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Abstract 
 

Metabolic disorders, such as obesity and type 2 diabetes, are associated with 

abnormal and excessive fat accumulation, increased body weight gain, hyperglycemia, 

hyperinsulinemia, glucose intolerance and insulin resistance. The prevalence of these 

diseases is growing at an alarming rate, which requires the development of novel 

therapeutic approaches to prevent or counteract their progression. The sirtuin family 

(SIRT1-7) of NAD+-dependent protein deacetylases have gained increased recognition as 

crucial regulators of several cellular processes, such as stress response, aging, and also 

metabolic regulation. SIRT2, one of the least understood sirtuin isoforms, has been studied, 

mostly in in vitro models, as a key player in various metabolic processes, such as 

adipogenesis, fatty acid oxidation and insulin sensitivity. However, the role of SIRT2 in the 

development of obesity and related abnormalities has not been explored in an in vivo 

mouse model. Therefore, our group performed a thorough metabolic characterization of 

SIRT2-knockout (SIRT2-KO) mice fed a regular chow diet (CD) or a high-fat diet (HFD) for 

4 weeks. Despite apparently normal under CD feeding, SIRT2-KO mice showed increased 

body weight gain, enlarged epididymal white adipose tissue (eWAT) mass, 

hypertriglyceridemia, hyperglycemia and insulin resistance when fed a HFD. Taking into 

account these results, the present study aimed to explore, at the histological and 

molecular level, the underlying mechanisms that could explain the exacerbated metabolic 

dysfunction in SIRT2-KO mice fed a HFD. Despite being insulin resistant, SIRT2-KO mice 

exhibited normal insulin signaling pathway activation when fed a HFD. Moreover, these 

animals revealed adipocyte hypertrophy in eWAT and exacerbated lipid accumulation in 

the liver. This hepatic overload was consistent with upregulated gene expression of 

lipogenic enzymes. Our findings reveal that SIRT2 plays a crucial role in the liver and 

adipose tissue, although further studies are required to fully address SIRT2 metabolic 

actions. In conclusion, this study provides critical insights into the role of SIRT2 in the 

pathogenesis of metabolic disorders and suggests that SIRT2 stimulation may be a 

therapeutic strategy to counteract obesity and associated metabolic complications.   

 

Keywords:  Sirtuin 2, high-fat diet, metabolic dysfunction, insulin resistance   
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Resumo 
 

As doenças metabólicas, como a obesidade e diabetes tipo 2, estão associadas 

a uma acumulação excessiva e anormal de gordura, maior ganho de peso corporal, 

hiperglicemia, hiperinsulinemia, intolerância à glucose, e resistência à insulina. A 

prevalência destas doenças	 está a aumentar de forma exponencial, o que requer o 

desenvolvimento de novas abordagens terapêuticas para prevenir ou combater a sua 

progressão. A família das sirtuínas (SIRT1-7), proteínas com atividade deacetilase 

dependente de NAD+, ganhou reconhecimento como reguladora crucial de vários 

processos celulares, como a resposta ao stresse, envelhecimento, e também regulação 

metabólica. A SIRT2, uma das isoformas menos estudadas, tem sido investigada, 

maioritariamente em modelos in vitro, como uma proteína-chave em vários processos 

metabólicos, como a adipogénese, oxidação de ácidos gordos e sensibilidade à insulina. 

No entanto, o papel da SIRT2 no desenvolvimento da obesidade e complicações 

associadas à mesma não foi explorado num modelo animal in vivo. Deste modo, o nosso 

grupo realizou uma caracterização metabólica detalhada de murganhos knockout para 

SIRT2 (SIRT2-KO), alimentados durante 4 semanas com uma dieta normal, ou com uma 

dieta rica em gordura. Apesar de aparentemente incólumes com a dieta normal, os 

murganhos SIRT2-KO apresentaram aumento de ganho de peso corporal e do tecido 

adiposo epididimal, hipertrigliceridemia, hiperglicemia e resistência à insulina quando 

alimentados com uma dieta rica em gordura. Tendo em conta estes resultados, o 

presente estudo teve como objetivo explorar, a nível histológico	 e	 molecular, os 

mecanismos subjacentes à disfunção metabólica exacerbada nos murganhos SIRT2-KO. 

Apesar de serem resistentes à insulina, os murganhos SIRT2-KO apresentaram uma 

ativação normal da via de sinalização da insulina quando alimentados com uma dieta rica 

em gordura. Estes animais apresentaram ainda uma hipertrofia dos adipócitos no tecido 

adiposo epididimal e acumulação exacerbada de lípidos no fígado. Esta sobrecarga 

hepática	de lípidos foi consistente com o aumento da expressão génica de enzimas da 

lipogénese. Os nossos resultados sugerem que a SIRT2 desempenha um papel crucial no 

fígado e no tecido adiposo, embora sejam necessários mais estudos para uma 

compreensão	mais detalhada das suas ações metabólicas. Em conclusão, este estudo 
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contribuiu com conhecimentos cruciais acerca do papel da SIRT2 na patogénese de 

doenças metabólicas, e sugere que a ativação da SIRT2 pode ser uma estratégia 

terapêutica para combater a obesidade e suas complicações metabólicas. 

 

Palavras-chave: Sirtuína 2, dieta rica em gordura, disfunção metabólica, resistência 

à insulina  
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1.1. Metabolic disorders  

An unhealthy lifestyle with overnutrition and sedentarism is becoming highly 

prevalent in many regions of the world. Nutritional needs are met with diets containing high-

energy dense foods, that are rich in sugars and fat, and poor in fiber, vitamins and other 

micronutrients. Concomitantly, physical activity is also low or inexistent 1. This can lead to 

an unbalance of the body energetic state and dysregulation of metabolic homeostasis, 

promoting the development of metabolic disorders, such as obesity and type 2 diabetes 2. 

The prevalence of these pathologies is growing at an alarming rate, being difficult to 

implement effective health treatments. There is, therefore, an urgent need to develop novel 

therapeutic approaches to prevent or counteract the development of these metabolic 

disorders 3,4. 

1.1.1. Obesity  

Obesity has recently been recognized as a chronic disease 5. This disorder is 

characterized by an abnormal and excessive fat accumulation, increased body weight and 

a body-mass index of 30 kg/m2 or greater 1,6. This disorder is also defined by adipocyte 

hypertrophy and enlargement of the visceral white adipose tissue (WAT) mass, strongly 

associated with human dietary patterns 7. Besides the alteration of body weight and body 

composition, the storage and secretion of several molecules by the adipose tissue is also 

affected. This tissue releases substantial amounts of fatty acids (FA) 8, hormones 9, 

proinflammatory cytokines 10,11 and other factors, collectively designated as adipokines 9. 

Adipose tissue dysregulation promotes the development of obesity-related metabolic 

diseases. Thus, obesity is considered a major risk factor for the development of insulin 

resistance and type 2 diabetes 2,12, hypertension and dyslipidemia 13,14, liver pathologies 

15, cardiovascular diseases 2,14,16and cancer 17,18.  

Obesity represents a heavy clinical and economic burden both in developed and 

developing countries 1,3,19. At the beginning of the 21st century, the approximate number of 

obese adult population was 937 million, and by 2030 it is estimated to rise to 1.35 billion 

3. Therefore, it is critical to develop safer and more effective health strategies for 

prevention and treatment of obesity 20. 
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1.1.2. Type 2 diabetes  

Type 2 diabetes is the most prevalent form of diabetes mellitus, and is 

characterized by persistent hyperglycemia, that is, increased levels of blood glucose 21,22. 

This chronic disease has been associated to a dysfunction of insulin secretion by 

pancreatic β-cells in response to glucose 23–25 and resistance to the actions of insulin 

8,26,27.  

This metabolic disorder has an epidemic profile estimated to rise from 171 million 

people affected in the beginning of the century to about 400 million affected by 2030 28,29. 

Current treatments for type 2 diabetes are diverse 30,31. Some of them, such as metformin 

32 and thiazolidinediones 33, have several side effects, which increases the necessity to 

improve existing treatments and develop more effective therapeutic approaches 34. 

Prevention of body weight gain and tight glycemic control can reduce the development of 

diabetes-associated morbidities 35,36. The overwhelming burden of this disease on health 

systems can also be decreased, promoting an improvement of population healthspan 2,37. 

 

1.2. Metabolic homeostasis  

1.2.1. Energy metabolism  

Energy homeostasis is achieved when there is a match between energy 

consumption and energy expenditure. This balance of food intake and energy expenditure 

is crucial for survival and is dependent on multiple and complex mechanisms that regulate 

and maintain body weight. Energy intake relies on feeding behavior, and energy expenditure 

on physical activity, basal metabolism and adaptive thermogenesis 38. When energy intake 

exceeds energy expenditure, there is a positive energy balance, which in a chronic manner, 

promotes obesity and obesity-related disorders. In contrary, negative energy balance 

occurs when energy expenditure exceeds energy intake, which in long term promotes 

weight disorders, such as anorexia 39. The central nervous system (CNS) is essential for 

energy balance regulation and maintenance. CNS receives and integrates whole-body 

hormonal and nutritional signals in several brain structures, promoting adaptive body 

weight changes 40 (Figure 1).   
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 Food intake  

Food intake (FI) is regulated by a multi-structured small area in the brain, the 

hypothalamus,  which integrates peripheral metabolic cues and triggers adaptive 

responses to whole-body signals 40. One mechanism by which the hypothalamus regulates 

energy homeostasis is by controlling food intake 41. This brain structure is organized by 

several interconnected nuclei. The arcuate nucleus (ARC) is close to the median eminence 

(ME), a region characterized by an extensive vasculature and weakened blood-brain-barrier 

(BBB) (Figure 1). Thus, ARC is capable to primarily sense nutritional and hormonal signals 

derived from the periphery 42,43. The regulation of FI by the ARC is related to the activity 

of two distinct neuronal populations: Orexigenic neurons co-express neuropeptide Y (NPY) 

and agouti-related protein (AgRP) 44, and anorexigenic neurons co-produce pro-

opiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART). 

These neurons have been shown to regulate feeding behavior and energy homeostasis 

45,46, and are key targets of peripheral hormones, such as insulin, ghrelin and leptin 40,44,47. 

POMC neurons are known to project to paraventricular nucleus (PVH), lateral hypothalamic 

area (LHA), ventromedial nucleus (VMH), and to other brain regions, such as brainstem and 

spinal cord 48.  

PVH nuclei contains neurons that are involved in the regulation of peripheral 

metabolism through mediated production of neuropeptides and sympathetic innervation. 

Dorsomedial hypothalamic nuclei (DMH) contains leptin receptors and ARC-NPY/AgRP 

neurons projections. LHA, defined as the feeding center, has a large and diffuse population 

of neurons that express melanin concentrating hormone (MCH) and orexins. When 

stimulated, this hypothalamic structure increases FI, and when lesioned attenuates feeding 

and causes weight loss 49. VMH is considered to be the primary satiety center in the 

hypothalamus due to its role in the regulation of energy homeostasis by controlling FI 50. 

Stimulation of this nuclei suppresses feeding, while a lesion in this structure causes 

hyperphagia and weight gain 51,52 (Figure 1). Brain stem acts as a connector of peripheral 

metabolism and hypothalamic regulation of food intake. Nucleus tractus solitarius (NTS) 

receives signals from the gastro-intestinal tract (GIT) through the vagus nerve, which 

activation mediates peripheral effects on the brain and behavior, establishing the gut-brain 

axis 53,54.  

 



Insights into the role of sirtuin 2 in obesity and insulin resistance 
 

 
6 

Energy expenditure  

Besides regulating FI, hypothalamus is responsible for the control of 

neuroendocrine responses 55, temperature 56, circadian rhythm 57, and energy expenditure 

(EE) in response to nutritional and hormonal signals 58. EE encompasses basal metabolic 

rate (BMR), the level of physical activity and the presence of an adaptive thermogenesis 

for each individual 59,60. Thus, the dietary content is able to induce thermogenesis. Diets 

with a great composition of protein and alcohol induce higher values of EE, whereas diets 

with a great amount of fat promote lower EE levels 61,62. 

Thermogenesis occurs mainly in brown adipose tissue (BAT) upon exposure to cold, 

and also HFD feeding, which causes dissipation of energy as heat to regulate body weight 

63,64 (Figure 1). WAT cells can be converted into BAT cells, under cold exposure or physical 

exercise circumstances, through a process called WAT browning, which increases EE. In 

WAT, there are also the so-called beige cells that can burn fat and dissipate energy as 

heat. However, the number of these cells is decreased in obesity 65. Insulin and leptin 

signaling input in POMC neurons also mediate WAT browning and beige adipocytes 

development. Thermogenesis activates POMC neurons and promotes body weight loss, 

being essential as a defence against hypothermia and obesity development 65.  

Besides being composed by lipid storage cells rich in mitochondria, BAT is 

innervated by the sympathetic nervous system (SNS). Upon a SNS-derived noradrenaline 

(NA) stimulation, β-adrenergic receptors (β-AR) are activated, leading to the activity of 

uncoupling protein 1 (UCP1) through lipolysis 64,66. UCP1 can be found in the inner 

mitochondrial membrane and causes the uncoupling of mitochondrial respiratory chain, 

promoting the release of energy, commonly used to produce ATP, in the form of heat 38,67. 

Hypothalamic nuclei, such as preoptic area (POA), VMH, DMH and ARC, can regulate 

thermogenesis through SNS actions 64,68. 

