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With the development of measurement instrumentation methods and metrology, one is very often

able to rigorously specify the uncertainty associated with each measured value (e.g. concentrations,

spectra, process sensors). The use of this information, along with the corresponding raw measure-

ments, should, in principle, lead tomore soundways of performing data analysis, since the quality of

data can be explicitly taken into account. This should be true, in particular, when noise is

heteroscedastic and of a large magnitude. In this paper we focus on alternative multivariate linear

regression methods conceived to take into account data uncertainties. We critically investigate their

prediction and parameter estimation capabilities and suggest somemodifications of well-established

approaches. All alternatives are tested under simulation scenarios that cover different noise and data

structures. The results thus obtained provide guidelines on which methods to use and when.

Interestingly enough, some of the methods that explicitly incorporate uncertainty information in

their formulations tend to present not as good performances in the examples studied, whereas others

that do not do so present an overall good performance. Copyright # 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The majority of data analysis tools commonly applied to

chemical processes rely on simplified assumptions regarding

the nature of the errors to be included in their general

statistical model structures. More specifically, the error

term is normally considered to arise from several sources,

such as modelling mismatch (inadequate model structure),

uncontrolled interferences [1] and measurement noise, and

their statistical descriptions are based on an assumed homo-

scedastic behaviour (i.e. with constant variance). This may be

a reasonable assumption for the first two error sources

(modelling mismatch and uncontrolled interferences), for

which we are not usually able to provide additional a priori

knowledge regarding their behaviour over time. However,

with the development of measurement instrumentation

methods and metrology, the depth of knowledge regarding

measurement quality and features has increased signifi-

cantly, so that one is very often able to rigorously specify

their associated uncertainty [2].

Basically, uncertainty is defined as a ‘parameter associated

with the result of a measurement, that characterizes the

dispersion of the values that could reasonably be attributed

to the measurand’ [2]. The standard uncertainty, u (to which

we will refer simply as uncertainty), should be expressed in

terms of the standard deviation of the values obtained under

the same experimental conditions, and it can be obtained

either from the analysis of collected data (the so-called type

A evaluation) or through an adequate, alternative mean

(type B evaluation). All the numerical quantities calculated

from uncertain measurements turn out to be also uncertain

quantities and therefore should have associated uncertainty

values (combined standard uncertainties, uc), calculated

through uncertainty propagation formulaes.

That being the case, one should be able to express the

uncertainty associated with each single raw data value to be

used in any data analysis task. This implies that there should

not be only one data table to be explored, but rather two

tables: the usual raw data table and another one with the

associated uncertainties. Therefore, with this added knowl-

edge at our disposal, we should try to integrate it into

our data analysis tasks. In fact, there is already a current

trend towards this explicit consideration of measure-

ment uncertainties. Namely, Wentzell et al. [3] developed

so-called maximum likelihood principal component analysis

(MLPCA), which estimates a PCA model in an optimal

maximum likelihood sense when data are affected by mea-

surement errors exhibiting a known complex structure, such

as cross-correlations along sample or variable dimensions.
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The reasoning underlying MLPCA was then applied to

multivariate calibration [4], extending the consideration of

measurement uncertainties to input/output modelling ap-

proaches closely related to PCA, such as principal compo-

nent regression (PCR) and latent root regression (LRR),

giving rise to their maximum likelihood versions MLPCR

(maximum likelihood principal component regression) and

MLLRR (maximum likelihood latent root regression). Bro

et al. [5] presented a general framework for integrating data

uncertainties into the (maximum likelihood) fitting of mod-

els, which includes MLPCA as a special case. The issue of

(least squares) model fitting is also referred to by Lira [6],

along with the presentation of general expressions for un-

certainty propagation in several input/output model struc-

tures. Both multivariate least squares (MLS) and its

univariate version, bivariate least squares (BLS), were ap-

plied in several contexts of linear regression modelling,

when all variables are subject to measurement errors [7–9].

All these different techniques have been used in several real

world situations, such as multivariate calibration [4], signal

processing [5], assessment of accuracy in analytical methods

[9] and the presence of bias in method comparison studies

[10] when both variables carry measurement errors. On the

other hand, Faber and Kowalski [11] explicitly consider the

influence of measurement errors in the calculation of con-

fidence intervals for the parameters and predictions made

using PCR and PLS, and similar efforts can also be found

elsewhere [12–15].

In general, those techniques that are able to integrate data

uncertainty into the core of their implementation procedure

can lead to new and more flexible data analysis tools, in the

sense that they are applicable in more general measurement

error contexts, including those whose measurement error

structures are not covered by more conventional techniques.

