
Trees, Slices, and Wheels: On the Floorplan Area
Minimization Problem

Ana Maria de Almeida
Dep. de Matemática, Fac. Ciências e Tecnologia, Universidade de Coimbra, Coimbra Portugal

Rosália Rodrigues
Dep. de Matemática, Universidade de Aveiro, Aveiro, Portugal

Hierarchical approaches to floorplan design usually use
trees to represent hierarchical floorplans, defining topo-
logical relations between a set of components to be
placed on a (circuit) board. This placement is then opti-
mized to minimize chip area, perimeter, or other such
cost measurements. This work places the problem of
minimizing hierarchical floorplans of order k within the
appropriate theoretical framework and presents an al-
gorithm that uses exclusively the k-ary representation
tree to determine the best or minimal solution to a con-
flicting bicriteria problem. The algorithm does not need
predefined partitioning schemes and determines the ori-
entation of each individual component. It can deal both
with five-module wheels, as well as slices, and can han-
dle an arbitrary number of realizations for each individ-
ual component. © 2003 Wiley Periodicals, Inc.

Keywords: multicriteria problem; K-ary trees; nondomination;
floorplan optimization

1. INTRODUCTION

The problem to be dealt with can be informally described
as follows: Given a set of rectangular blocks (components)
obeying a predefined positioning scheme (topological de-
sign), proceed to position them on a rectangular board so
that the overall area is minimized.

This means that, since the topology of the placement has
already been decided, we simply want to minimize the area
for positioning the modules: in other words, to find the
minimal floorplan. A floorplan can be viewed as an enclos-
ing rectangle subdivided, by horizontal and vertical line
segments, into nonoverlapping rectangles (see Fig. 1) that

define the relative positions of the components in the plane.
Although this minimization problem is classified as strongly
NP-complete for general (nonhierarchical) floorplans [4],
this classification does not hold for hierarchical floorplans,
that is, floorplans obeying a recursive partitioning process.

A floorplan is then called a hierarchical floorplan of
order k if its enveloping rectangle can be partitioned into at
most k subrectangles, each one being either a simple rect-
angle (without any division lines) or itself a hierarchical
floorplan of order k. The particular case of k � 2 is called
a slicing floorplan since the only allowed partition patterns
are vertical or horizontal slices.

The cases k � 3 and k � 4 can easily be reduced to
slicing floorplans [5]. Therefore, the first nonsliceable motif
occurs for k � 5, where floorplans may include patterns
resembling “wheels” with five or more components, as the
ones in Figure 2.

A rectangle without internal line segments will be called
a basic rectangle and, from now on, will be identified with
the rectangular component to be placed in it. A partitioning
scheme is a sequence of partitioning patterns needed to
produce a realization (or implementation) of a floorplan (see
Fig. 4 for an illustration).

One of the most popular representations for a hierarchi-
cal floorplan of order k is the floorplan tree, that is, a rooted
k-ary tree that describes the topological relations (relative
positions) between components (Fig. 3). Each leaf node
represents a basic rectangle and each nonleaf node, corre-
sponding to a set of components, represents an enclosing
rectangle (floorplan). This, of course, implies that the root of
the tree is identified with the overall placement area.

For each tree T, there is an associated set of pairs of real
numbers that represent the feasible dimensions of possible
rectangular regions (or layouts) for T. Therefore, if T is
rooted at r, we define �(Tr) as the set of all pairs of
dimensions for possible floorplans that represent the rect-
angular regions associated with node r. In general, if Tv is
the subtree of T rooted at v, then �(Tv) represents all the

Received October 2001; accepted February 2003
Correspondence to: A. M. de Almeida
Contract grant sponsor: MCT
This work was carried out at the CISUC–Centro de Informática e Sistemas
da Universidade de Coimbra Research Center

© 2003 Wiley Periodicals, Inc.

NETWORKS, Vol. 41(4), 235–244 2003

feasible pairs of rectangular dimensions for floorplans as-
sociated with v.

2. AREA MINIMIZATION

Since the floorplan tree is predefined and the relative
positions of the components must be maintained, the opti-
mization of the placement area should be performed using
this representation. This means that all the necessary opti-
mization procedures should use and preserve the structure
of the tree, not only for efficiency reasons but also because
it will still be needed to carry out the actual placement.

