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The concept of local growth envelope (ELGA, u) of the quasi-normed function space A is applied to the spaces
of generalized smoothness B

(s,Ψ)
pq (Rn) and F

(s,Ψ)
pq (Rn) and it is shown that the influence of the function

Ψ, which is a fine tuning of the main smoothness parameter s, is strong enough in order to show up in the
corresponding growth envelopes.
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1 Introduction

One knows from the Sobolev embedding theorem that, given k ∈ N and 1 < p <∞,

W k
p ↪→ L∞ if, and only if , k >

n

p
,

a result which has been generalized to the context of Besov and Triebel-Lizorkin spaces:
With the understanding that s ∈ R and 0 < p, q ≤ ∞ (and p �= ∞ in the case of the F -spaces),

F s
pq ↪→ L∞ if , and only if ,


s >

n

p
or

s =
n

p
and 0 < p ≤ 1 ,

Bs
pq ↪→ L∞ if , and only if ,


s >

n

p
or

s =
n

p
and 0 < q ≤ 1

(cf., for example, [20, Thm. 3.3.1, p. 113], also for reference of people who contributed to this result).
Note that the embeddings in L∞ imply the essential boundedness of the functions involved.
Recently, Haroske [8] and Triebel [25] studied the type of essential unboundedness of functions in such spaces

which are not embedded in L∞, and with the further restriction s > n(1/p− 1)+ for the parameters (basically
this guarantees one is dealing with regular distributions). The unboundedness was measured by the determination
of the so-called local growth envelope function ELGF

s
pq or ELGB

s
pq

(
which we shall write as ELGA

s
pq , for short

)
,

which is a (preferably) continuous representative in the equivalence class of all positive decreasing functions
which are equivalent to

ELG|As
pq(t) := sup

{
f∗(t) :

∥∥f ∣∣As
pq

∥∥ ≤ 1
}
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in some interval (0, ε] (for some ε ∈ (0, 1]).
They studied both the sub-critical case (corresponding to s < n/p) and the critical case (corresponding to

s = n/p and either p > 1 for the F -spaces or q > 1 for the B-spaces). In the former case (which is what
concerns us here in this paper) they obtained that ELGA

s
pq can be taken to be equal to t−1/r in some interval of

the type (0, ε], as above, where r > 1 is such that s− n/p = −n/r.
Their results are even better than this. They measured the behaviour of an individual f∗ against ELGA

s
pq and

a measure built on this: the Borel measure µ associated with − log ELGA
s
pq on some (0, ε]. They looked for the

best exponent v such that(∫ ε

0

(
f∗(t)

ELGA
s
pq(t)

)v

µ(dt)
)1/v

≤ c
∥∥f ∣∣As

pq

∥∥ , (1.1)

for some constant c = c(v) and all f ∈ As
pq , and they have found that it exists and equals q when A = B and

equals p when A = F . Actually, since µ(dt) can be taken to be dt/t in the case of the spaces As
pq , (1.1) can also

be written as(∫ ε

0

(
t1/rf∗(t)

)v dt
t

)1/v

≤ c
∥∥f ∣∣As

pq

∥∥ , (1.2)

so that the results obtained can also be seen as extensions or complements to contributions of many other authors:
Peetre [19], Strichartz [21], Herz [9], Brudnyi [1], Goldman [5, 6], Lizorkin [14], Kalyabin and Lizorkin [11],
Netrusov [17, 18] and Kolyada [12]. Further detailed references can be found in [24, Rmk. 2.7] and [25, Sect. 15].

Our aim here is to deal with this type of issues but now for the spaces B(s,Ψ)
pq and F (s,Ψ)

pq of generalized
smoothness. There are several approaches, of different degrees of generality, to define such spaces (cf. [11], [15],
[2], [13], [3]). We follow here the approach used by Edmunds and Triebel in [3, 4] (cf. also [16]).

We get results of type (1.1) withA(s,Ψ)
pq instead ofAs

pq , where ELGA
(s,Ψ)
pq (t) is equivalent to t−1/rΨ(t)−1 near

0. The corresponding translation to the formulation of type (1.2) means that on the left-hand side one should have
t1/rΨ(t) instead of t1/r. For precise formulations, please refer to Section 4 below.

In the case A = B and p ≥ 1 our results, read in terms of embeddings, are connected with the work of
Goldman. In this particular case it would be possible to fit in the general setting considered in [6] and hence
obtain necessary and sufficient conditions for having an embedding into a general symmetric space. As a starting
point this information would be of no use for us, since it gives no way of measuring the optimality of the target
space that can be taken. Following our approach we arrived in a natural way to such a target space and then it
would be possible, using Hardy type inequalities developed in [7], to check that the corresponding conditions in
[6] are indeed fulfilled.

In the third section we present a lifting property for the spaces A(s,Ψ)
pq which might have some interest inde-

pendently of the main topic under consideration in this paper.

2 Definitions and first properties

As usual, R
n denotes the n-dimensional real Euclidean space, N the collection of all natural numbers and

N0 = N ∪ {0}. We use the equivalence ∼ in

ak ∼ bk or ϕ(x) ∼ ψ(x)

always to mean that there are two positive numbers c1 and c2 such that

c1ak ≤ bk ≤ c2ak or c1ϕ(x) ≤ ψ(x) ≤ c2ϕ(x)

for all admitted values of the discrete variable k or the continuous variable x, where (ak)k, (bk)k are non-negative
sequences and ϕ, ψ are non-negative functions. In the latter case we also write ϕ ∼LG ψ to mean that ϕ ∼ ψ
in the smallest of the domains of ϕ and ψ, where these functions are further assumed to be decreasing, positive
and have domains of the type (0, ε], for possibly different values of ε ∈ (0, 1]. It is easily seen that ∼LG is an
equivalence relation in the family ELG of such functions.
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Given two quasi-Banach spaces X and Y , we write X ↪→ Y if X ⊂ Y and the natural embedding of X in Y
is continuous.

