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We consider Bessel-potential spaces modelled upon Lorentz-Karamata spaces and establish embedding theo-
rems in the super-limiting case. In addition, we refine a result due to Triebel, in the context of Bessel-potential
spaces, itself an improvement of the Brézis-Wainger result (super-limiting case) about the “almost Lipschitz
continuity” of elements of H

1+n/p
p (Rn). These results improve and extend results due to Edmunds, Gurka and

Opic in the context of logarithmic Bessel potential spaces. We also give examples of embeddings of Bessel-
potential type spaces which are not of logarithmic type.
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1 Introduction

This paper is a continuation of [19], where we established (limiting) embeddings of Bessel-potential spaces
modelled upon appropriate Lorentz-Karamata (LK) spaces X = Lp,q;b(Rn) into either LK spaces or Orlicz
spaces.

Here we deal with the super-limiting case. For Sobolev spaces W k
p (Ω), the Sobolev classical embedding

theorem asserts that if p > n/k and Ω ⊂ R
n is a domain with a sufficiently smooth boundary, then W k

p (Ω) ↪→
C(Ω), where C(Ω) is the space of scalar-valued bounded continuous functions on Ω. However, in this case more
can be said, as embeddings in Hölder spaces C0,α

(
Ω
)

are possible. For example, W k
p (Ω) ↪→ C0,α

(
Ω
)
, for all

α ∈ (0, 1), when k = 1 + n/p ∈ N and Ω ⊂ R
n is a domain with a sufficient smooth boundary, cf. e.g. [1,

Lemmas 5.17]. In the particular case k = 1 + n and p = 1, the previous embedding can be improved as the
Sobolev space is embedded into the Lipschitz space. Therefore, we may ask if an embedding into a Lipschitz
space for p > 1 and k = 1 + n/p ∈ N would be possible. The answer is negative; see [8, Theorem 3.3] where a
more general result is established, which deals with the sharpness of embeddings of logarithmic Bessel potential
spaces into general Hölder spaces. This result for Sobolev spaces is common knowledge, but as remarked in
[8] it is hard to find a precise argument in the literature: [1, Example 5.28] does not settle the question as there
is a slip in the calculations, cf. [8, Remark 5.2]. However, Brézis-Wainger (cf. [4, Corollary 5]) proved that
elements of the Bessel potential space H

1+n/p
p (Rn), with 1 < p < +∞, are “almost Lipschitz continuous”, i.e.,

H
1+n/p
p (Rn) ↪→ Lip

(1,− 1
p′ )

∞,∞ (Rn), which implies, for some positive constant c,

|f(x) − f(y)| ≤ c
∥∥f ∣∣H1+n/p

p

∥∥ |x − y| | log |x − y| | 1
p′ ,

for all f ∈ H
1+n/p
p (Rn) and x, y ∈ R

n such that 0 < |x − y| < 1
2 .

When the more general space H
1+n/p
p X , with 1 < p < +∞, where for example X = Lp(log L)a(Rn)

is a Zygmund space (a ∈ R), is considered, Edmunds, Gurka and Opic [7] proved the following: if a > 1
p′ ,

the fractional Sobolev-type space H1+n/pX is embedded into the Lipschitz space Lip(Rn); if a < 1
p′ , the

space H1+n/pX is embedded into the Lipschitz-type space (general Hölder-type space) Lip
(1,a− 1

p′ )
∞,∞ (Rn), which
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entails, for some positive constant c,

|f(x) − f(y)| ≤ c
∥∥f ∣∣H1+n/p

p X
∥∥ |x − y| | log |x − y| | 1

p′ −a
,

for all f ∈ H
1+n/p
p X and x, y ∈ R

n such that 0 < |x−y| < 1
2 . The same authors also dealt with the case a = 1

p′ ,
where the target space for the embedding is a double logarithmic Lipschitz-type space. We refer to [7] for more
general embedding results of the Bessel-potential spaces modelled upon generalised Lorentz-Zygmund spaces
into generalised Hölder spaces. Nevertheless, these results can be improved for a ≤ 1

p′ . A smaller Lipschitz

space, in the sense of inclusions, as a target space can be found. When a = 0, i.e., H1+n/pX is the fractional
Sobolev space H

1+n/p
p (Rn), Triebel [22, Theorem 14.2 (ii)] showed that H1+n/p

p (Rn) is embedded into the space

of Lipschitz type Lip(1,−1)
∞,p (Rn), which is smaller in the sense of inclusions than the space Lip

(1,− 1
p′ )

∞,∞ (Rn),
improving in this way the above result of Brézis-Wainger (super-limiting case). Note that Triebel’s result is
established for the Triebel-Lizorkin spaces F

1+n/p
p,q (Rn), with 1 < p < +∞ and 0 < q ≤ +∞, which coincides

with the Bessel-potential space H
1+n/p
p (Rn) when q = 2. Motivated by this result of Triebel, we prove that, if

a < 1
p′ , the fractional Sobolev-type space H1+n/pX is embedded into the Lipschitz-type space Lip(1,a−1)

∞,p (Rn),

which is smaller in the sense of inclusions than the space Lip
(1,a− 1

p′ )
∞,∞ (Rn), improving in this way the result

mentioned due to Edmunds, Gurka and Opic; the case a = 1
p′ is also covered by the appearance of a double

logarithmic Lipschitz-type space as a target space smaller than that considered in [7]; see Corollary 5.18 and
Remark 5.19 (ii). This is a consequence of our more general result given by Theorem 5.16, which concerns
embeddings of Bessel-potential spaces modelled upon Lorentz-Karamata into spaces of Lipschitz type.

In Section 2 we present some notation.
Section 3 deals with some properties of slowly varying functions and results about Lorentz-Karamata spaces.
In Section 4, the Besov-Lipschitz-Karamata spaces Λλ,b

p,q(Rn), 1 ≤ p ≤ +∞, 0 < q ≤ +∞, 0 < λ ≤ 1 and b
a slowly varying function, are considered.

In the last section we consider Bessel-potential spaces modelled upon LK spaces, and referred in what follows
as Bessel-Lorentz-Karamata (BLK) spaces, and we establish embeddings theorems in the super-limiting case,
where the main result is given by Theorem 5.16. We also present examples of embeddings of BLK spaces which
are not of logarithmic type. These examples have not been considered before in the literature, as far as we are
aware.

2 Notation and preliminaries

As usual, R
n denotes Euclidean n-dimensional space. Let (R, Σ, µ), usually denoted by (R, µ), be a totally

σ-finite measure space, referred to in the sequel only as a measure space. When R = R
n we shall always take

µ to be the Lebesgue measure µn. The family of all extended scalar-valued (real or complex) µ-measurable
functions on R will be denoted by M(R, µ); M0(R, µ) will stand for the subset of M(R, µ) consisting of
all those functions which are finite µ-a.e.; and M+(R, µ)

(M+
0 (R, µ)

)
will stand for the subset of M(R, µ)

(M0(R, µ)) consisting of all those functions which are non-negative µ-a.e.
Let f ∈ M0(R, µ). The non-increasing rearrangement of f is the function f∗ defined on [0, +∞) by

f∗(t) = inf {λ ≥ 0 : µ{x ∈ R : |f(x)| > λ} ≤ t} for all t ≥ 0, and the maximal function f∗∗ of f∗ is defined
by f∗∗(t) = (1/t)

∫ t

0 f∗(s) ds for all t > 0.
For general facts about (rearrangement-invariant) Banach function spaces with Banach function norm (or

simply a function norm) ρ over a measure space (R, µ) we refer to [2, Chap. 1, Chap. 2]. Nevertheless, let us
recall the concept of absolutely continuous norm, for the convenience of the reader. If X is a Banach function
space over (R, µ), a function f of X is said to have absolutely continuous norm in X if ‖fχEn‖X → 0 for every
sequence {En}n∈N of subsets of R such that En → ∅ µ-a.e. (that is, χEn → 0 µ-a.e.); if every element f of X
has absolutely continuous norm, X is said to have absolutely continuous norm. Proposition I.3.2 in [2], shows
us that regarding the absolutely continuity of a function in a Banach function space it is enough to restrict our
attention to decreasing sequences {En}n∈N.

Let p ∈ (0, +∞]. We denote by Lp(R) the Lebesgue space endowed with the (quasi-) norm ‖.‖p;R.

c© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



70 Neves: Spaces of Bessel-potential type

The space of all scalar-valued (real or complex), bounded and continuous functions on R
n is denoted by

C(Rn) and it is equipped with the L∞(Rn) norm. By C
(
Rn
)

we mean the subspace of C(Rn) of the uniformly
continuous functions, whereas C1

(
Rn
)

denotes the space of all the functions f ∈ C
(
Rn
)

such that the n partial
derivatives of order 1, ∂f

∂xj
(j = 1, . . . , n), are also in C

(
Rn
)

and it is endowed with the norm

‖f‖C1 := ‖f‖∞ +
n∑

j=1

∥∥∥∥ ∂f

∂xj

∥∥∥∥
∞

.

Let S(Rn) be the Schwartz space of all scalar-valued rapidly decreasing infinitely differentiable functions u
on R

n (usually we write S instead of S(Rn)).
For each h ∈ R

n, the difference operator ∆h is defined on scalar functions f on R
n by (∆hf)(x) =

f(x + h) − f(x) for all x ∈ R
n.

