
Miguel Pereira Mendes

Computed torque-control
of the Kinova JACO Arm

Thesis submitted in partial fulfillment of the requirements for the degree of
Master of Science in Electrical and Computer Engineering

 September 2017

Computed torque-control of the Kinova

JACO2 Arm

Miguel Pereira Mendes

Coimbra, September 2017

Computed torque-control of the Kinova

JACO2 Arm

Supervisor:

Prof. Dr. Rui Pedro Duarte Cortesão

Jury:

Prof. Dr. Jorge Manuel Moreira de Campos Pereira Batista

Prof. Dr. Rui Alexandre de Matos Araújo

Prof. Dr. Rui Pedro Duarte Cortesão

Dissertation submitted in partial ful�llment for the degree of Master of Science in

Electrical and Computer Engineering.

Coimbra, September 2017

Acknowledgements

Em primeiro lugar, quero prestar o meu mais sincero agradecimento ao meu orientador, o

Professor Doutor Rui Cortesão, pelo seu acompanhamento contínuo, partilha de experiência,

encorajamento e aconselhamento durante o desenvolvimento deste trabalho.

Ao meu colega de laboratório, Luís Santos, agradeço pelo acompanhamento e auxílio

durante as fases mais críticas do trabalho e por se mostrar sempre disponível para ajudar.

Agradeço igualmente ao Instituto de Sistemas e Robótica de Coimbra, por proporcionar

os meios para a realização deste trabalho, e por me permitir trabalhar numa área da qual

nutro imenso gosto.

I also thank Martine Blouin at Kinova Robotics, for having the patience to deal with all

my questions and problems and for always being helpful. Her contributions were essential

in order to tackle some of the technical di�culties encountered in this work.

Aos meus amigos de curso, em especial, Daniel, Bruno, Beatriz, Dylan, Diogo, João,

obrigado pela convivência e camaradagem durante este percurso de 5 anos.

Por �m, mas não menos importante, agradeço à minha família, aos meus pais, Manuel e

Florinda, pelo seu constante esforço, dedicação e incentivo, por fazerem de mim o que sou

hoje. Sem eles este percurso não poderia ter sido realizado. O meu muito obrigado. Aos

meus irmãos, André e So�a, obrigado pelo apoio e amizade durante todo este caminho.

Miguel Pereira Mendes

Coimbra, Setembro 2017

iii

Resumo

Nos últimos anos, várias áreas ligadas à robótica têm evoluído, estando cada vez mais

presentes na vida do ser humano. Uma dessas áreas, onde se têm notado mais progressos,

é a área da robótica assistiva. Muitas pessoas portadoras de de�ciências motoras bene�-

ciam deste tipo de tecnologias, cuja utilidade aumenta consideravelmente a sua qualidade de

vida. Existe, por exemplo, um braço robótico relativamente novo no mercado denominado de

JACO2 desenhado especi�camente para pessoas possuidoras de de�ciência motora ao nível

dos membros superiores. Apesar do robô poder ser prontamente utilizado pelo utilizador

convencional para execução de tarefas mundanas com o joystick de oferta, por vezes é dese-

jado realizar movimentos especí�cos com elevada precisão, sendo, no entanto, necessário um

conhecimento mais alargado de como o robô funciona internamente, e de como é estruturado

�sicamente. Normalmente, isto é alcançado com o design de técnicas de controlo complexas

que têm em consideração esses critérios. Arquiteturas de controlo avançadas, como o controlo

de binário computarizado permitem o seguimento de trajetórias desejadas com um elevado

grau de exatidão, necessitando, ainda assim, da integração de modelos robóticos.

O trabalho apresentado nesta tese envolve a de�nição dos �alicerces� necessários à apli-

cação dessas metodologias no braço robótico supracitado. Inicialmente é feita uma análise

geral ao JACO
2
veri�cando-se as suas capacidades e limitações. Posteriormente, os mode-

los geométrico e cinemático são calculados, seguidos da derivação do modelo dinâmico. A

computação deste último é realizada através da análise da energia interna do robô, isto é,

com base no método de Euler-Lagrange, sendo os parâmetros dinâmicos obtidos a partir de

uma abordagem baseada em elos aumentados. A �abilidade dos modelos estimados é posta

à prova com esquemas de controlo já bem conhecidos tanto ao nível do espaço tarefa como

no espaço das juntas, sendo os resultados obtidos analisados.

Os resultados para o modelo geométrico são su�cientemente conclusivos para se a�rmar

que a estimação é bem de�nida, enquanto que a dedução do modelo dinâmico resultou, na

sua generalidade, em resultados aceitáveis e promissores. No entanto, é necessário um estudo

iv

mais aprofundado deste último modelo, por forma a melhorar a sua �abilidade e para que

técnicas de controlo mais avançadas possam ser desenvolvidas para este robô no futuro.

Por �m, este documento também propõe uma forma alternativa de controlar o JACO2,

substituindo o joystick disponível, por um rato 3D. Aliado ao facto de ser �sicamente bastante

leve e de se apresentar como um sistema portátil, este controlo alternativo representa um

dos primeiros passos para um possível desenvolvimento de uma aplicação tele-ecográ�ca no

futuro.

Palavras-chave: JACO
2

, robótica assistiva, controlo binário computarizado, mod-

elo robótico, space mouse.

v

Abstract

In the last years, numerous robotic areas have evolved, being increasingly present in the

life of the human. One of the areas whose progresses have been noticeable is the area of

assistive robotics. Many people who su�er from mobility impairments or disabilities bene�t

from these technologies, having their quality of life greatly improved. To name an example,

a relatively novel robotic arm is present in the market called the JACO
2
speci�cally designed

for people with upper-body impairments. Although the robot can be promptly used by the

general user to perform mundane tasks with the associated joystick, sometimes it is desirable

to perform more speci�c high precision movements, although that requires a deeper insight

into how the robot works internally and how it is physically structured. This is normally

achieved with the design of complex control techniques that take into account those criteria.

Advanced control architectures such as computed torque control allow the tracking of desired

trajectories with a high degree of accuracy, albeit needing the integration of robotic models.

The work presented on this thesis revolves around establishing the groundwork for the

application of those methodologies in the aforementioned robotic arm. Initially, a complete

overview of the JACO
2
is done in order to infer its capabilities and limitations. Afterwards,

the geometric and kinematic models are addressed followed by the dynamic model derivation.

The computation of this last model is obtained via the analysis of the internal energy of the

robot, via the Euler-Lagrange method, while the dynamic parameter identi�cation is based

on an augmented link approach. The reliability of the estimated models is then evaluated

with already well established control schemes in both task space and joint space, with their

results being analyzed.

The results for the geometric model are conclusive enough to a�rm that its estimation is

well de�ned, whereas the derivation of the dynamic model, in general, provided acceptable

and promising results. However, it is necessary a further in-depth research in order to

improve the dynamic model estimation, so that more advanced control techniques can be

implemented on this robotic arm.

vi

Lastly, this document also puts forward an alternative way of controlling the JACO
2
,

using a 3D mouse as a substitute to the available joystick. Coupled with a lightweight

composition and a very portable system, this represents an introductory step into a possible

development of a tele-echographic application in the future.

Keywords: JACO
2

, assistive robotics, computed torque control, robot modeling,

space mouse

vii

�The noblest pleasure is the joy of understanding."

� Leonardo da Vinci

ix

Contents

Acknowledgements iii

Resumo iv

Abstract vi

List of Acronyms xiii

List of Figures xv

List of Tables xvii

1 Introduction 1

1.1 Background . 1

1.2 Objectives . 2

1.3 Contributions . 2

1.4 Organization . 3

2 The Kinova JACO2 5

2.1 System Overview . 5

2.2 Software Development Kit . 7

2.3 Kinova API and Communication Modes . 10

2.4 Torque Control . 12

3 JACO2 Model Identi�cation 13

3.1 Kinematic Model . 13

3.1.1 Denavit-Hartenberg Parameters . 14

3.2 Di�erential Kinematic Model . 17

3.2.1 Inverse Di�erential Kinematic Model 19

3.3 Dynamic Model . 20

xi

3.3.1 Theoretical Background . 20

3.3.2 Dynamic Parameters . 22

3.3.3 Lagrangian Formulation . 26

4 Control Architectures 29

4.1 Operational Space Control . 29

4.1.1 Jacobian Transpose Control . 29

4.1.2 Orientation Control . 31

4.1.3 Null Space Control . 32

4.2 Computed Torque Control in the Joint Space 35

4.3 Joint Space Control with Task Posture Reference 36

5 Experimental Results 39

5.1 Setup . 39

5.2 Task Space Control . 41

5.3 Null Space Orientation Control . 42

5.4 Dynamic Control in the Joint Space . 44

5.5 Joint Space Control with Task Space Reference 47

6 Space Mouse Control 51

7 Conclusions 57

7.1 Future Work . 58

References 59

A Angular Control Example 63

B Dynamic Parameters 67

C Control Types of the JACO2 69

D Initial and Final Poses 70

E JACO2 Product Speci�cation 72

F Actuators Product Speci�cation 75

G DSP Product Speci�cation 79

xii

List of Acronyms

3D Three Dimensional

API Application Programming Interface

BCI Brain Computer Interface

BLDC Brushless Direct Current

CAD Computer-Aided Design

COM Center of Mass

DC Direct Current

DOF Degree of Freedom

DH Denavit-Hartenberg

EEG Electroencephalographic

EL Euler-Lagrange

EMG Electromyography

FSM Finite State Machine

NE Newton-Euler

OCS Output Coordinate System

PD Proportional-Derivative

PID Proportional-Integral-Derivative

SDK Software Development Kit

USB Universal Serial Bus

xiii

xiv

List of Figures

2.1 JACO2 system. 6

2.2 Software Development Kit. 8

2.3 Torque Console. 9

2.4 Communication Modes.[10] . 10

2.5 Low Level Torque Control Scheme.[10] . 12

3.1 Representation of a point between reference frames. [13] 14

3.2 JACO2 link lengths. 15

3.3 Coordinate frames for the DH Algorithm. 16

3.4 CAD model. 22

3.5 Link 1 inertial parameters. 23

4.1 Block scheme of the Jacobian transpose control. 30

4.2 Task space control with geometric null space implementation. 33

4.3 Joint Space Control with Dynamic Model. 36

4.4 Joint Space Control with Task Space Reference. 37

5.1 Tracking with Jacobian transpose control. 41

5.2 Tracking with Null Space Orientation Control. 43

5.3 Tracking with dynamically consistent generalized inverse. 44

5.4 Tracking with dynamic control in the joint space domain. 46

5.5 Joint Space Control with Task Posture Reference. 48

6.1 Product Speci�cation. 51

6.2 3DxWare 1.8 (Unix Version) with JACO2 con�guration. 52

6.3 Simpli�ed control of the JACO2 with the SpaceNavigator®. 53

6.4 Finite State Machine for Space Mouse Control of the JACO2. 54

C.1 Control Types. 69

xv

D.1 Initial Position and Orientation. 70

D.2 Final Position and Orientation. 71

xvi

List of Tables

2.1 General Speci�cations . 6

3.1 Robot length values. 15

3.2 Auxiliary Variables. 15

3.3 DH Parameters . 16

3.4 Angle Transformation. 16

3.5 Links . 24

3.6 Actuators. 24

3.7 Rings . 24

5.1 Setup Parameters. 40

5.2 Control Gains. 41

5.3 Control Gains. 45

5.4 Joint Velocity Control Gains. 47

5.5 Task Space Control Gains. 47

B.1 Dynamic Parameters of the JACO2 with masses in kilograms, COMs in meters

and inertia tensor in kilograms per meter squared. 68

xvii

Chapter 1

Introduction

1.1 Background

For the past few decades, robots have become a major presence in the life of the human.

Almost any industry related to automated processes has them incorporated in their assembly

lines, mostly in order to replace the human from performing repetitive tasks or from being

in a hazardous environment. At the same time, other types of robotic devices started to be

developed, in areas like the military, space exploration or to interact with humans. More

recently, developments in the area of health care started to be seen, where surgical robots

began to be able to aid the surgeon in performing medical procedures, or collaborative robots

were introduced as a way to help people with disabilities, allowing them to perform activities

of the daily living. Indeed, the presence of robotics in the health care is not comprised of

these last two examples. The tele-operation of robotic devices to perform medical tasks over

long distances is already a reality [1] [2], allowing the possibility of providing specialized

medical care to remote locations. Nonetheless, this potential advantage is shadowed by some

limitations such as time delays in data transmission over the local site to the remote site

[3] or data acquisition losses due to de�cient telecommunications infrastructure. Normally,

a system like this, composed of a local operator and a remote station, is referred to as a

�master-slave� system, where the former sends desired commands to the latter. Traditionally,

the master is provided with a small manipulator, so that the control is made in an easy and

intuitive manner. The generated forces from the human through that device are sent and

replicated by the slave manipulator. Still, in the vast majority of the applications where

these systems are in place, there is the desire to know how the slave manipulator is behaving

with the environment. This wish is emphasized when the applications are related to the

1

2 Chapter 1. Introduction

medical �eld, as there is the utmost need to guarantee the safety of the patient. As such,

the slave manipulator is normally coupled with force sensors whose data is then sent back

to the master station. Through the use of an haptic device, the operator is then aware of

the interactions of the remote manipulator and can take decisions accordingly. Furthermore,

video feedback is also in place, being necessary to operate with accuracy and to get an even

greater sense of being present in the environment. This kind of system is commonly called

bilateral [4].

Of course, the operation and control of the robotic device placed at the remote site nor-

mally requires the development of speci�c control architectures, in order to represent the

displacement generated from the haptic device with minimal error. These control method-

ologies can be based on geometric models, that establish the relation between the end e�ector

coordinates with the correspondent joint angles of the manipulator; kinematic models, relat-

ing the velocity of the end e�ector and the velocity of the joint angles, and lastly, dynamic

models, which combine the relation between the torques applied to the actuators of the

manipulator and the position, velocity and acceleration of the joints [5]. Under these as-

sumptions, computed torque control techniques can be conceived, which generally o�er good

tracking behavior and allow the design of compliant and force controls for human-robot

interaction.

1.2 Objectives

Initially, this work was conceived with the idea of developing an alternative way of con-

trolling the JACO2. For that, the space mouse control suggested. Afterwards, a general

study of the capabilities of the robotic arm was proposed, primarily focusing on the torque

control mechanisms present on the arm.

1.3 Contributions

This work presents a general overview of a relatively novel robotic manipulator. Initially,

its functions, capabitilies and limitations are studied. Afterwards, the kinematic, di�eren-

tial kinematic and dynamic models are estimated and their validity is analyzed under the

application of computed torque control techniques.

Lastly, due to its portability and low cost, a further study is made on the possibility of

using this arm as part of a tele-echographic system. Thus, a 3D mouse is used to control

2

Chapter 1. Introduction 3

the trajectory of the arm through the implementation of a �nite-state machine, that allows

the changing between di�erent con�gurations of the robot.

1.4 Organization

The document is organized as follows:

� Chapter 1, covers the background, objectives and document structure;

� Chapter 2, deals with the overview of the JACO2 system, its characteristics and func-

tionalities;

� Chapter 3, introduces the geometric, kinematic and dynamic model deductions;

� Chapter 4, is devoted to the presentation of the control architectures to be tested;

� Chapter 5, examines experimental results;

� Chapter 6, covers the �nite-state machine implementation using a space mouse to

control the JACO2 arm;

� Chapter 7, sets out the �nal conclusions and suggestions for future work.