All unimportant positive constants will be denoted by c, occasionally with additional subscripts within the
same formula. In what follows log is always taken with respect to base 2.

Since we do not deal with function spaces on domains different from R
n, we always omit the “R

n” in their
notation.

2.1 Special functions

Definition 2.1 A positive monotone function Ψ on the interval (0, 1] is called admissible if

Ψ
(
2−j
) ∼ Ψ

(
2−2j

)
, j ∈ N0 . (2.1)

Example 2.2 If c ∈ (0, 1) and b ∈ R, then

Ψ(x) = | log c x|b , x ∈ (0, 1] ,

is an admissible function.

In the following lemma we present some properties of admissible functions that will be useful in the sequel.
For further properties we refer to Proposition 1.4 in [16].

Lemma 2.3 Let Ψ be an admissible function according to Definition 2.1.
(i) There exist constants b ≥ 0, c1, c2 > 0 such that

c1(1 + | log t|)−b ≤ inf
0<s≤1

Ψ(ts)
Ψ(s)

≤ sup
0<s≤1

Ψ(ts)
Ψ(s)

≤ c2(1 + | log t|)b ,

for any t ∈ (0, 1].
(ii) For any a, d > 0, there is δ > 0 such that

Ψ
(
atd
) ∼ Ψ(t) , t ∈ (0, δ) .

P r o o f. Step 1. In this step we prove (i). Let us assume that Ψ is monotone increasing. Then clearly

sup
0<s≤1

Ψ(ts)
Ψ(s)

≤ 1 , t ∈ (0, 1] .

By the definition of admissible function and having in mind the assumption made on the monotonicity of Ψ, there
is a constant b ≥ 0 such that

Ψ
(
2−2j

) ≤ Ψ
(
2−j
) ≤ 2bkΨ

(
2−2kj

)
, j ∈ N0 , k ∈ N , (2.2)

from which it follows, by standard arguments, that

Ψ(ts)
Ψ(s)

≥ c (1 + | log t|)−b , t ∈ (0, 1] ,

hence the lower bound in (i).
If the admissible function Ψ is monotone decreasing, then Ψ−1 is an increasing admissible function and we

can reduce to the case just proved.
Step 2. Here we prove (ii). We may assume without loss of generality that Ψ is monotone increasing. By

Proposition 1.4 (iv) of [16], for any a > 0 there is j0 ∈ N such that

Ψ
(
a2−j

) ∼ Ψ
(
2−j
)
, j ≥ j0 . (2.3)

It then follows, by standard arguments, that

Ψ(at) ∼ Ψ(t) , t ∈ (0, δ) , (2.4)
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for some δ ∈ (0, 1). Analogously, but using the relation

Ψ
(
2−aj

) ∼ Ψ
(
2−j
)
, j ≥ j0 ,

instead of (2.3), which is also stated in [16], we can show that

Ψ(ta) ∼ Ψ(t) , t ∈ (0, δ) , (2.5)

for some δ ∈ (0, 1). Then (ii) follows from (2.4) and (2.5).

In the sequel we will be concerned with the interpolation with a function parameter built in terms of admissible
functions, so that we need to recall some facts and notation about the former and show how to go from the latter
to appropriate function parameters.

Definition 2.4 A function g : (0,∞) → (0,∞) belongs to the class B if it is continuous, g(1) = 1 and

ḡ(t) := sup
s>0

g(ts)
g(s)

< ∞ , t ∈ (0,∞) . (2.6)

For such a function g, the Boyd upper and lower indices αḡ and βḡ of ḡ are well defined by

αḡ := lim
t→+∞

log ḡ(t)
log t

and βḡ := lim
t→0

log ḡ(t)
log t

.

Lemma 2.5 Let Ψ be a continuous admissible function with Ψ(1) = 1 and � : (0,∞) → (0,∞) the function
defined by

�(t) =

{
Ψ(t) , 0 < t ≤ 1 ,

Ψ(t−1)−1 , 1 ≤ t < ∞ .
(2.7)

Then � ∈ B. Moreover, there exist constants b ≥ 0, c1, c2 > 0, only depending on Ψ, such that

c1(1 + | log t|)−b ≤ �̄(t) ≤ c2(1 + | log t|)b , t ∈ (0,∞) . (2.8)

P r o o f. It is obvious that � is a positive continuous function on (0,∞) with �(1) = 1. Thus, to show that �
belongs to the class B it remains to prove (2.6), but this will be the case if we prove (2.8).

We should consider the cases 0 < t ≤ 1 and 1 ≤ t < ∞ separately. We exemplify with the former. By
Lemma 2.3,

sup
0<s≤1

�(ts)
�(s)

= sup
0<s≤1

Ψ(ts)
Ψ(s)

≤ c(1 + | log t|)b ,

sup
1≤s≤t−1

�(ts)
�(s)

= sup
1≤s≤t−1

Ψ(ts)Ψ
(
s−1
) ≤

(
sup

t≤σ≤1
Ψ(σ)

)2

≤ [
max

(
Ψ(t),Ψ(1)

)]2 ≤ c2(1 + | log t|)2b ,

sup
t−1≤s<∞

�(ts)
�(s)

= sup
t−1≤s<∞

Ψ
(
s−1
)

Ψ(t−1s−1)
= sup

0<σ≤1

Ψ(σt)
Ψ(σ)

≤ c (1 + | log t|)b .