Associated with each rectangle is a pair of values, (h, w)
� �2, that represent its dimensions, height, and width. The
problem to be dealt with can then be formally stated as,
given the floorplan tree T rooted at r, and a nondecreasing*
function � : ��

2 3 �, minimize �(h, w) over all possible
orientations of the components for floorplans associated
with T:

min
�h,w����Tr�

��h, w�.

This is a well-known bicriteria problem with conflicting
objectives† commonly called compaction. The most popular
objective functions within this framework are the area, �(h,
w) � hw, or, as a means to produce a more balanced aspect
ratio, the semiperimeter, �(h, w) � h2 � w2. Neverthe-
less, any other suitable nondecreasing function can be used.

For a leaf node, that is, for a basic rectangle, a feasible
solution is no more than a pair (h, w) from the list of all
possible realizations for the component it represents. In the
case of a (sub)floorplan, that is, an intermediate node or the
root of the tree, the corresponding solution is still a pair of
side dimensions for the rectangle, but now it also represents
the orientations for the basic rectangles (leaf nodes) en-
closed within the represented rectangular region. Therefore,
it implicitly defines the partitioning sequence that leads to
that particular floorplan.

Slicing floorplans are represented by binary trees, where
each node can be labeled (either before or after minimiza-
tion) with the direction—horizontal or vertical—of the slice

needed to position its children, thus specifying the partition-
ing scheme to be used upon effective placement of the
layout, as shown in Figure 4.

Although the area minimization problem for hierarchical
floorplans is classified as (weakly) NP-complete [2], this
classification does not hold when only slicing patterns are
used [1]. In this particular case, under very natural and even
desirable restrictions, there exist polynomial algorithms for
minimizing the occupied area.

2.1. Slicing Floorplans: Binary Trees

In [1], the authors prove that the optimal solution for the
area minimization problem of slicing floorplans is a non-
dominated solution for the minimization of �(h, w) over all
orientations of components for the floorplans associated
with a binary tree T.

Let T be rooted at r. We define the set of dominated
solutions for this problem as the set of real pairs:

��Tr� � ��a, b� � ��Tr�� � �c, d� � ��Tr�

: �c � a � d � b� � �c � a � d � b��.

This means that a nondominated solution will be a pair for
which there is no other pair that is strictly better in both
dimensions, that is, a nondominated solution will then be
one that belongs to

��Tr� � ��Tr� � ��Tr�.

Thus, minimizing � over all possible orientations is
equivalent to minimizing � over all nondominated solutions
and, therefore, the optimal solution lies in the set �(Tr) [1].

In 1983, Stockmeyer [4] presented a polynomial algo-
rithm that, given a sequence of slicing cuts, that is, using a
predefined partitioning sequence, determines the corre-
sponding nondominated solution set in which the optimal
solution lies. Naturally, this optimal solution is only optimal
in terms of the given slicing sequence and so is only locally
optimal. The algorithm has a worst-case space and time
complexity of O(dn), where n is the number of components
of the placement and d is the depth of the tree. This means
that we will have O(n log n) complexity for balanced trees
and O(n2) otherwise.

Shi [3], in 1996, described a new algorithm that, under
the same conditions and using a new data structure for
storing and updating nondominated solutions, has a worst-
case space and time complexity of O(m log m), where m is

* A function, � : � � �23 �, will be called nondecreasing if (a � c �
b � d) � (a � c � b � d) f �(a, b) � �(c, d), @(a, b), (c, d) � �.
† When you consider that you want to minimize both dimensions, the best
solution for one of them (almost) always increases the other dimension.

FIG. 1. Slicing floorplan: (a) without components; (b) with components.

FIG. 2. Examples of nonsliceable partitioning patterns: five- and seven-
module wheels.

236 NETWORKS—2003

the total number of realizations for the components and,
therefore, m is a function of n. This means that there are
different possible pairs to implement each component in a
rectangular shape, while Stockmeyer’s algorithm only al-
lowed for the use of one rectangular shape for each com-
ponent, positioned up, (a, b), or down, (b, a). Even though
Shi’s algorithm is an extension of Stockmeyer’s algorithm,
it turns out to be faster than the previous one although it
handles an arbitrary number of realizations. Moreover, the
author proves that �(m log m) is a lower bound on the
running time of any area optimization algorithm for slicing
floorplans with fixed partitioning sequences.

