
The Determination of the Path with Minimum-Cost
Norm Value*

José M. P. Paixão
Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal

Ernesto de Queirós Vieira Martins,† Mário S. Rosa, and José Luis E. Santos
Departamento de Matemática, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, Apartado
3008, 3001-454 Coimbra, Portugal

The multiobjective shortest path problem (MSPP) con-
sists of finding the best nondominated path linking two
specified nodes in a network where k > 1 different cri-
teria are considered for the arc costs. Solving the MSPP
implies determining all the nondominated paths; there
may be many such paths, making the selection process
a very hard task to accomplish. A traditional way of
dealing with such a difficulty is using a utility function
where the parameters are aggregated with different
weights. In this work, an alternative utility function based
on the norm value associated with each path is consid-
ered. Two algorithms for solving the minimum-cost
norm path problem are then proposed and some com-
putational results are presented. © 2003 Wiley Periodicals,
Inc.

Keywords: dominance relation; multiobjective shortest path;
ranking paths

1. INTRODUCTION

The shortest path problem (SPP) is a well-known net-
work optimization problem where one aims to determine the
path that minimizes the sum of the arc weights (distance,
cost, time, . . .). The SPP was initially proposed in the late
1950s [1, 18] and, since then, has been studied by many

researchers (see [9, 10] for extensive bibliographies on the
SPP).

Sometimes, a multiobjective formulation is needed, in
which several parameters are associated with each arc,
allowing the possibility of incorporating various criteria.
The objectives can be defined as cost, distance, time, reli-
ability [12], accessibility [7], capacity [17], and others. For
a review of the multiobjective shortest path problem
(MSPP), the interested reader is referred to [6].

Therefore, one intends to determine a path that mini-
mizes simultaneously all the criteria under consideration.
Usually, there is a conflict among the different criteria and
such an ideal solution does not exist. The resolution of the
MSPP turns into finding nondominated paths, that is, paths
for which there is no other path with better values for all the
criteria. The well-known labeling algorithm used for solv-
ing the SPP can be easily extended to the MSPP, allowing
the determination of the full set of nondominated paths [3,
4, 11, 12, 14, 20].

The MSPP may become hard to solve due to the ambi-
guity associated with the characterization of the optimal
path. Hansen [12] proved that this problem is intractable
because the number of nondominated solutions may in-
crease exponentially with the number of nodes in the net-
work. Taking into account this fact, several methods have
been developed to select a “satisfactory” nondominated path
for a specific instance. These methods include interactive
procedures [5, 8], utility functions [13, 19], and approxima-
tion methods [21].

A usual expression for the utility function is a weighted
sum of the criteria, but it only allows us to determine
supported nondominated solutions for the MSPP, that is, the
extreme points of the convex hull of the set of feasible
solutions for the MSPP. In this work, we propose a different
expression based on the Euclidean norm of the cost for the
MSPP (which also allows searching for unsupported non-
dominated solutions). In fact, the ideal solution would min-

* Dedication: The paper is dedicated to Professor Ernesto Martins. His
main work on multiobjective and ranking shortest paths problems consti-
tute an important foundation for the results reported in the paper and still
is a precious inspiration for our research.
† Deceased on November 8, 2000
Received October 2001; accepted March 2003
Correspondence to: J. L. E. Santos; e-mail: zeluis@mat.uc.pt
Contract grant sponsors: CMUC (Centro de Matemática da Universidade
de Coimbra); CISUC (Centro de Informática e Sistemas da Universidade
de Coimbra); CIO/UL (Centro de Investigação Operacional da Univer-
sidade de Lisboa)

© 2003 Wiley Periodicals, Inc.

NETWORKS, Vol. 41(4), 184–196 2003

imize each one of the criteria, and if that solution exists, it
will be the one closest to 0�k (the zero vector in �k), which
means that it will be the solution with a minimum-cost norm
value.

For random instances, it happens, in general, that there is
not a significant difference between the solutions produced
by the weighted sum and minimum norm procedures. Ac-
tually, they coincide very often. Nevertheless, instances
may be identified where one may have a relevant difference
between the solutions obtained by the two procedures. This
is exhibited by the example presented in Figure 1 where (0,
10), (5.1, 5.1), and (10, 0) correspond to the values of the
nondominated paths from node s to node t in the network.
The weighted sum method will choose the first or the last
solution, depending on the weights associated with each
criterion. However, the solution with cost (5.1, 5.1) happens
to be the one closest to 0�2 but it will never be chosen by
this method, regardless of the weights.

In this paper, we will address the problem of finding the
path with a minimum-cost norm value and present two
algorithms for solving it. One of the algorithms is based on
the determination of the nondominated paths for the MSPP
and the other is based on a ranking shortest path procedure.
An example is shown and some computational experience is
reported.

2. THE MSPP AND RELATED PROBLEMS

Let � � (�, �, c) denote a network, where � �
{1, . . . , n} is the set of nodes and � � � � � is the set
of arcs; therefore, each arc is identified with a pair (i, j)
with i, j � �. The cost function is of the form c : � 3
(�0

�)k, with c(i, j) � ci,j � (ci, j
1 , . . . , ci, j

k), where k is the
number of parameters (criteria) associated with each arc.

A path p between two nodes i, j � � is an alternating
sequence of nodes and arcs of the form p � �i � v0, a1,
v1, . . . , al, vl � j�, with vr � �, r � 0, . . . , l, and ar

� (vr�1, vr) � �, r � 1, . . . , l. For simplicity, it can
also be denoted by p � �v0, v1, . . . , vl� and, by conven-
tion, p � �v0� is assumed when l � 0. The set of paths
from i to j, i, j � �, is denoted by �i, j. The set of all paths
that can be defined in the network is denoted by ��, that is,
�� � �i, j�� �i, j.

Now, let us define the concept of concatenation of two
paths, which will be used throughout this paper:

Definition 1. Let p � �i,j and q � �j,l be two paths in the
network, that is, p � �v0, a1, v1, . . . , ah1

, vh1
�, with v0 � i

and vh1
� j, and q � �v�0, a�1, v�1, . . . , a�h2

, v�h2
�, with v�0 � j

and v�h2
� l. The concatenation of p and q is denoted by p

{ q and is defined by p { q � �v0, a1, v1, . . . , ah1
, vh1

� v�0,
a�1, v�1, . . . , a�h2

, v�h2
�.