On the other hand, also by Lemma 2.3, �̄(t) ≥ �(t) ≥ c (1 + | log t|)−b, t ∈ (0,∞).

Remark 2.6 From Lemma 2.5 we can infer that, for the function � in (2.7), the corresponding function �̄ has
Boyd upper and lower indices α�̄ = β�̄ = 0.

Lemma 2.7 Let g : (0,∞) → (0,∞) be defined by

g(t) = tθ�(tσ)γ , t ∈ (0,∞) ,

where θ, σ, γ ∈ R and � is the function given by (2.7). Then g belongs to the class B and the corresponding
function ḡ has Boyd upper and lower indices αḡ = βḡ = θ.
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P r o o f. The fact that g belongs to the class B is a consequence of Lemma 2.5 and the properties stated in
[15], namely Proposition 3 and Example 1 on pp. 184–185. Moreover, by straightforward calculations,

ḡ(t) = tθ�̄
(
t
|γ|
γ σ
)|γ|

, t ∈ (0,∞) ,

and then, using Remark 2.6 as well as Proposition 2 and Example 1 of [15, pp. 184–185], we obtain

αḡ = βḡ = θ .

2.2 Function spaces

Since the definition of the Besov and Triebel-Lizorkin spaces Bs
pq and F s

pq are by now quite standard (cf., for

example, [23, pp. 49–50]), we will omit the corresponding details and just mention that the spaces B(s,Ψ)
pq and

F
(s,Ψ)
pq we want to consider here are obtained from the former by substituting the terms 2js, j ∈ N0, controlling

the smoothness, by the terms 2jsΨ
(
2−j
)
, j ∈ N0, where Ψ is an admissible function.

These spaces were introduced by Edmunds and Triebel in [3, 4] and also considered by Moura in [16], where
they have remarked that such spaces are independent of the resolution of unity considered, in the sense of equiv-
alent quasi-norms. If Ψ ≡ 1 then the spaces B(s,Ψ)

pq and F (s,Ψ)
pq clearly coincide with the usual Besov and

Triebel-Lizorkin spaces, Bs
pq and F s

pq , respectively, and the following elementary embeddings hold:

As+ε
pq ↪→ A(s,Ψ)

pq ↪→ As−ε
pq , (2.9)

for all ε > 0 and A ∈ {B,F}. It is not difficult to see that for the results we intend to prove there is no
loss of generality if we assume that the admissible function Ψ is continuous and Ψ(1) = 1, as there is always
an equivalent such function. Therefore, from now on we suppose that this will be always the case, when such
properties are technically important in a proof.

An important tool is the characterization of the spaces of generalized smoothness by means of atomic de-
compositions. We refer to [16] for a complete description. Here we need only that property in the case of
spaces B(s,Ψ)

pq and will just point out the differences with respect to the well-known corresponding result for the
spaces Bs

pq .
First, for the definition of an (s, p,Ψ)K,L-atom we can rely on [23, Def. 13.3], where the corresponding

condition (13.18) should now be replaced by

|Dαa(x)| ≤ 2−ν(s−n
p )+|α| νΨ(2−ν)−1 .

Then we have an atomic decomposition characterization forB(s,Ψ)
pq which can be stated almost in the same terms

as in [23, Thm. 13.8 (i)]: one just has to change (s, p,Ψ)K,L-atoms for (s, p)K,L-atoms.

It will be important for us to realize that the spaces B(s,Ψ)
pq can be obtained from the usual Besov spaces by

means of interpolation with a function parameter (cf. [15] and [2], for instance).
Let s1, s2 ∈ R be such that s1 < s < s2. Let Ψ be a continuous admissible function with Ψ(1) = 1. Then, by

Theorem 13 of [15, p. 194] complemented by Theorem 5.3 and Remark 5.4 of [2, p. 166], we can write

B(s,Ψ)
pq =

(
Bs1

p1, B
s2
p1

)
g,q
, (2.10)

where g ∈ B is the function parameter

g(t) = t(s−s1)/(s2−s1)�
(
t−1/(s2−s1)

)
and � is given by (2.7). We remark that Lemma 2.7 is important here, as it guarantees that

αḡ = βḡ =
s− s1
s2 − s1

∈ (0, 1) .
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Before finishing this subsection we shall recall the definition of the generalized Lorentz spaces Λq(φ). Fol-
lowing [15], if φ ∈ B and 0 < q ≤ ∞ it is the set of all complex measurable functions f on R

n such that

‖f |Λq(φ)‖ :=


(∫ ∞

0

(
φ(t)f∗(t)

)q dt
t

)1/q

, 0 < q < ∞ ,

sup
t∈(0,∞)

φ(t)f∗(t) , q = ∞ ,
(2.11)

is finite, where f∗ stands for the decreasing rearrangement of f . If φ(t) = t1/p (1 + | log t|)a with 0 < p ≤ ∞
and a ∈ R, then Λq(φ) is the Lorentz-Zygmund space Lpq(logL)a, which in turn is the classical Lorentz space
Lpq if a = 0.

The interpolation of Lebesgue spaces by a function parameter gives rise to function spaces in the latter scale.
Let 0 < p1 < p2 ≤ ∞, 0 < q ≤ ∞ and g ∈ B with 0 < βḡ ≤ αḡ < 1. Applying Theorem 3 of [15],(

Lp1 , Lp2

)
g,q

= Λq(γ) , (2.12)

where

γ(t) = t1/p1g
(
t(1/p1−1/p2)

)−1
.