The problem of finding the optimal (or best) partitioning
sequence for floorplan trees is in itself a complex problem
but Almeida et al. [1] presented a new approach that,
although based on Stockmeyer’s algorithm, extends it,
achieving global optimization, namely, it needs no pre-
defined partitioning and the algorithm decides which one
produces the minimal value for the area. This means that the
optimal solution for this algorithm, besides defining the best
orientation for the basic rectangles, also implicitly defines
the sequence of cuts that leads to the minimization of the
placement area. In [1], it is also proved that the optimal
overall solution for the minimization of the placement area
is a nondominated one and also that only nondominated
solutions are needed, whatever the tree level, to achieve
minimization at the root of the tree, thus presenting a
theoretical framework that ensures optimality.

Because there is no predefined sequence of slicing cuts,
to assure that no nondominated solution is left out, both
cutting directions must be considered. Since Stockmeyer’s
algorithm only uses the predefined slicing direction, at first

it would appear that the computational effort of the global
algorithm, when compared with Stockmeyer’s, should be
much greater. In reality, it is easy to show that, at the root
of a tree with n leaves (representing a positioning with n
components), there can be no more than nM nondominated
solutions [2], where M is the largest dimension for all the
possible realizations for components. The fact that only
binary trees are used and this latter result make it simple to
prove that, given a slicing tree with n leaves, each repre-
senting a component with, at most, k realizations, the algo-
rithm described in [1] has worst-case space complexity of
O(d(k � nM)) and worst-case time complexity of O(dMn
� k), where, again, d stands for the depth of the tree.

Since we have, for a balanced tree, d � log n, these
complexities present, in fact, good bounds when compared
with Shi’s. Also, of course, this also means that, although
solving a more general instance for area minimization, if
only one rectangular shape is used, the global optimal
algorithm has the same complexity order as Stockmeyer’s
algorithm. Moreover, although in the more general case the
worst-case complexity turns this algorithm into a pseudo-
polynomial one, this is not as serious as it might seem, for
these algorithms are generally used within VLSI layouts,
where k � n and M is not dependent on n.

2.2. Hierarchical Nonsliceable Floorplans: K-ary Trees

To proceed for more elaborate patterns, we must use
nonslicing floorplans. The simplest ones of these are called
hierarchical floorplans of order 5, where the only allowed

FIG. 3. (a) Hierarchical model: floorplan tree T; (b) board geometry: a floorplan for T.

FIG. 4. Slicing tree and sequence of slicing cuts that realize the floorplan it represents.

NETWORKS—2003 237

partitioning patterns are the two vertical and horizontal
slices or the five-module wheels.‡

This problem generalizes differently from the slicing
problem since the wheels are, to some extent, previously
fixed partitionings. These patterns are represented by 5-ary
nodes in the trees, which means that the trees used are no
longer binary. In a 5-ary tree for the representation of
hierarchical floorplans, a node can only be one of three
types: a leaf node, representing a component; a binary node,
representing a rectangular region with a slice; or a complete
5-ary node, representing a wheel.

Since the nondominance theory applied for the slicing
floorplans is based on the existence of real pairs represent-
ing feasible rectangular dimensions, and wheels are nothing
more than rectangular regions only presenting a special
inner arrangement, this theory can still be applied for non-
sliceable hierarchical floorplans. What remains to be done is
to determine how to construct wheels and to choose only the
nondominated ones, to extend our algorithm to hierarchical
floorplans of order 5.

In 1990, Wang and Wong [6] presented an extension of
Stockmeyer’s algorithm that works with hierarchical floor-
plans of order 5, which, of course, means that it needs a
predefined partitioning scheme. To optimize the area occu-
pied by wheels, the corresponding hierarchical representa-
tion (the 5-ary node§) is transformed into a special binary
tree, where each internal node represents an L-shaped ar-
rangement of modules within the wheel. Once this transfor-
mation is complete, several procedures, specialized in each
of the new different nodes thus obtained, are used to handle
the compaction. For normal binary nodes, that is, for slices,
Stockmeyer’s algorithm is used.

Using predefined partitioning schemes, Pan et al. [2]
proposed a new approach to handle five-module wheels that
does not need rearrangements of the representation tree and
has time complexity of O((nM)2log(nM)) and space com-
plexity of O(n2M), where M stands for the largest dimen-
sion for all possible realizations. Based on Stockmeyer’s
idea, they introduced a new concept of “nonredundant so-

lutions” and “support sets” of nonredundant solutions for
wheels and used Stockmeyer’s algorithm when slices are
involved. This redundancy concept follows closely the no-
tion of dominance, but, unfortunately, the procedures that
build their support sets are not able to find all nondominated
solutions, getting stuck in local optima. Consequently, this
yields only a heuristic method for the more general problem
that we seek to solve. Nevertheless, as the strategy found in
[2] does not imply rearranging the floorplan tree, nor is it
necessary to use secondary representation structures, and
since their reasoning had a strong resemblance to nondomi-
nance theory, we tried to overcome those deficiencies. We
present here a new algorithm that ensures that the com-
plete nondominated sets are built, thus achieving global
optimization.

