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We establish embeddings for Bessel potential spaces modeled upon Lorentz–Karamata spaces with order of
smoothness less than one. The target spaces are of Hölder-continuous type. In the super-limiting case we also
prove that the embedding is sharp and fails to be compact.
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1 Introduction

In a series of recent papers [7]–[10] a systematic research of embeddings of Bessel potential spaces with order
of smoothness σ ≥ 1 and modeled upon generalized Lorentz–Zygmund (GLZ) spaces was carried out. The
authors of those papers established embeddings of such spaces either into GLZ-spaces or into Hölder-type spaces
C0,λ(·)(Ω) and showed that their results are sharp (within the given scale of target spaces) and fail to be compact.
They also clarified the role of the logarithmic terms involved in the quasi-norms of the spaces mentioned. This
role proved to be important especially in limiting cases. In particular, they obtained refinements of the Sobolev
embedding theorems, Trudinger’s limiting embedding as well as embeddings of Sobolev spaces into λ(·)-Hölder
continuous functions including the result of Brézis and Wainger about almost Lipschitz continuity of elements of
the (fractional) Sobolev space H1+n/p

p (Rn) (cf. [5]).
Although GLZ-spaces form an important scale of spaces containing, for example, Zygmund classes

Lp(logL)α, Orlicz spaces of multiple exponential type, Lorentz spaces Lp,q, Lebesgue spaces Lp, etc., they
are a particular case of more general spaces, namely the Lorentz–Karamata (LK) spaces.

The embeddings mentioned above were extended in [20] and [21] to the case when Bessel-potential spaces
are modeled upon LK-spaces. Since Neves considered more general targets (besides LK-spaces and Hölder-type
spaces also generalized Hölder spaces), in several cases he obtained improvements of embeddings from [7]–[10].
The sharpness and non-compactness of these embeddings were proved in [15] and [16].

In [11] and [12], the authors analyzed the situation when the order of smoothness is less than one. In such
a case one cannot use the method in which a lifting argument (based on [9, Lemma 4.1] and [16, Lemma 4.5],
which extend the Calderón result [6, Theorem 7]) is applied to reduce the superlimiting case to the sublimiting
one, and a new approach was used.

Although many results were obtained, the research is not yet complete. Here we extend some results of [11]
and [12]. Nevertheless, there are still open questions which are under investigation.
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The paper is organized as follows. Section 2 contains notation, definitions and basic properties, while the main
results are stated in Section 3. After some preliminaries in the next two sections, the final Section 6 gives the
proofs of the promised theorems.

2 Notation, definitions and basic properties

As usual, Rn denotes the Euclidean n-dimensional space. Throughout the paper, µn is the n-dimensional
Lebesgue measure in Rn and Ω is a µn-measurable subset of Rn. We denote by χΩ the characteristic func-
tion of Ω and write |Ω|n = µn(Ω). The family of all extended scalar-valued (real or complex) µn-measurable
functions on Ω will be denoted by M(Ω). The non-increasing rearrangement of f ∈ M(Ω) is the function f∗

defined by f∗(t) = inf {λ ≥ 0 : |{x ∈ Ω : |f(x)|>λ}|n ≤ t} for all t ≥ 0.
Given a rearrangement-invariant Banach function space (r.i. BFS) X , the associate space is denoted by X ′.

For general facts about (rearrangement-invariant) Banach function spaces we refer to [3, Chaps. 1 & 2].
Let X and Y be two (quasi-)Banach spaces. We say that X coincides with Y (and write X = Y ) if X and Y

are equal in the algebraic and topological sense (their (quasi-)norms are equivalent). The symbolX ↪→ Y means
that X ⊂ Y and the natural embedding of X into Y is continuous.

By c, c1, c2, etc. we denote positive constants independent of appropriate quantities. For two nonnegative
expressions (i.e. functions or functionals) A, B, the symbol A � B (or A � B) means that A ≤ cB (or
cA ≥ B). If A � B and A � B, we write A ≈ B and say that A and B are equivalent. We adopt the
convention that a/+ ∞ = 0 and a/0 = +∞ for all a > 0. If p ∈ [1,+∞], the conjugate number p′ is given by
1/p+ 1/p′ = 1.

For ρ ∈ (0,+∞) and x ∈ Rn, Bn(x, ρ) stands for the open ball in Rn of radius ρ and centre x. By ωn we
denote the volume of the unit ball in Rn.