Some examples of application contexts where such methods

can be quite useful include the analysis of spectra (which

often present noise, frequently of a heteroscedastic nature,

and in the presence of strong correlations in the predictors),

microarray data (where heteroscedasticity is mainly due to

different levels of colour definition in the spotted arrays),

laboratory data (where measurements of quality variables

are often correlated and affected by different levels of uncer-

tainties) and industrial data (as is the case of the example

described in Section 5). The main purposes of this paper are

thus (i) to gather several techniques with the potential of

adequately handling complex noise sources in the context of

linear regression modelling, (ii) to propose new develop-

ments for some of these approaches that may lead to im-

proved performance and (iii) to conduct a Monte Carlo

simulation study to assess the performance of the different

alternative techniques under several noisy environments

and data structures.

Other comparative studies can be found in the literature.

For instance, Höskuldsson [16] compares the performances

of several methods, e.g. ridge regression (RR), PLS and PCR,

for several data sets using different quality measures, while

Frank and Friedman [17] conduct an extended simulation

study where the predictive performances of several regres-

sion methods are compared (OLS, PCR, PLS, RR and variable

subset selection), but for conditions of homoscedastic noise.

In the present study we have used a wider range of noise

scenarios that, combined with different data structures,

allows one not only to extend their results to new contexts

but also to bring into discussion other methods. The techni-

ques considered include not only those available in the

literature that are able to integrate uncertainty information

(MLS, MLPCR), but also those whose ability to cope well

with noisy data (PLS, PCR, RR) is widely recognized.

Furthermore, we introduce modifications on some of the

above methods in order to explicitly integrate data uncer-

tainty information into their algorithms or fix some potential

problems that arise when doing so.

The remaining sections of this paper are organized as

follows. Section 2 presents the methods that will be used in

our comparative study. Section 3 covers the comparative

simulation study, whose results are presented and commen-

ted on in detail. Section 4 discusses several relevant issues

involving the methods used as well as their relative merit,

underlining some counterintuitive results and main features

identified. Section 5 presents our conclusions.

2. MULTIVARIATE LINEAR
REGRESSION METHODS

In this section we briefly review the methods that will be

used later on in our Monte Carlo simulation comparative

study. For the sake of clarity we organize them under four

main groups according to their mutual affinities.

2.1. OLS group
Ordinary least squares (OLS) and multivariate least squares

(MLS) [8,18] provide as estimates for the linear regression

model parameters, those that derive from the solution of the

optimization problems presented in Table I.

OLS tacitly assumes a homoscedastic behaviour (i.e. with

constant variance) for the noise error term in the standard

linear regression model. On the other hand, MLS is built

upon an errors-in-variables (EIV) functional relationship

among the true values for both the input and output vari-

ables, which are then affected by zero-mean random errors

with a given covariance structure (assumedly known). In the

denominator of Equation (2) we can find a term, s2
e ðiÞ, that

results from the summation of the uncertainties associated

with the response and the ones arising from the propagation

of uncertainties of the predictors to the response (according

to a formula derived from error propagation theory [6,18]):

s2
e ðiÞ ¼ uyðiÞ2 þ

Xp
j¼1

b̂b2
j uXði; jÞ

2 � 2
Xp
j¼1

b̂bj cov
�
��ðiÞ; ��jðiÞ

�

þ 2
Xp
j¼1

Xp
k¼jþ1

b̂bjb̂bk cov ��jðiÞ;��kðiÞ
� �

ð3Þ

Table I. Formulation of the optimization problems underlying

OLS and MLS methods

OLS b̂bOLS ¼ arg min

b¼ b0 ... bp½ �T
Xn
i¼1

yðiÞ � ŷyðiÞð Þ2
( )

ð1Þ

MLS b̂bMLS ¼ arg min

b¼ b0 ... bp½ �T
Xn
i¼1

yðiÞ � ŷyðiÞð Þ2

s2
e ðiÞ

( )
ð2Þ
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where uXði; jÞ and uyðiÞ are the uncertainties associated with

the ith observation of the jth input and output variables

respectively, ��jðiÞ and ��ðiÞ are the random errors affecting

the ith measurement of predictor j and response, respec-

tively, and b̂bj represents the coefficient of the linear regres-

sion model associated with variable j.

2.2. RR group
A well-known characteristic of the OLS method is the fact

that the variance of its parameter estimates increases when

the input variables get more correlated. Computational

simulations showed us that the same applies to MLS. One

possible way to address this issue consists of enforcing an

effective shrinkage of the coefficients under estimation. This

can be done by adopting the ridge regression (RR) regular-

ization approach. It basically consists of adding an extra term

to the objective function, which penalizes the occurrence of

large solutions (in a square norm sense). The optimization

formulation underlying RR estimates [19,20] and the one

proposed for its counterpart based on MLS, rMLS (standing

for ‘ridge MLS’), are presented in Table II.

2.3. PCR group
PCR [1,21] is another methodology that handles collinearity

among predictor variables. It uses those uncorrelated linear

combinations of the input variables that most explain the

input space variability, provided by principal component

analysis (PCA), as the new set of predictors onto which the

response is to be regressed. These predictors are orthogonal

and therefore the collinearity problem is solved if we dis-

regard the linear combinations with the smallest variability

explanation power [22].

