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It is known that – assuming the axiom of choice – for subsets � of � the following hold: (a) � is compact iff
it is sequentially compact, (b) � is complete iff it is closed in �, (c) � is a sequential space. We will show
that these assertions are not provable in the absence of the axiom of choice, and that they are equivalent to each
other.

0 Introduction

There are many topological results in Zermelo-Fraenkel set theory including the axiom of choice (ZFC) that are
not true in the absence of choice, i. e. in ZF. Even if we restrict our attention to �� many “familiar” topological
results are not provable in ZF, although in most cases their validity follows from a weaker version of the axiom
of choice, CC(�).

Definition 0.1 The axiom of countable choice (CC) states that every countable family of non-empty sets has
a choice function.

Definition 0.2 CC(�) is the axiom of countable choice restricted to families of sets of real numbers.

Under CC(� ), it is known to be true that “a subspace of � is compact if and only if it is sequentially compact”
(see [4, p. 128]). In this paper, we will investigate under which conditions this equivalence remains valid and we
will exhibit a list of equivalent conditions to this one. In [4], Felscher has a partial answer to this question by
saying that CC(�) is equivalent to this condition together with the idempotence of the sequential closure in � .
We will see that CC(� ) is not necessary to prove the equivalence between compact and sequentially compact
subspaces of � , after proving it from a weaker form of choice. The equivalence is not provable in ZF, once that
implies that “every Dedekind-finite subset of � is finite”, known to be not provable in ZF (basic Cohen model).

We call a set finite if it is either empty or equipollent to a natural number. Otherwise the set is infinite.

Definition 0.3 A set � is Dedekind-finite if no proper subset of � is equipollent to � . Otherwise � is
Dedekind-infinite.

Proposition 0.4 A set � is Dedekind-infinite if and only if it has a countable subset �i. e., there is an injection
from � to � �.

Throughout this paper we work in ZF, the Zermelo-Fraenkel set theory without axiom of choice.

1 Compactness

The definition of compactness we will use here is usually called Heine-Borel compactness.
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Definition 1.1 A topological space � is compact if every open cover of � has a finite subcover.

Theorem 1.2 (Heine-Borel Theorem) A subset of � is compact if and only if it is closed and bounded.

Note that this is a Theorem of ZF. With a small change the usual proof remains valid. See for instance [14,
Example 2, p. 83]).

Definition 1.3 A topological space � is sequentially compact if every sequence in � has a convergent sub-
sequence.

Proposition 1.4 Every first countable, compact space is sequentially compact.

In [14, Theorem 7.1.3] it is proved that every first countable, (countably) compact space is sequentially com-
pact. With a slight modification, that proof is valid in ZF.

Under the assumption of CC(�), these two notions of compactness are equivalent for subsets of � . The
equivalence does not remain true in ZF (see [9, Form 74]). This fact was pointed out by T. J. Jech in [10, p. 24].
For pseudometric spaces – and for second countable spaces – sequential compactness and compactness coincide
if and only if CC holds (see [1]).

Proposition 1.5 ([13, p. 712]) The family of all non-empty closed subsets of the real line has a choice func-
tion.

This Proposition is a special case of Proposition 1(iv) in [12].

Definition 1.6 A topological space is separable if it contains an at most countable dense subset.

From Proposition 1.4 we deduce the following

Corollary 1.7

(a) Every closed subset of � is separable.

(b) Every compact subspace of � is separable.

P r o o f.
(a) Let � �� � be a closed subset of the reals and define the family

� �� ���� �� � � � �� � � � and ��� �� � � �� ��

of non-empty closed subsets of � . Let � be the choice function of Proposition 1.4. The set ����� � � � �� is
countable and dense in �.

(b) Follows from (a) and Theorem 1.2.

Theorem 1.8 If every sequentially compact subspace of � is compact, then every infinite subset of � is
Dedekind-infinite.

P r o o f. Assume � is an infinite, Dedekind-finite subset of � . Clearly � is sequentially compact but not
separable, thus, by Corollary 1.7(b), � is not compact.

See also T. J. Jech [10, Corollary 10.4].

