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SUMMARY

This note bridges the gap between the existence and regularity classes for the third-grade Rivlin–
Ericksen �uid equations. We obtain a new global a priori estimate, which conveys the precise regularity
conditions that lead to the existence of a global in time regular solution. Copyright ? 2006 John Wiley
& Sons, Ltd.

KEY WORDS: third-grade �uid equations; global a priori estimates; regularity class

1. INTRODUCTION

Many models governing the motion of incompressible viscoelastic �uids are best described as
systems of non-linear parabolic–hyperbolic PDE’s. Typically, existence results for this type of
systems can only be obtained locally in time, or else globally, while assuming that the given
data are su�ciently small, see, e.g. References [1–9]. For some models, the situation is better
in a two-dimensional setting and solvability can be proved globally in time for any su�ciently
regular set of data, cf. References [4,10]. Quite recently it was shown, without any smallness
assumptions on the data, that the equations of third-grade Rivlin–Ericksen �uids admit global
solutions if the initial �uid velocity belongs to H 2(Rn), n=2; 3, see Reference [10]. In the
2-D case, this regularity is enough to show uniqueness but in the 3-D case there is a gap
between the existence and the uniqueness classes.
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In this article, we will study the regularity of a global in time solution of the third-
grade �uid equations in 3-D. Our analysis is based on a new global a priori estimate which
allows for the study of the precise regularity conditions that lead to the existence of a global
regular solution. Consequently, we obtain a regularity class, di�erent from the existence class,
but within which the uniqueness is also valid. Let us stress that although the existence
of more regular (even classical) solutions for these equations has been studied previously,
cf. References [2,9], these results, which are all only true under restrictive smallness (and
regularity) conditions on the data or on the material constants, were obtained directly within
the regularity and uniqueness classes. Hence, they can only be results ‘in the small’.
Finally, it is interesting to note that the term which makes it possible to show global

existence in 3-D for third-grade �uids (and not for the second-grade �uid equations in which
this term is missing) is the same which Ladyzhenskaya added to the Navier–Stokes equations
in order to prove existence of a unique global in time solution, cf. Reference [11]. In our
model, however, uniqueness and regularity demand an extra hypothesis due to the presence
of higher-order non-linear terms.
The paper is organized as follows: in Section 2 we present the model and introduce some

notation; Section 3 gathers the basic a priori estimates for the solution of the problem;
Section 4 contains a uniqueness result; in the main Section 5 we bridge the gap between
the existence and regularity classes by establishing a new global a priori estimate for the
third-order spatial derivatives using an additional regularity assumption.

2. THE EQUATIONS

In an incompressible Rivlin–Ericksen �uid of grade three the extra-stress tensor is given by
(see Reference [12])

TE = �A1(v) + �1A2(v) + �2A21(v) + �(trA
2
1(v))A1(v) (1)

where v is the �uid velocity, A1(v) and A2(v) denote the �rst two Rivlin–Ericksen tensors

A1(v) =∇v+ (∇v)T

A2(v) =
(
@
@t
+ v · ∇

)
A1(v) +A1(v)∇v+ (∇v)TA1(v)

(2)

and �; �1; �2 and � stand for material constants. In fact, the constitutive relation (1) is a
degenerate form of a more general Rivlin–Ericksen �uid of grade three de�ned by

TE = �A1 + �1A2 + �2A21 + �1A3 + �2(A1A2 +A2A1) + �3(trA
2
1)A1

and obtained by assuming, in view of thermodynamics, that �1 =�2 = 0 (see Reference [13]).
A third-grade �uid is compatible with thermodynamics if the material constants in (1)

satisfy the conditions (cf. Reference [13]):

�¿0; �1¿0; �¿0; |�1 + �2|6
√
24�� (3)
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The constitutive law (1) includes as special cases the �uids of second-grade (�=0), and
the Newtonian �uids (�= �1 = �2 = 0).
The constitutive relation (1), together with the equations of motion, leads to the following

system of equations—for v and the hydrostatic pressure p (rede�ned after division by the
constant density)—that governs the motion of an incompressible viscoelastic Rivlin–Ericksen
�uid of grade three:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