 

Taken together, hypothalamic sensing and integration of peripheral metabolic 

signals, and subsequent triggering of responses, are crucial for FI and EE regulation. This, 

therefore, leads to a balanced energy homeostasis and healthy body weight. 
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Figure  1. Hypothalamic regulation of energy homeostasis. Differences in energy availability, 

energy stores, and nutritional demands cause hypothalamic regulation of FI and trigger of functional 
changes in several tissues, such as BAT, controlling EE. This promotes a balanced energy system 
and body weight gain. Adapted from López et al (2013) and Seely et al (2013). 

 

1.2.2. Glucose metabolism  

Under fed or fasting conditions, blood glucose levels in healthy individuals remain 

within a narrow interval of concentrations, which characterizes a balanced glucose 

metabolism. This balance results from the interplay between several metabolic 

mechanisms, such as intestinal glucose uptake, hepatic glucose production (HGP), and 

also the uptake and metabolism of blood glucose by various peripheral tissues (Figure 2). 

These metabolic processes are controlled by hormones, particularly insulin and glucagon 

69. Some of insulin actions encompass the promotion of glucose uptake in insulin-sensitive 

tissues, glycolysis, storage of glucose as glycogen, and also suppression of HGP in the 

fed state 70. Contrarily, glucagon counteracts the effects of insulin and promotes 

glycogenolysis and gluconeogenesis in a hypoglycemic state 71. Energy production and 

substrate storage are the main results of glucose metabolism.  

Energy balance
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Glucose uptake  

Glucose metabolism starts by intestinal absorption to bloodstream of glucose 

derived from diet or from endogenous production (e.g liver and kidney). Glucose 

transporters (GLUT) are subsequently crucial to facilitate the entry of glucose into cells. 

Several GLUT family members were identified, with GLUT4 involved in insulin-dependent 

glucose uptake by peripheral tissues, such as skeletal muscle and adipose tissue. In 

contrast, GLUT1, 2 and 3 act as insulin-independent glucose transporters, and are present 

in several tissues, such as the liver and brain 72. Intracellular glucose can be stored in the 

form of glycogen, oxidized into pyruvate or converted into relevant metabolites, such as 

acetyl-CoA for FA production 73.  

 

Glycogen synthesis and glycogenolysis  

In fed state, glucose undergoes phosphorylation by glucokinase (GCK), which is 

activated in the presence of elevated blood glucose levels. This promotes glycogen 

synthase (GS) expression and glycogen synthesis. During fasting, the opposite mechanism 

occurs, with glycogen converted into glucose – glycogenolysis - under mediation of 

glycogen phosphorylase (GP) (Figure 2). GCK activity also increases glucose-6-phosphate 

(G6P) production. G6P stimulates glycogen synthesis by inhibition of GP and activation of 

GS 74. Insulin production in fed state promotes glycogen synthesis by decreasing blood 

glucose levels through inhibitory post-translational modifications (PTMs) of GP and 

suppression of glycogenolysis 75. This hormone also stimulates the expression of GCK 

and production of G6P by activation of its signaling pathway intermediates, such as 

Akt/Protein kinase B (PKB) and glycogen synthase kinase 3 beta (GSK3 β) 74. Under fasting, 

insulin is counteracted by glucagon, which causes GS inhibition and GP activation 75.  

Glycogen synthesis and glycogenolysis are crucial processes in liver and skeletal 

muscle for energy release and energy storage, respectively. Liver exports glucose 

obtained from stored glycogen to maintain blood glucose levels, and skeletal muscle uses 

glycogen to produce energy for contraction 73.  

 

Glycolysis  

Glucose is one of the main energy fuels of cells in fed state and is converted into 

pyruvate through mediation of several enzymes. Glycolytic flux is controlled by GCK 74, and 



Chapter I – Introduction 

 

 
9 

also by other enzymes, such as phosphofructokinase (PFK) isoenzymes that give rise to 

fructose-1,6-bisphosphate (FBP) 76,77 (Figure 2). The activity of these enzymes increases 

in the postprandial period 78.  

Glucose also activates the transcription factor carbohydrate-responsive element-

binding protein (ChREBP), which promotes glycolysis by binding and activating glycolytic 

enzymes 79. Insulin stimulates glycolytic enzymes and increases glycolysis rate and 

pyruvate consumption 80. Thus, pyruvate can be further oxidized in the citric acid cycle 

(TCA) under aerobic conditions and promote adenosine triphosphate (ATP) production in 

mitochondrial respiratory chain. Pyruvate can also be used to synthesize lipids and amino 

acids or for glucose production 81.  

 

Gluconeogenesis  

Gluconeogenesis is a metabolic pathway that leads to glucose production from 

nonsugar precursors, such as lactate and pyruvate. This process occurs mainly in the liver, 

which is tightly regulated by insulin and other relevant metabolic hormones. Under 

conditions of caloric restriction (CR) and fasting, the liver provides tissues with glucose to 

maintain blood glucose levels within normal values. In an early phase of fasting, liver 

mobilizes glucose trough glycogenolysis, and at a late phase of fasting, switches to 

gluconeogenesis 82. Gluconeogenic substrates are either formed in the liver or obtained 

through circulation from other tissues. Lactate is transformed into pyruvate, which enters 

mitochondria and is metabolized to form oxaloacetate that is converted into 

phosphoenolpyruvate in the cytoplasm by a gluconeogenic key regulatory enzyme, 

phosphoenolpyruvate carboxykinase (PEPCK1) 76 (Figure 2). Hepatic transcription factors, 

such as forkhead box protein O1 (FOXO1) and peroxisome proliferator-activated receptor 

(PPAR)-γ coactivator (PGC)-1α, can also enhance the transcription of gluconeogenic 

enzymes genes, such as G6P, FBP and PEPCK1 82.  

A continuous supply of glucose is essential for a balanced metabolic homeostasis, 

particularly for CNS, which is unable to store glucose, or use other molecules as an energy 

source 83. The hypothalamus contains glucose-sensing neurons that are activated upon 

changes in extracellular glucose concentrations 84,85. These neurons are stimulated by 

increased levels of blood glucose 86 and inhibited by a hypoglycemic state 87.  
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Figure  2. Glucose metabolism. In fed state, glucose enters into cells, and is transformed by 
several enzymes for energy production and glycogen storage. Under fasting conditions, glycogen is 
converted into glucose for energy usage, and glucose is also produced. All these metabolic pathways 
promote the maintenance of blood glucose levels within normal values in different nutritional status. 
Gluconeogenesis is defined in green; glycolysis/glycogenolysis in orange; and glycolysis in blue. 
Adapted from Rui (2014). 

 

1.2.1. Lipid metabolism  

Lipid metabolism integrates various cellular processes related to the uptake, 

oxidation, synthesis, and storage of lipids (Figure 3). These mechanisms demand 

metabolic balance, particularly under prolonged fasting or physical exercise. Several 

hormones underlie the regulation of lipid metabolic processes 88. Insulin, besides 

participating in glucose metabolism, promotes triglycerides (TG) synthesis in the liver and 

its storage in WAT under nutritional abundance 89. Contrarily, glucagon enhances lipolysis 

in WAT and fatty acid oxidation (FAO) in liver and other tissues under fasting conditions 90.  

The liver is a key regulatory organ in lipid metabolism. This organ is able to use 

glucose and/or FA as metabolic fuels. Under a fed state, glucose is abundant and 



Chapter I – Introduction 

 

 
11 

glycolysis is the main source of energy, with glycolytic intermediates used to synthesize 

lipids, amino acids, and other substrates. However, in a fasted state, with lower glucose 

levels, the liver turns to FAO, and FA become other main fuel of energy production 76.  

 

Adipogenesis  

Another crucial organ in lipid metabolism is the adipose tissue 9,91. Similar to the 

liver, adipose tissue adjusts its activities in accordance with energy availability. This tissue 

modulates adipocyte differentiation in order to store excess energy in the form of TG. 

Mature adipocytes differentiate from undifferentiated preadipocytes. Adipose tissue 

enlargement can occur by two mechanisms: through an increase in adipocyte size – 

hypertrophy – and/or an increase in number – hyperplasia. Hyperplastic growth happens 

in early stages of adipose tissue development, whereas hypertrophy develops after 

hyperplasia to support excess fat storage. Fat mass increase may lead to the 

development of obesity-associated metabolic disorders 92,93.  

Adipogenesis is regulated by several transcription factors, such as PPARγ 94 and 

FOXO1. FOXO1 acts in the early phase of adipogenesis by suppressing the differentiation 

of preadipocytes. This protein binds PPARγ promoter gene, and inhibits its transcription 

and promotion of adipocyte differentiation 95. Several proteins regulate FOXO1 activity, 

such as insulin, which promotes its phosphorylation and activity inhibition by nuclear 

exclusion 96.  

 

Lipogenesis 

Lipogenesis, which is characterized by de novo FA synthesis, occurs when 

carbohydrates levels are high or when insulin levels are increased. Thus, this process is 

enhanced when there is an excess of energy intake, which overcomes EE values. 

Carbohydrates transformation into FA and storage as TG requires a set of organized 

enzymatic reactions 76. Glucose conversion into pyruvate provides a metabolic source for 

lipogenesis, which connects glycolysis to lipogenesis. Pyruvate is imported in mitochondria 

and transformed into acetyl-CoA, which is converted into citrate by citrate synthase 97. 

Citrate is translocated to the cytosol and brokedown into acetyl-CoA and oxaloacetate by 

ATP-citrate lyase (ACLY). Acetyl-CoA performs as a building block for de novo lipogenesis, 

and once in the cytosol, is carboxylated by acetyl-CoA carboxylase (ACC) to form malonyl-
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CoA that is used by fatty acid synthase (FasN) to synthesize palmitic acid, a common 

saturated fatty acid (SFA) (Figure 3). Palmitic acid can suffer elongation to give rise to 

long chain fatty acids (LCFAs), which are desaturated by stearoyl-CoA desaturase (SCDs), 

to form mono and poly-unsaturated LCFAs. SCD1 is responsible for synthesis of 

monounsaturated LCFAs and has been reported to be intrinsically associated to the 

development of obesity and related complications. SCD1 ablation was previously shown 

to protect against high carbohydrate diet-induced obesity and hepatic steatosis 98.  

 

 

Figure  3. Lipid metabolism. In fed state, lipids are formed through lipogenesis, and are stored 
in lipid droplets. Under fasting conditions, lipids suffer lipolysis and FAO to be used as an energy 
source. 1 – De novo lipogenesis in blue; 2 – FAO in red; 3 – Lipid storage in green; 4 – Lipolysis in 
yellow. Adapted from Currie et al (2013). 

 

Lipogenesis is also driven by several transcription factors and cofactors, such as 

ChREBP, PPAR proteins and sterol regulatory element-binding protein (SREBP), which 
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regulate the expression of lipogenic genes. SREBP-1c is a strong regulator of lipogenesis 

in the liver. This protein is involved in TG synthesis by promoting the expression of ACC, 

FasN and SCD1 99. Insulin enhances hepatic lipogenesis in conditions of nutritional 

abundance through its signaling intermediates, such as Akt/PKB 100. Thus, activation of 

insulin signaling was shown to control SREBP-1c expression and consequently lipogenic 

proteins expression 89.  

 

           

 

Figure  4. SREBP-1c target genes and the regulation of lipid homeostasis. SREBP-1c 
promotes the expression of lipogenic proteins, such as ACC, FasN (FAS) and SCD1. This protein 
action is controlled by insulin signaling, deeply involved in lipogenesis regulation. Adapted from 
Murase et al (2010).  

 

Lipid storage and Lipolysis  

SFAs are poorly used as energy fuel, and can be processed into TG and other lipid 

metabolites, such as diacylglycerol (DAG) and ceramides, and stored within cells 101,102 

(Figure 3). TG can be stored in the so-called lipid droplets (LDs), and under starvation or 

exercise, can suffer lipolysis. Lipolysis consists in TG breakdown into glycerol and FA, 

which are consequently mobilized to other organs for use as energy substrates 103. 

Impairment of lipolysis results in excess storage of TG, adipocyte hypertrophy and obesity 

104.  

In adipose tissue, lipolysis is strictly regulated by two crucial enzymes, adipose 
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triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) 105. ATGL is considered the 

rate-limiting lipolytic enzyme, and catalyzes the initial step of lipolytic pathway, by 

converting TG into DAG. ATGL expression has been reported to be controlled by FOXO1 

and PPARγ transcription factors. Insulin inhibits lipolysis by suppressing FOXO1 activity, 

which consequently reduces ATGL expression. Loss of ATGL has been reported to reduce 

lipolysis and promote increased adipose tissue weight gain 106. HSL is phosphorylated by 

cAMP dependent protein kinase (PKA) that promotes its activation and translocation from 

cytosol to LDs. HSL converts DAG into monoacylglycerol (MAG) and glycerol, which are 

consequently transported to bloodstream and uptake by other organs 105. Insulin anti-

lipolytic action encompasses inhibition of HSL phosphorylation via lowered cAMP levels. 

Impairment in insulin action consequently increases HSL phosphorylation levels and 

lipolytic rate 107.  

 

Fatty acid oxidation  

FAO implicates several catabolic steps and occurs mainly in the mitochondrial 

matrix. This process consumes significant amounts of oxygen, affecting EE levels. In late 

stages of fasting, the increase in FA mobilization and FAO is critical to supply cells with 

energy. Contrarily, in fed state this process occurs at lower levels 76.        