After developing MLPCA, which estimates the PCA sub-

space in an optimal maximum likelihood sense when data

are affected by measurement errors with a known uncer-

tainty structure [3], Wentzell et al. [4] applied it in the context

of developing a PCR methodology that incorporates this

additional knowledge regarding measurement uncertainties

(MLPCR). As in PCR, the MLPCR methodology consists of

first estimating a PCA model, now accomplished through

MLPCA, in order to calculate the scores, using non-ortho-

gonal (maximum likelihood) projections onto the estimated

MLPCA subspace (instead of the PCA orthogonal projec-

tions), and then applying OLS to develop the final predictive

model. This technique makes use of the available uncertainty

information in the former phases (estimation of an MLPCA

model and calculation of scores) but not during the stage

where OLS is applied. Therefore Martı́nez et al. [18] propose

a modification to the regression phase, in order to make it

consistent with the efforts of integrating uncertainty infor-

mation carried out in the initial phase, by replacing OLS with

MLS (we will call this modification MLPCR1). In order to

implement MLS in the second phase, estimated scores un-

certainties for the ith observation are given by the diagonal

elements of the following matrix [18]:

Zi ¼ PT diag uXði; :Þð Þ½ ��1P
n o�1

ð6Þ

where diag is an operator that converts a vector into a

diagonal matrix and P is the matrix of maximum likelihood

loads.

2.4. PLS group
PLS [1,16,21,23–27] is widely used by the chemometrics

community in several contexts (such as multivariate calibra-

tion, QSAR and experimental design). It also adequately

handles noisy data with correlated predictors in the estima-

tion of a linear multivariate model. As in PCR, PLS finds a set

of uncorrelated linear combinations of the predictors, be-

longing to some lower-dimensional subspace in the X-vari-

ables space, onto which y is to be regressed. In PLS this

subspace is the one that, while still covering well the X-

variability, provides a good description of the variability

exhibited by the Y-variable(s). The algorithmic nature of PLS

[16,23] can be translated into the solutions of a succession of

optimization subproblems [1,21,24], as presented in the first

column of Table III for one of its common versions, relative

to the case of a single response variable (PLS1). However, if

besides having available raw data, ½Xjy�, we also know their

respective uncertainties, ½uXjuy�, then one way to incorpo-

rate this additional information into a PLS algorithm would

be through an adequate reformulation of the optimization

subtasks appearing in its algorithmic structure. Therefore we

propose a modification of the objective functions underlying

each optimization subproblem in order to incorporate mea-

surement uncertainties, but still preserving the successful

algorithmic structure of PLS. Such a sequence of optimiza-

tion subproblems is presented in the second column of

Table III.

More details about implementation issues related to

this modification of PLS1 (here called uncPLS1), which

explicitly incorporates uncertainty information, are pre-

sented in Appendix 1.

3. A MONTE CARLO SIMULATION
COMPARATIVE STUDY

In this section we describe the main results obtained through

the application of all the different linear regression methods

presented in Section 2 (PLS, uncPLS1, RR, rMLS, PCR,

MLPCR, MLPCR1, OLS, MLS) to different data structure

and noise conditions. The complete set of conditions em-

ployed is organized under a total of six case studies repre-

senting different noise patterns. Furthermore, for each case

study, several simulation scenarios are covered, by varying

some data structure and noise parameters, in order to enable

a finer comparison between the different methods. The case

studies explored cover the following situations: (1) complete

heteroscedastic noise; (2) complete heteroscedastic noise

plus bias; (3) all variables have similar levels of noise from

the standpoint of their range of variation (structured row-wise

noise); (4) noise as described in situation (3) plus bias;

(5) proportional noise; (6) two levels of noise (very high

Table II. Formulation of the optimization problems underlying

RR and rMLS methods

RR b̂bRR ¼ arg min

b¼ b0 ... bp½ �T
Xn
i¼1

yðiÞ � ŷyðiÞð Þ2 þ�
Xp
j¼1

bðjÞ2
8<
:

9=
; ð4Þ

rMLS b̂brMLS ¼ arg min

b¼ b0 ... bp½ �T
Xn
i¼1

yðiÞ � ŷyðiÞð Þ2

s2
e ðiÞ

þ �
Xp
j¼1

bðjÞ2
8<
:

9=
; ð5Þ
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and low), where the occurrence of a particular level follows a

binomial distribution.

Each simulation begins with the generation of noiseless

signals using a linear model of the type y ¼ b0 þ b1X1 þ � � �
þbpXp (bi ¼ 1; i ¼ 0 : p; p ¼ 10). The X-data are generated

from a multivariate normal distribution, and the variables

can present two levels of correlation between themselves: 0.9

and 0.1. We will refer to these levels through the variable

COST (standing for correlation structure): COST¼ 1 means a

mutual correlation of 0.9 and COST¼ 2 a mutual correlation

of 0.1. Zero-mean Gaussian noise is then added to the

noiseless data (predictors and responses) according to the

case study being considered and the associated noise para-

meter settings. Two noise parameters are accounted for:

noise level (NOISEL) and heterogeneity level (HLEV).

