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SUMMARY

A modi�ed model for a binary �uid is analysed mathematically. The governing equations of the motion
consists of a Cahn–Hilliard equation coupled with a system describing a class of non-Newtonian
incompressible �uid with p-structure. The existence of weak solutions for the evolution problems
is shown for the space dimension d=2 with p¿ 2 and for d=3 with p¿ 11=5. The existence of
measure-valued solutions is obtained for d=3 in the case 26p¡ 11=5. Similar existence results are
obtained for the case of nondi�erentiable free energy, corresponding to the density constraint | |6 1.
We also give regularity and uniqueness results for the solutions and characterize stable stationary
solutions. Copyright ? 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A two-phase �ow is �uid motion which has two di�erent phase states. When we consider
a two-phase �ow between immiscible �uids or a motion of sharp interfaces, it is necessary
to take the e�ect of convection (�uidity) into account together with the free energy of the
system. Dynamics of two-phase systems ignoring convection has been studied deeply in the
literature and Cahn–Hilliard equation has been playing a central role in this area. Navier–
Stokes equations also have been central in �uid mechanics. Thus, a coupling of Cahn–Hilliard
and Navier–Stokes equations can be a �rst candidate to describe a phase transition phenomena
with �uidity when the sharp interface is replaced by a narrow transition layer determined by
both di�usion and motion. Indeed, there have been several papers introducing such models to
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describe �uctuations or hydrodynamic e�ects in the critical phenomena [1–3]. These models
are variations of a model called model H in Reference [4], which can be systematically derived
[5] and generalized [6] or [7] (see also Reference [8]). The model H is a system of incom-
pressible Navier–Stokes equations coupled with Cahn–Hilliard equation through quadratic
coupling terms (reversible modes). The model also encompasses the case of non-constant
mobility and surface tension. In particular, for the static case, the model is reduced to one sim-
ilar in Reference [9]. However, there is a di�erence between the two models since the model H
admits a variational structure while the model in Reference [9] does not. Phase �eld models
have been also used with success for the numerical computations of interface movement
using di�erent methods, as for instance, in Reference [7,10] or [11]. Qualitative studies of the
behaviour of Cahn–Hilliard �ow model were considered with Navier–Stokes equations (p=2)
and constant surface tension coe�cient in Reference [12] and also with constant mobility in
Reference [13], for slightly nonhomogeneous diphasic incompressible �uids under shear.
In this paper, we consider a convective phase �eld system for modi�ed model H on

a smooth bounded domain or on a torus for non-Newtonian �uids with p-structure. We
�rst introduce the de�nitions and we prove the existence of weak solutions under relative
density (order parameter) dependent viscosity, surface tension coe�cient and mobility for
p¿ (3d+2)=(d+2) in the space dimensions, d=2, 3, recovering the Ladyzhenskaya–Lions
result [14]. The particular case of Navier–Stokes equations (p=2) is also covered for d=3.
The Lyapunov functional turns out to fall into the classical case of the Cahn–Hilliard sys-
tem for the static case. The Lyapunov functional actually guarantees the stability of local
minimizers of the classical functional in the absence of external forces.
To �ll the gap 26p¡ 11=5 when d=3, we prove the existence of measure-valued

solutions for p¿ 2 (d=2; 3) in the line of Reference [15]. Then we show the unique-
ness of weak solutions for p¿ (d+ 2)=2, d=2; 3. Some regularity and existence results are
obtained in two-dimensional space (d=2) for a class of non-Newtonian �uids undergoing
a well behaved stress tensor with p-growth, p¿ 1, when the viscosity, surface tension
coe�cient and mobility are constants. Finally, in the last section, we consider the case of
nondi�erentiable free energy in order to obtain a solution satisfying the (physical) density
constraint | |6 1 as in Reference [16] (see also Reference [17]).

2. A CONVECTIVE-PHASE FIELD SYSTEM

The state of the system is described by a pair (u;  ), where u=(u1(x; t); : : : ; ud(x; t)) is the
velocity �eld of the �uid and  =  (x; t) is the order parameter (the relative density). The
system of equations for (u;  ) is

@tu+ (u · ∇)u=−∇q+∇ · (��)− ∇ · (�∇ ⊗ ∇ ) (1)

∇ · u=0 (2)

@t + u · ∇ =∇ · (m∇(f′( )− √
�∇ · (√�∇ ))) (3)

with appropriate initial and boundary conditions. Here, f∈C2(R → R+) is a volumetric free
energy, �= �( )¿ 0 the viscosity, �= �( )¿ 0 the surface tension coe�cient, m=m( )¿ 0
the mobility, q= q(x; t) the scalar pressure, and �= �(D(u)) the viscous stress satisfying
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the (p − 1)-growth and p-coercivity conditions, where D(u)=Dij(u)= (@iuj + @jui)=2 is the
velocity of strain tensor, i, j=1; : : : ; d. System (1)–(3) is derived under the assumption of
constant density and incompressibility. We assume that the coe�cients �, �, and m depend
only on  . We also assume that �, �, and m are continuous functions, with � Lipschitz, such
that they are bounded from below and above by positive de�nite constants

0¡�16 �( ); �( ); m( )6 �2 ∀ ∈R (4)

These assumptions are reasonable and used in the derivation of (1)–(3) in Reference [5].
Due to physical motivation, we only consider f of double-well type satisfying the following
conditions:

f(y)¿ 0; f′(y)=f(y) = o(1) as |y| → ∞
f(y) has local minima only at y = ±1
f(y) is strictly monotone for |y|¿ 1

⎫⎪⎪⎬
⎪⎪⎭ (5)

Denoting by Rd2
sym the set of symmetric d×d matrices, a non-Newtonian �uid (see Reference

[15], for instance) can be described by a monotone �ij ∈C(Rd2
sym) such that

�ij(0) = 0; |�(�)|6 �3(1 + |�|)p−1 (6)