Proposition 1.9 For subspaces � of � the following conditions are equivalent:

(i) � is sequentially compact if and only if � is compact;

(ii) if � is sequentially compact, then � is closed;

(iii) if � is sequentially compact, then � is bounded.

P r o o f. Since compact, i.e. closed and bounded (Theorem 1.2), implies sequentially compact (Proposition
1.4), it is clear that (i) is equivalent to the conditions (ii) and (iii) together. So, it is enough to prove the equivalence
between (ii) and (iii).

(ii)�(iii). Let � be a sequentially compact, unbounded subspace of � . We need to show that there is a
sequentially compact, not closed subspace of � . There is an homeomorphism � � � �	 ��� �� between the reals
and the open interval ��� ��. The set ���� is also sequentially compact, but since � is unbounded either � or �
belongs to the closure of ����.
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(iii)�(ii). Let now � be a sequentially compact, not closed subspace of � and � a point in the closure of
� but not in �. Without loss of generality we assume that � is an accumulation point from the left. The set
� �� ��
� �� � � is sequentially compact. There is an increasing homeomorphism 	 � ��
� �� �	 � . We
have that 	��� is sequentially compact but it is unbounded because � is in the closure of �.

2 Completeness

Another interesting question, in this context, is the following: Under which conditions do the complete and the
closed subspaces of � coincide ? We will compare this property and the equivalence between the sequentially
compact and the compact subspaces of � .

Definition 2.1 A metric space � is complete if every Cauchy sequence in � converges.

Definition 2.2 Let � be a subspace of a topological space � . The sequential closure of � in � is defined by


���� �� �� � � � ������ � ��� ����� converges to ����

Using a similar notation, the (usual) Kuratowski closure of � in � is denoted by �����.

Proposition 2.3 Let � be a complete metric space. A subspace� of � is complete if and only if 
� ��� � �.

Corollary 2.4 If � is a closed subspace of a complete metric space, then it is complete.

Lemma 2.5 A bounded subspace of � is sequentially compact if and only if it is complete.

P r o o f. The fact that a sequentially compact space is complete is always true. For the reverse implication, let
� be a bounded subset of � and 
���� � � (� is complete). Since � is bounded, ���� is bounded and hence
compact. By Proposition 1.4, ���� is sequentially compact. So, every sequence ��� in � has a subsequence
���

� converging to some � in ����. But since 
���� � �, we have that � � �.

Theorem 2.6 For subspaces � of � the following conditions are equivalent:

(i) � is complete if and only if � is closed;

(ii) if � is sequentially compact, then � is closed;

(iii) if � is complete, then � is separable;

(iv) if � is sequentially compact, then � is separable.

P r o o f.
(i)�(iii) and (ii)�(iv). By Corollary 1.7(a).
(i)�(ii) and (iii)�(iv). By the fact that sequential compactness implies completeness.
(ii)�(i). One implication is in Corollary 2.4 and the other implication follows from Lemma 2.5 and the

equalities ���� �
�
��� ������ �� � �� and 
��� �

�
��� 
����� �� � ��.

(iv)�(ii). Let � � � be a sequentially compact space. By (iv) there is � � ��� � � � �� such that
����� � �, and then ����� � �����. Let � be an element of ����� � �����. For every � � � we have:
��� �

�
� �� �

�
� � � �� �. Define ���� �� 	
��� � � � �� � ��� �

�
� �� �

�
��. The sequence ������� converges

to �. Since � is sequentially compact (and thus complete), by Proposition 2.3, 
���� � �, that is � � �.

Theorem 2.6 together with Theorem 1.8 and Proposition 1.9 show us that there are models of ZF with complete
not closed subspaces of � (basic Cohen model – � in [9]).

The next proposition will give us a better insight into the way these spaces may look like.