It is important to mention that solving network optimi-
zation problems becomes an easy task whenever the follow-
ing principle holds [2, 15]:

Optimality principle: Every optimal path is formed
from optimal subpaths.

Note that if the optimality principle holds, then the
labeling algorithm [3] guarantees the determination of an
optimal solution.

Finally, let us point out that one looks for paths from an
initial node s to a terminal node t of � � (�, �, c), and
to simplify the notation, we will use � instead of �s,t to
denote the set of all paths from s to t.

2.1. The MSPP

This problem is defined on a network � � (�, �, c)
with a vector objective function f(p) � (f1(p), . . . ,
fk(p)), where fl(p) � ¥(i, j)�p ci, j

l , for l � {1, . . . , k}.
One aims to find the path from s to t that minimizes
(simultaneously) all the components of f over the set �.
However, as mentioned above, obtaining such a solution is
very unlikely and the most common situation is to seek a set
of nondominated or efficient paths formally defined as fol-
lows:

Definition 2. Let a � (a1, . . . , ak) and b � (b1, . . . , bk)
be two elements of �k. Then, a ��k b if and only if ai � bi,
for all i � {1, . . . , k}. If at least one of the inequalities is
strict (i.e., if a � b), then we say that a dominates b or that
b is dominated by a and we write a 	�k b.

Definition 3. Let p be a path from i to j. We say that p is
a dominated path if and only if f(q) 	�k f(p) for some q
� �i,j. Otherwise, p is a nondominated or efficient path.

The set of nondominated paths from i to j is denoted by
��i, j and only by �� when they are defined between s and t.
These paths are the optimal solutions for the problem

FIG. 1. Bicriteria instance and path cost representation in �2.

NETWORKS—2003 185

“min��
k{ f(q) : q � �},” where a generalized definition of

minimum is used, since, in this case, ��k is a partial order
relation.

Definition 4. Let A be a nonempty subset of �k and R an
order relation defined on A. An element m of A is a minimum
of A using the relation R (m � minR{v : v � A}) if and only
if there is no v � A such that v � m and v R m.

The MSPP satisfies the optimality principle which can be
stated, in this case, in the following way: Every nondomi-
nated path is formed from nondominated subpaths. Thus,
using a labeling algorithm [3, 11, 12, 14, 20], the nondomi-
nated solutions are easily obtained. Once these solutions
have been obtained, we need to choose which ones satisfy
the requirements of the specific instance. In this way, a
labeling algorithm can be used to do the initial selection of
paths from s to t, making easier the task of selecting a final
solution.

The determination of all nondominated paths becomes a
very hard task to accomplish when the number of such paths
is too high (although each nondominated path is easily
determined). Assuming that the determination of all the
nondominated paths is possible, one still faces the problem
of selecting the “best” final solution.

2.2. The Path with Minimum-cost Norm Value

Since we intend to minimize each one of the components
of the objective function, a natural selection for the “best”
solution will be picking the one which is “closer” to 0�k,
that is, the path with a minimum-cost norm value.

The problem of finding such a path is defined on a
network � � (�, �, c) by considering the objective
function fnorm : �� 3 �, fnorm(p) � � f(p)�, where f is
the objective function of the MSPP. Thus, one seeks the
path p*norm � � such that

fnorm
 p*norm� � � f
 p*norm��

� min�� f
q�� : q � �.
minNorm�

The following lemma allows us to reduce the solution
space for the (minNorm) problem:

Lemma 1. Let p be a path of �i,j. Then, �f(p)� �
min{�f(q)� : q � �i,j} if and only if p � ��i,j and �f(p)� �
min{�f(q)� : q � ��i,j}.

Proof. Since ��i, j � �i, j, we only need to prove that
the path with a minimum norm in �i, j is a nondominated
path. Thus, let p be a path of �i, j such that � f(p)� �
min{� f(q)� : q � �i, j} and assume that p � ��i, j. In this
case, there is a path q � �i, j such that f(q) 	�k f(p), that
is, fi(q) � fi(p), i � 1, . . . , k, where at least one of these
inequalities is strict. So, it is obvious that � f(q)� 	 � f(p)�,

which contradicts our assumption on p. Therefore, p must
be a nondominated path. ■

In general, the (minNorm) problem does not satisfy the
optimality principle, namely, the path with a minimum-cost
norm value from s to t(p*norm) may not be formed from
minimum-cost norm subpaths from s to each node j
� p*norm. This is illustrated by the example shown in Figure
2, where �1, 2, 4� is the optimal path with a minimum-cost
norm value from 1 to 4. However, the subpath �1, 2� is not
optimal from 1 to 2 since � f(�1, 2�)� � �10 � 2�2 �
� f(�1, 3, 2�)�.

We can say, in this example, that the order between the
values of the path �1, 2� and �1, 3, 2� was reversed by
concatenation with �2, 4�. As we will show next, this can
occur only for subpaths for which there is no dominance
relationship.

Lemma 2. Let a and b be two elements of (�0
�)k such that

�a� 	 �b�. Then, a ��k b if and only if �a � c� 	 �b � c�,
@c � (�0

�)k.

Proof. First, let us note that �a� 	 �b� implies that there
is at least one i � {1, . . . , k} such that ai 	 bi. Then, if
a ��k b, it is obvious that a 	�k b and for all c � (�0

�)k,
a � c 	�k b � c. Therefore, �a � c� 	 �b � c�.

On the other hand, if a ��k b, there is (at least) one j
� {1, . . . , k} such that aj � bj, and this allows us to
define the following vector c of (�0

�)k: cl � 0, @l
� {1, . . . , k}�{ j}, and

cj � 1 �
�b�2 � �a�2

2
aj � bj�
.

Thus,

cj �
�b�2 � �a�2

2
aj � bj�
,

that is, 2cj(aj � bj) � �b�2 � �a�2 and so ¥l�1
k 2cl(al

� bl) � �b�2 � �a�2. We conclude that �a � c� � �b � c�.
■

From this lemma, one obtains the following:

Corollary 1. Let a and b be two elements of (�0
�)k such

that a ��k b and �a� 	 �b�. Then, there is some c � (�0
�)k

such that �a � c� � �b � c�.

FIG. 2. A (minNorm) instance where the optimality principle is not
verified.