�(�) : �¿ �4|�|p ∀�∈Rd2
sym (7)

We shall study the initial boundary value problem of the above system on two types of
domains, �B and �P. �B ⊂ Rd is a smooth bounded domain and �P is the usual d-torus. For
these domains, we work with di�erent boundary conditions

u =
@
@n

 =
@
@n

� = 0 on @�B (8)

or

u(x) = u(x + e);  (x) =  (x + e); �(x) = �(x + e) on @�P (9)

Here, e is a generic element of a basis of the torus, n is the outward normal vector of �B,
and

� = f′( )− √
�∇ · (√�∇ ) (10)

where � is called the chemical potential. The boundary condition (8) is physically more mean-
ingful than the Dirichlet-type condition. In fact, we can work with the Dirichlet-type boundary
condition, u=  =� =0 on @�B instead of (8) to get similar results. Those boundary condi-
tions can be incorporated in the functional spaces below. First we de�ne the following spaces:

Wk;2
n =

{
 ∈Wk;2

∣∣∣∣@k−1 
@k−1n

= 0 on @�B

}
; k¿ 2

VB(VP) = {u|u∈ (C∞
0 )

d((C∞
per)

d);∇ · u = 0}

Jk;p
B (Jk;p

P ) = {u|u∈ (Wk;p
0 )d((Wk;p

per )
d);∇ · u = 0}; k¿ 0; p¿ 1

Copyright ? 2006 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2006; 29:1523–1541
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Then, interpreting J0 in the generalized sense, the spaces we work with will be

HB(HP) = J0;2B × W 1;2(J0;2P × W 1;2
per )

VB(VP) = J
1; p
B × W 3;2

n (J1; pP × W 3;2
per )

We denote by � either of the two domains �B and �P, and we understand H=HB(HP) and
V=VB(VP), respectively. Clearly, H and V are Banach spaces and V is compactly embedded
in H for p ¿ 2d=(d+ 2). We also use the summation convention throughout this paper.
We �rst de�ne a weak solution of (1)–(3) and afterwards we extend the de�nition to allow

measure-valued solutions.

De�nition 1
We say that (u;  ; �) is a weak solution of (1)–(3) on � for (u0;  0) and 0¡t¡T if
(u;  )∈L∞(0; T ;H), ∇u∈Lp(0; T ;Lp), ∇�∈L2(0; T ;L2), f( )∈L1(0; T ;L1), and for any test
function (v; �)∈V, (u;  ; �) satis�es the following formulation:∫

�
v · u(t)−

∫
�
v · u0 =

∫ t

0

∫
�

(
uiuj@ivj − ��ij(Du)@ivj −  v · ∇�

)
(11)

∫
�
� (t)−

∫
�
� 0 =

∫ t

0

∫
�
( u · ∇� − m∇� · ∇�) (12)

∫
�
��=

∫
�
(f′( )�+

√
�∇ · ∇(√��)) a:e: t (13)

Note that all terms in (11)–(13) are meaningful. Indeed, W 1;p ,→L4 for p¿ 3d=(d+2) and
d6 4, @tu∈L1(0; T ; (J1;p)′) for p¿ (d+

√
3d2 + 4d)=(d+ 2), and @tu∈Lp′

(0; T ; (J1;p)′) for
p¿ (3d+ 2)=(d+ 2). The above equations are formally equivalent to (1)–(3) since

∇ · (�∇ ⊗ ∇ ) =
√
�∇ · (√�∇ )∇ + 1

2∇(�|∇ |2)
=−�∇ +∇( 12�|∇ |2 + f( ))

In order to de�ne a measure-valued solution as in Reference [15], we recall the space of
probability measures:

Prob(Rs) ≡ {� ∈ M(Rs); � non-negative; �(Rs) = 1}
where M(Rs) denotes the space of bounded Radon measures on Rs. A mapping
�∈L∞

w (�× (0; T );M(Rs)) if and only if
� : �× (0; T )→ M(Rs) is a weak measurable function, that is, if the function

(x; t) 
→ 〈�x; t ; F((x; t); ·)〉 =
∫
Rs

F((x; t); 	) d�x; t(	) ∀F ∈L1(�× (0; T );C0(Rs))

is measurable. Moreover, the norm

ess sup
(x; t)∈�×(0;T )

‖�x; t‖M(Rs)

is �nite.
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De�nition 2
We say that (u; �;  ; �) is a measure-valued solution of (1)–(3) on � for (u0;  0) and 0¡t¡T
if (u;  )∈L∞(0; T ;H), ∇u∈Lp(0; T ;Lp), �∈L∞

w (� × (0; T ); Prob(Rd2)), ∇�∈L2(0; T ;L2),
f( )∈L1(0; T ;L1), and (u; �;  ; �) satis�es the following formulation:

−
∫ T

0

∫
�
@tv · u −

∫
�
v · u0

=
∫ T

0

∫
�

(
uiuj@ivj − �@ivj

∫
Rd2

�ij

(
	+ 	T

2

)
d�x; t(	)−  v · ∇�

)
(14)

for all v ∈ D((−∞; T );V); (12)–(13) for all �∈W 3;2
n (W 3;2

per ); and

@jui(x; t) =
∫
Rd2

	ij d�x; t(	) a.e. in �× (0; T ) (15)

Remark 1
When the measure �x; t =(
@jui(x; t)) is a Dirac measure at almost every point (x; t)∈�× (0; T )
we have

�i; j(D(u)) =
∫
Rd2

�ij

(
	+ 	T

2

)
d�x; t(	)

and a weak solution is also a special measure-valued solution.

3. EXISTENCE AND LYAPUNOV FUNCTIONAL

First, we recall a special case of the Gargliardo–Nirenberg inequality [18] which will be used
in this paper as

Lemma 1
Let i, j, and k be non-negative integers, j6 i¡k and either v∈Hk

0 (�B) or v∈Hk
per(�P) with∫

�P
∇iv=0. Then

‖∇iv‖Lp 6C‖∇jv‖a
L2‖∇kv‖1−a

L2 ; a =
(2k − 2i − d)p+ 2d

2(k − j)p
(16)

26p6 2d=(2i + d − 2k) if 2i + d¿ 2k

26p6∞ if 2i + d¡ 2k

Let us prove some useful a priori estimates.