Theorem 2.7 If there is a complete, non-closed subspace of �, then there is a dense, complete, non-closed
subspace of � .
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P r o o f. Let � be a complete, non-closed subspace of � and suppose, without loss of generality, that � is
in ���� � � and it is an accumulation point from the right. Since � is countable, there is � � �� such that
��� �� ��� � � �. Otherwise, we could construct a sequence of rationals converging to �. Define �� �� ���� ���,
with �� �� ���� � �� and �� �� ���, and �� �� ��� �� � � �

�
������ � ��. The space �� is complete but

not closed. Some of the sets �� � � might be empty but infinitely many of them that are not. This just means
that the set � defined by � �� �� � � � �� � � �� �� has the same cardinal as �. Let us consider the base
������� of � consisting of open intervals ���� ������� with rational endpoints. For each � � � , there is a

bijection �� � �� �	 ��� ��� defined by ����� �� � �
�� � �
�� � ��

�� � ���. Now, we can define � � �� �	 �

by ���� �� ����� if � � ��. The function is well-defined because the ��’s are disjoint. The space � �� �����
is the intended space. It is dense in � since, for every � � � , �� � � � ����� � �� �� �. It is not closed
because � � � � �, since � sends irrationals to irrationals. It remains to be shown that � is complete.

Let ���� be a Cauchy sequence in� and define� � � �	 � by ���� �� 	
��� � � � ��������� � �� �� ��.
Since ����� is bijective, the set ��������� � ����� is singular. The single elements of these sets define a sequence
��� in ��. By Lemma 2.5, �� is sequentially compact. Consequently ��� has a subsequence ���

� converging
to  � ��. This subsequence only meets finitely many ��’s, otherwise it would converge to � �� ��, which
implies that the subsequence is eventually in �� � �� for a fixed � � � and with  � �� � ��. The continuity
of �� implies the convergence ����

� to ��� in �. The convergence of a subsequence of the Cauchy sequence
���� implies that it has to converge to the same point as well.

Remark 2.8

(a) The sets � and � �� of the above proof are both uncountable.

(b) In [2], N. Brunner had shown that, if there is an infinite, Dedekind-finite subset of � , then there is a dense,
Dedekind-finite subset of � .

Definition 2.9 A topological space is

(a) a sequential space if, for � � � , 
� ��� � � if and only if ����� � �;

(b) a Fréchet-Urysohn space if, for � � � , ����� � 
� ���.

Theorem 2.10 � is a sequential space if and only if every complete subspace of � is closed.

P r o o f. This follows directly from Proposition 2.3.

Theorem 2.11 ([4, p. 124]) � is a Fréchet-Urysohn space if and only if CC(�) holds.

Now, after Theorems 2.6, 2.10 and 2.11, it is easier to understand Felscher’s result (see Introduction). It is
a consequence from the fact that � is a Fréchet-Urysohn space if and only if � is a sequential space and 
� is
idempotent.

3 Weak forms of choice

In this section we will see that a “very” weak form of choice, �-CC(�), implies that � is a sequential space.
Moreover, this form of choice is independent from CC(�) (Feferman/Levi model – � in [9]).

Definition 3.1 ([11]) �-AC(�) states that for every family ������� of non-empty sets of real numbers, there
is a family ������� of non-empty at most countable sets with �� � �� for each � � � .

Definition 3.2 �-CC(�) is �-AC(�) restricted to countable families, and WO-CC(�) is �-CC(�) replacing
“at most countable sets” for “well-orderable sets”.

Theorem 3.3 If WO-CC(�) holds, then � is a sequential space.

P r o o f. Let � � 
���� be a sequentially closed subset of � and let � � �����. Define the sets
�� �� �� � �

�
� � � �

�
� � �. For each � � � , the set �� is not empty and sequentially closed. By WO-

CC(�) there is a family ������� of non-empty well-orderable sets such that, for each � � � , �� � ��. Since
each �� can have a well-order, 
����� � ������ � 
����� � ��. The elements �� �� 	
� ������ belong
to �� � � for each � � � , and the sequence ���� converges to �. This means that � is the limit of a sequence
in �, and so � � 
���� � �.
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Following the proof of Theorem 3.3, it is not difficult to prove that “� is a sequential space” is also equivalent
to a choice principle.

Proposition 3.4 The following conditions are equivalent:

(i) � is a sequential space;

(ii) the axiom of �countable� choice restricted to families of sequentially closed �� complete� subspaces of �.

Theorem 3.5 If � can be expressed as a well-ordered union of countable sets, then �-AC(�) does hold.

P r o o f. Let � be the well-ordered union of countable sets, � �
�
��� ��, where each �� is countable and

����� is a well-ordered set. Consider now a subset � of �. The set � is equal to
�
��� �� � �. Define

� �� 	
��� � � � �� � � �� ��; the set �	 � � is at most countable. This process can be done for infinitely
many sets at the same time, which concludes the proof.