In what follows we use the notation Yp(Rn) = Lp(Rn), if 1 ≤ p < +∞, and Y∞(Rn) = C(Rn). Let
p ∈ [1, +∞]. The modulus of smoothness of a function f in Yp(Rn) is defined by

ω(f, t)p = sup
|h|≤t

‖∆hf‖p for all t ≥ 0 .

If f ∈ C(Rn), then ω(f, t)∞ → ω(f, 0)∞ = 0 as t ↓ 0 if, and only if, f ∈ C
(
Rn
)
. Let p ∈ [1, +∞] and f

in Yp(Rn). Let

ω̃(f, t)p =
ω(f, t)p

t
for each t > 0 ,

then ω̃(f, .)p is equivalent to a non-increasing function on (0, +∞). We refer to [2, pp. 331–333] and to [5,
pp. 40–50] for more details.

Now let m ∈ N and α = (α1, . . . , αm) ∈ R
m. We denote by �α the real function defined by �α(t) =∏m

i=1 	αi

i (t) for all t ∈ (0, +∞), where 	1, . . . , 	m are positive functions defined on (0, +∞) by 	1(t) = 1 +
| log t|, and, if m ≥ 2, 	i(t) = 1 + log 	i−1(t), i ∈ {2, . . . , m}. For formal reasons, we put, if m = 0,∏m

i=1 	αi

i = �α = 1.
The Bessel kernel gσ , σ > 0, is defined as that function on R

n whose Fourier transform is

ĝσ(ξ) = (2π)−n/2
(
1 + |ξ|2)−σ/2

, ξ ∈ R
n ,

where the Fourier transform f̂ of a function f is given by f̂(ξ) = (2π)−n/2
∫

Rn e−iξ.xf(x) dx. It is known that
gσ is a positive, integrable function which is analytic except at the origin.

Let m ∈ N. Given α = (α1, . . . , αm), β = (β1, . . . , βm) ∈ R
m and σ ∈ R, we shall use the convention

α+β = (α1+β1, . . . , αm+βm), α+σ = (α1+σ, . . . , αm+σ), σα = (σα1, . . . , σαm). If α = (0, . . . , 0)∈R
m

we denote α by 0. We write β ≺ α, or α � β, if either β1 − α1 < 0 or there exists k ∈ {2, . . . , m} such that
βk − αk < 0 and βj = αj , j = 1, . . . , k − 1. We use the symbol β � α, or α  β, to mean that either β ≺ α
or β = α.

Let p ∈ [1, +∞], k ∈ {1, . . . , m}. We denote by δp;m,k the m-tuple (δ1, . . . , δm), where δi = 1
p , i = 1, . . . , k,

and δi = 0 for i = k + 1, . . . , m, if k + 1 ≤ m.
In the sequel, we let c denote a positive constant. In a chain of inequalities c may stand for several different

constants if it is not important to distinguish between them, otherwise we use c with subscripts. For two non-
negative expressions (i.e. functions or functionals) A, B, the symbol A � B means that A ≤ cB, for some
positive constant c independent of the variables in the expressions A and B. If A � B and B � A, we write
A ≈ B. We adopt the convention that a/+∞ = 0 and a/0 = +∞ for all a > 0. If p ∈ [1, +∞], the conjugate
number p′ is given by 1/p + 1/p′ = 1.

3 Slowly varying functions and Lorentz-Karamata spaces

A positive and Lebesgue-measurable function b is said to be slowly varying (s.v.) on [1, +∞) in the sense
of Karamata, if for each ε > 0, tεb(t) is equivalent to a non-decreasing function on [1, +∞) and t−εb(t) is
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equivalent to a non-increasing function on [1, +∞); see Chapter I in [3] for a detailed study of the Karamata
theory.

Properties and examples of s.v. functions can be seen in [23, Chapter V, pp. 186], [3], [9] and [19]. The
following functions are s.v. on [1, +∞).

(i) b(t) = �α(t), with α ∈ R
m.

(ii) b(t) = exp(logα t), with 0 < α < 1.

(iii) bm(t) = exp(	α
m(t)), with 0 < α < 1 and m ∈ N.

Note that if m ≥ 2 in the last example, we may consider α = 1. In this case bm ≈ 	m−1.
Given a slowly varying function b on [1, +∞), we denote by γb the positive function defined by

γb(t) = b
(
max

{
t, 1

t

})
for all t > 0.

Lemma 3.1 Let b be a slowly varying function on [1, +∞).
(i) Let ε > 0. Then tεb(t) → +∞ as t → +∞, and t−εb(t) → 0 as t → +∞.

(ii) Let α > 0 and let b1 be the positive function on [1, +∞) defined by b1(t) = b(tα) for all t ≥ 1. Then b1 is
a slowly varying function on [1, +∞).

P r o o f. The proof is straightforward.

Let α ∈ (0, 1]. Let Kα be the class of all positive and Lebesgue-measurable functions b defined on [1, +∞)
such that, for each ε > 0, exp

(
ε 	α

1 (t)
)
b(t) is equivalent to a non-decreasing function on [1, +∞) and

exp
(− ε 	α

1 (t)
)
b(t) is equivalent to a non-increasing function on [1, +∞). This class was introduced in [19],

where some properties were presented.
Let p, q ∈ (0, +∞] and let b be a slowly varying function on [1, +∞). The Lorentz-Karamata (LK) space

Lp,q;b(R) is defined to be the set of all functions f ∈ M0(R, µ) such that

‖f‖p,q;b;R :=
∥∥t 1

p− 1
q γb(t) f∗(t)

∥∥
q;(0,+∞)

(3.1)

is finite. Here ‖.‖q;(0,+∞) stands for the usual Lq (quasi-)norm over the interval (0, +∞). When 0 < p < +∞,
the Lorentz-Karamata space Lp,q;b(R) contains the characteristic function of every measurable subset of R with
finite measure and hence, by linearity, every µ-simple function; when p = +∞, the Lorentz-Karamata space
Lp,q;b(R) is different from the trivial space if, and only if,

∥∥ t
1
p− 1

q γb(t)
∥∥

q;(0,1)
< +∞. We refer to [19] for more

details.
When 1 < p ≤ +∞ and 1 ≤ q ≤ +∞, Lp,q;b(R) can be endowed with a norm ‖.‖(p,q;b);R equivalent to

‖.‖p,q;b;R, where ‖f‖(p,q;b);R is defined similarly to (3.1) save f∗ is replaced by f∗∗, see [19, Lemma 3.5].
If we consider m ∈ N, α = (α1, . . . , αm) ∈ R

m and b = �α, then Lp,q;b(R) is precisely the generalised
Lorentz-Zygmund (GLZ) Lp,q;α(R), introduced in [7], endowed with the (quasi-)norm ‖f‖p,q;α;R. We remark
that in [7], the generalised Lorentz-Zygmund (GLZ) space Lp,q;α(R) and the quasi-norm ‖.‖p,q;α;R defined
above are denoted by Lp,q;α1,...,αm(R) and ‖.‖p,q;α1,...,αm;R, respectively. We use the notation in [7] only when
we are considering particular cases. Let us observe that when we consider α = (0, . . . , 0), we obtain the Lorentz
space Lp,q(R) endowed with the (quasi-)norm ‖.‖p,q;R, which is just the Lebesgue space Lp(R) endowed with
the (quasi-)norm ‖.‖p;R when p = q; if p = q, m = 1 and (R, µ) = (Ω, µn), we obtain the Zygmund space
Lp(log L)α1(Ω) endowed with the (quasi-)norm ‖.‖p;α1;Ω.

Lemma 3.2 Let 1 < p < +∞, 1 ≤ q < +∞ and let b be a slowly varying function on [1, +∞). Then the
space X =

(
Lp,q;b(R), ‖.‖(p,q;b);R

)
has absolutely continuous norm.

P r o o f. The proof is like that of [7, Lemma 3.10], where a similar result was established but for generalised
Lorentz-Zygmund spaces. Let f ∈ X . Then Lemma 3.7 of [19] gives

f∗(t) ≤ f∗∗(t) � t−
1
p

γb(t)
‖f‖p,q;b;R , t > 0 .
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This entails f∗(t) < +∞ for all t ∈ (0, +∞), and together with Lemma 3.1 (i) yields limt→+∞ f∗(t) = 0.
Let {En}n be an arbitrary decreasing sequence of subsets of R such that En ↓ ∅, that is, χEn ↓ 0 µ-a.e. Set
fn = fχEn for each n ∈ N. Then limn→+∞ fn = 0 µ-a.e. and

|fn| ≤ |f | for all n ∈ Z . (3.2)

By [7, Corollary 3.9], limn→+∞ f∗
n = 0∗ = 0. From (3.2) we have f∗

n ≤ f∗ and thus by [19, Lemma 3.5] and
by Lebesgue’s dominated convergence theorem,

‖fχEn‖X = ‖fn‖X ≈
(∫ +∞

0

(
t

1
p− 1

q γb(t)f∗
n(t)

)q

dt

)1
q

−→ 0 ,

as n → +∞, and the result now follows.