186 NETWORKS—2003

Finally, let us note that we are assuming that the units
among the objectives are equivalent. If that is not the case,
the cost for the arcs can be normalized as follows: c̃i, j

l �
ci, j

l /�l, where �l � min{ fl(p) : p � �}.

2.3. The Path with Minimum-cost Sum Value

We will be seen later, the algorithms described in Section
3 for solving the (minNorm) problem determine, as a first
step, a path p*sum � � such that

fsum
 p*sum� � �
l�1

k

fl
 p*sum�

� min� fsum
q� : q � �.
minSum�

As shown next, such a solution can be easily obtained by
solving an SPP in � (this satisfies the optimality principle
unless there is a cycle with negative cost).

Theorem 1. Let �� � (�, �, c�) be a network where c�i,j
� ¥l�1

k ci,j
l , @(i, j) � � and f�(p) � ¥(i,j)�p c�i,j, p � ���.

Then, the (minSum) problem on � and min{f�(p) : p � ��},
where �� is the set of paths from s to t in ��, are equivalent.

Proof. Since the underlying graph of the networks �
and �� is the same, then both networks have the same set of
paths, that is, �� � ��� (in particular, � � ��). Moreover,
since for p � ��, fsum(p) � ¥l�1

k ¥(i, j)�p ci, j
l � ¥(i, j)�p

c�i, j � f�(p), we conclude that both problems are
equivalent. ■

The value � f(p*sum)� is a good approximation to
� f(p*norm)� and the path p*sum may be considered as a good
initial solution for the (minNorm) problem. In Table 1, we
present some empirical results averaged over 50 instances
of each type. They show that, for random instances, p*norm

and p*sum do not differ much from each other, in terms of the
corresponding values. In fact, the last two columns of the
table show that the gap between the values of fnorm and fsum

for p*norm and p*sum is less than 0.5%.
Nevertheless, theoretically, the value of � f(p*sum)� may

be significantly different from � f(p*norm)�. The following
theorem provides variation bounds for � f(p*norm)� in terms
of f(p*sum).

Theorem 2. Let p*norm and p*sum be the optimal solution
for, respectively, the (minNorm) and (minSum) problems.
Then, ¥i�1

k fi(p*sum)/�k � �f(p*norm)� � �f(p*sum)�.

Proof. The inequality � f(p*norm)� � � f(p*sum)� is ob-
vious since p*norm is the optimal solution for (minNorm).

Now, let us consider the following problem:

min�� f
q�� : q � � and fsum
q� � �. (P1�)

By definition, p*norm is an optimal solution for (P1�) with
� � fsum(p*norm) and we can get a lower bound for (P1�)
by solving the following problem:

min ��
i�1

k

xi
2 (P1�)

s.t. �
i�1

k

xi � �. (P2�)

Using Lagrange multipliers, the optimal solution for
(P2�) is xi � �/k (i � 1, . . . , k) with optimal value ¥i�1

k

xi/�k � �/�k. Since the minimum value of � in (P1�) is
� � fsum(p*sum), then fsum(p*sum)/�k � � f(p*norm)�. ■

Corollary 2. �f(p*norm)� is at most �k times smaller than
�f(p*sum)�.

Proof. From the previous theorem, � f(p*norm)� 	
¥i�1

k fi(p*sum)/�k. Since we assume that fi(q) 	 0, @q
� �, @i � 1, . . . , k, then � f(p*sum)�2 � ¥i�1

k fi
2(p*sum)

� (¥i�1
k fi(p*sum))2, and this proves the corollary. ■

Therefore, the best theoretical improvement on
� f(p*sum)� is

TABLE 1. Comparison of optimal values of the (minnorm) and (minsum) problems.

Network p*norm p*sum %

Type ��� ��� k fnorm fsum fnorm fsum (a) (b)

Random 1000 5000 2 2704 3732 2708 3725 0.17 0.20
Random 1000 5000 5 4817 10,453 4824 10,443 0.15 0.10
Random 1000 5000 10 7014 21,402 7021 21,374 0.10 0.13

Grid 900 3480 2 25,696 36,204 25,795 36,097 0.38 0.29
Grid 900 3480 5 50,206 111,940 50,256 111,840 0.10 0.09
Grid 900 3480 10 77,472 244,497 77,626 244,332 0.20 0.07

(a) 100 � [(fnorm(p*
sum) � fnorm(p*

norm))/(fnorm(p*
sum))]; (b) 100 � [(fsum(p*

norm) � fsum(p*
sum))/(fsum(p*

norm))].

NETWORKS—2003 187

100�� f
 p*sum�� � � f
 p*norm��
� f
 p*sum�� �% � 100�1 �

1

�k�%.

This value increases with the number of objectives, being
approximately 30% in the biobjective case (k � 2).

3. ALGORITHMS

In this section, we describe the two algorithms proposed in
this work. Although both start with the determination of p*sum,
they use different strategies for solving the (minNorm) prob-
lem. One is based on the labeling algorithm for the MSPP and
the other one on a procedure to rank paths from s to t.

3.1. Labeling Algorithm

The labeling algorithm for the MSPP determines all the
nondominated paths. Thus, taking into account Lemma 1
(p*norm � ��), one possible algorithm for the (minNorm)
problem consists of the following two main steps:

1. Determine all the nondominated paths from s to t (��).
2. Choose from �� the path p*norm with minimum cost.

This process avoids the direct determination of p*norm,
which is harder to obtain because the (minNorm) problem
does not satisfy the optimality principle, but it turns out to
be inefficient when the number of nondominated paths is
large. The complexity of the labeling algorithm depends on
the number of nondominated paths, which is difficult to
estimate. Henig [13] proposed the expression # �� � log(#�)
as a rough estimate of that number in the biobjective case.
However, Hansen [12] showed that this number may grow
exponentially with the number of nodes.