2.3 Local growth envelopes

For the concept of growth envelope one should deal with function spaces of regular distributions (so, interpreted
as functions in Lloc

1 ).
From the necessary and sufficient conditions for Bs

pq ⊂ Lloc
1 or F s

pq ⊂ Lloc
1 , cf. [20, Thm. 3.3.2, p. 114], and

the embedding assertion (2.9), we can easily infer that the case s < σp := n(1/p− 1)+ is out of consideration

whereas s > σp entails A(s,Ψ)
pq ⊂ Lloc

1 . Moreover, since the extremal situation s = σp doesn’t fit in the main-
stream considerations in what follows we shall always assume that s > σp. From the known characterization of
the parameters s, p and q that lead F s

pq andBs
pq to be continuously embedded in L∞ (see Introduction) and from

the embeddings in (2.9) we immediately get that

if s >
n

p
then A(s,Ψ)

pq ↪→ L∞ , and if s <
n

p
then A(s,Ψ)

pq �↪→ L∞ .

We postpone to a subsequent work the study of the case σp < s = n/p (called critical), for which different
techniques are needed. In the case σp < s < n/p, which we want to study here (the so-called sub-critical case),

we have just pointed out that we always have that A(s,Ψ)
pq is not continuously embedded in L∞, independently of

the admitted Ψ and q. We can even say, in such a case, that

ELG|A(s,Ψ)
pq (t) := sup

{
f∗(t) :

∥∥f ∣∣A(s,Ψ)
pq

∥∥ ≤ 1
}

defines a (finite) positive, decreasing function in (0, 1] which tends to ∞ as t goes to 0 (the less trivial facts in
this assertion can again be easily obtained by conjugating (2.9) with the corresponding assertions for As

pq (cf.

[25, Prop. 12.6])). Therefore, it makes sense to ask for the behaviour of ELG|A(s,Ψ)
pq (t) near zero, which gives an

indication of the ability of local growth for functions in A(s,Ψ)
pq . This motivates the definition below, which tries

to make more precise the corresponding idea of Haroske [8] and Triebel [25].

Definition 2.8 The local growth envelope function of A(s,Ψ)
pq , for σp < s < n/p, is the equivalence class[ELG|A(s,Ψ)

pq

]
of functions in ELG. We shall also call local growth envelope function of A(s,Ψ)

pq any representative

in such a class. We even call local growth envelope function of A(s,Ψ)
pq any function f : (0, ε] → R

+, for some

ε ∈ (0, 1], even if not decreasing, such that f ∼ ELG|A(s,Ψ)
pq in (0, ε], and use it to represent the equivalence class[ELG|A(s,Ψ)

pq

]
.

Let again σp < s < n/p.

Assume there exists a continuous representative ELGA
(s,Ψ)
pq ∈ [ELG|A(s,Ψ)

pq

]
(we shall later see that this is

indeed the case). Let (0, ε], 0 < ε < 1, be its domain.
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Define H(t) := − log ELGA
(s,Ψ)
pq (t) and note that H is a (finite) real increasing function on (0, ε] which tends

to −∞ when t goes to 0. There is only a Borel measure (i.e., a measure defined on the Borel sets) µH in (0, ε]
such that µH

(
[a, b]

)
= H(b)−H(a), for all [a, b] ⊂ (0, ε]. Its restriction to each such [a, b] is the Stieltjes-Borel

measure associated with H |[a,b].
In the important case when H happens to be continuously differentiable in (0, ε], we have µH(dt) = H ′ dt,

and for the functions we want to integrate we can calculate the integrals as improper Riemann integrals.

Definition 2.9 Let σp < s < n/p and 0 < u ≤ ∞. The couple([ELG|A(s,Ψ)
pq

]
, u
)

is called the local growth envelope of A(s,Ψ)
pq if u is the minimum (assuming that it exists) of all v > 0 such that

∃ c(v) > 0 : ∀ f ∈ A(s,Ψ)
pq ,

(∫
(0,ε]

(
h(t)f∗(t)

)v
µH(dt)

)1/v

≤ c(v)
∥∥f ∣∣A(s,Ψ)

pq

∥∥ , (2.13)

where h(t)−1 is a continuous representative in
[ELG|A(s,Ψ)

pq

]
with domain (0, ε], 0 < ε < 1.

We must remark that this definition makes sense, namely that the infimum of all such v’s is independent of
the chosen continuous representative h(t)−1 in

[ELG|A(s,Ψ)
pq

]
, as follows by using some standard arguments of

measure and integration theory, the definition of ELG|A(s,Ψ)
pq and Proposition 12.2 (ii) of [25, p. 184]. Recall, on

the other hand, that the definition of ELG|A(s,Ψ)
pq guarantees that (2.13) holds at least for v = ∞.

Instead of
([ELG|A(s,Ψ)

pq

]
, u
)
, we shall usually write

(
h(t)−1, u

)
for the local growth envelope of A(s,Ψ)

pq with

σp < s < n/p, where h(t)−1 is any continuous representative in
[ELG|A(s,Ψ)

pq

]
. Instead of h(t)−1, we can also

use in the couple any local growth envelope function as considered in Definition 2.8, though it must be borne in
mind that for the construction of the measure µH we shall only use continuous representatives in

[ELG|A(s,Ψ)
pq

]
.

As to the interest in considering an estimate like (2.13), we notice that there is no point in trying to get that

∃ c(v) > 0 : ∀ f ∈ A(s,Ψ)
pq ,

(∫
(0,ε]

(
χ(t)h(t)f∗(t)

)v
µH(dt)

)1/v

≤ c(v)
∥∥f ∣∣A(s,Ψ)

pq

∥∥ ,
with χ(t) a non-negative decreasing function in (0, ε] such that limt→0+χ(t) = ∞, simply because it doesn’t
exist such a function χ(t). This follows by the same type of arguments used in the proof of Proposition 12.10
in [25].