We are going to need a variant of the Marcinkiewicz interpolation theorem for the Lorentz-Karamata spaces
defined on R

n. We refer to [7, Theorem 3.14 & Corollary 3.15] for the case of generalised Lorentz-Zygmund
spaces; see [10] for an exhaustive treatment of this for generalised Lorentz-Zygmund spaces for the case m = 2
and with the spaces defined over a finite measure space with non-atomic measure.

Suppose that 1 ≤ p1 < p2 ≤ +∞ and that q1, q2 ∈ [1, +∞], q1 �= q2. Let Σ stand for the interpolation

segment
[(

1
p1

, 1
q1

)
,
(

1
p2

, 1
q2

)]
, by which we mean that Σ is the line segment with endpoints

(
1
pi

, 1
qi

)
, i = 1, 2.

Put

	 =
1
q1

− 1
q2

1
p1

− 1
p2

. (3.3)

For each g ∈ M+(0, +∞) and each t ∈ (0, +∞) the Calderón operator SΣ associated with the interpolation
segment Σ is given by

SΣ(g)(t) = t−1/q1

∫ t�

0

τ
1

p1
−1g(τ) dτ + t−1/q2

∫ +∞

t�

τ
1

p2
−1g(τ) dτ .

Now let T be a quasi-linear operator with values in M(Rn, µn) and defined for all those f in M0(Rn, µn) for
which

SΣ(f∗)(1) < +∞ . (3.4)

(We recall that T is called quasi-linear if there is a positive constant κ ≥ 1 such that for all f and g in the domain
of T , and all scalars λ, |T (f + g)| ≤ κ(|Tf | + |Tg|), |T (λ f)| = |λ| |Tf |.) Then T is said to be of joint weak
type (p1, q1; p2, q2) if, for each t ∈ (0, +∞), (T (f))∗(t) � SΣ(f∗)(t) for all f satisfying (3.4).

The main interpolation result which we shall need is the following:

Theorem 3.3 Let 1 ≤ p1 < p2 ≤ +∞ and let q1, q2 ∈ [1, +∞] such that q1 �= q2; let 1 ≤ r ≤ s ≤ +∞ and
let b be a slowly varying function on [1, +∞). Suppose that θ ∈ (0, 1) and let p, q given by

1
p

=
1 − θ

p1
+

θ

p2
,

1
q

=
1 − θ

q1
+

θ

q2
. (3.5)

Let T be a quasi-linear operator of joint weak type (p1, q1; p2, q2) and suppose

sup
1<t<+∞

b�(t)
b(t)

< +∞ ,

where 	 is given by (3.3) and b� is the slowly varying function on [1, +∞) defined by b�(t) = b
(
t1/|�|) for all

t ∈ [1, +∞). Then T maps Lp,r;b(Rn) boundedly to Lq,s;b(Rn).
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P r o o f. It follows that of Theorem 3.4 in [7] by taking into account that γb

(
t1/�
)

= γb

(
t1/|�|) = γb�

(t) for
each t ∈ (0, +∞), and the Hardy-type inequalities from [19, Lemma 3.2].

Corollary 3.4 Let T be a quasi-linear operator such that for all q ∈ (1, +∞),

T : Lq(Rn) −→ Lq(Rn) (3.6)

is bounded. Let 1 < p < +∞, 1 ≤ r ≤ +∞ and let b be a slowly varying function on [1, +∞). Then

T : Lp,r;b(Rn) −→ Lp,r;b(Rn) (3.7)

is bounded.

P r o o f. Choose p1, p2 so that 1 < p1 < p < p2 < +∞ and define θ ∈ (0, 1) by 1
p = 1−θ

p1
+ θ

p2
. By (3.6), T

is of strong types (p1, p1) and (p2, p2). Hence, by [2, Theorem IV.4.11], T is of joint weak type (p1, p1; p2, p2).
Since 	 = 1, b� = b and the result now follows from Theorem 3.3.

4 Besov-Lipschitz-Karamata spaces

We start by introducing the Besov-Lipschitz-Karamata spaces Λλ,b
p,q(R

n), with 1 ≤ p ≤ +∞, 0 < q ≤ +∞,
λ ∈ (0, 1] and b a slowly varying function on [1, +∞). The indices λ and b are called the first and the second
indices of smoothness, respectively. These spaces are a particular case of the general Besov-Hölder-Lipschitz
spaces considered in [17].

Let 1 ≤ p ≤ +∞ and 0 < q ≤ +∞. Let λ ∈ (0, 1] and let b be a slowly varying function on [1, +∞).
Suppose that

∥∥t1−λ− 1
q 1

b(1/t)

∥∥
q;(0,1)

< +∞, if λ = 1. The Besov-Lipschitz-Karamata space Λλ,b
p,q(Rn) consists

of all those functions f in Yp(Rn) for which the quasi-norm
∥∥f ∣∣Λλ,b

p,q

∥∥ is finite, where

∥∥f ∣∣Λλ,b
p,q

∥∥ = ‖f‖p +
(∫ 1

0

(
ω(f, t)p

tλb(1/t)

)q
dt

t

)1/q

,

if 0 < q < +∞, and∥∥f ∣∣Λλ,b
p,∞
∥∥ = ‖f‖p + sup

0<t<1

ω(f, t)p

tλb(1/t)
.

Remark 4.1 It is easy to see that if we take in the previous definition the range of t to be (0, δ), for some
δ ∈ (0, 1], instead of (0, 1), we obtain an equivalent quasi-norm. Note also that∥∥f ∣∣Λλ,b

p,q

∥∥ = ‖f‖p +
∥∥∥t1−λ− 1

q γ 1
b
(t)ω̃(f, t)p

∥∥∥
q;(0,1)

for all f ∈ Λλ,b
p,q(R

n) .

When λ = 1, a suitable notation for Λ1,b
p,q(Rn) would be Lip1,b

p,q(Rn). If λ = 1 and b ≈ 1, i.e. b is a constant
function, then Λ1,b

∞,∞(Rn) = Λ1,1
∞,∞(Rn) is the subspace of C(Rn) of the Lipschitz functions and is denoted by

Lip(Rn). When λ ∈ (0, 1), a suitable notation for Λλ,b
p,q(R

n) would be Bλ,b
p,q (Rn).

Remark 4.2 If either λ > 1 or λ = 1 and
∥∥t1−λ− 1

q γ 1
b
(t)
∥∥

q;(0,1)
= +∞, we have Λλ,b

p,q(R
n) = {0}, if

1 ≤ p < +∞, and Λλ,b
∞,q(R

n) consisting only of constant functions on R
n. Let λ = 1. When m ∈ Z, α ∈ R

m

and b = �α,
∥∥t1−λ− 1

q γ 1
b
(t)
∥∥

q;(0,1)
is finite if, and only if, either α � 1

q + 0 and 0 < q < +∞ or α  0 and

q = +∞; see [19, Remark 3.6]. We shall denote the space Λ1,b
p,q(R

n) by either Λ(1,α)
p,q (Rn) or Lip(1,−α)

p,q (Rn).
When m = 1, b = 	α

1 , with α > 1
q (α ≥ 0, if q = +∞), cf. Remark 18 in [14], the spaces Λ1,b

p,q(R
n) give rise to

the spaces Lip(1,−α)
p,q (Rn) considered in [14].

We refer to [17], where the general Besov-Hölder-Lipschitz spaces Λρ
p,q(R

n), with ρ a q-admissible function,
are considered.

Extentions of Besov and Lipschitz spaces have been studied in great detail by the Russian school, mainly
Gol’dman [11], [12], [13] and Kalyabin [15].
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Theorem 4.3 Let 1 ≤ p ≤ +∞ and 0 < q ≤ +∞. Let λ ∈ (0, 1] and let b be a slowly varying function on

[1, +∞). Suppose that
∥∥t1−λ− 1

q 1
b(1/t)

∥∥
q;(0,1)

< +∞, if λ = 1. Then Λλ,b
p,q(Rn), endowed with the quasi-norm∥∥ .

∣∣Λλ,b
p,q

∥∥, is a quasi-Banach space.

P r o o f. The proof of the completeness is quite standard. It is a consequence of the completeness of Yp(Rn),
the fact that ω(., t)p is a semi-norm and ω(., t)p ≤ 2 ‖.‖p (for each fixed t ∈ (0, +∞)), and Fatou’s Lemma; see
[18, proof of Theorem 3.1.4].

The next proposition shows that we could have defined the space Λλ,b
∞,∞(Rn) as a subspace of the uniformly

continuous functions on R
n.

Proposition 4.4 Let λ ∈ (0, 1] and let b be a slowly varying function on [1, +∞). Suppose that∥∥t1−λ 1
b(1/t)

∥∥
∞;(0,1)

< +∞, if λ = 1. Then Λλ,b
∞,∞(Rn) ↪→ C

(
Rn
)
.

P r o o f. It is straightforward by taking into consideration Lemma 3.1 (i).

A simpler characterisation of Λλ,b
∞,∞(Rn) is given by the next proposition, which is a particular case of [17,

Proposition 3.5].

Proposition 4.5 Let λ ∈ (0, 1] and let b be a slowly varying function on [1, +∞). Suppose that∥∥t1−λ 1
b(1/t)

∥∥
∞;(0,1)

< +∞, if λ = 1. Let f ∈ C(Rn). Then f ∈ Λλ,b∞,∞(Rn) if, and only if,

sup
x,y∈Rn

0<|x−y|<1

|f(x) − f(y)|
|x − y|λ γb(|x − y|) < +∞ .