Corollary 3.6 If � is the countable union of countable sets, then �-CC(�) does hold.

The assumptions of the last two statments may seem very similar. But, they have a very different set-theoretic
status. The first one is valid in ZFC, in fact can be proved from the axiom of choice for sets of reals, and the
second implies the faillure of the axiom of choice.

A. Church [3] proved that CC(�) implies that the first uncountable ordinal is not the limit of a sequence of
countable ordinals, which implies that � is not the countable union of countable sets (see [10, p. 148]).

In the Feferman/Levi model, � is the countable union of countable sets and then �-CC(�) holds in this model
but CC(�) not.

After these considerations, the next Corollary is clear.

Corollary 3.7 If � is the countable union of countable sets, then the axiom of countable choice restricted to
families of countable sets of reals does not hold.

There is a different proof to this fact in [8].

4 Lindelöf spaces

It is known that in ZFC every subspace of � is Lindelöf. H. Herrlich and G. E. Strecker ([7]) proved that this fact
is equivalent to CC(�). The question that triggered the investigation of this section was to find out under which
conditions there are non-Lindelöf, sequentially compact subspaces of � .

Definition 4.1 A topological space � is Lindelöf if every open cover of � has an at most countable subcover.

Theorem 4.2 Every unbounded, Lindelöf subspace of � contains an unbounded sequence.

P r o o f. Let � be an unbounded, Lindelöf subspace of � . Without loss of generality, consider � with no
upper bound. Define the cover � �� ���
� � � � �  � �� of �. It is a cover because � has no upper bound.
But � is Lindelöf, so there is a countable subcover ���
� �� � � � � � � and � � �� of � . The �’s are
uniquely determined by the sets, since if  � �, then  � ��
� �� � � and  �� ��
� � � �. The sequence
��� is the desired sequence.

Remark 4.3 The condition “every unbounded subset of � contains an unbounded sequence” is equivalent to
CC(�) (see [7]).

Theorem 4.4 ([6]) The negation of CC (�) is equivalent to the statement that for subspaces of � the proper-
ties compact and Lindelöf coincide.

In [6] this result is extended to ��-spaces (Theorem 2.1).

Corollary 4.5 Every Lindelöf subspace of � is separable.

P r o o f. If CC(�) holds then every subspace of � is separable. In the case of the failure of CC(�), by
Theorem 4.3 every Lindelöf subspace of � is compact, hence separable by Corollary 1.7(b).

Although, in ZF, we can prove it for sets of reals, it is not provable that every Lindelöf metric space is separable
([5]). For pseudometric spaces the statement is equivalent to CC ([1]).
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Corollary 4.6 Every sequentially compact, Lindelöf subspace of � is compact.

P r o o f. If CC(�) holds, then compact coincides with sequentially compact, and if CC(�) fails, compact
coincides with Lindelöf.

Corollary 4.7 For subspaces � of � , the following conditions are equivalent:
(i) If � is sequentially compact, then � is compact;

(ii) if � is sequentially compact, then � is Lindelöf.

P r o o f. (i)�(ii) is obvious, and (ii)�(i) follows directly from Corollary 4.6.

Remark 4.8 The condition “complete implies Lindelöf” is equivalent to CC(�). This is easily deduced from
the fact that � is complete and � is Lindelöf if and only if CC(�) holds. This last fact is in [7].

5 Summary

Here is a list of conditions that are equivalent to each other. They follow from WO-CC(�) and they imply
the equivalence between finitness and Dedekind-finitness for subsets of � . I do not know if one of the reverse
implications is true.

� � � � is sequentially compact iff it is compact.

� If � � � is sequentially compact, then it is closed.

� If � � � is sequentially compact, then it is bounded.

� � � � is complete iff it is closed.

� If � � � is complete, then it is separable.

� If � � � is sequentially compact, then it is separable.

� If � � � is complete and ���� � �, then � � �.

� � is a sequential space.

� The axiom of (countable) choice restricted to families of complete subspaces of � .

� If � � � is sequentially compact, then it is Lindelöf.
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