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“Size matters.”
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Abstract

Big Data allied to the Internet of Things nowadays provides a powerful resource that

various organizations are increasingly exploiting for applications ranging from decision

support, predictive and prescriptive analytics, to knowledge and intelligence discovery.

In analytics and data mining processes, it is usually desirable to have as much data

as possible, though it is often more important that the data is of high quality thereby

raising two of the most important problems when handling large datasets: sample and

feature selection. This work addresses the sampling problem and presents a heuristic

method to find the “critical sampling” of big datasets.

The concept of the critical sampling size of a dataset is defined as the minimum number

of examples that are required for a given data analytic task to achieve a satisfactory

performance. The problem is very important in data mining, since the size of data sets

directly relates to the cost of executing the data mining task.

Since the problem of determining the optimal solution for the Critical Sampling Size

problem is intractable, in this work a heuristic method is tested, in order to infer its

capability to find practical solutions.

Results have shown an apparent Critical Sampling Size for all the tested datasets, which

is rather smaller than the their original sizes. Further, the proposed heuristic method

provides a practical solution to find a useful critical sample for data mining tasks.
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Chapter 1

Introduction

1.1 Motivation

This work was developed in the scope of the Dissertation in Intelligent Systems for the

Master’s Degree in Informatics Engineering at the University of Coimbra, during the

academic year 2016/2017.

An increasing amount of data is becoming available on the Internet, in 2013 it was stated

by IBM that “a full 90 percent of all the data in the world has been generated over the

last two years”[1] and in 2016, CISCO predicted that by the end of the year the annual

global IP traffic will pass the zettabyte threshold[2]. Every day, almost everything that

we do is monitored and recorded, data is generated at an enormous and increasing speed

by all sorts of sources. Two of the easiest examples to think about are Google, when we

search about a topic, and Facebook, when we post something. All these huge volumes

of data that are being gathered by companies such as these two, or from others from

different areas, is now what it is called Big Data.

Big Data allied to the Internet of Things [3] provides a powerful resource that various

organizations are increasingly exploiting for applications ranging from decision support,

predictive and prescriptive analytics, to knowledge extraction and intelligence discovery.

In addition to these uses we can list many others and, the methods for working with large

amounts of data are defined as Data Mining. In analytics and data mining processes, it

is usually desirable to have as much data as possible, though it is often more important

that the data is of high quality thereby two of the most important problems are raised

when handling large datasets: sampling and feature selection. As said before, when

organizations use the data for knowledge extraction, they resort to machine learning.

These machines are trained with a “desirable” good quality data which they will then

1
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construct a model from. The big question is how much data we need to get satisfactory

results and at the same time to the built model not resulting in overfitting, memorize

the training data instead of learning from it, or generalization, not being able to perform

well on new unseen data.

1.2 Goals

Previous work, to see if it is possible to find a critical feature dimension for big datasets

has been conducted, and it concluded to be feasible. Also for sampling, a sampling

heuristic has been proposed.

This dissertation addresses the problem of sampling large datasets and how to find their

Critical Sampling Size. This problem can be described as discovering the minimum

number of examples that need to be used, in order to achieve a performance threshold

T . For that, the heuristic method proposed in [4] is used because, as the authors also

proved, it is impossible to determine the optimal solution to this problem, since it is

both NP-hard and coNP-hard. That being said, the goals of this work are as follows:

• Implement the heuristic for determining the Critical Sampling Size of datasets and

design possible alternatives.

• Conduct an empirical study on data sets to verify if they possess, or do not possess,

a Critical Sampling Size.

• Study the effect of different machine learning algorithms on the Critical Sampling

Size.

• Compare the performance of data mining using the complete dataset and the

reduced dataset, that is, the Critical Sampling.
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1.3 Contributions

In the era of Big Data a huge amount of data, from a variety of sources and types,

is generated at ever increasing rates. This data can be used for various purposes, and

increasing numbers of industries and organizations are recognizing its utility, e.g. using

machine learning they can perform data mining tasks to extract insights from the data

in order to make strategic decisions. These tasks of knowledge discovery could be very

expensive, such as resource-heavy and time consuming, therefore, it is highly desirable

to have techniques that can help select only the necessary data instead of using entire

datasets. This is because much of the data may be redundant, duplicated, irrelevant, or

even useless.

As the authors in [5] said, “Scalability is a key requirement for any knowledge discovery

and data mining algorithm. It has been previously observed that many well known

machine learning algorithms do not scale well”. With this proposed sampling method,

the size of the used datasets may decrease drastically, thus allowing better scalability for

the algorithms as well as making the dataset size impact on performance of data mining

tasks less significant. This alied with methods of finding the critical feature dimension

of big datasets could be an added value. Furthermore, this can be applied to any kind

of data mining task.

1.4 Document Structure

This document is structured in 5 chapters. The next chapter elucidates the work done

in the scope of the Critical Feature Dimension and Critical Sampling Size problems.

In Chapter 3 the goals of this dissertation are described and the proposed heuristic

is presented.Chapter 4 details the experimental configuration aspects, such as datasets

used, sampling methods studied, and considerations on various heuristic parameters.

Next, in Chapter 5, results are presented and discussed. Finally some conclusions about

this work are exposed.





Chapter 2

State of the Art

Although the problem being addressed is the Critical Sampling Size (CSS), the Critical

Feature Dimension (CFD) is equally important since both are strongly related, and are

two of the most relevant issues in the Big Data field.

In this chapter, previously developed works that relate to the subjects mentioned above,

are described. In Section 2.1 the work done on the CFD problem is presented, then in

Section 2.2 the one carried out about the CSS problem.

2.1 Feature Dimension Problem

When speaking about CFD, it comes to feature reduction or feature selection. These

are methods that reduce the dimension of an example and consequently of the whole

dataset. By reducing the number of features to a small subset, it is possible to observe

a corresponding reduction in the sample size that the algorithm needs to guarantee a

good generalization capability [6][7].

2.1.1 Feature Relevance

The problem is how to define which features are relevant and which are not, and

consequently how to combine them, thus, the concept of relevance has to be defined.

As the authors stated in [7], the concept of relevance can differ depending on what is

being considered. The simplest and more intuitive notion of relevance is the concept of

relevant to the target class. It is described as having two examples, from the dataset,

that differ only in one feature which causes the assigned classes to be different. The

second definition presented by the authors is very similar to the first one except that

both examples now have to be present in the training set. With this definition, the

5
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feature is considered strongly relevant to the sample. Thereafter a weakly relevant

feature for the sample is defined as if it is possible to remove a set of features to the

examples so that it becomes strongly relevant.

Although a feature may be considered relevant, it may not be useful for a given algorithm

and because of this, another way to define the utility of a feature is given. It takes into

account the learning algorithm and a set of features which is incremented by adding

one feature at the time. Each time this is done, if the performance obtained by the

algorithm is better, then the added feature is considered useful.

2.1.2 Feature Selection Methods

There are plenty of feature selection methods. In [8] three categories of feature selection

methods are described, while presenting some examples for each. Those categories are,

filter, wrapper and embedded methods.

Filter methods are commonly used in the pre-processing phase. They mainly rely on

ranking algorithms to select features which then are applied to a learning machine.

Pearson correlation coefficient and Mutual Information are two examples of filter methods

that are described in the paper. As stated by the authors, ranking techniques are

simple and effective thus making filter methods computationally light. In addition,

filter methods are independent to the learning machine.

Wrapper methods use an algorithm performance to evaluate the feature subset quality.

This feature selection criterion requires the learning machine to be trained and tested

each time that a feature subset is evaluated. This can be the main drawback of

wrapper methods, if the size of the dataset is considerably big. Another disadvantage

of using machine learning performance as an objective function is the propensity to

overfitting. In this category are included, sequential selection algorithms and heuristic

search algorithms, such as the Sequential Feature Selection (SFS) and Genetic algorithms,

respectively.

The last one, Embedded methods try to combine the advantages of both Filter and

Wrapper method. The filter phase is incorporated in the training phase and then the

results outputted by the model help to redefine the subset of features to use in future

iterations of the algorithm. Support Vector Machines (SVM) and Artificial Neural

Networks (ANN) are examples of this, as during their training phases they update

the weights associated to features. And in specific cases, they can even remove features

using methods such as the SVM-RFE, for SVM [9][10], and the Network Pruning for

the ANN [11][12].
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2.1.3 Critical Feature Dimension

Authors in [13] study one of the problems of mining Big Data, the Critical Feature

Dimension which is a feature selection problem. CFD is defined, in an intuitive way, as

being the absolute minimal number of features, of a specific dataset, that are needed to

ensure that the performance of a given learning machine meets a performance threshold.

They propose a heuristic that first ranks the features, with Chi-Square ranking method,

and then sorts them by descent order. After that, in an iterated way, the least ranked

feature is removed and checked if occurs a decrease in the performance, and if that so,

then the CFD was found. The possibility of performance rising again was also considered,

and therefore if that happened, it was not really the CFD.

In the results, each one of the used data sets have shown an apparent CFD, and also that

the feature size has significantly decreased, while maintaining a desirable performance.

2.2 Sample Size Problem

In this section works done in the scope of sample reduction are presented. Like the

feature selection problem, these works also aim to reduce the size of the dataset, but

instead of performing feature reduction, by doing sample reduction.

Some of them are specific to one type of algorithm and others are generic.

2.2.1 Support Vector Machines optimization

In [14], a new algorithm to speed up the training time of SVM is presented. The major

drawback of SVM is their training time and the proposed method tries to select a small

and representative amount of data from the dataset to improve that. The new method

showed up to be very efficient for with big datasets.

It starts by training a SVM with a small amount of the dataset examples in order

to obtain a sketch of the optimal separating hyperplane. The amount of examples is

defined by a technique that considers the unbalance of the dataset. And then, a decision

tree is used to detect and, only retain, examples from the dataset that have similar

characteristics to the computed Support Vectors, which are the ones that contribute to

define the separating hyperplane.

According to the results, the new algorithm was able to be faster than the current SVM

implementations and generate results with similar performance.



Finding the Critical Sampling Size of Big Datasets 8

2.2.2 Adaptative Sampling

Regarding to the scope of this dissertation, some studies have been conducted in order

to find ways of sampling big datasets, like in [5], where the authors propose an adaptive

sampling method.

The proposed algorithm sequentially obtains examples and then it determines whether

it has already seen a large enough number of examples. Thus, sample size is not fixed in

the beginning of execution, instead, it depends on the problem and the dataset. When

working with big datasets one approach is to reduce their size by applying some kind

of random sampling. In many cases this method could be applicated, since sometimes

an approximate answer to the problem being addressed is sufficient. But this is not

recommendable due to the difficulty of determining the appropriate sample size [15]. For

instance, the training set size is one of the factors that must be taken in consideration.

The goal of applying data mining in big datasets is to infer structures, rules that describe

well as much as possible their data. So the objective is, from the possible set of rules,

to find the one that better defines the dataset. This problem, that authors tries to solve

with random sampling, they called it General Rule Selection. As the proposed solution

to solve this problem does not define an a priori sampling size, the Hoeffding’s bound

was used. Although this limit allows to calculate the sampling it usually sets very high

values, so it was used to estimate the error when calculating the sampling size.

The proposed method was called AdaSelect and it is based on preliminary work developed

by the authors[16][17]. Instead of sampling in batches, it is done by sequentially obtaining

examples, one by one. And at each step it is checked whether enough have been collected,

to issue with high confidence, the best rule. With the results obtained the proposed

method showed to be accurate enough and to greatly reduce the running time for

each dataset. As the authors stated, one of the key points when performing sequential

sampling is to determine a good stopping condition.
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2.2.3 Predicting Sample Size

In real cases of data mining, the access to large amounts of labelled data is often

scarce. Following this premise, the authors in [18] present a new method to predict

the performance that a classifier will achieve with a relatively big sample size.

With this method, the classifier is tested several times, having been trained with training

sets of different dimensions. With the obtained performances associated with each

training set size, it models a function of a curve that will be used to predict classifier’s

future results. The authors also postulated that the classifier performance at a larger

training set size is more indicative of the classifier’s future performance.