LCFAs enter the cell through specific transporters, and can be shuttled into 

mitochondrial matrix by the carnitine palmitoyltranferase system. Carnitine 

palmitoyltranferase 1 (CPT-1) enzyme is located at the outer membrane of mitochondria 

and is responsible for the transport of LCFAs from cytosol to mitochondrial matrix to be 

oxidized (Figure 3). CPT-1 is a rate-limiting step in FAO, and its activity is inhibited by 

malonyl-CoA 108. The acyl-CoA dehydrogenases (ACAD), in particular the medium chain 

acyl-CoA dehydrogenase (MCAD) and the long chain acyl-CoA dehydrogenase (LCAD), are 

key players in FAO. These enzymes are regulated trough PTMs and their loss causes 

hepatic steatosis and insulin resistance 109. An incomplete FAO can lead to the formation 

and increase of cellular FA metabolites (eg. ceramides and DAG) 110.  

PPARα is a key regulator and promoter of FA β-oxidation, and is activated by 

LCFAs. This protein is highly expressed in the liver, and PPARα deletion was shown to 

decrease FAO in fasted state and potentiate fasting-induced hepatic steatosis 111,112. 

Several PPARα coactivators have been discovered and studied in the liver, particularly 



Chapter I – Introduction 

 

 
15 

PGC-1α 113,114, which is phosphorylated by Akt/PKB and inhibited to promote FAO 115.  

1.3. Metabolic dysregulation 

1.3.1. Insulin resistance  

Insulin resistance is a hallmark of metabolic disorders, such as obesity and type 2 

diabetes, and has been shown to occur in various tissues, such as the pancreas, liver, 

adipose tissue, skeletal muscle, and also the brain 23,24,26. In humans, insulin resistance is 

a complex polygenic and heterogeneous disease, both defined by a state of reduced 

insulin secretion by the pancreatic β-cells and a state of impaired insulin signaling in target 

tissues 116,117.  

Insulin signaling starts by the binding of insulin to its receptor (IR), which causes the 

activation of the tyrosine kinase domain of the IR, and consequently the phosphorylation 

of insulin receptor substrate proteins (IRS). IRS proteins are the first critical node of insulin 

signaling network, and are essential for the maintenance of Akt/PKB pathway activity 

through phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) kinase activation. IRS 

proteins are also responsible for the activation of the other insulin signaling branch, the 

Ras-mitogen-activated protein kinase (MAPK) pathway, responsible for cell growth and 

differentiation 118. PI3K and Akt/PKB are also essential protein nodes in the insulin signaling 

cascade, with Akt activation promoting the stimulation of downstream proteins that are 

responsible for several cellular mechanisms, such as the promotion of glycogen synthesis 

(GSK3β), suppression of gluconeogenesis (FOXO1) and glucose uptake (GLUT4) 27,119,120. 

Diets containing high-density foods have long been related to insulin resistance onset. HFD 

feeding was proved to have a critical role in promoting this disorder 121,122. In previous 

studies, SFAs and trans-fatty acids were shown to block the PI3K-Akt/PKB pathway, and 

to disrupt the responses to insulin action 123. FAs metabolites, particularly palmitate and 

stearate products, were also reported to promote the inhibition of IRS and PI3K-Akt/PKB 

activation, compromising insulin signaling 123–126. Consequently, glucose and insulin levels 

increase, glycogen synthesis decrease, HGP decrease, and lipogenesis is suppressed 126–

128.  

In a prediabetic state, pancreatic β-cells secrete increased amounts of insulin to 

maintain normal glucose levels in insulin-resistant tissues (Figure 5). This process is 
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defined as compensatory hyperinsulinemia, and is present in obese and type 2 diabetic 

patients. In long-term, compensatory hyperinsulinemia leads to the exhaustion of 

pancreatic β-cells and impairment of glucose metabolism, promoting the development and 

progression of type 2 diabetes 129.  

There is currently some controversy regarding the starting point of insulin 

resistance. Some studies indicate that central insulin resistance, particularly in 

hypothalamus, may be the primary defect for the development of obesity and type 2 

diabetes 130,131. Others, report the skeletal muscle as the initiating point for insulin 

resistance 132. Liver 133  and adipose tissue 134 were also studied as metabolic organs 

predominantly affected by insulin resistance. Furthermore, a previous study showed that 

insulin resistance occurs in adipose tissue and liver before skeletal muscle 135.  

Overall, insulin resistance is a widespread disorder caused by various insults, 

including dyslipidemia and inflammation. 

1.3.2. Lipotoxicity  

Chronic overnutrition leads to a positive energy balance, promoting hyperglycemia 

and hyperinsulinemia, but also the saturation of adipose tissue fat storage capacity. Under 

these conditions, adipocytes suffer hypertrophy and/or hyperplasia 136, and in long-term, 

fat storage limit is reached in adipose tissue. The excess of fat is consequently released 

into the bloodstream – dyslipidemia - and taken up by peripheral tissues, such as the liver 

and skeletal muscle. These tissues are not able to safely store an excess of lipids. This 

ectopic lipid accumulation – lipotoxicity - promotes metabolic dysfunction of tissues, which 

leads to development of insulin resistance and associated chronic diseases 137 (Figure 5).  

Lipotoxicity in the pancreas may cause a decrease in pancreatic cell mass, leading 

to impaired insulin secretion and the development of diabetes 138. Skeletal muscle 

becomes resistant to insulin-stimulated glucose uptake 139. In the liver, lipotoxicity leads 

to hepatic steatosis (NAFLD) 140 and steatohepatitis (NASH) 141, causing hepatic 

dysregulation. Ectopic lipid accumulation is also known to promote inflammation and 

ultimately cell apoptosis 110.  

Levels of dietary fat and FA composition have a crucial role in the modulation of 

lipidemia and also insulin resistance development in several tissues. In previous studies, it 

was shown that 6 weeks of fat-rich or cholesterol-rich diets can cause hyperlipidemia 142, 
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and also reported that HFD feeding decreases very low-density lipoproteins (VLDL) 

secretion in the liver, which inhibits TG transport out of the cells and promotes hepatic 

steatosis and insulin resistance development 143. There is a negative correlation between 

lipid content and insulin action, and is yet to be fully understood if lipid metabolism 

dysregulation is a cause or result of insulin resistance development.  

 
Figure  5. Metabolic dysfunction induced by interorgan crosstalk. Under a positive energy 

balance, adipose tissue can reach the limit to store fat, which results in increased release of lipids 
into blood flow. Lipids are mobilized to peripheral tissues, such as the pancreas, liver and skeletal 
muscle, causing ectopic lipid accumulation. Adipose tissue also increases the secretion and release 
of proinflammatory cytokines and chemokines, which contribute to peripheral tissues inflammation. 
All of these processes promote metabolic dysregulation and development of insulin resistance. 
Adapted from Canfora et al (2015).   

 

1.3.3. Inflammation  

Inflammation is a complex biological response that can be triggered by different 

insults, such as HFD feeding. This dietary pattern has been reported to induce inflammation 

in the liver, adipose tissue, skeletal muscle, and also the brain 144. Inflammation and 

metabolic regulation are mechanisms functionally dependent on each other. When 
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dysregulated, inflammation can promote the development of metabolic disorders, such as 

obesity and type 2 diabetes, which have been defined as states of chronic low grade 

inflammation 145,146.  

SFAs are tightly associated to the inflammatory mechanism. FA-increased intake 

in HFD feeding induces the activation of toll-like receptor 4 (TLR4) 147,148. Consequently, 

TLR4 mediates nuclear factor kappa B (NF-κB) activation 149. In the liver, NF-κB-activated 

pathway was reported to crosstalk and inhibit several steps in insulin signaling pathway, 

promoting hepatic insulin resistance 150. Intracellular accumulation of palmitate and 

activation of protein kinase C (PKC) were also shown to activate NF-κB pathway and 

impair insulin sensitivity 133.  

Under overnutrition, the adipose tissue releases chemokines and cytokines to 

report the feeding status to other organs 151. Adipocytes from obese subjects express 

increased levels of pro-inflammatory cytokines, such as interleukin-6 (IL-6) and tumor 

necrosis factor alpha (TNF-α) 152 (Figure 5). TNF-α is highly expressed in WAT and related 

to proliferation and differentiation of cells 110. This cytokine has been shown to impair IR 

activation by supressing its tyrosine kinase activity. Subsequently, tyrosine phosphorylation 

of IRS-1 is impaired, which compromises insulin action 153,154. IL-6 is produced by T cells 

and macrophages, and its levels have also been positively correlated with both obesity 

and insulin resistance 155. Both TNF-α and IL-6 lead to the activation of c-Jun amino- 

terminal kinase (JNK) and the IκB kinase-β (IKK-β) by classical receptor-mediated 

processes. These kinases induce the expression of inflammatory genes and NF-κB activity, 

which can promote insulin resistance onset 12,156. 

  

1.4. Sirtuin family  

1.4.1. Yeast Sir2 

Silent information regulator 2 (Sir2) is the founding member of the sirtuin family, 

and was discovered in yeast Saccharomyces cerevisiae 157. This protein was first defined 

as a genetic silencing factor  158,159, and later proved to extend lifespan in yeast by 

reducing the number of extrachromosomal ribosomal deoxyribonucleic acid (rDNA) 160. Sir2 

is a nicotinamide adenine dinucleotide (NAD)+-dependent histone deacetylase, and targets 
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histones and non-histone proteins 161. This protein was also shown to increase longevity 

in nematode Caenorhabditis elegans 162,163, fruit fly Drosophila melanogaster 164, and to 

be conserved in mammals 165.  

1.4.2. Mammalian sirtuins  

Sir2 homologs were subsequently identified in mammals and termed sirtuins. These 

evolutionary conserved proteins have also been studied in lifespan extension 194. Although 

recent studies have questioned the role of mammalian sirtuins in lifespan extension 168, 

the current knowledge is that sirtuins may play an important role in health maintenance 

and stress responses, instead of acting as longevity determinants 169. Thus, this family of 

proteins has been studied as metabolic 170 and stress 171 sensors, and have also been 

involved in several age-related diseases, such as type 2 diabetes 172, cancer 173, 

cardiovascular 174, inflammatory 175 and neurodegenerative diseases 176. 

1.4.2.1. Isoforms 

Mammalian sirtuins are composed by seven isoforms (SIRT1-7), of which SIRT1 is 

the closest homolog to Sir2. Sirtuins are the class III histone deacetylase family, and are 

characterized by a conserved NAD+-binding site and catalytic core domain 167,177. These 

enzymes deacetylase activity requires NAD+ as a cofactor, with consequent formation of 

nicotinamide (NAM) (Figure 6). Sirtuins were reported to be inhibited by NAM in a non-

competitive manner with NAD+. NAM binds closely to NAD+-binding site, and is essential to 

NAD+ regeneration 178.  

 

      

Figure  6. NAD+-dependent deacetylase activity of sirtuins. These enzymes remove the acyl 
groups (Ac) from proteins substrates and cleave the cofactor NAD+ to NAM.  
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Sirtuin isoforms display ubiquitous expression. These proteins are expressed in 

several peripheral tissues, such as the liver, kidney, adipose tissue and skeletal muscle, 

and also in several brain structures. Sirtuins expression levels and activity are strictly 

dependent on NAD+ levels. The cofactor levels change due to physiological fluctuations 

of the cellular energetic and redox state. High energy demands, such as CR, fasting and 

physical activity, increase NAD+ levels, which enhances sirtuins activation. Low energy 

demands, such as obesity, HFD feeding and stress, reduce NAD+ levels, which decreases 

sirtuins activity 179,180.  

Sirtuins have different subcellular localization, enzymatic activity, and targets 

(Table 1).These proteins can be divided in four different classes, with SIRT1–3 belonging 

to class I, SIRT4 to class II, SIRT5 to class III, and SIRT6 and SIRT7 to class IV 167. SIRT1 

is the most studied of all mammalian sirtuins, being mainly located in the nucleus, but can 

also be found in the cytosol 181. SIRT3, 4 and 5 are mitochondrial sirtuins 182, and SIRT6 

and 7 can be found in the nucleus and nucleolus, respectively 183. SIRT2 is the only 

cytosolic sirtuin, but can also been found in other cellular organelles 184,185. Only class I 

sirtuins appear to exhibit strong deacetylase activity in the presence of NAD+, with SIRT4 

and SIRT6 described to function as ADP-ribosyltransferases. SIRT5 was shown to primarily 

perform NAD+-dependent dema-lonylase and desuccinylase reactions 167.  

Mammalian sirtuins target proteins involved in cell cycle, mitochondrial function, 

transcription, metabolic and energy homeostasis, proving to be deeply involved in aging-

related diseases and metabolic disorders 169. 