NOISEL represents the level of the average standard uncer-

tainty affecting each variable (i.e. the level of the mean

standard deviation for the additive noise that affects each

variable) and is given by the multiplication of K1¼ 0.01 (if

NOISEL¼ 1; low noise level) or K1¼ 0.5 (if NOISEL¼ 2; high

noise level) by the theoretical standard deviation of the

noiseless variables, i.e. �uuðXiÞ ¼ K1ðNOISELÞ � �Xi
. The other

noise parameter, HLEV, represents the degree to which

uncertainties vary along the observation index for a given

variable (i.e. the degree of noise heterogeneity or heterosce-

dasticity for a given variable). HLEV¼ 1 means low varia-

tion of noise uncertainty or standard deviation from

observation to observation, while HLEV¼ 2 represents

highly heteroscedastic noise uncertainty behaviour. For vari-

able Xi, uncertainties along the observation index are ran-

domly generated from a uniform distribution centred at

�uuðXiÞ, whose range is given by RðHLEVÞ ¼ K2ðHLEVÞ�
�uuðXiÞ, where K2¼ 0.01 (if HLEV¼ 1; low heterogeneity level)

or K2¼ 1 (if HLEV¼ 2; high heterogeneity level):

uðXiðkÞÞ � U �uuðXiÞ �
RðHLEVÞ

2
; �uuðXiÞ þ

RðHLEVÞ
2

� �

The simulations conducted for all the scenarios covered

share the same common structure, as follows.

1. First, the most adequate tuning parameter for each

method is set (number of latent dimensions for PLS and

PCR methods, ridge parameter for RR methods) regard-

ing a given simulation scenario (each scenario is defined

by a particular combination of levels for COST, NOISEL

and HLEV). This is done by using (fivefold) cross-

validation for PLS and PCR or by using (also fivefold)

cross-validation plus the generation of a logarithmic grid

in the range of plausible values for the ridge parameter

(the parameter used in cross-validation is RMSEPW,

defined below). This procedure is repeated 10 times and

the median of the best values is chosen as the tuning

Table III. PLS1 as a succession of optimization subproblems (first column) and its counterpart that makes use of data

uncertainties, uncPLS1 (second column)

PLS1 uncPLS1

Step 1. Pre-treatment Step 1. Pre-treatment
Centre X and y; Center X and y;
Scale X and y Scale X and y. Scale X and y uncertainties

Begin For Cycle a¼ 1:# latent variables Begin For Cycle a¼ 1:# latent variables

Step 2. Calculate ath X-weights vector (w) Step 2. Calculate ath X-weights vector (w)

w ¼ arg min
w

Xn
i¼1

Xm
j¼1

Xði; jÞ � uðiÞ � wðjÞð Þ2 w ¼ arg min
w

Xn
i¼1

Xm
j¼1

Xði; jÞ � uðiÞ � wðjÞð Þ2

uXði; jÞ2 þ wðjÞ2 � uyðiÞ2

wnew  wold kwoldk= wnew  wold woldk k=

Note: for a¼ 1 the Y-scores, u, are equal to y

Step 3. Calculate ath X-scores vector (t) Step 3. Calculate ath X-scores vector (t)

t ¼ arg min
t

Xn
i¼1

Xm
j¼1

Xði; jÞ � tðiÞ � wðjÞð Þ2 t ¼ arg min
t

Xn
i¼1

Xm
j¼1

Xði; jÞ � tðiÞ � wðjÞð Þ2

uXði; jÞ2

Step 4. Calculate ath X-loadings vector (p) Step 4. Calculate ath X-loadings vector (p)

p ¼ arg min
p

Xn
i¼1

Xm
j¼1

Xði; jÞ � tðiÞ � pðjÞð Þ2 p ¼ arg min
p

Xn
i¼1

Xm
j¼1

Xði; jÞ � tðiÞ � pðjÞð Þ2

uXði; jÞ2 þ pðjÞ2 � utðiÞ2

Step 5. Rescale X-scores and X-weights Step 5. Rescale X-scores and X-weights

pnew  pold poldk k= pnew  pold poldk k=

tnew  told � poldk k tnew  told � poldk k
wnew  wold � poldk k wnew  wold � poldk k

Step 5.1. Update utðiÞ; i ¼ 1 : n
Step 6. Regression of u on t (b) Step 6. Regression of u on t (b)

b ¼ arg min
b

Xn
i¼1

uðiÞ � tðiÞ � bð Þ2 b ¼ arg min
b

Xn
i¼1

uðiÞ � b� tðiÞð Þ2

uuðiÞ2 þ b2 � utðiÞ2

Step 7. Calculation of X- and Y-residuals Step 7. Calculation of X- and Y-residuals