2.2.4 Critical Sampling Size

The concept of the Critical Sampling Size presented in [4] is very similar to the one

presented for the CFD [13]. Like in the CFD problem, it has been proved that CSS is a

NP-hard and coNP-hard problem and that is why it was also proposed a simple heuristic

to solve it. It also follows an iterative approach, however, having some different aspects.

The papar states that for a specific dataset, it may exist a sample of it that is the minimal

quantity of data needed to apply to a learning machine, such that its performance exceeds

a given threshold. Other issue addressed in this paper is the quality of data. Nowadays

with the exponential growth of data, and its use in many fields of knowledge, a method

to calculate the quality of datasets can be very useful. It was designed a metric such

that the optimal case is when all data is essential for the data mining task, meaning that

the CSS is equal to the dataset size and on the other hand, that when the heuristic fails

to find a CSS it is considered the worst case. To calculate the quality of the datasets,

this metric covers both problems, CFD and CSS.





Chapter 3

Critical Sampling Size

In this section the concept of Critical Sampling is defined, and the heuristic method

proposed in [4] described. An intuitive way to define the concept of CSS is the absolute

minimal number of examples, of a given dataset, that are needed for a specific learning

machine to achieve some performance threshold.

3.1 Problem Formulation

To formally define this problem, a given dataset is represented by Dn, where n denotes

the number of examples at hand. The learning machine is designated by M and the

performance threshold by T . With respect to the notation, v is used to denote the CSS

where v ≤ n.

This way, using these notations it is possible to define it with the following two conditions.

In order for v to actually represent the Critical Sampling Size of a specific dataset, the

two conditions must hold.

There exists a Dv which lets M achieve a performance of at least T , where Dv is a

sample of Dn with v examples and PM (Dv) is the performance of M when trained with

Dv

(∃Dv ⊂ Dn)[PM (Dv) ≥ T ] (3.1)

For all j < v, a sample of Dn with j examples fails to let M achieve a performance of

at least T

(∀Dj ⊂ Dn)[j < v ⇒ PM (Dj) < T ] (3.2)

11
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Thus, v is the critical (absolute minimal) number of data examples required in any

sampling to ensure that the performance of M meets the given performance threshold

T . The problem of deciding if a given number v is the CSS for the dataset Dn, with

respect to a given learning machine M and performance threshold T is both NP-hard

and coNP-hard; a sketch of the proof is given in [4]. For this reason, heuristic methods

are used, which can also obtain satisfactory results.

3.2 Complexity

This section presents a short explanation of the proof presented in [4] showing that the

CSS problem is both NP-hard and coNP-hard. In order to prove its complexity, a known

NP-hard and coNP-hard was transformed into the CSS problem. The used problem was

the Exact Maximal Independent Set (EMIS), or Maximum Independent Set, which is

defined as the maximum number of vertices in a graph where none is adjacent to another.

Figure 3.1 presents an example of a Maximum Independent Set.

Figure 3.1: Maximum Independent Set

Source: https://en.wikipedia.org/wiki/Independent set (graph theory)

Given a graph with n nodes, finding the EMIS can be further translated into deciding

if there is a Maximum Independent Set of size exactly k, where k ≤ n.

To transform the CSS problem into the EMIS problem, a dataset Dn with n examples

is represented by a graph G with n nodes and v, the critical number of data examples,

corresponds to k. After that, if the solution to an instance of the EMIS problem is true,

the solution to the constructed instance of the CSS problem is also true.
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3.3 Heuristic Method

In this section, the proposed heuristic method to find a critical sampling is presented.

The heuristic is a sequential example selection method composed of five steps. It is in

fact a meta-heuristic algorithm since it is a higher-level procedure that resorts to other

algorithms (learning machines) in order to solve the CSS problem.

This heuristic fits into the Wrapper methods group, since it treats the learning machines

as black boxes and uses their performance as the objective function to evaluate the

critical sample being created.

1. Apply a clustering algorithm like k-means to partition Dn into k clusters. (k can

be determined, for example, by the number of classes in the dataset)

2. Select, say randomly, m examples from each cluster to form a sample with m ∗ k
examples. (The value m is set to be fairly small)

3. Supplement the sample with additional d ∗ k (for some d) examples, selected

randomly from the whole dataset Dn, to form a sample Dv.

4. Apply learning machine M on the sample, then measure the performance PM (Dv).

5. If PM (Dv) ≥ T , then Dv is a critical sampling, and its size v is the Critical

Sampling Size for (Dn, M). Otherwise enlarge Dv by repeating step 2 and step

3 until a critical sampling is found, or until the whole Dn is exhausted and the

procedure fails to find v.





Chapter 4

Experimental Setup

This chapter starts by clarifying the objectives of this investigation work.

It then follows by referring the used development tools and describing the datasets used

to conduct this research. After that, the proposed heuristic to find the CSS is described

in more detail. Finally the adopted approach method is exposed. In addition, some

questions regarding the heuristic parameters are also presented.

4.1 Research objectives

Recent researches have been conducted with big datasets in order to find a CFD.

This concept can be described as the minimum number of features required, for a

specific machine learning algorithm executed on a given dataset, to achieve a satisfactory

performance. The results were positive and interesting because, in some cases, the

dataset size was significantly reduced.

Following these studies and its satisfactory results led to the issue of the CSS, which is

the goal of this research project. For this, a heuristic has been proposed, because as has

been proved, finding the optimal solution to this problem is intractable. Using various

learning machine algorithms and four datasets, this project goal is to verify if a dataset

does possess a CSS. After that, the performance of data mining using the complete and

reduced datasets can be analyzed, and consequently, it could contribute to infer the

quality of the data.

15
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4.2 Tools and Datasets

All the developed code was written using Python 3 coupled with the Scikit-learn package

which is built on NumPy, SciPy, and Matplotlib. This package provides simple and

efficient tools for use in machine learning, like many algorithms and functions to handle

data. Also, for loading datasets, the Pandas and Arff packages were used.

The datasets used in this work were downloaded from the UCI Machine Learning

Repository[19]. Their dimensions vary both in the number of examples and in the

number of features. This way, it is possible to better visualize the quality of the heuristic

dealing with datasets of different characteristics.

Table 4.1: Datasets characteristics

Ads Credit Hapt Isolet

# Features 1558 23 561 617

# Classes 2 2 12 26

# Examples 3279 30000 10929 7797

Ads dataset

The full name of this dataset is “Internet Advertisements Dataset” and it represents a

set of possible ads that may appear on Internet pages. The features encode the geometry

of the image and all the text associated to it, such as URLs and words occurring near

them. All its features are binary except for the three that hold continuous values. In

addition, in 28% of the samples, one or more of the three continuous features are missing.

This is a binary class dataset, with 3279 samples, in which 458 represent ads and the

remaining 2821, non-ads.

Credit dataset

This dataset is binary. However, it has a higher number of samples than the Ads

dataset although with a reduced number of features. It also has no missing values and

the features can assume integer and real values. The dataset was built by researchers

from Taiwan which aimed to predict the customers default payments in a financial risk

problem. To predict whether a costumer is credible or not, information such has gender,

marital status, education, history of past payments and their amounts to name a few,

are used. Among the total 30000 samples, 5529 represent the customers that entered in

default. In the description that comes along, artificial neural networks are referred to be

a good data mining technique that can accurately estimate the probability of default.
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Hapt dataset

Hapt is an acronym for “Human Activities and Postural Transitions”. A group of 30

volunteers performed a total of 12 postural activities while wearing a smartphone on

their waist. The 561 features were obtained by applying some pos-processing on the

data captured with the smartphone’s embedded accelerometer, used to capture 3-axial

linear acceleration, and gyroscope, to capture 3-axial angular velocity. The features

assume real values and the samples consist in fixed-width sliding windows of 2.56 sec

and 50% overlap. This dataset has no missing values.

Isolet dataset

The Isolet dataset refers to “Isolated Letter Speech Recognition”. The goal is to predict

which letter was spoken by an individual and therefore, there are a total of 26 classes. For

the creation of this dataset, 150 subjects spoke the name of each letter of the alphabet

twice, but 3 records were discarded, thus it comes up with 7797 samples. The whole

samples have no missing values and the features are real values.

4.3 Approach Method

In this section, how the experiments were conducted is described in more detail. First,

an analysis of several clustering algorithms is presented. Next, the sampling method

and how it will be analyzed is defined. After that, a study is made on some parameters

of the heuristic. Finally, it is explained how the performance of the CSS is measured

and which metrics are used.

4.3.1 Clustering

The first step of the proposed heuristic is to cluster the data. There are several clustering

algorithms, each with different behaviors. Below, some of the existing algorithms and

their behavior for four different test cases are shown. After that, a comparative analysis

to help determine which one to use, is presented.
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Figure 4.1: A comparison of clustering algorithms

Source: http://scikit-learn.org/stable/modules/clustering.html

K-means is one of the most widely used clustering algorithms. It is fast and simple

to implement. The algorithm divides the data into k clusters while trying to minimize

the inertia, the squared distance of each example to its closest centroid [20]. The test

cases in Figure 4.1 show one of the best execution times among the different algorithms.

However, there are cases where clustering results are better, such as DBSCAN, which

can better identify the different patterns.

Looking at the Affinity Propagation algorithm it is possible to see that it produces many

clusters for all the test cases, managing to obtain a good partitioning of the input space.

A good aspect about this algorithm is that the number of clusters is defined based on the

data and not by a parameter, as happens with k-means. However, due its complexity,

the execution time is quite high showing that it does not scale well and so it is not a

good choice for this work.

Like k-means, the Mean Shift is a centroid based algorithm, but instead of relying in a

parameter to set the number of clusters it takes a bandwidth parameter. This parameter

defines the neighborhood of examples that are used to compute the mean shift vector

for each centroid. The algorithm does not scale well, as it requires to search multiple

times the centroids nearest neighbors during its execution [21].

Spectral clustering does a dimensional reduction before applying a clustering algorithm.

As can be seen in Figure 4.1, the execution times of the algorithm are quite high,

demonstrating this way that it not scale so well,thus making it not one of the best

options.
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The agglomerative hierarchical clustering algorithms begin by considering each data

example as a cluster. Then join them by following a linkage criterion, usually, pairwise

distance. Ward is a specific linkage criterion to merge clusters that follows the same

approach than k-means, by trying to minimize the sum of the squared distances of

points. Due to the number of comparisons that are made, these algorithms have a high

complexity which may limit the size of the datasets that can be processed [20].

DBSCAN is a density based clustering algorithm. It can detect outliers and because of

that it may not produce a complete clustering. The number of clusters is determined

by the algorithm. They are formed by locating areas of high density separated by areas

of low density [20]. This approach shows good results for the first three test cases of

Figure 4.1, except for the last. For datasets with a distribution similar to the last

case, the algorithm may not produce a high number of clusters. In addition, it can

be computational expensive to define the densinty of clusters when dealing with high

dimensional data [22].

Birch has a linear scalable running time [23]. However it does not scale very well to

high dimensional data [24]. It is local meaning that clustering decisions are not made

scanning all the data. It can also detect sparse data examples as outliers and in contrast

it treats dense areas of data as being a single cluster. This algorithm outputs similar

clusters produced by k-means.

The following table summarizes more clearly the complexity of the algorithms described

above. The data in the table were obtained using the following articles [25] [22].

Table 4.2: Clustering Algorithms Time Complexity

Algorithm K-means
Affinity

Propagation

Mean

Shift
Spectral Ward Agglomerative DBSCAN Birch

Time

Complexity
O(KN) O(KN2) O(N2) O(N3) O(N2) O(N2) O(N log(N)) O(N)

By analyzing Table 4.2, the k-means was the chosen algorithm, due to its speed and

simplicity. DBSCAN and Birch, despite having good complexity and producing good

results, gave a low number of clusters when tested with the datasets being studied.

K-means can be used for a variety of data types, however, as it calculates the distance

and average of the examples, it makes it only suitable for datasets with continuous data.

In addition, the algorithm does not deal with outliers, which can significantly influence

the results. It also does not consider the size of clusters, which can lead to clusters of

very different sizes [22].