3

4 Chapter 1. Introduction

4

Chapter 2

The Kinova JACO2

In this chapter, a general overview of the Kinova JACO2 is introduced, as well as its main

characteristics and functionalities.

2.1 System Overview

The JACO2 is a robotic arm developed by Kinova Robotics1, a Canadian company focused

on assistive/rehabilitation devices. The �rst version, JACO Rehab Edition, reached the

commercial market in 2010 [6] and was primarily aimed for people with reduced mobility or

upper limb impairments. In 2012, an improved version was made for the scienti�c community,

called JACO2 Research Edition, which is the arm used on this work.

The JACO2 is a six degree of freedom (DOF) manipulator (Fig. 2.1a) with a removable

three �ngered hand acting as the end e�ector.

The manipulator is composed of six interconnected carbon �ber links, jointed together

by six aluminum brushless direct current (BLDC) actuators. They possess no mechanical

limitation allowing unlimited rotation around their axis. Unsurprisingly, due to the nature

of the carbon �ber, the main structure ends up having a very lightweight composition.

Additionally, this material also delivers structural integrity and reliability to the arm while

the aluminum actuators contribute for better heat dissipation during arm movements. The

hand consists of three �ngers which can be individually controlled. These are made of plastic

which allow them to �rmly adjust to di�erent sizes and types of objects.

From the user guide [7], additional speci�cations can be described. Table 2.1 summa-

rizes that information. Additionally, a more detailed description of the JACO2 is made in

1http://www.kinovarobotics.com/

5

http://www.kinovarobotics.com/

6 Chapter 2. The Kinova JACO2

(a) JACO2. (b) JACO2 joystick.

(c) Joystick Movements. [7]

Figure 2.1: JACO2 system.

appendix E, whereas for the actuators that compose the robot, appendix F describes more

thoroughly their speci�cations.

Table 2.1: General Speci�cations

JACO2 6 DOF (without gripper)

Total Weight 4.4 Kg

2.6 Kg (mid-range continuous)
Payload

2.2 Kg (full-reach peak/temporary)

Reach 90 cm

Maximum linear arm speed 20 cm/s

Power supply voltage 18 to 29 V (DC)

Average Power 25 W (5W in standby)

Peak Power 100 W

Communication Protocol RS485

The arm is controlled through a three-axis joystick with �ve independent push buttons

and four external auxiliary inputs placed at the back side of the controller. The �gure 2.1b

shows the front side of the controller, having, from top to bottom, the power button, HOME

button, and other �ve di�erent buttons responsible for the switching of operation modes,

with two of them being placed on top of the joystick. The blue light displays the current

operation mode while the green lights show that the robot is powered and ready to be used.

The HOME button repositions the arm on a preprogrammed pose. The remaining buttons

are assigned to the shift between three-axis and two-axis mode (more information in the

6

Chapter 2. The Kinova JACO2 7

appendix of [7]). Basically, the JACO2 can be easily changed into translation mode, wrist

mode, �drinking� mode and �nger mode. The control of the JACO2 arm using the joystick

is considered cartesian as the user can only change the position/orientation of the gripper.

That being said, the translation mode enables the controlling of the hand in space in the three

axis of the cartesian coordinate system. For the wrist mode, the arm is controlled around a

reference point (set in the middle of the end e�ector). The arm stays stationary around that

point changing its orientation depending on the joystick commands. The �drinking mode�,

allows the wrist to produce a rotation around another point in the space of the arm, through

an o�set in height and length from the reference point. This was named this way because it

normally helps during the grasp of bottles or water cups. Finally, the �nger mode lets the

user open and close the hand at will. A multitude of other operation modes can be achieved

by combining various buttons (refer to [7]).

The joystick movements that can be executed are presented on �gure 2.1c. The joy-

stick provided by Kinova is intuitive at start, but the amount of di�erent modes that can

be chosen might be confusing for unfamiliar users. It requires practice, and as correctly

pointed out by Herlant et al. [8], who interviewed actual users, the main struggle lies on the

�switching between the various control modes� and that there are �a lot of modes, actions,

and combination of buttons�. This is in line with what was experienced during this work.

The JACO2 arm presents itself as a portable device, due to its very light frame. Adding

to this, the power supply is considerable small which e�ectively puts into evidence the

easiness of carrying this device to anywhere. Moreover, the arm possesses sensors to ascertain

temperature, voltage, current and torque parameters. In terms of hardware connectivity,

apart from the necessary connections for an approved power supply/battery and joystick,

the arm comes with an ethernet port, for wireless connections, and a universal serial bus

(USB) port to connect to a laptop or personal computer (PC), in order to send commands

through the available software development kit (SDK). Analyzing table 2.1 one can see that

the communication protocol is the RS485, detailed discussion pertaining this will be done

on section 2.3.

2.2 Software Development Kit

Coupled with the joystick, Kinova o�ers a complete graphical user interface to control the

arm, both in cartesian and torque modes.

The SDK grants the user complete control over the functionalities of the manipulator,

7

8 Chapter 2. The Kinova JACO2

without the need to use the joystick. This is attained by connecting the USB port of the robot

to a PC via a USB cable. After installing and opening the program [9], the Development

Center comes up (�gure 2.2a). As one can observe, di�erent tabs can be chosen, and distinct

parameters of the arm can be changed or veri�ed. For instance, the Monitoring section,

shown in �gure 2.2b, collects all the data from the sensors included in the manipulator, as

well as the calculations of the angular position and velocity, a similar table is visualized if

the cartesian subtab is chosen.

(a) (b)

(c) (d)

Figure 2.2: Software Development Kit.

A virtual joystick enables the control of the arm in a similar way as the real one. Figure

2.2c depicts the di�erent actuators and the plus and minus sign refer to the correspondent

direction of rotation. The cartesian mode is similar, although the user has the position and

orientation axis to interact with. However, it is important to refer the fact that the cartesian

velocities are referred to di�erent reference frames. While the linear velocity is referred to the

base frame, the angular velocity is associated to the reference frame of the end e�ector. On

top of this, the advanced settings exhibit additional con�guration parameters to manipulate.

8

Chapter 2. The Kinova JACO2 9

A proportional-integral-derivative controller (PID) is accessible to manage the behavior of

the position control of each actuator, zero position resets the actual position of the targeted

actuator to 180°, and torque zero, assumes the actual torque of the considered actuator to be

0. Furthermore, the reference frame option enables the choosing between �xed and rotating

frames. The former makes the orientation of the arm �xed while performing a translation,

while the latter allows the arm to follow the orientation of the axis of the base actuator. The

admittance control can be activated or deactivated with the reactive force control option.

The remaining con�guration options and menus can be referred to the SDK User Guide [9],

which has more detailed information.

Alternatively, the user might wish to use the arm while in torque control. Like the

Development Center, the Torque Console is another interface available to the users.

Figure 2.3: Torque Console.

With torque control, the manipulator behaves smoothly when contact forces are applied.

As observed from �gure 2.3, the user has at his disposal di�erent parameters to adjust as

well as the choice between sending torque or force commands to the JACO2. The safety

factor is related to how the arm deals with high speed behaviors when applying high contact

forces. If the parameter is set to one, the arm does not switch back to trajectory control no

matter the current speed. On the other hand, if set to zero the arm is less prone to high

speed motions and switches back to trajectory control more easily. If interaction with sti�

environments is desired, a vibration controller/observer can be set to eliminate them. The

actuator damping parameter simulates the damping e�ect applied directly to the actuators.

The gravity vector can also be changed, and since the gripper can be removed the payload

parameters can be �nely tuned to other speci�c end e�ectors.

9

10 Chapter 2. The Kinova JACO2

As a �rst approach, these consoles were useful to analyze and acknowledge the behavior

of the arm to di�erent parameters. Even so, the ideal way for developers to implement their

desired control mechanisms and programs lies on the Kinova Application Programmming

Interface (API), which will be covered on the next section.

2.3 Kinova API and Communication Modes

One of the �rst problems that was encountered when �rst addressing the objectives of this

work, was the initial feeling of being in a presence of a �black box �2. The initial tests with

the provided SDK demonstrated that entirely. Fortunately, for the developers who wish to

create speci�c software programs, an API is available with a vast set of tools to meet their

needs.

Previously, on section 2.2 the Development Center menu was illustrated (�g. 2.2a).

On the right side, it is possible to visualize di�erent examples, like admittance, angular or

cartesian control. Those subroutines are built using the API functions. One such example

can be checked on appendix A. The programming language from where the API is built is

C++, which can be considered understandable even for unexperienced users.

Figure 2.4: Communication Modes.[10]

2A system where its internal workings are not visible to the user.

10

Chapter 2. The Kinova JACO2 11

As described in table 2.1, the internal communication protocol used to control the actu-

ators is the RS485. It is, of course, possible to interact directly with the actuators by using

an appropriate RS485 interface or USB-RS485 communications module. Kinova delivers a

speci�c user guide (included in the installation folder of the Kinova SDK) detailing how

the RS485 message format should be constructed and the corresponding message types that

make the arm execute the desired commands [11]. Still, it is not the only way of establishing

a communication link with the arm, as it is summed up by �gure 2.4. There is also the

chance of using the Robotic Operating System (ROS), to achieve a communication link with

the arm [12].

Naturally, the arm needs some way of processing the data that it receives. The digital

processing unit (DSP) incorporated in the base of the arm acts as the �brain� of JACO2,

evaluating the commands that are sent and transmitting them to the actuators. Also, this

crucial component of the arm is responsible for the gravity compensation, mode switching

management and other advance algorithms that guarantee the safety of the arm and its

users, as well as the execution of the desired tasks.

Having covered the RS485 and joystick communication methods, the API-JACO2 com-

munication method is left to be explained. Firstly, it is important to refer that the Kinova

API and SDK both work with Windows or Linux. For this case, it is going to be consid-

ered the Ubuntu 16.04 system, as it was the one where this work was done. Observing the

subroutine in appendix A, it is noticeable that some sequence of actions must be taken in

order to connect to the arm. Apart from the necessary �les to use the API under Ubuntu

[10], the library containing the functions needed must be loaded and the respective functions

initialized. Similarly, the arm must be started, but for this, two API functions need to be

called: MoveHome and InitFingers. The former commands the arm to position itself in

the HOME position while the latter initializes the �ngers by opening the hand. Reaching

the end of the program, the library must be closed before exiting the program. In fact, not

following this last step will leave the current program running and render any attempts in

trying to execute subsequent programs useless.

Last but not least, the control system frequency while using the API is either 100 or 500

Hz, depending on what communication method is used. If it is high level, that is, via USB,

then the rate is between 100-500 Hz, but the refresh rate of the controller of the DSP is

100 Hz. In contrast, if the communication is made directly with the actuators, the low level

approach, then the communication rate is 500 Hz. Clearly, it is obvious the advantages of

using the low level API with the RS485. Nonetheless, all the work presented on this document

11

12 Chapter 2. The Kinova JACO2

was made following a high level approach, which means that all the control architectures

follow the refresh rate represented by the DSP controller, that is 100 Hz. Further information

can be found on appendix G.

2.4 Torque Control

So far, it has been studied the way the torque control can be tested and used with the

Torque Console (�g. 2.3), but it remains to be mentioned how it is implemented internally.

Figure 2.5: Low Level Torque Control Scheme.[10]

The scheme shown in 2.5 corresponds to the actuator control during torque control mode.

The VOVC is the vibration observer/controller. This is the default control mechanism im-

plemented in the DSP, during torque control mode. It can be assumed that the �Controller

and Feedforward� block is responsible for the di�erent algorithms included in the arm like

singularity avoidance, kinematics and position/velocity estimation. Nonetheless, studying

the behavior of the arm while using the default torque control, showed that its motions were

not natural and smooth when handling the arm. Undoubtedly, additional control architec-

tures were present which, for the purposes of this work, needed to be removed or eliminated.

Needless to say, this was one of the biggest challenges of this work: to have complete knowl-

edge over what control procedures were being executed by the arm, and how to remove

them, since it was necessary to have direct access to the actuators without interference from

preexistent control methodologies (refer to section 5.1 for detailed information related to this

problem).

12

Chapter 3

JACO2 Model Identi�cation

This chapter will focus on the derivation of the kinematic, di�erential kinematic and dy-

namic models of the JACO2. These models need to be estimated, in order to perform tasks in

the workspace with the best possible fashion. The kinematic model, or also called geometric

model, establishes the relation between a given con�guration of the robot in joint variables

and the correspondent position and orientation coordinates of the end e�ector. The di�er-

ential kinematic, in short, entails the relationship between joint and end e�ector velocities.

On the other hand, the dynamic model is based on the relation between forces/torques and

the resulting motion, and allows a deeper analysis considering additional criteria such as

mass, inertia and even friction terms that might in�uence the behavior of the robot during

task operations. In the next sections, the deduction of each model is done as well as the

necessary steps that were followed in order to obtain them.

3.1 Kinematic Model

The JACO2 is comprised of six carbon �ber links. By de�nition, each of its links can be

assumed as a having a relative position and orientation with regard to the base of the arm.

In the �eld of robotics, this is called a reference frame, which is associated to the reference

frames of the other links by applying homogeneous transformations.

Suppose an arbitrary point P in space needs to be represented with respect to the base

frame o0 (�gure 3.1). If its position is only known from the reference frame o1 then, one way

to achieve this would be by considering the position from that reference frame, adjust the

orientation of the point to match that of the base frame, and add the distance between the

origin of both reference frames. Assuming that the 3×3 dimension matrix R0
1 is the rotation

matrix between frames o1 and o0 then the position of P with respect to the base frame is

13

14 Chapter 3. JACO2 Model Identi�cation

given by

p1 = o01 +R0
1p

1 (3.1)

where o01 ∈ R3 is the distance between the reference frames and R0
1 ∈ SO(3).

Figure 3.1: Representation of a point between reference frames. [13]

Knowing this, an homogeneous transformation is nothing more than the matrix repre-

sentation between two frames. Following the example from �gure 3.1, that would mean

T 0
1 =

R0
1 o01

OT 1

 (3.2)

where T 0
1 is commonly called in the literature as the homogeneous transformations matrix.

This encapsulates information about the distance between the origins of the frames and the

orientation between them by means of a rotation matrix. These 4× 4 dimensional matrices

are essential in order to derive the kinematic model.

Analogously, a 6 DOF robotic manipulator like the JACO2 can be represented by a set

of reference frames between each of its links, in a similar fashion as displayed by �gure 3.1.

Assuming that to each link of the arm a coordinate frame is �xed, then the transformation

between the end e�ector and the base frame is given by

T 0
n(q) = T 0

1 (q1)T
1
2 (q2) . . . T

n−1
n (qn) (3.3)

where n = 6 for the case of the robotic manipulator studied.

3.1.1 Denavit-Hartenberg Parameters

Equation 3.3, presents the theoretical principle revolving the direct kinematics model.

Still, one would wonder how to analytically obtain the transformation matrices of each link.

14

Chapter 3. JACO2 Model Identi�cation 15

To derive them, it is necessary to know how the di�erent reference frames are physically

related, and with the Denavit-Hartenberg (DH) parameters it is possible to ascertain that.

The JACO2 Advanced Speci�cation Guide [14] describes the classic DH parameters for the

manipulator as well as the length values for each link. Below, table 3.1 provides the dimen-

sions of the arm, pictured in �gure 3.2.

Robot length values (in meters)

D1 0.2755 Base to elbow

D2 0.4100 Arm length

e2 0.0098 Joint 3-4 lateral o�set

D3 0.2073 Front arm length

D4 0.0741 First wrist length

D5 0.0741 Second wrist length

D6 0.1600 Wrist to center of the hand

Table 3.1: Robot length values.