Following [17], we say that a positive and Lebesgue-measurable function b is slowly varying on (0,+∞),
and write b ∈ SV (0,+∞), if, for each ε > 0, tεb(t) is equivalent to a non-decreasing function on (0,+∞) and
t−εb(t) is equivalent to a non-increasing function on (0,+∞). The family of all slowly varying functions includes
not only powers of iterated logarithms and the broken logarithmic functions of [14], but also such functions as
t → exp (|log t|a) , a ∈ (0, 1). (The last mentioned function has the interesting property that it tends to infinity
more quickly than any positive power of the logarithmic function.)

It can be shown (cf. [17]) that any b ∈ SV (0,+∞) is equivalent to a b̃ ∈ SV (0,+∞) which is continuous on
(0,+∞). Consequently, without loss of generality, we shall assume that all slowly varying functions in question
are continuous on (0,+∞).

More properties and examples of slowly varying functions can be found in [4], [13], [17], [18], [20] and [22,
Chap. V, p. 186].

Let p, q ∈ (0,+∞] and b ∈ SV (0,+∞). The Lorentz–Karamata (LK) space Lp,q;b(Ω) is defined to be the
set of all functions f ∈ M(Ω) such that ‖f‖p,q;b;Ω :=

∥∥t1/p−1/q b(t) f∗(t)
∥∥

q;(0,+∞)
is finite. Here ‖.‖q;(0,+∞)

stands for the usual Lq-(quasi-)norm on the interval (0,+∞).
When 0 < p < +∞, the Lorentz–Karamata space Lp,q;b(Ω) contains the characteristic function of every

measurable subset of Ω with finite measure and hence, by linearity, every µn-simple function. When p = +∞,
the Lorentz–Karamata space Lp,q;b(Ω) is different from the trivial space if, and only if,

∥∥ t1/p−1/qb(t)
∥∥

q;(0,1)
<

+∞.
Particular choices of b give well-known spaces. If m ∈ N, α = (α1, . . . , αm) ∈ Rm and b = �α, where

�α(t) =
m∏

i=1

lαi

i (t) for all t > 0

(and l1(t) = 1 + |log t|, li(t) = l1(li−1(t)) if i > 1), then the Lorentz–Karamata space Lp,q;b(Ω) is the
generalized Lorentz–Zygmund space Lp,q,α introduced in [9] and endowed with the (quasi-)norm ‖f‖p,q;α;Ω,
which in turn becomes the Lorentz–Zygmund space Lp,q(logL)α1 of Bennett and Rudnick [2] when m = 1. If
α = (0, . . . , 0), we obtain the Lorentz space Lp,q(Ω) endowed with the (quasi-)norm ‖.‖p,q;Ω, which is just the
Lebesgue space Lp(Ω) equipped with the (quasi-)norm ‖.‖p;Ω when p = q; if p = q and m = 1, we obtain the
Zygmund space Lp(logL)α1(Ω) endowed with the (quasi-)norm ‖.‖p;α1;Ω.
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The Bessel kernel gσ , σ > 0, is defined as that function on Rn whose Fourier transform is

ĝσ(ξ) = (2π)−n/2
(
1 + |ξ|2)−σ/2

, ξ ∈ Rn,

where the Fourier transform f̂ of a function f is given by

f̂(ξ) = (2π)−n/2

∫
Rn

e−iξ·x f(x) dx.

Let us summarize the basic properties of the Bessel kernel gσ:

gσ is a positive, integrable function which is analytic except at the origin; (2.1)

gσ(x) ≤ c1|x|σ−ne−c2|x| for 0 < σ < n and all x ∈ Rn\{0}; (2.2)

gσ(x) ≈ |x|σ−n as |x| → 0 if 0 < σ < n; (2.3)∣∣∣∣ ∂∂xj
gσ(x)

∣∣∣∣ ≤ c |x|σ−n−1 for 0 < σ ≤ n+ 1, j ∈ {1, . . . , n} and all x ∈ Rn\{0}; (2.4)

g∗σ(t) � t(σ−n)/ne−ct1/n

for 0 < σ < n and all t > 0. (2.5)

For the proof of (2.1)–(2.4) see [1], for (2.5) see [7].
Let σ > 0, p ∈ (1,+∞), q ∈ [1,+∞], and b ∈ SV (0,+∞). The Bessel-potential space HσLp,q;b(Rn) is

defined to be

{u : u = gσ ∗ f, f ∈ Lp,q;b(Rn)}
and is equipped with the (quasi-)norm

‖u‖σ;p,q;b := ‖f‖p,q;b. (2.6)