1.4.2.2. General functions  

Nuclear sirtuins (SIRT1, 6, and 7) have a well-documented role in transcriptional 

regulation, through targeting of transcription factors, cofactors or histones. SIRT1 has 

been reported as a deacetylase of several transcription factors, such as the tumor 

suppressor p53 186,187. SIRT1 inhibits p53 and promotes tumorigenesis. SIRT1 has also 

been related to lipid and glucose homeostasis in response to changes in nutrient 

availability. This sirtuin regulates positively PPARα and promotes the expression of genes 

that are critical for FAO in the liver 188. SIRT6 is involved in DNA repair. This protein  

transfers adenosine diphosphase (ADP)-ribose moieties and deacetylases histones, such 

as histone (H) 3 lysine 9 and H3 lysine 56 189. SIRT6 deficiency was shown to lead to 
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genomic instability and a progeroid phenotype 190, and also to development of hepatic 

steatosis 78. SIRT7 activates ribose ribonucleic acid (RNA) polymerase I transcription (Pol 

I), which is crucial for cell viability maintenance 191.  

Mitochondrial SIRT3, 4 and 5 regulate the activity of enzymes and oxidative stress 

pathways. SIRT3 has been shown to deacetylate glutamate dehydrogenase (GDH) 192, 

complex I 193 and acetyl-CoA-synthetase 2 (AceCS2) 194. This sirtuin is also involved in the 

regulation of mitochondrial FAO by deacetylating LCAD enzyme 195. SIRT4 has a ADP-

ribosylation activity and inhibits GDH, decreasing amino acid-dependent insulin secretion 

196. SIRT5 has the ability to remove malonyl and succinyl groups from carbamoyl 

phosphate synthetase 1 (CSP1) 197, and interact with other cellular metabolic protein, such 

as cytochrome c 192. 

Cytosolic SIRT2 has been associated to adipose tissue development and function 

177,198. This protein was initially found to be a tubulin deacetylase 199, and later proved to 

act on multiple histone and non-histone proteins. SIRT2 has been reported to have a role 

in the stabilization of the transformed state of cancer cells 200,201 and also in metabolic 

regulation 202.  

 

Table 1. Sirtuins subcellular localization, activities and targets  
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1.4.2.1. Activity modulation  

In recent years, modulation of sirtuins functions has been studied to better 

understand their roles and possible value as targets for the treatment of various diseases. 

Animal genetic manipulation has been one of several approaches for sirtuins 

modulation. Mice overexpressing sirtuins or sirtuin-deficient mice have been developed 

and used to clarify the onset and progression of pathological symptoms, and explore 

potential therapeutic approaches 78,172,203. Chemical modulation has also been studied, 

with several natural and synthetic compounds already used for sirtuins activity inhibition 

204, such as synthetic AGK2 205 and AK7 206, potent and selective inhibitors for SIRT2. 

There are also robust activators, particularly described for SIRT1, such as the natural 

molecule found in red wine, resveratrol 207. Dietary patterns, such as CR has been shown 

to prevent age- associated diseases, such as diabetes, cardiovascular diseases, and 

cancer, through sirtuins increased activity 192. 

 

1.5. SIRT2 

SIRT2 is one of the least understood of all mammalian sirtuins. Besides cytosolic, 

this protein can translocate to the nucleus during cell cycle 208. More recently, SIRT2 was 

reported in the inner membrane of mitochondria, which loss caused a dysfunction in 

mitochondrial metabolism 185. SIRT2 was shown to remove myristoyl groups 209. This 

enzyme has been studied as deacetylase of several molecules that are key elements of 

different cellular mechanisms 210.   

1.5.1. Distribution, expression modulation and activity regulation  

SIRT2 exhibits a ubiquitous distribution, being expressed in several tissues, such 

as the brain, skeletal muscle, liver, kidney, and adipose tissue 211,212. This protein is the 

most abundant sirtuin in both adipose tissue in vivo and adipocytes in culture 213. SIRT2 is 

more abundantly expressed in the CNS, particularly in the cortex, striatum, hippocampus, 

and spinal cord, than in all other tissues 212. Moreover, is expressed in different CNS cellular 

types, such as oligodendrocytes, microglia and neurons 212,214.  

As all mammalian sirtuins, SIRT2 expression has been reported to be modulated 

by energy availability. This sirtuin is highly expressed during low-energy status, such as 
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fasting, or CR, and inhibited during high-energy states, such as HFD feeding or obesity. In 

previous studies, it was shown that mice subjected to a long-term CR  had increased 

SIRT2 levels in WAT and kidney 211. A short-term food deprivation was also proved to 

promote an increase in SIRT2 messenger RNA (mRNA) and protein expression in WAT 216. 

In peripheral blood mononuclear cells (PBMC) samples of obese subjects, SIRT2 gene 

expression levels were proved to be increased after an 8-week hypocaloric diet 217. 

Moreover, this protein expression in visceral WAT from obese subjects and HFD-fed mice 

was shown to be downregulated 7. There are several transcript variants that result from 

an alternative splicing of SIRT2 gene, but only two were confirmed to have physiologically 

relevant protein products, the long variant 1 that encodes a 389-amino acid protein and 

has a predicted molecular weight of 43 kDa, and short variant 2 that encodes 352-amino 

acid protein and has a predicted molecular weight of 39 kDa 215.  

SIRT2 activity has been proved to be regulated by PTMs. This protein enzymatic 

activity was reported to be reduced by the phosphorylation of residue serine (Ser) 331 by 

cyclin proteins, which consequently caused impaired deacetylation of core histones and 

α-tubulin 218. SIRT2 was also shown to be acetylated by the lysine acetyltransferase p300 

219. Pharmacological modulation of SIRT2 activity has also been studied, with sirtuin 

rearranging ligands (SirReals) molecules shown to be highly selective for human SIRT2, 

and proved by structure-activity relationships (SAR) analyses to be strongly efficient in 

modulating SIRT2 activity 220. SirReal2, the most potent, was reported to promote tubulin 

hyperacetylation in HeLa cells and dysregulate other proteins when inhibiting SIRT2 221. A 

thiomyristol lysine compound, TM, was recently developed, and showed to be specific to 

SIRT2. This compound was also proved to have a tumor suppressor effect 222. Currently, 

there are no pharmacological SIRT2 activators available. However, treatment with NAD+ 

precursors has been reported as a booster of sirtuins activity and potential therapeutic 

strategy for several diseases 223,224.  

1.5.2. General biological actions  

Cell cycle and tumorigenesis  

SIRT2 was proved to transiently shuttle to the nucleus during the G2/M transition 

phase of the cell cycle, where associates with chromatin and regulates chromosomal 

condensation by deacetylation of H4 lysine 16 184,208 . SIRT2 was also shown to prevent 
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chromosomal instability by deacetylation of coactivators of anaphase promoting complex 

(APC/C) 225 and to deacetylate the lysine-668 of mitotic checkpoint BubR1, a protein 

associated with aging regulation and lifespan extension 226,227.  

Regarding tumorigenesis regulation, SIRT2 activity is controversial 228. SIRT2 was 

reported to act as a tumor suppressor by deacetylation and activation of p53 229, and 

more recently, was shown to cause cancer cells metabolic reprograming towards 

carcinogenesis suppression 230. Contrary to these results, in cervical cancer cell lines, 

SIRT2 levels were shown to continuously increase with cancer progression. This sirtuin 

was also reported to be increased in neuroblastoma and pancreatic cancer cells, 

promoting Myc proteins stability and cancer progression 231. Overexpression of SIRT2 was 

also associated to enhanced cell mobility and invasiveness of hepatocellular carcinoma 

cells 232. Taken together, further studies are required to clarify this contradiction of SIRT2 

action and therapeutic potential in cancer.  

 

Neurodegeneration 

Several studies in cellular and animal models of neurodegenerative diseases, such 

as Parkinson’s disease (PD) and Huntington’s disease (HD), have brought a different 

perspective of SIRT2 activity 233. Pharmacological and genetic inhibition of SIRT2 activity 

was reported to reduce sterol levels through alteration of SREBP-2 activity, which 

prevented mutant huntingtin (HTT) to increase sterols to toxic levels in CNS cells 234. 

Moreover, it was reported in HD mouse models that SIRT2 inhibition by the small molecule 

AK7 reduced neuronal mutated HTT accumulation, improving symptomatic features of HD 

235. A similar study of SIRT2 inhibition, showed that depression of SIRT2 activity reduces 

mutated α-synuclein levels and protects dopaminergic neurons from toxicity both in in vitro 

and in in vivo PD models 205. Contrary to these results, other study reported that genetic 

SIRT2 inhibition has no beneficial effects in neurodegenerative diseases, as HD 236. Thus, 

more studies are required to fully understand whether SIRT2 inhibition promotes neuronal 

protection or if it is only under some conditions. 

 

Inflammation  

Several transcriptional factors, such as NF-κB and MAPKs, are able to regulate the 

expression of genes involved in the inflammatory response mechanism 237. SIRT2 has 
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been reported to directly bind and deacetylate NF-κB p65 subunit at lysine 310. 

Consequently, NF-κB becomes unable to regulate the expression of inflammatory genes 

238. The loss of SIRT2 in microglial cells was shown to cause an increase in microglial 

activation and a proinflammatory phenotype 214. Other study reported that SIRT2 

deficiency in mice leads to severe colitis by NF-κB hyperacetylation and IκB activation 239.  

These results support a protective role of SIRT2 against inflammatory processes that 

characterize several metabolic disorders. 

1.5.3. Metabolic functions  

1.5.3.1. Glucose metabolism  

Glycolysis and gluconeogenesis 

SIRT2 was shown to deacetylate glucokinase regulatory protein (GKRP) and 

regulate GCK-GKRP pathway. GCK binds GKRP in the nucleus and is inhibited to shuttle 

to cytoplasm to participate in glycolysis. Consequently, SIRT2 deacetylates GKRP and 

increases GCK nuclear export and glycolytic activity 240. SIRT2 was also reported to 

deacetylate PEPCK1. Acetylation of human PEPCK1 was shown to be increased in 

response to hyperglycemia, which decreases PEPCK1 stability 241. In contrast, SIRT2 has 

been reported to deacetylate and increase PEPCK1 stability under conditions of glucose 

deprivation 242. Hepatic gluconeogenesis regulators, such as FOXO1 and PGC1α, have 

also been proved to be deacetylated by SIRT2 (Figure 7).  

 

Insulin sensitivity  

SIRT2 has been shown to interact with and regulate Akt activation in insulin-

responsive cells under a normal diet 201,232 (Figure 7). This sirtuin overexpression was 

reported to increase insulin-induced Akt activation and downstream substrates 

phosphorylation (eg. GSK3β and p70S6 kinase) in 3T3-L1 preadipocytes and HeLa cells 

201. More recently, SIRT2 overexpression was reported to improve insulin sensitivity in 

insulin-resistant hepatocytes 243. Contrarily to these studies, SIRT2 expression was shown 

to be increased in insulin-resistant C2C12 skeletal muscle cells, and when inhibited 

pharmacologically or genetically, insulin-induced phosphorylation of Akt and GSK3β was 

increased 244. SIRT2 has also been proved to deacetylate TUG protein, which is implicated 

in GLUT4 cellular trafficking to plasma membrane by trapping GLUT4 storage vesicles in 
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insulin-unstimulated cells 245. SIRT2-KO mice presented an increase in TUG acetylation 

state, which resulted in the accumulation of GLUT4 storage vesicles in unstimulated cells, 

and increased glucose uptake under insulin stimulation 246. 

1.5.3.2. Lipid metabolism  

Adipogenesis  

Overexpression of SIRT2 inhibits adipocyte differentiation, whereas reducing SIRT2 

expression promotes adipogenesis 216. In 3T3-L1 preadipocytes, SIRT2 was shown to 

reduce acetylated and phosphorylated levels of FOXO1, which consequently leads to 

trapping of FOXO1 in the nucleus. FOXO1 represses the transcription of PPARγ gene by 

binding to gene promoter sites, and inhibits adipocyte differentiation 213. SIRT2 was also 

reported to regulate adipogenesis through both modulation of PPARγ activity and 

enhancement of lipolysis when overexpressed in cultured adipocytes, in the presence or 

absence of insulin stimulation 200. 

 

Lipogenesis  

ACLY has been shown to be deacetylated by SIRT2. In in vitro and in vivo models 

under high-glucose conditions, ACLY is acetylated, which promotes protein stability and 

lipid synthesis 247. SIRT2-mediated deacetylation of ACLY causes ubiquitination and 

degradation of this enzyme, and represses lipogenesis. 248 (Figure 7).  By contrast, the 

study of SIRT2 action in cholesterol biosynthesis has brought conflicting results. SIRT2 

inhibition has been shown to decrease cholesterol synthesis through SREBP-2 activity 

regulation, and subsequent gene transcription repression of crucial enzymes in the 

cholesterol synthesis pathway 234. However, in SIRT2-KO mice the expression of these 

enzymes was shown to be unaltered. Neither the loss or pharmacological inhibition of 

SIRT2 caused an alteration in the expression of cholesterol biosynthesis enzymes 236. 

Overall, the role of SIRT2 in lipogenesis requires to be further explored.  

 

Fatty acid oxidation  

The role of SIRT2 in FAO remains poorly understood. It has been reported that 

hypoxia inducible factor-1 alpha (HIF-1α) inhibits FAO, in an SIRT2-dependent manner. HIF-

1α inactivation in WAT causes a nuclear accumulation of SIRT2 and subsequent increase 



Chapter I – Introduction 

 

 
27 

in PGC-1α deacetylation state and FAO (Figure 7). In a state of relative hypoxia induced 

by obesity,  SIRT2 deacetylase activity is repressed, HIF-1α activation promoted, PGC-1α 

acetylated state increased, and FAO decreased 7. 

 

 

Figure  7. Metabolic actions and targets of SIRT2. Adapted from Gomes et al (2015). 