@
@t
(v − �1�v)− ��v − �∇ · (|A(v)|2A(v)) +∇p

=−v · ∇(v − �1�v) +∇ ·N(v) + f in R3 × (0; T )
∇ · v=0 in R3 × (0; T )
v(x; 0)= v0(x) x∈R3

(4)

Here we have set A(v)=A1(v). Moreover, all the material constants are divided by the
constant density � (�= �=� denotes the kinematic viscosity coe�cient), the vector �eld f
stands for external body forces, and

N(v)= �1(∇v)TA(v) + (�1 + �2)A2(v)

3. BASIC A PRIORI ESTIMATES

Our main result is based on a new, global a priori estimate for the third-order spatial
derivatives of the solution. Hence, for the sake of completeness, we gather in this section
a few basic a priori estimates for the lower-order derivatives that will be useful in the sequel
and brie�y recall how they can be derived. We will assume throughout the paper that �, �1 and
� are strictly positive. Let us start by recalling the existence result proven in Reference [10].

Theorem 3.1
Assume that f ∈L∞

loc([0;∞);L2(R3)) and that v0 ∈H 2(R3), with ∇ · v0 = 0. There exists a
solution v∈Cw([0; T );H 2(R3)), which is global in time (i.e. the solution exists for all T¿0),
satisfying Equations (4) in the sense of distributions.

The result follows from an a priori estimate for the L2(R3)-norm of v − �1�v and from a
subsequent application of the Galerkin method.
We next describe how to obtain the basic a priori estimates. Multiplying (4)1 with v,

integrating over R3, performing several integrations by parts, and using the fact that ∇· v=0,
one obtains

1
2
d
dt

(∫
R3

|v|2 dx + �1
∫
R3

|∇v|2 dx
)
+ �

∫
R3

|∇v|2 dx + �
2

∫
R3

|A(v)|4 dx

=−�1 + �2
2

∫
R3
A2(v) : A(v) dx +

∫
R3
f · v dx
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where A : B=AijBij denotes the usual double scalar product between two second-order tensors.
Using H�older’s and Young’s inequalities, we get

d
dt

(∫
R3

|v|2 dx + �1
∫
R3

|∇v|2 dx
)
+ 2�

∫
R3

|∇v|2 dx + �
2

∫
R3

|A(v)|4 dx

6
|�1 + �2|2
2�1�

(
�1

∫
R3

|∇v|2 dx +
∫
R3

|v|2 dx
)
+

2�1�
|�1 + �2|2

∫
R3

|f |2 dx (5)

and, hence, Gronwall’s inequality yields the �rst a priori estimate

ess sup
06t6T

(‖v‖20;2 + �1‖∇v‖20;2) + 2�
∫ T

0
‖∇v‖20;2 dt +

�
2

∫ T

0
‖A(v)‖40;4 dt

6 exp
{ |�1 + �2|2

��1
T

} {
‖v0‖20;2 + �1‖∇v0‖20;2 +

2 �1 �
|�1 + �2|2

∫ T

0
‖f‖20;2 dt

}
(6)

Next, let us (formally) multiply Equation (4)1 by −�v, integrate over R3, and again
integrate by parts. This results in

1
2
d
dt

(∫
R3

|∇v|2 dx + �1
∫
R3

|∇2v|2 dx
)
+ �

∫
R3

|∇2v|2 dx

+
�
2

∫
R3

|A(v)|2 |∇A(v)|2 dx + �∑
j

∫
R3
(A(v) : @jA(v))2 dx

6 |�1 + �2|
∫
R3

|∇A(v)|2 |A(v)| dx + �1
2

∫
R3

|A(v)| |∇A(v)|2 dx

+
∫
R3

|v| |A(v)| |∇A(v)| dx + |(f ;�v) | (7)

Using H�older’s and Young’s inequalities, one can absorb part of the terms on the right-hand
side of (7) to the other side. This leads to

d
dt

(∫
R3

|∇v |2 dx + �1
∫
R3

|∇2v |2 dx
)
+ �

∫
R3

|∇2v|2 dx

+
�
4

∫
R3

|A(v)|2 |∇A(v)|2 dx + 2�∑
j

∫
R3
(A(v) : @jA(v))2 dx

6
4
�
(4|�1 + �2|2 + �21)