Ea ¼ Ea�1 � tap
T
a ðX ¼ E0Þ

Fa ¼ Fa�1 � bata ðy ¼ F0Þ
Ea ¼ Ea�1 � tap

T
a ðX ¼ E0Þ

Fa ¼ Fa�1 � bata ðy ¼ F0Þ
Note: continue the calculations with Ea Step 7.1. Update uEði; jÞ; uFðiÞf gi¼1:n;j¼1:m

playing the role of X and Fa the role of y (u)
End For Cycle End For Cycle
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parameter to be used in our simulations (the median was

used instead of the mean in order to provide some outlier

protection for unusual parameter values that might be

obtained during the 10 preliminary trials). Variables are

‘autoscaled’ in all methods except OLS and MLS. In the

maximum likelihood versions of PCR (MLPCR and

MLPCR1) the maximum number of latent variables was

set equal to nine (total number of variables minus one) in

order to avoid convergence problems that MLPCA runs

into when the number of latent variables is the same as the

number of predictor variables.

2. For a given case study and simulation scenario, two

noiseless data sets are generated according to the linear

model presented: a training or reference data set and a test

data set, both with 100 multivariate observations. Further-

more, a random sequence of uncertainties (noise standard

deviations) for all the observations belonging to each

variable is also generated according to the NOISEL and

HLEV parameters associated with them.

3. Then, zero-mean Gaussian noise with standard deviation

given by the uncertainties generated (as explained in step

2) is added to the training and test data sets, based upon

which a model is estimated by each method using the

training data set and its prediction performance evaluated

using the test data set. This process is repeated 100 times

and the performance metrics are averaged over these trials.

3.1. Comparison metrics
The performance metric used for parameter estimation is the

mean value of the relative (absolute) deviation or error

(MRAE) of the estimated variable coefficients from the true

ones. The estimate of the intercept was kept out of our

calculations, as it often happens that this term dominates

the overall error without being particularly relevant for the

prediction results. Thus for each of the 100 simulations

the following value is calculated:

MRAEðiÞ ¼ 1

p

Xp
i¼1

jbi � b̂bij
bi

; i ¼ 1 : 100

where p is the number of predictor variables. For prediction

assessment the square root of the weighted prediction mean

square error in the test set (RMSEPW) is calculated, where

the weights are the result of combining the predictor and

response uncertainties, as is also suggested by the MLS

criterion:

RMSEPWðiÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
k¼1

yðkÞ � ŷyðkÞð Þ2

uyðkÞ2 þ uXðk; :Þ�2
� �T

B�2

vuuut ; i ¼ 1 : 100

where n represents the number of observations in the test set

and B�2 is the Hadamard product of the coefficient vector

(without intercept) with itself. The more familiar RMSEP is

also calculated:

RMSEPðiÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
k¼1

yðkÞ � ŷyðkÞð Þ2
vuut ; i ¼ 1 : 100

At the end of the 100 simulations the values of each of the

above metrics are averaged and their standard deviations

calculated and saved for further analysis.

The means of the quality metrics thus obtained allow us to

make a rough comparison of the expected performance of

the methods involved, while their standard deviations bring

their variability into discussion. However, these quantities

are still not enough by themselves to draw more in-depth

conclusions about the relative performance of the methods

because of the strong correlations between the values of the

quality metrics for the various methods calculated during

the 100 simulations. Therefore, for each case study and

simulation scenario, paired t-tests were also conducted to

determine whether method A is better than method B (a

‘Win’ for method A), performs worse (a ‘loss’) or there is no

significant difference between methods A and B (a ‘tie’) for a

given significance level (we used � ¼ 0:01). For the sake of

simplicity we will only present here the number of ‘wins’,

‘losses’ and ‘ties’ that each method obtained for each simula-

tion scenario. Alternatively, multiple comparison methods

[28,29] could also have been adopted, especially if we want

to have tight control over the overall significance level of the

test performed. However, these methods are usually quite

conservative, getting less sensitive to differences as the

number of methods under comparison increases. For in-

stance, a study where six methods were involved and sig-

nificant differences apparently did exist resulted in no

difference being detected between any of the methods at a

reasonable level of significance using a Tukey’s test-based

multiple comparison approach [30]. Since we are comparing

nine methods altogether, the sensitivity of such a test would

be even more affected and therefore our choice went towards

the adoption of an alternative, more sensitive approach.

This comes at the cost of incurring in higher overall type I

errors rates than the significance level used for each method,

but as long as we keep this limitation in mind, our results

still provide a sound basis for establishing the kind of

general guidelines we are interested in identifying.

3.2. Case study 1
In this case study the various methodologies are tested

under zero-mean heteroscedastic Gaussian noise with stan-

dard deviation (or uncertainty) randomly extracted from a

uniform distribution. Eight simulation scenarios are ex-

plored in this case study, whose results are presented

graphically to facilitate the extraction of general trends

regarding their relative performance. Figure 1 reports the

methods’ performance in prediction (complete results are

shown in Appendix II).