 

1.5.3.1. Metabolic phenotype of SIRT2-KO mice  

SIRT2 metabolic actions have been studied primarily in in vitro models 216,244, and 

few studies have shown relevant insights of SIRT2 role in in vivo metabolic homeostasis. 

Thus, was previously performed a thorough characterization of SIRT2-KO mice metabolic 

phenotype under regular CD feeding or HFD feeding for 4 weeks (Quatorze, 2016; 

unpublished data). Several metabolic parameters were measured both in WT control and 

SIRT2-KO mice. 

SIRT2 ablation did not reveal an apparent impact in metabolic regulation of mice 

nutrient excess during obesogenic diets. Collectively, these observations suggest that SIRT2 is
an important regulator of adipogenesis by affecting the activity of PPARg, one of the earliest
transcriptional changes in the normal program of adipocyte differentiation and may, therefore,
play a role in the modulation of adipose tissue mass and function.

Lipid Synthesis
Adipose mass is regulated by the balance between lipid anabolic and catabolic processes,
which are directly linked to the nutritional status of the organism. Nutrient-rich conditions
increase lipid synthesis whereas nutrient deprivation promotes fatty acid oxidation. Although
lipids are essential for the maintenance of cellular homeostasis, impaired lipid synthesis and/or
processing is associated with the development of many diseases, including obesity, insulin
resistance, nonalcoholic fatty liver disease, and type 2 diabetes [53].
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Figure 1. A list of selected proteins that are deacetylated by SIRT2 and the metabolic pathways they influence reveals that
SIRT2 can coordinate disparate metabolic processes in various tissues and cell types. Strategies aimed to increase
intracellular NAD+ levels are expected to activate SIRT2 and lead to improved metabolic activity.
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fed a CD, whereas SIRT2 deficiency caused the development of exacerbated metabolic 

dysfunction in HFD-fed mice (Table 2).  

Taken together, the results of this study suggest that SIRT2 may play key metabolic 

actions under stress inducer HFD conditions.  

 

Table 2. Metabolic phenotype of SIRT2-KO mice compared to WT mice fed either a normal 
CD or a HFD 

 
 = - unaltered; + - mild; ++ - exacerbated 

 

1.6. Aim and work plan  

SIRT2 has emerged in recent years as a crucial regulator of mammalian 

metabolism, by targeting several proteins involved in crucial metabolic processes, such as 

adipogenesis, lipogenesis, gluconeogenesis and insulin sensitivity 210. As the only cytosolic 

mammalian sirtuin, and ubiquitously distributed, particularly in metabolic relevant tissues 

(e.g adipose tissue, liver and skeletal muscle), the modulation of SIRT2 expression and 

activity may provide important insights into SIRT2 actions in metabolic homeostasis.  

Our group previously performed a detailed metabolic characterization of SIRT2-

KO mouse, and prompted several questions related to the role of SIRT2 in metabolic 

regulation. Under HFD feeding, SIRT2-KO mice developed exacerbated metabolic 

dysfunction, with increased body and adipose tissue weight gain, increased energy intake 

and serum TG levels and insulin resistance (Quatorze, 2016; unpublished data). Therefore, 

the overall aim of the present work was to expand the previous research (reviewed above 
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in the last topic of Chapter I) by studying, at histological and molecular level, the underlying 

mechanisms that could explain the metabolic phenotype of SIRT2-KO mice fed a HFD. 

We focused on the role of SIRT2 in the early onset of metabolic disorders (eg. obesity and 

type 2 diabetes) to identify potential targets to therapeutically counteract the progression 

of these diseases.  

For this purpose, the work plan was divided into several experiments: 

- To assess the effect of HFD on SIRT2 expression levels; 

- To evaluate insulin signaling activation, particularly the phosphorylation levels of 

Akt protein, in WT and SIRT2-KO mice; 

- To explore morphological alterations in the adipose tissue of WT and SIRT2-KO 

mice fed a HFD; 

- To evaluate lipid accumulation in the liver of WT and SIRT2-KO fed a HFD; 

- To assess mRNA levels of genes involved in crucial metabolic pathways under CD 

and HFD feeding. 
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2.1. Experimental animals and diets  

Seven week-old wild-type (WT) C57BL/6 male mice were purchased from Charles 

River Laboratories. B6.129-Sirt2tm1.1Fwa (SIRT2-KO) male mice were purchased from 

The Jackson Laboratory (Ref. 012772). SIRT2-KO mice were generated in B6.129 genetic 

background and backcrossed to C57BL/6 for at least 8 generations to produce 

homozygous SIRT2-/- mice. A colony of these SIRT2-KO mice was established at the 

Centre for Neuroscience and Cell Biology (CNC) of the University of Coimbra. WT and 

SIRT2-KO mice were age- and sex-matched and maintained in a temperature-controlled 

room with 12h light/12h dark cycles. Animals were housed in groups of 2-5 animals and 

had free access to food and water. The experiments were carried out in accordance with 

the European Community Directive (2010/63/EU) and the Portuguese Decree-law 

113/2013 for the care and use of laboratory animals, and guided by researchers who 

received adequate training (FELASA certified course) and certification from Portuguese 

national authority for animal health (DGAV). SIRT2-KO mice were subjected to a standard 

CD (4RF21, Mucedola, Italy) until the beginning of the dietary protocol. WT mice were fed 

the same CD for a 10-day acclimation period. Mice began the 31-day dietary protocol with, 

on average, 8 weeks of age. During this dietary protocol, mice were fed either a CD or 

HFD (Table 3). This particular HFD (D12492, Research Diets, US) is the most widely used 

to induce obesity and metabolic dysfunction and is composed of 60% Kcal from fat and 

lard- enriched. 

Table	3.	Standard	CD	and	HFD	nutritional	composition. 
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2.2. Metabolic phenotyping  

2.2.1. Body weight and food intake assessment  

Food intake and body weight were assessed twice a week during the 31 days of 

the study (Figure 8). Food was weighed and refilled whenever a minimum weight value was 

achieved. Mice were weighed and transferred to clean cages with free access to fresh 

water in each time. Food intake per mouse was calculated dividing food intake by the 

number of mice in the cage.  

2.2.2. Intraperitoneal glucose tolerance test (ipGTT) 

ipGTT was performed on day 24 of the dietary protocol (Figure 8). Mice were fasted 

overnight for 15-16 hours (6 p.m to 9/10 a.m) after being transferred to clean cages without 

food or faeces. Before starting the experiment, mice were housed individually. Basal blood 

glucose levels were measured before ip glucose injection (1.5 g D-glucose/Kg of body 

weight) after tail cut (~1 mm) and vein blood collection. Blood glucose levels were 

subsequently measured at minutes 15, 30, 60, 90 and 120 following glucose injection. 

Glucose concentration was determined with a glucose meter (Free Style Precision Neo 

glucometer, Abbott). Area under the curve (AUC) of the ipGTT was calculated using the 

trapezoidal rule.  

2.2.3. Intraperitoneal insulin tolerance test (ipITT) 

ipITT was performed on day 28 of the dietary protocol (Figure 8). Mice were fasted 

for 5-6 hours (9 a.m to 2/3 p.m) and housed individually for the experiment. Blood glucose 

levels were measured before insulin injection (0.75 U/Kg of body weight, Humalog, Lilly) 

after tail cut and vein blood collection. Blood glucose levels were measured at minutes 

15, 30, 60, 90 and 120 after injection, using a glucose meter (Free Style Precision Neo 

glucometer, Abbott). AUC was calculated by using the trapezoidal rule.  

2.2.4. Insulin stimulation and tissue collection  

Mice were fasted overnight after being transferred to clean cages without food or 

faeces. Animals were injected ip with insulin (2U/Kg of body weight, Humalog, Lilly) or saline 

solution. After 30 minutes of insulin stimulation, mice were anesthetized with isoflurane 
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and sacrificed by cervical dislocation. Tissues were rapidly dissected, weighed and divided 

in 3 pieces. 2 pieces were immediately frozen in liquid nitrogen and stored at -80oC for 

later analysis. A third piece was fixed at room temperature in a solution of 10% neutral 

buffered formalin (Prolabo®, formaldehyde 4% aqueous solution, buffered, VWR chemicals) 

for a maximum of 60 days, for posterior histological analysis (Figure 8). 

    

Figure  8.  Experimental design of metabolic phenotyping under a CD or HFD. 

 

2.3. Insulin signaling  

2.3.1. Protein extraction and quantification  

Tissues were lysed with radioimmunoprecipitation assay (RIPA) buffer (50 mM Tris-

base; 150 mM NaCl; 5 mM egtazic acid (EGTA); 1% (v/v) Triton X-100; 0.5 % (w/v) 

deoxycholate (DOC); 0.1 % (w/v) sodium dodecyl sulphate (SDS)); complete mini protease 

inhibitor cocktail tablet (Roche Diagnostics, GmbH); 1 mM sodium orthovanadate (NaVO4); 

1 mM dithiothreitol (DTT); 10 mM sodium fluoride (NaF); 200 μM 

phenylmethylsulfonylfluoride (PMSF). Tissue lysates were prepared using manual 

homogenizers and followed by sonication (3/4 pulses, amplitude 60, 3/4 seconds each). 

Lysates were centrifuged at 13.000 rpm during 20 minutes at 4°C. Protein concentration 

was determined by the bicinchoninic acid (BCA) method. The samples were denatured with 

6x concentrated sample buffer (0.5 M Tris-HCl, pH 6.8; 30% (v/v) glycerol; 10% (w/v) SDS; 

0.6 M DTT; 0.01% (w/v) bromophenol blue), and heated at 95ºC for 5 min and stored at -

80ºC until use.  
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2.3.2. SDS-PAGE and Western blotting  

Proteins were resolved by sodium dodecyl sulphate-polyacrylamide gel 

electrophoresis (SDS–PAGE) using 8% and 10% polyacrylamide gels. Electrophoresis was 

run on a Tris-Bicine buffer (125 mM Tris-base; 125 mM Bicine; 0.5% (w/v) SDS; pH 8.3) at 

70 V in the first 10 minutes and at 100 V until an appropriate separation of the molecular 

weight standards. Proteins were electrotransferred to polyvinylidene difluoride (PVDF) 

membrane in CAPS transfer buffer (10 mM CAPS, pH 11.0; 10% (v/v) metanol) upon a 

constant current of 750 mA, during 2 hours. Membranes were blocked for ~1 hour at room 

temperature with blocking buffer (5% non-fat dry milk or 5% bovine serum albumin (BSA) 

in Tris buffered saline (200 mM Tris-base; 137 mM NaCl; pH7.6 with 0.1% Tween-20). 

Membranes were incubated overnight at 4ºC with the following primary antibodies: rabbit 

polyclonal anti-P-Akt Ser473 (1:1000; Cell Signaling 9271S); rabbit polyclonal anti-Akt 

(1:1000; Cell Signaling 9272S); rabbit anti- SIRT2 (1:1000; Sigma S8447); rabbit polyclonal 

anti-P-HSL Ser660 (1:1000; Cell Signaling 4126S), mouse monoclonal anti-ATGL (1:1000; 

Santa Cruz Biotechnology F-7); mouse monoclonal anti-α tubulin (1:10000; Sigma T6074); 

mouse monoclonal anti-β tubulin (1:10000; Sigma T7816), followed by 1 hour incubation 

with the corresponding alkaline phosphatase-linked secondary goat anti-mouse or anti-

rabbit antibody (1:10000; Thermo Scientific). Proteins were visualized with enhanced 

chemifluorescence substrate (ECF) (GE Healthcare) and scanned by VersaDoc Imaging 

System Model 3000 (Bio-Rad). Densitometry analysis of the blots was performed using 

Quantity One Version 4.6.9 (Bio-Rad).  

 

2.4. Histological analysis  

Tissues previously stored and conserved in a 10% neutral buffered formalin 

solution (Prolabo®, formaldehyde 4% aqueous solution, buffered, VWR chemicals) were 

passed through several steps for paraffin (Histosec® pastilles, Merck KGaA, EMO Millipore 

Corporation) blocks inclusion: 1 hour at ethanol 70%; two series of ethanol 95%, 45 

minutes each; two series of ethanol 100%, 1 hour each; two series of xylene, 1 hour each 

and two series of paraffin, 1 hour each. In the end, tissues were included in paraffin blocks.  
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2.4.1. Hematoxylin & Eosin (H&E) staining  

Paraffin blocks were sectioned at 4 μm thickness with microtome (Thermo 

Scientific HM325). Tissue sections were collected to microscope slides (SuperFrostTM, 

Thermo Scientific). H&E staining was performed according to the manufacturer guidelines. 

Liver and epididymal white adipose tissue (eWAT) paraffin sections were deparaffinized 

in xylene and rehydrated in 100% ethanol and then in 95% ethanol. Slides were incubated 

with Hematoxylin Solution modified acc. to Gill III (Merck KGaA, EMO Millipore Corporation), 

and then washed in distilled water (dH2O). After, sections were counterstained with Eosin 

Y-solution 0.5% aqueous (Merck KGaA, EMO Millipore Corporation), washed with distilled 

water and finally dehydrated in 95% ethanol, 100% ethanol and xylene. Mowiol mounting 

medium (Thermo Scientific) and a coverslip (Thermo Scientific) were added to prepare 

tissue sections for microscopy. Preparations were left to dry overnight. Microscope images 

were obtained using Axio Imager Z2 (Transmission Light, Objective plan-Apochromat 

20x/0.8 M27, 0,512 µm/pixel) for qualitative and quantitative analysis. Adipocyte size and 

diameter were determined in a blind manner. A minimum of 200 adipocytes for each animal 

was quantified using ImageJ software (National Health Institute, Bethesda, MD, USA, Java 

1.6.0_24).  