Auxiliary Variables

aa π
6

ca cos(aa)

sa sin(aa)

c2a cos(2aa)

s2a sin(2aa)

d4b (D3 + D5(sa
s2a

)

d5b D4(sa
s2a

) + D5(sa
s2a

)

d6b D5(sa
s2a

) + D6

Table 3.2: Auxiliary Variables.

Figure 3.2: JACO2 link lengths.

Coupled with this, the classic DH parameters are shown in table 3.3. The variables shown

15

16 Chapter 3. JACO2 Model Identi�cation

in that table are listed on table 3.2. The transformation matrices associated to each link,

following the DH convention, are of the fashion

T n−1n =

cos(θi) − cos(αi) sin(θi) sin(αi) sin(θi) ai cos(θi)

sin(θi) cos(αi) cos(θi) − sin(αi) cos(θi) ai sin(θi)

0 sin(αi) cos(αi) di

0 0 0 1

 (3.4)

i αi−1 ai−1 di θi

1 π
2

0 D1 q1

2 π D2 0 q2

3 π
2

0 - e2 q3

4 2*aa 0 -d4b q4

5 2*aa 0 -d5b q5

6 π 0 -d6b q6

Table 3.3: DH Parameters

DH Algorithm Angle Physical Angle

q1 −q1Robot

q2 q2Robot
− 90°

q3 q3Robot
+ 90°

q4 q4Robot

q5 q5Robot
− 180°

q6 q6Robot
+ 90°

Table 3.4: Angle Transformation.

Figure 3.3: Coordinate frames for the DH Algorithm.

Additionally, the JACO2 physical angles have to be converted into the angles of the

Denavit-Hartenberg algorithm, which is given by relation shown in table 3.4. The DH

parameters are obtained after establishing the di�erent coordinate frames for each link which

are exhibited in �gure 3.3.

16

Chapter 3. JACO2 Model Identi�cation 17

Since the DH parameters are known, by having the transformation matrices relating sub-

sequent links by applying equation 3.4, then the forward kinematics model can be calculated

through equation 3.3. With this, it is now of interest to introduce the di�erential kinematics

model.

3.2 Di�erential Kinematic Model

As was referred in the beginning of this chapter, the relationship between the angular and

linear velocities of the end e�ector and the joint velocities is named the di�erential kinematic

model. This relation is encapsulated in a matrix called the Jacobian, which apart from being

important in singularity analysis and inverse kinematics, can also be of useful for computing

the torques being in e�ect at the joints when a speci�c force is being applied at the end

e�ector. This, of course, is of particular interest to this work, as it will be seen in chapter 4,

when operational space control schemes will be described [15].

First, let the end e�ector linear velocity be de�ned as ṗe and the angular velocity ωe,

while the joint velocities be q̇, then the relation described above isṗe = JP (q)q̇

ωe = JO(q)q̇

(3.5)

where JP (q) is a (3×n) matrix relating the linear velocity of the end e�ector ṗe with the

joint velocities q̇, and the JO(q) is similarly a (3× n) matrix detailing the relation between

the angular velocity of the end e�ector and the joint velocities. Combined together, these

submatrices make the Jacobian matrix J

ve =

ṗe
ωe

 = J(q)q̇ , J(q) =

JP (q)

JO(q)

 (3.6)

Extending equation 3.6, the linear and angular velocity components can be computed as

ve =

ṗe =
∑n

i=1
∂pe
∂qi
q̇i =

∑n
i=1 JPi

q̇i

ωe =
∑n

i=1 ωi−1,i =
∑n

i=1 JOi
q̇i

(3.7)

The joint velocities q̇i are expressed di�erently if the joints are prismatic or revolute. In

this case, the JACO2 has six joints with all of them being revolute, therefore the angular

and linear velocity for a revolute joint for subsequent links is denoted as

17

18 Chapter 3. JACO2 Model Identi�cation

ṗi = ṗi−1 + ωi × ri−1,i

ωi = ωi−1 + θ̇izi−1

(3.8)

where zi−1 is the unit vector of the joint i axis and ri−1,i corresponds to the distance from

the origin of the coordinate frame i with respect to the origin of the coordinate frame i− 1.

This means that the velocity in link i is the same as in link i − 1 with the increment of a

component related to the change due to the rotation of the link i. Then, assuming that the

computation of the linear velocity of each link is made with respect to the coordinate frame

of the end e�ector, the equalities presented in equation 3.7 are rearranged as

JPi
q̇i = ωi−1,i × ri−1,e = θ̇izi−1 × (pe − pi−1)

JOi
q̇i = θ̇izi−1

⇔

JPi
= zi−1 × (pe − pi−1)

JOi
= zi−1

(3.9)

where pe is the distance from the origin of the end e�ector coordinate frame to the base

frame and pi−1 the analogous distance from link i − 1. Given these premises, the Jacobian

can be translated into

J =

JP1 . . . JPn

JO1 . . . JOn

 (3.10)

which encloses the conclusions mentioned above

JPi

JOi

 =

zi−1 × (pe − pi−1)

zi−1

 (3.11)

As observed, the computation of the Jacobian matrix can be achieved following a recursive

methodology, where zi−1 and pi−1 are cyclically calculated. Thus, it is easily seen that the

Jacobian will be dependent upon the con�guration of the manipulator. This is because the

variables described on equation 3.11 are extracted from the homogeneous transformations

obtained from equation 3.3, which rely entirely on joint variables. That being said, pe

corresponds to the �rst three elements of the last column of T 0
n and pi−1 is equivalent, but

for the respective matrix T 0
n−1. As for the unit vector of the joint i, zi−1, it is obtained from

the third column of the rotation matrix R0
i−1 which is easily retrieved, in a similar fashion,

from equations 3.2 and 3.3.

Conceptually, with these calculations the end e�ector velocity is referred to the origin of

the base frame, but by knowing the transformation matrices that make the direct kinematics

18

Chapter 3. JACO2 Model Identi�cation 19

model, it is possible to make the end e�ector velocity be referred to any other frame of the

manipulator.

For this work, the Jacobian related to the linear velocities is referred to the base frame

while the angular velocities are referred to the end e�ector frame, which means it is necessary

to apply the following remapping

Jeω = Re
0J

0
w (3.12)

Being an orthogonal matrix, the application of the transpose to the matrix

(R0
e)
−1 = (R0

e)
T = Re

0 (3.13)

is enough to reference the end e�ector angular velocity to its coordinate frame and is

computationally less expensive than applying the inverse. This approached was assumed

because the orientation control of the end e�ector proved to be more intuitive if done this

way.

3.2.1 Inverse Di�erential Kinematic Model

After having deduced the direct kinematic model, and since the JACO2 is non redundant

the inverse kinematics model is calculated by simply inverting the Jacobian matrix

q̇ = J−1ve (3.14)

Alternatively, the Kinova API has a function named MyGetAngularPosition, which

retrieves the position of the joint angles. This enables the calculation of q̇ by the derivative

of q in discrete time

q̇k =
qk − qk−1

h
(3.15)

where h is the period of the control system, which is 10 milliseconds. In this work, the

angular velocity of the joints was obtained via this method, but due to real-time issues, some-

times the angular velocity was assumed to be zero, even during motions. This caused small

jerky movements that negatively in�uenced the behavior of the manipulator. Consequently,

some tweaking was required by doing

q̇k = q̇k−1 , if qk − qk−1 ≈ 0 (3.16)

19

20 Chapter 3. JACO2 Model Identi�cation

This improved the overall system performance of the arm during the experimental testing

of the control architectures to be illustrated in chapter 4.

3.3 Dynamic Model

In the previous sections, the geometric and kinematic models were addressed. Now, it

remains to be described and explained, the steps taken in order to estimate the dynamic

model. The Jacobian already allows the design of computed torque techniques although those

will only rely upon the geometry of the arm. On the other hand, the dynamic model, besides

taking that into account, incorporates other factors called the robot dynamic parameters

which entail the mass, inertia, frictions and other unknown parameters of the manipulator

that can negatively a�ect its performance. Additionally, this model will grant the possibility

of designing additional control architectures for both joint space and task space.

3.3.1 Theoretical Background

The dynamic model is based on the relation between the position, velocity and acceleration

of the joints and the resulting torques delivered to the joints. Similar to the previous models,

a forward or inverse approach can be pursued [5], where the �rst is based on the estimation

of the motions of the robot, given the torques/forces applied to the joints

q̈ = g(q, q̇, τ, Fe) (3.17)

while the second resorts to the accelerations, velocity and positions being in e�ect, in order

to derive the necessary joint torques to be sent

τ = f(q, q̇, q̈, Fe) (3.18)

Both equations 3.17 and 3.18 are fundamental to the design and study of control archi-

tectures based on torque/force motions and to evaluate if the robot performs the desired

task within the expected. As mentioned earlier, this model revolves around characteristics

that are intrinsic to the robot like its mass either be it from the links or the actuators, and

its inertia. Of course, these parameters are clearly of constant nature and their estimation,

as long as it is made correctly, can greatly improve the performance of the robot during the

execution of demanding or complex motions.

20

Chapter 3. JACO2 Model Identi�cation 21

In the literature, various proposals are made regarding the model identi�cation of robots

recurring to their dynamics. Most of the research has been done applying two methods:

Euler-Lagrange (EL) [16] [17] and Newton-Euler (NE) [18] [19], or even a combination of

both [20].

The EL technique has its foundation on the kinetic and potential energies existent during

robot motion. This can be summarized by the Lagrangian L, represented by the equality

L(q, q̇) = K(q, q̇)− P (q) (3.19)

where K(q, q̇) and P (q) are scalar values representing the kinetic and potential energy of

the manipulator. The kinetic energy is given by [21]

K(q, q̇) =
1

2
q̇TM(q)q̇ (3.20)

whereas the potential energy is described as,

P (q) = −gTc rcm (3.21)

where gc is the gravity acceleration vector (3 × 1) and rc the center of gravity for each

link of the arm (n × 1) and m is the vector containing the correspondent masses (n × 1).

Deriving equation 3.19 with respect to time, entails the joint generalized non-conservative

torque

τ =
d

dt

∂L(q, q̇)

∂q
− ∂P (q)

∂q
(3.22)

which after some algebraic manipulation yields,

τ = M(q)q̈ + C(q, q̇) + g(q) (3.23)

where M(q) is de�ned as a symmetric positive de�nite inertia matrix (n × n), C(q, q̇) is

the Coriolis and centripetal forces term (n× 1) and g(q) is the term relating to the gravity

forces. With the derivation of equation 3.23, the calculation of these matrices1 in real-time

allow the application of this model in speci�c control architectures based on torque control.

Alternatively, the NE technique can be pursued, which revolves around the velocities,

accelerations and torques/forces in e�ect on each link. The method is recursive which means

that the computations are made from link to link. Initially, the velocities and accelerations

1any advanced robotics textbook like [5] [13] [15] [22] illustrates the necessary steps.

21

22 Chapter 3. JACO2 Model Identi�cation

of the augmented links2 are calculated in an iterative way from the base to the end e�ector.

Then, the iterative process is inverted, in order to �nd the resulting torques/forces exerted

on the links. Naturally, both methods must yield the same results. There has been, however,

some discussions regarding the computational e�ciency of both methods. The EL method

is computationally less e�cient than the NE method, because apart from the fact that it is

not recursive, it also makes all the necessary calculations with reference to the base frame,

which leads to very complex expressions when dealing with a 6 DOF robot. Despite this,

[23] claims that a recursive Lagrangian methodology can achieve the same e�ciency as the

recursive NE method [24].

3.3.2 Dynamic Parameters

To obtain the dynamic parameters of the JACO2, Kinova provides to its costumers the

computer-aided design (CAD) model of the robot. In addition to this, an Excel document

is given as an auxiliary document, describing with more detail each link and actuator.

Figure 3.4: CAD model of the JACO2 robot.

The CADmodel provides an overall visualization of the robot with its di�erent aggregated

components. The complete set of coordinate frames for the various links and actuators is

illustrated along with their relative distances with respect to the base frame. Additional

information is given in the Excel document, where the mass and inertia tensors for each link

and actuator are described. Figure 3.5b entails the mass and inertia tensors for the base

link.

The straight blue line represented in the �gure is called the output coordinate system

(OCS). For easier visualization the axes orientation for that system is shown in the bottom

2refers to a system composed of a link + actuator

22

Chapter 3. JACO2 Model Identi�cation 23

left corner of �gure 3.5a. Each link and actuator can be described, dynamically speaking,

in terms of their mass, center of mass and inertia tensor. The center of mass (COM) of

a link/actuator i can be considered as a three dimensional vector with the position of the

point in regards to a speci�c coordinate frame

rli =

rlxi

rlyi

rlzi

 (3.24)

The inertia tensor relative to the COM is given by

Ili =

Ilxxi Ilxyi Ilxzi

Ilyxi Ilyyi Ilyzi

Ilzxi Ilzyi Ilzzi

 (3.25)

(a) COM and inertia tensor (colored in pink)

(b) Mass and inertia parameters.

Figure 3.5: Link 1 inertial parameters.

For demonstration purposes, most textbooks present examples of dynamic modeling of a

robot in an idealized way, neglecting, for instance, the inertial parameters of the actuators.

For a practical situation like this one, it is important to take into consideration all the major

structural components of the arm in order to get the best representation possible of the

23

24 Chapter 3. JACO2 Model Identi�cation

dynamic parameters. In tables 3.5, 3.6 and 3.7, the mass of each link and actuator, as well

as the plastic components that cover each actuator3 are listed. Due to their position, and

to simplify calculations, the plastic rings were integrated with the mass of the respective

actuator

mmpri = mmi
+mpri (3.26)

where mmpri is the combined actuator and plastic ring masses, whereas mmi
and mpri are

the masses from tables 3.6 and 3.7, respectively.

Table 3.5: Links

LinkMass (g)

1 181.984

2 423.993

3 211.004

4 68.96

5 68.96

6 727

Table 3.6: Actuators.

Actuator Mass (g)

1 573.68

2 559.72

3 573.341

4 341.41

5 341.41

6 341.41

Table 3.7: Rings

Plastic RingMass (g)

1 12

2 12

3 12

4 7

5 7

6 7

The dynamic parameters can be attained pursuing di�erent methodologies. One can

assume that each dynamic contribution of the links and actuators is calculated separately,

having separate COMs and inertia tensors, or, due to the inherent linearity of these param-

eters [25], it is possible to combine an actuator and a link creating an augmented link. This

work followed this approach.

Recalling �gure 3.5, the given coordinates pertaining the COM are with respect to the

OCS (refer to the reference frame in the bottom left corner). Of course, this is not ideal as

the OCS is not common to all parts. The COM needs to be transformed in order to be with

respect to the orientation of the DH coordinate system of the robot, the one illustrated in

�gure 3.3. The transformation is of the order

r′li = Trli (3.27)

where r′li is the newly mapped COM vector, T the chain of transformations needed to match

the orientation of the OCS of the link i to the correspondent DH coordinate frame i and

3the six gray covers in each actuator from 2.1a.

24

Chapter 3. JACO2 Model Identi�cation 25

the position of the augmented COM to this coordinate frame, and rli the coordinates of the

COM in the OCS. The augmented link i, being composed of link i and actuator i, is formed

by the combination of the newly mapped COMs, which is obtained via

raugi =
mlir

′
li

+mmprir
′
mi

mli +mmpri

(3.28)

where raugi is the COM of the augmented link, and r′mi
the application of equation 3.27

to the actuators.