The algorithm proposed in this section is an adaptation of
the labeling algorithm where the result stated by Corollary
1 is used to avoid the exhaustive determination of nondomi-
nated solutions. Recall that, by Corollary 1, if a and b are
two nondominated labels at a specific node with �a� 	 �b�,
then there exists c � (�0

�)k such that �a � c� � �b � c�.
However, that value for c may lead to a situation where �b
� c� is greater than an upper bound on the optimum value
given by the norm of a known path from s to t. In this case,
b is no longer considered in the searching procedure. In
short, the algorithm has the following scheme:

1. Determine the path p*sum and let
 � � f(p*sum)�.
2. Apply the labeling algorithm for the MSPP with an

optimality condition which allows us to keep a new
efficient label for a specific node, namely, suppose that a
is a label of the node j already found and b is a new
nondominated label of j created by the labeling algo-
rithm. Then, b must be kept if there is c � (�0

�)k such
that �a � c� � �b � c� and �b � c� 	
.

The condition referred to in the second step is described
in the following theorem:

Theorem 3. Let �*i(j), i � {1, . . . , k}, j � �, be the cost
of the shortest path from j to t when just the i-th cost
component of the arc is considered. Let a and b be two
nondominated labels of a node j � � such that �a � �*(j)�
	 �b � �*(j)� and let I � {i � {1, . . . , k} : bi 	 ai}. Then,
an optimal solution of the minimum-cost norm path problem
can be found from the label b of the node j if there is any S
� I such that �b � c� �
, where the components of c are
defined by

ci � �*i
 j�, if i � S; ci � �
ai � bi� � bi, if i � S

with

� �

�b � �*
 j��2 � �a � �*
 j��2

� 2 �
l�S

al � bl� �
bl � �*l
 j��

2 �
l�S

al � bl�
2

satisfying

� 	 maxl�S�bl � �*l
 j�

al � bl
�.

Proof. To simplify the proof of this theorem, let us
note that the path which minimizes � f(q)�, q � �, also
minimizes � f(q)�2 � ¥l�1

k (fl(q))2. Moreover, since b is a
label of j, then every label b � c of a path from s to t
satisfies �*(j) ��k c. Then, ci � �*i(j) � xi

2, i � 1, . . . ,
k, with x � �k. Let be a� � a � �*(j), b� � b � �*(j),
and x� with x�i � xi

2, i � 1, . . . , k; a � c and b � c will
be written as a� � x� and b� � x�, respectively. In this form,
we want to know if

min
x��k

��b� � x��2 : �b� � x��2 � �a� � x��2 �
2, (1)

where x� depends on x. The optimal solution of problem (1)
can be found using Lagrange multipliers. The restriction �b�
� x��2 � �a� � x��2 needs to be written in the form h� �
0, that is, h(x, y) � �b� � x��2 � y2 � �a� � x��2 � 0,
for y � �. The optimal solution of this problem is obtained
from the solutions of the following equations:

 xi

�b� � x��2 � �h
x, y�� � 4xi
b�i � xi

2�

� 4�xi
bi � ai� � 0, i � �1, . . . , k (2)

 y

�b� � x��2 � �h
x, y�� � 2�y � 0 (3)

�

�b� � x��2 � �h
x, y�� � h
x, y� � 0. (4)

188 NETWORKS—2003

From Eq. (3), we obtain � � 0 or y � 0. If � � 0, using
Eq. (2), we get xi � 0 or xi

2 � �b�i. As �b�i � 0; then, xi

� 0. However, x � 0�k does not satisfy Eq. (4). Thus, �
� 0 and then y � 0.

From Eq. (2), the conditions on the components of x are
xi � 0 or xi

2 � �b�i � �(bi � ai), i � 1, . . . , k.
Equation (4) now gives h(x, 0) � �b��2 � �a��2 � 2

¥l�1
k (bl � al) xl

2 � 0. Since h(0�k, 0) � �b��2 � �a��2

� 0, then x � 0�k does not satisfy this equation. We need
to know which components of x would be different from
zero in order to decrease the value of h(x, 0). Since the
value of xl

2 can only increase, we are only interested in the
components xl such that bl � al 	 0. Thus, let I be the set
{i � {1, . . . , k} : bi 	 ai}. From what we have ex-
plained, xi � 0, @i � I and xi � 0 or xi

2 � �(ai � bi)
� b�i, @i � I. Now, we consider a subset of indices S � I
and let xi

2 be �(ai � bi) � b�i only for i � S. To determine
the value of �, we substitute the expression for xi

2 into Eq.
(4) to obtain h(x, 0) � �b��2 � �a��2 � 2 ¥l�S (al

� bl)(�(al � bl) � b�l) � 0, that is,

� �

�b��2 � �a��2 � 2 �
l�S

al � bl�b�l

2 �
l�S

al � bl�
2 .

However, � is feasible if xi
2 � �(ai � bi) � b�i 	 0, i � S

or, in other words, if � 	 b�i/(ai � bi), @i � S. Therefore,
minx��k {�b� � x��2 : h(x, 0) � 0} is obtained at one of
these arrangements, so it is enough to verify if one of them
satisfies �b� � x�� �
. ■

The condition given by this theorem depends on the
labels a and b. In this work, we suggest keeping, for each
node j � �, the path with the minimum-cost norm among
all the paths from s to j already determined. The label of this
path will be the label a of the node j, decreasing, in this
way, the probability of keeping new labels for this node.
The complexity of this algorithm is, in the worst case, the
same as that of the labeling algorithm. Theorem 3 allows us
to avoid determining some nondominated labels, but it is
difficult to estimate how many labels can be discarded.
Algorithm 1 details the process described in this subsection.

3.2. Ranking Algorithm

Now, we propose another algorithm, based on a ranking
path procedure, to determine the minimum-cost norm path.
The paths are ranked by a nondecreasing order of fsum(p),
p � �. In this way, paths of the (minSum) problem are
ranked until we can guarantee that the optimal solution of
the (minNorm) problem has been found; see Algorithm 2.
As shown in [16], the complexity of this algorithm is �(m
log(n) � Kn), where K is the number of paths ranked
(unknown in advance).

From Table 1, we conclude that the optimal cost norm path
values of (minNorm) and of (minSum) are “closer” to each
other, in the general case. So, we should need to rank relatively
few paths in the (minSum) problem to obtain the desired
solution. As suggested by Figure 3, the cost of p*sum produces
a deep restriction in the region where the cost of the path p*norm

can be found. Theorem 4 establishes a relation between the
optimal paths p*sum and p*norm and gives a stopping condition to
finish ranking the paths in the (minSum) problem.