2.4.2. Oil Red O (ORO) staining  

Hepatic lipid content was determined by using ORO staining on frozen livers. 

Tissues were embedded in OCT Tissue-tek optimum cutting temperature (Sakura Finetek) 

and cut at a cryostat-microtome (Leica CM3050S, Leica Microsystems Nussloch GmbH, 

Nußloch, Germany) in 8-10 μm sections, and collected to microscope slides (SuperFrostTM, 

Thermo Scientific)  After 10 min at room temperature, slices were added ~1 mL ORO 

working solution (1.5 parts ORO stock solution (1.25 g ORO (Sigma-Aldrich) + 200 mL 

Isopropyl 99% solution) to 1 part of dH2O) for 10 minutes, and then rinse with dH2O to 

remove the solution. Tissue sections were left to dry and then prepared with Mowiol 

(Thermo Scientific) and a coverslip (Thermo Scientific) for microscopy. Microscope images 

were obtained using Axio Imager Z2 (Transmission Light, Objective plan-Apochromat 

20x/0.8 M27, 0,512 µm/pixel). ORO percent stained area was determined in a blind manner. 

10 images for each animal were quantified using ImageJ software (National Health 

Institute, Bethesda, MD, USA, Java 1.6.0_24). 
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2.5. mRNA quantification  

2.5.1. Total RNA extraction  

Total RNA was extracted from the liver using the NucleoSpin® RNA Isolation kit for 

tissue and according to the manufacturer’s manual (Macherey-Nagel). DNase digestion 

was performed during the process to exclude any contamination with genomic DNA. Total 

RNA was quantified by optical density (OD) measurements using a ND-1000 Nanodrop 

Spectrophotometer (Thermo Scientific) and the purity was assessed with the ratio of OD 

at 260 and 280 nm. Total RNA samples were kept at -80ºC.  

2.5.2. Real-time quantitative PCR analysis (RT-qPCR) 

The mRNA levels of genes involved in selected metabolic pathways were assessed 

by RT-qPCR. cDNA was obtained from the conversion of 1000 ng of liver total RNA using 

the iScriptTMcDNA Synthesis Kit (Bio-Rad) according to the manufacturer’s protocol. Prior 

to cDNA preparation, RNA samples of liver were diluted in RNase-free water (2 dilutions, 

40 µL each) and stored at -20ºC. For mRNA quantification, the SsoAdvanced SYBR Green 

Supermix (Bio-Rad) was used in combination with pre-designed PCR primer sets (Alfagene) 

(Table 4). These primer sets were optimized to our liver samples, together with a reference 

gene. The reference gene was previously validated in our laboratory by GeNorm and 

NormFinder softwares. PCR primer sets were also validated by PrimerBlast (PubMED) and 

Oligocalc softwares before use. 

 

2.6. Statistical analysis  

Results are expressed as mean ± standard error of the mean (SEM). Statistical 

analysis was performed with parametric Student’s t-test or ordinary One-way ANOVA, and 

effectuated using GraphPad Prism Software (v.7). Statistical significance is displayed as 

ns = non-significant, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.  
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Table 4. Metabolic genes quantified by RT-qPCR. Identification of accession number, primer 
sequence and annealing temperature for the genes analyzed in the mouse liver. 
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3.1. SIRT2 expression pattern in WT mice  

3.1.1. SIRT2 expression in metabolically relevant tissues  

SIRT2 has a ubiquitous distribution, being abundantly expressed in the CNS, but 

also in peripheral tissues 212,213. In order to evaluate SIRT2 relative expression in several 

metabolically relevant tissues, and also to confirm the ablation of SIRT2 in our animal 

model, we first explored SIRT2 expression levels in the liver, adipose tissue, skeletal 

muscle and hypothalamus of WT and SIRT2-KO (KO) mice fed a regular CD. We observed 

that SIRT2 is expressed in all tissues examined from WT (Figure 9). We also found higher 

SIRT2 expression levels in hypothalamus in comparison with the other tissues. As 

expected, the absence of SIRT2 protein expression in KO mice was confirmed in all 

tissues tested.  

           

Figure  9. SIRT2 expression in metabolically relevant tissues. Representative immunoblots 
of tissue lysates (50 µg) from WT and SIRT2-KO mice fed a CD. Samples were analyzed by SDS-
PAGE and Western blotting using antibodies against SIRT2 and α-tubulin (loading control). WAT – 
white adipose tissue; Sk. M – skeletal muscle; Hypo – hypothalamus.  

 

3.1.1. Effect of HFD feeding on SIRT2 expression levels  

The expression levels and deacetylase activity of sirtuins may change according 

to nutritional availability 180. Thus, we investigated the impact of HFD feeding in SIRT2 

expression levels in the tissues examined in Figure 1. 

We observed that SIRT2 expression levels were not significantly altered after HFD 

when compared to CD, except in the adipose tissue of WT mice (Figure 10). We analyzed 

the expression levels of two reported SIRT2 isoforms, the long isoform with a molecular 

weight of 43 kDa (43) and the short isoform with a molecular weight of 39 kDa (39), and 
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Figure  10. SIRT2 expression in metabolic tissues of WT mice fed a HFD for 4 weeks (A, C, 
E, G) Representative immunoblots of tissue lysates (50-80 µg) from WT mice fed either a CD or a 
HFD. Samples were analyzed by SDS-PAGE and Western blotting using antibodies against SIRT2 
and β–tubulin (loading control) (B, D, F, H) Quantification of SIRT2/β–tubulin ratios. Levels of SIRT2 
isoforms were normalized to β–tubulin in the same lane. All SIRT2/β–tubulin ratios were normalized 
to the value from WT mice fed a CD. Each lane corresponds to a distinct animal. Results are 
represented as mean ± SEM; n= 4/group. Statistical significance was determined by ordinary One-
way ANOVA; ns=non-significant, ***p<0.001 compared to WT mice fed a CD. * represents a 
previously reported 51-kDa SIRT2 CNS isoform 249.  

 

found similar expression levels in the liver, skeletal muscle and hypothalamus of WT mice 

fed a HFD in comparison with WT mice fed a CD (Figure 10A-B and E-H). Despite unaltered 

expression levels of isoform 39, we found a significant decrease in the expression levels 

of isoform 43 in the adipose tissue of WT mice fed a HFD, in comparison to WT mice fed 
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a CD (Figure 10C and D).  

Taken together, these results suggest that 4 weeks of HFD feeding were not 

sufficient to induce significant alterations in SIRT2 expression levels in the liver, skeletal 

muscle, and hypothalamus, but reduced SIRT2 expression levels in the adipose tissue of 

WT mice.  

 

3.2. Effect of HFD on insulin signaling activation in WT and 

SIRT2-KO mice  

3.2.1. Insulin signaling in WT and SIRT2-KO mice under regular CD  

SIRT2-KO (KO) mice fed a CD previously showed a mild insulin resistance 

(Quatorze, 2016; unpublished data). Thus, to investigate the impact of SIRT2 deficiency 

on insulin sensitivity, we assessed insulin signaling activation in KO mice fed a CD, in 

comparison to WT mice fed the same diet (Figure 11). We examined insulin signaling in 

several tissues collected from fasted mice ip injected with 0.9% saline or human insulin 

(2U/kg of body weight) for 30 minutes before sacrifice, and used Akt phosphorylation at 

Ser 473 (P-Akt473)  as a readout of insulin signaling activation.  

We found a similar increase (~15-fold) in P-Akt in the livers from both WT and KO 

mice stimulated with insulin, in comparison with the livers from saline-administered animals 

(Figure 11A and B). In the adipose tissue and skeletal muscle, we observed an 

approximately 8-fold increase in P-Akt in WT and KO mice stimulated with insulin, when 

comparing to the animals administered with the saline solution (Figure 11C-F).  

In the hypothalamus, we found that Akt is phosphorylated under saline conditions, 

and that insulin stimulation failed to further induce Akt phosphorylation (Figure 11G and H).    

Taken together, insulin-induced Akt phosphorylation in the liver, adipose tissue and 

skeletal muscle of KO mice was indistinguishable from the levels in the tissues of WT 

mice. These results suggest that the absence of SIRT2 may not have impact on the 

molecular response to insulin under CD conditions.   
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Figure  11. Insulin signaling in WT and SIRT2-KO (KO) mice fed a CD (A, C, E, G) 
Representative immunoblots of tissue lysates (50-80 µg) from WT and KO mice fed a CD and ip 
injected with 0.9% saline or human insulin (2U/kg body weight) for 30 minutes before sacrifice. 
Samples were analyzed by SDS-PAGE and Western blotting using antibodies against P-Akt and Akt 
(B, D, F, H) Quantification of P-Akt/Akt ratios. Levels of P-Akt were normalized to total Akt protein in 
the same lane. All P-Akt/Akt ratios were normalized to the value from WT mice injected with saline. 
Each lane corresponds to a distinct animal. Results are represented as mean ± SEM; n= 3/group. 
Statistical significance was determined by ordinary One-way ANOVA; ns= non-significant compared 
to WT insulin and saline; ***p<0.001, ****p<0.0001 compared to saline. * represents a lane of 
unspecific binding.  

 

3.2.1. WT and SIRT2-KO mice insulin signaling under HFD 

SIRT2-KO (KO) mice previously showed exacerbated insulin resistance when fed a 

HFD (Quatorze, 2016; unpublished data). Thus, we explored the impact of SIRT2 deficiency 

B

WT KO WT KO
0

5

10

15

20

P-
A

kt
/A

kt
 (F

ol
d 

ch
an

ge
)

WT CD

KO CD

ns

****

F

WT KO WT KO 
0

5

10

15

P-
A

kt
/A

kt
 (F

ol
d 

ch
an

ge
)

ns

***
****

D

WT KO WT KO 
0

2

4

6

8

10

P-
A

kt
/A

kt
 (F

ol
d 

ch
an

ge
) ns

***

H

Saline Insulin

WT KO WT KO 
0.0

0.5

1.0

1.5

P-
A

kt
/A

kt
 (F

ol
d 

ch
an

ge
) ns

ns

Li
ve

r

A

P-Akt473

Akt

WT KO WT KO

InsulinSaline

60 kDa

60 kDa

E

C

A
di

po
se

 ti
ss

ue

P-Akt473

Akt

60 kDa

60 kDa

G

S
ke

le
ta

l m
us

cl
e 

  

P-Akt473

Akt

60 kDa

60 kDa

H
yp

ot
ha

la
m

us
 

P-Akt473 60 kDa

60 kDaAkt
*-
  -



Chapter III – Results 

 

 
47 

on insulin signaling activation in KO mice fed a HFD, in comparison to WT fed the same 

diet (Figure 12).  

 

 
Figure  12. Insulin signaling in WT and SIRT2-KO (KO) mice fed a HFD (A, C, E, G) 

Representative immunoblots of tissue lysates (50-80 µg) from WT and KO mice fed a HFD and ip 
injected with 0.9% saline or human insulin (2U/kg body weight) for 30 minutes before sacrifice. 
Samples were analyzed by SDS-PAGE and Western blotting using antibodies against P-Akt and Akt 
(B, D, F, H) Quantification of P-Akt/Akt ratios. Levels of P-Akt were normalized to total Akt protein in 
the same lane. All P-Akt/Akt ratios were normalized to the value from WT mice injected with saline. 
Each lane corresponds to a distinct animal. Results are represented as mean ± SEM; n= 3/group. 
Statistical significance was determined by ordinary One-way ANOVA; ns= non-significant compared 
to WT insulin and saline, ***p<0.001, ****p<0.0001 compared to saline. * represents a lane of 
unspecific binding. 
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collected from fasted mice ip injected with 0.9% saline or human insulin (2U/kg of body 
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weight) for 30 minutes before sacrifice.  

We found a similar increase in P-Akt in the livers (~15-fold) (Figure 12A and B), 

adipose tissue (~7-fold) (Figure 12C and D) and skeletal muscle (~4-fold) (Figure 12E and 

F) from WT and KO mice stimulated with insulin, when comparing to saline-administered 

animals.  

In the hypothalamus, as observed in CD mice, we found that Akt is phosphorylated 

under saline conditions, however insulin stimulation did not result in further Akt 

phosphorylation (Figure 12G and H).  

Overall, insulin-induced Akt phosphorylation levels in the liver, adipose tissue, and 

skeletal muscle of KO mice were indistinguishable from the levels in the tissues of WT 

mice. These results suggest that SIRT2 deficiency may also not have impact on the 

molecular response to insulin in mice fed a HFD for 4 weeks.   

 

3.3. Adipose tissue morphology in WT and SIRT2-KO mice 

after HFD feeding 

SIRT2-KO mice fed a HFD had increased body weight gain and also a higher eWAT 

mass when compared to WT mice fed a HFD (Quatorze 2016, unpublished data). Thus, to 

explore underlying mechanisms of exacerbated metabolic dysfunction in SIRT2-KO (KO) 

mice fed a HFD, we investigated possible morphological alterations in eWAT using 

hematoxylin and eosin (H&E) staining (Figure 13). Enlargement of adipose tissue mass can 

result from increased adipocyte size (hypertrophy) and/or adipocyte number (hyperplasia). 