Analyzing �gure 3.5b, di�erent inertia tensors are given. The inertia tensor taken at the

COM and aligned with the OCS, with the generalized notation

Li =

Lxxi Lxyi Lxzi

Lyxi Lyyi Lyzi

Lzxi Lzyi Lzzi

 (3.29)

is the one used in this work, since it gives the possibility of directly applying the Huygens-

Steiner theorem (also known as the parallel axis theorem), in order to calculate the inertia

tensor referred to the augmented COM4

Lai = Li + (mmpri +mli)S
T (raugi , r

′
li
)S(raugi , r

′
li
) (3.30)

with,

raugi , r
′
li

= r′li − raugi (3.31)

where Lai is the inertia tensor Li plus an increment due to the displacement of position

between the COM of the link and the augmented COM. For clarity reasons, assume that ω

translates the displacement shown in 3.31 The skew-symmetric operator S is of the form,

S =

0 −wz wy

wz 0 −wx
−wy wx 0

 (3.32)

Equation 3.31, establishes the augmented inertia tensor with the combined masses with

regards to the contribution of the links. The aforementioned method might su�ce as a

�rst estimation of the dynamic model. However, as one can expect, such approach can be

generalized to include the actuators as well, making the model slighter robust. By calculating

both augmented inertia tensors referred to the newly augmented COM, the overall inertia

tensor is simply the summation of both contributions

4refer to page 260 of [15] for detailed information about this theorem.

25

26 Chapter 3. JACO2 Model Identi�cation

Lti = Lai + Lri (3.33)

where Lri is the contribution wit respect to the actuator i, obtained following the same

criteria as Lai (equivalent approach with equations 3.27, 3.28, 3.30 and 3.31).

In appendix B a table illustrates the derived dynamic parameters for the JACO2.

3.3.3 Lagrangian Formulation

With the dynamic parameters already established, numerous approaches can be used to

calculate the dynamic model itself. The literature commonly details the traditional methods

brie�y described in section 3.3.1, but there has been a growing trend in the development

of symbolic robot modeling toolboxes [26] [27] [28] [29] that are both computationally more

e�cient and less strenuous for the user. Even so, this work is going to be based on the

EL method, as it reasonably easy to understand and presents a good starting point to the

analysis of the dynamic model estimation and its validity.

Recalling the explanations entailed in section 3.3.1, the EL method has its methodology

based on the computation of the kinetic and potential energies that are acting on a manip-

ulator. The computation relies on having all the contributions referred to the base frame

which puts into evidence the computational cost of this method.

The kinetic energy of a manipulator is given in the general form as

T =
n∑
i=1

(Tli + Tmi
) (3.34)

being the summation of the contribution of each link and actuator. From equation 3.20,

the mass (or inertia) matrix is given by

M(q) =
n∑
i=1

[(mmpri +mli)J
(augi)T
P J

(augi)
P + J

(augi)
O RiLtiR

T
i J

(augi)
O] (3.35)

where the Jacobian computation is adapted from equation 3.11

J
(augi)
Pj

= zj−1 × (paugi − pj−1)

J
(augi)
Oj

= zj−1

(3.36)

where pj−1 is the position of the origin of the DH frame j − 1 in base frame coordinates,

paugi is the COM of the augmented link with respect to the base frame and zj−1 is the unit

26

Chapter 3. JACO2 Model Identi�cation 27

vector of axis z of frame j − 1. The Jacobian is then constructed in the following fashion

J
(augi)
P = [J

(augi)
P1

· · · J
(augi)
Pi

0 · · · 0] (3.37)

J
(augi)
O = [J

(augi)
O1

· · · J
(augi)
Oi

0 · · · 0] (3.38)

Recall that the augmented inertia tensor deduced in the previous section is of constant

nature. The similarity transformation depicted on equation 3.35 shown by the term RiLtiR
T
i

represents the mapping of the inertial contribution of each augmented link with respect to

the base frame5.

The Coriolis term, C(q, q̇) is often calculated based on the Christo�el symbols technique,

alternatively, with the derivative of the inertia matrix

C(q, q̇) = Ṁ(q)− 1

2
q̇T
∂M(q)

∂q
(3.39)

The calculation of this term is very costly computation-wise. Generally, it can be dropped

as its contribution, in the majority of the cases, is negligible. The experimental tests pursued

with the JACO2 were done with low speed motions, making this term even less contributive.

Consequently, for the purposes of this work, this term was not considered.

The potential energy can be extended to include the contribution due to the actuators

U =
n∑
i=1

(Uli + Umi
) (3.40)

which following some algebraic manipulation and with the help of equation 3.21

U = −
n∑
i=1

(mlig
T
0 pli +mmprig

T
0 pmi

) (3.41)

where pmi
is the COM of actuator i referred to the base frame, whereas the gravity

acceleration in the base frame is denoted as g0 = [0 0 − 9.81]T . The gravity term g(q) is

then calculated deriving equation 3.41 with respect to each angle variable,

g(q) =
∂U(q)

∂q
(3.42)

With these assumptions, the inverse dynamic equation entailed in the expression 3.23

can be calculated.

5The absence of superscript means that the it with reference to the base frame.

27

28 Chapter 3. JACO2 Model Identi�cation

28

Chapter 4

Control Architectures

In the previous chapter, the robot model identi�cation for the JACO2 was outlined. Of

course, by being a practical implementation, these models represent an estimate and need to

be analyzed experimentally to infer their viability for real time applications. For that reason,

di�erent control architectures were tested. This chapter delves into this, exposing the theory

behind them and explaining the di�erent procedures that were tested for the manipulator

in study.

4.1 Operational Space Control

In the following subsections, the task space control architectures developed and tested

in the JACO2 are detailed. First, a simple operational space control in the task space is

presented with the application of the Jacobian transpose. Then, a null space control is

integrated and analyzed.

4.1.1 Jacobian Transpose Control

In section 3.2, it was described the Jacobian as the relation between the joint velocities

and the end e�ector velocities. Notwithstanding, the same principle can be applied to the

static torque/force relationship, by the concept of virtual work

δw = F T δX − τT δq (4.1)

where δX and δq are small displacements in end e�ector position and joint angles, caused

by a force F . These changes in position are mathematically still related by a Jacobian

29

30 Chapter 4. Control Architectures

δX = J(q)δq (4.2)

Hence, with equations 4.2 and 4.1, and assuming that the manipulator is in equilibrium,

then ∂w = 0, which yields

τ = J(q)TF (4.3)

Equation 4.3 directly relates the applied forces at the end e�ector and the resulting joint

torques with the transpose of the Jacobian. This results in an important relation for motion

control. Normally, if the robot is tasked with the operation of performing some speci�c

motion in the environment where precision movements from the end e�ector are a must then

an operational space control scheme might suit ones needs.

The basis for the Jacobian transpose control lies on the real time de�nition of a desired

trajectory/position (task space) while the robot performs the necessary joint movements to

ful�ll the task (joint space). A control law based in a PID control can be de�ned in order

to meet these criteria.

JT �
JACO2

ĝ(q)

Ki�l

s

Kp�l

q� �q Forward
Kinematic
Model

Di�.
Kinematic
Model

Kd�l

pc

pd

_pc

fc

F

R�

(Rc)
��RdR2r

Rc
c!dKp�o

Ki�o

s

�ocd

!cKd�o

�c

Rd

Figure 4.1: Block scheme of the Jacobian transpose control.

In �gure 4.1 one such example is illustrated. The forward kinematic model is obtained via

the Kinova API with the help of the function MyGetCartesianPosition, which gives the

position and orientation (in Euler angles with XYZ convention) of the end e�ector referred

30

Chapter 4. Control Architectures 31

to the base. They are represented in the control scheme by pc and Rc. The di�erential

kinematics model is obtained from equations 3.6, 3.15 and 3.16. KP , KI and KD are positive

diagonal matrices corresponding to the proportional, integrative and derivative terms for

both position and orientation.

4.1.2 Orientation Control

The block diagram displayed in the previous section shows that the orientation control

is performed di�erently than the position control. The orientation can be expressed with

three Euler angles, which translate into the nine elements present in a rotation matrix of a

homogeneous transformation matrix (acknowledged in equation 3.2). Considering that the

Euler angles retrieved from MyGetCartesianPosition are set as ϕ = [α β γ]T , then

following the XYZ convention [30]

R(ϕ) = Rx(α)Ry(β)Rz(γ) =

cβcγ −cβcγ sβ

sαsβcγ + cαsγ −sαsβsγ + cαcγ −sαcβ
−cαsαcγ + sαsγ cαsβsγ + sαcγ cαcβ

 (4.4)

where Rx(α), Ry(β) and Rz(γ) are the rotation matrices about each of the three coordi-

nate axes. There are various ways to minimally represent the orientation of the end e�ector:

Euler angles, angle-axis representation, or quaternions. With the angle-axis representation

and taking as a basis the work developed in [31], let Rc
c→d be the computation of the rotation

from the current orientation to the desired one, from the coordinate frame of the end e�ector

Rc
c→d = (R0

c)
−1R0

d (4.5)

where R0
c and R

0
d are the current and desired end e�ector orientation with respect to the

base frame. The angle-axis representation can be parameterized as

θ = cos−1(R11+R22+R33−1
2

)

ν = 1
2 sin(θ)

R32 −R23

R13 −R31

R21 −R12

(4.6)

where R refers to a rotation matrix like Rc
c→d. The axis is represented by the three dimen-

sional vector ν while the angle of rotation along that axis is referred to θ. The orientation

31

32 Chapter 4. Control Architectures

displacement between the current and desired orientations is then given by

∆ocd ≡ r ≡ θν (4.7)

Clearly, this method is prone to singularities when θ is approximately zero or π. To avoid

this, a threshold of 0.03 rad is assumed where the range of angles up to this value are neglected

and the orientation error is assumed to be zero, or below the π minus this threshold, where

the angle values are not considered, and the error is instead simply the maximum accepted

π-threshold. Similar to the position control, a PID control can be applied to minimize the

orientation error. The addition of the integrative component, not usually suggested in the

literature, proved to be essential. Its calculation, for an angle-axis parametrization was

de�ned for an instant k as

∫ k

k−1
∆ocd = (rk−1 · νk + θk)νk (4.8)

Alternatively, a composition of two successive angle-axis rotations obtained via appli-

cation of the Euler-Rodrigues parameters [32] yields the same result. In �gure 4.1 a block

named R2r is displayed. This is responsible for the calculation of equation 4.7. Lastly, Rd is

calculated with the desired Euler angles which are then inputed in equation 4.4.

4.1.3 Null Space Control

The scheme displayed in �gure 4.1, shows the simultaneous control of the translation

and orientation of the JACO2, by considering exclusively its geometry. Experimental tests

suggested that the acting forces for the tracking of the desired position and orientation

often generated coupling e�ects between each other resulting in unwanted disturbances and

decreasing the overall performance of the system. Such a problem can be minimized by

exploring the concept of null space control. The idea lies on the establishment of a primary

goal, responsible for a speci�c controller, like the position control, and a secondary goal,

operating in the null space of the primary controller. Thus, the overall torque sent to the

manipulator is then

τ = τt + τN (4.9)

where τt is the torque related to the primary goal and τN is the null space term entailing

the �ltered torque correspondent to the secondary goal. Therefore, let the position control

32

Chapter 4. Control Architectures 33

be de�ned as the primary task, and the orientation control the secondary task. Equation

4.9 breaks down into,

τ = JTv fc + (I − JTv J#T)τ0 (4.10)

where J# is the generalized inverse of Jv and the matrix (I−JTv J#T) projects the vector

τ0 into the null space of Jv

J# = W−1JTv (JvW
−1JTv)−1 (4.11)

where W = M(q) if task space dynamics are considered. For now, let W = I

J# = JTv (JvJ
T
v)−1 (4.12)

which entails a geometric based approach. The J# is then simply the Moore-Penrose

pseudo-inverse. Analyzing the control scheme pictured in �gure 4.1, equation 4.10 is speci�ed

as

τ = JTv fc + (I − JTv J#T)JTω µc (4.13)

where Jv and Jω are the 3×6 submatrices of J (refer to equation 3.6), I is a 6×6 identity

matrix. Figure 4.2 depicts the application of the null space control.

JT
v

�
JACO2

ĝ(q)

Ki�l

s

Kp;l

q� �q Forward
Kinematic
Model

Di�.
Kinematic
Model

Kd;l

pc

pd

_pc

fc

R�

(Rc)
�1RdR2r

Rc
c!dKp;o

Ki�o

s

�ocd

!cKd;o

�c

Rd

I � JT
v J�TJT

�

�t

�0

Figure 4.2: Task space control with geometric null space implementation.

33

34 Chapter 4. Control Architectures

Results with the so-called dynamically consistent generalized inverse, that is with the

application of W = M(q) are also going to be analyzed with an equivalent control scheme.

34

Chapter 4. Control Architectures 35

4.2 Computed Torque Control in the Joint Space

The previous control techniques were built applying the kinematic and di�erential kine-

matic models, without any attention to the dynamics of the manipulator. This can be

enough for general task operations whose precision does not need to be very high. However,

including the dynamic model into the control design generally improves the stability, perfor-

mance and accuracy during task operations as long as its estimations are approximate to the

real model. Additionally, there is the signi�cant advantage of making the system linearized,

reducing the coupling e�ects described in the last section. Thus, taking as a starting point

equation 3.23, then the generalized torque τ can be assumed as

τ = τc − τf − τe (4.14)

where τc , τf and τe are respectively the computed, friction and external torques acting

on the manipulator, which by directly substitution yield

τc − τf − τe = M̂(q)q̈ + Ĉ(q̇, q) + ĝ(q) (4.15)

where M̂(q), Ĉ(q̇, q), and ĝ(q) are the estimations of the dynamic model obtained from

the implementations outlined in sections 3.3.2 and 3.3.3. Throughout the work, external and

friction torques were not considered1. Thus, equation 4.15 is denoted as

τc = M̂(q)q̈ + Ĉ(q̇, q) + ĝ(q) (4.16)

Equation 4.16 illustrates a system nonlinearly dependent upon the joint positions and

velocities. Due to this, feedback linearization and decoupled control are applied in order to

cancel nonlinear e�ects. Hence, the system is linearized using a nonlinear feedback law of

the fashion

τc = M̂(q)w + Ĉ(q̇, q) + ĝ(q) (4.17)

where w = q̈ is the new control variable. Equation 4.17 is the inverse dynamic control

or also commonly referred as computed torque control. As can be easily seen, the direct

application of this control law can be used for joint space control techniques.

For this reason, a simple dynamic-based PD controller is developed, since it presents a

good starting point to infer the viability of estimated dynamic model.

1This will be a target of further discussion in chapter 5.

35

36 Chapter 4. Control Architectures

��
JACO�

ĝ�q)

Kp

q� �q

Kd

qd

q�

w
M̂�q)

_q�

Figure 4.3: Joint Space Control with Dynamic Model.

Each of the six joints are independently controlled with the proportional-derivate terms,

which gives a broader perspective of the overall performance of the robot. The inertia matrix

M̂(q) and the gravity term ĝ(q) are computed in real time with the control variable w being

w = Kp(qd − qc)−Kdq̇c (4.18)

where from w = q̈, the closed-loop system dynamics is given by

q̈ +Kdq̇ +Kpqc = Kpqd (4.19)

which yields a exponentially stable solution if Kp and Kd are properly chosen. The

schematic from �gure 4.3 depicts the described control architecture.