Finding the Critical Sampling Size of Big Datasets 20

4.3.2 Sampling Method

The size of both the training and test sets can influence the performance, that a learning

machine achieves. This is an important aspect thus, when comparing the performance

of a data mining task using the whole dataset and the sampled data, this must be taken

in consideration. Because of this, three ways to split the datasets were considered, and

therefore, for each of these methods, a respective CSS will be heuristically determined.

Each method consists in splitting the dataset in different ratios, which are:

• 30% Train / 70% Test

• 50% Train / 50% Test

• 70% Train / 30% Test

If eventually, the CSS for the 3 splitting ratios ends up being the same, or very close to

each other (the concept of closeness may differ depending on the nature of the problem),

this may indicate that the CSS of the dataset is independent of the used splitting ratio.

As stated in Section 3.3, the CSS is obtained iteratively. First the data is clustered using

k-means and then, from each cluster, m examples are selected to form the sample Dv.

To analyze the usefulness of this method, another two approaches were proposed.

• mk+r: Initial approach, where the sampleDv is composed by selectingm examples

from each one of the k clusters and then complemented with more d ∗ r random

examples.

• mk: Same as above except that the sample Dv is not complemented with d∗
random examples.

• r: Random sampling. The construction of Dv is made by randomly selected

examples. In order to maintain some consistency, here r can be calculated with

m ∗ k.
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4.3.3 Parameters Setup

The proposed heuristic to find the CSS has four parameters (see 3.3). Their values

should be decided by considering (i) the nature of the problem, (ii) the size of the

dataset, (iii) the data mining task that will be applied and (iv) the amount of available

resources. These four parameters are, respectively, k, m, d and T .

Parameter k

This parameter represents the number of clusters in which the data will be partitioned.

Initially, the number of classes of the dataset was the suggested value to assume. Note

that when the dataset has only two classes the number of clusters will be diminutive.

This will make the sampling process very similar to the r approach, even if the mk,

or mk + r, is being used. Therefore, if this method is used to define the value of k,

increasing its value, when the number of classes is small, may be a good procedure.

This may enable the creation of a more descriptive sampling of the input space.

In the experiments, several values for k will be tested in order to study the effect that

the number of clusters has on the results.

Parameter m

The value of this parameter must be small, so that with each iteration of the heuristic,

as the sample Dv grows, it is possible to observe how the performance of the classifiers

evolves. The value of m was defined as being 1% of the size of the dataset divided by

the number of clusters.

Initially, it was suggested to randomly select the m points. But the arrangement

of examples in a cluster can be an alternative. Therefore, two more methods were

considered to select the m examples. The first one selects them by ascending order,

relatively to the cluster centroid, the second one, by decreasing order. Later on the

results section, these three methods, namely, random, increasing and decreasing, are

referred to as rand, asc and decr, respectively.

Parameter d

In the mk + r approach, the sample is composed by complementing it with more d ∗ k
samples. These samples are randomly chosen from the remaining dataset. In order for

this addition not to be as significant as step m ∗ k, the value assumed by d takes this

into account and consequently has been defined as the value of m divided by 4.

Certainly other values can be used. An interesting aspect about parameter d is that it

allows to check other CSS values for the same dataset. This would not be possible for

the mk and r approaches. Therefore, it may find lower values of the CSS for a specific

dataset.
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Parameter T

The value of threshold T represents a reasonable performance requirement or expectation

of the specific learning machine M .

It is desirable to the critical sample to achieve the same performance as the one obtained

when using the entire dataset, that is, when trained with 30%, 50% or 70% of the whole

dataset. Hence, those values can be used to define T . Note that this is an empirical

study in which the primary goal is to verify if datasets possesses, or do not possess, a

CSS. With the datasets being used it is possible to infer, in useful time, the expected

value of T when using 30%, 50% or 70% of the whole dataset for training. One reason

for this is to show the usefulness of our proposed heuristic. In real cases, when dealing

with much larger datasets, it will have to be defined by the user.

4.3.4 Performance of machine M

Another aspect that deserves special attention is the method to calculate the performance

of a specific machine M . There is more than one way proposed by the authors in [4].

The performance of machine M trained with Dv is denoted by PM (Dv), and can be

calculated using (Dn - Dv) as a test set or using a test set with fixed size. The second

approach is more consistent, so it was the one adopted.

Another important aspect to point out is the size of the test set being used. For instance,

when using the 30% for training and 70% for testing, the critical sample should also be

tested with 70%. That is, for the results using the entire dataset, the model is created

using 30% of the data and tested with 70%. To obtain the CSS results, the model

is then trained with the sample Dv and tested with 70% of the data. Next, the two

performances are compared. Therefore there is no point in v getting bigger than the

size of the train set, in this case, more than 30% of the dataset size. So this can be

considered as a stopping condition for the heuristic.

For different types of problems, different types of performance measures are required, in

this case the default task of the used datasets is classification, therefore some classification

metrics are needed. Next, two of the most common used metrics are described.



Finding the Critical Sampling Size of Big Datasets 23

Accuracy

Accuracy function is very intuitive and easy to interpret. Basically is the sum of correctly

classified examples divided by the total number of examples.

Assuming ŷ as the predicted value of the i-th example, yi as the corresponding true

value, and 1(x) as the indicator function, then the formula can be defined as

accuracy(y, ŷ) =
1

nexamples

nexamples−1∑
i=0

1(yi = ŷi) (4.1)

Indicator function is represented as

1(expression) =

{
1 if expression is true

0 if expression is false
(4.2)

F-score

In many cases the Accuracy is not sufficient, for instance, in a dataset that is not

balanced, it can give erroneous information about the prediction quality of the learning

machine. Assuming that the dataset has only two classes and that the positive class has

a much lower number of examples than the negative one, what could happen, depending

on the algorithm and how the model was built, is that the machine could correctly

classify all the negative cases and wrongly all the positive ones, resulting in a good

Accuracy value but in the point of view of the aim of the problem, a catastrophic result.

Because of this, it is necessary to resort to another metric, the F-score. It is a metric

that allows to better evaluate the quality of a model. Firstly, precision and recall, have

to be defined. Precision is the ability of the model to not classify a negative example as

being positive and recall is its capacity to find all the positive examples. If tp is the true

positives, positive examples well classified, fp the negative examples wrongly classified

as positive and fn the positive examples wrongly classified as negatives then precision

and recall are defined by

precision =
tp

tp+ fp
(4.3)

recall =
tp

tp+ fn
(4.4)
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With these two functions it is possible to compute the F-score. The following function

is the general function for F-score where β can take different values. The traditional

F-score uses β value equals to 1

Fβ = (1 + β2)
precision× recall

β2 ∗ precision+ recall
(4.5)

The previous formulas are designed for binary class problems. To extend them to

multiclass problems, some aspects must be taken into account. In these cases, there

are different ways to calculate the F-score. Below, these methods are listed and their

differences explained.

• Obtain the F-score for each class and then calculate the mean. This method is

called “macro” and gives equal weight to each class.

• The “weighted” method takes into account the fact that there could exist class

imbalance in the dataset. In addition to what is done in the “macro” method,

each class is weighted according to its presence in the dataset.

• Calculate metrics globally by counting the total true positives, false negatives and

false positives, thus giving an equal contribution to each example. This method is

called “micro”.

• Calculating the sum of all the correct prediction and dividing by the total number

of examples. This method is only applicable to multiclass datasets, because

otherwise, it behaves the same way as Accuracy.

The assumption that all classes are equally important is often untrue, but in this case

this may be a method of circumventing the effect of unbalanced datasets on the results.

Thus, to calculate the F-score, the “macro” method was used, since it attributes equal

weight to all classes. It can be defined by the following formula

|L| is the set of classes, or labels, present in the dataset.

1

|L|
∑
l∈L

Fβ(yl, ŷl) (4.6)
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4.4 Experimental Setup Overview

Table 4.3 shows all the test cases that will be tested by combining the value of k, the

sampling method, the cluster sampling method, and the training set size with which the

results will be compared.

For each value of k, the 3 sampling methods will be tested. Both mk+r and mk methods,

since they are the only ones that perform clustering, will be tested with 3 different ways

of selecting examples from the clusters. These results will then be compared to the

results obtained when using 30%, 50% and 70% of the dataset for training. Finally, all

these combinations (test cases) will run 30 times each.

Table 4.3: Experimental Setup

K 2, 5, 10, 20, 30, 50

Sampling Method mk+r mk r

Cluster

Sampling

Method

rand

asc

decr

rand

asc

decr

-

Training

Set Size
30%, 50%, 70%





Chapter 5

Results

This chapter presents the results. In Section 5.1, the choice of the algorithms used to

conduct the experiments is explained. A description of its settings is given below. In

Section 5.2 the experimental results are exposed and discussed.

5.1 Algorithms Settings

Initially, 6 learning machines were tested for use in the experiments. After being tested

with all datasets, each divided into 70% for training and 30% for testing, it was found

that for binary problems (Ads and Credit datasets) the best results were AdaBoost, and

that for the remaining ones, the MLP was the best choice. Evidences of these results are

depicted in Table 5.1. It can be seen that for the HAPT dataset, the KNN algorithm

obtained better results than the MLP, but looking at the Isolet dataset, it is possible to

see the superiority of the MLP. Therefore, AdaBoost was the chosen algorithm. With

these conclusions, these two learning machines were used to carry out the experiments.

Note that the results for each algorithm were obtained without doing any kind of

pre-processing in the datasets, since the goal of this dissertation is not to optimize the

classifiers. The choice of algorithms to use was mainly based on performance, knowing

that although they behave well for these datasets, as it is stated by the “No Free Lunch

Theorem”, that may not be true for other datasets or other types of problems [26].

27
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Table 5.1: Algorithms Tested. Results associated to each algorithm are the achieved
F-score when using 70% of the dataset for training and 30% for testing.

Datasets

Algorithm Learning Machine Ads Credit Hapt Isolet

Lazy KNN 90.25% 54.71% 84.18% 86.12%

Meta AdaBoost 92.58% 66.35% 24.89% 12.09%

Artificial

Neural Network
MLP 91.09% 52.28% 80.26% 95.20%

Tree
Decision Tree

Random Forest

92.33%

46.34%

65.78%

55.36%

48.10%

39.13%

44.74%

55.89%

Bayes Naive Bayes 69.79% 38.17% 61.35% 82.76%

Adaptative Boost

The Adaptative Boost (AdaBoost) classifier is a meta-estimator that fits other classifiers

on the original dataset to improve their performance [27]. The implementation provided

by the scikit-learn was used. It uses 50 estimators, which are Decision Tree Classifiers,

at a learning rate of 1. This parameter defines the contribution of each estimator for the

performance outputted by AdaBoost. It uses the SAMME.R real boosting algorithm

which converges more quickly than SAMME [28].

Artificail Neural Net - Multi Layer Perceptron

Multi Layer Perceptron is a fully connected feedforward artificial neural network. It

was also used the implementation provided by the scikit-learn, which has 3 layers. The

hidden layer is composed of 100 neurons and the activation function is the rectified linear

unit function. The used solver for weight optimization is the stochastic gradient descent

with a constant learning rate of 0.001 and a maximum of 200 iterations.
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5.2 Experimental Results

Several values for k were used in order to study the effect of the number of clusters in the

results. Figs. 5.1 to 5.4 show the CSS that were needed to achieve the same performance

when 30%, 50% or 70% of the datasets were used as a training set. Each dot of the

lines represents the averaged CSS value, of 30 runs, for each value of k. For the mk + r

and mk sampling methods, the value that is represented is the one that obtained the

best results among the rand, asc and decr way to select the examples of the clusters.

As for the r method, random sampling, the CSS is represented by a straight line, which

value is also the averaged value of all runs. These results can be seen in more detail in

Appendix A, Tables A.1 to A.8.

In Figs. 5.1a to 5.1c, it is not so visible the improvement of the heuristic (mk + r and

mk methods) over the random sampling. Moreover, in the majority of cases it is the

one that gets the best results. However, as can be seen in Figure 5.1a, when k is 10, it

gets surpassed for both mk+ r and mk methods and when the number of clusters is 50,

by mk. Both mk + r and mk methods presented the best results with the number of

clusters being 10.