Moreover, for each f ∈ Λλ,b
∞,∞(Rn),

∥∥f ∣∣Λλ,b
∞,∞

∥∥ ≈ ‖f‖∞ + sup
x,y∈Rn

0<|x−y|<1

|f(x) − f(y)|
|x − y|λ γb(|x − y|) .

We refer to [18, Sub-section 3.1.2] for sufficient conditions on the indices λ, q and on the slowly varying
functions b in order to have embeddings between Besov-Lipschitz-Karamata spaces. Alternatively, the proof of
these results follow that of embeddings concerning Lorentz-Karamata spaces by taking into consideration that
ω̃(f, .)p is equivalent to a non-increasing function, see [19]. We refer to [14, Proposition 16] for embeddings
between the spaces Lip(1,−α)

p,q (Rn).

5 Bessel-potential-type embedding theorems

In this section we deal with embedding results for certain Bessel-potential spaces modelled upon Lorentz-
Karamata spaces in the super-limiting case. Thus when p is in the limiting case, i.e., p = n

σ , where σ ∈ (0, n),
and the slowly varying function satisfies a super-limiting condition (see (5.8)), HσX is embedded in C(Rn),
where C(Rn) denotes the space of bounded and continuous scalar-valued functions defined on R

n; when p is
in the super-limiting case, i.e., p > n

σ , where σ ∈ (0, +∞), HσX is again embedded in C(Rn). However in
this case more can be said. Embeddings in Besov-Lipschitz-Karamata spaces are possible. These results extend
those of Edmunds, Gurka and Opic [7] in the context of logarithmic Bessel potential spaces. Moreover, when
p = n

σ−1 , σ ∈ (1, n + 1), we improve the results of Edmunds, Gurka and Opic [7, Theorem 4.11] and present
refinements of a result due to Triebel [22, Theorem 14.2 (ii)] (but in the context of Bessel potential spaces rather
than the Triebel-Lizorkin spaces) which itself improves the result of Brézis-Wainger (super-limiting case) about
the “almost Lipschitz continuity” of elements of H

1+n/p
p (Rn), cf. [4, Corollary 5].

Let σ > 0, p ∈ (1, +∞), q ∈ [1, +∞], and b a s.v. function on [1, +∞). The Lorentz-Karamata-Bessel
potential space HσLp,q;b(Rn) is defined to be

{u : u = gσ ∗ f, f ∈ Lp,q;b(Rn)}
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and is equipped with the (quasi-)norm ‖u‖σ;p,q;b := ‖f‖p,q;b.
For σ = 0, we put HσLp,q;b(Rn) = Lp,q;b(Rn).
When we consider m ∈ N, α = (α1, . . . , αm) ∈ R

m and b = �α, we obtain the logarithmic Bessel potential
space HσLp,q;α(Rn), endowed with the (quasi-)norm ‖u‖σ;p,q;b, considered in [7]. Note that if α = (0, . . . , 0),
HσLp,p;α(Rn) is simply the (fractional) Sobolev space Hσ

p (Rn) of order σ.
When k ∈ N we define, using standard notation,

W kLp,q;b(Rn) = {u : Dαu ∈ Lp,q;b(Rn), if |α| ≤ k} ,

and equip this space with the (quasi-)norm
∑

|α|≤k ‖Dαu‖p,q;b.

First we are concerned with the relation between HσLp,q;b(Rn), when σ is a natural number k, and the space
W kLp,q;b(Rn). It is well-known that if 1 < p < +∞, then the Bessel potential space HkLp(Rn), when k ∈ N,
coincides with the Sobolev space W k

p (Rn). Edmunds, Gurka and Opic [7, Theorem 4.2] also proved that an
analogous assertion holds when the role of the Lebesgue spaces is played by the generalised Lorentz-Zygmund
spaces Lp,q;α(Rn), with α ∈ R

m and p, q ∈ (1, +∞). We also have that a similar result holds if we consider
Lorentz-Karamata spaces instead of generalised Lorentz-Zygmund spaces. The basic tool needed to establish this
is Lemma 5.2 which extends [7, Lemma 4.1] and [20, Chap. V, Lemma 3].

We shall need some density results, which generalise [7, Lemma 3.12].

Lemma 5.1 Let 1 < p < +∞, 1 ≤ q < +∞ and let b be a slowly varying function on [1, +∞). Then
(i) C∞

0 (Rn) is dense in Lp,q;b(Rn);
(ii) C∞

0 (Rn) is dense in W 1Lp,q;b(Rn);
(iii) the Schwartz space S(Rn) is dense in HσLp,q;b(Rn) for all σ ≥ 0.

P r o o f. By Theorem 3.1 of [19] and Lemma 3.2, Lp,q;b(Rn) is a rearrangement-invariant function space with
absolutely continuous norm. The proof of (i) and (ii) follows by [7, Remark 3.13], where it is observed that
parts (i) and (ii) hold if instead of Lp,q;b(Rn) we consider any Banach function space L = L(Rn) which is
rearrangement-invariant with respect to Lebesgue measure on R

n and which has absolutely continuous norm.
Let us now prove part (iii). We start by proving that, under our conditions, S(Rn) ⊂ Lp,q;b(Rn). Let f ∈ S(Rn).
Then for each m ∈ N0, there exists cm ∈ (0, +∞) such that

|f(x)| ≤ cm

(1 + |x|2)m/2
for all x ∈ R

n . (5.1)

On the other hand,∫ +∞

0

(
t

1
p− 1

q γb(t)f∗(t)
)q

dt

=
∫ 1

0

(
t

1
p− 1

q γb(t)f∗(t)
)q

dt +
∫ +∞

1

(
t

1
p− 1

q γb(t)f∗(t)
)q

dt .

(5.2)

From (5.1), with m = 0, we have f∗(t) ≤ c0 for all t ∈ (0, +∞). Then∫ 1

0

(
t

1
p− 1

q γb(t)f∗(t)
)q

dt ≤ cq
0

∫ 1

0

t
q
p−1γq

b (t) dt < +∞ . (5.3)

From (5.1), with m ≥ 1 to be chosen later, we have

f∗(t) ≤ cm
ω

m/n
n(

ω
2/n
n + t2/n

)m/2
for all t ∈ [0, +∞) ,

where ωn is the volume of the unit ball in R
n. Then∫ +∞

1

(
t

1
p− 1

q γb(t)f∗(t)
)q

dt �
∫ +∞

1

t−
qm
n + q

p−1γq
b (t) dt . (5.4)
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If we choose m ∈ N such that m > n
p , then the right-hand side of (5.4) is finite. Now, it follows from (5.2),

(5.3) and (5.4) that f ∈ Lp,q;b(Rn), which gives S(Rn) ⊂ Lp,q;b(Rn). Next, let us prove that for any σ > 0,
S(Rn) ⊂ HσLp,q;b(Rn). By [20, pp. 135], {gσ ∗ h : h ∈ S(Rn)} = S(Rn) for any σ > 0. Let σ > 0 and
f ∈ S(Rn). Then there exists h ∈ S(Rn) such that f = gσ ∗ h. But since S(Rn) ⊂ Lp,q;b(Rn), it now follows
that h ∈ Lp,q;b(Rn) and therefore f ∈ HσLp,q;b(Rn), which proves that S(Rn) ⊂ HσLp,q;b(Rn). The density
now follows from part (i).

Lemma 5.2 Let σ ∈ [1, +∞), p ∈ (1, +∞), q ∈ (1, +∞) and let b be a slowly varying function on [1, +∞).
Then f ∈ HσLp,q;b(Rn) if, and only if, f ∈ Hσ−1Lp,q;b(Rn) and the distributional derivatives ∂f

∂xj
belong to

Hσ−1Lp,q;b(Rn) (j = 1, . . . , n).
Moreover, the (quasi-)norms

‖f‖σ;p,q;b and ‖f‖σ−1;p,q;b +
n∑

j=1

∥∥∥∥ ∂f

∂xj

∥∥∥∥
σ−1;p,q;b

are equivalent on HσLp,q;b(Rn).

P r o o f. In view of Lemma 5.1 and Corollary 3.4, the proof can be carried out as in the case of fractional
Sobolev spaces Hσ

p (Rn) (see [20, Chap. V, Lemma 3]).

The promised result now follows directly

Theorem 5.3 Let k ∈ N, p ∈ (1, +∞), q ∈ (1, +∞) and let b be a slowly varying function on [1, +∞). Then

HkLp,q;b(Rn) = W kLp,q;b(Rn)

and the corresponding (quasi-)norms are equivalent.

P r o o f. Similar to that of [20, Chap. V, Theorem 3].

We shall be concerned now with the embedding results to which we referred above. We start by recalling some
results needed in the sequel.

The next Lemma, which is a combination of two results due to Edmunds, Gurka and Opic, cf. [6, Lemma 3.5]
and [7, (4.23) in Corollary 4.6], provides us estimates for the non-increasing rearrangement of the Bessel Kernel.