3 A lifting property and embeddings

3.1 Lifting property

Let (ϕj)∞j=0 be a dyadic resolution of unity according to [23, (10.3), (10.4)], where ϕ0 ∈ S is now assumed to be
non-negative and radially monotonically decreasing. Let Ψ be an admissible function and define

Ψ̃(ξ) :=
∞∑

j=0

Ψ
(
2−j
)
ϕj(ξ) , ξ ∈ R

n . (3.1)

Lemma 3.1 The functions Ψ̃ and 1/Ψ̃ belong to C∞. Moreover, for any α ∈ N
n
0 it holds∣∣(DαΨ̃

)
(ξ)
∣∣ ≤ cΨ

(〈ξ〉−1) 〈ξ〉−|α|
, ξ ∈ R

n , (3.2)∣∣(Dα
(
1/Ψ̃

))
(ξ)
∣∣ ≤ c′ Ψ

(〈ξ〉−1)−1 〈ξ〉−|α| , ξ ∈ R
n , (3.3)

where 〈ξ〉 :=
(
1 + |ξ|2)1/2

, and the positive constants c, c′ depend only on α and Ψ.
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P r o o f. Step 1. In this step we prove (3.2). Let α ∈ N
n
0 be fixed and let first ξ ∈ R

n be such that 2k−1 ≤
|ξ| ≤ 2k+1, for some k ∈ N with k ≥ 2. From (3.1) we have

(
DαΨ̃

)
(ξ) =

k+1∑
j=k−1

Ψ
(
2−j
)
2(−j+1) |α|(Dαϕ1)

(
2−j+1ξ

)
.

Thus, using the fact that Ψ
(
2−j
) ∼ Ψ

(
2−(j+1)

)
, j ∈ N, the monotonicity of Ψ and 〈ξ〉 ∼ |ξ| for |ξ| ≥ 1, we get∣∣(DαΨ̃

)
(ξ)
∣∣ ≤ c1 Ψ

(
2−k

)
2−k |α| ≤ c2Ψ

(〈ξ〉−1) 〈ξ〉−|α|
.

The remaining case, i.e. when ξ ∈ R
n is such that |ξ| ≤ 2, is immediate.

Step 2. In this step we prove (3.3). First of all we remark that Ψ̃ is a positive function. Let α ∈ N
n
0 with

|α| = 1, i.e. Dα = ∂/∂xi for some i ∈ {1, . . . , n}. We have(
Dα
(
1/Ψ̃

))
(ξ) = −Ψ̃(ξ)−2

(
DαΨ̃

)
(ξ) . (3.4)

Assuming, without loss of generality, that ξ ∈ R
n is such that 2k−1 ≤ |ξ| ≤ 2k+1, for some k ∈ N with k ≥ 2,

we obtain

Ψ̃(ξ) =
k+1∑

j=k−1

Ψ
(
2−j
)
ϕj(ξ) ≥ cΨ

(
2−k

)
. (3.5)

Hence, from (3.4), (3.5), (3.2) and 〈ξ〉 ∼ |ξ| for |ξ| ≥ 1,∣∣(Dα
(
1/Ψ̃

))
(ξ)
∣∣ ≤ Ψ̃(ξ)−2

∣∣(DαΨ̃
)
(ξ)
∣∣

≤ c1Ψ
(
2−k

)−2 Ψ
(〈ξ〉−1)〈ξ〉−|α| ≤ c2 Ψ

(〈ξ〉−1)−1 〈ξ〉−|α| .

In this way we have shown (3.3) for |α| = 1. The case |α| = 0 can also be easily checked. The rest can be done
by induction on |α|.

Let Ψ be an admissible function, according to Definition 2.1, and Ψ̃ as in (3.1). Define J Ψ̃ by

J Ψ̃f =
(
Ψ̃(·)f̂ )∨ , f ∈ S′ . (3.6)

Proposition 3.2 Let Ψ be an admissible function according to Definition 2.1. Then J Ψ̃ is a topological
isomorphism from

(i) B(s,Ψ)
pq onto Bs

pq , for any 0 < p ≤ ∞, 0 < q ≤ ∞ and s ∈ R ,

(ii) F (s,Ψ)
pq onto F s

pq , for any 0 < p <∞, 0 < q ≤ ∞ and s ∈ R .

P r o o f. We present only the proof of (ii) since the proof of (i) can be carried on by minor modifications.
Having into consideration that for any σ ∈ R the map Iσ , given by

Iσf =
(〈·〉σf̂ )∨ , f ∈ S′,

defines an isomorphism betweenF (s,Ψ)
pq andF (s−σ,Ψ)

pq , for any admitted parameters s, p and q (cf. [16, Prop. 1.8]),
we can restrict the proof to the case s = 0.

Step 1. Let f ∈ F
(0,Ψ)
pq . We have∥∥J Ψ̃f
∣∣F 0

pq

∥∥ =
∥∥∥∥∥∥{(Ψ̃ϕj f̂

)∨(·)
}∞

j=0

∣∣∣ �q∥∥∥ ∣∣∣Lp

∥∥∥
=
∥∥∥∥∥∥{(Ψ(2−j)Mj ϕj f̂

)∨(·)
}∞

j=0

∣∣∣ �q∥∥∥ ∣∣∣Lp

∥∥∥ , (3.7)
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where

Mj(x) = Ψ(2−j)−1 Ψ̃(x)h(2−jx) , x ∈ R
n , j ∈ N ,

with h ∈ S such that

h(x) = 1 if 1/2 ≤ |x| ≤ 2 and supph ⊂ {x ∈ R
n : 1/4 ≤ |x| ≤ 4

}
and

M0(x) = Ψ(1)−1Ψ̃(x)H(x) , x ∈ R
n ,

with H ∈ S such that

H(x) = 1 if |x| ≤ 2 and suppH ⊂ {x ∈ R
n : |x| ≤ 4

}
.