Lemma 2
Given (u;  ), a smooth solution of (1)–(3) with (8) or (9), we have∫

�
 (t) =

∫
�
 (0) (17)

Q(t) + 2
∫ t

0

∫
�
[��ij@iuj +m|∇�|2]6Q(0) (18)

Copyright ? 2006 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2006; 29:1523–1541
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where

Q =
∫
�
(u2 + 2f( ) + �|∇ |2)

and � as in (10). As a consequence, for a constant C ¿ 0

Q(t) + C
∫ t

0

∫
�
[|∇u|p + |∇�|2]6Q(0) (19)

Proof
First, (17) can be obtained easily. Indeed, integrating (3) and using the divergence theorem,
we recover (17) since the boundary terms vanish due to the boundary conditions. Next, we
multiply (1) by u and (3) by �, then add them after integrating them. Using the divergence
theorem, we have ∫

�
u · ∇uiui =0

∫
�

∇ · (��) · u=−
∫
�
��ij · @iuj

∫
�
@t(2f( ) + |√�∇ |2) = 2

∫
�
�@t 

∫
�
(u · ∇ )�=

∫
�

∇ · (f( )u)−
∫
�
u · √

�∇ ∇ · (√�∇ )

=−
∫
�
u · ∇ · (�∇ ⊗ ∇ )

Using the above identities and integrating with respect to the time, we arrive (18). Since
�ij@iuj = �ijDij(u)¿ 0 then∫

�
��ij@iuj¿

∫
�
�1�ij@iuj¿ �1�4

∫
�

|∇u|p

by assumption (7). Using this fact, we reduce (18) to (19).

In view of Lemma 2, we shall denote from now on

M =
∫
�
 0

We shall analyse separately the Navier–Stokes case in three-dimensional space because it
is not included in p¿ 11=5 but its linear behaviour in main part still allows the existence of
weak solution.

Theorem 1
Given an initial data (u0;  0)∈H with f( 0)∈L1, for p¿ (3d + 2)=(d + 2) there exists
a weak solution (u;  ) to (1)–(3) for any T ¿ 0.

Copyright ? 2006 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2006; 29:1523–1541
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Proof
We use the Faedo–Galerkin argument. We �rst show the theorem for f growing at most
quadratically near in�nity. Let {�i; i∈N} and {�i; i∈N} be an orthogonal basis of J1;p

and W 1;2(W 1;2
per ), respectively. Clearly, �1 = 1=|�| and (�i; �j), i; j ∈N forms an

orthonormal basis for H. And, let Pi
1 and Pi

2, i∈N be the projection operators onto span
(�1; : : : ; �i) and span(�1; : : : ; �i), respectively. We consider the approximate solutions, (ui;  i; �i)
∈ span((�1; �1); : : : ; (�i; �i)), i∈N of the following system:

@tui + Pi
1(u

i · ∇ui) = Pi
1(∇ · (�i�i)) + Pi

1(�
i∇ i) (20)

@t i + Pi
2(u

i · ∇) i = Pi
2∇ · (mi∇�i) (21)

�i = Pi
2(f

′( i)−
√
�i∇ · (

√
�i∇ i)) (22)

where �i, �i, mi, and �ijk correspond to (u
i;  i). We note that Pi

2 in (22) makes the system
consistent and is useful to obtain the essential estimates. For any i∈N, the above system is
a system of ODEs thus, for the initial data (ui

0;  
i
0) ≡ (Pi

1u0; P
i
2 0), the above system has

a (local in time) unique solution, (ui;  i; �i). Exactly as in Lemma 2 using the idempotency
of projection operators, (ui;  i; �i) satis�es (18) and P12 

i(t)=P12 0, i∈N like (17). Since f
grows at most quadratically in this case,∫

�
f( i

0)6C + C
∫
�

| i
0|26C + C

∫
�

| 0|2

Then, Q(ui
0;  

i
0)(t)6CQ(u0;  0) and thus Q(ui;  i)(t)6CQ(u0;  0) by (19). By (22),∣∣∣∣

∫
�
�i

∣∣∣∣ =
∣∣∣∣
∫
�
(f′( i) +

√
�i∇ i · ∇

√
�i)
∣∣∣∣

6C + C
∫
�
f( i) + C

∫
�

|∇ i|26C + CQ(u0;  0)

Therefore, due to the continuity of the local solution (ui;  i; �i), i∈N and its uniform
boundedness in time, we can shift to T . Further, for any T ¿ 0, (ui;  i)∈L∞(0; T ;H), ∇ui ∈Lp

(0; T ;Lp), ∇�i ∈L2(0; T ;L2), and �i ∈L2(0; T ;W 1;2) uniformly with respect to i∈N.
Next, we multiply (20) and (21) by v∈J1;p and �∈W 1;2(W 1;2

per ), respectively, to calculate
‖@tui‖(J1;p)′ and ‖@t i‖H−1 . Indeed,

|〈@tui; v〉| =
∣∣∣∣
∫
�
ui ⊗ ui · ∇Pi

1v −
∫
�
�i�i · ∇Pi

1v −
∫
�
 iPi

1v · ∇�i

∣∣∣∣
6C(‖ui‖2L2p=(p−1) + �2�3(1 + ‖∇ui‖p−1

Lp ))‖Pi
1v‖W 1;p

+ ‖ i‖L4‖Pi
1v‖L4‖∇�i‖L2

here, we used the fact, ∇ · Pi
1v=0 and p¿ 3d=(d+ 2). Subsequently,

|〈@tui; v〉|6C(‖ui‖2(1−
)
L2 ‖∇ui‖2
Lp + �2�3(1 + ‖∇ui‖p−1

Lp )