Looking at Figure 5.1b, which shows the results of the heuristic compared to those

obtained when using 50% of dataset for training, mk + r was the worst method. This

method, and mk, had the best results with 20 clusters, and most of the times, they had

worst results than the random sampling, r method. In Figure 5.1c, the mk + r method

presented the best CSS value, with 5 clusters, and right after, the mk, with 20 clusters.

The best CSS values, for all the training set sizes, are quite similar ranging from 12.61%

to 15.69%.

For this dataset, it is possible to observe the effect that k has on the results. The

results of the methods that perform clustering, mk+r and mk, present a large variation

depending on the value of k. This shows that for this dataset, to obtain the best results

with these two methods, the number of clusters is an important parameter.

(a) Training set - 30% (b) Training set - 50% (c) Training set - 70%

Figure 5.1: Results of Ads dataset
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The results for the Credit dataset are noticeable, with Figs. 5.2a to 5.2c showing really

low values for the CSS. This dataset is a binary problem and this may be one of the

reasons for such. Another interesting aspect is that both mk + r and mk sampling

methods, for all values of k, always obtains better results than r, random sampling. It

shows that clustering was able to discover a good data structure.

Figs. 5.2a to 5.2c are quite conclusive, clearly showing that the mk+ r and mk methods

are a better alternative to the r method, with mk being the best. Further, results for

these two sampling methods are consistent for all values of k. The greatest variation

occurred in the results is visible in Figure 5.2a. These results demonstrate the positive

effect of using clustering, and as can be seen, the value of k does not cause big differences

in the CSS value. Once again, the best CSS values, for all the training set sizes, are very

close ranging from 3.13% to 3.67%.

(a) Training set - 30% (b) Training set - 50% (c) Training set - 70%

Figure 5.2: Results of Credit dataset

In Figs. 5.3a to 5.3c, the results of mk + r and mk sampling methods are impressive.

Comparing them to random sampling, they can achieve CSS values, 10% smaller. This

reinforces the positive aspect of clustering. In addition it is clear that the best results

for CSS are obtained with 5 clusters. And the only value of k in which the methods

mk+ r and mk are worse than random sampling is 2. Once more, mk proved to be the

best sampling approach.

The best CSS values for the Hapt dataset are comprised between 4.76% and 4.90%.

(a) Training set - 30% (b) Training set - 50% (c) Training set - 70%

Figure 5.3: Results of Hapt dataset
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For the Isolet dataset, mk is clearly the worst method. As can be seen in Figs. 5.4a

to 5.4c, most of the times as the value of k increases, so does the CSS. In addition, it is

the method that has the greatest variation for the CSS value. The worst results always

occurs when the number of clusters is 5 and 20, and the best when it is 2.

The results obtained by the mk+ method are closer to those obtained by random

sampling. This is due to the additional step that supplements the sample with random

examples. Looking at the results, randomness is a good approach for the Isolet dataset.

This dataset has a high number of classes, 26, and for each one has 300 examples.

Because of this, randomness is able to easily select examples from all classes. This

shows that for datasets with few samples per class, random sampling may be the best

option. Despite all this, in Figs. 5.4b and 5.4c, mk+r still managed to overcome random

sampling, accomplishing the best result when the number of clusters was 10.

(a) Training set - 30% (b) Training set - 50% (c) Training set - 70%

Figure 5.4: Results of Isolet dataset

For the mk + r and mk sampling methods, the best results were always obtained with

20 clusters or less. The number of cluster seems to do not need to grow larger than that

to get the best results. However, this number may increase for even larger datasets.

By inspecting the best results of each dataset, their number of classes proved not to be

the best approach to define k. As seen in the results, this parameter is quite important.

Its value varies for each dataset and therefore an analysis should always be made to

determine the best value.
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Table 5.2 summarizes the best values that mk+ r and mk obtained for each dataset. In

addition, the most effective method for selecting examples from clusters is presented.

The best method was always the rand except for the Credit dataset, which was the decr.

But even in this dataset, the difference between decr and rand is minimal, so rand can

be considered the best approach. Looking at Tables A.10 to A.13 it is possible to see

that rand was always the one producing the best results. Furthermore, its statistical

difference with the other two methods is high. The only exception, as said before, was

for the Credit dataset, where rand and decr had no statistical difference.

Another important aspect to point out is the fact that asc often failed to discover a

CSS, or when it was able to, it was the worst value comparing to the other methods.

The only exception for this, was in the Hapt dataset when using more than 5 clusters.

For those cases, decr was the worst.

Table 5.2: Best results for each test case.

Training Set Size - 30% Training Set Size - 50% Training Set Size - 70%

Sampling

Method

Best

Results
k

Sampling

Method

Best

Results
k

Sampling

Method

Best

Results
k

Ads
mk+r (rand)

mk (rand)

12.61 ± (3.40)

13.09 ± (3.60)

10

10

mk (rand)

mk+r (rand)

15.98 ± (5.68)

16.82 ± (6.18)

20

20

mk+r (rand)

mk (rand)

14.34 ± (6.25)

14.44 ± (5.46)

20

20

Credit
mk+r (decr)

mk (decr)

3.25 ± (2.47)

3.27 ± (3.04)

20

20

mk (decr)

mk+r (decr)

3.13 ± (2.03)

3.46 ± (2.24)

10

10

mk (decr)

mk+r (decr)

3.67 ± (4.30)

3.75 ± (1.80)

2

5

Hapt
mk (rand)

mk+r (rand)

4.76 ± (0.87)

5.64 ± (1.03)

5

5

mk (rand)

mk+r (rand)

4.86 ± (0.99)

6.27 ± (1.61)

5

5

mk (rand)

mk+r (rand)

4.90 ± (1.11)

6.27 ± (1.74)

5

5

Isolet
mk+r (rand)

mk (rand)

16.63 ± (1.62)

16.84 ± (1.78)

2

2

mk+r (rand)

mk (rand)

20.14 ± (2.39)

20.97 ± (2.37)

10

2

mk+r (rand)

mk (rand)

22.06 ± (2.57)

23.11 ± (3.01)

10

2
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5.3 Concluding remarks

In the results, the effect of k value was studied and it has a notorious impact on the

CSS, mainly on the Credit and Hapt datasets. It is possible to see the improvement of

mk + r and mk sampling methods compared to the random sampling, the r method.

However, this is not so visible for the Ads and Isolet dataset. In the latter case, this can

be due to the fact, as previous explained, that the dataset is perfectly balanced, that

is, each class has the same number of examples, which allows the random sampling to

obtain good results. The Hapt dataset is also well balanced, however, it has a higher

number of examples per class. As said before, random sampling seems to be a good

choice when dealing with datasets that contains low examples per class.

As the heuristic starts by having very small training sets, Dv, the training process is

fast. Using this incremental approach, it is easier and faster to find out the CSS of a

specific dataset. And by looking at results it is possible to conclude that the mk+r and

mk sampling methods are a good alternative to the random sampling. As for those two

sampling methods, the best shows up to be mk since it presents more consistent results

in the first 3 datasets.

Despite all this, the reduction for all datasets is noticeable, demonstrating that when the

learning machines were trained with 30%, 50% or 70% of the dataset it was unnecessary.

This shows that most of the data present in these datasets may be redundant, or even

irrelevant. And by analyzing the results for the 3 training set sizes of all datasets, they

show that the CSS value does not change significantly. Where it is noted a greater

difference is in the Isolet dataset.

As it was intended to show, all the datasets present a CSS, and it was possible to discover

it by means of a simple heuristic. In addition, the CSS was shown to be independent

of the way the dataset was divided. Therefore, for future work, this heuristic can be a

good approach for reducing datasets before using them for data mining tasks.





Chapter 6

Conclusions

In this dissertation an empirical study on four datasets, to assess if datasets possess a

Critical Sampling Size, was conducted. Its existence could contribute to data mining

tasks, by improving their speed while maintaining the desirable performance. In data

mining, big datasets are used, and building good models for knowledge discovery could

be very expensive (i.e. resources and time consuming) because the size of the used

training sets. Finding the CSS of big datasets may reduce the impact of that issue on

data mining.

It has been proved that this problem is of the NP-hard type and therefore, discovering

its optimal solution is intractable. Therefore, a heuristic approach was proposed and

more than one sampling method was used to analyze their effect on the results.

The experimental results show the existence of an apparent CSS for each dataset; It is

“apparent” since finding the exact CSS is highly intractable, hence whatever sampling

generated by the heuristic methods would be an approximated CSS at best. In addition,

the CSS of the datasets are demonstrated to be considerably smaller than their initial

size. These results seem to validate our assumption that since it is possible to find

the (apparent) CFD of a dataset using simple heuristic methods, it is likely that such

methods will prove practicable in finding the dataset’s (apparent) CSS.

Rather than training a model in the traditional way, by randomly selecting a percentage

of the dataset, the proposed heuristic method produced satisfactory results showing

that it can significantly reduce the size of the training set, while maintaining the same

performance. With these results it proved to be a good alternative to random sampling

and a simple and efficient method to discover the CSS of a dataset.
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6.1 Future work

There is always room for improvement. Many aspects of the proposed heuristic deserve

further study. Studying more values for the different parameters can provide better

conclusions, and the same applies to datasets. Future work can begin by studying more

datasets, with even larger dimensions. After that, combining both heuristics to find

CFD and CSS, can lead to results that can further reduce datasets.

Finally, other studies can be done in order to compare this heuristic with state-of-the-art

methods, such as SVM optimization.



Appendix A

Result tables

A.1 Experimental Results

The following tables present the results for each dataset. Each pair of tables refers to a

dataset. The tables show the averaged CSS values plus standard deviation for each test

case. Blue values indicate the best sampling method for a specific k value, and training

set size. If mk+ r or mk is the best method then, the blue value indicates the best way

to select the examples from clusters.

There are some occasions where the standard deviation is 0. Those cases happened when

the heuristic failed to find the CSS and the maximum sample size was reached. This is

visible for th Ads, Hapt and Isolet datasets.
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Table A.1: Ads dataset. CSS results for k = 2, 5, 10. Each cell display the average
± (standard deviation). Values are in percentage.

K:2

Sampling Method mk+r mk r

Training Set: 30%

rand

asc

decr

15.07 ± (6.02)

27.67 ± (2.62)

17.85 ± (6.29)

15.14 ± (5.79)

28.10 ± (0.83)

18.01 ± (5.58)

13.93 ± (4.91)

Training Set: 50%

rand

asc

decr

17.55 ± (7.44)

28.48 ± (3.38)

31.89 ± (14.50)

19.53 ± (7.07)

33.46 ± (7.70)

28.20 ± (12.73)

17.87 ± (5.93)

Training Set: 70%

rand

asc

decr

17.21 ± (5.54)

29.50 ± (6.69)

20.62 ± (11.65)

16.07 ± (5.14)

32.90 ± (7.84)

21.77 ± (12.63)

15.69 ± (7.54)

K:5

Sampling Method mk+r mk r

Training Set: 30%

rand

asc

decr

13.90 ± (6.10)

30.16 ± (0.00)

20.24 ± (6.11)

13.77 ± (6.43)

30.95 ± (0.00)

18.82 ± (5.13)

13.77 ± (4.28)

Training Set: 50%

rand

asc

decr

16.96 ± (5.68)

47.38 ± (4.69)

24.13 ± (7.53)

16.86 ± (5.77)

44.33 ± (4.46)

22.95 ± (6.20)

15.69 ± (5.41)

Training Set: 70%

rand

asc

decr

14.34 ± (6.25)

46.20 ± (7.26)

21.86 ± (7.65)

14.94 ± (7.73)

42.09 ± (4.70)

20.96 ± (7.34)

14.80 ± (5.65)

K:10

Sampling Method mk+r mk r

Training Set: 30%

rand

asc

decr

12.61 ± (3.40)

24.75 ± (4.52)

20.59 ± (5.70)

13.09 ± (3.60)

23.50 ± (5.72)

18.62 ± (6.72)

13.46 ± (3.94)

Training Set: 50%

rand

asc

decr

20.74 ± (6.81)

32.12 ± (10.29)

24.04 ± (8.87)

17.85 ± (5.93)

28.95 ± (6.78)

22.20 ± (7.21)

16.35 ± (4.82)

Training Set: 70%

rand

asc

decr

16.27 ± (7.78)

28.41 ± (10.65)

22.87 ± (9.11)

16.47 ± (7.47)

25.74 ± (9.71)

22.08 ± (8.52)

15.17 ± (6.52)
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Table A.2: Ads dataset. CSS results for k = 20, 30, 50. Each cell display the average
± (standard deviation). Values are in percentage.