For σ = 0, we put

g0 ∗ f = f and HσLp,q;b(Rn) = Lp,q;b(Rn). (2.7)

When m ∈ N, α = (α1, . . . , αm) ∈ Rm and b = �α, we obtain the logarithmic Bessel potential space
HσLp,q;α(Rn), endowed with the (quasi-)norm ‖u‖σ;p,q;α and considered in [9]. Note that if α = (0, . . . , 0),
HσLp,p;α(Rn) is simply the (fractional) Sobolev space Hσ

p (Rn) of the order σ.
Let Ω be a domain in Rn. The space of all scalar-valued (real or complex), bounded and continuous functions

on Ω is denoted by CB(Ω) and it is equipped with the L∞(Ω)-norm.
Let L be the class of all continuous functions λ : (0, 1] → (0,+∞) which are increasing on some interval

(0, δ), with δ = δλ ∈ (0, 1], and satisfy

lim
t→0+

λ(t) = 0

and ∥∥∥∥ t

λ(t)

∥∥∥∥
∞;(0,δ)

< +∞. (2.8)

Let λ ∈ L and let Ω be a domain in Rn. The space C0,λ(.)(Ω) consists of all those functions f ∈ CB(Ω) for
which the norm∥∥f |C0,λ(.)(Ω)

∥∥ := sup
x∈Ω

|f(x)| + sup
x,y∈Ω

0<|x−y|≤1

|f(x) − f(y)|
λ(|x − y|)

is finite. We refer to [19, Proposition 3.5] for an equivalent norm involving the modulus of smoothness.
If λ(t) = t, t ∈ (0, 1], and Ω = Rn, then C0,λ(.)(Ω) coincides with the space Lip(Rn) of the Lipschitz

functions. Note also that if (2.8) does not hold, then C0,λ(.)(Ω) consists only of constant functions on Ω.
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3 Statement of the results

In this section we present the main results.
The next theorem concerns the superlimiting case and we assume that the order of smoothness is less than

one.

Theorem 3.1 Let 0 < σ < 1, n/σ < p < +∞, q ∈ (1,+∞), b ∈ SV (0,+∞), and let λ ∈ L be defined by

λ(t) = tσ−n/p [b(tn)]−1 for all t > 0. (3.1)

Assume that Ω ⊆ Rn is a nonempty domain.
(i) Then

HσLp,q;b(Rn) ↪→ C0,λ(·)(Rn ).

(ii) Let n ≥ 2. If a function µ ∈ L satisfies

lim inf
t→0+

µ(t)
λ(t)

= 0, (3.2)

then the embedding

HσLp,q;b(Rn) ↪→ C0,µ(.)(Ω) (3.3)

does not hold.
(iii) Let n ≥ 2. Then the embedding

HσLp,q;b(Rn) ↪→ C0,λ(.)(Ω)

is not compact.

The following theorem treats the limiting case and it is an analogue of Theorem 3.1 (i). However, the method
used to prove that the embedding mentioned in Theorem 3.1 (i) is sharp and non-compact does not work in the
limiting case. To prove that the limiting embedding from Theorem 3.2 below is sharp and non-compact, one
needs a different approach. We return to this problem in another paper.

Theorem 3.2 Let 0 < σ < n, p = n/σ, q ∈ (1,+∞) and b ∈ SV (0,+∞) be such that∥∥t−1/q′
[b(t)]−1

∥∥
q′;(0,1)

< +∞.

Let λ ∈ L be defined by

λ(t) =
(∫ tn

0

[b(τ)]−q′ dt

t

)1/q′

for all t > 0.

Then

HσLp,q;b(Rn) ↪→ C0,λ(·)(Rn ). (3.4)

Remark 3.3 Note that there is no limiting embedding of form (3.4) in the classical situation when b ≡ 1 since
then the assumption

∥∥t−1/q′
[b(t)]−1

∥∥
q′;(0,1)

< +∞ is not satisfied. When b ≡ 1, then there are only the limiting
embeddings (of the Trudinger or Brézis–Wainger type) into Lorentz–Zygmund spaces. Such embeddings are
particular cases of [15, Theorem 3.7 (i)], where it is assumed that

∥∥t−1/q′
[b(t)]−1

∥∥
q′;(0,1)

= +∞.