Therefore, we used eWAT H&E staining to further assess changes in the adipocyte size 

and diameter (Figure 14) of WT and KO mice fed a CD or HFD, and also to study the 

adipocyte number in these animal groups (Figure 15).  

As observed in the representative images of H&E-stained eWAT sections (Figure 

13), we found larger adipocytes in both WT and KO mice fed a HFD, in comparison with 

mice fed a CD. This data suggests that HFD feeding for 4 weeks is sufficient to induce 

morphological changes in the adipocytes of animals fed a HFD. 
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Figure  13. Morphology of eWAT from WT and SIRT2-KO (KO) mice fed a CD or HFD. 
Representative images of H&E-stained eWAT sections from WT and KO mice fed a CD or HFD. 
Scale bar, 100 µm.  

 

3.3.1. Adipocyte size in WT and SIRT2-KO mice after HFD feeding 

In order to explore if enlarged eWAT mass resulted from adipocyte hypertrophy, 

the previous qualitative results (Figure 13) were supported by cell size and diameter 

quantification. Adipocyte size was significantly increased in the WT mice fed a HFD (WT 

HFD) when compared to WT mice fed a CD (WT CD) (Figure 14A). SIRT2-KO (KO) animals 

fed a HFD (KO HFD) had also a significant increase in adipocyte size when compared to 

KO animals fed a CD (KO CD). We also observed larger adipocytes in KO HFD, when 

compared to WT HFD. The quantification of adipocyte diameter showed a significant 

increase in WT HFD, in comparison with WT CD (Figure 14C). KO HFD also had increased 

adipocyte diameter when compared to KO CD. However, adipocyte diameter was not 

significantly increased in KO HFD in comparison with WT HFD. 

Frequency distribution of adipocyte size and diameter was different between WT 

and KO HFD mice (Figure 14B and D). 
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Figure  14. Adipocyte size and diameter of eWAT from WT and SIRT2-KO (KO) mice fed a 
CD or HFD (A, C) Adipocyte size and diameter was measured using ImageJ software. Results are 
represented as mean ± SEM; n=5/group. Statistical significance was determined by ordinary One-
way ANOVA; *p<0.05, **p<0.01, ****p<0.0001 compared to CD mice (B, D) Adipocyte distribution 
and frequency with respect to the mean size and diameter measured using ImageJ software.  

 

For both adipocyte size and diameter, KO HFD presented fewer small adipocytes, and an 

increase in the number of large adipocytes. Contrarily, WT HFD presented an increase in 

the number of small adipocytes, and fewer large adipocytes.  

Taken together, this data suggests that SIRT2 deficiency promotes exacerbated 

adipocyte hypertrophy in eWAT of mice after 4 weeks of HFD feeding.   

3.3.1. WT and SIRT2-KO mice adipocyte number after HFD feeding  

We performed adipocyte number quantification in order to further study the 

enlargement of eWAT in SIRT2-KO (KO) mice under HFD feeding. We found that the 

number of adipocytes was decreased in the WT and KO HFD when compared to the WT 

and KO CD mice (Figure 15A). We further evaluate morphological changes of eWAT 

adipocytes by correlating adipocyte size with adipocyte number of all animal groups. A 

negative correlation between these two variables was found (Figure 15B). Adipocyte 

hypertrophy was correlated to a decrease in adipocyte number.    

Overall, our results suggest that the enlargement of eWAT mass in SIRT2-KO mice 
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fed HFD eWAT was a result of significant increase in adipocyte size and reduction of total 

adipocyte number.  

 

         

Figure  15. Adipocyte number of eWAT from WT and SIRT2-KO (KO) mice fed a CD or HFD 
(A) The number of adipocytes/µm2 was measured using ImageJ software. Results are represented 
as mean ± SEM; n=5/group. Statistical significance was determined by parametric Student’s t-test; 
p=0.06, ****p<0.0001 compared to CD mice (B) Adipocyte size plotted against adipocyte number. 
n=20; r and P value were determined by Pearson correlation test for normalized adipocyte size 
versus adipocyte number in eWAT of mice. Plotted line was determined by linear regression analysis.  

 

3.4. Morphological alterations in the liver of WT and SIRT2-KO 

mice after HFD feeding 

After the observation of adipocyte hypertrophy and decreased adipocyte number 

in SIRT2-KO mice under HFD feeding (Figure 13-15), we focused on another relevant 

metabolic organ, the liver, which was previously reported to accumulate lipids mobilized 

from an enlarged adipose tissue 250,251. Thus, we investigated morphological alterations in 

the liver caused by increased lipid accumulation, which may possibly have been the 

underlying cause for insulin resistance development in KO mice fed a HFD (Figure 16 and 

17). 

3.4.1. Histopathological changes in WT and SIRT2-KO mice after HFD 

feeding 

We performed H&E staining to assess histopathological changes in liver sections 

of WT and SIRT2-KO (KO) mice fed a CD or a HFD (Figure 16). H&E staining revealed 

normal morphologic features of hepatocytes of WT and KO mice fed a CD (Figure 16A-E 

and B-F). However, we observed lipid droplets (LDs) formation in the livers of WT and KO 
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mice fed a HFD (Figure 16C and D). KO mice under HFD showed formation of larger LDs 

when compared to WT mice fed a HFD (Figure 16G and H).  

 

Figure  16. Morphology of liver from WT and SIRT2-KO (KO) mice fed a CD or HFD (A-D) 
Representative images of H&E-stained liver sections for WT and KO mice fed a CD or a HFD (E-H) 
Magnified regions of A-D images of liver H&E staining. Scale bar, 100 µm. 

 

These results suggest that the absence of SIRT2 may cause increased 

accumulation and storage of lipids in the liver of mice under HFD feeding, promoting the 

development of hepatic steatosis.  
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3.4.2. Lipid accumulation in WT and SIRT2-KO mice after HFD feeding  

To further evaluate lipid accumulation in the liver, we also performed Oil Red O 

(ORO) staining in liver sections of WT and SIRT2-KO (KO) mice (Figure 17) fed a CD (WT 

CD and KO CD) or a HFD (WT HFD and KO HFD) for 4 weeks. ORO staining was used to 

assess hepatic lipid content and stain neutral lipids, such as TG, which were previously 

observed  

       

Figure  17. Hepatic lipid content in liver from WT and SIRT2-KO (KO) mice fed a CD or HFD 
(A) Representative images of ORO-stained liver sections for WT and KO mice fed a CD or a HFD. 
Scale bar, 100 µm (B) ORO-percent stained area was measured using Image J software. Results 
are represented as mean ± SEM; n=5/group. Statistical significance was determined by ordinary One-
way ANOVA; *p<0.05 compared to CD and WT HFD mice.  
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to have increased serum concentrations in KO mice fed a HFD (Quatorze, 2016; 

unpublished data). 

We observed a significant increase in the percentage of ORO staining in the livers 

of KO HFD, in comparison with WT HFD mice (Figure 17A and B). KO mice also showed 

increased staining percentage under CD feeding. These results further suggest that SIRT2 

deficiency may promote increased lipid accumulation in the liver, which appears to occur 

in HFD feeding, but also under CD conditions.  

 

3.5. Lipolysis in the adipose tissue of WT and SIRT2-KO mice 

fed a HFD 

In order to determine whether the markedly adipocyte hypertrophy and lipid content 

accumulation in SIRT2-KO mice fed a HFD were result of altered lipolytic activity, we 

investigated by Western blotting the phosphorylation levels of HSL (P-HSL660) and the 

expression levels of ATGL in eWAT of WT and KO mice fed a HFD (Figure 18).  

 

 

Figure  18. Lipolytic enzyme expression in WT and SIRT2-KO (KO) mice fed a HFD (A, C) 
Representative immunoblots of adipose tissue lysates (50 µg) from WT and KO mice fed a HFD. 
Samples were analyzed by SDS-PAGE and Western blotting using antibodies against P-HSL, ATGL 
and β–tubulin (loading control) (B, D) Quantification of P-HSL/β-tubulin and ATGL/β-tubulin ratios. 
Levels of P-HSL and ATGL were normalized to β–tubulin in the same lane. All P-HSL/β–tubulin and 
ATGL/β-tubulin ratios were normalized to the value from WT mice injected with saline. Each lane 
corresponds to a distinct animal. Results are represented as mean ± SEM; n= 3/group. Statistical 
significance was determined by ordinary One-way ANOVA and parametric Student’s t-test; ns= non-
significant compared to WT saline.  
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Our results showed trend towards decreased phosphorylation levels of HSL upon 

insulin stimulation of WT and KO mice fed a HFD, in comparison with saline-stimulated 

animal groups (Figure 18A and B). We also found similar ATGL expression levels in KO 

mice when compared to WT mice fed a HFD (Figure 18C and D).  

Overall, this data suggests that SIRT2 deficiency may not have impact in lipolysis, 

and that 4 weeks of HFD feeding may also not have been sufficient to significantly alter 

lipolytic activity in eWAT adipocytes.  

 

3.6. Gene expression of key metabolic regulators in WT and 

SIRT2-KO mice under HFD 

To further investigate the underlying mechanisms responsible for increased lipid 

accumulation in the liver of SIRT2-KO mice fed a HFD, liver gene expression of key 

proteins in several metabolic mechanisms, such as gluconeogenesis, de novo lipogenesis, 

and fatty acid β-oxidation proteins, was evaluated by RT-qPCR technique (Figure 19).  

We evaluated the mRNA levels of PEPCK and G6P and did not find significant 

alterations in these gluconeogenic proteins gene expression in KO mice fed a HFD (KO 

HFD) in comparison with WT mice fed the same diet (WT HFD) (Figure 19A and B). These 

results suggest that SIRT2 ablation may not have impact on the gluconeogenic pathway 

in HFD-fed mice.  

We also analyzed mRNA levels of genes involved in de novo lipogenic pathway 

(Figure 19C-G). mRNAs encoding SREBP-1c, FasN and SCD1 showed alterations in KO 

mice fed a HFD. The results showed trend towards increased SREBP-1c mRNA levels in 

KO HFD when compared to WT HFD (Figure 19C). SREBP1-c gene expression in KO CD 

also tended to be upregulated, in comparison with WT CD. We also observed SCD1 and 

FasN mRNA levels tended increase in KO HFD when compared to WT HFD (Figure 19D 

and E). ACC and ACLY mRNA levels did not show significant changes in KO HFD, in 

comparison with WT HFD (Figure 19F and G). Overall, our results suggest that SIRT2 

deficiency may have impact on lipogenic gene expression after 4 weeks of HFD feeding.   

For the mRNA levels of genes encoding fatty acid β-oxidation proteins, we found 

increased levels of CPT-1 mRNA in KO HFD when compared to KO CD animals (Figure 

19I). MCAD mRNA levels did not show significant alterations for all animal groups (Figure  
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Figure  19. Hepatic mRNA levels of genes involved in key metabolic pathways of WT and 
SIRT2-KO (KO) mice fed a CD or HFD (A and B) RT-qPCR analysis of gluconeogenesis gene 
expression in livers of WT and KO mice fed a CD or HFD. Results represented as mean ± SEM; n=5-
6/group (C - G) RT-qPCR analysis of lipogenesis gene expression in livers of WT and KO mice fed 
a CD or HFD. Results represented as mean ± SEM; n=5-6/group. Statistical significance was 
determined by parametric Student’s t-test; p=0.08, * p<0.05, ** p<0.01 compared to WT CD and 
HFD mice (H and I) RT-qPCR analysis of fatty acid β-oxidation expression in livers of WT and KO 
mice fed a CD or HFD. Results represented as mean ± SEM; n=5-6/group. Statistical significance 
was determined by parametric Student’s t-test; p=0.06, *p<0.05 compared to CD mice. 
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19H). These results suggest that the absence of SIRT2 may affect fatty acid β-oxidation 

gene expression, such as CPT-1, under HFD feeding. 

Taken together, RT-qPCR results show a dysregulation of some key metabolic 

proteins gene expression in SIRT2-KO mice after 4 weeks of HFD feeding, which may 

possibly explain the morphological changes previously assessed in the liver of KO HFD-

fed mice (Figure 16 and 17).  
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Obesity and type 2 diabetes are becoming highly prevalent worldwide. Current 

health treatments for these diseases have either severe effects or low effectiveness, 

which magnifies the urgency to develop novel therapeutic approaches. In recent years, 

mammalian sirtuins have been studied as potential targets to prevent or ameliorate 

metabolic disorders 252. SIRT2 has been emerging as a crucial metabolic regulator 

200,201,210, although its role in the development of obesity and associated complications has 

not been clarified in an in vivo mouse model. Our work, therefore, aims to provide critical 

insights into the role of SIRT2 in the pathogenesis of metabolic disorders using a SIRT2-

KO mouse model. This work is focused on early onset of these diseases and aims to 

identify potential targets to therapeutically prevent or counteract their development.  

In the present study, we aimed to expand and understand previous research 

showing a markedly metabolic dysregulation in SIRT2-KO mice under HFD feeding 

(Quatorze 2016; unpublished data). Obesity is defined by an enlargement in adipose tissue, 

which has been reported to be caused by adipocyte hypertrophy and/or hyperplasia during 

obesity progression 93,136. This study revealed increased adipocyte size and decreased 

adipocyte number in SIRT2-KO mice fed a HFD for 4 weeks, which consisted with previous 

results of increased body and eWAT weight gain in SIRT2-KO mice fed a HFD (Quatorze 

2016; unpublished data). A previous study of fat-specific SIRT6 ablation also showed 

markedly adipocyte hypertrophy and adiposity in mice fed a HFD for 8-12 weeks 253. 