Lemma 5.4 Let σ ∈ (0, +∞). Then there exists a constant B ∈ (0, +∞) such that

g∗σ(t) � tσ/n−1 exp
(− Bt1/n

)
, if σ ∈ (0, n) and t ∈ (0, +∞) , (5.5)

and such that

g∗σ(t) �


exp

(− Bt1/n
)
	1(t) , if σ = n and t ∈ (0, 1) ,

exp
(− Bt1/n

)
, if σ > n and t ∈ (0, 1) ,

exp
(− Bt1/n

)
, if σ ≥ n and t ∈ [1, +∞) .

(5.6)

We shall make use of the following result due to Edmunds, Gurka and Opic.

Lemma 5.5 [7, Lemma 4.5] Let Y = Y (Rn) be a Banach function space, with absolutely continuous
norm, which is rearrangement-invariant (with respect to Lebesgue measure on R

n). Suppose that σ > 0 and
‖gσ‖Y ′ < +∞, where gσ is the Bessel kernel. Then

HσY ↪→ C(Rn) . (5.7)

The next result extends [7, Corollary 4.6 & Remark 4.7], concerning the logarithmic Bessel potential space.

c© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



Math. Nachr. 265 (2004) / www.interscience.wiley.com 77

Proposition 5.6 Let q ∈ [1, +∞) and let b be a slowly varying function on [1, +∞). Suppose that either

σ ∈ (0, n) , p =
n

σ
and

∥∥∥t− 1
q′ γ 1

b
(t)
∥∥∥

q′;(0,1)
< +∞ (5.8)

or

σ ∈ (0, +∞), max
{
1,

n

σ

}
< p < +∞ . (5.9)

Then

HσLp,q;b(Rn) ↪→ C(Rn) .

P r o o f. We follow the proof of [7, Corollary 4.6]. Let Y (Rn) = Lp,q;b(Rn). In view of Lemma 5.5, we need
only to show that ‖gσ‖Y ′ < +∞.

Suppose first that (5.8) holds. Then, by [19, Theorem 3.1]

Y ′ = L n
n−σ ,q′; 1b

(Rn) . (5.10)

Thus by (5.10), (5.8) and (5.5),

‖gσ‖Y ′ =
∥∥∥t1− σ

n− 1
q′ γ 1

b
(t)g∗σ(t)

∥∥∥
q′;(0,+∞)

� I1 + I2 ,

where

I1 =
∥∥∥t− 1

q′ γ 1
b
(t) exp

(− Bt1/n
)∥∥∥

q′;(0,1)
, I2 =

∥∥∥t− 1
q′ γ 1

b
(t) exp

(− Bt1/n
)∥∥∥

q′;(1,+∞)
.

Plainly I2 < +∞, due to the exponential factor and because b is a slowly varying function on [1, +∞). Since∥∥∥t− 1
q′ γ 1

b
(t)
∥∥∥

q′;(0,1)
< +∞, it also follows that I1 ≤

∥∥∥t− 1
q′ γ 1

b
(t)
∥∥∥

q′;(0,1)
< +∞.

Now suppose that (5.9) holds. Then, by [19, Theorem 3.1], Y ′ = Lp′,q′; 1b
(Rn). If σ ∈ (0, n), we obtain from

(5.5) that

‖gσ‖Y ′ =
∥∥∥t 1

p′ − 1
q′ γ 1

b
(t)g∗σ(t)

∥∥∥
q′;(0,+∞)

� J1 + J2 ,

where

J1 =
∥∥∥t 1

p′ + σ
n−1− 1

q′ γ 1
b
(t) exp

(− Bt1/n
)∥∥∥

q′;(0,1)
,

J2 =
∥∥∥t 1

p′ + σ
n−1− 1

q′ γ 1
b
(t) exp

(− Bt1/n
)∥∥∥

q′;(1,+∞)
.

Once more, due to the exponential factor and because b is a slowly varying function on [1, +∞) it is clear
that J2 < +∞. Since our assumptions imply that 1

p′ + σ
n − 1 > 0, we have by [19, Lemma 3.1 (v)] that

J1 ≤
∥∥∥t 1

p′ + σ
n−1− 1

q′ γ 1
b
(t)
∥∥∥

q′;(0,1)
< +∞. Hence ‖gσ‖Y ′ < +∞. To deal with the case in which σ ∈ [n, +∞),

we use the estimates (5.6). Therefore, we obtain

‖gσ‖Y ′ =
∥∥∥t 1

p′ − 1
q′ γ 1

b
(t)g∗σ(t)

∥∥∥
q′;(0,+∞)

� K1 + K2 ,

where

K1 =


∥∥∥t 1

p′ − 1
q′ γ 1

b
(t) 	1(t) exp

(− Bt1/n
)∥∥∥

q′;(0,1)
, if σ = n ,∥∥∥t 1

p′ − 1
q′ γ 1

b
(t) exp

(− Bt1/n
)∥∥∥

q′;(0,1)
, if σ > n .

and

K2 =
∥∥∥t 1

p′ − 1
q′ γ 1

b
(t) exp

(− Bt1/n
)∥∥∥

q′;(1,+∞)
.
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Again, due to the exponential factor and because b is a slowly varying function on [1, +∞), it is easy to verify
that K2 < +∞. As for K1, let us observe the following. Let b1 be the slowly varying function defined by
b1(t) = �1(t)

b(t) for each t ≥ 1. Then γb1(t) = γ 1
b
(t) 	1(t) for each t ∈ (0, +∞) and

K1 ≤


∥∥∥t 1

p′ − 1
q′ γb1(t)

∥∥∥
q′;(0,1)

, if σ = n ,∥∥∥t 1
p′ − 1

q′ γ 1
b
(t)
∥∥∥

q′;(0,1)
, if σ > n .

Therefore, since 1
p′ > 0, we have by [19, Lemma 3.1 (v)] that K1 < +∞, and the result now follows.

Remark 5.7 Let q ∈ [1, +∞), m ∈ N, α ∈ R
m and b = �α.

(i) Then
∥∥∥t− 1

q′ γ 1
b
(t)
∥∥∥

q′;(0,1)
< +∞ if, and only if, either 1 < q < ∞ and α � 1

q′ + 0 or q = 1 and α  0.

(ii) In the counterpart of (5.8) of [7, Corollary 4.6 & Remark 4.7], only the case α � 1
q′ +0, with q ∈ [1, +∞)

is considered. However, the result of Proposition 5.6 still holds with α = 0 and q = 1 in (5.8).

Remark 5.8 Let m ∈ N, q ∈ [1, +∞), α1 ∈ R and 0 < α < 1. Let φ ∈ Kα and let b be the slowly varying
function on [1, +∞) defined by

b1(t) = 	
−α−1

q′
m (t)

m−1∏
i=1

	
1
q′
i (t) exp

(
α1	

α
m(t)

)
φ(	m−1(t)) for each t ≥ 1 .

(i) If φ is a constant function, i.e. φ(t) ≈ 1 for each t ≥ 1, then∥∥∥t− 1
q′ γ 1

b
(t)
∥∥∥

q′;(0,1)
< +∞

if, and only if, either 1 < q < ∞ and α1 > 0 or q = 1 and α1 ≥ 0.

(ii) If α1 > 0, then
∥∥∥t− 1

q′ γ 1
b
(t)
∥∥∥

q′;(0,1)
< +∞. If α1 < 0, then

∥∥∥t− 1
q′ γ 1

b
(t)
∥∥∥

q′;(0,1)
= +∞.

The next result is an extension of [7, Theorem 4.8] and a refinement of [16, Theorem 5.7.7 (i)].

Theorem 5.9 [19, Theorem 5.1] Let σ ∈ (0, n), 1 < p < n
σ , q ∈ [1, +∞] and let b be a slowly varying

function on [1, +∞). Then

HσLp,q;b(Rn) ↪→ Lr,q;b(Rn) , (5.11)

where 1
r = 1

p − σ
n .

Although a direct proof of Theorem 5.9 is given in [19], note that the result is also a consequence of Theorem
3.3, because the operator T defined by Tf = u = gσ ∗ f is of joint weak type (p1, q1; p2, q2), with 1/q1 =
(n − σ)/n, p1 = 1, q2 = +∞ and 1/p2 = σ/n; see the proof of Theorem 4.8 in [7] for more details.

Theorem 5.9 enables us to prove the next result, which is a refinement of [16, Theorem 5.7.8 (i)] and an
extension of [7, Theorem 4.9].

Theorem 5.10 Suppose that 1 < q < +∞, σ ∈ [1, n+1), max
{
1, n

σ

}
< p < n

σ−1 . Let b be a slowly varying
function on [1, +∞). Then for any u ∈ HσLp,q;b(Rn) and all x, y ∈ R

n,

|u(x) − u(y)| � ‖u‖σ;p,q;b |x − y|σ−n
p γ 1

b
(|x − y|n) . (5.12)

Moreover,

HσLp,q;b(Rn) ↪→ Λλ,b1∞,∞(Rn) , (5.13)

where λ := σ − n
p ∈ (0, 1) and b1 is the slowly varying function on [1, +∞) defined by b1(t) = 1

b(tn) for all
t ∈ [1, +∞).
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P r o o f. In view of Lemma 5.1 and Proposition 5.6, it is enough to prove (5.12) for any u ∈ S(Rn). Let
x, y ∈ R

n and suppose x �= y, otherwise the result is trivial. Let ρ ∈ (0, +∞) such that 0 < |x − y| = ρ. Then
there is a cube Qρ of edge length ρ such that x, y ∈ Qρ. Given any u ∈ S(Rn) and z ∈ Qρ, we have

u(x) − u(z) =
∫ 1

0

n∑
i=1

∂u

∂xi
(x + t(z − x))(zi − xi) dt .