Regarding prediction results (Figure 1 and Table VIII in

Appendix II), we can see that, for a low noise level

(NOISEL¼ 1), methods MLPCR and uncPLS1 tend to per-

form comparatively worse, except for the scenario where the

X-variables are highly correlated (COST¼ 1) and the noise is

almost homoscedastic (HLEV¼ 1). For a high noise level

(NOISEL¼ 2), MLPCR and uncPLS1 present very interesting

results, whereas MLPCR1 and MLS present worse results for

COST¼ 1. Curiously, OLS performs better than MLS for

NOISEL¼ 2 (noisy conditions), especially when inputs are

collinear. This is somewhat counterintuitive given the fact

that MLS was supposed to take advantage of the knowledge

of data uncertainties. Regarding parameter estimation

(Table IX), for a low noise level (NOISEL¼ 1), method

530 M. S. Reis and P. M. Saraiva

Copyright # 2005 John Wiley & Sons, Ltd. J. Chemometrics 2004; 18: 526–536



uncPLS1 tends to perform better than all the others for

COST¼ 1, but its results for COST¼ 2 are quite bad, in line

with its poor prediction performance. At a high noise level

the bad estimation performance of MLS for collinear inputs

becomes quite evident; for COST¼ 2, uncPLS1 shows the

best performance among all the methods. PLS and PCR

present quite consistent performances, never failing comple-

tely and sometimes performing quite well. No relevant

difference in the trends of prediction results obtained using

either RMSEPW or RMSEP was identified.

3.3. Case studies 2–4
As the results for case studies 2 (heteroscedastic noise plus

bias), 3 (row-wise structured noise) and 4 (row-wise struc-

tured noise plus bias) have similar performance trends for

the various methods, we group them all under this single

subsection. Case 2 addresses the situation where data bias is

also present. Only scenarios where the noise parameters

have high values were considered (NOISEL¼ 2 and

HLEV¼ 2 for COST¼ {1,2}). For each of these two scenarios,

after generation of the noise standard deviations (following

the same procedure as in case study 1) a positive value (bias)

was added to each datum, which amounts to 10% of the

respective noise standard deviation, along with the ran-

domly generated noise component. In case 3, instead of

allowing the noise characteristics for each value to vary

randomly according to the noise parameters, we forced a

similar variation pattern in all the values belonging to the

same row (simulating what happens if the whole line of

collected values experiences similar oscillations of measure-

ment quality). To do so, we simulated a single univariate

random pattern along the observation index, u(k), which will

be used to establish the noise standard deviations for all the

values in each row. As in case study 2, we consider only the

scenarios defined by NOISEL¼ 2 and HLEV¼ 2 for

COST¼ {1,2}. In case 4 the same procedure for generating

noise standard deviations as for case 3 was adopted, but a

bias term was added as for case 2 (10% of the generated noise

standard deviation). The prediction (RMSEPW) and estima-

tion (MRAE) results obtained for case study 2 are presented

in Table IV.

Regarding prediction performance, the results obtained

show that, for the situation where the X-variables are highly

collinear (COST¼ 1), MLPCR presents the best metrics,

whereas MLS maintains its sensitivity to this type of data

structure. MLPCR1 also faces problems in this scenario. For

low collinearity (COST¼ 2) the performance of the various

methods is more uniform, but uncPLS1 and PLS tend to

perform better. Parameter estimation results reveal that

methods MLS, RR and OLS tend also to perform poorly for

COST¼ 1, followed by rMLS. PLS and uncPLS1 present

good estimation performances.

3.4. Case study 5
In this case study, zero-mean heteroscedastic Gaussian noise,

whose standard deviation is proportional to the noiseless

Figure 1. Prediction results (using RMSEPW) for case study 1: (a) NOISEL¼ 1 and COST¼ 1; (b)

NOISEL¼ 2 and COST¼ 1; (c) NOISEL¼ 1 and COST¼ 2; (d) NOISEL¼ 2 and COST¼ 2.
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signal level, is generated and added to the noiseless signals

for each variable. Such uncertainties increase from a mini-

mum value, min uðXiÞ, obtained for the minimum value of

Xi, minXi, proportionally to the relative deviation of the

level of the variable from this minimum value:

u XiðkÞð Þ ¼ minu Xið Þ þ
XiðkÞ �minXi

maxXi �minXi
max u Xið Þ ð7Þ

The minimum value of the uncertainty was set to

min uðXiÞ ¼ 0:001�Xi
(�Xi

is the theoretical standard devia-

tion of the noiseless variable Xi), whereas maxuðXiÞ ¼ �Xi
.

When predictors are weakly correlated (COST¼ 2), the

performance of the methods is quite similar (Table V).

However, when collinearity is present, MLS faces problems

as well as MLPCR1. The uncPLS1 alternative behaves quite

well, but its performance worsens when collinearity in the X-

variables is removed.

3.5. Case study 6 (binomial
heteroscedastic noise)
In this final case study we tested the various methods under

a quite extreme scenario of heteroscedasticity, where uncer-

tainties associated with the observed values of each variable

are only allowed to vary between two possible levels: a quite

high level (uðXiÞ ¼ 3�Xi
) and a reasonably low level

(uðXiÞ ¼ 0:1�Xi
). The attribution of these two levels of un-

certainty to observations is conducted by extracting them

randomly from a binomial distribution, where the probabil-

ity associated with the high level is equal to 0.9.