2.3. Construction of Nondominated Sets for 5-ary Wheels

First, notice that, in the following algorithms, each
�(Tr) set will be represented as a list of pairs, {(hi, wi), i
� 1, . . . , m}, satisfying the following order [4]:

�hi � hi�1� � �wi � wi�1�, 1 � i � m. (1)

This ordering is always possible since all the pairs in the
list are nondominated.

Figure 5 shows that there are only two different rectan-
gular shapes for a 5-ary node. It can also be easily checked
that each one of this possible wheel is just the mirror image
of the other. We can therefore, and without loss of gener-
ality, use only the left wheel of Figure 5.

Due to the special configuration of a wheel W, it can
have both width and height given either by two or three
inner modules, depending on the ones that determine the
dimension large enough to accommodate the wheel. For
simplicity, let us denote by bi a nondominated solution in
�(TBi

). Then, a feasible solution for W can be represented
as r � [b1; b2; b3; b4; b5], where each bi is a given
solution in �(TBi

) and the sequence in r mimics that shown
in the rectangle wheel on the left of Figure 5.

To define the width w(r) and the height h(r), there are
essentially 10 different possibilities#:‡ In fact, to reduce the size of search space during floorplan design, and

since the cost of the partitioning process increases rapidly with p, typically,
k � 5 [2].
§ This approach can be extended for wheels of higher order and the authors
do present another extension for general hierarchical floorplans, illustrated
with a seven-module wheel. Of course, the number of special nodes and
associated procedures grows with the order of the wheel!

These groupings resemble closely the classes 1, 5, and 9 found in [2].
Although equivalent, the ordering used here is different but it will be
necessary to assure that no feasible nondominated solution is left out!

FIG. 5. 5-ary node and possible realizations for a wheel.

238 NETWORKS—2003

● w(r) and h(r) are both determined by two blocks—Case
1

1. w(r) � w(b1) � w(b2), h(r) � h(b2) � h(b3);
2. w(r) � w(b4) � w(b1), h(r) � h(b1) � h(b2);
3. w(r) � w(b3) � w(b4), h(r) � h(b4) � h(b1);
4. w(r) � w(b2) � w(b3), h(r) � h(b3) � h(b4);

● w(r) is determined by two blocks while h(r) is deter-
mined by three blocks—Case 2:

5. w(b4) � w(b1), h(r) � h(b1) � h(b5) � h(b3);
6. w(b2) � w(b3), h(r) � h(b1) � h(b5) � h(b3);
7. w(b1) � w(b2), h(r) � h(b2) � h(b5) � h(b4);
8. w(b3) � w(b4), h(r) � h(b2) � h(b5) � h(b4);

● w(r) and h(r) are both determined by three blocks—Case 3:

9. w(r) � w(b1) � w(b5) � w(b3), h(r) � h(b2)
� h(b5) � h(b4);

10. w(r) � w(b2) � w(b5) � w(b4), h(r) � h(b1)
� h(b5) � h(b3).

Each one of these possibilities does, in fact, turn out to be
a class where the different arrangements between modules
used in the definition of w(r) and h(r) are no more than
different 90° rotations for the same wheel. Of special im-
portance is the fact that, when searching for nondominated
wheels, and since we only have to keep the wheel with
smaller height, we can merge Cases 1 and 2:

● w(r) is determined by two blocks while h(r) is either
determined by two or three blocks:

1. w(r) � w(b1) � w(b2), h(r) � h(b2) � h(b3) or
h(r) � h(b2) � h(b5) � h(b4);

2. w(r) � w(b4) � w(b1), h(r) � h(b1) � h(b2) or
h(r) � h(b1) � h(b5) � h(b3);

3. w(r) � w(b3) � w(b4), h(r) � h(b4) � h(b1) or
h(r) � h(b2) � h(b5) � h(b4);

4. w(r) � w(b2) � w(b3), h(r) � h(b3) � h(b4) or
h(r) � h(b1) � h(b5) � h(b3);

Moreover, possibilities 1–4 still correspond to rotations for
the same wheel. This then means that we are only going to
need two different kinds of procedures for the construction
of wheels: one to build wheels where the width is deter-

mined by two blocks and another to build wheels where the
total width is determined by three blocks.