4.3 Joint Space Control with Task Posture Reference

In the previous sections di�erent operational space control schemes were addressed. Al-

though acceptable results can be attained using these architectures, their control gain design

is limited. This is because, experimentally, the same control gain was assigned to every value

of the diagonal of each matrix. If done otherwise, the system would behave erroneously. The

reason for this pertains to the fact that the control gains are applied directly to the task

space errors.

For this reason, a new approach must be followed. Although, the last section already

introduced the topic of controlling each joint individually, it is not very useful for task

operation purposes. Consequently, another approach must be devised so that the control of

the system is improved. In this section, such approach is presented as an adaption of works

[33] [34].

36

Chapter 4. Control Architectures 37

J�

_qd
JACO2

ĝ(q)

Ki�l

s

Kp;l

q�
Forward
Kinematic
Model

Di�.
Kinematic
Model

Kd;l

pc

pd

_pc

_Xd

��

(Rc)
�1RdR2r

Rc
c!dKp;o

Ki�o

s

�ocd

!cKd;o

_X	

Rd

I � J�TJvJ�1
	

_qt

_q0
�q�

M̂(q)

�q�

�cKp
w

w 1
s

1
s

_qc qc

Figure 4.4: Joint Space Control with Task Space Reference.

In short, a task space reference is assumed, but the posture errors are mapped into

joint velocity references which ensure a joint-based control. Additionally, a null space joint

velocity control is added to the system. As a starting point, let q̇0 be the null space velocity

vector pointing to the joint position error. Then, the desired joint position qd is directly

obtained by integrating q̇d resulting in,

q̇d = J#Ẋd + (I − J#Jv)q̇0 (4.20)

with the Moore-Penrose pseudo-inverse J# obtained from equation 4.12. Like the com-

puted torque control with the null space orientation control in section 4.1.3, the concept of

null space is also applied, but now with respect to the joint velocity reference. From equa-

tion 4.20 Ẋd is the desired task space linear velocity which is easily computed from desired

and current positions, although experimentally the fully outer-loop PID control was also

considered. The null space velocity vector q̇0 is obtained from the application of the inverse

di�erential kinematics model

q̇0 = J−1ω Ẋω (4.21)

with the following premise

Ẋw ∝ ∆ocd (4.22)

37

38 Chapter 4. Control Architectures

With these assumptions, and resorting to equation 4.16, the control variable w = q̈ that

allows a linear and decoupled control is simply known as

q̈ = q̇d − q̇c (4.23)

where q̇c is obtained from the calculations delved in section 3.2.1. In �gure 4.4 the

proposed control scheme is illustrated. The inner joint velocity control is composed of a single

proportional control gainKp with size 6×6 whose diagonal elements are set independently for

each joint. Normally, proportional-derivative (PD) controllers are designed for such control

systems, but after some tests, it was veri�ed that the derivative component was introducing

too much noise and instability to the system, mainly due to the high �uctuation inherent to

the sudden rate of change of joint velocities.

38

Chapter 5

Experimental Results

To evaluate the control architectures presented in the previous chapter and the derivation

of the geometric, di�erential and dynamic models of the JACO2 6 DOF robot described in

chapter 3, experiments are carried out with the robotic arm, speci�cally by performing a

planned trajectory. Before discussing the results achieved, a brief description must be done

regarding the experimental setup, the di�erent internal adjustments that had to be done to

the robot, and the experiment itself.

5.1 Setup

Before attaining the results shown in the next sections, the robot had to be studied in

order to understand what type of controllers where integrated on its system. Since the work

revolves around computed torque techniques, the torque control console (�gure 2.3) provided

by Kinova was initially studied. Initial experiments suggested that the manipulator was

under speci�c control mechanisms that could become an unwanted variable in the computed

torque architectures devised in this work.

Naturally, if one desires to develop control architectures like the ones described in chapter

4, it is relevant that internally the robot has the least amount of controllers active, to mini-

mize those external factors. In table 5.1 are displayed the Kinova API functions that were

used as a setup for the experimental tests, and that allowed the minimization of some of the

internal control mechanisms. In short, the most important functions were MySetGravity-

OptimalZParam andMySetTorqueActuatorGain. The former granted the elimination

of the gravity compensation imbued in the robot. The latter improved the arm's behavior

during torque control, by apparently omitting some control branches present in the DSP of

the arm.

39

40 Chapter 5. Experimental Results

Table 5.1: Setup Parameters.

Function Description Value

MySetTorqueSafetyFactor

If the velocity of an actuator gets to a speci�c threshold

the robot stops and changes back to trajectory control.

Feature that prevents the robot from taking high speed motions.

Setting to 1 disables the feature.

1

MySetTorqueVibrationController
Vibration observer/controller to eliminate vibrations during contact

with sti�ness environments. Adjust from 0 to 1, to enable or disable vibrations.
1

MySetTorqueActuatorDamping Set actuators damping gain. 0

MySetGravityType

Set the gravity type: either manual or optimal. With manual the user can

specify each mass of the link and COM , while in optimal mode the robot

performs a task to obtain the best set of parameters.

Optimal

MySetGravityOptimalZParam Function used to set the gravity parameters using the optimal mode. 0

MySetTorqueActuatorGain Set the actuators feedback gain 0

Before initiating the experimental tests, it is important to calibrate the torque sensors

by setting them to zero, while the arm is positioned in a con�guration where gravity does

not in�uence the joint torques. The position is suggested in the advanced speci�cation

guide as being qcalib = [∗, 180, 180, 0, 0, 180] with ∗ being any joint value in degrees desired.

Likewise, the position of the actuators is also calibrated due to the common displacement

occurred when the actuators are suddenly stopped. For both calibrations, functions My-

SetTorqueZero and MySetJointZero are used, respectively. The commanded torque τc

is sent to the robot with the function MySendAngularTorqueCommand.

For all the results illustrated on this chapter, an operational space trajectory was planned

to infer the tracking capabilities of the robotic arm. The trajectory is a third degree poly-

nomial (spline) denoted as

X(t) = X0 +
3

t2f
(Xf −X0)t

2 − 2

t3f
(Xf −X0)t

3 (5.1)

where X(t) represents the end e�ector pose vector for the instant t, X0 the initial pose,Xf

the �nal pose and tf is the duration of the trajectory,

X0 =

[
0.212444, − 0.257293, 0.506643, 1.65789, 1.11875, 0.113634

]T
(m)

Xf =

[
0.312452, − 0.407218, 0.706502, 2.44364, 0.0715527, 0.637327

]T
(m)

tf = 16 (s)

(5.2)

The initial pose refers to the HOME position/orientation of the robot, while the �nal

pose was set as to stress the robot into performing di�cult motions to better ascertain the

40

Chapter 5. Experimental Results 41

reliability of the estimated models (refer to appendix D for a more clear observation of both

the initial and �nal poses).

5.2 Task Space Control

The �rst operational space control, called the Jacobian transpose control was detailed on

section 4.1.1. This control resorts solely on the geometry of the arm, which might not grant

the best possible tracking behavior. The 6 × 6 diagonal positive-de�nite gain matrices are

listed in table 5.2.

Table 5.2: Control Gains.

Position Gain Orientation Gain

Kp,l 400 Kp,o 20

Ki,l 150 Ki,o 8

Kd,l 25 Kd,o 1.5

0 5 10 15 20

0.22

0.24

0.26

0.28

0.3

0.32

time [s]

X
[m

]

Reference Robot

(a) X Position.

0 5 10 15 20

−0.4

−0.35

−0.3

−0.25

time [s]

Y
[m

]

Reference Robot

(b) Y Position.

0 5 10 15 20

0.5

0.55

0.6

0.65

0.7

time [s]

Z
[m

]

Reference Robot

(c) Z Position.

0 5 10 15 20

1.6

1.8

2

2.2

2.4

time [s]

α
[r
ad
]

Reference Robot

(d) X Orientation.

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

time [s]

β
[r
ad
]

Reference Robot

(e) Y Orientation.

0 5 10 15 20

0.2

0.4

0.6

time [s]

γ
[r
ad
]

Reference Robot

(f) Z Orientation.

Figure 5.1: Tracking with Jacobian transpose control.

41

42 Chapter 5. Experimental Results

As can be seen from the �gure 5.1, the steady state error is acceptable. The �gures

show the tracking of position in meters and the orientation expressed in radians through the

nomenclature evoked in section 4.1.2. Prior to the addition of the integrative component,

the steady state error was di�cult to minimize especially regarding the orientation. The

derivative term, which regulates the rate of error change by acting as a dampener, could not

be increased too much, as the robot would rapidly start to perform oscillatory motions. The

reasons behind this are not completely understood, although it might suggest that the robot

has some degree of damping e�ect associated to its actuators which was still noticeable even

after applying the commands shown in table 5.1. With the control gains expressed in table

5.2 the results are conclusive. Observing �gures 5.1a, 5.1b and 5.1c one can see that although

the tracking is initially reasonably acceptable, the adjustment of the end e�ector orientation

as displayed in �gures 5.1d, 5.1e and 5.1f causes a position displacement with respect to the

reference, at around 10 seconds. This suggests the existence of force coupling, from both the

position control and orientation control, acting on the robot while it reaches the desired pose.

That is particularly noticeable in 5.1f which shows oscillatory motion around the interval

[2.5,7.5] (s). This, naturally, is made more noticeable due to the strenuous trajectory that

is imposed, which in terms of orientation requires a change of 45◦ along X, 60◦ along Y and

30◦ along Z.

To minimize this, attempts were made by adjusting the control gains accordingly, and

despite being possible, the minimization of the steady state error would be compromised.

Thus, a balance was met using these control gains, which best combined both considerations.

Alternatively, a null space approach might improve the performance of the robot and reduce

these problems.

5.3 Null Space Orientation Control

In the last section the Jacobian transpose control was analyzed, and its main drawbacks as

a torque control technique were discussed. Fortunately, an alternative approach can be de-

signed allowing both position control and orientation control to work simultaneously without

interference between them. In section 4.1.3, the concept of null space was introduced, which

ensures the application of multiple controllers at once. In this case, the orientation control

is de�ned as the secondary task, while the position control is the primary task. This means

that the orientation control operates in the null space of the position control. With this, the

commanded torque apart from being composed by the control signal of the position control

42

Chapter 5. Experimental Results 43

has also a �ltered component resulting from the null space of the position control which will

not interfere with it. Obviously, with this requirement the desired orientation might not be

reached. Applying the same control gains from table 5.2, the control architecture of �gure

4.2 generates the results shown in �gure 5.2.

0 5 10 15 20

0.22

0.24

0.26

0.28

0.3

0.32

time [s]

X
[m

]

Reference Robot

(a) X Position.

0 5 10 15 20

−0.4

−0.35

−0.3

−0.25

time [s]

Y
[m

]

Reference Robot

(b) Y Position.

0 5 10 15 20

0.5

0.55

0.6

0.65

0.7

time [s]

Z
[m

]

Reference Robot

(c) Z Position.

0 5 10 15 20

1.6

1.8

2

2.2

2.4

time [s]

α
[r
ad
]

Reference Robot

(d) X Orientation.

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

time [s]

β
[r
ad
]

Reference Robot

(e) Y Orientation.

0 5 10 15 20

0.2

0.4

0.6

time [s]

γ
[r
ad
]

Reference Robot

(f) Z Orientation.

Figure 5.2: Tracking with Null Space Orientation Control.

Clearly, it is possible to observe from �gures 5.2a, 5.2b and 5.2c that the tracking accuracy

with respect to the primary task, is improved comparing with �gures 5.1a, 5.1b and 5.1c. The

secondary task, displayed in �gures 5.2d, 5.2e and 5.2f, despite being a �ltered signal, holds

a similar response to the previous controller. Still, it is worth reminding that this control

architecture relies upon the Moore-Penrose pseudo-inverse, which recalling equation 4.11,

means that W = I. As one can expect, this is not ideal, as only the geometry of the robot

is considered. Ideally, W = M(q) where the mentioned equation entails the dynamically

consistent generalized inverse. By including the dynamic parameters of the robot, it is

expected that better results can be achieved, and one can safely assume that no secondary

task forces interfere with the primary task forces. As a result, with W = M(q) the system

behaves as shown in �gure 5.3. The control gains for this test are the same (refer to table

5.2).

It is expected that the null space implementation has an increase of performance by

43

44 Chapter 5. Experimental Results

0 5 10 15 20

0.22

0.24

0.26

0.28

0.3

0.32

time [s]

X
[m

]
Reference Robot

(a) X Position.

0 5 10 15 20

−0.4

−0.35

−0.3

−0.25

time [s]

Y
[m

]

Reference Robot

(b) Y Position.

0 5 10 15 20

0.5

0.55

0.6

0.65

0.7

time [s]

Z
[m

]

Reference Robot

(c) Z Position.

0 5 10 15 20

1.6

1.8

2

2.2

2.4

time [s]

α
[r
ad
]

Reference Robot

(d) X Orientation.

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

time [s]

β
[r
ad
]

Reference Robot

(e) Y Orientation.

0 5 10 15 20

0.2

0.4

0.6

time [s]

γ
[r
ad
]

Reference Robot

(f) Z Orientation.

Figure 5.3: Tracking with dynamically consistent generalized inverse.

assuming the dynamically consistent generalized inverse. Analyzing �gures 5.3a, 5.3b and

5.3c with their counterparts from �gure 5.2, it can be seen that although the overall steady

state error is still within acceptable margins, the performance has not increased as it was

expected, being practically the same.

Naturally, this lack of improvement might be due to uncertainties and estimation errors

related to the derived dynamic model. Further discussion pertaining this is made throughout

the remaining chapter.

5.4 Dynamic Control in the Joint Space

In section 4.2, a simple PD controller is described (�gure 4.3) which is purposedly used

as a quick way to evaluate the derived dynamic model. This was done, mainly because the

calculations surrounding the dynamic model identi�cation of a general robot are strenuous

and easily error-prone. Consequently, it is important to start from the simplest control ar-

chitecture possible, and then build up towards more complex systems based on an already

well known model. In the same way as the geometric and kinematic-based control architec-

tures shown in the previous sections, a desired trajectory is de�ned. Hence, for each joint a

44

Chapter 5. Experimental Results 45

sinusoidal wave is generated with the form

qd = A sin(ωt) (5.3)

where the angular frequency ω = 2π
T

with T being the period of the trajectory which is

set to 8 seconds, and amplitude A of 20 degrees.

Table 5.3: Control Gains.

Joint i Kpi Kdi

1 32.5 12.25

2 40.5 15.25

3 55 22.5

4 65 28.5

5 70 30.5

6 850 150

From a prede�ned position in the environment, all joints are set simultaneously with

the desired trajectory in order to boost motion stress, and to draw broader conclusions.

In �gure 5.4 the results are shown with the proportional-derivative gains detailed in table

5.3. As can clearly be observed, the joints follow the desired motion with relatively good

tracking response performing stable movements during the trajectory. This suggests that

the proposed dynamic model is reasonably well estimated. The individualized joint control

grants a wider management and adjustment to how the robot should operate given a speci�c

task. Experimentally, with the application of the aforementioned gains it was also visible

that the coupling e�ect between the joints was low, which further suggests that the system is

approximately linearized and provides additional evidence into the dynamic model validity

and viability.

Although the depicted results are conclusive enough to draw these assumptions, it is

important to refer that the dynamic model is calculated with the inertial parameters de-

scribed in the CAD model of the manufacturer. This is well known for not producing the

best estimations possible, since the CAD models are known to be prone to errors due to

the fact that the geometry of the links is usually complicated to de�ne precisely and certain

structural parts of the robot are often dismissed [5].