When prediction performance is evaluated in terms of

RMSEPW, we registered improvements according to the

following sequences: PLS ! uncPLS1; RR ! rMLS; PCR

! MLPCR ! MLPCR1 (Table VI). However, trends

regarding RMSEP are quite different: PCR and MLPCR

present the best performances, but MLPCR1 does not per-

form comparatively well. In terms of the mean values,

RMSEPW results are more heterogeneous, in the sense that

we can spot more clearly differences between the various

methods, while they tend to present more similar prediction

performances when compared in terms of RMSEP.

4. DISCUSSION

The results presented in the previous section provide a basis

for establishing a detailed comparison among the methods

studied, in the restricted context of the various scenarios

chosen for our simulation study. By checking the results for

the situations that most resemble a given practical applica-

tion scenario, we can rank the methods that present greater

potential to accomplish certain objectives regarding predic-

tion or parameter estimation goals. However, we can go one

step further in the analysis of results and try to extract some

more global performance trends over the various methods.

For instance, we can look at such an overall performance

in terms of the number of ‘losses’, ‘wins’ and ‘ties’ obtained

by each method for all the situations covered. However, we

will restrict our analysis here to those situations where

NOISEL¼ 2 (the majority), so that only truly noisy data

structures support this comparison. Figure 2 presents such

results for prediction (using RMSEPW), showing that PLS

and uncPLS1 receive the best scores, followed by PCR and

MLPCR. This is especially interesting given the fact that PLS

Table IV. Summary of results regarding comparison metrics

RMSEPW and MRAE for the simulation scenarios covered in

case study 2. The mean, standard deviation (SD) and number

of ‘losses’ (L), ‘ties’ (T) and ‘wins’ (W) are indicated for each

method and simulation scenario. Simulation scenario settings

are identified through the code ‘case study/COST NOISEL

HLEV’

RMSEPW MRAE

Case/ 2/122 2/222 2/122 2/222
Scenario Mean/SD Mean/SD Mean/SD Mean/SD
Method L T W L T W L T W L T W

PLS 0.37/0.04 0.64/0.06 6.09/2.26 19.13/3.91
1 1 6 1 0 7 1 0 5 1 0 5

uncPLS1 0.38/0.05 0.60/0.05 13.37/12.09 11.90/2.81
3 0 5 0 0 8 2 0 4 0 0 6

RR 0.50/0.08 0.67/0.06 69.04/18.47 22.78/5.23
5 0 3 2 1 5 4 0 2 2 3 1

rMLS 0.41/0.04 0.70/0.07 38.19/11.00 23.78/5.58
4 0 4 5 1 2 3 0 3 2 3 1

PCR 0.37/0.04 0.66/0.06 5.78/2.35 22.50/4.70
1 1 6 2 2 4 0 0 6 2 3 1

MLPCR 0.36/0.04 0.71/0.06
0 0 8 5 1 2

MLPCR1 1.29/1.03 0.76/0.09
7 0 1 7 1 0

OLS 0.51/0.08 0.67/0.06 70.62/18.95 22.79/5.24
6 0 2 3 1 4 5 0 1 2 3 1

MLS 2.68/3.20 0.76/0.09 551.23/703.33 27.18/6.52
8 0 0 7 1 0 6 0 0 6 0 0

Table V. Summary of results regarding comparison metrics

RMSEPW and MRAE for the simulation scenarios covered in

case study 5. The mean, standard deviation (SD) and number

of ‘losses’ (L), ‘ties’ (T) and ‘wins’ (W) are indicated for each

method and simulation scenario. Simulation scenario settings

are identified through the code ‘case study/COST NOISEL

HLEV’

RMSEPW MRAE

Case/ 5/122 5/222 5/122 5/222
scenario Mean/SD Mean/SD Mean/SD Mean/SD
Method L T W L T W L T W L T W

PLS 0.35/0.05 0.68/0.07 6.45/2.22 21.55/3.55
1 2 5 0 4 4 1 1 4 0 1 5

uncPLS1 0.34/0.04 0.76/0.06 5.94/1.68 33.97/3.35
0 0 8 8 0 0 0 2 4 6 0 0

RR 0.50/0.07 0.68/0.09 71.85/20.88 22.75/5.04
5 0 3 0 3 5 4 0 2 2 1 3

rMLS 0.41/0.05 0.68/0.08 46.29/13.97 21.80/5.22
4 0 4 0 4 4 3 0 3 0 1 5

PCR 0.35/0.05 0.72/0.08 5.99/2.48 25.52/4.62
1 2 5 5 1 2 0 1 5 4 1 1

MLPCR 0.35/0.05 0.68/0.07
1 2 5 0 4 4

MLPCR1 1.28/1.29 0.74/0.10
7 0 1 5 2 1

OLS 0.51/0.07 0.68/0.09 73.45/21.38 22.76/5.05
6 0 2 1 3 4 5 0 1 2 1 3

MLS 2.42/2.43 0.75/0.10 481.75/472.82 25.56/7.10
8 0 0 6 1 1 6 0 0 4 1 1
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does not incorporate a priori information regarding uncer-

tainties in its algorithm. We can also see that the proposed

modification to MLS, rMLS, leads to improved results.