K:20

Sampling Method mk+r mk r

Training Set: 30%

rand

asc

decr

14.38 ± (3.69)

27.24 ± (5.08)

19.87 ± (6.44)

14.80 ± (4.47)

24.89 ± (5.79)

17.08 ± (5.70)

13.46 ± (3.53)

Training Set: 50%

rand

asc

decr

16.82 ± (6.18)

34.46 ± (9.25)

23.38 ± (9.55)

15.98 ± (5.68)

32.73 ± (7.08)

22.53 ± (8.54)

17.36 ± (5.13)

Training Set: 70%

rand

asc

decr

15.50 ± (5.80)

30.34 ± (9.84)

20.03 ± (10.24)

14.44 ± (5.46)

26.72 ± (10.40)

20.33 ± (9.55)

14.96 ± (5.33)

K:30

Sampling Method mk+r mk r

Training Set: 30%

rand

asc

decr

15.32 ± (6.45)

25.08 ± (6.62)

18.07 ± (6.05)

14.70 ± (6.49)

22.02 ± (7.41)

18.30 ± (5.35)

14.21 ± (3.80)

Training Set: 50%

rand

asc

decr

19.21 ± (7.78)

35.61 ± (9.66)

24.32 ± (8.11)

19.64 ± (8.61)

34.03 ± (10.08)

21.23 ± (6.63)

18.60 ± (5.02)

Training Set: 70%

rand

asc

decr

16.09 ± (5.52)

29.96 ± (10.77)

22.72 ± (6.03)

16.65 ± (8.19)

29.83 ± (10.95)

21.53 ± (7.06)

16.59 ± (5.31)

K:50

Sampling Method mk+r mk r

Training Set: 30%

rand

asc

decr

14.75 ± (4.59)

22.06 ± (6.03)

18.85 ± (5.24)

13.42 ± (4.91)

23.53 ± (5.96)

19.21 ± (5.28)

13.88 ± (4.54)

Training Set: 50%

rand

asc

decr

17.40 ± (8.55)

29.75 ± (9.65)

23.45 ± (8.75)

16.88 ± (6.05)

30.85 ± (10.33)

20.28 ± (6.11)

16.88 ± (7.14)

Training Set: 70%

rand

asc

decr

18.21 ± (7.41)

28.11 ± (10.61)

22.44 ± (9.55)

16.77 ± (5.98)

29.07 ± (12.17)

22.01 ± (10.06)

17.59 ± (6.52)
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Table A.3: Credit dataset. CSS results for k = 2, 5, 10. Each cell display the average
± (standard deviation). Values are in percentage.

K:2

Sampling Method mk+r mk r

Training Set: 30%

rand

asc

decr

4.33 ± (2.60)

19.25 ± (5.29)

4.67 ± (3.50)

4.20 ± (2.80)

16.03 ± (6.04)

3.53 ± (3.27)

8.03 ± (6.40)

Training Set: 50%

rand

asc

decr

4.29 ± (2.22)

18.42 ± (3.01)

5.12 ± (8.82)

4.33 ± (2.47)

16.73 ± (5.34)

4.20 ± (7.17)

8.10 ± (9.33)

Training Set: 70%

rand

asc

decr

4.25 ± (2.78)

17.46 ± (6.19)

4.67 ± (6.72)

3.73 ± (2.33)

14.53 ± (6.57)

3.67 ± (4.30)

8.03 ± (13.25)

K:5

Sampling Method mk+r mk r

Training Set: 30%

rand

asc

decr

6.08 ± (5.37)

11.25 ± (2.15)

4.92 ± (3.95)

5.23 ± (2.73)

9.90 ± (0.40)

3.97 ± (2.40)

7.97 ± (5.32)

Training Set: 50%

rand

asc

decr

4.62 ± (1.92)

9.79 ± (4.03)

3.96 ± (3.20)

4.37 ± (3.26)

8.97 ± (1.19)

3.33 ± (2.47)

6.50 ± (7.34)

Training Set: 70%

rand

asc

decr

4.00 ± (2.16)

9.42 ± (4.73)

3.75 ± (1.80)

3.97 ± (2.33)

9.77 ± (3.63)

3.70 ± (2.10)

15.13 ± (22.26)

K:10

Sampling Method mk+r mk r

Training Set: 30%

rand

asc

decr

5.62 ± (3.06)

7.71 ± (2.10)

6.67 ± (6.62)

5.13 ± (3.00)

7.17 ± (2.23)

4.83 ± (3.54)

7.73 ± (4.49)

Training Set: 50%

rand

asc

decr

5.21 ± (3.06)

7.25 ± (2.73)

3.46 ± (2.24)

4.57 ± (2.50)

6.73 ± (1.87)

3.13 ± (2.03)

11.67 ± (12.61)

Training Set: 70%

rand

asc

decr

7.50 ± (12.26)

8.46 ± (3.42)

5.21 ± (5.24)

5.03 ± (5.11)

7.17 ± (1.86)

6.43 ± (12.46)

6.83 ± (9.97)
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Table A.4: Credit dataset. CSS results for k = 20, 30, 50. Each cell display the
average ± (standard deviation). Values are in percentage.

K:20

Sampling Method mk+r mk r

Training Set: 30%

rand

asc

decr

5.62 ± (5.92)

5.08 ± (1.99)

3.25 ± (2.47)

3.67 ± (1.86)

4.97 ± (1.71)

3.27 ± (3.04)

8.63 ± (5.58)

Training Set: 50%

rand

asc

decr

4.04 ± (2.09)

4.62 ± (2.11)

3.71 ± (3.42)

4.17 ± (2.15)

4.57 ± (1.91)

3.70 ± (4.15)

7.30 ± (8.12)

Training Set: 70%

rand

asc

decr

5.58 ± (6.03)

6.83 ± (3.98)

4.46 ± (4.04)

5.57 ± (6.78)

5.67 ± (3.30)

3.83 ± (3.26)

6.43 ± (4.95)

K:30

Sampling Method mk+r mk r

Training Set: 30%

rand

asc

decr

5.54 ± (3.99)

5.79 ± (2.66)

5.88 ± (5.24)

4.20 ± (2.46)

4.97 ± (2.34)

5.70 ± (5.42)

6.00 ± (3.22)

Training Set: 50%

rand

asc

decr

5.46 ± (4.59)

5.50 ± (2.93)

5.12 ± (4.35)

4.50 ± (3.55)

4.97 ± (2.71)

3.60 ± (2.76)

7.87 ± (9.23)

Training Set: 70%

rand

asc

decr

5.96 ± (4.75)

5.08 ± (3.18)

5.08 ± (5.62)

4.97 ± (4.84)

4.33 ± (2.60)

5.43 ± (7.77)

11.53 ± (17.70)

K:50

Sampling Method mk+r mk r

Training Set: 30%

rand

asc

decr

5.38 ± (3.72)

5.50 ± (1.90)

6.12 ± (5.88)

5.13 ± (3.96)

4.43 ± (1.19)

4.23 ± (3.92)

5.87 ± (5.59)

Training Set: 50%

rand

asc

decr

5.17 ± (4.78)

6.04 ± (2.39)

4.38 ± (4.73)

4.43 ± (4.05)

5.43 ± (3.31)

3.43 ± (2.51)

5.47 ± (2.99)

Training Set: 70%

rand

asc

decr

7.08 ± (8.03)

5.92 ± (2.99)

8.21 ± (13.20)

5.80 ± (8.29)

4.83 ± (2.23)

5.37 ± (6.27)

8.80 ± (11.32)
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Table A.5: Hapt dataset. CSS results for k = 2, 5, 10. Each cell display the average
± (standard deviation). Values are in percentage.

K:2

Sampling Method mk+r mk r

Training Set: 30%

rand

asc

decr

18.39 ± (6.64)

30.09 ± (0.00)

24.57 ± (4.90)

17.31 ± (6.51)

30.19 ± (0.00)

25.20 ± (2.89)

15.84 ± (6.22)

Training Set: 50%

rand

asc

decr

19.18 ± (5.66)

50.14 ± (0.00)

30.25 ± (6.70)

18.05 ± (5.18)

50.32 ± (0.00)

27.65 ± (4.44)

18.12 ± (5.92)

Training Set: 70%

rand

asc

decr

20.14 ± (7.56)

70.20 ± (0.00)

30.13 ± (7.52)

19.63 ± (8.46)

70.45 ± (0.00)

27.91 ± (5.03)

15.90 ± (5.82)

K:5

Sampling Method mk+r mk r

Training Set: 30%

rand

asc

decr

5.64 ± (1.03)

8.65 ± (1.56)

24.40 ± (4.33)

4.76 ± (0.87)

7.41 ± (0.81)

27.68 ± (1.71)

17.21 ± (5.84)

Training Set: 50%

rand

asc

decr

6.27 ± (1.61)

8.77 ± (2.30)

28.33 ± (7.42)

4.86 ± (0.99)

8.42 ± (0.81)

30.70 ± (5.18)

19.39 ± (6.61)

Training Set: 70%

rand

asc

decr

6.27 ± (1.74)

9.03 ± (2.49)

25.61 ± (5.21)

4.90 ± (1.11)

7.72 ± (1.36)

28.82 ± (3.18)

16.10 ± (4.89)

K:10

Sampling Method mk+r mk r

Training Set: 30%

rand

asc

decr

9.82 ± (3.11)

16.42 ± (5.18)

23.52 ± (4.62)

7.38 ± (2.34)

15.23 ± (1.11)

26.20 ± (3.24)

15.40 ± (4.89)

Training Set: 50%

rand

asc

decr

10.45 ± (2.14)

19.30 ± (3.20)

25.66 ± (6.22)

7.62 ± (1.92)

16.47 ± (1.53)

28.45 ± (5.35)

19.79 ± (7.03)

Training Set: 70%

rand

asc

decr

9.49 ± (2.61)

17.63 ± (4.51)

25.95 ± (6.63)

7.68 ± (1.70)

15.80 ± (1.40)

27.98 ± (5.11)

17.14 ± (4.42)
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Table A.6: Hapt dataset. CSS results for k = 20, 30, 50. Each cell display the average
± (standard deviation). Values are in percentage.

K:20

Sampling Method mk+r mk r

Training Set: 30%

rand

asc

decr

8.14 ± (2.67)

23.06 ± (5.20)

24.75 ± (4.62)

6.11 ± (1.60)

19.40 ± (1.36)

26.94 ± (3.62)

14.64 ± (4.71)

Training Set: 50%

rand

asc

decr

10.29 ± (2.76)

24.16 ± (5.14)

29.60 ± (6.33)

7.87 ± (2.18)

18.74 ± (2.87)

29.21 ± (5.20)

17.86 ± (7.90)

Training Set: 70%

rand

asc

decr

8.65 ± (2.70)

25.53 ± (6.72)

26.95 ± (5.89)

6.84 ± (2.28)

20.42 ± (3.64)

28.18 ± (5.12)

17.64 ± (7.36)

K:30

Sampling Method mk+r mk r

Training Set: 30%

rand

asc

decr

9.10 ± (3.43)

16.42 ± (10.48)

25.57 ± (3.99)

6.66 ± (1.87)

15.77 ± (10.91)

26.50 ± (3.53)

16.98 ± (4.53)

Training Set: 50%

rand

asc

decr

11.44 ± (6.38)

20.08 ± (15.16)

29.42 ± (7.67)

8.53 ± (3.61)

16.03 ± (10.71)

27.93 ± (5.12)

18.85 ± (6.71)

Training Set: 70%

rand

asc

decr

9.65 ± (3.63)

19.67 ± (14.20)

26.21 ± (7.97)

7.54 ± (2.76)

15.70 ± (11.02)

28.51 ± (5.87)

16.40 ± (5.74)

K:50

Sampling Method mk+r mk r

Training Set: 30%

rand

asc

decr

9.30 ± (2.23)

9.01 ± (3.89)

28.23 ± (3.01)

7.37 ± (1.92)

8.28 ± (2.32)

26.90 ± (3.07)

17.11 ± (4.37)

Training Set: 50%

rand

asc

decr

9.98 ± (2.51)

10.78 ± (3.37)

30.11 ± (5.99)

7.82 ± (2.01)

8.74 ± (2.24)

28.78 ± (4.57)

17.57 ± (6.59)

Training Set: 70%

rand

asc

decr

9.75 ± (2.51)

9.35 ± (4.44)

28.00 ± (4.93)

7.73 ± (2.09)

8.19 ± (3.37)

26.72 ± (5.19)

19.49 ± (8.09)
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Table A.7: Isolet dataset. CSS results for k = 2, 5, 10. Each cell display the average
± (standard deviation). Values are in percentage.