Under the assumptions of Theorem 3.2, the functions from the space HσLp,q;b(Rn) are λ(·)-Hölder con-
tinuous on Rn. However, this Hölder continuity is a “weak one” since now the function λ is a slowly varying
function (which is a quite different situation from that of Theorem 3.1 (i)). For example, Theorem 3.2 implies that
Sobolev–Orlicz space W kLn/k(logL)α(Rn), k ∈ N and k < n

(
the Sobolev space modeled upon the Orlicz
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space Ln/k(logL)α(Rn) = LΦ(Rn), where the Young function satisfies Φ(t) = [t (1 + | log t|)α]n/k, t > 0
)

is
continuously embedded into the λ(·)-Hölder class C0,λ(·)(Rn) with

λ(t) = (1 + | log t|)−α+1−k/n for all t > 0, (3.5)

provided that α > 1 − k/n (the function λ(t) tends to 0 as t → 0+ more slowly than any function tε with
ε > 0). This illustrates the important role of the logarithmic term (logL)α involved in the Sobolev–Orlicz space
W kLn/k(logL)α(Rn).

(
By the classical results, the Sobolev space W k,n/k(Rn) = W kLn/k(Rn), k ∈ N

and k < n, is not even continuously embedded into the space L∞(Ω) for any domain Ω ⊂ Rn.
)

The embed-
ding mentioned above (with λ from (3.5)) should be also compared with the Brézis–Wainger type embedding
W k+1Ln/k(logL)α(Rn) ↪→ C0,λ(·)(Rn), k ∈ N and k < n, where

λ(t) = t (1 + | log t|)−α+1−k/n for all t > 0,

provided that α < 1 − k/n (which follows from [16, Theorem 3.2] or [9, Theorem 4.11]).

4 Preliminaries for embeddings

The next lemma generalizes [11, Lemma 2.5].

Lemma 4.1 Let 0 < σ < n, n/σ < p < +∞ and p < n/(σ − 1) if σ > 1. Let q ∈ [1,+∞] and
b ∈ SV (0,+∞). Then, for all h ∈ Rn with |h| > 0,

‖∆hgσ‖p′,q′;1/b � |h|σ−n/p [b(|h|n)]−1. ∗ (4.1)

P r o o f. We use the ideas of [11, Lemma 2.5]. Put B(r) := Bn(0, r) and BC(r) := Rn\Bn(0, r) for r > 0.
Let h ∈ Rn with |h| > 0. Since

‖(∆hgσ)χB(2|h|)‖p′,q′;1/b � 2 ‖gσ χB(3|h|)‖p′,q′;1/b,

using (2.5) and the fact that σ/n− 1/p > 0, we obtain∥∥(∆hgσ)χB(2|h|)
∥∥

p′,q′;1/b
�
∥∥t1/p′−1/q′

[b(t)]−1tσ/n−1
∥∥

q′;(0,ωn(3|h|)n)

=
∥∥tσ/n−1/p−1/q′

[b(t)]−1
∥∥

q′;(0,ωn(3|h|)n)

≈ |h|σ−n/p [b(|h|n)]−1.

(4.2)

Now, we derive an estimate in the exterior of the ball B(2 |h|). The inequality

|∆hgσ(x)| ≤ |h|
n∑

j=1

∫ 1

0

∣∣∣∣ ∂∂xj
gσ(x+ τh)

∣∣∣∣ dτ for all x ∈ Rn\{0}, (4.3)

together with the obvious estimate

1
2
|x| ≤ |x+ τh| ≤ 3

2
|x| if τ ∈ [0, 1] and x ∈ BC(2|h|)

and (2.4), yields∣∣∆hgσ(x)χBC(2|h|)(x)
∣∣ � |h| |x|σ−n−1 χBC(|h|)(x) for all x ∈ Rn\{0}. (4.4)

Putting

F (x) = |x|σ−n−1χBC(|h|)(x), x ∈ Rn\{0},
∗ For each h ∈ Rn, the first difference operator ∆h is defined on functions on Rn by ∆hf(x) := f(x + h) − f(x), x ∈ Rn.
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and taking into account that σ − n− 1 < 0, we can easily see that

F ∗(t) =
(
|h|n +

t

ωn

)(σ−n−1)/n

for all t > 0. (4.5)

This and (4.4) imply that∥∥(∆hgσ)χBC(2|h|)
∥∥

p′,q′;1/b
� |h| ∥∥t1/p′−1/q′

[b(t)]−1F ∗(t)
∥∥

q′;(0,+∞)
= |h| (N1 +N2), (4.6)

where N1 =
∥∥t1/p′−1/q′

[b(t)]−1F ∗(t)
∥∥

q′;(0,|h|n)
and N2 =

∥∥t1/p′−1/q′
[b(t)]−1F ∗(t)