Let η ∈ N be such that η > n/2+n/min(p, q). Using the formulae (3.2) from Lemma 3.1 and by straightforward
calculations we can prove that

sup
j∈N0

∥∥Mj

(
2j+2 · ) ∣∣W η

2

∥∥ < ∞ .

Hence, by (3.7) and applying Theorem 1.6.3 in [22], we obtain

∥∥J Ψ̃f
∣∣F 0

pq

∥∥ ≤ c1 sup
j∈N0

∥∥Mj

(
2j+2 · ) ∣∣W η

2

∥∥∥∥∥∥∥∥{(Ψ(2−j
)
ϕj f̂

)∨(·)
}∞

j=0

∣∣∣ �q∥∥∥ ∣∣∣Lp

∥∥∥
≤ c2

∥∥f ∣∣F (0,Ψ)
pq

∥∥ .
Step 2. Clearly

(
J Ψ̃
)−1

= J1/Ψ̃. The proof that it defines a bounded map from F 0
pq into F (0,Ψ)

pq can be done
analogously to the previous step, in this case using the formulae (3.3) from Lemma 3.1.

Remark 3.3 In [2, p. 162] there is a similar lifting property, but in this way we can avoid requiring further
assumptions on the admissible function Ψ. In particular, we don’t need the function Ψ itself to be a C∞ function.

3.2 Embeddings

We use the lifting property from the previous subsection in order to transfer to spaces of generalized smoothness
the well-known embeddings between the usual Besov and Triebel-Lizorkin spaces. In the following, As

pq and
Gs

pq denote either a Besov or Triebel-Lizorkin space, Bs
pq or F s

pq . And a similar assumption corresponding to
spaces of generalized smoothness, by inserting an admissible function Ψ.

Proposition 3.4 Let Ψ be an admissible function and si, pi, qi, i = 1, 2, admitted parameters according to
the definition of the spaces. Then the embedding

As1
p1q1

↪→ Gs2
p2q2

holds if, and only if,

A(s1,Ψ)
p1q1

↪→ G(s2,Ψ)
p2q2

holds.

P r o o f. We have the following commutative diagram
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As1
p1q1

Gs2
p2q2

�

A
(s1,Ψ)
p1q1 G

(s2,Ψ)
p2q2

�Id

�

id

�

JΨ̃
(
JΨ̃
)−1

where id and Id are the natural injections between the indicated spaces and J Ψ̃ is the operator in (3.6). Another
commutative diagram is obtained by interchanging the vertical arrows. Then the assertion is a consequence of
Proposition 3.2.

Example 3.5 In view of the embedding assertion in e.g. [23, 11.4, p. 55], we give an application of the last
proposition. Let Ψ be an admissible function according to Definition 2.1, 0 < p1 < p < p2 ≤ ∞ and suppose
that

s1 − n

p1
= s− n

p
= s2 − n

p2
.

Then

B(s1,Ψ)
p1u ↪→ F (s,Ψ)

pq ↪→ B(s2,Ψ)
p2v

if, and only if,

0 < u ≤ p ≤ v ≤ ∞ .

4 Local growth envelopes for B(s,Ψ)
pq and F (s,Ψ)

pq in the sub-critical case

We noticed before (see Subsection 2.2) that for the results we have in mind there is no loss of generality in
considering only admissible functions Ψ which are continuous and such that Ψ(1) = 1. We shall stick to this in
the proofs that follow. Recall that σp := n(1/p− 1)+.

Proposition 4.1 Let 0 < p, q ≤ ∞ and s ∈ R be such that σp < s < n/p. Let Ψ be an admissible function
and define r ∈ (1,∞) by the equation s− n/p = −n/r. Then there exists c > 0 such that

ELG|B(s,Ψ)
pq (t) ≤ c t−1/rΨ(t)−1 , for all t ∈ (0, 1] , (4.1)

and, for each v ∈ [q,∞], there exists c(v) > 0 such that(∫ 1

0

(
t1/rΨ(t)f∗(t)

)v dt
t

)1/v

≤ c(v)
∥∥f ∣∣B(s,Ψ)

pq

∥∥ , for all f ∈ B(s,Ψ)
pq (4.2)

(with the modification (4.6) if v = ∞).

P r o o f. Consider 0 < v ≤ ∞. By (2.10),

B(s,Ψ)
pv =

(
Bs1

p1, B
s2
p1

)
g,v
, (4.3)

where g ∈ B is the function parameter

g(t) = t(s−s1)/(s2−s1)�
(
t−1/(s2−s1)

)
,

with � given by (2.7) and s1, s2 ∈ R chosen in such a way that s1 < s < s2. In the case σp < s < n/p, such s1
and s2 can be chosen in such a way that r1 and r2 defined by the equations si − n/p = −n/ri, i = 1, 2, satisfy
ri > p and 1 < ri <∞, i = 1, 2, so that

Bs1
p1 ↪→ Lr1 and Bs2

p1 ↪→ Lr2 (4.4)
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(cf. [23, 11.4 (iii) and 10.5 (i)]). Since, by Lemma 2.7 and (2.12),(
Lr1 , Lr2

)
g,v

= Λv(γ) ,

with

γ(t) = t1/r1g
(
t1/r1−1/r2

)−1 = t1/r�
(
t−1/n

)−1
,

then this together with (4.3) and (4.4) imply that

B(s,Ψ)
pv ↪→ Λv(γ) . (4.5)

Using the definition of �, Λv(γ) and the fact that Ψ
(
t1/n

) ∼ Ψ(t), t ∈ (0, 1], (4.5) guarantees the existence of
c1(v) > 0 such that(∫ 1

0

(
t1/rΨ(t)f∗(t)

)v dt
t

)1/v

≤ c1(v)
∥∥f ∣∣B(s,Ψ)

pv

∥∥ , for all f ∈ B(s,Ψ)
pv .