+ ‖ i‖H 1‖∇�i‖L2)‖Pi
1v‖W 1;p

Copyright ? 2006 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2006; 29:1523–1541



1530 N. KIM, L. CONSIGLIERI AND J. F. RODRIGUES

by the interpolation and Sobolev inequalities for 
=d=[(d+2)p−2d]. With the fact ‖Pi
1v‖W 1;p

6‖v‖J1;p , (17), the Poincar�e inequality, and (19), and chosing 
¿ 1 such that 2

6p
and 
6p′, we deduce∫ T

0
‖@tui‖


(J1;p)′ 6C(T +M 4 +Q(u0;  0)2
) (23)

for any T ¿ 0. The limit case 
=1 corresponds to the values p¿ (d+
√
3d2 + 4d)=(d+ 2)

already found in Reference [15, p. 220].
Considering ∣∣∣∣

∫
�
@t i�

∣∣∣∣ =
∣∣∣∣
∫
�
 i(ui · ∇)Pi

2� −
∫
�

∇ · (Pi
2�)m

i∇�i

∣∣∣∣
6 (‖ i‖L4‖ui‖L4 + �2‖∇�i‖L2)‖∇Pi

2�‖L2

and applying the Sobolev and Poincar�e inequalities, (17), and (19), we have∫ T

0
‖@t i‖2H−16C(1 +M 4 +Q(u0;  0)2) (24)

for any T ¿ 0. Therefore, for any T ¿ 0, using a well-known compactness theorem [14],
we can �nd a subsequence of ui converging strongly in Lp(0; T ;J0;2), since W 1;p ,→ ,→L2

if p¿ 2d=(d + 2), a subsequence of  i converging strongly in L2(0; T ;L2), and a subse-
quence of �i converging weakly in L2(0; T ;W 1;2). We denote the limits by u,  , and �,
respectively. Then, for any T ¿ 0, u∈L∞(0; T ;J0;2)∩Lp(0; T ;J1;p),  ∈L∞(0; T ;W 1;2), and
Lemma 2 holds for (u;  ; �).
To pass to the limit of the nonlinear term, we refer that the density-dependent coe�cient

keeps the monotonicity property as∫
�
(�( i)�i − �( j)�j) : (Di − Dj) =

∫
�
�( i)(�i − �j) : (Di − Dj)

+
∫
�
[�( i)− �( j)]�j : (Di − Dj)

for two solutions (ui;  i; �i) and (uj;  j; � j). Thus applying monotone arguments (see
Reference [14]) where the convective term has meaning if and only if p¿ (3d+ 2)=(d+ 2)
which corresponds to 
=p′, the limits satisfy (11) and trivially (12). Since f′=f= o(1) and
f( )∈L∞(0; T ;L1), (13) also holds for �.
We next consider the case of f growing faster. In this case, we can approximate f by a

sequence of fj¿ 0, j ∈N growing at most quadratically and satisfying f16f26 · · · 6f.
In fact, we can de�ne that fj(y)=f(y) for |y|¡j, fj(y)=1=2(fj(j) + fj(j + 1)) for
|y|¿j+ 1, and then make a smooth and monotone interpolation. Then, we have a sequence
of solutions (uj;  j; � j) for each fj which satis�es all the above results. For each fj, j ∈N,
Q(u0;  0)(fj)6Q(u0;  0)(f) since fj6f. Thus (uj;  j; � j) is again a bounded sequence
and we can �nd a limit (up to a subsequence) (u;  ; �) under the same topology as before.
By Fatou’s lemma, we further deduce (u;  ; �) satisfy (19). The limit is veri�ed to satisfy

Copyright ? 2006 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2006; 29:1523–1541
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(11) and (12) in a similar fashion as before. Using the fact f( )∈L1 and (5), we can also
show (13).

The corollary of the above theorem shows that the space of the solution sitting is actually
similar to that of the classical Cahn–Hilliard equation.

Corollary 1
Under all the assumptions of the above theorem, suppose further that � is a constant and that

|f′′(y)|6C(1 + |y|r)
r = 3 if d = 3

for any r¿ 0 if d = 2

}
(25)

Then, the following estimate holds:
∫ T

0
‖∇3 ‖2L26C(1 + T +M 8r=(4−d) +Q(0)4r=(4−d))Q(0) (26)

for any p¿ 1.

Proof
Considering that all components of the Galerkin system �i, i∈N are eigenvectors of −�, we
only need to show that �∇ ∈L2(0; T ;L2). By (13), ��∇ =f′′( )∇ − ∇�. Using (25)
and (16), we obtain

‖f′′( )∇ ‖L2 6 ‖f′′( )‖L2‖∇ ‖L∞

6C(1 + ‖ ‖r
L2r)‖∇ ‖1−d=4

L2 ‖∇� ‖d=4
L2

Applying the Poincar�e inequality, we have

‖ ‖L2r 6C(M + ‖∇ ‖L2)

for both the cases r=3, d=3 and any r¿ 0, d=2. Then we infer

‖�∇ ‖L26C‖∇�‖L2 + C(1 +M 4r=(4−d) + ‖∇ ‖4r=(4−d)
L2 )‖∇ ‖L2

using the Young inequality. This proves (26) taking into account (18).

Corollary 2
Under all the assumptions of the above corollary, the existence of weak solution remains valid
in the case of Newtonian �uids for �=D(u) and d=3, and we have further (u;  )∈L2(0; T ;V)
with p=2.

