuring the distance between nodes. Due to the coarse mesh 

the values aren’t always as precise as it should be, creating an uneven evolution. Even so, 

the results were validated by literature (Liu & Proudhon, 2014) being considered valid. 

Figure 3.28 shows the contact pressure distribution in the elastic regime for a 

simulation with 5g  nm, 60E   GPa, 1y   GPa and 0.42  . The maximum value for 

the contact pressure is always registered at the centre of the asperity. Since the material is 

assumed isotropic and the asperity geometry is axisymmetric, it is expected to obtain an 

axisymmetric distribution of the contact pressure. However, the obtained contact pressure 

presents a slight deviation, as shown in Figure 3.28. Even though a refined finite element 

mesh was used (see Figure 3.5), the square shape distribution of the finite elements affects 

the contact pressure distribution. Since the results obtained were corroborated by literature 

(Liu & Proudhon, 2014), this is seen as an effect with no consequences for the veracity of 

the results.  

 

  
(a) (b) 
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(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 3.28. Top view of the asperity’s tip showing the contact pressure distribution for a simulation in 
elastic regime for an interference of: (a) 0.038 nm; (b) 0.046 nm; (c) 0.053 nm; (d) 0.061 nm; (e) 0.068 nm; 

(f) 0.076 nm; (g) 0.083 nm; (h) 0.091nm .  
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It’s an indisputable fact that the real contact area is much smaller than the 

apparent area, as explained in section 2. Figure 3.29 presents the ratio between the 

effective contact area, Ar, (red zone in Figure 3.10 (a) and Figure 3.22 (a)), and the 

apparent area, A0, as a function of the real contact area. In both finite element models, it’s 

observed that the real contact area is significantly smaller than an apparent area and the 

increase of the contact area is represented by a linear relation. This linear trend was 

previously observed in the studies of Greenwood & Williamson, 1966 and Yastrebov et al., 

2011. 

 

 

Figure 3.29. Ratio between effective contact area (Ar) and apparent contact area (A0) as a function of 
effective contact area for 2D and 3D geometries.  

 

 

Figure 3.30 shows the evolution of the pressure at the centre of the asperity’s 

tip (maximum value) as a function of the ratio between the force applied and the apparent 

area. It’s observed that the effective pressure in the asperity is always higher than the mean 

pressure. Besides, independently of the geometry, the maximum value of z  stabilizes for 

similar values. However, for small values of y  the pressure stabilizes earlier. 
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(a) 

 

(b) 

Figure 3.30. Distribution of the maximum contact pressure as a function of the mean pressure for different 
values of σy: (a) For g=5 nm; (b) for g=10 nm. 
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4. CONCLUSIONS 

This study presents the finite element simulation of frictionless contact 

between a deformable sinusoidal asperity and a rigid flat surface. Both two- and three-

dimensional models are developed to study the effects of geometrical and material 

parameters. Different geometries and material parameters were used, namely the height of 

the asperity’s tip, the Young’s modulus, the Poisson’s ratio and the yield stress, which 

were selected based on studies carried out by other authors. The materials are considered 

elastic and plastic isotropic (von Mises), with a perfectly plastic behaviour. The evolution 

of the yield surface was described by Voce law. The in-house finite element code DD3IMP 

was used to perform all the simulations. 

Regarding the 2D simulation results, contact can be approximately 

characterized by two parameters:  , which plays a role of a plasticity index (equation 

(3.11)), and  , (equation (3.10)) which can be regarded as a loading parameter. It can be 

established, about the material, that: 

 When 0.265  , the asperity remains in the elastic regime until the 

surface reaches complete contact ( 0.5  ); 

 For 0.265 1.5   and 0.1   the asperity  will deform plastically 

but always within the elastic-plastic regime, up to full contact, and 

never reaching full plasticity; 

 Within the  elastic-plastic regime, 0.265 1.5  , the mean asperity 

contact pressure initially rises with  , till it reaches the maximum at 

the point when neighbouring asperities begin to interact, falling right 

after; 

 For 2   the normalized mean pressure, for the same geometry, 

reaches a plateau for 0.2  , independently of the material properties (

/ yE  );  for 0.3   the mean asperity rises rapidly as 0.5   due to 

the beginning of the interaction of the plastic zones, under neighbouring 

asperities. 
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Concerning to the geometry, it is observed that for a geometry with a higher tip, is 

associated with a higher value of average mean pressure, reaching the same contact radius. 

The tips with 1g   nm could never reach full plasticity. The Hertz theory for two 

cylinders with parallel axis provides an unsatisfactory solution for the evolution of the 

contact pressure distribution in comparison with the numerical simulations. Therefore, it’s 

not possible to predict the pressure distribution in the contact between a sinusoidal and a 

flat surface, with the characteristics presented in this study. 

In 3D simulations, the transition from elastic deformation to plastic 

deformation is smooth and continuous, being difficult to define accurately. For small 

plastic deformation it’s observed the same trend that was under the pure elastic 

deformation. The height of the asperity’s tip, Young’s modulus and yield stress presents a 

large influence on the contact radius at yield inception, while the Poisson’s ratio has weak 

influence on it. The average mean pressure strongly depends on the yield stress at the 

transition between elastic and plastic behaviours. Young’s modulus and Poisson’s ratio 

show a weak influence on the mean pressure at the yield inception and the height of the 

geometry’s tip show no influence at all. The maximum pressure, measured at the centre of 

the asperity, represented as function average mean pressure for the apparent area, indicates 

similar values for g=5 nm and g=10 nm, stabilizing when material reaches the plastic 

regime, although the maximum pressure stabilizes for small values of the mean pressure 

when the asperity’s tip is higher. 

At yield inception, the contact radius is much larger for 2D model than in 3D 

models, as well as the contact area. In both models it is verified that when the tip of the 

asperity is higher, the material reaches the plastic behaviour earlier, for a small interference 

and a small contact radius. This phenomenon occurs due to the contact area being smaller. 

While the low geometry offers a larger contact area, a larger force is needed to reach 

plasticity.   
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