Also, it was observed amid the experimental tests, that a considerably higher proportional

gain had to be set for the last joint, so that it could execute the required sinusoidal trajectory

45

46 Chapter 5. Experimental Results

0 5 10 15 20

260

270

280

290

300

time [s]

P
os
it
io
n
[◦
]

Reference Robot

(a) Joint 1.

0 5 10 15 20

170

180

190

200

210

time [s]

P
os
it
io
n
[◦
]

Reference Robot

(b) Joint 2.

0 5 10 15 20

80

90

100

110

120

time [s]

P
os
it
io
n
[◦
]

Reference Robot

(c) Joint 3.

0 5 10 15 20

220

230

240

250

260

time [s]

P
os
it
io
n
[◦
]

Reference Robot

(d) Joint 4.

0 5 10 15 20
60

70

80

90

100

time [s]

P
os
it
io
n
[◦
]

Reference Robot

(e) Joint 5.

0 5 10 15 20

60

70

80

90

time [s]

P
os
it
io
n
[◦
]

Reference Robot

(f) Joint 6.

Figure 5.4: Tracking with dynamic control in the joint space domain.

to the end e�ector. The increase of this control term was met with ease, and no discernible

coupling e�ects were seen. Still, one has to wonder why such deviant control gain is required

compared with the remaining joints. Various hypotheses can be conceived as a reason for

that. On one hand, the end e�ector base inertial parameters provided in the CAD model

might be underestimated, which consequently makes the model under evaluate the necessary

torque command to be sent to the last actuator, and despite being a legitimate reason,

it is unlikely to be the real cause. On the other hand, it is also possible to be due to

assumed estimations during the calculation of the dynamic parameters, or in other words,

inconsistencies with the derived dynamic model. This last claim might be reasonably fair

as the estimation of the model is easily mistakable, but if that were the case, propagation

e�ects due to this increased control gain would have been made more visible to the other

joints, making the system generally unstable during task operation and prone to small jerky

motions.

46

Chapter 5. Experimental Results 47

5.5 Joint Space Control with Task Space Reference

In the previous section, the proposed dynamic model was analyzed and discussed and its

veracity inferred. Naturally, the joint control is not the most practical way of making the

robot perform a speci�c task operation. Therefore an alternative approach is suggested. As

detailed in section 4.3 with the control scheme of �gure 4.4, a task space reference is designed

similarly to the task space controllers previously shown, with the resulting task space errors

being converted into joint velocity references, by virtue of the known di�erential kinematic

relation. This conduces to an individualized control of each joint, just like the controller of

the last section, but having the advantage of possessing a task space reference.

Table 5.4: Joint Velocity Control Gains.

Joint i Kpi

1 60.5

2 70.5

3 87.5

4 90

5 90

6 600

Table 5.5: Task Space Control Gains.

Position Gain Orientation Gain

Kp,l 80 Kp,o 25

Ki,l 20 Ki,o 10

Kd,l 5 Kd,o 3.5

To improve the performance of the system a null space velocity component is de�ned,

relying on the geometry of the robot. The control gains for both the task space control and

consequent joint space velocity control are shown in tables 5.4 and 5.5. The system response

with this controller, is shown in �gure 5.5. Detailed observation of �gures 5.5a, 5.5b and

5.5c show that the desired position is practically achieved around the end of the trajectory

(16 seconds).

By virtue of the null space implementation, the position control takes precedence over ori-

entation control therefore assuming an adequate response. Nonetheless, small disturbances

are still experienced during the position control, around the interval [15,20] seconds.

The secondary task denoted by �gures 5.5d, 5.5e and 5.5f, is adjusted in the latter stages

of the trajectory motion during the aforementioned time interval. Even though, there are

still small non �ltered torque commands interfering with the position control, as it was just

referred. The sudden readjustment of orientation might be the cause for such occurrence.

47

48 Chapter 5. Experimental Results

0 5 10 15 20 25

0.22

0.24

0.26

0.28

0.3

0.32

time [s]

P
os
it
io
n
[m

]
Reference Robot

(a) X Position.

0 5 10 15 20 25

−0.4

−0.35

−0.3

−0.25

time [s]

P
os
it
io
n
[m

]

Reference Robot

(b) Y Position.

0 5 10 15 20 25

0.5

0.55

0.6

0.65

0.7

time [s]

Z
[m

]

Reference Robot

(c) Z Position.

0 5 10 15 20 25
1.4

1.6

1.8

2

2.2

2.4

time [s]

α
[r
ad
]

Reference Robot

(d) X Orientation.

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

time [s]

β
[r
ad
]

Reference Robot

(e) Y Orientation.

0 5 10 15 20 25

0.2

0.4

0.6

0.8

1

1.2

time [s]

γ
[r
ad
]

Reference Robot

(f) Z Orientation.

Figure 5.5: Joint Space Control with Task Posture Reference.

Observing with more detail �gures 5.5d and 5.5f, one can easily see that the tracking lefts

much to be desired in the �rst stages of the task operation. Attempts were made to add an

integrative term to the inner joint velocity control to tackle this issue, since the derivative

term was found to be too noisy and unstable. Unfortunately, no advantages were obtained

with it, as coupling e�ects started to be felt. For that reason, this term was also dropped

remaining only a proportional term to control the inner joint velocities.

Moreover, the last section already discussed the possibility of existing small inconsisten-

cies in the derived dynamic model. In fact, as it was considered initially, the addition of the

dynamic model of the robot should increase its accuracy regarding the execution of more

demanding or high precision tasks. With the results obtained from �gure 5.5, and comparing

with the ones gathered in �gures 5.2 and 5.3, one might call into question the results seen

in this section. With this in mind, these tests, albeit acceptable, are conclusive enough to

a�rm that more research and study needs to be addressed by future works.

Furthermore, it is important to emphasize that the planned trajectory for the exper-

imental tests illustrated in this chapter was not particularly simple, involving a complex

reorientation of the end e�ector, which naturally highlights even more the inconsistencies of

the deduced model and puts into evidence other unmodeled terms such as friction.

48

Chapter 5. Experimental Results 49

Despite all these premises, the system is able to reach its �nal pose with an overall

acceptable steady state error.

Lastly, all the control gains shown in chapter 5 were manually tuned. Further improve-

ments might be obtained by properly designing the system to have a proper damping be-

havior. Commonly, for these systems, it is wished to have the least amount of oscillatory

movements and reach the steady state as fast as possible. This means designing the system

to have a critically damped response.

49

50 Chapter 5. Experimental Results

50

Chapter 6

Space Mouse Control

During the �rst stages of this work, before computed torque techniques were studied and

applied to this robot, it was desired to design a more intuitive way of teleoperating the arm

as an alternative to the di�cult and complex joystick that is provided. For this reason, the

SpaceNavigator® for Notebooks from 3Dconnexion1 was used. This is a mouse commonly

used professionally for CAD or 3D applications, allowing an easy and natural interaction.

Button � Button 2

(a) Space Mouse.

(b) Axes Orientation.

Figure 6.1: Product Speci�cation.

The 3D mouse has 6 DOF, which makes it ideal to control a robotic manipulator like

the JACO2. The mouse can be horizontally shifted in X and Z directions, vertically shifted

in the Y direction, tilted around X and Z and twisted around Y axis, �gure 6.1b, shows the

axis orientation of the mouse [35]. Additionally, its sensitivity and other parameters can

be adjusted with the associated software retrievable from the website of 3Dconnexion along

1https://www.3dconnexion.eu/

51

https://www.3dconnexion.eu/

52 Chapter 6. Space Mouse Control

with C code examples in order to understand how to program the mouse and to develop

applications with it.

Figure 6.2: 3DxWare 1.8 (Unix Version) with JACO2 con�guration.

The software allows the switching of di�erent mouse con�guration modes depending on

the program/window where the mouse is being used. The menu illustrated in �gure 6.2

depicts the 3DxWare software with a manually set con�guration to be used with the robot.

To initialize the space mouse, it is mandatory to have the 3DxWare software opened.

The 3D mouse is also integrated with two con�gurable buttons (labeled in �gure 6.1a),

which can also be programmed, either with the 3DxWare software or through the C pro-

gramming libraries developed for the mouse. This last option was pursued since it allowed

the fully integration of the programming functions of the mouse into the developed C++

code used to control the arm with the Kinova API functions. All the work described in this

chapter was developed under the Ubuntu 16.04 Linux distribution, but alternative software

is also available for Windows platforms.

Initially, the objective was simply to control the 6 DOF of the arm with the mouse itself.

The �rst step is de�ning which control option, from the ones that come with the manipulator,

is best suited for this control method. For that decision to be made, it was necessary to

know what kind of data the mouse outputted while manipulating it. After experimental

tests with the mouse, it was found that for each DOF the output values were bound to the

interval [350,-350], between the positive and negative maximum values, respectively. Having

this, and knowing the di�erent control types that the JACO2 possesses (refer to appendix

C), it was decided that the most straightforward control option would be cartesian velocity

52

Chapter 6. Space Mouse Control 53

control.

USB C/C�� Data

Conversion

Kinova

PI

Velocity Setpoint

Figure 6.3: Simpli�ed control of the JACO2 with the SpaceNavigator®.

Figure 6.3 summarizes the proposed control scheme. The input commands are sent,

with the real time manipulation of the mouse by the user, to the computer where they are

processed. It is necessary to convert the data, scaling it to the range of values accepted by

the robot, which is easily obtained by applying a rule of three,

vRi
=
SivRm

Sm
, i = 1, . . . , 3 , µRi

=
SiµRm

Sm
, i = 4, . . . , 6 (6.1)

where vRi
is the translational velocity of the arm for each direction X, Y and Z, µRi

refers

to the rotational velocity around each axis of the end e�ector, Si is the space mouse input

value for the i DOF, Sm is the maximum read value from the mouse, and lastly vRm and

µRm are the maximum de�ned values for the translational and rotational velocity for the

JACO2. These last two values are de�ned in accordance with the suggested manufacturer

maximum values, which are vRm = 0.2 m/s and µRm = 1 rad/s. Additionally, it was noted

that the default axes orientation of the mouse, depicted in �gure 6.1b, could be made more

intuitive for the user, if it matched the base reference frame of the JACO2, which is where

the translational motions are referred (recall �gure 3.3). Consequently, the data sent by the

mouse is readjusted according to the following relations,

53

54 Chapter 6. Space Mouse Control

vRx = Sx

vRy = Sz

vRz = Sy

µRx = Srx

µRy = Srz

µRz = Sry

(6.2)

With the coordinate axes of the mouse adjusted to the ones of the JACO2, the control of

the robotic arm was made more natural and easy for the user. With this resolved, Kinova API

functions are then used to send the appropriate commands to the robot. ATrajectoryPoint

structure is ready to host the newly mapped commands from the mouse, having its type of

position set to CARTESIAN_VELOCITY. Finally, the velocity setpoints are sent with

the function MySendBasicTrajectory with a sampling time of 10 ms.

The control of the robot is now be done in a natural fashion, however since the mouse

integrates two con�gurable buttons, further features can be designed so that the user can

maneuver the robot more precisely so that more complex tasks can be executed. Given these

assumptions, a �nite state machine (FSM) was developed allowing the change between the

integrated operation modes in a quick manner.

As a �rst implementation, the space mouse is programmed with a limited set of operation

Figure 6.4: Finite State Machine for Space Mouse Control of the JACO2.

54

Chapter 6. Space Mouse Control 55

modes, although future work can certainly add more features for the user. The operation

modes are then:

� Free Movement Mode - The 6 DOF of the JACO2 are controlled simultaneously by the

6 DOF commands of the space mouse;

� Translation Mode - The robot is controlled exclusively in regards to its translation

with respect to the base frame, which means that only the horizontal/vertical shift of

the space mouse produces any motion;

� Rotation Mode - Similar to Translation Mode, but with only the tilting/twisting of

the space mouse in order to induce end e�ector reorientations;

� Finger Mode - The end e�ector is composed of a hand where its �ngers can be opened

and closed. The space mouse can be twisted in order to produce that e�ect.

The FSM depicted in �gure 6.4 portraits the proposed system. Both push buttons 1 and 2,

are designed to grant the possibility of changing between these operation modes. Successive

pushes of button 2, trigger the switching of free movement, translation and rotation modes,

with the third press restarting the sequence. Concurrently, the user can press button 1

to access the �nger mode, e�ectively immobilizing the robot and activating the opening

or closing of the hand as desired. Speci�cally, if the space mouse is currently on Fingers

Mode, the user can either press button 1 or 2 to return to the movement mode where it was

before. The schematic shown above might give the hint that one can go from the rotation

mode to the free movement mode, using the Fingers Mode. That is not the case, and it

was only drawn this way, to simplify the scheme. The velocity of the �ngers is also scaled

appropriately in the same principle as entailed in equation 6.1, with the speed being set no

higher than 6800 ◦/s, which is relatively lower than the maximum recommended value by

the manufacturer set at 30 mm/s or 10800 ◦/s.

Overall, the proposed control scheme proved to be intuitive, and coupled with the control

of the hand, greatly improved its usefulness.

55

56 Chapter 6. Space Mouse Control

56

Chapter 7

Conclusions

Globally, this work presented many challenges and di�culties, but it was certainly plea-

surable to study this robotic arm. Although it can be said that the main objectives were

achieved, it is of no lesser importance to refer that further improvements are recommended.

The concluding remarks can be summarized in the following topics:

� As an introductory work, this thesis establishes the groundwork for future projects

with this robot. Su�ce to say that little to no similar research was found regarding

speci�cally the topic of computed torque control with the JACO
2
, being restrained

mostly to EEG/EMG research areas [36] or clinical studies [37];

� The derived geometric and kinematic models produced acceptable results, which can

suggest that their estimations were well assumed. Additionally, the dynamic model

was evaluated and its estimation analyzed, with the results being promising. Future

improvements to this model are certainly recommended as some terms were neglected

like the friction terms. This can be crucial, by the fact that the JACO
2
, is a gear driven

manipulator with a considerable gear reduction ratio of 160:1, meaning that friction

can play a considerable role when performing complex or high dynamic motions. This

was visually attested throughout the work;

� The orientation control throughout chapter 5 was done under the application of the

angle-axis representation methodology. Although it works fairly well, it has the limita-

tion of becoming ill-de�ned at the representation of singularities. Future works might

be better o� with the unit quaternion representation, as it overcomes those drawbacks;

� The in�uence of the internal controllers present in the JACO
2
is still an unknown vari-

able for the developer/researcher. Although this work tried to overcome this barrier,

57

58 Chapter 7. Conclusions

as seen in section 5.1, it is still assumed as not being completely cleared. Ideally, one

would desire to have a complete and clear access to the internal works of the robot

but, comprehensibly, Kinova itself explains this situation as a way of protecting their

intellectual property;

� Although not particularly related to the main topic expressed in this document, the

space mouse control brought a new perspective into possible future implementations

with this portable and practical robotic arm, and future studies can certainly be done

regarding computed torque control with the application of this 3D mouse as a task

space reference generator.

7.1 Future Work

The basic foundation for the establishment of future implementations with this robot was

accomplished. Numerous works can now spawn from the �ndings of this document:

� Dynamic model identi�cation using linear regression methods - It is known

that CAD-based dynamic models produce the least accurate results, so regression

model techniques are suggested throughout the literature [15] [38] as a recommended

method to better identify the robot dynamic model;

� Analysis of more complex control architectures - Control schemes including

contact forces, impedance and admittance to infer the capabilities of the robot in a

human-robot environment;

� Evaluation of the space mouse as an integral part of a tele-echographic

system - Experimentally, its usefulness has been already proved. The intuitive and

natural way it can be handled can potentially be used to replicate the motions of a con-

ventional haptic device, but with the advantage of being much cheaper. Furthermore,

the end e�ector of the JACO
2
is also removable, being possible to attach ecographic

probes to it. This, coupled with the mouse might possibly be used to create a low cost

tele-echographic system;

� Tele-operation of the robotic arm, with pose delay analysis - The JACO
2

possesses a ethernet port, which has been made available for all its users very recently.