Proof
The proof for the case �=D(u) and d=3 is identical to the proof of Theorem 1, since we
can derive the same estimates for the Galerkin approximations and the weak convergence of
∇ui to ∇u in L2 is su�cient to pass to limit (20). Then, we have further (u;  )∈L2(0; T ;V)
with p=2, taking into account the regularity property given at the above corollary.
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Corollary 3
In the absence of the external forces, (u;  )∈H is a stationary stable solution if and only if
u=0 and  is a local minimizer of

Qcl( ) =
∫
�
�|∇ |2 + 2f( )

Proof
As Q is a Lyapunov functional of system (1)–(3), (0;  ) is a stable stationary solution in H
if  is a local minimizer of Qcl. On the contrary, if (u1;  1) is a stable stationary solution in
H, we can consider the Cauchy problem with initial data (u1;  1). Then the solution obtained
by Theorem 1 must satisfy (18). However, the solution is just (u1;  1), which means u1 = 0
and therefore Q=Qcl. Since (u1;  1) is stable,  1 is a local minimizer of Qcl.

4. MEASURE-VALUED SOLUTIONS

Let us recall �rst the following consequence of a theorem on Young measures which is the
basis to the existence result of measure-valued solutions (cf. [15, Corollary 2.10, p. 172]).

Lemma 3
Let Q ⊂ Rd be a bounded open set. Let zi be uniformly bounded in Lp(Q) s. Then there
exists a subsequence still denoted by zi and a measure-valued function �, such that, for all
� : Rs → R satisfying for some q¿ 0 the growth condition

|�(	)|6C(1 + |	|)q ∀	∈Rs

we have

�(zi)* 	� in Lr(Q)

where

	�(y) = 〈�y; �〉 a.e. in Q

provided that 1¡r6p=q.

Theorem 2
Given an initial data (u0;  0)∈H with f( 0)∈L1, for p¿ 2; (d=2; 3), there exists a measure-
valued solution (u;  ) to (1)–(3) for any T ¿ 0.

Proof
As in the proof of weak solutions, we �rst start with the case f growing at most quadratically
near in�nity. Let {�i, i∈N} and {�i, i∈N} be an orthogonal basis of Jk;2, k ¿ 1 + d=2
(cf. Reference [15, p. 206]), and W 1;2(W 1;2

per ), respectively. Then there exists an approximate
solution (ui;  i; �i), i∈N such that, for any T ¿ 0, (ui;  i)∈L∞(0; T ;H), ∇ui ∈Lp(0; T ;Lp),
@t i ∈L2(0; T ;H−1), ∇�i ∈L2(0; T ;L2), and �i ∈L2(0; T ;W 1;2) uniformly with respect to i∈N.
However, estimate (23) is not valid for p¡ 3d=(d+2); that is, 26p¡ 11=5 when d=3.

In order to prove an estimate for @tui in Lp′
(0; T ; (Jk;2)′), we take v∈Lp(0; T ;Jk;2) such that
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‖v‖Lp(0;T ;Jk; 2)6 1 in (20) it follows∣∣∣∣
∫ T

0
〈@tui; v〉 dt

∣∣∣∣6C
∫ T

0
‖ui‖2L2‖∇Pi

1v‖L∞ + (1 + ‖∇ui‖p−1
Lp )‖∇Pi

1v‖Lp

+ ‖ i‖L2‖Pi
1v‖L∞‖∇�i‖L2 dt

6C(‖ui‖2L∞(0;T ;L2) + 1 + ‖∇ui‖p−1
Lp(0;T ;Lp)

+ ‖ i‖L∞(0;T ;L2)‖∇�i‖L2(0;T ;L2))‖Pi
1v‖Lp(0;T ;Wk; 2)

remarking that ‖Pi
1v‖Wk; 26‖v‖Jk; 2 and that k ¿ 1 + d=2 implies that ∇v∈ (Wk−1;2)d×d ,→

(L∞)d×d: Then the a priori estimate holds and the limit processes follow as in the proof of
Theorem 1, except for the term ∫ T

0

∫
�
�( i)�i : D(v)

for all v ∈ D(−∞; T ;V): Applying Lemma 3 with Q=�×(0; T ), zi=D(ui), q=p−1, r=p′

and s=d2, we have

�i = �(D(ui))* 	� in Lp′
(�× (0; T ))d2

where

	�ij(x; t) =
∫
Rd2

�ij

(
	+ 	T

2

)
d�x; t(	) a.e. in �× (0; T )

Therefore, since  i →  a.e. in �× (0; T ) and � is a continuous function satisfying (4), we
conclude ∫ T

0

∫
�
�( i)�i : D(v) −→

∫ T

0

∫
�
�( ) 	� : D(v)

for all v ∈ D(−∞; T ;V).
Assertion (15) is obtained as in Reference [15, p. 212], that is, applying Lemma 3 with

�= id, q=1, r=p and s=d2.

5. UNIQUENESS OF WEAK SOLUTIONS

In this section, we assume that

�, m, � are positive constants

and the viscous stress tensor � satis�es (6) and, for some constant �5¿ 0,

(�(�)− �(�)) : (� − �)¿ �5|� − �|p ∀�; �∈Rd2
sym (27)

under the restriction p¿ 2 (cf. Reference [15, p. 198]). Let us prove uniqueness for this case
if d=2 and for p¿5=2 if d=3.
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Theorem 3
Assume p¿ (d + 2)=2 and (25). Then, there exists a unique weak solution for (1)–(3) for
a given initial data, (u0;  0)∈H with f( 0)∈L1.