Considering now v restricted to v ≥ q, elementary embeddings (cf. Proposition 3.4 and [22, 2.3.2/(5)]) guarantee
the existence of c2(v) > 0 such that(∫ 1

0

(
t1/rΨ(t)f∗(t)

)v dt
t

)1/v

≤ c1(v)
∥∥f ∣∣B(s,Ψ)

pv

∥∥ ≤ c2(v)
∥∥f ∣∣B(s,Ψ)

pq

∥∥ ,
for all f ∈ B(s,Ψ)

pq .

This proves (4.2). Formula (4.1) follows easily by considering just the particular case of v = ∞ in the above
expression, that is,

sup
t∈(0,1]

t1/rΨ(t)f∗(t) ≤ c2(∞)
∥∥f ∣∣B(s,Ψ)

pq

∥∥ , for all f ∈ B(s,Ψ)
pq . (4.6)

Proposition 4.2 Let 0 < p, q ≤ ∞ and let s ∈ R be such that σp < s < n/p . Let Ψ be an admissible
function and define r ∈ (1,∞) by the equation s− n/p = −n/r. Then there exist ε, c > 0 with ε < 1 such that

ELG|B(s,Ψ)
pq (t) ≥ c t−1/rΨ(t)−1 , for all t ∈ (0, ε] , (4.7)

and for each v ∈ (0, q) there is no c(v) > 0 such that(∫ ε

0

(
t1/rΨ(t)f∗(t)

)v dt
t

)1/v

≤ c(v)
∥∥f ∣∣B(s,Ψ)

pq

∥∥ , for all f ∈ B(s,Ψ)
pq , (4.8)

can hold.

P r o o f. We follow closely the arguments of [25, 15.2], with natural modifications. For each j ∈ N, consider
fj given by

fj(x) := 2jn/rΨ
(
2−j
)−1Φ

(
2jx
)
, x ∈ R

n ,

where Φ is given by

Φ(x) = e
− 1

1−|x|2 if |x| < 1 and Φ(x) = 0 if |x| ≥ 1 .

Since s > σp, fj is, up to a constant factor, an atom for the spaceB(s,Ψ)
pq , cf. [16, Def. 1.14 (ii) and Thm. 1.18 (ii)],

more precisely, a (s, p,Ψ)K,−1-atom, where K > s is a fixed natural number. It is easily seen that

f∗
j

(
d 2−jn

) ∼ 2jn/r Ψ
(
2−j
)−1

,
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for some d > 0 depending only on the function Φ. On the other hand, it follows from the definition of ELG|B(s,Ψ)
pq

and Theorem 1.18 of [16] that

ELG|B(s,Ψ)
pq

(
d 2−jn

) ≥ c1f
∗
j

(
d 2−jn

)
, for large enough natural j ,

for some c1 > 0. Therefore,

ELG|B(s,Ψ)
pq

(
d2−jn

) ≥ c22jn/r Ψ
(
2−j
)−1

, for large enough natural j ,

for some c2 > 0, which implies (4.7)
(
observe that Ψ

(
t1/n

) ∼ Ψ(t) for t ∈ (0, 1]
)
.

Assume now that for some v ∈ (0, q) it was possible to find c(v) such that (4.8) holds. Consider, for each

J ∈ N, f ∈ B
(s,Ψ)
pq defined by

f(x) =
J∑

j=1

2jn/rΨ
(
2−j
)−1Φ

(
2jx− x0

)
, (4.9)

where Φ has the same meaning as before and x0 ∈ Z
n is chosen in such a way that the supports of Φ

(
2j · −x0

)
,

j ∈ N, are disjoint
(
it is enough to impose |x0| > 3, for this to be true

)
. For k = 1, . . . , J one has, for some

a, b > 0 depending only on Φ, that∣∣{x ∈ R
n : |f(x)| > b 2kn/rΨ(2−k)−1

}∣∣ ≥ 2a2−kn .

Therefore,

f∗(a 2−kn
) ≥ b 2kn/rΨ

(
2−k

)−1
, k = 1 , . . . , J , (4.10)

and we could write, for k0 such that a2−k0n ≤ ε (so, depending only on Φ, n and ε) and any J ≥ k0,

∥∥f ∣∣B(s,Ψ)
pq

∥∥ ≥ c(v)−1

(∫ ε

0

(
t1/rΨ(t)f∗(t)

)v dt
t

)1/v

≥ c(v)−1

( ∞∑
k=k0

∫ a2−kn

a2−(k+1)n

(
t1/rΨ(t)f∗(t)

)v dt
t

)1/v

≥ c1(v)

(
J∑

k=k0

bv

)1/v

= c2(v)(J − k0 + 1)1/v ,

(4.11)

where we have used Lemma 2.3 (ii), the monotonicity of f∗ and (4.10). On the other hand, and since (4.9) is an
atomic decomposition in B(s,Ψ)

pq , by Theorem 1.18 (ii) of [16] there is a constant c4 > 0 such that

∥∥f ∣∣B(s,Ψ)
pq

∥∥ ≤ c4

(
J∑

j=1

c−q
3

)1/q

= c4c
−1
3 J1/q , for all J ∈ N .