The work could revolve around analyzing the performance of the robot with di�erent

distances, inferring the inherent telecommunication delay.

58

References

[1] Sotiris Avgousti, Eftychios G. Christoforou, Andreas S. Panayides, Sotos Voskarides,

Cyril Novales, Laurence Nouaille, Constantinos S. Pattichis, and Pierre Vieyres. Medical

telerobotic systems: current status and future trends. BioMedical Engineering OnLine,

15(1):96, 2016.

[2] Jaques Marescaux and Francesco Rubino. Transcontinental robot-assisted remote

telesurgery, feasibility and potential applications. In Teleophthalmology, pages 261�265.

2006.

[3] J Arata, H Takahashi, S Yasunaka, K Onda, K Tanaka, N Sugita, K Tanoue, K Konishi,

S Ieiri, Y Fujino, Y Ueda, H Fujimoto, M Mitsuishi, and M Hashizume. Impact of net-

work time-delay and force feedback on tele-surgery. International Journal of Computer

Assisted Radiology and Surgery, 3(3-4):371�378, 2008.

[4] Peter F. Hokayem and Mark W. Spong. Bilateral teleoperation: An historical survey.

Automatica, 42(12):2035�2057, 2006.

[5] W. Khalil and E. Dombre. Modeling, identi�cation and control of robots. Applied

Mechanics Reviews, 56:483, 2004.

[6] International Center of Excellence in Intelligent Robotics and Automation Research.

http://www.iceira.ntu.edu.tw/en/industry-development-and-applications/

310-jaco. Accessed: 2017-08-07.

[7] Kinova Robotics. JACO2 User Guide. http://www.kinovarobotics.com/

wp-content/uploads/2017/08/JACO%C2%B2-User-Guide.pdf, 2017.

[8] Laura V Herlant, Rachel M Holladay, and Siddhartha S Srinivasa. Assistive teleop-

eration of robot arms via automatic time-optimal mode switching. In Human Robot

Interaction, 2016.

59

http://www.iceira.ntu.edu.tw/en/industry-development-and-applications/310-jaco
http://www.iceira.ntu.edu.tw/en/industry-development-and-applications/310-jaco
http://www.kinovarobotics.com/wp-content/uploads/2017/08/JACO%C2%B2-User-Guide.pdf
http://www.kinovarobotics.com/wp-content/uploads/2017/08/JACO%C2%B2-User-Guide.pdf

60 References

[9] Kinova Robotics. Kinova SDK. http://www.kinovarobotics.com/wp-content/

uploads/2017/08/Kinova-SDK-Development-Center-User-Guide.pdf, 2017.

[10] Kinova Robotics. Kinova API Documentation, 2017.

[11] Kinova Robotics. USB-RS485 Documentation, 2015.

[12] Kinova Robotics. Kinova ROS Package. https://github.com/Kinovarobotics, 2017.

[13] John J. Craig. Introduction to Robotics: Mechanics and Control (3rd Edition). Pearson,

2004.

[14] Kinova Robotics. Jaco2 6 DOF Advanced Speci�cation Guide Version 1.0.2, 2015.

[15] Bruno Siciliano, Lorenzo Sciavicco, Luigi Villani, and Giuseppe Oriolo. Robotics: Mod-

elling, Planning and Control. 2009.

[16] Soumya Bhattacharya, H. Hatwal, and A. Ghosh. An on-line parameter estimation

scheme for generalized stewart platform type parallel manipulators. Mechanism and

Machine Theory, 32(1):79�89, 1997.

[17] G. Lebret, K. Liu, and F. L. Lewis. Dynamic analysis and control of a stewart platform

manipulator. Journal of Robotic Systems, 10(5):629�655, 1993.

[18] Philippe Guglielmetti and Roland Longchamp. A closed form inverse dynamics model

of the delta parallel robot. IFAC Proceedings Volumes, 27(14):51�56, 1994.

[19] Bhaskar Dasgupta and Prasun Choudhury. General strategy based on the Newton-

Euler approach for the dynamic formulation of parallel manipulators. Mechanism and

Machine Theory, 34(6):801�824, 1999.

[20] Rui Cortesão, Brian Zenowich, Rui Araújo, and William Townsend. Robotic comanipu-

lation with active impedance control. In Proc. ASME/AFM 2009 World Conference on

Innovative Virtual Reality (WINVR 2009), pages 129�135, Chalon-sur-Saône, France,

February 25-26 2009. ASME.

[21] Rui Cortesão. Medical Robotics Course. University of Coimbra. 2014.

[22] Mark W. Spong, Seth Hutchinson, and M. Vidyasagar. Robot modeling and control,

2006.

60

http://www.kinovarobotics.com/wp-content/uploads/2017/08/Kinova-SDK-Development-Center-User-Guide.pdf
http://www.kinovarobotics.com/wp-content/uploads/2017/08/Kinova-SDK-Development-Center-User-Guide.pdf
https://github.com/Kinovarobotics

References 61

[23] W. M. Silver. On the Equivalence of Lagrangian and Newton-Euler Dynamics for

Manipulators. The International Journal of Robotics Research, 1(2):60�70, 1982.

[24] John M Hollerbach. A Recursive Lagrangian Formulation of Maniputator Dynamics

and a Comparative Study of Dynamics Formulation Complexity. IEEE Transactions

on Systems, Man, and Cybernetics, SMC-10(11):730�736, 1980.

[25] Lorenzo Sciavicco, Bruno Siciliano, and Luigi Villani. On dynamic modelling of gear-

driven rigid robot manipulators. IFAC Proceedings Volumes, 27(14):543�549, 1994.

[26] Peter Corke. Robotics, Vision and Control - Fundamental Algorithms in MATLAB.

2011.

[27] S. Menon. The Standard Control Library. http://samirmenon.org/scl.html, 2011.

[28] Cristóvão D. Sousa and Rui Cortesão. SageRobotics: open source framework for sym-

bolic computation of robot models. In Sascha Ossowski and Paola Lecca, editors, Pro-

ceedings of the 27th Symposium on Applied Computing, pages 262�267. ACM, 2012.

[29] Wisama Khalil, Aravindkumar Vijayalingam, Bogdan Khomutenko, Izzatbek

Mukhanov, Philippe Lemoine, and Gael Ecorchard. OpenSYMORO: An open-source

software package for symbolic modelling of robots. In IEEE/ASME International Con-

ference on Advanced Intelligent Mechatronics, AIM, pages 1206�1211, 2014.

[30] Bruno Siciliano and Luigi Villani. Robot force control, volume 53. 2013.

[31] Cristóvão Sousa, Rui Cortesão, and Luís Santos. Computed torque posture control

for robotic-assisted tele-echography. In 18th Mediterranean Conference on Control and

Automation, MED'10 - Conference Proceedings, pages 1561�1566, 2010.

[32] Simon L Altmann. Rotations, Quaternions, and Double Groups, volume 3. 1986.

[33] L. Santos and R. Cortesão. Joint space torque control with task space posture reference

for robotic-assisted tele-echography. In 2012 IEEE RO-MAN: The 21st IEEE Inter-

national Symposium on Robot and Human Interactive Communication, pages 126�131,

Sept 2012.

[34] Luís Santos and Rui Cortesão. A dynamically consistent hierarchical control architecture

for robotic-assisted tele-echography. In IEEE International Conference on Intelligent

Robots and Systems, pages 1990�1996, 2014.

61

 http://samirmenon.org/scl.html

62 References

[35] 3Dconnexion. Product Speci�cation SpaceMouse® Module USB, 2014.

[36] Laurent Bougrain, Olivier Rochel, Octave Boussaton, and Lionel Havet. From the

decoding of cortical activities to the control of a JACO robotic arm: a whole processing

chain. Control Architecture of Robots (CAR), pages 1�7, 2012.

[37] Veronique Maheu, Philippe S. Archambault, Julie Frappier, and François Routhier.

Evaluation of the JACO robotic arm: Clinico-economic study for powered wheelchair

users with upper-extremity disabilities. In IEEE International Conference on Rehabili-

tation Robotics, 2011.

[38] Oussama Khatib (Eds.) Bruno Siciliano. Springer, Handbook on Robotics, volume 25.

2014.

62

Appendix A

Angular Control Example

63

exampleangularcontrol.cpp 1

#include	<iostream>
#include	<dlfcn.h>
#include	<vector>
#include	"Lib_Examples/Kinova.API.CommLayerUbuntu.h"
#include	"Lib_Examples/KinovaTypes.h"
#include	<stdio.h>
#include	<unistd.h>

using	namespace	std;

int	main()
{
								int	result;

								AngularPosition	currentCommand;

								//Handle	for	the	library's	command	layer.
								void	*	commandLayer_handle;

								//Function	pointers	to	the	functions	we	need
								int	(*MyInitAPI)();
								int	(*MyCloseAPI)();
								int	(*MySendBasicTrajectory)(TrajectoryPoint	command);
								int	(*MyGetDevices)(KinovaDevice	devices[MAX_KINOVA_DEVICE],	int	&result);
								int	(*MySetActiveDevice)(KinovaDevice	device);
								int	(*MyMoveHome)();
								int	(*MyInitFingers)();
								int	(*MyGetAngularCommand)(AngularPosition	&);

								//We	load	the	library
								commandLayer_handle	=	dlopen("Kinova.API.USBCommandLayerUbuntu.so",RTLD_NOW|
RTLD_GLOBAL);

								//We	load	the	functions	from	the	library
								MyInitAPI	=	(int	(*)())	dlsym(commandLayer_handle,"InitAPI");
								MyCloseAPI	=	(int	(*)())	dlsym(commandLayer_handle,"CloseAPI");
								MyMoveHome	=	(int	(*)())	dlsym(commandLayer_handle,"MoveHome");
								MyInitFingers	=	(int	(*)())	dlsym(commandLayer_handle,"InitFingers");
								MyGetDevices	=	(int	(*)(KinovaDevice	devices[MAX_KINOVA_DEVICE],	int
&result))	dlsym(commandLayer_handle,"GetDevices");
								MySetActiveDevice	=	(int	(*)(KinovaDevice	devices))
dlsym(commandLayer_handle,"SetActiveDevice");
								MySendBasicTrajectory	=	(int	(*)(TrajectoryPoint))
dlsym(commandLayer_handle,"SendBasicTrajectory");
								MyGetAngularCommand	=	(int	(*)(AngularPosition	&))
dlsym(commandLayer_handle,"GetAngularCommand");

								if((MyInitAPI	==	NULL)	||	(MyCloseAPI	==	NULL)	||	(MySendBasicTrajectory	==
NULL)	||
											(MySendBasicTrajectory	==	NULL)	||	(MyMoveHome	==	NULL)	||	(MyInitFingers
==	NULL))
								{
																cout	<<	"*	*	*		E	R	R	O	R			D	U	R	I	N	G			I	N	I	T	I	A	L	I	Z	A	T	I	O
N		*	*	*"	<<	endl;
								}
								else
								{
																cout	<<	"I	N	I	T	I	A	L	I	Z	A	T	I	O	N			C	O	M	P	L	E	T	E	D"	<<	endl	<<
endl;

																result	=	(*MyInitAPI)();

																cout	<<	"Initialization's	result	:"	<<	result	<<	endl;

																KinovaDevice	list[MAX_KINOVA_DEVICE];

exampleangularcontrol.cpp 2

																int	devicesCount	=	MyGetDevices(list,	result);

																for(int	i	=	0;	i	<	devicesCount;	i++)
																{
																								cout	<<	"Found	a	robot	on	the	USB	bus	("	<<
list[i].SerialNumber	<<	")"	<<	endl;

																								//Setting	the	current	device	as	the	active	device.
																								MySetActiveDevice(list[i]);

																								cout	<<	"Send	the	robot	to	HOME	position"	<<	endl;
																								MyMoveHome();

																								cout	<<	"Initializing	the	fingers"	<<	endl;
																								MyInitFingers();

																								TrajectoryPoint	pointToSend;
																								pointToSend.InitStruct();

																								//We	specify	that	this	point	will	be	used	an	angular(joint
by	joint)	velocity	vector.
																								pointToSend.Position.Type	=	ANGULAR_VELOCITY;

																								pointToSend.Position.Actuators.Actuator1	=	0;
																								pointToSend.Position.Actuators.Actuator2	=	0;
																								pointToSend.Position.Actuators.Actuator3	=	0;
																								pointToSend.Position.Actuators.Actuator4	=	0;
																								pointToSend.Position.Actuators.Actuator5	=	0;
																								pointToSend.Position.Actuators.Actuator6	=	48;	//joint	6	at
48	degrees	per	second.

																								pointToSend.Position.Fingers.Finger1	=	0;
																								pointToSend.Position.Fingers.Finger2	=	0;
																								pointToSend.Position.Fingers.Finger3	=	0;

																								for(int	i	=	0;	i	<	300;	i++)
																								{
																																//We	send	the	velocity	vector	every	5	ms	as	long	as
we	want	the	robot	to	move	along	that	vector.
																																MySendBasicTrajectory(pointToSend);
																																usleep(5000);
																								}

																								pointToSend.Position.Actuators.Actuator6	=	-20;	//joint	6	at
-20	degrees	per	second.