Proof
Let (v1;  1), (v2;  2) be two weak solutions given by Theorem 1 for the same initial data and
let (v;  )= (v1−v2;  1− 2). Since we can take �=1 in (12), we can assume

∫
�  k(t)=

∫
�  0,

k=1; 2. In particular,
∫
�  =0. Similarly,

∫
� v=0 when �=�P. This fact allows the

application of (16) for i= j=0 in several occasions. We subtract the equations for (v2;  2)
from (v1;  1) and integrate them after multiplying by (v;  ) to obtain

@t

∫
�

| |2 + 2m�
∫
�

|� |26 2m
∫
�

|� ||f′( 1)− f′( 2)|+ 2
∫
�

|v · ∇ 2 |

6C‖� ‖L2‖f′( 1)− f′( 2)‖L2 + C‖v‖L2‖∇ 2‖L∞‖ ‖L2

@t

∫
�

|v|2 + 2��5
∫
�

|∇v|26 2�
∫
�
(|∇� 1||v |+ |� ||∇ 2||v|) + 2

∫
�

|v ⊗ v : ∇v2|

6C‖∇� 1‖L2‖v ‖L2 + i
∫
�

|� |2

+Ci‖v‖2L2‖∇ 2‖2L∞ + C‖∇v2‖Lp‖v‖2L2p=(p−1)

here, i¿ 0 is arbitrary. Using the mean value theorem and (16), we have

‖f′( 1)− f′( 2)‖L26 ‖ ‖L4‖f′′(�)‖L46C‖ ‖3=4L2 ‖� ‖1=4L2 ‖f′′(�)‖L4

for some measurable �(x)∈ [ 1(x);  2(x)] a.e. x∈�. While,

‖∇� 1‖L2‖v ‖L2 6 ‖∇� 1‖L2‖v‖L4‖ ‖L4

6C‖∇� 1‖L2‖v‖1=2L2 ‖∇v‖1=2L2 ‖ ‖3=4L2 ‖� ‖1=4L2

6Ci‖∇� 1‖L2‖v‖2L2 + Ci‖∇� 1‖2L2‖ ‖2L2

+ i‖� ‖2L2 + i‖∇v‖2L2

and

‖∇v2‖Lp‖v‖2L2p=(p−1) 6 ‖∇v2‖Lp‖v‖(2p−d)=p
L2 ‖∇v‖d=p

L2

6Ci‖∇v2‖2p=(2p−d)
L2 ‖v‖2L2 + i‖∇v‖2L2

Then, taking i small enough and denoting A= ‖v‖2L2 + ‖ ‖2L2 , we obtain
@tA6CA(1 + ‖∇ 2‖2L∞ + ‖f′′(�)‖8=3L4 + ‖∇� 1‖2L2 + ‖∇v2‖2p=(2p−d)

L2 )
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Due to the assumption on f, we have

‖f′′(�)‖L4 6C(1 + ‖|�|r‖L4)6C(1 + ‖ 1‖r
L4r + ‖ 2‖r

L4r)

6C(1 + ‖∇ 1‖r
L2 + ‖∇ 2‖r

L2 +Mr)

and due to (26) and (18), we obtain

1 + ‖∇ 2‖2L∞ + ‖f′′(�)‖8=3L4 + ‖∇� 1‖2L2 + ‖∇v2‖2p=(2p−d)
L2 ∈L1(0; T )

where we take into account that 2p=(2p−d)6p is equivalent to the assumption p¿ (d+2)=2.
Therefore, we can apply the Gr
onwall lemma and conclude A(t)=0 for all t ¿ 0.

6. REGULARITY IN TWO DIMENSIONS

In this section, we assume that

�, m, � are positive constants, and d=2

Now the viscous stress tensor is described by a di�erentiable functional, that is, there exists
a strictly convex potential U ∈C2(R4sym) of � such that, for some p∈ (1;∞) and positive
constants �6 and �7,

�ij(�) =
@U
@�ij

(�) : U (0) =
@U
@�ij

(0) = 0 (28)

@2U
@�ij@�kl

(�)�ij�kl¿ �6(1 + |�|)p−2|�|2 (29)

∣∣∣∣ @2U
@�ij@�kl

(�)
∣∣∣∣ 6 �7(1 + |�|)p−2 ∀�; �∈R4sym (30)

For U (D(u))= |D(u)|2, system (1) reduces to the Navier–Stokes equations. When
f′′(y)=O(|y|r), r¡∞ as in Corollary 1, then (u;  )(t)∈V a.e. in time. We shall show
that in fact, (u;  )(t)∈V for all t ¿ 0 and the solution is then the unique strong solution.

Lemma 4
Let (u;  ) be the weak solution we have found for p¿ 2. If further u0 ∈J1;2 and (25) holds
in the case d=2, then u∈L∞(0; T ;J1;2) and for any 0¡t¡T

‖∇u‖2L2 (t) + ��6
∫ t

0
‖∇2u‖2L26 ‖∇u0‖2L2 + C(1 + T +M 4r +Q(0)2r)Q(0)2 (31)

Proof
Considering the Galerkin system (20)–(22) for the eigenvectors of the Stokes operator in
W 2;2(�)2, we can multiply the ith equation by �i�i(t), where �i are the corresponding
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eigenvalues, and sum over i∈N. Thus, we can suppose u is smooth enough and do a priori
estimate. Multiplying Equation (1) by �u and integrating it,

1
2
@t

∫
�

|∇u|2 + ��6
∫
�
(1 + |∇u|)p−2|∇2u|26 �

∫
�

|� ||∇ ||�u| (32)

taking into account

−
∫
�
(u · ∇)u�u =

∫
�
@kuj@jui@kui +

∫
�
uj@jkui@kui = 0

Indeed, each term vanishes for d=2 using (2). For p¿ 2

1
2
@t

∫
�

|∇u|2 + ��6
∫
�

|∇2u|26C‖� ‖2L2‖∇ ‖2L∞ +
��6
2

‖∇2u‖2L2

By (16), we have

@t

∫
�

|∇u|2 + ��6
∫
�

|∇2u|26C‖∇ ‖2L2‖∇3 ‖2L2

Then (18), (26), and the above inequality imply (31), completing the proof.

Lemma 5
If p¿ 1, u0 ∈J1;2,  0 ∈W 2;2, f∈C3, and f′′, f′′′ both satisfy the growth condition (25) in
case d=2, then a solution for (1)–(3) satis�es

‖� ‖2L2 (t) +m�
∫ t

0
‖�2 ‖2L2 6 ‖� 0‖2L2 + C[Q(0)2 +

(1 + T +M 6r +Q(0)3r)(Q(0) +Q(0)2 +Q(0)4)]

Moreover, u∈L∞(0; T ;J1;2)∩L2(0; T ;J2;p) for p¡ 2.