∫
R3

|∇2v|2 dx + 4
�

∫
R3

|v|2 dx + 1
�

∫
R3

|f |2 dx (8)
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and one obtains, from Gronwall’s inequality,

ess sup
06t6T

(‖∇v‖20;2 + �1‖∇2v‖20;2) + �
∫ T

0
‖∇2v‖20;2 dt +

�
4

∫ T

0

∫
R3

|A(v)|2|∇A(v)|2 dx dt

6 exp
{(

384�
�1

+
4�1
�

)
T

}
·
(

‖∇v0‖20;2+�1‖∇2v0‖20;2+
4
�

∫ T

0
‖v‖20;2 dt+

1
�

∫ T

0
‖f‖20;2 dt

)
(9)

which provides the second a priori estimate after using the �rst estimate to control the term
involving ‖v‖20;2.

4. A UNIQUENESS RESULT

Here we show that an additional regularity assumption is enough to obtain uniqueness.

Theorem 4.1
Let v1; v2 ∈Cw([0; T );H 2(R3)), be two solutions of Equations (4). Moreover, assume that
v1 ∈L1(0; T ;W 2;3(R3)). Then v1(t)≡ v2(t) a.e. in R3 for all t¿0.
Proof
Subtracting Equation (4)1 written for the two solutions v1 and v2, multiplying the resulting
equation by w= v1 − v2, and integrating over R3 provides the identity

1
2
d
dt

∫
R3
(|w|2 + �1|∇w|2) dx + �

∫
R3

|∇w|2 dx

+
�
2

∫
R3
(|A(v1)|2A(v1)− |A(v2)|2A(v2)) : A(w) dx

= −
∫
R3
w · ∇v1 · w dx − �1

2

∫
R3
w · ∇A(v1) : A(w) dx

− �1
∫
R3
(A2(w) : A(v1) +A(v2)A(w) : ∇w) dx

− �2
2

∫
R3
(A2(v1)−A2(v2)) : A(w) dx (10)

It follows that

1
2
d
dt
(‖w‖20;2 + �1‖∇w‖20;2) + �‖∇w‖20;2 +

�
4

∫
R3
(|A(v1)|2 − |A(v2)|2)2 dx

+
�
4

∫
R3

|A(w)|2(|A(v1)|2 + |A(v2)|2) dx

6 c‖∇v1‖1;2‖w‖21;2 + c�1‖w‖0;6‖∇A(v1)‖0;3‖A(w)‖0;2

+
�
8

∫
R3

|A(w)|2(|A(v1)|2 + |A(v2)|2) dx + c (|�1|+ |�2|)2
�

‖∇w‖20;2 (11)
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where we have used H�older’s and Young’s inequalities, and Sobolev’s embedding theorem.
Hence, one obtains

1
2
d
dt
(‖w‖20;2 + �1‖∇w‖20;2)6 c

(
‖v1‖2;2 + max{1; �1}‖∇2v1‖0;3 + (|�1|+ |�2|)2

�1�

)

× (‖w‖20;2 + �1‖∇w‖20;2)

which, in view of Gronwall’s inequality, yields the result.

5. A BRIDGE BETWEEN EXISTENCE AND REGULARITY

We are now ready to prove our main result providing a regularity class for the weak solution.

Theorem 5.1
Let f ∈L2(0; T ;H 1(R3)) and v0 ∈H 3(R3). Moreover, assume that there exists a weak
solution v∈Cw([0; T );H 2(R3)) to problem (4) such that v∈L2(0; T ;W 2;3(R3)). Then
v∈L∞(0; T ;H 3(R3)), for all T¿0.