∥∥
q′;(|h|n,+∞)

. Since

σ − n− 1 < 0, (4.5) shows that F ∗(t) ≤ |h|σ−n−1 for all t > 0. This and the fact that p > 1 yield

N1 ≤ |h|σ−n−1
∥∥t1/p′−1/q′

[b(t)]−1
∥∥

q′;(0,|h|n)
≈ |h|σ−1−n/p[b(|h|n)]−1. (4.7)

Again, since σ− n− 1<0, (4.5) shows that F ∗(t)� t(σ−n−1)/n for all t > 0. Hence, because σ− 1− n/p < 0,

N2 �
∥∥t1/p′−1/q′

[b(t)]−1t(σ−n−1)/n
∥∥

q′;(|h|n,+∞)

=
∥∥t(σ/n−1/n−1/p−1/q′

[b(t)]−1
∥∥

q′;(|h|n,+∞)

≈ |h|σ−1−n/p[b(|h|n)]−1.

(4.8)

Estimates (4.6)–(4.8) imply that∥∥(∆hgσ)χBC(2|h|)
∥∥

p′,q′;1/b
� |h|σ−n/p[b(|h|n)]−1. (4.9)

The result is a consequence of (4.2) and (4.9).

The next lemma generalizes [11, Lemma 2.6].

Lemma 4.2 Let 0 < σ < n and p = n/σ. Let q ∈ [1,+∞] and b ∈ SV (0,+∞) be such that∥∥t−1/q′
[b(t)]−1

∥∥
q′;(0,1)

< +∞. (4.10)

Then, for all h ∈ Rn with |h| > 0,

‖∆hgσ‖p′,q′;1/b �
∥∥t−1/q′

[b(t)]−1
∥∥

q′;(0,|h|n)
. (4.11)

P r o o f. We proceed as in the proof of Lemma 4.1. First, note that assumption (4.10) implies that the function
τ �→ ∥∥t−1/q′

[b(t)]−1
∥∥

q′;(0,τ)
belongs to SV (0,+∞). Using this fact, (2.5) and the identity σ/n− 1/p = 0, we

obtain instead of (4.2) that∥∥∆hgσχB(2|h|)
∥∥

p′,q′;1/b
�
∥∥t−1/q′

[b(t)]−1
∥∥

q′;(0,ωn(3|h|)n)
≈ ∥∥t−1/q′

[b(t)]−1
∥∥

q′;(0,|h|n)
. (4.12)

Since the estimates of the quantitiesN1 and N2 remain true, we again have (4.9), that is,∥∥(∆hgσ)χBC(2|h|)
∥∥

p′,q′;1/b
� [b(|h|n)]−1. (4.13)

Moreover, since b ∈ SV (0,+∞),

[b(|h|n)]−1 �
∥∥t−1/q′

[b(t)]−1
∥∥

q′;(0,|h|n)
.

Consequently, the result follows from (4.12) and (4.13).
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5 Preliminaries for sharpness and non-compactness of the embeddings

To prove sharpness and non-compactness of the embeddings, we need to construct suitable test functions. We
use the ideas of [10] and [12]. Throughout this section we shall assume that G is a function on (0, 1] with the
following properties:

G is positive and continuous on (0, 1]; (5.1)

tG(t) is non-increasing on (0, s0], where s0 ∈ (0, 1] is a fixed number; (5.2)

G(t/2) � G(t), t ∈ (0, 1] (5.3)

(note that the assumption (5.2) is stronger than (4.2) of [10]). Let ϕ ∈ C∞
0 (R) be a nonnegative function such

that
∫
R
ϕ(t) dt = 1 and suppϕ = [−1, 1], and define the function ϕε, ε > 0, by ϕε(t) := 1

ε ϕ
(

t
ε

)
for all t ∈ R.

We now use ϕ to assign to the function G a family of functions {Gs} as in [10]. We extend G by zero outside the
interval (0, 1] and, for each s ∈ (0, 1), define the function Gs by

Gs(t) :=
(
χ[s,+∞) ψ G) ∗ ϕ s

4
(t), t ∈ R, (5.4)

where ψ ∈ C∞
0 (R) is given by ψ = χ[−2+ 1

16 , 3
4− 1

16 ] ∗ ϕ 1
16

.
Some properties of Gs, s ∈ (0, 1/4), are summarized in the next lemma due to Edmunds, Gurka and Opic [10,

Lemma 4.1].