Proof
We apply � to (3) and multiply it by � . Then integrating it using divergence theorem, we
have

@t

∫
�

|� |26−2m�
∫
�

|�2 |2 +
∫
�

|u − Mu||∇ ||�2 |+ 2
∫
�

|�f′( )||�2 |

6−m�
∫
�

|�2 |2 + C
∫
�
(|u − Mu|2|∇ |2 + |�f′( )|2)

Here, Mu=1=|�| ∫� u is added since∫
�
�(Mu · ∇ )� =

1
2

∫
�
Mu · ∇|� |2 = 0
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By (16) and the Poincar�e inequality,∫
�

|u − Mu|2|∇ |26 ‖u − Mu‖2L2‖∇ ‖2L∞ 6C‖u‖2L2‖∇ ‖L2‖∇3 ‖L2

∫
�

|�f′( )|26
∫
�
(|f′′( )|2|� |2 + |f′′′( )|2|∇ |4)

6C(1 + ‖ ‖2rL2r)(‖� ‖2L∞ + ‖∇ ‖4L∞)

6C(1 +M 2r + ‖∇ ‖2rL2)(‖∇ ‖2=3L2 ‖∇4 ‖4=3L2

+ ‖∇ ‖8=3L2 ‖∇4 ‖4=3L2 )

Rearranging the terms and using (18), applying Young inequality and (26), we obtain

@t

∫
�

|� |2 +m�
∫
�

|�2 |26C(‖u‖4L2 + ‖∇ ‖2L2‖∇3 ‖2L2)

+C(1 +M 2r + ‖∇ ‖2rL2)3(‖∇ ‖2L2 + ‖∇ ‖8L2)

Integrating with respect to time, we recover the inequality.
To prove that u∈L∞(0; T ;J1;2)∩L2(0; T ;J2;p), we argue as in Lemma 4 to obtain (32).

Applying the result given in [15, p. 227] for 1¡p¡ 2

‖∇2u‖2Lp 6CIp(u)(1 + ‖∇u‖p)2−p (33)

for some constant C ¿ 0 and Ip(u)=
∫
�(1 + |∇u|)p−2|∇2u|2. Hence, we obtain

1
2
@t

∫
�

|∇u|2 + ��6Ip(u)6 �‖� ‖Lp′ ‖∇ ‖L∞‖∇2u‖Lp

6C‖� ‖Lp′ ‖∇ ‖L∞I1=2
p (u)(1 + ‖∇u‖p)(2−p)=2

By H
older inequality, we have

@t

∫
�

|∇u|2 + ��6Ip(u)6C‖� ‖2Lp′ ‖∇ ‖2L∞(1 + ‖∇u‖p)2−p

Integrating in time this yields

‖∇u‖2L2 (t) + ��6
∫ t

0
Ip(u)6 ‖∇u0‖2L2 + C

∫ t

0
‖� ‖p′

Lp′ ‖∇ ‖p′
L∞ +

∫ t

0
(1 + ‖∇u‖p)p

Then using the regularity for  , (19) and rewriting (33) as

∫ T

0
‖∇2u‖2Lp 6

(
T + sup

t ∈ [0;T ]
‖∇u‖2L2 (t)

)∫ T

0
Ip(u)

the required result follows.
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As a direct consequence of the above two lemmas, the weak solution we have obtained
satisfy almost everywhere the equations. From Lemmas 4 and 5 and Theorem 3, we can state
the following regularity theorem.

Theorem 4
For p¿ 1, u0 ∈J1;2;  0 ∈W 2;2 with f( 0)∈L1, there exists a solution in

L∞(0; T ;J1;2 × W 2;2)∩L2(0; T ;J2;2 × W 4;2) if p¿ 2

L∞(0; T ;J1;2 × W 2;2)∩L2(0; T ;J2;p × W 4;2) if p¡ 2

and the solution belongs to V (p=2) as soon as t ¿ 0 if f∈C3 and f′′, f′′′ both satisfy
(25) in case d=2. Moreover, this solution is unique if p¿ 2.

Proof
For p¿ 2, denoting by (u;  ) the unique solution given by Theorem 3, Lemmas 4 and 5
guarantee that this solution belongs to J1;2 × W 2;2 for any t ¿ 0. For any 0¡t1¡t2, u(t),
∇ (t)∈ (Lq)2, ∀q¿ 1 and  (t)∈L∞ uniformly with respect to t ∈ [t1; t2]. Thus

@t +�2 = u · ∇ +�f′( ) ≡ h∈L2(t1; t2;L2)

Therefore,  ∈W 3;2 for t1¡t¡t2, which �nishes the proof for p¿ 2.
For 1¡p¡ 2, arguing as in the proof of Theorem 2 with k=2, we obtain an approximate

solution (ui;  i; �i) i∈N such that, for any T ¿ 0, (ui;  i)∈L∞(0; T ;H), ∇ui ∈Lp(0; T ; (Lp)4),
@t i ∈L2(0; T ;H−1), ∇�i ∈L2(0; T ; (L2)2), and �i ∈L2(0; T ;W 1;2) uniformly with respect to
i∈N; and @tui belongs to a bounded set of

L�(0; T ; ((W 2;2)2 ∩J1;p)′)
with � = min(p; 2(p − 1)). Indeed,

|〈@tui; v〉|6 ‖ui‖Lp′ ‖∇ui‖Lp‖Pi
1v‖L∞ + �2�7(1 + ‖∇ui‖Lp)p−1‖∇Pi

1v‖Lp

+�‖� ‖L2‖∇ ‖L2‖Pi
1v‖L∞

= I1 + I2 + I3

Let us estimate I1; I2 and I3 separately. Due to the interpolation inequality (see Reference
[15, p. 232], for instance)

‖u‖Lp′ 6 ‖u‖(3p−4)=2(p−1)
L2 ‖u‖(2−p)=2(p−1)