Proof
The following calculations are formal but can be easily justi�ed by a density argument. The
idea is to test the equation

@t(v − �1�v) + (v · ∇)v − ��v − �∇ · (|A(v)|2A(v))

= f − ∇p+ �2∇ ·A2(v) + �1∇ · (v · ∇A(v) + (∇v)TA(v) +A(v)∇v)

with �2v, perform integration by parts (typically twice), and estimate the resulting terms
using the usual inequalities. First, one easily sees that

∫
R3
@tv ·�2v dx=

1
2
d
dt

∫
R3

|∇2v|2 dx

−�1
∫
R3
@t�v ·�2v dx= �1

∫
R3
@t∇v : ∇�2v dx=

�1
2
d
dt

∫
R3

|∇3v|2 dx

−�
∫
R3
�v ·�2v dx= �

∫
R3

∇v : ∇�2v dx= �
∫
R3

|∇3v|2 dx
∫
R3
f ·�2v dx=−

∫
R3
@kfi@k�vi dx

∫
R3
(v · ∇)v ·�2v dx=

∫
R3
@lvj@j@kvi@k@lvi dx −

∫
R3
@kvj@jvi@k@l@lvi dx := I1

Copyright ? 2006 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2006; 29:1339–1348
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The next term is

−�
∫
R3

∇ · (|A(v)|2A(v)) ·�2v dx=
�
2

∫
R3

|A(v)|2A(v) ·A(�2v) dx

=
�
2

∫
R3
@k@l(|A(v)|2Aij(v))Aij(@k@lv) dx

=
�
2

{∫
R3

|A(v)|2Aij(@k@lv)Aij(@k@lv) dx

+
∫
R3
(@k@l|A(v)|2)Aij(v)Aij(@k@lv) dx

+2
∫
R3
(@k |A(v)|2)Aij(@lv)Aij(@k@lv) dx

}

which can be rewritten in the form

�
2

{∫
R3

|A(v)|2|∇2A(v)|2 dx + 1
2

∫
R3

|∇2|A(v)|2|2 dx
}

− I2

with

I2 := − �
∫
R3
(@k |A(v)|2)

(
@k

|A(∇v)|2
2

)
dx +

�
2

∫
R3
(@k@l|A(v)|2)Aij(@kv)Aij(@lv) dx

The non-linear term multiplied by �2 takes the form

�2
∫
R3

∇ ·A2(v) ·�2v dx=−�2
2

∫
R3
A2(v) : A(�2v) dx

=−�2
{∫

R3
Aik(@l@mv)Akj(v)Aij(@l@mv) dx

+
∫
R3
Aik(@lv)Akj(@mv)Aij(@l@mv) dx

}
:= I3

and a similar reasoning shows that

�1
∫
R3

∇ · (v · ∇A(v) + (∇v)TA(v) +A(v)∇v) ·�2v dx

= −�1
2

{∫
R3
v · ∇A(v) : A(�2v) dx +

∫
R3
A2(v) : A(�2v) dx

}

= −�1
2

{∫
R3
Aml(v)@lAij(@kv)Aij(@k@mv) dx +

∫
R3
@k@mvl@lAij(v)Aij(@k@mv) dx

}

− �1
{∫

R3
Aik(@l@mv)Akj(v)Aij(@l@mv) dx +

∫
R3
Aik(@lv)Akj(@mv)Aij(@l@mv) dx

}
:= I4
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again because div v=0. This �nally gives

d
dt

(∫
R3

|∇2v|2 dx + �1
∫
R3

|∇3v|2 dx
)
x + 2�

∫
R3

|∇3v|2 dx

+�
{∫

R3
|A(v)|2|∇2A(v)|2 dx + 1

2

∫
R3

|∇2|A(v)|2|2 dx
}

=−2
∫
R3
@kfi @k�vi dx − 2I1 + 2I2 + 2I3 + 2I4 (12)

The right-hand side in (12) can be bounded from above by

2‖∇f‖0;2‖∇�v‖0;2 + 2�‖∇|A(v)|2‖0;6‖∇A(v)‖0;3‖∇2A(v)‖0;2

+�‖∇2|A(v)|2‖0;2‖∇A(v)‖0;3‖∇A(v)‖0;6 + 2‖∇v‖0;2‖∇2v‖20;4

+ 2‖∇v‖20;4‖∇3v‖0;2 + (2 |�1 + �2|+ �1)