K:2

Sampling Method mk+r mk r

Training Set: 30%

rand

asc

decr

16.63 ± (1.62)

31.10 ± (0.00)

31.10 ± (0.00)

16.84 ± (1.78)

30.01 ± (0.00)

30.01 ± (0.00)

16.67 ± (2.04)

Training Set: 50%

rand

asc

decr

20.53 ± (2.71)

51.01 ± (0.00)

44.41 ± (1.43)

20.97 ± (2.37)

50.02 ± (0.00)

44.48 ± (1.57)

20.57 ± (2.03)

Training Set: 70%

rand

asc

decr

23.72 ± (3.53)

67.39 ± (4.62)

45.37 ± (1.90)

23.11 ± (3.01)

67.86 ± (1.29)

45.25 ± (1.41)

23.04 ± (3.46)

K:5

Sampling Method mk+r mk r

Training Set: 30%

rand

asc

decr

17.44 ± (1.49)

30.78 ± (0.00)

28.56 ± (3.09)

19.46 ± (1.67)

30.78 ± (0.00)

30.71 ± (0.26)

16.76 ± (2.02)

Training Set: 50%

rand

asc

decr

20.69 ± (2.73)

50.02 ± (0.00)

34.97 ± (5.95)

23.09 ± (2.68)

50.28 ± (0.00)

34.82 ± (1.68)

20.25 ± (2.54)

Training Set: 70%

rand

asc

decr

22.91 ± (3.03)

67.97 ± (2.76)

33.13 ± (4.62)

26.03 ± (3.24)

66.90 ± (3.80)

35.84 ± (2.09)

22.47 ± (3.03)

K:10

Sampling Method mk+r mk r

Training Set: 30%

rand

asc

decr

16.97 ± (1.95)

30.78 ± (0.00)

28.00 ± (3.11)

18.26 ± (2.23)

30.78 ± (0.00)

30.78 ± (0.00)

16.83 ± (1.47)

Training Set: 50%

rand

asc

decr

20.14 ± (2.39)

49.72 ± (1.05)

32.06 ± (2.63)

22.74 ± (2.47)

50.28 ± (0.00)

39.13 ± (1.80)

20.55 ± (2.46)

Training Set: 70%

rand

asc

decr

22.06 ± (2.57)

60.92 ± (5.06)

32.88 ± (3.41)

23.94 ± (3.26)

69.43 ± (2.98)

39.50 ± (2.87)

22.09 ± (2.69)
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Table A.8: Isolet dataset. CSS results for k = 20, 30, 50. Each cell display the
average ± (standard deviation). Values are in percentage.

K:20

Sampling Method mk+r mk r

Training Set: 30%

rand

asc

decr

17.10 ± (2.11)

30.78 ± (0.00)

26.98 ± (2.62)

20.14 ± (2.40)

30.78 ± (0.00)

30.68 ± (0.31)

16.31 ± (1.85)

Training Set: 50%

rand

asc

decr

21.08 ± (2.56)

49.76 ± (1.19)

30.23 ± (2.54)

25.10 ± (3.33)

50.28 ± (0.00)

33.72 ± (2.08)

20.55 ± (2.43)

Training Set: 70%

rand

asc

decr

23.34 ± (2.32)

56.86 ± (6.07)

32.23 ± (3.19)

27.36 ± (3.25)

62.90 ± (4.24)

35.30 ± (2.61)

21.89 ± (2.40)

K:30

Sampling Method mk+r mk r

Training Set: 30%

rand

asc

decr

17.67 ± (1.31)

30.17 ± (0.00)

27.24 ± (2.63)

18.70 ± (2.34)

30.01 ± (0.00)

30.01 ± (0.00)

15.89 ± (1.71)

Training Set: 50%

rand

asc

decr

22.03 ± (3.00)

48.98 ± (2.04)

30.79 ± (1.95)

24.05 ± (3.55)

50.52 ± (0.72)

36.44 ± (2.28)

21.62 ± (2.31)

Training Set: 70%

rand

asc

decr

24.04 ± (3.52)

53.24 ± (5.44)

32.08 ± (2.60)

25.55 ± (3.25)

56.44 ± (4.80)

37.17 ± (1.95)

22.16 ± (2.85)

K:50

Sampling Method mk+r mk r

Training Set: 30%

rand

asc

decr

16.83 ± (1.82)

30.46 ± (0.00)

26.35 ± (2.17)

18.04 ± (1.93)

30.70 ± (0.47)

30.61 ± (0.56)

16.67 ± (1.62)

Training Set: 50%

rand

asc

decr

20.41 ± (2.69)

43.93 ± (5.13)

29.98 ± (3.10)

22.36 ± (2.40)

48.27 ± (2.83)

34.80 ± (2.56)

21.20 ± (2.45)

Training Set: 70%

rand

asc

decr

23.25 ± (3.41)

47.72 ± (7.60)

30.99 ± (3.30)

24.11 ± (3.36)

51.39 ± (6.38)

36.17 ± (2.41)

22.06 ± (3.00)
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A.2 Statistical Analysis

To make the statistical analysis of the results, all the test cases were executed 30

times. To infer the existence of statistical difference between the methods that select the

examples from the clusters (rand, asc, decr) it was made the Friedman non-parametric

test, at a 0.05 level of significance. If that happened, then the Wilcoxon non-parametric

test was done, to assess the difference for each pair of those methods. And finally, it

was calculated the effect size of those differences [29].

Tables A.10 to A.13 present this information in more detail.

To compare the methods referred above when performing the statistical analysis, the

hypothesis tested was:

• H0: m1 = m2 - the means of the two methods were equal.

• H1: m1 6= m2 - the means of the the two methods were different.

To test these hypothesis, when conducting the statistical tests, looking at the p-value,

level of significance, if it was smaller then 0.05 then the null hypothesis, H0, could be

rejected and therefore accept H1.

The statistical results are reported using a graphical notation, +, - and ∼. The symbols

indicate the quality of the method on the left compared to the one on the right. The

amount of + or - symbols depends on the effect size between the two methods. The ∼
indicates that no statistical differences between the methods were found. The + sign

means that the left method was better that the one on the right, and - the opposite.

The effect sizes were defined as shown in Table A.9.

Table A.9: Effect Size definition

Effect Size r

Small 0.1

Medium 0.3

Large 0.5
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Table A.10: Ads dataset statistical results. Each cell display the statistical difference
between the two methods being compared.

K:2 K:20

Comparison rand - asc rand - decr asc - decr Comparison rand - asc rand - decr asc - decr

30%
mk+r +++ ∼ —

30%
mk+r +++ +++ —

mk +++ ∼ — mk +++ ∼ —

50%
mk+r +++ +++ ∼

50%
mk+r +++ +++ —

mk +++ ∼ ∼ mk +++ +++ —

70%
mk+r +++ ∼ —

70%
mk+r +++ ∼ —

mk +++ ∼ — mk +++ ++ –

K:5 K:30

Comparison rand - asc rand - decr asc - decr Comparison rand - asc rand - decr asc - decr

30%
mk+r +++ +++ —

30%
mk+r +++ ∼ —

mk +++ +++ — mk +++ +++ ∼

50%
mk+r +++ +++ —

50%
mk+r +++ ∼ —

mk +++ +++ — mk +++ ∼ —

70%
mk+r +++ +++ —

70%
mk+r +++ +++ —

mk +++ +++ — mk +++ +++ —

K:10 K:50

Comparison rand - asc rand - decr asc - decr Comparison rand - asc rand - decr asc - decr

30%
mk+r +++ +++ –

30%
mk+r +++ +++ ∼

mk +++ +++ — mk +++ +++ –

50%
mk+r +++ ∼ —

50%
mk+r +++ ++ –

mk +++ ++ — mk +++ ∼ —

70%
mk+r +++ +++ ∼

70%
mk+r +++ ∼ ∼

mk +++ ++ ∼ mk +++ ∼ ∼
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Table A.11: Credit dataset statistical results. Each cell display the statistical
difference between the two methods being compared.

K:2 K:20

Comparison rand - asc rand - decr asc - decr Comparison rand - asc rand - decr asc - decr

30%
mk+r +++ ∼ —

30%
mk+r ∼ – —

mk +++ ∼ — mk +++ ∼ —

50%
mk+r +++ ∼ —

50%
mk+r ∼ ∼ –

mk +++ — — mk ∼ – —

70%
mk+r +++ ∼ —

70%
mk+r ++ ∼ —

mk +++ ∼ — mk ∼ ∼ —

K:5 K:30

Comparison rand - asc rand - decr asc - decr Comparison rand - asc rand - decr asc - decr

30%
mk+r +++ ∼ —

30%
mk+r ∼ ∼ ∼

mk +++ ∼ — mk ∼ ∼ ∼

50%
mk+r +++ ∼ —

50%
mk+r ∼ ∼ ∼

mk +++ ∼ — mk ∼ ∼ —

70%
mk+r +++ ∼ —

70%
mk+r ∼ ∼ ∼

mk +++ ∼ — mk ∼ ∼ ∼
K:10 K:50

Comparison rand - asc rand - decr asc - decr Comparison rand - asc rand - decr asc - decr

30%
mk+r +++ ∼ —

30%
mk+r ∼ ∼ ∼

mk +++ ∼ — mk ∼ ∼ ∼

50%
mk+r ++ – —

50%
mk+r ∼ ∼ —

mk +++ ∼ — mk ∼ ∼ —

70%
mk+r +++ ∼ —

70%
mk+r ∼ ∼ ∼

mk +++ ∼ — mk ∼ ∼ ∼
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Table A.12: Hapt dataset statistical results. Each cell display the statistical difference
between the two methods being compared.

K:2 K:20

Comparison rand - asc rand - decr asc - decr Comparison rand - asc rand - decr asc - decr

30%
mk+r +++ +++ —

30%
mk+r +++ +++ ∼

mk +++ +++ — mk +++ +++ +++

50%
mk+r +++ +++ —

50%
mk+r +++ +++ +++

mk +++ +++ — mk +++ +++ +++

70%
mk+r +++ +++ —

70%
mk+r +++ +++ ∼

mk +++ +++ — mk +++ +++ +++

K:5 K:30

Comparison rand - asc rand - decr asc - decr Comparison rand - asc rand - decr asc - decr

30%
mk+r +++ +++ +++

30%
mk+r ++ +++ ++

mk +++ +++ +++ mk +++ +++ +++

50%
mk+r +++ +++ +++

50%
mk+r ∼ +++ ++

mk +++ +++ +++ mk +++ +++ +++

70%
mk+r +++ +++ +++

70%
mk+r ++ +++ ++

mk +++ +++ +++ mk +++ +++ +++

K:10 K:50

Comparison rand - asc rand - decr asc - decr Comparison rand - asc rand - decr asc - decr

30%
mk+r +++ +++ +++

30%
mk+r ∼ +++ +++

mk +++ +++ +++ mk ∼ +++ +++

50%
mk+r +++ +++ +++

50%
mk+r ∼ +++ +++

mk +++ +++ +++ mk ∼ +++ +++

70%
mk+r +++ +++ +++

70%
mk+r ∼ +++ +++

mk +++ +++ +++ mk ∼ +++ +++
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Table A.13: Isolet dataset statistical results. Each cell display the statistical difference
between the two methods being compared.