Note that we elect, as representatives for each of the
cases, the examples shown in Figures 6 and 7, just for the
sake of procedure construction and explanatory simplicity.
The final algorithm must, of course, consider all the differ-
ent possibilities, that is, the different rotations. Note also
that block b5 can never change position with respect to the
other four, otherwise, we would be interfering within the
restriction of the wheel design which is not allowed. The
other blocks are the ones that can rotate around b5 since it
will not change the requirements of the design.

2.3.1. Nondominated Wheels: Cases 1 and 2. To assure
that no nondominated wheel is left out, for the construction
of r, we will test all possible pairs b1; b2, that is, all �(TB1

)
and �(TB2

) lists will be scanned for combinations r that
might produce a nondominated wheel. Starting with the lists
of nondominated solutions for B1 and B2 (being scanned in
decreasing order of their heights), we then have a first
procedure to begin building the list �(TW) of nondominated
wheels for a 5-ary node W (and where the stopi, i � 3, 4,
5, are Boolean variables initialized with a false value):

Procedure 1

for each b1 � �(TB1
) and for each b2 � �(TB2

)
hmax � 	
while not stop3 do next b3

if w(b3) � w(b2)* then
if h(b1) � h(b2) � hmax then

while not stop5 do next b5

if w(b5) � w(b2)
 w(b3)** then
stop5 � true

while not stop4 do next b4

if w(b4) � w(b1) � w(b2)
 w(b3)*** then
stop4 � true
if h(b4) � h(b5) � h(b3) and h(b4) � h(b2)

� h(b3)
 h(b1) then
{a case 1 type wheel was found}

add r � b1b2b3b4b5 to �(TW)
stop3 � true

otherwise if h(b1) � h(b2) � h(b5) then
{a case 2 type wheel was found}

add r � b1b2b3b4b5 to �(TW)
hmax � h(b1) � h(b4) � h(b5)

otherwise stop3 � true

FIG. 6. w(r) � w(b1) � w(b2) and h(r) � h(b2) � h(b3) or w(r)
� w(b1) � w(b2) and h(r) � h(b2) � h(b5) � h(b4).

FIG. 7. w(r) � w(b1) � w(b5) � w(b3) and h(r) � h(b2) � h(b5)
� h(b4).

NETWORKS—2003 239

First, notice that the nondominated lists for Bi, i � 3, 4,
5, are ordered by increasing height. Then, for each possible
b2; b1 that is, for each possible width w(b1) � w(b2), this
procedure linearly tries to find the first b3 that minimizes
height. Some structural and design rules were embedded in
the algorithm through the use of the if tests, thus avoiding
the construction of deficient or obviously dominated
wheels. Therefore, the (*) test serves to assure that a b3 is
only used if there is enough width to insert the fifth module.
The ordered �(TB3

) list is linearly scanned, seeking the first
pair whose height meets this condition. Only when such a
b3 is found, does it start to look for a b5, again using the
(**) test to ensure that only the first one that fills in the hole
left between b1 and b3 is chosen. This means that, because
of the ordering of the lists, if such a b5 is found, it will be
the one for which

w�b5� � max�w�b� : b � ��TB5� � w�b� � w�b2� � w�b3��.

But, according to (1), this also means that this b5 is the one
where

h�b5� � min�h�b� : b � ��TB5� � w�b� � w�b2� � w�b3��.

Having found such a pair, we can stop the scanning of
list B5 and start looking for the next block to fill in the
wheel. The (***) test stops in the first or, which is the same,
the b4 with smallest height that fits in the hole left by the
other four blocks. Again, if it exists, the scanning of the B4

list is stopped.
If all the necessary conditions are fulfilled, a feasible

wheel is built and we have now two possibilities: Either it is
a Case 1 wheel or a Case 2 wheel. In the first case, there is
no need to advance in the �(TB3

) list, for all the remaining
pairs will have greater height; thus, since the width remains
constant, any feasible wheel would be a dominated one.
Since this solution corresponds with the wheel r such that

h�r� � min�h�b2� 	 h�b3� : b � ��TB3� � w�r�

� w�b1� 	 w�b2��,

just add this new wheel to �(TW) and stop, choosing a new
pair b1b2.