Algorithm 1: Labeling algorithm for the (minNorm)
problem

Input: a network (�, �, c) and s, t � �
Output: an optimal path p* for the (minNorm) problem

{X: set of labels that the algorithm
needs to analyze}
{node(x): node that corresponds to the
label x}
{path(x): path of � that originates the
label x}

Step 1: {initialization}
count 4 1; X 4 {count}; node(count) 4 s; path(count)
4 �s�
minNorm(s) 4 0; rotMin(s) 4 count;
 4 �f(p*sum)�
minNorm(i) 4 �, @i � ��{s}

Step 2: {shortest value per node and component}
�*

l(i) 4 cost of the shortest path from i to t
using only the l-th component, @i � � and @l
� {1, . . . , k}

Step 3: {adaptation of labeling algorithm}
if (X � A)
then goto step 8
else x 4 first label of X using the FIFO rule

X4 X�{x}; i4 node(x); Ai 4 {(i, j) : (i, j) � �}
Step 4: {for all arcs leaving node i}

if (Ai � A)
then goto step 3
else (i, j) 4 an element of Ai

Ai 4 Ai�{(i, j)}; q 4 path(x){�i, (i, j), j�
Step 5: {bounding test}

if (�f(q) � �*(j)� 	
)
then goto step 3
else if (�f(q)� 	 minNorm(j))

then goto step 6
else goto step 7;

Step 6: {new minNorm(j) value}
count 4 count � 1; X 4 X �
{count}; node(count) 4 j
path(count) 4 q; minNorm(j) 4
�f(q)�; rotMin(j) 4 count
Remove the labels of j dominated by f(q)
goto step 4;

Step 7: {optimality condition}
if f(q) does not satisfy the condition stated in Theorem 3

using the label rotMin(j)
then goto step 4
else count 4 count � 1; X 4 X �
{count}; node(count) 4 j

path(count) 4 q; Remove the labels of j
dominated by f(q)
goto step 4;

Step 8: {optimal solution of the (minNorm)
problem}
p* 4 path(rotMin(t))

NETWORKS—2003 189

Algorithm 2: Ranking algorithm for the (minNorm)
problem

Input: a network (�, �, c) and s, t � �
Output: an optimal path p* for the (minNorm) problem
Step 1: {initialization}

c�i,j 4 ¥l�1
k ci,j

l , @(i, j) � �
p 4 shortest path from s to t in (�, �, c�) {p 4 p*

sum}
p* 4 p;
 4 �f(p*)�

Step 2: {stopping condition}
if fsum(p) 	 �k

then STOP
else p 4 next shortest path from s to t in (�, �, c�)

if (�f(p)� 	
)
then p* 4 p;
 4 �f(p*)�;
goto step 2

Theorem 4. Let p*sum and p*norm be the optimal paths of the
(minSum) and (minNorm) problems, respectively. Then,
¥i�1

k fi(p*norm) � �k�f(p*sum)�, that is, fsum(p*norm)
� �kfnorm(p*sum).

Proof. First, let us consider the following problem:

max� fsum
q� : q � � and � f
q�� � �. (P3�)

By definition, fsum(p*norm) is less than or equal to the
value of an optimal solution for (P3�) with �
� � f(p*norm)�. We can get an upper bound for (P3�) by
solving the following problem:

max �
i�1

k

xi

s.t. �
i�1

k

xi
2 � �2.
P4��

Using again Lagrange multipliers, the optimal solution is
xi � �/�k (i � 1, . . . , k), and ¥i�1

k xi � �k� is the
optimal value. Then, an upper bound on fsum(p*norm) is
�k� f(p*norm)�. As � f(p*norm)� � � f(p*sum)�, we conclude
the proof of this theorem. ■

4. EXAMPLE

In this section, the example given in Figure 4 (with k
� 3) is used to illustrate the algorithms described in the
previous section.

4.1. Computing ��

As mentioned before, the (minNorm) problem can be
solved by determining the full set of nondominated paths
from s to t and then selecting the one with the least-cost
norm. Computing �� is easily done by using, for example, a
label-correcting algorithm [12], building up a tree with the
paths starting at s and leading to the other nodes of the
network.

Figure 5 shows how this procedure works for the given
example, generating a tree where the dotted branches mean
that the label of the corresponding path from s to, say, j is
dominated by some other label already computed for a path
linking s to the same node j. For this example, one finds
four nondominated paths, with �1, 2, 4, 6� being the one
with the minimum-cost norm while �1, 3, 4, 6� is the optimal
solution for the (minSum) problem. Let us point out that, for
this small example, a total of 14 labels were kept after
applying the dominance test.

4.2. Algorithm 1

This algorithm corresponds to an enhancement of the
labeling algorithm by incorporating the bounding test and
the optimality condition stated in Theorem 3. For that, one
needs to compute, as a first step, the values �*l(i), i � 1,
2, . . . , 6, l � 1, 2, 3, shown in Table 2. Also, p*sum is
determined and
 � � f(p*sum)� is used as an initial upper
bound on the optimal value for (minNorm).

The search tree starts from node 1, labeled (0, 0, 0),
generating the labels (5, 7, 4) and (5, 12, 0) for nodes 2 and
3, respectively. Following a FIFO rule, one looks now for an
expansion of the path �1, 2� creating a new label (12, 8, 4)
for node 3 and labeling, for the first time, node 4 with (11,
7, 8).

Note that, so far, the bounding test has not been effective
for any of the created labels. However, since there are two
labels for node 3, the optimality condition of Theorem 3 can
be applied taking a � f(�1, 3�) � (5, 12, 0) and b � f(�1,
2, 3�) � (12, 8, 4). Since �a � �*(3)� � �(10, 15, 3)� �FIG. 3. Relative positions of f(p*sum) and f(p*

norm).

FIG. 4. Instance used to illustrate the algorithms.

190 NETWORKS—2003

�334 	 �459 � �(17, 11, 7)� � �b � �*(3)�, one may
check if p*norm can be obtained from the path �1, 2, 3�.
According to Theorem 3, the array (5, 18.625, 3) is the
smallest value for c such that �b � c� � �a � c�. However,
�b � c� � �(17, 26.625, 7)� � �1046.89 will then be
greater than
, which discards the label as a potential
element for the construction of p*norm.