This implies

u(x) − ρ−n

∫
Qρ

u(z) dz = ρ−n

∫
Qρ

∫ 1

0

n∑
i=1

∂u

∂xi
(x + t(z − x))(zi − xi) dt dz .

Hence, ∣∣∣∣∣u(x) − ρ−n

∫
Qρ

u(z) dz

∣∣∣∣∣ = ρ−n

∣∣∣∣∣
∫

Qρ

∫ 1

0

n∑
i=1

∂u

∂xi
(x + t(z − x))(zi − xi) dt dz

∣∣∣∣∣
≤ √

n

∫ 1

0

ρ1−nt−n

(
n∑

i=1

∫
Qx

tρ

∣∣∣∣ ∂u

∂xi
(s)
∣∣∣∣ ds

)
dt ,

(5.14)

where for each t ∈ (0, 1) the symbol Qx
tρ denotes a sub-cube of Qρ with faces parallel to those of Qρ, with

side length tρ, and which is given by Qx
tρ = {s ∈ Qρ : s = x + t(z − x), z ∈ Qρ} . Since u ∈ S(Rn) ⊂

HσLp,q;b(Rn), Lemma 5.2 shows that

∂u

∂xi
∈ Hσ−1Lp,q;b(Rn) , i = 1 , . . . , n . (5.15)

If σ > 1 then, by Theorem 5.9, with σ−1 instead of σ, Hσ−1Lp,q;b(Rn) ↪→ Lr,q;b(Rn), where 1
r = 1

p − σ−1
n . If

σ = 1, then r = p and Hσ−1Lp,q;b(Rn) ↪→ Lr,q;b(Rn) holds trivially. Thus Hölder’s inequality, cf. [2, Corollary
II.4.5], and [19, Theorem 3.1] yield

n∑
i=1

∫
Qx

tρ

∣∣∣∣ ∂u

∂xi
(s)
∣∣∣∣ ds ≤

n∑
i=1

∥∥∥∥ ∂u

∂xi

∥∥∥∥
r,q;b

∥∥∥χQx
tρ

∥∥∥
r′,q′; 1b

. (5.16)

Furthermore,

n∑
i=1

∥∥∥∥ ∂u

∂xi

∥∥∥∥
r,q;b

�
n∑

i=1

∥∥∥∥ ∂u

∂xi

∥∥∥∥
σ−1;p,q;b

� ‖u‖σ;p,q;b , (5.17)

and because 1
r′ > 0, [19, Lemma 3.1 (v)] gives∥∥∥χQx

tρ

∥∥∥
r′,q′; 1b

=
∥∥∥τ 1

r′ − 1
q′ γ 1

b
(τ)χ

(0,(tρ)n)
(τ)
∥∥∥

q′;(0,+∞)
≈ (tρ)n/r′

γ 1
b
((tρ)n)

for each t ∈ (0, 1). Hence∫ 1

0

ρ1−nt−n

(
n∑

i=1

∫
Qx

tρ

∣∣∣∣ ∂u

∂xi
(s)
∣∣∣∣ ds

)
dt � ‖u‖σ;p,q;b I(ρ) , (5.18)

where I(ρ) = 1
n

∫ ρn

0 τ
σ
n− 1

p−1γ 1
b
(τ) dτ. Since σ

n − 1
p > 0, [19, Lemma 3.1 (v)] yields I(ρ) ≈ ρσ−n

p γ 1
b
(ρn),

which together with (5.14) and (5.18) ensure∣∣∣∣∣u(x) − ρ−n

∫
Qρ

u(z) dz

∣∣∣∣∣ � ‖u‖σ;p,q;b ρσ−n
p γ 1

b
(ρn) ,
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and so |u(x) − u(y)| � ‖u‖σ;p,q;b |x−y|σ−n
p γ 1

b
(|x−y|n), for all x, y ∈ R

n and the proof of (5.12) is complete.
Let us now prove (5.13). Let u ∈ HσLp,q;b(Rn). From (5.12), we have

|u(x) − u(y)| � ‖u‖σ;p,q;b |x − y|σ−n
p γ 1

b1
(|x − y|)

for all x, y ∈ R
n such that 0 < |x − y| < 1, where b1 is the slowly varying function on [1, +∞) defined by

b1(t) = 1
b(tn) for all t ∈ [1, +∞). On the other hand, cf. Proposition 5.6, u ∈ C(Rn) and ‖u‖∞ � ‖u‖σ;p,q;b.

Then the assertion now follows from Proposition 4.5.

P r o o f. The previous proof was carried out as that of [7, Theorem 4.9], by taking into consideration Lemma
5.1, Proposition 5.6, Lemma 5.2, Theorem 5.1 of [19], [2, Corollary II.4.5], Theorem 3.1 of [19], Lemma 3.1 (v)
of [19] and Proposition 4.5.

Remark 5.11 Let us assume the conditions of Theorem 5.10 hold. Let m ∈ N, α ∈ R
m and let b = �α.

Then b1 ≈ �−α and in this case the previous theorem coincides with [7, Theorem 4.9] and with the first part of
[7, Theorem 4.16].

The next result is a refinement of [16, Theorem 5.7.8 (iii)] and extends [7, Theorem 4.13].

Theorem 5.12 Let 1 < q < +∞ and let b be a slowly varying function on [1, +∞). Suppose that either

σ ∈ (1, n + 1) , p =
n

σ − 1
and

∥∥∥t− 1
q′ γ 1

b
(t)
∥∥∥

q′;(0,1)
< +∞ (5.19)

or

σ ∈ (1, +∞) , max
{

1,
n

σ − 1

}
< p < +∞ . (5.20)

Then for any u ∈ HσLp,q;b(Rn) and all x, y ∈ R
n,

|u(x) − u(y)| � ‖u‖σ;p,q;b |x − y| . (5.21)

Moreover,

HσLp,q;b(Rn) ↪→ Λ1,1
∞,∞(Rn) = Lip(Rn) . (5.22)

P r o o f. In view of Lemma 5.1 and Proposition 5.6, it is enough to prove (5.21) for any u ∈ S(Rn). Let
x, y ∈ R

n and suppose x �= y, otherwise the result is trivial. Let ρ ∈ (0, +∞) such that 0 < |x − y| = ρ. Then
we have (5.14). In view of (5.15) and Proposition 5.6 (with σ − 1 instead of σ), it follows that ∂u

∂xi
∈ L∞(Rn).

Also, with the same notation as in the proof of Theorem 5.10, Hölder’s inequality yields

n∑
i=1

∫
Qx

tρ

∣∣∣∣ ∂u

∂xi
(s)
∣∣∣∣ ds ≤

n∑
i=1

∥∥∥∥ ∂u

∂xi

∥∥∥∥
∞

∥∥χ
Qx

tρ

∥∥
1
. (5.23)

Furthermore,

n∑
i=1

∥∥∥∥ ∂u

∂xi

∥∥∥∥
∞

�
n∑

i=1

∥∥∥∥ ∂u

∂xi

∥∥∥∥
σ−1;p,q;b

� ‖u‖σ;p,q;b , (5.24)

and ∥∥χ
Qx

tρ

∥∥
1

=
∫ (tρ)n

0

dτ = (tρ)n (5.25)

for each t ∈ (0, 1). From (5.14), (5.23), (5.24) and (5.25) we have∣∣∣∣∣u(x) − ρ−n

∫
Qρ

u(z) dz

∣∣∣∣∣ � ‖u‖σ;p,q;b

∫ 1

0

ρ1−nt−n(tρ)n dt = ρ ‖u‖σ;p,q;b .

Thus |u(x) − u(y)| � ‖u‖σ;p,q;b |x − y| for all x, y ∈ R
n and the proof of (5.21) is complete.
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Let us now prove (5.22). Let u ∈ HσLp,q;b(Rn). From (5.21), we have

|u(x) − u(y)| � ‖u‖σ;p,q;b |x − y|
for all x, y ∈ R

n such that 0 < |x − y| < 1. On the other hand, u ∈ C(Rn) and ‖u‖∞ � ‖u‖σ;p,q;b (cf.
Proposition 5.6). Then the result now follows from Theorem 4.5.

We refer to Remark 5.8 for other examples of slowly varying functions for which Theorem 5.12 holds. These
examples have not been considered before in the literature, as far as we are aware.

In order to consider further embedding results, which are going to improve and extend those of Edmunds,
Gurka and Opic concerning logarithmic Bessel potential spaces, we shall need the next two propositions. Propo-
sition 5.13 gives an important estimate due to Triebel, cf. [22, Proposition 12.16 (i)].

Proposition 5.13 Let ε ∈ (0, 1). Then there is a number c > 0 such that

ω̃(f, t)∞ ≤ c |∇f |∗∗(t2n−1
)

+ 3 sup
0<τ≤t2

τ−1/2ω(f, τ)∞ (5.26)

for all t ∈ (0, ε) and all f ∈ C1
(
Rn
)
, where ∇f =

(
∂f
∂x1

, . . . , ∂f
∂xn

)
and |∇f | denotes the Euclidean norm

of ∇f .