L2p=(2−p)

we have

∫ T

0
I1 dt6 ‖ui‖L∞(0;T ;L2)

∫ T

0
‖∇ui‖1+((2−p)=2(p−1))

Lp ‖Pi
1v‖W 2;2 dt

6C‖ui‖1=2(p−1)
Lp(0;T ;J1;p)‖v‖L2(p−1)=(2p−3)(0;T ;W 2; 2)
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The second one yields∫ T

0
I2 dt6C

∫ T

0
(1 + ‖∇ui‖Lp)p−1‖v‖W 2; 2 dt

6C(1 + ‖ui‖p−1
Lp(0;T ;J1;p))‖v‖Lp(0;T ;W 2; 2)

taking into account that (W 2;2)2 ,→ (W 1;p)2 if p¿ 1.
From Lemma 5, we obtain∫ T

0
I3 dt6C‖� ‖L∞(0;T ;L2)‖∇ ‖L∞(0;T; L2)

∫ T

0
‖v‖W 2; 2 dt

Hence, @tui ∈L�(0; T ; ((W 2;2)2 ∩J1;p)′), ui ∈L2(0; T ;J2;p) p¡ 2 and J2;p ,→ ,→ (W 1;p)2,
p¿ 1; then

∇ui → ∇u a.e. in �× (0; T )
and also (since �ij ∈C1(R4sym))

�(D(ui))→ �(D(u)) a.e. in �× (0; T )
By standard arguments [15, p. 224], this implies∫ T

0

∫
�
�i�i : D(v)→

∫ T

0

∫
�
�� : D(v) dx dt

7. NON-DIFFERENTIABLE CASE

In order ((1)–(3)) to model a phase transition phenomena, since  (x; t) indicates the phase of
the system at (x; t), it is required that | |6 1. In this section, we show that | |6 1 may be
obtained by using a standard penalization scheme for a non-di�erentiable free energy [16,17].
Let f=f1 + f2; f1 satis�es (5) and

f2(y) =

{
0 for |y|6 1
+∞ for |y|¿ 1

The subdi�erential of f2 is denoted by @f2, and we set

f′(y) = {f′
1(y) + �|�∈ @f2(y)}

De�nition 3
We say that (u;  ; �) is a generalized solution for (1)–(3) if for any (v; �)∈V with f2(�)∈L1,
(u;  ; �) satisfy the de�nition of a weak solution with (13) replaced by∫

�
((� − f′

1( ))( − �)− √
�∇ · ∇(√�( − �)))

¿
∫
�
(f2( )− f2(�)) a.e. t (34)
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Theorem 5
Given (u0;  0)∈H with | 0|6 1 and f as above, for p¿ (3d+2)=(d+2) if d=2; 3 or in the
Newtonian case �=D(u) with p=2 and d=3, there exists a generalized solution of (1)–(3)
provided

(1 + |y|)|�′(y)|6 2�(y)
Proof
We �rst introduce the following approximating sequence of f2:

fj
2(y) = 0 for |y|¡ 1

fj
2(y) = j(|y|2 − 1)2 for |y|¿ 1

Now, we consider the initial boundary problem (1)–(3) with fj ≡ f1 + fj
2. There exists a

weak solution corresponding to fj by Theorem 1. We denote by (uj;  j; � j) the corresponding
solutions. Since Q(u0;  0)(fj)6Q(u0;  0)(f)¡∞, repeating the argument of Theorem 1,
we deduce that (uj;  j), j ∈N is a bounded sequence in L∞(0; T ;H), uj in Lp(0; T ;J1;p),
and �j in L2(0; T ;W 1;2) for any T ¿ 0. Also, @tuj ∈L1(0; T ; (J1;p)′) and @t j ∈L2(0; T ;H−1)
uniformly with respect to j by (23) and (24). Thus, as j → ∞ a subsequence of (uj;  j; � j)
converges to (u;  ; �) strongly in L2(0; T ;J0;2 × L2 × L2) and weakly in L2(0; T ;H×W 1;2). It
is easy to show that (u;  ; �) satis�es (11) and (12) as in Theorem 1. Due to the lower semi-
continuity of norms and the Fatou’s lemma, (u;  ; �) satis�es (18) with f. As a consequence,
| |6 1 for all t ∈ [0; T ]. Finally, we show (34). Without loss of generality, we can assume
f′
1(y)=O(|y|2) as in the proof of Theorem 1. Then, for �∈W 3;2 with f(�)∈L1,∫

�
(� − f′

1( ))( − �) = lim
j

∫
�
(�j − f′

1( 
j))( j − �) a.e. t

∫
�
(f2( )− f2(�))6 lim inf

j

∫
�
(fj

2( 
j)− fj

2(�)) a.e. t

We notice (�( j)+( j−�)�′( j))|∇ j|2 is weakly lower semi-continuous since  j converges
strongly in L2 a.e. t and �( j) + ( j − �)�′( j)¿ 0 by the assumption. Therefore,

lim inf
j

∫
�

√
�( j)∇ j · ∇(

√
�( j)( j − �))

= lim inf
j

∫
�
(�( j) + �′( j)( j − �))|∇ j|2 −

∫
�
�∇ ∇�

¿
∫
�
(�+ �′( − �))|∇ |2 −

∫
�
�∇ ∇� a:e: t

This proves (34) and completes the proof.

Finally, we also obtain the existence of a measure-valued solution in the following theorem,
for p¿ 2(d=2; 3):
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Theorem 6
Under the assumptions of Theorem 5, there exists a measured-valued solution (u; �;  ; �)
satisfying De�nition 2 with (13) replaced by (34).

Proof
The proof is similar to the one of Theorem 5, replacing @tuj ∈L1(0; T ; (J1;p)′) by @tuj ∈
Lp′
(0; T ; (Jk;2)′), k ¿ 1 + d=2, and arguing as in Theorem 2.
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