In the second case, there might still be a possible Case 1
wheel with smaller height; thus, add this new wheel to the
�(TW) list and continue scanning the �(TB3

) list. To pre-
vent an unnecessary scanning, the variable hmax is updated
to the value h(r) � h(b1) � h(b4) � h(b5) of the Case 2
solution that was just added to the list. If any new b3 has
height such that h(b2) � h(b3)
 hmax, then the scanning
of �(TB3

) can stop since any possible Case 1 wheel would
be a dominated solution.

2.3.2. Nondominated Wheels: Case 3. The central role
is now played by b5 and so the corresponding procedure to

construct nondominated wheels is built around the scanning
of the entire �(TB5

) list and can be simply described as
follows:

Procedure 2

for each b5 � �(TB5
)

for each b2 � �(TB2
)

if Search(b2, b5; b1) � found
if Search*(b1, b5; b4) � found

if Search(b4, b5; b3) � found and w(b2)
� w(b3) � w(b4)*

add r � b1b2b3b4b5 to �(TW)

The (*) test is necessary to avoid producing degenerate
wheels by this procedure. The order of search used in
�(TB1

) and �(TB3
) lists is by decreasing order of heights.

The Search(bk, bj; bi) procedure linearly scans the non-
dominated list for Bi, using once more a decreasing order of
heights, so that it finds the first bi that satisfies h(bi)
� h(bk) � h(bj), which is also the one such that satisfies

h�bi� � max�h�b� : b � ��TBi
�, h�b� � h�bk� 	 h�bj��,

and so this bi is the one that minimizes width. There is an
exception for Search* where this routine finds the first bi

that satisfies

h�b4� � min�h�b� : b � ��TB4�, w�b� � w�b1� 	 w�b5��,

thus being the one with smallest height to fit in with the
fixed b1b5.

As a last remark on these procedures, we should note that
the add instruction that joins a new wheel to the �(TW) list
only does so if it finds that it constitutes, in fact, a non-
dominated solution with respect to the ones already in the
list. Only once it is known that it still is nondominated is it
inserted in the list, according to the order (1) proposed by
Stockmeyer [4], thus preventing the insertion of dominated
solutions. As this test for nondominance is really a test
about ordering, it works both ways, that is, if, during the
previously described test, it becomes apparent that this new
solution dominates any of the solutions already in the list,
the dominated solutions are deleted and only the new one
(or nondominated one) is included.

Finally, it is easy to see that the worst-case complexities
for both the procedures presented here are O(k2) for space
and O(k3) for time complexity, where k � max��(TBi

)�, i
� 1, . . . , 5.

2.4. Hierarchical Floorplan Compaction Algorithm

The combination of procedures 1 and 2 together with the
algorithm in [1] for slicing patterns produces a general
algorithm to perform the optimal compaction of hierarchical
floorplans of order 5, for an arbitrary number of possible
realizations for each component. This area minimization

240 NETWORKS—2003

algorithm, called Beta, is applied in a bottom-up fashion to
a floorplan tree, T-5, to obtain the complete list of non-
dominated solutions for each and every node in T-5.

Beta

� For each node V of T-5:

● Initialize an empty list for �(TV);
● If V is binary:

Orderly add nondominated solutions to the list, accord-
ing to the procedures found in [1];

● Else if V is 5-ary:
–While there are still rotations to explore do

Turn the node 90° to the left
Use procedure 1 to orderly add nondominated so-
lutions for Cases 1 and 2;

–Use procedure 2 to orderly add nondominated solu-
tions for Case 3;

–Turn the node 90° to the left and use procedure 2
again.

As has already been pointed out, since the procedures are
built in terms of a representative for each class, we must
now consider each and every possibility, that is, all the
possible rotations of the wheel, which explains the 90°
turns.

The optimal solution can be found in the nondominated
list associated with the root of the tree, through a search
made using the desired minimization function, be it area,
semiperimeter, or any similar objective function. This so-
lution not only defines the best orientation for the basic
rectangles but also implicitly defines the optimal sequence
of partitions that leads to the overall minimization of the
occupied placement area. This chosen solution can then be
embedded in the geometry of the board.

The worst-case orders of complexity for the new algo-
rithm are �(n(k � Mn)) for space and �(n4M3) for time.
These orders are obtained only when we have a totally

unbalanced (degenerate) 5-ary tree, which is, of course,
mostly unlikely.