The next label to be chosen is f(�1, 3�) � (5, 12, 0),
which generates the labels (9, 15, 0) for node 4 and (10, 12,
4) for node 5. The former label is canceled by the bounding
test and the algorithm proceeds by looking for an expansion
of the path �1, 2, 4�. However, to illustrate the calculations
of the optimality condition, we can verify that label b �
f(�1, 3, 4�) � (9, 15, 0) does not satisfy it when compared
with label a � f(�1, 2, 4�) � (11, 7, 8). In fact, none of
the three vectors obtained from Theorem 3, c� � (22, 4, 3),
c� � (1, 4, 8.25), and c� � (�6.471, 4, 10.12), satisfy the
optimality condition.

The full search tree built by the algorithm for the exam-
ple is depicted in Figure 6. One can see that a total of six
labels were created and another five labels were computed
but ignored after performing the tests.

4.3. Algorithm 2

In this case, the algorithm corresponds to using the
optimality condition stated by Theorem 4 within the frame-
work of the ranking algorithm presented in [16]. More

precisely, the paths are ranked by increasing order of the
corresponding fsum value until one gets a path p � � such
that fsum(p) 	 �k
, where
 is the best value of fnorm

over the set of the computed paths.
In our example, the path q1 � p*sum � �1, 3, 4, 6� is the

first one to be produced by the algorithm with fsum(q1)
� 32 and
 � fnorm(q1) � �470. From q1, the algorithm
generates the following deviation paths: q2 � �1, 2, 4, 6�,
q3 � �1, 3, 5, 6�, and q4 � �1, 3, 4, 5, 6�. Among these,
q3 (fsum(q3) � 33) is selected as the second shortest path
and
 is updated to the value fnorm(q3) � �405.

Then, q5 � �1, 3, 5, 2, 4, 6� is a new deviation path
derived from q3 and the third shortest path is obtained from
the set {q2, q4, q5}, that is, q2 (fsum(q2) � 34) with
fnorm(q2) � �386, leading to a new updating of
. The
ranking procedure generates two deviation paths from q2:
q6 � �1, 2, 3, 4, 6� and q7 � �1, 2, 4, 5, 6�.

Now, the path q6 � �1, 2, 3, 4, 6� turns out to be the
fourth shortest path with fsum(q6) � 39 � �3�386,
meaning that the algorithm stops with p*norm � q2.

In this example, four paths were ranked and another three
deviation paths were identified, with the ranking condition
value being updated twice (see Fig. 7).

5. COMPUTATIONAL RESULTS

The algorithms were computationally tested on a set of
instances generated over two types of networks and consid-
ering three different distributions for the costs assigned to
the arcs. The computational experiments were carried out at
CISUC (University of Coimbra), using a 266-MHz Pentium
II biprocessor with 256 Mb of RAM.

The two types of networks considered for test instances
are the following:

● Random: A Hamiltonian cycle is first randomly generated
to guarantee connectivity of the graph. Then, the remain-

TABLE 2. Cost of the shortest path from i, i � �, to t � 6
for each criterion.

i 1 2 3 4 5 6

�*1(i) 10 7 5 1 2 0
�*2(i) 11 4 3 4 3 0
�*3(i) 3 3 3 3 2 0

FIG. 5. Tree produced by the label-correcting algorithm.

NETWORKS—2003 191

ing m � n arcs are randomly generated with multiple arcs
being excluded (n � ��� and m � ���).

● Grid: The nodes correspond to the points of a square mesh
with each one of them being linked to its nearest four
neighbors. The initial node, s � 1, is placed at the top-left
corner while the terminal node, t � n, is located at the
bottom right corner.

Recall from Table 1 that the optimal paths for fsum and
fnorm are very close to each other for instances with a
uniform distribution for the arc costs, regardless the type of
network. Hence, to try out instances with a larger gap
between those optimal values, two other distributions were
considered for the costs. In fact, as can be seen in Table 3,
which shows the average results obtained with 50 instances

of each type, the gap between the optimal paths for fsum and
fnorm significantly increases, for both types of networks,
when “circular” or “cubic” distributions are used.

Thus, the following three cost distributions were studied:

● Uniform: The costs are randomly generated from the set
{1, 2, . . . , 1000}.

● Cubic: For each arc (i, j), all but one of the components
of its cost are zero. The index of the nonzero element is
randomly chosen from the set {1, 2, . . . , k} and the
corresponding cost is made equal to an integer in the
interval [0.8 � 1000/i, 1.2 � 1000/i]. This means that
�ci,j� � 1000/i, @(i, j) � �, with a maximum deviation
of plus or minus 20%. The initial and the terminal nodes
are set equal to 1 and n, respectively.

● Circular: The cost components are randomly generated
but satisfy the condition �ci,j� � 1000/i, @(i, j) � �. As
in the previous case, s � 1 and t � n.

We note that the number of paths generated by the
ranking procedure is also significantly increased when the
“circular” and the “cubic” distributions are considered. This
is shown in Table 4, where, in particular, the number of
ranked paths for the grid networks with a “cubic” distribu-
tion becomes too high for computational purposes.

Tables 5–8 report computational results with the algo-
rithms for the different test instances. All tables contain
results based on the average CPU time (column sec) and the
average memory (column Mb) required by the algorithms
for solving 50 instances with the characteristics described in
the respective table. Also, the number of created labels
(column labels) is presented for the labeling algorithms,
while the number of deviation paths determined (column
paths) is exhibited for Algorithm 2—which corresponds, in
such a way, to the number of labels generated by the
labeling algorithms.

Table 5 compares the label-correcting algorithm with the
algorithms proposed here. It shows a drastic reduction in the
number of determined labels when using Algorithm 1. Also,

FIG. 6. Tree produced by Algorithm 1.

FIG. 7. Tree produced by Algorithm 2.

192 NETWORKS—2003

with the exception of grid networks with a “cubic” cost
distribution, one can see that the number of paths generated
by Algorithm 2 is usually smaller than is the number of
labels generated by the labeling algorithms. Also, Table 5
indicates that the networks with a “cubic” cost distribution
are the hardest to solve, due mainly to the large number of
nondominated paths.

Tables 6–8 refer to the computational experiments car-
ried out with the new algorithms for different size instances,
in terms of the number of nodes (n), the density (d), and the
number of criteria (k).

Table 6 reports on the results obtained when the number
of nodes increases for the two types of networks and the
different cost distributions, keeping d � 4 and k � 6. From

TABLE 3. Comparison of optimal value of the (minnorm) and (minsum) problems.