Lemma 5.1 If s ∈ (0, 1
4

)
and the functions Gs are defined by (5.4) (with G satisfying (5.1)–(5.3)), then

Gs ∈ C∞
0 (R), suppGs ⊂ [ s

2 , 1
]

and Gs ≥ 0. (5.5)

Moreover, there are positive constants C1 and C2 (independent of s and t) such that

Gs(t) ≤ C1 G(t)χ[ s
2 ,1](t), t ∈ (0, 1], (5.6)

Gs(t) ≥ C2 G(t), t ∈ [2s, 1
2

]
. (5.7)

Now, as in [12], the family {Gs} is used to define test functions us. For any s ∈ (0, 1/4), let as be a positive
number and let Gs be the function given by (5.4). We put

us(x) := x1(gσ ∗ hs)(x), x = (x1, . . . , xn) ∈ Rn, (5.8)

where

hs(x) := as Gs(|x|) for all x ∈ Rn. (5.9)

In order to prove that the functions us belong to the source space of our embeddings, we need the following
preliminary results.

Lemma 5.2 ([12, Lemma 2]) Let h belong to the Schwartz space S, σ ≥ 0, j ∈ {1, . . . , n} and let Rj be the
Riesz transform. Then there exists a finite measure ν on Rn such that, for any x = (x1, . . . , xn) ∈ Rn,

xj(gσ ∗ h)(x) = −σ(2π)−n/2[gσ ∗ (Rj(ν ∗ g1 ∗ h))](x) + [gσ ∗ (yj h(y))](x).

The next lemma extends [10, Corollary 4.12].

Lemma 5.3 Let 1 < p < +∞, 1 ≤ q ≤ +∞, b ∈ SV (0,+∞), and let ν be the finite measure from
Lemma 5.2. Then, for all f ∈ Lp,q;b(Rn),

‖gσ ∗ f‖p,q;b � ‖f‖p,q;b, σ ≥ 0,

‖Rjf‖p,q;b � ‖f‖p,q;b, j = 1, . . . , n,

‖ν ∗ f‖p,q;b � ‖f‖p,q;b.

P r o o f. We use the boundedness of the operators gσ ∗ f , Rjf and ν ∗ f in Lr(Rn), r ∈ (1,+∞), and apply
[16, Lemma 4.4].
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We shall need as well the next result.

Lemma 5.4 Let n ≥ 2, n/(n−1) < p <∞, q ∈ [1,+∞], 1/p = 1/p̃−1/n, and let b ∈ SV (0,+∞). Then,
for all f ∈ Lp̃,q;b(Rn),

‖g1 ∗ f‖p,q;b � ‖f‖p̃,q;b.

P r o o f. The assumption n/(n− 1) < p < +∞ implies that p̃ ∈ (1, n). The result is now a consequence of
[15, Theorem 3.1 (i)], with σ = 1 and r = q.

Lemma 5.5 Let p ∈ (1,+∞), q ∈ [1,+∞] and b ∈ SV (0,+∞). Let g be a positive function which is
continuous in (0, 1], non-increasing in some interval (0, r0) ⊂ (0, 1] and such that g(t/2) � g(t), t ∈ (0, 1).
Then, for all s ∈ (0, 1

4

)
,∥∥g(|y|)χ( s

2 ,1)(|y|)
∥∥

p,∞;b
≤ sup

t∈[s,1)

tn/pg(t) b(tn), (5.10)

and, if q ∈ [1,+∞),∥∥∥g(|y|)χ( s
2 ,1)(|y|)

∥∥∥
p,q;b

≤ (V1(s) + V2(s)) , (5.11)

where

V1(s) =
(∫ 1

s

[
tn/pg(t)b(tn)

]q dt
t

)1/q

and V2(s) = sn/pg(s)b(sn). (5.12)

P r o o f. See the proof of [15, Lemma 4.3]; see as well the proof of [8, Lemma 4.1].

We shall make use of the next lemma which generalizes [12, Lemma 6].

Lemma 5.6 Let σ ≥ 0, n ≥ 2, n/(n− 1) < p < +∞, q ∈ [1,+∞) and b ∈ SV (0,+∞). Then the functions
us, s ∈ (0, 1

4 ), defined by (5.8) (with G from (5.1)–(5.3)), satisfy

‖us‖σ;p,q;b ≤ as (W1(s) +W2(s)) ,

where

W1(s) =
(∫ 1

s

[
tn/p+1G(t)b(tn)

]q dt
t

)1/q

and W2(s) = sn/p+1G(s)b(sn).