· ( ‖|A(v)||∇2A(v)|‖0;2 + 2 ‖∇2v‖0;3‖∇A(v)‖0;6) ‖∇2A(v)‖0;2

where we have taken into account that |A(v)|62|∇v|. In view of Young’s and Sobolev’s
inequalities, we get the estimates

2‖∇ f‖0;2‖∇�v‖0;261� ‖∇ f‖20;2 + �‖∇3v‖20;2

�‖∇A(v)‖0;3 (2‖∇|A(v)|2‖0;6‖∇2A(v)‖0;2 + ‖∇2|A(v)|2‖0;2‖∇A(v)‖0;6)

6
�
4

‖∇2|A(v)|2‖20;2 + c� ‖∇2v‖20;3‖∇3v‖20;2

‖∇v‖0;2‖∇2v‖20;4 + ‖∇v‖20;4‖∇3v‖0;26c ( 1 + ‖∇v‖21;2)‖∇3v‖20;2 + c‖∇v‖21;2

(2|�1 + �2|+ �1)(‖|A(v)||∇2A(v)|‖0;2 + 2‖∇2v‖0;3‖∇A(v)‖0;6)‖∇2A(v)‖0;2

6
�
2

‖|A(v)||∇2A(v)|‖20;2 + c
(
�+

�12

�
+ (|�1 + �2|+ �1)‖∇2v‖0;3

)
‖∇3v‖20;2

where we have also recalled that |�1 + �2|624
√
�� (cf. Equation (3)), and used the interpo-

lation inequality

‖v‖0;46c‖v‖1=40;2 ‖∇v‖3=40;2
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In view of these estimates, we obtain, from (12), the inequality

d
dt
(‖∇2v‖20;2 + �1‖∇3v‖20;2) + �‖∇3v‖20;2 +

�
2

‖|A(v)||∇2A(v)|‖20;2 +
�
4

‖∇2|A(v)|2‖20;2

6
1
�
‖∇f‖20;2 + c‖∇v‖21;2 + c(C(�; �1; �2; �) + ‖∇v‖21;2 + (�+ 1)‖∇2v‖20;3)‖∇3v‖20;2

where C(�; �1; �2; �)= c(1+ �+(�21=�)+ (|�1 + �2|+ �1)2). From Gronwall’s inequality it then
follows that

ess sup
06t6T

(‖∇2v‖20;2 + �1‖∇3v‖20;2) + �
∫ T

0
‖∇3v‖20;2 dt

6 exp
{
C(�; �1; �2; �)T +

∫ T

0
‖∇v‖21;2 dt + (�+ 1)

∫ T

0
‖∇2v‖20;3 dt

}

·
(

‖∇2v0‖20;2 + �1‖∇3v0‖20;2 +
1
�

∫ T

0
‖∇f‖20;2 ds+ c

∫ T

0
‖∇v‖21;2 dt

)

which concludes the proof in view of the �rst two a priori estimates (6) and (9), and the
regularity assumption v∈L2(0; T ;W 2;3(R3)).

We can obtain further regularity by testing Equation (4)1 with −�3v and performing again
some integrations by parts. We obtain the inequality

d
dt
(‖∇3v‖20;2 + �1‖∇4v‖20;2) + 2 �‖∇4v‖20;2 + �

∫
R3

|A(v)|2|∇3A(v)|2 dx + �
2

∫
R3

|∇3|A(v)|2|2 dx

6c
∫
R3
(|∇ v| |∇3v|2 + |∇2v|2 |∇3v|) dx + 2|(∇2f ;∇4v)|

+C(�1; �2)
∫
R3
(|A(v)||∇3A(v)|2 + |∇2v| |∇3v||∇4v|) dx

+ c(�)
∫
R3

|A(v)| |∇A(v)| |∇2A(v)| |∇3A(v)|+ |∇A(v)|2 |∇2A(v)|2 dx

from which one easily concludes, using the previous estimates, that

v∈L∞(0; T ;H 4(R3)) for all T¿0

assuming additional hypotheses on the initial datum, v0 ∈H 4(R3), and on the forcing term,
f ∈L2(0; T ;H 2(R3)).
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