K:2 K:20

Comparison rand - asc rand - decr asc - decr Comparison rand - asc rand - decr asc - decr

30%
mk+r +++ +++ ∼

30%
mk+r +++ +++ —

mk ∼ +++ +++ mk ∼ +++ +++

50%
mk+r +++ +++ —

50%
mk+r +++ +++ —

mk ∼ +++ +++ mk ∼ +++ +++

70%
mk+r +++ +++ —

70%
mk+r +++ +++ —

mk ∼ +++ +++ mk ∼ +++ +++

K:5 K:30

Comparison rand - asc rand - decr asc - decr Comparison rand - asc rand - decr asc - decr

30%
mk+r +++ +++ –

30%
mk+r +++ +++ —

mk ∼ +++ +++ mk ∼ +++ +++

50%
mk+r +++ +++ —

50%
mk+r +++ +++ —

mk ∼ +++ +++ mk ∼ +++ +++

70%
mk+r +++ +++ —

70%
mk+r +++ +++ —

mk ∼ +++ +++ mk ∼ +++ +++

K:10 K:50

Comparison rand - asc rand - decr asc - decr Comparison rand - asc rand - decr asc - decr

30%
mk+r +++ +++ —

30%
mk+r +++ +++ —

mk ∼ +++ +++ mk ∼ +++ +++

50%
mk+r +++ +++ —

50%
mk+r +++ +++ —

mk ∼ +++ +++ mk ∼ +++ +++

70%
mk+r +++ +++ —

70%
mk+r +++ +++ —

mk ∼ +++ +++ mk ∼ +++ +++
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ABSTRACT
Big Data allied to the Internet of Things nowadays provides a pow-
erful resource that various organizations are increasingly exploiting
for applications ranging from decision support, predictive and pre-
scriptive analytics, to knowledge extraction and intelligence discov-
ery. In analytics and data mining processes, it is usually desirable
to have as much data as possible, though it is often more important
that the data is of high quality thereby two of the most important
problems are raised when handling large datasets: sampling and
feature selection. This paper addresses the sampling problem and
presents a heuristic method to find the “critical sampling” of big
datasets.

The concept of the critical sampling size of a dataset D is that
there is a minimum number of samples of D that is required for a
given data analytic task to achieve satisfactory performance. The
problem is very important in data mining, as the size of data sets di-
rectly relates to the cost of executing the data mining task. Since the
problem of determining the critical sampling size is intractable, in
this paper we study heuristic methods to find the critical sampling.

Several datasets were used to conduct experiments using three
versions of the heuristic sampling method for evaluation. Prelim-
inary results obtained have shown the existence of an apparent
critical sampling size for all the datasets being tested, which is
generally much smaller than the size of the whole dataset. Further,
the proposed heuristic method provides a practical solution to find
a useful critical sampling for data mining tasks.
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Big Data, Critical Sampling Size, Data Mining, Sampling Methods
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1 INTRODUCTION
In the era of Big Data a huge amount of data, from a variety of
sources and types, is generated at ever increasing rates. This data
can be used for various purposes, and increasing numbers of in-
dustries and organizations are recognizing its utility, e.g. using
machine learning they can perform data mining tasks to extract
insights from the data to make strategic decisions. These tasks of
knowledge discovery could be very expensive, such as resources
and time consumption, and therefore, it is highly desirable to have
techniques that can help selecting only the necessary data instead
of using entire datasets. This is because much of the data may be
redundant, duplicate, irrelevant, or useless.

We focus on two key issues: the problem of selecting good, and
the problem of sampling relevant data from big datasets, which
are addressed in this paper. We propose a heuristic method to find
their Critical Sampling Size (CSS), that is, the absolute minimal
number of data samples required to ensure that a learning machine
meets a desirable performance. Taking into account that a heuristic
method was able to find the Critical Feature Dimension (CFD)
of big datasets [4], and given the great similarity of the CSS and
CFD problems, we believe that a similar approach will also attain
satisfactory and practical results for the CSS problem.

Previous research relevant to our current work includes the adap-
tive sampling methods for knowledge discovery that adaptively
determines the sampling size [2]. Furthermore, a method for speed-
ing up the training time of Support Vector Machines (SVM), which
is one of its drawbacks, was proposed in [1], which relies on per-
forming a random sampling of the training set in order to obtain a
sketch of the optimal separating hyperplane. In the last case, our
heuristic can be an added value improving the way the sampling is
done.

In the next section the concept of Critical Sampling Size (CSS)
is defined while the proposed heuristic method to implement is
presented. In section 3 the experimental setup is described and
details of how this work was conducted are given. In section 4, the
experimental results on selected datasets to demonstrate the exis-
tence of the CSS are detailed. Finally, section 5 provides conclusions
and addresses some lines of future work.

2 CRITICAL SAMPLING
In this section the concept of Critical Sampling is defined, and
the heuristic method proposed in [3] is described. It will be imple-
mented for the experimental design. An intuitive way to define
the concept of CSS is the absolute minimal number of samples,
of a given dataset, that are needed in order to a specific learning
machine achieve some performance threshold.
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To formally define this problem, a given dataset is represented by
Dn , where n denotes the number of samples at hand. The learning
machine is designated byM and the performance threshold by T .
With respect to the notation we use v to denote the CSS where
v ≤ n.
In order to v actually represent the Critical Sampling Size of a
specific dataset, the two following conditions must hold.

There exists a Dv which letsM achieve a performance of at least
T , where Dv is a sampling of Dn with v samples and PM (Dv ) is
the performance ofM when trained with sampling Dv :

(∃Dv ⊂ Dn )[PM (Dv ) ≥ T ] (1)
For all j < v , a sampling of Dv with j samples fails to letM achieve
a performance of at least T

(∀D j ⊂ Dn )[j < v ⇒ PM (D j ) < T ] (2)
Thus,v is the critical (absolute minimal) number of data samples

required in any sampling to ensure that the performance of M
meets the given performance threshold T . The problem of deciding
if a given number v is the CSS for the dataset Dn with respect to
given learning machine M and performance threshold T is both
NP-hard and coNP-hard; a sketch of the proof is given in [3]. For
this reason, we resort to heuristic methods that can also obtain
satisfactory results.

2.1 Heuristic Method
The heuristic method is composed by five steps. It is in fact a meta-
heuristic algorithm since it is a higher-level procedure that resorts
to another algorithms (learning machines) in order to solve the CSS
problem. In [3], where this heuristic methodology was proposed, it
is possible to find a more detailed description about it.

(1) Apply a clustering algorithm like k-means to partition Dn
into k clusters. (k can be determined, for example, by the
number of classes in the dataset)

(2) Select, say randomly,m samples from each cluster to form
a sampling withm ∗ k samples. (The valuem is set to be
fairly small)

(3) Supplement the sampling with additional d ∗ k (for some
d) samples, selected randomly from the whole dataset Dn ,
to form a sampling Dv .

(4) Apply learning machineM on the sampling, then measure
performance PM (Dv ).

(5) If PM (Dv ) ≥ T , thenDv is a critical sampling, and its sizev
is the Critical Sampling Size for (Dn ,M). Otherwise enlarge
Dv by repeating step 2 and step 3 until a critical sampling
is found, or until the whole Dn is exhausted and procedure
fails to find v .

2.2 Performance of machine M
One aspect that deserves special attention is the method to calculate
the performance of a specific machine M when trained with the
data sampling Dv . There is more than one way proposed by the
authors in [3].
The performance of machine M trained with Dv is denoted by
PM (Dv ), and can be calculated using (Dn-Dv ) as testing set or
using a testing set with fixed size. The second approach is more
consistent, then it will be the one used.

Another important aspect to point out is the size of the test
set being used. For example, when using the 30% for training and
70% for testing, the critical sampling should also be tested with
70%. That is, for the results using the entire dataset, the model is
created using 30% of the data and tested with 70%. To obtain the
CSS results, the model is then trained with critical sampling Dv
and tested with 70% of the data. Next, the two performances are
compared. Therefore there is no point in v getting bigger than the
size of the train set, in this case, more than 30% of the dataset size.
So this could be considered a stopping condition.

3 EXPERIMENTAL SETUP
In this section some aspects regarding the used datasets are pre-
sented, followed by how the sampling method is conducted when
constructing the Critical Set Dv . In the following stage, some rele-
vant aspects regarding the parameters of the heuristic method are
discussed. Lastly, the learning machines used in the experiments
are depicted.

3.1 Datasets
The datasets used in this work were downloaded from the UCI
Machine Learning Repository1. Their dimensions vary both in the
number of samples and in the number of features. In this way, we
are able to visualize the quality of the heuristic for different datasets.
Due to space limitations, no detailed information about the datasets
are given as they are found on the repository.
Table 1 shows the characteristics of the used datasets.

Table 1: Datasets properties

Ads Amazon Credit Hapt Isolet
# Features 1558 10000 23 561 617
# Classes 2 50 2 12 26
# Samples 3279 1500 30000 10929 7797

3.2 Sampling method
The size of the train and test sets can affect the performance that a
learning machine achieves, for example, if the model is built with
a small number of training samples it may not behave well with
future data, thus getting a bad performance. So in the results, when
comparing the performance of a data mining task using the entire
dataset and the sampled data, Dv , this has to be considered. This
said, three ways to split the datasets are considered, and therefore,
for each of these methods, a respective CSS will be heuristically de-
termined. Each method consists in splitting the dataset in different
ratios, which are

• 30% Train / 70% Test
• 50% Train / 50% Test
• 70% Train / 30% Test

In addition to eventually ending up with a distinct CSS for each
splitting ratio, this will also allow to observe their influence on the
results. If eventually, the CSS for the 3 splitting ratios ends up being
the same, or very close to each other (the concept of closeness may
1http://archive.ics.uci.edu/ml
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differ depending on the nature of the problem), this may indicate
that the CSS of the dataset is independent of the used splitting
ratios.

As stated before in Section 2.1, the CSS is obtained iteratively.
First the data is clustered using k-means and then, from each clus-
ter, m samples are selected to form the critical sampling Dv . To
analyze the usefulness of this method, two additional approaches
are proposed.

• mk + r : Initial approach, the sampling Dv is composed by
selectingm samples from each one of the k clusters and
then complemented with more d random samples

• mk: Same as above except that the sampling Dv is not
complemented with d random samples

• r: The construction of Dv is made by randomly selected
samples. In order to maintain some consistency, here R can
be calculated withm ∗ k

3.3 Parameters Setup
There are four parameters in the definition of the heuristic to find
the CSS (see Section 2.1) that are not settled and their values should
be decided by considering (i) the nature of the problem, (ii) the size
of the dataset, (iii) the data mining task that will be applied and
(iv) the amount of available resources. These four parameters are,
respectively, k ,m, d and T .

3.3.1 Parameter k . This parameter represents the number of
clusters in which the data will be partitioned. In a first stage, its
value will be the number of classes of the dataset. Note that when
the dataset has only two classes the number of clusters will be
diminutive. This will make the sampling process very similar to the
r approach, even if themk , ormk+r , is being used. The way that the
m samples are selected from each cluster is always randomly but,
because the number of clusters, in this case, only two, the random
process of selection is being made in half of the dataset. That is like
applying the r approach but only on half of the samples.

Hence, in these situations, it is advisable to increase the value
of k (i.e. k = 10) in order to form more clusters and consequently
make it possible to create a more descriptive sampling of the input
space.

3.3.2 Parameter m. This parameter should be fairly small so
that in each iteration of the heuristic implementation, it may be
possible to observe the evolution of the classifiers’ performance,
when trained with the sampling Dv . For the results obtained, to
definem, the value of 1% of the size of the generated clusters in
step 1 of the heuristic (see 2.1), was used.

3.3.3 Parameter d . In the mk + r approach, the sampling is
composed by complementing it with more d ∗ k samples. These
samples are randomly chosen from the remaining dataset. For this
addition to be not as significant as them ∗ k step, the parameter d
is useful to take it into account, and is defined by:

d =
m

4 (3)

Other values can certainly be used. An interesting point that clari-
fies d parameter is that it allows to check other CSS values for the
same dataset. This would not be not be possible with the previous

two approaches. As a consequence it can help tuning the value of
the CSS for a specific dataset.

3.3.4 Parameter T . The value of threshold T represents a rea-
sonable performance requirement or expectation of the specific
learning machineM , when it is selected to solve a specific problem
and given available dataset D.