The next result extends [22, Proposition 12.16 (ii)], restricted here however to the case q ∈ [1, +∞].
Proposition 5.14 Let q ∈ [1, +∞] and let b be a slowly varying function on [1, +∞) such that∥∥t− 1

q γb(t)
∥∥

q;(0,1)
< +∞. Then∥∥t− 1

q γb1(t) ω̃(f, t)∞
∥∥

q;(0,1)
�
∥∥t− 1

q γb(t) |∇f |∗∗(t)∥∥
q;(0,1)

≈ ∥∥t− 1
q γb(t) |∇f |∗(t)∥∥

q;(0,1)

(5.27)

for all f ∈ C1
(
Rn
)
, where b1 is the slowly varying function on [1, +∞) defined by b1(t) = b

(
t2n−1

)
for all

t ∈ [1, +∞).

P r o o f. We use the main ideas in the proof of [22, Proposition 12.16 (ii)], where the case γb1(t) ≈ γb(t) ≈
| ln t|−u for each t ∈ (0, ε), with 0 < ε < 1, u = 1

q + v, v > 0 and the range of t in (5.27) is equal to (0, ε), is
considered.

Suppose 1 ≤ q < +∞ and let ε ∈ (0, 1) to be chosen later. Let f ∈ C1
(
Rn
)
. By (5.26) from Proposition

5.13, we have∥∥t− 1
q γb1(t) ω̃(f, t)∞

∥∥
q;(0,ε)

�
∥∥t− 1

q γb1(t)
∥∥

q;(0,1)
sup

0<t<ε
t

1
2 ω̃(f, t)∞ +

∥∥t− 1
q γb1(t) |∇f |∗∗(t2n−1

)∥∥
q;(0,ε)

.
(5.28)

Now ∥∥t− 1
q γb1(t)

∥∥
q;(0,1)

≈ ∥∥t− 1
q γb(t)

∥∥
q;(0,1)

< +∞ , (5.29)

and, since ω̃(f, .)∞ is equivalent to a non-increasing function on (0, +∞), we have

sup
0<t<ε

t
1
2 ω̃(f, t)∞ �

(∫ ε

0

(
t

1
2− 1

q ω̃(f, t)∞
)q

dt

) 1
q

. (5.30)

So from (5.28), (5.29), (5.30) and by the change of variables τ = t2n−1, we obtain∥∥t− 1
q γb1(t) ω̃(f, t)∞

∥∥
q;(0,ε)

�
∥∥t 1

2− 1
q ω̃(f, t)∞

∥∥
q;(0,ε)

+
∥∥t− 1

q γb1(t) |∇f |∗∗(t2n−1
)∥∥

q;(0,ε)

≤ c1

∥∥t 1
2− 1

q ω̃(f, t)∞
∥∥

q;(0,ε)
+ c2

∥∥τ− 1
q γb(τ) |∇f |∗∗(τ)

∥∥
q;(0,1)

,

(5.31)
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where c1, c2 are positive constants. Now, since b1 is a slowly varying function on [1, +∞), there exists ε0 ∈ (0, 1)
such that

t
1
2 ≤ 1

2 c1
γb1(t) for each t ∈ (0, ε0) . (5.32)

This is the counterpart of (12.102) in [22]. Now under the additional condition ε := ε0, we have from (5.31) and
(5.32) that ∥∥t− 1

q γb1(t) ω̃(f, t)∞
∥∥

q;(0,ε)

≤ (1/2)
∥∥t− 1

q γb1(t) ω̃(f, t)∞
∥∥

q;(0,ε)
+ c2

∥∥τ− 1
q γb(τ) |∇f |∗∗(τ)

∥∥
q;(0,1)

.

Therefore ∥∥t− 1
q γb1(t) ω̃(f, t)∞

∥∥
q;(0,ε)

�
∥∥τ− 1

q γb(τ) |∇f |∗∗(τ)
∥∥

q;(0,1)
. (5.33)

Since ω̃(f, .)∞ is equivalent to a non-increasing function and ε = ε0 < 1, it follows by the change of variables
τ = ε t that ∥∥t− 1

q γb1(t) ω̃(f, t)∞
∥∥

q;(0,1)
�
∥∥t− 1

q γb1(t) ω̃(f, ε t)∞
∥∥

q;(0,1)

≈ ∥∥τ− 1
q γb1(τ) ω̃(f, τ)∞

∥∥
q;(0,ε)

.
(5.34)

From (5.33) and (5.34) we then obtain∥∥t− 1
q γb1(t) ω̃(f, t)∞

∥∥
q;(0,1)

�
∥∥τ− 1

q γb(τ) |∇f |∗∗(τ)
∥∥

q;(0,1)
. (5.35)

On the other hand, from the Hardy-type inequality (3.6) in [19, Lemma 3.2] with ν = −1 < 0, we have∥∥t− 1
q γb(t) |∇f |∗∗(t)∥∥

q;(0,1)
�
∥∥t− 1

q γb(t) |∇f |∗(t)∥∥
q;(0,1)

. (5.36)

By the simple inequality |∇f |∗(t) ≤ |∇f |∗∗(t) for each t > 0, we have∥∥t− 1
q γb(t) |∇f |∗(t)∥∥

q;(0,1)
≤ ∥∥t− 1

q γb(t) |∇f |∗∗(t)∥∥
q;(0,1)

. (5.37)

Now (5.27) is a consequence of (5.35), (5.36) and (5.37), when 1 ≤ q < +∞. The proof with q = +∞ is
analogous.

We shall need the following lemma.

Lemma 5.15 [19, Lemma 5.2] Let σ ∈ (0, n), p, q ∈ [1, +∞] and let b1, b2 be two slowly varying functions
on [1, +∞). Suppose that∥∥ t−

1
q b2(1/t)

∥∥
q;(0,1)

< +∞ (5.38)

and either

1 ≤ p ≤ q ≤ +∞ , sup
0<x<1

b2(1/x)
b1(1/x)

< +∞ , (5.39)

and there is a positive constant c such that∥∥t− 1
q b2(1/t)

∥∥
q;(0,x)

∥∥(t 1
p′ b1(1/t)

)−1∥∥
p′;(x,1)

≤ c for all x ∈ (0, 1) , (5.40)

or

1 ≤ q < p ≤ +∞ ,

∥∥∥∥x− 1
r
b2(1/x)
b1(1/x)

∥∥∥∥
r;(0,1)

< +∞ , (5.41)

and ∫ 1

0

[∥∥t− 1
q b2(1/t)

∥∥
q;(0,x)

∥∥(t 1
p′ b1(1/t)

)−1∥∥p′/q′

p′;(x,1)

]r (
x

1
p′ b1(1/x)

)−p′
dx (5.42)

is finite, where 1
r = 1

q − 1
p . Then

‖u∗‖∞,q;b2;(0,1) � ‖u‖σ; n
σ ,p;b1 holds for all u ∈ HσL n

σ ,p;b1(R
n) . (5.43)
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As promised, we are now in a position to present the last embedding results. These results improve and ex-
tend [7, Theorem 4.11] and that of Brézis-Wainger about “the almost Lipschitz continuity” of the elements of

H
1+n/p
p (Rn), i.e., H

1+n/p
p (Rn) ↪→ Lip

(1,− 1
p′ )

∞,∞ (Rn), cf. [4, Corollary 5]. We were motivated by [22, Theo-

rem 14.2 (ii)], which, with 1 < p < +∞ and 0 < q ≤ +∞, leads to F
1+n/p
p,q (Rn) ↪→ Lip(1,−1)

∞,p (Rn). By

F
1+n/p
p,q (Rn) we mean the Triebel-Lizorkin spaces. Note that Triebel’s result improves and extends the above

result of Brézis-Wainger about “the almost Lipschitz continuity”, because F
1+n/p
p,2 (Rn), when 1 < p < +∞, co-

incides with H
1+n/p
p (Rn), cf. [21, Theorem 2.5.6], and Lip(1,−1)

∞,p (Rn) ↪→ Lip
(1,− 1

p′ )
∞,∞ (Rn), cf. [14, Proposition

16]. We refer to [22, Chapter II] and to [14] for more results and more details about embeddings of “B” and “F”
spaces into spaces of Lipschitz type.

Theorem 5.16 Let p ∈ (1, +∞), q ∈ [1, +∞] and σ ∈ (1, n + 1). Let b1, b2 be two slowly varying functions
on [1, +∞) such that∥∥∥ t

− 1
p′ γ 1

b1
(t)
∥∥∥

p′;(0,1)
= +∞ and

∥∥ t−
1
q b2(1/t)

∥∥
q;(0,1)

< +∞ (5.44)

and either conditions (5.39), (5.40) or conditions (5.41), (5.42) are verified. Then

HσL n
σ−1 ,p;b1(R

n) ↪→ Λ1,b3∞,q(R
n) = Lip1,b3∞,q(R

n) , (5.45)

where b3 is the slowly varying function defined by b3(t) = 1
b2(t2n−1) for each t ∈ [1, +∞).