P r o o f. We follow the proof of [12, Lemma 6]. It follows from (5.5) that us ∈ S(Rn). Thus, by Lemma 5.2,
(2.6) and (5.8) we obtain the estimate

‖us‖σ;p,q;b � σ(2π)−n/2 ‖gσ ∗ (R1(ν ∗ g1 ∗ hs))‖σ;p,q;b + ‖gσ ∗ (yj hs(y))‖σ;p,q;b

= σ(2π)−n/2‖R1(ν ∗ g1 ∗ hs)‖p,q;b + ‖yj hs(y)‖p,q;b.
(5.13)

Applying Lemma 5.3, Lemma 5.4, (5.9) and (5.6) to the first term, we obtain

‖R1(ν ∗ g1 ∗ hs)‖p,q;b � ‖g1 ∗ hs‖p,q;b � ‖hs‖p̃,q;b � as

∥∥G(|y|)χ[ s
2 ,1](|y|)

∥∥
p̃,q;b

.

Moreover, Lemma 5.5, with g = G (which satisfies the assumptions of Lemma 5.5), and the identity n/p̃ =
n/p+ 1 yield∥∥G(|y|)χ[ s

2 ,1](|y|)
∥∥

p̃,q;b
� (W1(s) +W2(s)) .

Hence,

σ(2π)−n/2 ‖R1(ν ∗ g1 ∗ hs)‖p,q;b � as (W1(s) +W2(s)) . (5.14)
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Again, by (5.6), (5.9) and Lemma 5.5, with g(t) = tG(t) (which also satisfies the assumptions of Lemma 5.5),
we have

‖y1hs(y)‖p,q;b ≤ ‖|y|hs(y)‖p,q;b

� as

∥∥|y| G(|y|)χ[ s
2 ,1](|y|)

∥∥
p̃,q;b

� as (W1(s) +W2(s)) .

(5.15)

The result now follows from (5.13), (5.14) and (5.15).

To prove sharpness and non-compactness, we need as well the next assertion.

Lemma 5.7 (i) If σ ∈ (0, n), then there exists a positive constant c such that for every s ∈ (0, 1
4

)
and x =

(t, 0, . . . , 0) ∈ Rn, t ∈ [2s, 1
2

]
,

|us(x) − us(0)| ≥ c t as

∫ 1/2

t

τσ−1G(τ) dτ.

(ii) Let σ ∈ (0, n), S ∈ (0, 1
4

)
. Suppose that the numbers as from (5.9) are bounded, i.e.,

as ≤ c for all s ∈ (0, 1
4

)
with some c ∈ (0,+∞). (5.16)

Moreover, assume (in addition to (5.1)–(5.3)) that the function G and the numbers as satisfy

as

∫ S/2

2s

tσ−1 G(t) dt −→ +∞ as s −→ 0+. (5.17)

Then there exist ε = ε(σ) ∈ (0, 1
2

)
, s1 = s1(S) ∈ (0, S

4

)
and a positive constant c (independent of S and s1)

such that

| [us(x) − uS(x)] − [us(0) − uS(0)] | ≥ c s as

∫ S/2

2s

tσ−1G(t) dt

for every s ∈ (0, s1) and x = (ε s, 0, . . . , 0) ∈ Rn.

P r o o f. The result of (i) is an adaptation of [16, Lemma 4.3 (ii)]. The assertion in (ii) immediately follows
from [10, Lemma 4.5] because us(0) = uS(0) = 0.

6 Proofs of the main results

P r o o f o f T h e o r e m 3.1.

Step 1. Put X = Lp,q;b(Rn). Then its associate space X ′ is given by X ′ = Lp′,q′;1/b(Rn)
(
cf. [20, Theo-

rem 3.1] with γb replaced by b and γ1/b by 1/b, respectively
)
. Let u ∈ HσX and ‖u‖HσX ≤ 1. Then there is a

function f ∈ X such that u = gσ ∗ f and ‖f‖X = ‖u‖HσX ≤ 1. Therefore, by using the Hölder inequality (cf.
[3, Corollary II.4.5]),

|u(x+ h) − u(x)| =
∣∣∣∣∫

Rn

f(y)∆hgσ(x− y) dy
∣∣∣∣ � ‖f‖X ‖∆hgσ‖p′,q′;1/b ≤ ‖∆hgσ‖p′,q′;1/b.