																								for(int	i	=	0;	i	<	300;	i++)
																								{
																																//We	send	the	velocity	vector	every	5	ms	as	long	as
we	want	the	robot	to	move	along	that	vector.
																																MySendBasicTrajectory(pointToSend);
																																usleep(5000);
																								}

																								cout	<<	"Send	the	robot	to	HOME	position"	<<	endl;
																								MyMoveHome();

																								//We	specify	that	this	point	will	be	an	angular(joint	by
joint)	position.
																								pointToSend.Position.Type	=	ANGULAR_POSITION;

																								//We	get	the	actual	angular	command	of	the	robot.
																								MyGetAngularCommand(currentCommand);

																								pointToSend.Position.Actuators.Actuator1	=
currentCommand.Actuators.Actuator1	+	30;

exampleangularcontrol.cpp 3

																								pointToSend.Position.Actuators.Actuator2	=
currentCommand.Actuators.Actuator2;
																								pointToSend.Position.Actuators.Actuator3	=
currentCommand.Actuators.Actuator3;
																								pointToSend.Position.Actuators.Actuator4	=
currentCommand.Actuators.Actuator4;
																								pointToSend.Position.Actuators.Actuator5	=
currentCommand.Actuators.Actuator5;
																								pointToSend.Position.Actuators.Actuator6	=
currentCommand.Actuators.Actuator6;

																								cout	<<	"*********************************"	<<	endl;
																								cout	<<	"Sending	the	first	point	to	the	robot."	<<	endl;
																								MySendBasicTrajectory(pointToSend);

																								pointToSend.Position.Actuators.Actuator1	=
currentCommand.Actuators.Actuator1	-	60;
																								cout	<<	"Sending	the	second	point	to	the	robot."	<<	endl;
																								MySendBasicTrajectory(pointToSend);

																								pointToSend.Position.Actuators.Actuator1	=
currentCommand.Actuators.Actuator1;
																								cout	<<	"Sending	the	third	point	to	the	robot."	<<	endl;
																								MySendBasicTrajectory(pointToSend);

																								cout	<<	"*********************************"	<<	endl	<<	endl
<<	endl;
																}

																cout	<<	endl	<<	"WARNING:	Your	robot	is	now	set	to	angular	control.
If	you	use	the	joystick,	it	will	be	a	joint	by	joint	movement."	<<	endl;
																cout	<<	endl	<<	"C	L	O	S	I	N	G			A	P	I"	<<	endl;
																result	=	(*MyCloseAPI)();
								}

								dlclose(commandLayer_handle);

								return	0;
}

Appendix B

Dynamic Parameters

67

68 Appendix B. Dynamic Parameters

A
u
gm

en
te
d
L
in
k
i

1
2

3
4

5
6

DynamicParameters

m
a
u
g

0.
76
76
64

0.
99
57
13
00
23
9

0.
79
66
83
91
39
4

0.
41
73
7

0.
41
73
7

1.
07
54
1

r a
u
g
x

-0
.0
00
06
38
42
13
70
53

-0
.3
22
59
49
59
70
19
29

0.
00
00
26
08
55
87
22
6

-0
.0
35
65
24
45
67
53
23

-0
.0
22
53
04
78
33
96
97

-0
.0
04
63
37
04
63
35
82

r a
u
g
y

-0
.0
95
87
11
56
33
99
24

0.
00
00
22
67
98
33
28
0

-0
.0
01
67
56
95
13
12
39

-0
.0
00
01
66
95
49
79
99

0.
00
00
16
69
54
97
99
9

0.
00
00
13
80
10
61
92
1

r a
u
g
z

0.
00
24
24
49
13
86
88
0

0.
01
41
26
96
20
29
41
2

-0
.0
17
06
39
36
99
91
05

0.
01
99
13
09
76
90
16
1

0.
02
35
35
32
66
64
14
2

-0
.1
06
25
12
53
56
84
06

L
t x

x
0.
00
22
31
08
38
22
87
6

0.
00
41
62
52
49
43
11
5

0.
00
28
61
25
42
22
53
8

0.
70
84
76
72
82
34
e-
03

0.
82
74
77
60
42
55
e-
03

0.
00
48
33
75
59
45
30
4

L
t x

y
0.
00
00
06
81
56
37
17
6

-0
.0
00
00
05
52
73
68
91

0.
00
00
00
40
27
73
29
3

0.
00
82
71
64
33
00
e-
03

0.
00
82
81
07
81
47
e-
03

0.
00
00
04
33
11
79
43
2

L
t x

z
-0
.0
00
01
97
87
60
08
63

-0
.0
01
48
74
68
58
53
90

0.
00
00
00
56
64
06
98
1

0.
11
28
33
96
14
62
e-
03

-0
.1
01
69
01
65
37
7e
-0
3

0.
00
03
61
59
61
39
44
0

L
t y

y
0.
00
06
20
73
38
40
72
3

0.
02
54
95
42
92
81
01
7

0.
00
27
38
65
63
86
38
7

0.
74
04
96
29
16
32
e-
03

0.
85
20
81
77
02
82
e-
03

0.
00
48
41
50
34
93
06
1

L
t y

z
-0
.0
00
30
62
88
71
04
18

-0
.0
00
00
02
77
01
11
02

-0
.0
00
34
46
59
16
88
88

0.
00
04
94
27
34
98
e-
03

-0
.0
00
05
42
22
71
7e
-0
3

-0
.0
00
00
24
55
13
14
06

L
t z

z
0.
00
23
98
00
74
41
18
7

0.
02
17
36
93
54
50
15
1

0.
00
03
51
24
27
52
54
4

0.
17
81
93
29
51
88
e-
03

0.
17
07
77
89
78
17
e-
03

0.
00
01
99
82
15
19
48
2

T
ab
le
B
.1
:
D
y
n
am

ic
P
ar
am

et
er
s
of

th
e
J
A
C
O

2
w
it
h
m
as
se
s
in

k
il
og
ra
m
s,
C
O
M
s
in

m
et
er
s
an
d
in
er
ti
a
te
n
so
r
in

k
il
og
ra
m
s
p
er

m
et
er

sq
u
ar
ed
.

68

Appendix C

Control Types of the JACO2

Figure C.1: Control Types.

69

Appendix D

Initial and Final Poses

Figure D.1: Initial Position and Orientation.

70

Appendix D. Initial and Final Poses 71

Figure D.2: Final Position and Orientation.

71

Appendix E

JACO2 Product Speci�cation

72

Specifications

JACO2
6 DOF

4333 Grande-Allée Boulevard,
Boisbriand (Québec) J7H 1M7
info@kinovarobotics.com 1-855-6-KINOVA kinovarobotics.com

G E N E R A L

 No gripper 2 fiNgers (Kg-2) 3 fiNgers (Kg-3)

Total weight 4.4 kg 5.0 kg 5.2 kg
Payload capabilities Mid-range continuous 2.6 kg 1.8 kg 1.6 kg
 Full-reach peak/temporary 2.2 kg 1.5 kg 1.3 kg

Materials Links Carbon fiber
 Actuators Aluminum
Maximum reach 90 cm
Joint range after start-up (sotware limitation) ±27.7 turns
Maximum linear arm speed 20 cm/s
Power supply voltage 18 to 29 VDC, 24 VDC nominal
Peak power 100 W
Average power Operating mode 25 W
 Standby mode 5 W
Communication protocol RS-485
Communication cables 20 pins flat flex cable
Expansion pins 2 (on communication bus)

Water resistance IPX2
Operating temperature -10 °C to 40 °C

C O N T R O L L E R

Ports Joystick 1 Mbps Canbus
 Power supply 18 to 29 VDC, 24 VDC nominal
 USB 2.0 (API) 12 Mbps
 Ethernet (API) 100 Mbps
Control system frequency High level (API) 100 Hz
 Low level (API) 500 Hz
CPU 360 MHz
SDK APIs High and low level
 Compatibility Windows, Linux Ubuntu & ROS
 Port USB 2.0, Ethernet
 Programming languages C++
Control Force, cartesian & angular

S P E C I F I C A T I O N S

Actuators #1, #2 & #3 K-75+
Actuators #4, #5 & #6 K-58

JACO2

6 DOF

Version 1.1 – April 2017

Tech Specs

JACO2 is a product of
Kinova Robotics, designed and

manufactured in Canada.

Appendix F

Actuators Product Speci�cation

75

Specifications

ACTUATORS
K-75+ K-58

Ø58 mm, 3.6 Nm nominal, 7.7 Nm peak
Brushless DC motor, ratio 110 Harmonic Drive™

Ø74.5 mm, 12.0 Nm nominal, 37 Nm peak
Brushless DC motor, ratio 160 Harmonic Drive™

G E A R E D M O T O R (W I T h 2 4 V S U P P L y)

 K-75+ K-58

No load speed 12.2 rpm 20.3 rpm
Nominal torque 12.0 Nm 3.6 Nm
Nominal speed 9.4 rpm 15.0 rpm
Peak torque (software limitation) 30.5 Nm 6.8 Nm
Max motor efficiency 83% 81%
Max gearing efficiency 76% 69%
Torque gradient 13.8 Nm/A 7.8 Nm/A
Backdriving torque 0.8 to 7 Nm 1.7 to 5.2 Nm

S E N S O R S

 K-75+ K-58

Position sensor resolution 3,686,400/turn 2,534,400/turn
Motion before position indexation ±2.25° ±3.27°

Absolute position sensor precision at start-up (before indexation) ±1.5˚
Torque sensor precision (room temperature) ±0.4 Nm
Torque sensor temperature drift (-10 ˚C to 40 ˚C) ±0.3 Nm
Torque sensor cross-axis torque sensitivity 0% to 8%
Accelerometers range and bandwidth (x, y and z) ±3g, 50 Hz
Motor current sensor range and bandwidth ±5 A, 140 Hz
Temperature sensor range and precision -40 ˚C to 125 ˚C, ±2 ˚C

M E C h A N I C A L

 K-75+ K-58

Weight 570 g 357 g
Motion range after start-up (software limitation) ±27.7 turns ±27.7 turns
Max axial, radial and flexion moment loads (static) 7.6 kN, 3.0 kN, 87 Nm 4.7 kN, 1.8 kN, 39 Nm
Dynamic axial, radial and flexion moment loads ratings
of the main bearing 3.5 kN, 1.5 kN, 41 Nm 2.1 kN, 0.8 kN, 17 Nm

T h E R M A L

Operating temperature range -10 ˚C to 40 ˚C
Max frame temperature (overheat protection triggered) 75 ˚C

 K-75+ K-58

Thermal time constant of the winding 22 s 16 s
Thermal time constant of the frame 39 min. 35 min.

ACTUATORS
Version 1.1 – May 2017

K-58K-75+

Tech SpecsTech Specs

4333 Grande-Allée Boulevard,
Boisbriand (Québec) J7H 1M7
info@kinovarobotics.com 1-855-6-KINOVA kinovarobotics.com

E L E C T R O N I C

Power supply voltage 18 to 29 VDC, 24 VDC nominal
Communication protocol RS-485
Communication cables 20 pins flat flex cable
Expansion pins 2 (on communication bus)

C O N T R O L L E R

Ports Joystick 1 Mbps Canbus
 Power supply 18 to 29 VDC
 USB 2.0 (API) 12 Mbps
 Ethernet (API) 100 Mbps
Control system frequency High level (API) 100 Hz
 Low level (API) 500 Hz
CPU 360 MHz
SDK APIs High and low level
 Compatibility Windows, Linux Ubuntu & ROS
 Port USB 2.0, Ethernet
 Programming languages C++
Control Force, cartesian & angular

R E F E R E N C E

A

Absolute position sensor precision at start-up
(before indexation):
The absolute position measurement precision at
power-up, before an index is detected (see Motion
before indexation below).

Accelerometers range and bandwidth (x, y and z):
The range and bandwidth of the tri-axis accelerom-
eter with signal conditioning.

B

Backdriving torque:
The load torque that causes an unpowered unit to
backdrive. This value varies depending on of factors
that include temperature and wear.

C

Communication cables:
The cables used to link each actuator in a daisy
chain.

Communication protocol:
The communication protocol used between the actu-
ators and controller.

D

Dynamic axial, radial and flexion moment loads
ratings of the main bearing:
The actuator main bearing dynamic loads capacity.

E

Expansion pins (on communication bus):
The pins that are available to transmit signals
through all the actuators to the controller with the
output on the joystick port. 24V and ground pins are
also available.

M

Max axial, radial and flexion moment loads (static):
The actuator main bearing static loads capacity.

Max frame temperature (overheat protection
triggered):
The temperature measured at the frame at which
a progressive current limitation starts to be applied
by software. Torque loads above nominal should
always be brief; this protection cannot guarantee
the integrity of the motor under loads significantly
higher than the nominal.

Max gearing efficiency:
An indicator of the gearing performance at input
speed 500 rpm and temperature 30 ˚C. The effi-
ciency of the gearing depends on factors including
speed, load and temperature.

Max motor efficiency:
An indicator of the motor performance at its ideal
operation torque and velocity. The efficiency of the
motor depends on factors including friction and Joule
power losses.

Motion before position indexation:
The max required output motion (after power-up)
before an index is detected. When this precision
index is detected, the position information is updated
to the precise value.

Motion range after start-up (software limitation):
The motion range (software limitation).

Motor current sensor range and bandwidth:
The motor current measurement range and
bandwidth.

N

No load speed:
The maximum speed (no payload, 24 VDC power
supply).

Nominal speed:
The maximum speed under Nominal torque load.

Nominal torque:
The continuous torque output that causes the
actuator frame to heat up to Max frame temper-
ature (tested at 23 ˚C with the actuator enclosed in
a plastic shell). Loadings above this value should
always be brief.

O

Operating temperature range:
Actuator safe operating temperature range.

P

Peak torque (software limited):
The maximum torque output (in the direction of
motion) with the motor current limited by software.

Position sensor resolution:
The position sensing resolution measured at the
input and calculated for the output.

Power supply voltage:
The rated range of power supply tension of the actu-
ator drive.

T

Temperature sensor range and precision:
The range and precision of the temperature sensor
mounted on the actuator chassis.

Thermal time constant of the frame:
An indicator of the thermal response time (first order
system approximation) of the frame. When a torque
load is applied, the winding heats first and then start
to heat the more massive frame (which has thus a
slower response).

Thermal time constant of the winding:
An indicator of the thermal response time (first order
system approximation) of the winding.

Torque gradient:
The ratio of torque output to motor current cal-
culated without gearing losses. The actual torque
applied on the load depends on motion direction
and gearing efficiency.

Torque sensor cross-axis torque sensitivity:
The effect of torque applied perpendicularly to the
actuator axis on the measured torque (torque meas-
ure bias / cross-axis torque).

Torque sensor precision (room temperature):
The precision of the sensor at 23 ˚C under a pure
moment loads.

Torque sensor temperature drift (-10 ̊ C to 40 ̊ C):
The maximum effect of temperature on torque
measurement precision.

W

Weight:
The weight of the actuator module.

JACO2, MICO2 and related accessories
are products of Kinova Robotics,

designed and manufactured in Canada.

Appendix G

DSP Product Speci�cation

79

Specifications

CONTROLLER

4333 Grande-Allée Boulevard,
Boisbriand (Québec) J7H 1M7
info@kinovarobotics.com 1-855-6-KINOVA kinovarobotics.com

S P E C I F I C A T I O N S

Ports Joystick 1 Mbps Canbus
 Power supply 18 to 29 VDC, 24 VDC nominal
 USB 2.0 (API) 12 Mbps
 Ethernet (API) 100 Mbps
Control system frequency High level (API) 100 Hz
 Low level (API) 500 Hz
CPU 360 MHz
SDK APIs High and low level
 Compatibility Windows, Linux Ubuntu & ROS
 Port USB 2.0, Ethernet
 Programming languages C++
Control Force, cartesian & angular

CONTROLLER
Version 1.1 – April 2017

Tech Specs

JACO2, MICO2 and related accessories
are products of Kinova Robotics,

designed and manufactured in Canada.

	Acknowledgements
	Resumo
	Abstract
	List of Acronyms
	List of Figures
	List of Tables
	1 Introduction
	1.1 Background
	1.2 Objectives
	1.3 Contributions
	1.4 Organization

	2 The Kinova JACO2
	2.1 System Overview
	2.2 Software Development Kit
	2.3 Kinova API and Communication Modes
	2.4 Torque Control

	3 JACO2 Model Identification
	3.1 Kinematic Model
	3.1.1 Denavit-Hartenberg Parameters

	3.2 Differential Kinematic Model
	3.2.1 Inverse Differential Kinematic Model

	3.3 Dynamic Model
	3.3.1 Theoretical Background
	3.3.2 Dynamic Parameters
	3.3.3 Lagrangian Formulation

	4 Control Architectures
	4.1 Operational Space Control
	4.1.1 Jacobian Transpose Control
	4.1.2 Orientation Control
	4.1.3 Null Space Control

	4.2 Computed Torque Control in the Joint Space
	4.3 Joint Space Control with Task Posture Reference

	5 Experimental Results
	5.1 Setup
	5.2 Task Space Control
	5.3 Null Space Orientation Control
	5.4 Dynamic Control in the Joint Space
	5.5 Joint Space Control with Task Space Reference

	6 Space Mouse Control
	7 Conclusions
	7.1 Future Work

	References
	A Angular Control Example
	B Dynamic Parameters
	C Control Types of the JACO2
	D Initial and Final Poses
	E JACO2 Product Specification
	F Actuators Product Specification
	G DSP Product Specification