In fact, we have that, for a totally unbalanced tree, each
node has four leaf nodes and the last child is either a 5-ary
node or is another leaf node. Then, supposing that it has n
leaf nodes, at the root of this tree, it must use S(n) � 4S(1)
� S(n
 4) � S(C(n)) space units, where C(i) is the size
of the nondominated list for a tree with i leaf nodes. Since
S(1) � k and C(n) � nM, substituting above, we have

S�n� � 4k 	 S�n � 4� 	 nM. (2)

Recursively applying (2) in a top-down fashion, we get

S�n� � 4tk 	 S�n � 4t� 	 t�n � 4� M 	 4M. (3)

The recursion stops when n
 4t � 5 N t � (n
 5)/4,
and since S(5) � 5k � 5M, substituting in (3), we have

S�n� � �n � 5�k 	 5k 	 5M 	
n � 5

4
�n � 4� M 	 4M

� nk 	
n � 5

4
�n � 4� M 	 9M,

which proves that the used space is, in the worst case, �(nk
� n2M). Similarly, we can prove the stated bounds for time
complexity.

As we shall see in the next section, the performance of
this algorithm is quite good, especially if we keep in mind
that this is an NP-complete problem that arises within VLSI
design.

3. EXPERIMENTAL RESULTS

This approach was used to solve essentially two types of
instances for this problem. The first one consists of a known

TABLE 1. Comparison of algorithms using the examples found in [2].

Example Blocks

No. realizations

AreaTotal

Examined Time (seconds)

PSL0 Beta0 PSL0 Beta0

1 25 325 168 88 121 0.002 0.001
2 25 425 365 148 176 0.003 0.001
3 25 525 776 304 484 0.004 0.003
4 25 625 994 398 352 0.007 0.004
5 25 825 2031 783 660 0.021 0.007
6 24 2.03 � 1016 441 232 1024 0.003 0.003
7 125 3125 865 465 841 0.007 0.006
8 125 4125 1930 809 1044 0.012 0.009
9 125 5125 4730 1799 2500 0.030 0.017

10 125 6125 5723 2324 1800 0.053 0.023
11 125 8125 12785 4769 3477 0.182 0.060
12 120 3.45 � 1081 2382 2111 5842 0.042 0.042

NETWORKS—2003 241

set of test examples that appear in related literature and are
the only ones evaluated in [2]. We then used another set of
instances to produce a more systematic and statistical eval-
uation for Beta. This second set of instances was built using
several samples of randomly generated floorplan trees. This
section therefore begins by presenting a table with direct
comparison results between the Beta algorithm and the
algorithm presented in [2], which we call PSL. We then give
a graphical presentation of some results obtained using
(pseudo)random construction of floorplan 5-ary trees with
different dimensions (i.e., number of leaves/components).

All the implementations were coded in C and run on a
433-MHz Digital Beta computer with 64M RAM.

3.1. Comparison Between Beta and PSL

Table 1 shows a direct comparison between the perfor-
mance of algorithms Beta and PSL. Due to the artificial

nature of these examples, somewhat simpler algorithms
were used, since it is not necessary to rotate the wheels to
achieve optimality. Therefore, we denote these simpler ver-
sions by Beta0 and PSL0.

Since the global optimum was obtained by both versions,
we can only compare the number of examined feasible
solutions, that is, the wheels constructed and tested for
nondominance. It is seen that Beta0 does, in fact, examine
substantially fewer feasible solutions than does PSL0, and
this fact also has obvious consequences in terms of running
times. This dominance is clearest in pure 5-ary trees, that is,
trees that are formed exclusively with 5-ary nodes, where
the number of examinations made by Beta0 is, on average,
less than half of the number made by PSL0.

There seems to be absolutely no doubt that it is the tests
done, both for producing a feasible solution and for non-
dominance, that influence the time complexity levels
achieved by these algorithms. Also, of course, this com-

FIG. 8. Time spent on construction of wheels (in seconds).

FIG. 9. Total number of feasible wheel solutions examined.

242 NETWORKS—2003

plexity is highly dependent on the number of pairs present
in the lists associated with the nodes of the tree.

Notice that the results are similar when “mixed” trees are
used. In fact, this seems to be the most natural case to occur
for real problems. Moreover, the “pure” wheel procedures
in [2] do not need any previously decided partitioning
sequence. Therefore, we decided to produce a randomly
generated set of instances for this kind of tree and use Pan
et al. procedures, to have a better indicator for the perfor-
mance of these algorithms. We were especially interested in
evaluating their performance when using the exact algo-
rithm described in [1], that, hereafter, we will call Opt.