This, together with Lemma 4.1, yields

|u(x+ h) − u(x)| � λ(|h|) for all x ∈ Rn and h ∈ Rn with |h| > 0. (6.1)

Since also HσX ↪→ CB(Rn) by [21, Proposition 5.6], the proof of part (i) now follows.

Step 2. We shall assume without loss of generality that Bn(0, 1) ⊂ Ω. Let s ∈ (0, 1
4

)
and γ < 0. Define the

function G by

G(t) = tγ−1−n/p [b(tn)]−1, t ∈ (0, 1], (6.2)
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and put

as = s−γ . (6.3)

The functionG satisfies (5.1)–(5.3). Let us consider the functionsus, s ∈ (0, 1
4

)
, defined by (5.8). By Lemma 5.6,

(6.2) and (6.3), for all s ∈ (0, 1
4

)
,

‖us‖σ;p,q;b � as(W1(s) +W2(s)) ≈ s−γ

((∫ 1

s

tγq−1 dt

)1/q

+ sγ

)
≈ s−γ sγ = 1. (6.4)

By Lemma 5.7 (i), (6.2) and (6.3), there exists a positive constant c such that

|us(x) − us(0)| ≥ 2c s1−γ

∫ 1/2

2s

tσ−1+γ−1−n/p[b(tn)]−1 dt � sσ−n/p[b(sn)]−1 (6.5)

for every s ∈ (0, 1
4 ) and x = (2s, 0, . . . , 0).

Furthermore, if we take S ∈ (
0, 1

4

)
, we can see that the conditions (5.16) and (5.17) also hold. Indeed,

as = s−γ � 1 for all s ∈ (0, 1
4

)
because γ < 0. Moreover, since σ − n/p− 1 < 0 and γ < 0, we have, for all

sufficiently small s,

as

∫ S/2

2s

tσ−1 G(t)dt ≈ as

∫ S/2

2s

tσ−1+γ−1−n/p [b(tn)]−1 dt

≈ s−γ+σ−1+γ−n/p [b(sn)]−1

≈ sσ−1−n/p [b(sn)]−1,

which tends to +∞ as s → 0+. Hence, by Lemma 5.7 (ii), (6.2) and (6.3), there exist ε = ε(σ) ∈ (
0, 1

2

)
,

s1 = s1(S) ∈ (0, S
4 ) and a positive constant c (independent of S and s1) such that, for every s ∈ (0, s1) and

x = (εs, 0, . . . , 0),

|[us(x) − uS(x)] − [us(0) − uS(0)]| ≥ c s1−γ

∫ S/2

2s

tσ−1G(t) dt ≥ c1s
σ−n/p[b(sn)]−1, (6.6)

with a positive constant c1 independent of S and s1.

Step 3. Let λ be the function defined by (3.1). Since b ∈ SV (0,+∞), we have, for any fixed k ∈ (0,+∞),

λ(kt) ≈ λ(t), t ∈ (0, 1]. (6.7)

Let us assume that (3.2) and (3.3) hold. Then, by (6.4), (6.5) (with x = (2s, 0, . . . , 0)) and (6.7), we obtain

1 � ‖us‖σ;p,q;b �
∥∥us|C0,µ(.)(Ω)

∥∥ ≥ |us(x) − us(0)|
µ(2s)

� sσ−n/p[b(sn)]−1

µ(2s)
≈ λ(2s)
µ(2s)

for all s ∈ (0, 1
4

)
, which contradicts assumption (3.2). The proof of part (ii) is complete.

Step 4. Take S ∈ (0, 1
4

)
fixed. Let λ be the function defined by (3.1). Then, (6.6) (with x = (εs, 0, . . . , 0))

and (3.1) yield, for every sufficiently small positive s,∥∥(us − uS)|C0,λ(.)(Ω)
∥∥ ≥ |[us(x) − uS(x)] − [us(0) − uS(0)]|

λ(εs)
≥ c1

λ(s)
λ(εs)

≥ c2, (6.8)

with c2 a positive constant independent of s and S. Therefore, if we consider the sequence {u1/k}+∞
k=k0

, with k0

sufficiently large, then, by (6.4), this sequence is bounded in HσLp,q;b(Rn). However, by (6.8), it has no Cauchy
subsequence in C0,λ(.)(Ω). The proof of part (iii) is complete. �

P r o o f o f T h e o r e m 3.2. The proof is similar to that of Theorem 3.1 (i). One applies Lemma 4.2 instead
of Lemma 4.1. �
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