Network p*norm p*sum %

Type n m k fnorm fsum fnorm fsum (a) (b)

Circular

Random 1000 5000 2 207 288 207 288 0.00 0.00
Random 1000 5000 5 201 397 206 393 2.62 0.96
Random 1000 5000 10 198 426 204 414 2.78 2.90

Grid 900 3480 2 3232 4516 3262 4488 0.94 0.61
Grid 900 3480 5 2826 5741 2955 5586 4.36 2.70
Grid 900 3480 10 2639 7489 2774 7407 4.86 1.09

Cubic

Random 1000 5000 2 900 946 909 921 1.00 2.70
Random 1000 5000 5 886 915 889 906 0.33 0.96
Random 1000 5000 10 891 918 896 909 0.59 1.05

Grid 100 360 2 1138 1431 1211 1365 6.05 4.61
Grid 100 360 5 1014 1441 1085 1359 6.57 5.64
Grid 100 360 10 965 1378 1043 1357 7.55 1.46

(a) 100 � [(fnorm(p*
sum) � fnorm(p*

norm))/(fnorm(p*
sum))]; (b) 100 � [(fsum(p*

norm) � fsum(p*
sum))/(fsum(p*

norm))].

TABLE 4. No. paths ranked in the (minsum) problem to obtain the optimal solution of the (minnorm) problem.

Type n m k Uniform Circular Cubic

Random 1000 5000 2 2 9 134,803
Random 1000 5000 5 2 102,736 111,328
Random 1000 5000 10 3 71,604 66,785

Grid 900 3480 2 4 120 �106

Grid 900 3480 5 5 44,029 �106

Grid 900 3480 10 102 19,080 �106

TABLE 5. The labeling algorithm versus the new algorithms.

Labeling algorithm Algorithm 1 Algorithm 2

Cost distribution # �� Sec Mb Labels Sec Mb Labels Sec Mb Paths

Random networks with 100 nodes, 400 arcs, and 6 criteria

Uniform 12.84 0.00 0.64 1479.20 0.00 0.29 145.88 0.00 0.68 6.72
Circular 15.36 0.01 0.71 1697.32 0.00 0.29 150.50 0.00 0.27 18.58
Cubic — — — — 0.40 4.21 12,986.94 — — —

Grid networks with 49 nodes, 168 arcs, and 6 criteria

Uniform 328.08 0.01 0.87 2598.02 0.00 0.16 185.52 0.00 0.34 55.76
Circular 548.74 0.04 1.66 5185.34 0.00 0.17 209.84 0.01 0.47 902.36
Cubic 11,688.46 17.82 159.05 520,903.28 0.02 1.00 2917.18 105.03 79.01 215,421.1

NETWORKS—2003 193

this table, it is clear that the two algorithms are capable of
tackling very large size random networks when the costs for
the arcs are generated with a uniform or a circular distribu-
tion. In fact, all those instances were solved in less than 1
second of CPU time, with a slight superiority seen for
Algorithm 2. The same is observed for square grid networks
with uniform costs but with a much smaller number of
nodes.

Actually, n has to decrease even further when one con-
siders a cubic distribution for both types of networks, to
keep the same level of performance for the algorithms. In
this case, Algorithm 2 failed for most of the instances and
Algorithm 1 clearly becomes a more effective approach.

The two algorithms show the same kind of performance
when one increases the density (Table 7) or the number of
criteria (Table 8), keeping a fixed number of nodes for the
networks. However, with the exception of grid networks
with a uniform cost distribution, Algorithm 2 appears to be
more sensitive to changes in n, d, or k.

6. CONCLUSIONS

In this work, a utility function based on the Euclidean
norm was proposed for the MSPP, leading to finding the
path with a minimum-cost norm on a network, called the
(minNorm) problem. Two algorithms for solving the (min-

TABLE 6. Algorithm performance with n (d � 4, k � 6).

Random networks

Cost distribution n

10,000 20,000 30,000 40,000 50,000

Sec Mb Sec Mb Sec Mb Sec Mb Sec Mb

Uniform Algm 1 0.20 29.08 0.09 58.41 0.27 87.64 0.43 116.73 0.17 131.02
Algm 2 0.01 18.79 0.03 36.85 0.04 54.88 0.08 72.93 0.22 81.85

Circular Algm 1 0.06 30.90 0.08 61.83 0.31 92.95 0.42 125.01 0.37 144.19
Algm 2 0.04 18.11 0.03 36.16 0.09 55.91 0.13 72.15 0.29 81.23

n 100 200 300 400 500

Cubic Algm 1 0.49 4.21 1.07 15.08 1.51 68.69 — — — —
Algm 2 — — — — — — — — — —

Square grid networks

Cost distribution n 200 400 600 800 1000

Uniform Algm 1 0.01 1.33 0.09 5.94 0.22 15.23 0.20 28.17 0.85 64.81
Algm 2 0.00 0.65 0.01 1.13 0.04 1.61 0.07 2.07 0.02 2.55

n 20 40 60 80 100

Circular Algm 1 0.00 0.06 0.00 0.11 0.00 0.20 0.00 0.28 0.01 0.43
Algm 2 0.00 0.13 0.01 0.26 0.02 0.67 0.13 1.92 0.39 4.64

Cubic Algm 1 0.00 0.07 0.01 0.28 0.15 2.24 0.54 12.30 — —
Algm 2 0.02 0.43 1.29 11.48 — — — — — —

TABLE 7. Algorithm performance with d (k � 6).