It is desirable to the critical sampling to achieve the same per-
formance as the one obtained using the entire dataset, that is, with
training set 30%, 50% or 70% of the whole data. Hence, threshold T
can be defined as the expected performance value but, we can relax
the heuristic and propose it to be T = PM (Dn ) − 1%. As with the
critical sampling performance approaches PM (Dn ), also herein the
increasing of performance per iteration should begin to decrease,
thus making unnecessarily enlarge Dv without getting visible im-
provements. That is why the slack variable of 1% was introduced
in the threshold, but in some cases, depending on the nature of the
problem, it may be considerably high and therefore it should be
properly adjusted.
Note that this is an empirical study which primary goal is to ver-
ify if datasets possesses, or does not possess, a CSS. We are using
datasets with dimensions that allows to infer the expected value
of T when using 30%, 50% or 70% of the whole dataset for training,
in useful time. One reason for this is to show the usefulness of our
proposed heuristic. In real cases, when dealing with much larger
datasets, then it will have to be defined by the user.

3.4 Learning Machines
In the experimentation the datasets are first classified by building
a model based on six different algorithms depicted in Table 2. We
choose the machine with the best prediction accuracy as the classi-
fier that will be used to find the CSS for that dataset. Due to space
limitations, descriptions of the learning machines and references
are not included as they can be found easily elsewhere.

Table 2: Used algorithms

Algorithm Learning Machine
Lazy KNN
Meta AdaBoost

Neural Network Neural Network

Tree Decision Tree
Random Forest

Bayes Naive Bayes

After all six algorithms have been tested, we have concluded that
for binary datasets the best one to use is AdaBoost and for the
remaining datasets, Artificial Neural Networks.

4 RESULTS AND DISCUSSION
The datasets were split into train and test sets according to the
three proposed ratios. Then for each ratio, the used algorithms were
executed 30 times. Note that we are trying to find the existence of
an CSS of a specific dataset and since we are not optimizing the
performance of the algorithms, no pre-processing whatsoever is
made in the datasets. The results were obtained using a machine
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running Linux with 64GB of ram, and an i7 processor with 12 cores
at 3.4GHz.

The main goal of Tables 3 to 7 is to report the values of the
minimum and maximum size, in percentage, of the Critical Set
relative to the total size of each dataset. These tables do not show
the frequency of the CSS values obtained over the 30 runs, their
purpose is to demonstrate the reduction that each dataset suffered
for each combination of sampling method, performance measure
and splitting ratio. Therefore, in the first cell of Table 3, where the
values are “2.74%-11.28%”, it means that in 30 runs the minimum and
maximum size obtained for the Critical Set was 2.74% and 11.28%,
respectively.

As it can be seen, when the size of the testing set decreases,
the maximum value of the CSS increases, in order to attain the
performance threshold T . This occurs for all datasets, regardless
of the sampling method or performance measure used. However,
the minimum value remains the same, or slightly changes, except
for the Amazon dataset. A possible justification is due to the fact
that this dataset has a high number of classes, 50. When the size of
the training set increases (smaller testing set), the built model has
a better performance and because of this, the CSS needed to also
achieve that performance, will become larger.

The results for all datasets, except Amazon, shows that what was
stated in Section 3.2 may be true for most cases, i.e. the CSS for a
specific dataset is independent on the used splitting ratio. Although
sometimes the difference between the minimum and maximum
CSS values is large (Ads and Hapt dataset), the values obtained in
the 30 runs follow a seemingly normal distribution and so, it is
possible to determine with more certainty the expected value for
the CSS. Moreover, this normal distribution is more evident when
using themk(+r ) method while in the random sampling method,
this is not so noticeable. In the Ads dataset, the big difference of
minimum and maximum values may be due to a great unbalance
of the classes that it presents. Still on this dataset, despite the big
difference, 9 times, that is, almost a third of the 30 runs, the CSS
value is between 250 and 300 (see Figure 1).

Figure 1: Dataset: Ads, Sampling Method:mk + r , Perf. Mea-
sure: Accuracy, Test Set: 70%

Figure 2 shows how the accuracy improves as the CSS increases.
Each vertical bar represents the mean accuracy (point) plus or mi-
nus the standard deviation (whiskers) obtained, when the learning
machine was trained with the corresponding CSS. The “baseline”
indicates the obtained accuracy, averaged over 30 runs, when the
learning machine was trained with 70% of the dataset and the “stop
condition” line corresponds to the previously defined threshold T .

The stop condition line is first crossed when the CSS is 170
but as it increases, the mean value (point) becomes closer to this
line. Despite the small improvement of the accuracy when the CSS
increases from 170 up to 290, the overall performance of themachine
is increased tremendously. When the value of the CSS reaches 330,
an improvement in accuracy is more noticeable. This reinforces
what were previously stated that the most frequent values for the
CSS was between 250 and 300.

Figure 2: Dataset: Ads, Sampling Method:mk + r , Perf. Mea-
sure: Accuracy, Test Set: 70%

For the Amazon dataset and Isolet dataset, the sampling method
that obtained better results (i.e. minimum value for the CSS) for
most of the times was r . This may be due the fact that these data
sets have few samples per class, thus making the probability of
selecting samples from various class, higher. Because of this, the
number of samples needed to build a good model will be smaller,
and so the r method can be sufficient to obtain good results. Also
for the Amazon dataset the results using themk method were very
similar to the ones using the r method. The remaining datasets ob-
tained better results, most of the times, when using themk method,
demonstrating this way that can be more efficient method than r .
Furthermore, as can be seen, themk + r method always presents
values higher than themk , due to the d samples that complemented
it. Since the performance achieved by both methods are quite close,
once again, themk method appears to be the best option.

This suggests that the mk method could be used in the pre-
processing step of the method proposed in [1], instead of using the
random sampling that is made, in order to better select samples that
will define the decision boundary of SVM. Also, it can be applied to
any other type of problems, as it is independent of the used learning



Finding the Critical Sampling of Big Datasets CF’17, May 15-17, 2017, Siena, Italy

Table 3: Minimum-Maximum Critical Sample Size percentages relative to the total size of the Ads dataset

Sampling Method mk + r mk r

Perf. Measure Accuracy F-score Accuracy F-score Accuracy F-score
Test Set: 70% 2.74%-11.28% 2.74%-18.60% 2.44%-12.20% 2.44%-15.86% 3.66%-13.42% 4.88%-15.86%
Test Set: 50% 3.96%-13.72% 5.18%-23.48% 3.66%-12.20% 4.88%-21.96% 3.66%-17.08% 4.88%-23.18%
Test Set: 30% 2.74%-17.38% 5.18%-24.70% 2.44%-12.20% 3.66%-24.40% 3.66%-13.42% 4.88%-30.50%

Table 4: Minimum-Maximum Critical Sample Size percentages relative to the total size of the Amazon dataset

Sampling Method mk + r mk r

Perf. Measure Accuracy F-score Accuracy F-score Accuracy F-score
Test Set: 70% 17.47%-20.80% 17.47%-20.80% 16.67%-23.33% 16.67%-23.33% 16.67%-20.00% 16.67%-23.33%
Test Set: 50% 24.13%-30.80% 24.13%-30.80% 23.33%-30.00% 23.33%-30.00% 23.33%-30.00% 23.33%-30.00%
Test Set: 30% 30.80%-37.47% 30.80%-44.13% 26.67%-40.00% 30.00%-40.00% 26.67%-33.33% 30.00%-40.00%

Table 5: Minimum-Maximum Critical Sample Size percentages relative to the total size of the Credit dataset

Sampling Method mk + r mk r

Perf. Measure Accuracy F-score Accuracy F-score Accuracy F-score
Test Set: 70% 2.25%-7.25% 1.25%-6.25% 2.00%-6.00% 1.00%-7.00% 2.00%-8.00% 2.00%-6.00%
Test Set: 50% 2.25%-6.25% 1.25%-6.25% 2.00%-7.00% 1.00%-7.00% 2.00%-6.00% 1.00%-9.00%
Test Set: 30% 2.25%-7.25% 1.25%-6.25% 2.00%-11.00% 1.00%-8.00% 3.00%-7.00% 2.00%-11.00%

Table 6: Minimum-Maximum Critical Sample Size percentages relative to the total size of the Hapt dataset

Sampling Method mk + r mk r

Perf. Measure Accuracy F-score Accuracy F-score Accuracy F-score
Test Set: 70% 6.86%-12.35% 3.57%-14.55% 5.49%-9.88% 4.39%-10.98% 5.49%-12.08% 7.69%-23.06%
Test Set: 50% 6.86%-12.35% 4.67%-12.35% 6.59%-17.57% 4.39%-14.27% 6.59%-17.57% 6.59%-29.65%
Test Set: 30% 6.86%-17.84% 4.67%-12.35% 6.59%-16.47% 4.39%-16.47% 6.59%-15.37% 5.49%-25.25%

Table 7: Minimum-Maximum Critical Sample Size percentages relative to the total size of the Isolet dataset

Sampling Method mk + r mk r

Perf. Measure Accuracy F-score Accuracy F-score Accuracy F-score
Test Set: 70% 11.25%-18.25% 12.25%-15.25% 12.00%-20.01% 10.00%-17.01% 10.00%-15.01% 11.00%-14.01%
Test Set: 50% 12.25%-20.25% 11.25%-19.25% 12.00%-22.01% 13.01%-20.01% 12.00%-18.01% 12.00%-18.01%
Test Set: 30% 12.25%-22.25% 12.25%-23.25% 13.01%-23.01% 13.01%-24.01% 11.00%-20.01% 11.00%-21.01%

machine. However, it is important to note that the threshold value
T will need to be defined on the basis of prior knowledge of the
problem under study, since for big datasets it will be intractable to
compute the baseline.

In addition, there was a noticeable reduction in size for each
dataset, reinforcing the hypothesis of this investigation which states
that heuristic methods can find practically useful CSS for datasets.

5 CONCLUSIONS
In this research an empirical study on big data sets was conducted
to assess if each dataset possesses a Critical Sampling Size. In data

mining, big datasets are often used, and building good models for
knowledge discovery could be very expensive (i.e. resources and
time consumption) because the sheer size of the used datasets.
Finding the CSS, therefore may significantly reduce the cost on
data mining while maintaining the desirable performance.

In the proposed approach several classifiers as well as three sam-
pling methods for the heuristic were used, in order to analyze their
effects on the results. The importance of the heuristic parameters
has also been described and that their values must be carefully
considered to better adapt to the nature of the problem.
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The preliminary experiments completed so far have shown the
existence of an apparent CSS for each dataset; note that we use
the term “apparent” here since finding the exact CSS is highly
intractable, hence whatever sampling generated by the heuristic
methods would be an approximated CSS at best. In addition, the
CSS of the datasets are demonstrated to be considerably smaller
than their initial size. These results seem to validate our assumption
that since it is possible to find the (apparent) CFD of a dataset using
simple heuristic methods, it is likely that such methods will prove
practicable in finding the dataset’s (apparent) CSS.

In order to fully validate these results, more experiments will
need to be conducted. These experiments will focus on the param-
eters of the implemented heuristic as well as the use of new and
bigger datasets. Furthermore, the way that the selection of samples
from each cluster is made, when usingmk(+r ) method, may try to
be improved. For instance, try to get more samples from each class,
instead the picking being done randomly; consider the density or
the distance from the centroid of the clusters. As for the way in
which k is defined, in the first step of the heuristic 2.1, it can be
improved by using techniques such as the “elbow point” technique
or the silhouette method. In the end, these modifications to the
mk(+r ) method may show more significant improvements over
random sampling.

As cloud computing is evolving into a mature technology, the
rapidly proliferating IoT devices, on top of the existing IT infras-
tructure, are generating big data at unprecedented rates and driving
up data-related costs for organizations and enterprises, prompting
managers to demand higher ROI for analytics [5]. With datasets
getting increasingly larger, and the emerging “data on demand”
services, the sampling problem will become more and more impor-
tant, and effective heuristic methods for composing high-quality
or “critical” samples will prove increasingly useful in practical de-
velopments that involve analytics or data mining. It is hoped that
the heuristic method studied in this paper, once refined and fully
validated, will provide a cost-effective tool for data sampling in
analytics and data mining tasks.
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