P r o o f. Let u ∈ S(Rn) ⊂ HσL n
σ−1 ,p;b1(Rn). Then Lemma 5.2 shows that ∂u

∂xi
∈ Hσ−1L n

σ−1 ,p;b1(Rn),
for i = 1, . . . , n. Now by Lemma 5.15, with σ − 1 instead of σ, and by observing that v∗ = |v|∗ for any
v ∈ M0(Rn, µn), we have∥∥∥∥∣∣∣∣ ∂u

∂xi

∣∣∣∣∗ ∥∥∥∥
∞,q;b2;(0,1)

�
∥∥∥∥ ∂u

∂xi

∥∥∥∥
σ−1; n

σ−1 ,p;b1

for i = 1 , . . . , n .

Hence, by Lemma 5.2,

n∑
i=1

∥∥∥∥∣∣∣∣ ∂u

∂xi

∣∣∣∣∗ ∥∥∥∥
∞,q;b2;(0,1)

�
n∑

i=1

∥∥∥∥ ∂u

∂xi

∥∥∥∥
σ−1; n

σ−1 ,p;b1

� ‖u‖σ; n
σ−1 ,p;b1 .

This together with Proposition 5.14 and the Hardy-type inequality (3.6) in [19, Lemma 3.2] with ν = −1 < 0
give ∥∥∥t− 1

q γ 1
b3

(t) ω̃(u, t)∞
∥∥∥

q;(0,1)
�
∥∥t− 1

q γb2(t) |∇u|∗∗(t)∥∥
q;(0,1)

�
n∑

i=1

∥∥∥∥t− 1
q γb2(t)

∣∣∣∣ ∂u

∂xi

∣∣∣∣∗∗(t)∥∥∥∥
q;(0,1)

� ‖u‖σ; n
σ−1 ,p;b1 .

(5.46)

By Proposition 5.6, we also have ‖u‖∞ � ‖u‖σ; n
σ−1 ,p;b1 . This with (5.46) yield∥∥u∣∣Λ1,b3∞,q

∥∥ � ‖u‖σ; n
σ−1 ,p;b1 for all u ∈ S(Rn) . (5.47)

Now let u ∈ HσL n
σ−1 ,p;b1(Rn). By Lemma 5.1 there exists {um}m ⊂ S(Rn) such that

‖um − u‖σ; n
σ−1 ,p;b1 −→ 0 , as m → +∞ . (5.48)

Hence, ‖um − ul‖σ; n
σ−1 ,p;b1 → 0, as m, l → +∞, which together with (5.47) yield

∥∥um − ul

∣∣Λ1,b3∞,q

∥∥ → 0 as

m, l → +∞, i.e., {um}m is a Cauchy sequence in Λ1,b3∞,q(Rn). Since Λ1,b3∞,q(Rn) is a complete space, cf. Theorem
4.3, there exists v ∈ Λ1,b3∞,q(R

n) such that∥∥um − v
∣∣Λ1,b3∞,q

∥∥ −→ 0 , as m → +∞ . (5.49)
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Now, Proposition 5.6, the trivial embedding Λ1,b3∞,q(Rn) ↪→ C(Rn), (5.48) and (5.49) entail u = v and um → u,
as m → +∞ (

convergence in Λ1,b3∞,q(R
n)
)
. So, (5.47) gives

∥∥um

∣∣Λ1,b3∞,q

∥∥ ≤ ‖um‖σ; n
σ−1 ,p;b1 , and by passing to

the limit we obtain
∥∥u∣∣Λ1,b3∞,q

∥∥ ≤ ‖u‖σ; n
σ−1 ,p;b1 , which yields the assertion.

Remark 5.17 Note that the condition
∥∥∥ t

− 1
p′ γ 1

b1
(t)
∥∥∥

p′;(0,1)
= +∞ in (5.44) is not used in the proof of Theo-

rem 5.16, and can therefore be omitted. However, if
∥∥∥ t

− 1
p′ γ 1

b1
(t)
∥∥∥

p′;(0,1)
< +∞, we have HσL n

σ−1 ,p;b1(R
n) ↪→

Λ1,1
∞,∞(Rn) = Lip(Rn), as results from (5.19) and (5.21) of Theorem 5.12, which is a better result than that given

by (5.45). In fact, for any b3 and q ∈ [1, +∞] under the conditions of Theorem 5.16, the embedding

Λ1,1
∞,∞(Rn) ↪→ Λ1,b3∞,q(R

n) (5.50)

holds. To see this, note that
∥∥ t−

1
q 1

b3(1/t)

∥∥
q;(0,1)

≈ ∥∥ t−
1
q b2(1/t)

∥∥
q;(0,1)

< +∞, and follow the proof of [19,
Theorem 3.2], where embeddings concerning LK spaces were established, by taking into consideration that
ω̃(f, .)p is equivalent to a non-increasing function. Alternatively, see [18, Theorem 3.1.7].

Corollary 5.18 Let p ∈ (1, +∞), q ∈ [1, +∞] and σ ∈ (1, n + 1). Let m ∈ N, α = (α1, . . . , αm) ∈ R
m

and let k ∈ {1, . . . , m} be such that αk �= 1
p′ and, if k ≥ 2, αi = 1

p′ , i = 1, . . . , k − 1. Assume αk < 1
p′ . Let

β = (β1, . . . , βm) ∈ R
m with βk �= − 1

q and, if k ≥ 2, βi = − 1
q , i = 1, . . . , k − 1. Then

HσL n
σ−1 ,p;α(Rn) ↪→ Λ(1,−β)

∞,q (Rn) = Lip(1,β)
∞,q (Rn) , (5.51)

provided one of the following conditions is satisfied:

1 < p ≤ q ≤ +∞ , βk < −1
q

, β + δq;m,k � α − δp′;m,k ; (5.52)

1 ≤ q < p < +∞ , βk < −1
q
, β +

1
q
≺ α − δ1;m,k +

1
p

. (5.53)

P r o o f. Let b1 = �α and b2 = �β. Then it follows that both conditions in (5.44) are verified. By [19, Remark
3.2] and [19, Remark 3.4], either conditions (5.39), (5.40) or conditions (5.41), (5.42) are verified. Note that
b3(t) ≈ �−β(t) for all t ∈ [1, +∞). Hence the result follows from Theorem 5.16.

The situation when α1 = . . . = αm = 1
p′ is also covered by the previous corollary, by using α̃ =

(α̃1, . . . , α̃m+1) ∈ R
m+1 in place of α ∈ R

m, where α̃j = 1
p′ for j = 1, . . . , m and α̃m+1 = 0, and con-

sidering k = m + 1.

Remark 5.19 (i) When q = +∞, k = m and β = α − δp′;m,m, the previous corollary gives [7, Therorem
4.11]. In particular, we obtain with p = n/(σ − 1), k = m = 1, α = 0 and β = −1/p′, the result of
Brézis-Wainger mentioned just before Theorem 5.16.

(ii) When 1 < p = q = n/(σ − 1) < +∞, k = m = 1, α = 0 and β = −1, we recover the Triebel’s result,
but in the context of fractional Sobolev spaces; see comments before Theorem 5.16.

(iii) Let 1 < p < +∞, 1 ≤ q ≤ +∞, σ ∈ (1, n + 1), α, β ∈ R
m, k ∈ {1, . . . , m} as in Corollary 5.18.

Suppose additionally that one of the conditions (5.52)–(5.53) is satisfied. Then

HσL n
σ−1 ,p;α(Rn) ↪→ Λ(1,−ν)

∞,p (Rn) = Lip(1,ν)
∞,p (Rn) ↪→ Λ(1,−β)

∞,q (Rn) = Lip(1,β)
∞,q (Rn) ,

where ν = α − δ1;m,k. The first embedding follows from the previous corollary with q = p. Since δ1;m,k =
δp;m,k + δp′;m,k and ν = α− δ1;m,k, the second embedding follows from [18, Theorem 3.1.7] and [18, Remark
3.1.8], if q ≤ p, and from [18, Theorem 3.1.10] and [18, Remark 3.1.11], if q > p. Alternatively, see [19, Remark
5.1] for considerations similar to those regarding the second embedding.

The next corollary presents embeddings of Bessel-Karamata spaces with slowly varying functions different
from the ones of the previous corollary, i.e. of logarithmic type. This result has not been considered before in the
literature, as far as we are aware.

c© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



Math. Nachr. 265 (2004) / www.interscience.wiley.com 85

Corollary 5.20 Let p ∈ (1, +∞), q ∈ [1, +∞] and σ ∈ (1, n + 1), m ∈ N, α1, β1 ∈ R\{0} and α ∈ (0, 1).
Assume α1 < 0. Let φ1, φ2 ∈ Kα and let b1, b2 be two slowly varying functions on [1, +∞) defined by

b1(t) = 	
−α−1

p′
m (t)

m−1∏
i=1

	
1
p′
i (t) exp(α1	

α
m(t))φ1(	m−1(t)) for each t ≥ 1 ,

and

b2(t) = 	
α−1

q
m (t)

m−1∏
i=1

	
− 1

q

i (t) exp(β1	
α
m(t))φ2(	m−1(t)) for each t ≥ 1 ,

respectively. Then (5.45) holds, provided one of the following conditions is satisfied:

1 < p < +∞ , 1 ≤ q ≤ +∞ , β1 < α1 ;

1 < p ≤ q ≤ +∞ , β1 = α1 , φ2 � φ1 .

P r o o f. By Remark 5.8 and [19, Remarks 3.3, 3.5] the conditions of the previous theorem are satisfied. The
result now follows.
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