Random networks

Cost distribution d

2 4 6 8 10

Sec Mb Sec Mb Sec Mb Sec Mb Sec Mb

Uniform Algm 1 0.14 53.84 0.34 87.64 0.46 120.31 0.25 152.41 0.41 184.36
(n � 30,000) Algm 2 0.02 35.49 0.03 54.88 0.09 74.84 0.12 94.91 0.16 115.01

Circular Algm 1 0.16 60.10 0.32 92.95 0.47 125.62 0.41 157.11 0.42 188.49
(n � 30,000) Algm 2 0.09 34.44 0.13 55.91 0.66 89.58 0.70 112.62 0.80 132.29

Cubic Algm 1 1.11 66.59 8.21 300.70 8.17 319.25 — — — —
(n � 300) Algm 2 — — — — — — — — — —

194 NETWORKS—2003

Norm) problem were presented and computationally tested.
One of the algorithms is based on the labeling algorithm for
the MSPP with an initial estimate for the optimal value
produced by the solution of the (minSum) problem, which
consists of determining the path with a minimum total sum
of the criteria values. This algorithm integrates an optimal-
ity condition that allows removing a very large number of
labels generated in the procedure (in general, about 95%).
The second algorithm described in this paper produces a
ranking of the paths until a stopping condition occurs. The
new algorithms were computationally tested for two types
of networks (random and grid) and three different distribu-
tions for the arc costs (uniform, circular, and cubic). The
two algorithms proved to be very efficient for networks with
a uniform or a circular distribution for the costs. The new
labeling algorithm is able to find, in less than 1 second of
CPU time, the optimal solution for most of the “cubic cost”
instances.

Acknowledgments

The authors would like to acknowledge the referees for
their relevant comments. In addition, the authors are grate-
ful to Prof. Douglas R. Shier for his help in improving the
readability and the presentation of the manuscript.

REFERENCES

[1] R.E. Bellman, On a routing problem, Q Appl Math 16
(1958), 87–90.

[2] R.E. Bellman and S.E. Dreyfus, Applied dynamic pro-
gramming, Princeton University Press, Princeton, NJ,
1962.

[3] J. Brumbaugh-Smith and D. Shier, An empirical investiga-
tion of some bicriterion shortest path algorithms, Eur J Oper
Res 43 (1989), 216–224.

[4] J.N. Clı́maco and E.Q. Martins, A bicriterion shortest path
algorithm, Eur J Oper Res 11 (1982), 399–404.

[5] J.M. Coutinho-Rodrigues, J.N. Clı́maco, and J.R. Current,
An interactive biobjective shortest-path approach: Search-
ing for unsupported nondominated solutions, Comput Oper
Res 26 (1999), 789–798.

[6] J. Current and M. Marsh, Multiple transportation network
design and routing problems: taxonomy and annotation, Eur
J Oper Res 65 (1993), 4–19.

[7] J.R. Current, C.S. ReVelle, and J.L. Cohon, The median
shortest path problem: A multiobjective approach to analyze
cost vs. accessibility in the design of transportation net-
works, Transport Sci 21 (1987), 188–197.

[8] J.R. Current, C.S. ReVelle, and J.L. Cohon, An interactive
approach to identify the best compromise solution for the
two objective shortest path problems, Comput Oper Res 17
(1990), 187–198.

[9] N. Deo and C. Pang, Shortest path algorithms: Taxonomy
and annotation, Networks 14 (1984), 275–323.

[10] B. Golden and T. Magnanti, Deterministic network optimi-
zation: A bibliography, Networks 7 (1977), 149–183.

[11] F. Guerriero and R. Musmanno, Label correcting methods
to solve multicriteria shortest path problems, J Optimiz
Theory App 111 (2001), 589–613.

[12] P. Hansen, “Bicriterion path problems,” Multiple criteria
decision making: Theory and application, G. Fandel and T.

TABLE 8. Algorithm performance with k (d � 4).

Random networks

Cost distribution k

3 4 6 8 10

Sec Mb Sec Mb Sec Mb Sec Mb Sec Mb

Uniform Algm 1 0.11 59.91 0.10 69.07 0.21 87.64 0.23 106.36 0.40 125.14
(n � 30,000) Algm 2 0.07 40.71 0.03 45.43 0.05 54.88 0.03 64.33 0.19 73.78

Circular Algm 1 0.09 61.29 0.11 71.81 0.24 92.95 0.38 113.99 0.29 134.76
(n � 30,000) Algm 2 0.11 40.35 0.08 44.93 0.09 55.51 0.16 64.04 1.43 93.33

Cubic Algm 1 0.03 1.31 7.88 4.83 85.16 31.73 — — — —
(n � 300) Algm 2 — — — — — — — — — —

Square grid networks

Cost distribution k

3 4 6 8 10

Sec Mb Sec Mb Sec Mb Sec Mb Sec Mb

Uniform Algm 1 0.01 2.08 0.04 3.38 0.07 8.03 0.24 17.28 0.64 35.01
(n � 500) Algm 2 0.01 0.86 0.01 0.98 0.01 1.24 0.01 1.62 0.02 1.87

Circular Algm 1 .001 0.09 .001 0.11 .001 0.17 .001 0.17 .001 0.20
(n � 500) Algm 2 0.00 0.16 0.00 0.21 0.01 0.47 0.03 0.85 0.07 1.52

Cubic Algm 1 0.00 8.86 0.00 10.36 0.07 13.36 0.97 16.36 10.82 19.36
(n � 50) Algm 2 0.06 0.95 3.70 5.26 — — — — — —

NETWORKS—2003 195

Gal (Editors), Lectures Notes in Economics and Mathemat-
ical Systems 177, Springer, Heidelberg, 1980, pp. 109–127.

[13] M.I. Henig, The shortest path problem with two objective
functions, Eur J Oper Res 25 (1986), 281–291.

[14] E.Q. Martins, On a multicriteria shortest path problem, Eur
J Oper Res 16 (1984), 236–245.

[15] E.Q. Martins, M.M. Pascoal, D.M. Rasteiro, and J.L. San-
tos, The optimal path problem, Invest Oper 19 (1999),
43–60.

[16] E.Q. Martins, M.M. Pascoal, and J.L. Santos, Deviation
algorithms for ranking shortest paths, Int J Found Comput
Sci 10 (1999), 247–261.

[17] E.Q. Martins and J.L. Santos, An algorithm for the quickest
path problem, Oper Res Lett 20 (1997), 195–198.

[18] E.F. Moore, The shortest path through a maze, Proc Int
Symp Theory of Switching, Harvard University Press, Cam-
bridge, MA, 1959, pp. 285–292.

[19] A.D. Vainshtein, The vector shortest path problem in the
��-norm, Am Math Soc Translat 158 (1994), 207–215.

[20] P. Vincke, Problèmes multicritères, Cah Centre Etudes
Rech Oper 16 (1974), 425–439.

[21] A. Warburton, Approximation of Pareto optima in multiple-
objective shortest path problems, Oper Res 35 (1987), 70–
79.

196 NETWORKS—2003