3.2. Beta Performance

Next, we present the results of the application of both the
Beta and PSL algorithms to floorplan 5-ary trees with dif-
ferent dimensions, that is, different numbers of leaf nodes or
components. Here, PSL also uses Opt for the construction of
the nondominated list associated with a binary node. These
algorithms include the rotations provision to produce the
complete list of nondominated solutions. The trees were
generated using a (pseudo)random 5-ary tree generator
based on the linear congruential algorithm and 48-bit inte-
ger arithmetic. These trees are randomly “mixed,” that is,
they can use both kinds of nodes (which will be the most
probable structure) but can also be pure binary or pure
5-ary.

In the following figures, the x-axis always represents the
number of components or leaf nodes for each set of trees.
Each of the results, hereafter, is an average of runs on 20
different floorplan trees for each number of components.

The overall time spent in the compaction of placement
area is roughly the sum of the time spent on wheel con-
struction plus the time spent on slices. Due to the relative
scales involved, the time used for slices is, in fact, insignif-

icant regarding the total running time,� that is, the overall
time is directly related to the time spent constructing
wheels.

As seen in Figure 8, the time Beta now spends building
feasible wheel-type solutions is much different from PSL,
but this time is directly related to the number of constructed
and examined solutions, as is clear from examination of
Figure 9.

As we can see, Beta always constructs far more candi-
dates for nondominance. Moreover, the number of con-
structed and examined wheels is important since, as was
expected, the best result in terms of minimization of area
was not achieved by PSL. In fact, the number of nondomi-
nated solutions in the lists associated with the root of the
tree are again substantially different between Beta and PSL.

As seen in Figure 10, the total number of nondominated
solutions for Beta is again far greater than is the number
obtained with PSL, which emphasizes that PSL is not able to
determine the complete nondominated solution set.

In terms of the minimization of the occupied area, Figure
11 shows a complete domination by Beta. Since we have
shown that this is an optimal strategy, the PSL algorithm can
only be considered as a heuristic approach.

Finally, we mentioned previously the upper bound of nM
for the number of nondominated solutions in the list asso-
ciated with the root of the tree. The only sound conclusion
is that, in general, this number seems to be independent of
n. Indeed, Figure 10 consistently presents integer values far
below the number n.

4. CONCLUSIONS

We have presented an overall approach to the minimi-
zation of hierarchical floorplans that uses nondominance in

� This time is on the order of milliseconds, regardless of the number of
components involved.

FIG. 10. Number of nondominated solutions at the root of the tree.

NETWORKS—2003 243

all stages of compaction to ensure that the best solution for
the optimization of an appropriate nondecreasing function
can be found at the root of the floorplan tree. From this
theoretical framework, it was possible to derive an algo-
rithm that uses the tree representation without modifying it.
This algorithm also solves a more general case than those
found in related literature.

A more concise and formal study of the construction of
feasible solutions seems to be the appropriate road to follow
to develop a greater insight into the structure of these
solutions. This may enable a reduction in the number of
constructed feasible dominated solutions.

Acknowledgments

The authors would like to thank the referees for the
valuable help they gave with their corrections and thank
also D. Shier for his constant encouragement. The authors
are deeply indebted to the late Prof. Ernesto Q. V. Martins
for having pointed out to us the relation between our work
and nondominance theory and for all the fruitful talks and
discussions.

REFERENCES

[1] A.M. de Almeida, E.Q.V. Martins, and R. Rodrigues, Opti-
mal cutting directions and rectangle orientation algorithm,
Eur J Oper Res 109 (1998), 660–671.

[2] P. Pan, W. Shi, and C.L. Liu, Area minimization for hierar-
chical floorplans, Algorithmica 15 (1996), 550–571.

[3] W. Shi, A fast algorithm for area minimization of slicing
floorplans, IEEE Trans Comput-Aided Des Integr Circuits
Syst 15 (1996), 1525–1532.

[4] L. Stockmeyer, Optimal orientations of cells in slicing floor-
plan designs, Info Contr 57 (1983), 91–101.

[5] K.-S. The and D.F. Wong, Graph techniques for hierarchical
floorplan area optimization, Technical report TR-93-1, Dept.
of Computer Sciences, University of Texas, Austin, 1993.

[6] T.-C. Wang and D.F. Wong, An optimal algorithm for floor-
plan area optimization, 27th ACM/IEEE Design Automation
Conf., ACM Press, New York, 1990, pp. 180–186.

FIG. 11. Area sizes obtained by choosing the best solution at the root of
the tree.

244 NETWORKS—2003