Enlargement of adipose tissue is also associated with mobilization of lipids from this tissue 

to other peripheral tissues 137. We observed exacerbated lipid accumulation and 

histopathological changes in the liver of SIRT2-KO mice fed a HFD. These results are 

consistent with previous studies of other SIRT-KO mouse models. Liver-specific deletion 

of SIRT6 was shown to promote increased LDs formation, which ultimately lead to hepatic 

steatosis onset 78. Under HFD feeding, liver-specific ablation of SIRT1 also altered hepatic 

lipid content and contributed to fatty liver development 188.  

Hepatic lipid overload in SIRT2-KO mice fed a HFD might have been the result of 

increased lipogenesis. SREBP-1c is known to be the master regulator of lipid metabolism 

254. In our study, there was a trend towards increased SREBP-1c mRNA levels in the livers 

of HFD-fed mice for 4 weeks. Interestingly, in SIRT2-KO mice fed a CD, SREBP-1c gene 

expression also tended to be upregulated, which appears to consist with the ORO staining 

results. SREBP-1c has several target genes, such as FasN, and SCD1 255. As expected, 
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SCD1 and FasN mRNA levels also tended to be increased in SIRT2-KO mice fed a HFD. 

This data consists with previous studies where FasN and SREBP-1c mRNA levels were 

shown to be increased in mice after 10 weeks of HFD feeding 256. In another in vivo study, 

after 6 weeks of HFD, both SCD1 and FasN expression levels were also reported to be 

increased, together with SREBP-1c mRNA levels 257. Unexpectedly, as another SREBP-1c 

gene target, ACC did not show significant alterations in mRNA levels, which contradicts 

previous studies of ACC upregulated gene expression in mice fed a HFD 258. These 

previous studies were performed under a long-term HFD feeding and in different animal 

models, which might explain the absent alteration of ACC mRNA levels in our short-term 

HFD feeding study. ACLY has been reported to be deacetylated by SIRT2, which 

consequently causes ACLY degradation and lipogenesis repression 248. Taking this into 

account, ACLY could possibly be altered in SIRT2-KO mice. However, our study did not 

show significant changes in ACLY mRNA levels. The SIRT2 deacetylation activity towards 

ACLY was previous studied under high-glucose conditions, in contrast to our HFD 

conditions.   

Gluconeogenesis is an anabolic process that generates glucose from several 

precursors (pyruvate, glycerol, amino acids). This mechanism is regulated by two key 

proteins, PEPCK and G6P 255. Our results revealed unaltered PEPCK and G6P mRNA levels 

in the livers of HFD-fed SIRT2-KO mice, in apparent contrast to previous data. In an 8 

week-HFD feeding protocol, the expression of gluconeogenic proteins was reported to be 

significantly upregulated in mice 259. Moreover, other previous study with only 4 days of 

HFD feeding also showed increased mRNA expression levels of PEPCK and G6P in mice 

260. These previous studies used different experimental mouse models and periods of HFD 

feeding, in comparison to our 4 weeks of HFD feeding of SIRT2-KO mice. SIRT2 was 

shown to deacetylate and increase PEPCK stability, preventing its degradation and 

decreased levels under fasting and glucose deprivation conditions 261. Our results might 

show that there might not be an effect of SIRT2 under nutritional abundance conditions, 

which might explain SIRT2 absent impact in gluconeogenic proteins gene expression, such 

as PEPCK, after HFD feeding.  

FAO encompasses a translocation of FA from cytosol to mitochondria, through 

CPT-1 transport, to be oxidized into acetyl-CoA 255. Dehydrogenases, such as MCAD, are 

also key players in this metabolic process 109. In our study, no significant changes were 
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observed in MCAD mRNA levels among all animal groups. Despite this data, CPT-1 

revealed increased expression levels in the livers of SIRT2-KO HFD-fed mice. These 

results are consistent with a previous study showing that after 18 weeks of HFD, CPT1 

mRNA levels were increased in mice 262. Interestingly, MCAD expression levels were also 

reported to be increased in mice after 5 weeks of HFD feeding 263. In contradiction, other 

study reported that both CPT-1 and MCAD expression were decreased in mice after 16 

weeks of HFD 264. These studies were developed using different animal models and 

periods of HFD, and performed in other peripheral tissues, particularly the adipose tissue 

262, skeletal muscle 263, and kidney 264, which raises the possibility that HFD feeding might 

have tissue-specific effects in FAO proteins expression levels.   

Adipose tissue lipolysis is a process of TG breakdown into FA and glycerol to be 

used by other tissues as an energy source. This metabolic process is regulated by two 

crucial lipases, ATGL and HSL, and when impaired results in excess storage of TG that 

causes adipocyte hypertrophy and obesity. In this study, no significant results were 

observed towards HSL phosphorylation levels and ATGL expression levels in adipose 

tissue of WT and KO mice fed a HFD. Unfortunately, this data does not give enough 

insights into the impact of SIRT2 ablation in lipolysis under HFD conditions.   

In our study, we also observed a decrease in SIRT2 expression levels in the adipose 

tissue, but no significant changes were observed in the liver, skeletal muscle and 

hypothalamus of HFD-fed mice. Our results may suggest that under a 4 week-period of 

HFD feeding, the adipose tissue may be the primarily affected tissue, with consequent 

alterations in SIRT2 expression levels in response to the metabolic stress condition. 

Despite previous studies of SIRT2 expression downregulated in HFD feeding 265, our 

dietary protocol may not have been sufficient to cause changes in SIRT2 expression levels 

in other metabolic relevant tissues besides adipose tissue.  

Other interesting result was the observation of an apparently normal insulin 

signaling activation in insulin-resistant SIRT2-KO mice fed a HFD (Quatorze, 2016; 

unpublished data). Previous studies have associated insulin resistance to defects in the 

insulin signaling cascade, particularly in upstream proteins, such as IR and IRS 27,266, which 

compromise the activation of downstream molecules, such as Akt. The phosphorylation 

levels of this protein have been reported to be decreased under HFD feeding of in vivo 

models 124,267. As expected, no differences were found in Akt phosphorylation levels 
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between insulin-stimulated SIRT2-KO mice and control mice fed a CD. Surprisingly, similar 

results were observed in the SIRT2-KO mice fed a HFD. Our data suggests that 

exacerbated insulin resistance development in SIRT2-KO mice might not have been 

caused by dysregulated insulin signaling activation. In fact, insulin resistance has been 

suggested to occur independently of insulin signaling proteins. In a previous study, insulin 

signaling pathway was compared to another pathway that recapitulates several aspects 

of insulin action, but in an IRS-independent manner 268. After analyzing six models of insulin 

resistance, including chronic low-dose inflammation and hyperinsulinemia, both pathways 

were shown to be defective, despite the insulin-specific insults within IRS-Akt node. In this 

previous study, insulin resistance was pointed to occur independently to IRS1 protein, and 

disruption in insulin activity was suggested to be a consequence, and not a cause, of 

insulin resistance development after HFD feeding 268.  

One potential explanation for the lack of differences in insulin signaling might be 

related to the insulin stimulation period selected in our work (30 minutes). This period is 

suggested to be extensive to evaluate Akt phosphorylation levels 120, and might have 

caused a saturation of the phosphorylation levels of the insulin signaling proteins, 

compromising the assessment of a possible impairment in insulin signaling activation in 

HFD-fed SIRT2-KO mice. In fact, it was previously shown that depending on the tissue 

examined, insulin signaling proteins have a different time course of phosphorylation 269. A 

10-minute ip injection of insulin was suggested to be an appropriate time to assess 

phosphorylation levels in peripheral tissues, particularly in the liver and in the skeletal 

muscle. Thus, in future studies we should stimulate SIRT2-KO mice with insulin for a 10 to 

15-minute period, to adequately study the phosphorylation events in peripheral tissues. 

Despite this short period of insulin stimulation required to activate insulin signaling in these 

tissues, hypothalamic insulin signaling activation might need a longer time of insulin 

stimulation, in consistence with previous mice studies 270.  Another limitation of our study 

might be the smaller number of animals used in RT-qPCR analysis. We should use a larger 

number of animals per group to obtain more robust data and further assess if our results 

with trend towards increased mRNA levels are in fact significant alterations in lipogenic 

gene expression. Furthermore, our study has other limitations regarding the assessment 

of alterations in the lipolytic activity. We only assessed HSL phosphorylation levels upon 

insulin stimulation in HFD-fed mice, being also crucial to evaluate insulin action in CD 
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conditions. If found a significant decrease in HSL phosphorylation levels in CD mice in 

comparison to HFD mice, insulin activity might be impaired after HFD feeding. However, 

this speculation might have another limitation. To properly assess insulin inhibitory effects 

in lipolysis, mice should be injected with isoproterenol (ISO) before sacrifice 253. We also 

only studied ATGL expression levels, and we should evaluate its phosphorylation levels 

using an antibody against P-ATGL 253.  

To fully understand SIRT2 metabolic actions in both adipose tissue and liver, 

several follow-up experiments should be performed. In the adipose tissue, increased 

adiposity and insulin resistance development have been associated to inflammation and 

infiltration of macrophages 136. These conditions have been reported in other SIRT-KO 

mice under HFD feeding 253. Thus, we should analyze macrophage markers, such as 

CD11c and F4/80, by immunochemistry, and also perform RT-qPCR, to further assess the 

mRNA levels of these markers in adipose tissue of SIRT2-KO mice fed a HFD. Gene 

expression levels of several pro-inflammatory cytokines, such as IL-6 and TNF-α, should 

also be assessed. Moreover, it is also crucial to study mRNA expression levels of the 

gluconeogenic, lipogenic and FAO proteins in the adipose tissue of SIRT2-KO and control 

mice under CD and HFD feeding. In the liver, hepatic steatosis has been associated to the 

development of inflammation and fibrosis 271. Therefore, gene expression of pro-

inflammatory markers should be evaluated, and liver sections should be stained with 

fibrosis markers (eg. collagen staining with Sirius red). FA uptake transporters, such as 

CD36, gene expression analysis should also be performed to further understand increased 

hepatic lipid accumulation 253. In regard to the study of impaired lipolysis in SIRT2-KO mice 

fed a HFD, we should inject our mice with ISO, in order to evaluate glycerol release and 

measure lipolytic rate in WAT explants 253.  

Other experiments should also be performed to further understand previous results 

of enhanced energy intake and increased body weight in SIRT2-KO mice fed a HFD 

(Quatorze, 2016; unpublished data). Gene expression of thermogenesis proteins, such as 

PGC-1α,	and UCP1, sould be analyzed in BAT. Moreover, hypothalamic gene expression of 

anorexigenic, such as POMC, and orexigenic neuropeptides, such as NPY and AgRP, should 

be performed to assess FI dysregulation in SIRT2-KO mice under HFD feeding.  

In conclusion, the present study suggests that exacerbated metabolic dysfunction 

in SIRT2-KO mice fed a HFD might have been caused by an increase in lipogenesis, which 
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led to marked lipid accumulation in the liver, possibly promoting the development of insulin 

resistance after 4 weeks. Our study provides critical insights into the role of SIRT2 in HFD-

induced metabolic stress conditions. The modulation of SIRT2 might constitute a novel 

therapeutic strategy against the development of metabolic disorders, such as obesity and 

type 2 diabetes. Therefore, the present study suggests that tissue- and cell type-specific 

SIRT2 stimulation might counteract the development of metabolic dysfunction induced by 

HFD feeding. 
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The present study was developed in order to gain mechanistic insight, at the 

molecular level, into the role of SIRT2 in metabolic homeostasis. In this study, SIRT2 

deficiency was associated with adipocyte hypertrophy and exacerbated lipid accumulation 

in the liver of HFD-fed mice. Unexpectedly, SIRT2-KO mice exhibited normal activation of 

the insulin signaling pathway under both diets. Despite this fact, SIRT2 ablation led to lipid 

overload in peripheral tissues, with consistent alterations in metabolic mechanisms, such 

as lipogenesis in the liver. Early-onset insulin resistance in SIRT2-KO mice may be the 

result of lipid metabolic dysregulation. Further studies should be performed to fully 

understand the liver-specific metabolic role of SIRT2, and also SIRT2 actions in other 

metabolically relevant tissues, such as the adipose tissue and skeletal muscle.  

This study provides critical insights into SIRT2 connection to the development of 

metabolic disorders, such as obesity and type 2 diabetes, and identifies potential tissues 

and cellular mechanisms to target and therapeutically counteract the progression of these 

disorders. Our data suggests that SIRT2 stimulation under HFD feeding may ameliorate 

the metabolic dysregulation associated to the early onset of metabolic disorders. 

 

         

 
Figure  20. Exacerbated metabolic dysfunction of SIRT2-KO mice under HFD feeding. SIRT2-

KO mice showed a markedly metabolic dysregulation after 4 weeks of high-fat diet (HFD) that may 
have been a result of altered metabolic mechanisms, such as lipogenesis, and increased lipid 
overload in peripheral tissues, possibly promoting the development of insulin resistance.  
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