Putting this together with (4.11), we get that

(J − k0 + 1)1/v ≤ c3(v)J1/q , for all J ≥ k0 ,

which is clearly impossible when v ∈ (0, q).

Corollary 4.3 Let 0 < p, q ≤ ∞ and let s ∈ R be such that σp < s < n/p . Let Ψ be an admissible
function and define r ∈ (1,∞) by the equation s− n/p = −n/r. Then, for the same ε ∈ (0, 1) of the preceding
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proposition, there exists a continuously differentiable, positive and increasing function h defined in (0, ε] such
that

h(t)−1 ∼ t−1/rΨ(t)−1 in (0, ε] (4.12)

and satisfying

0 < inf
t∈(0,ε]

th′(t)
h(t)

≤ sup
t∈(0,ε]

th′(t)
h(t)

< ∞ . (4.13)

Moreover, denoting by µH the Borel measure associated with H := log h in (0, ε] (in accordance with Sec-
tion 2.3), and given any v ∈ (0,∞], there exists c(v) > 0 such that(∫

(0,ε]

(
h(t)f∗(t)

)v
µH(dt)

)1/v

≤ c(v)
∥∥f ∣∣B(s,Ψ)

pq

∥∥ , for all f ∈ B(s,Ψ)
pq , (4.14)

if, and only if, v ≥ q.

P r o o f. Consider the function � ∈ B as in (2.7) and the function g : (0,∞) → (0,∞) given by g(t) =
t1/r�(t). By Lemma 2.7, this function belongs to B and the corresponding function ḡ (given as in (2.6)) has
upper and lower Boyd indices αḡ and βḡ equal to 1/r > 0. By Def. 2 and Prop. 4 of [15, p. 185], we can then
guarantee that there exists an increasing function h ∈ B with h ∼ g which is a C1-diffeomorphism of (0,∞) and
satisfies (4.13). In particular,

h′(t)
h(t)

∼ 1
t
, t ∈ (0,∞) , (4.15)

and h(t)−1 ∼ t−1/rΨ(t)−1 in (0, ε]. We consider in what follows that h has been restricted to this interval.
The two previous propositions, namely formulae (4.1) and (4.7), guarantee now that h(t)−1 is a continuous

representative in
[ELG|B(s,Ψ)

pq

]
, and therefore we can consider the Borel measure µH associated with H(t) :=

log h(t) in (0, ε], cf. Section 2.3. Since h is continuously differentiable in (0, ε], then

µH(dt) =
h′(t)
h(t)

dt

so that, due to (4.12) and (4.15), the left-hand sides of (4.8) and (4.14) coincide, up to a positive factor independent
of f ∈ B

(s,Ψ)
pq . Then the assertion concerning (4.14) follows from the second halves of Proposition 4.1 and

Proposition 4.2.

With this corollary we reached a point where the proof of the first assertion in the next result should be clear
(recall also the conventions made in Section 2.3).

Theorem 4.4 Let 0 < p, q ≤ ∞ and let s ∈ R be such that σp < s < n/p . Let Ψ be an admissible function
and define r ∈ (1,∞) by the equation s− n/p = −n/r. Then

(i) the local growth envelope of B(s,Ψ)
pq is

(
t−1/rΨ(t)−1, q

)
;

(ii) the local growth envelope of F (s,Ψ)
pq is

(
t−1/rΨ(t)−1, p

)
.

P r o o f. It only remains to prove (ii). It is clearly possible to choose σp < s1, s2 < n/p and 0 < p1, p2 <∞
such that

p1 < p < p2 , s1 − n

p1
= s− n

p
= s2 − n

p2

and s1 > σp1 , s2 > σp2 , so that the corollary above holds true both for B(s1,Ψ)
p1p and B(s2,Ψ)

p2p . We can then apply
Example 3.5 with u = v = p to get that there exist c1, c2 > 0 such that

h(t)−1 ∼LG c1ELG|B(s1,Ψ)
p1p (t) ≤ ELG|F (s,Ψ)

pq (t) ≤ c2 ELG|B(s2,Ψ)
p2p (t) ∼LG h(t)−1 ,

with h given as in the above corollary.
Also, considering (4.14) forB(s1,Ψ)

p1p andB(s2,Ψ)
p2p instead of B(s,Ψ)

pq , and using the embeddings of Example 3.5
in the case u = v = p, we obtain the required conclusion.

c© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



56 Caetano and Moura: Local growth envelopes of spaces of generalized smoothness

We can interpret the assertion (ii) in the above theorem in the spirit considered before for the spaces B(s,Ψ)
pq ,

as in Corollary 4.3. Thus, for some ε ∈ (0, 1), there exists a continuously differentiable, positive and increasing
function h defined in (0, ε] such that

ELG|F (s,Ψ)
pq (t) ∼ h(t)−1 ∼ t−1/rΨ(t)−1 in (0, ε]

and satisfying (4.13). With H := log h and denoting by µH the Borel measure associated with H in (0, ε], and
given any v ∈ (0,∞], there exists c(v) > 0 such that(∫

(0,ε]

(
h(t)f∗(t)

)v
µH(dt)

)1/v

≤ c(v)
∥∥f ∣∣F (s,Ψ)

pq

∥∥ , for all f ∈ F (s,Ψ)
pq , (4.16)

if, and only if, v ≥ p.
As before, instead of the left-hand side of (4.16) we can also write(∫ ε

0

(
t1/rΨ(t)f∗(t)

)v dt
t

)1/v

.
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sidade de Aveiro and the second author by Centro de Matemática da Universidade de Coimbra.
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