As stated initially, this analysis is a general one and as

such does not reflect ‘local’ problems that some methods face

in practice. Therefore, keeping in mind their limitations, by

looking into our detailed simulations results and Table VII,

which tries to summarize them, one gets important insights

for a sound selection process of the methods to be used in

future applications, depending upon their goals and

features.

The good results obtained with PLS are coherent with its

well known ability to handle noisy situations [27], but still

quite surprising is the fact that it sometimes outperforms

other methods that do make explicit use of data uncertain-

ties. Frank and Friedman [17] provide some general com-

ments regarding PLS performance, focusing on its shrinkage

properties along the eigendirections, which are smoother

than the ones obtained using PCR, as more components are

considered. Helland [25,26] further elaborates on this issue

by stating some desirable and undesirable shrinkage proper-

ties of PLS, also referring to its usually higher parsimony in

terms of the number of latent variables needed to achieve

optimal predictive performance. However, we should exer-

cise some care when extending their comments and results to

the present situation, owing to the complex noise scenarios

considered, which may interfere with the previous explana-

tions, mostly based on models with homoscedastic error

structures. In general terms, our interpretation of the good

results obtained by PLS is closely linked to the effective way

it provides for estimating the lower-dimensional predictive

space (i.e. the one spanned by the set of weight vectors) onto

which the regressors are projected prior to being used for

predicting the response. In our opinion, this projection

operation acts as a quite effective filter that removes or

Table VI. Summary of results regarding comparison metrics RMSEPW, RMSEP and MRAE for the simulation scenarios covered

in case study 6. The mean, standard deviation (SD) and number of ‘losses’ (L), ‘ties’ (T) and ‘wins’ (W) are indicated for each

method and simulation scenario. Simulation scenario settings are identified through the code ‘case study/COST NOISEL HLEV’

RMSEPW RMSEP MRAE

Case/ 6/122 6/222 6/122 6/222 6/122 6/222
scenario Mean/SD Mean/SD Mean/SD Mean/SD Mean/SD Mean/SD
Method L T W L T W L T W L T W L T W L T W

PLS 1.83/0.81 2.29/0.62 68.37/12.30 39.76/5.77 65.40/19.10 81.01/13.5
3 0 5 3 2 3 2 0 6 2 0 6 1 2 3 2 2 2

uncPLS1 0.88/1.02 2.22/2.26 101.21/145.69 71.90/69.39 90.26/165.20 76.37/72.7
1 0 7 1 1 6 332 6 1 1 0 3 3 1 0 5

RR 2.23/0.81 2.31/0.64 84.41/16.16 42.13/6.04 96.33/22.50 81.19/13.9
5 1 2 3 2 3 4 1 3 3 0 5 4 0 2 3 1 2

rMLS 0.59/0.12 1.48/0.41 79.02/11.99 56.18/6.21 67.12/19.10 52.52/13.0
0 0 8 0 0 8 3 1 4 5 0 3 1 2 3 0 0 6

PCR 2.38/0.77 2.43/0.54 56.03/7.93 34.55/4.27 57.64/16.70 90.39/11.0
7 0 1 6 1 1 0 1 7 1 0 7 0 1 5 5 0 1

MLPCR 2.21/0.84 2.42/0.54 56.95/10.87 32.44/3.30
4 2 2 6 1 1 0 1 7 0 0 8

MLPCR1 1.56/2.32 2.41/3.38 191.40/271.39 83.72/88.04
2 0 6 1 1 6 7 0 1 6 1 1

OLS 2.23/0.81 2.31/0.64 85.14/16.48 42.40/6.13 97.28/22.90 81.11/14.02
4 1 3 3 2 3 5 1 2 4 0 4 5 0 1 2 1 3

MLS 5.97/7.49 11.22/17.30 702.28/877.03 320.72/430.7 906.53/1121 375.36/516.5
8 0 0 8 0 0 8 0 0 8 0 0 6 0 0 6 0 0

Figure 2. Results for number of ‘losses’ (L), ‘ties’ (T) and

‘wins’ (W) in the global assessment of all the methods studied

regarding their prediction ability (using RMSEPW).

Table VII. Situations where our detailed simulation results

advise against the use of certain methods

Under the following conditions
Do not use
method COST NOISEL HLEV

uncPLS1 2 1 {1,2}
1 1 2

RR 1 2 2
MLPCR1 1 1 2

1 2 {1,2}
2 1 {1,2}

MLS 1 2 {1,2}
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minimizes interferences due to noise (in fact, many filters can

be formulated in terms of projection operations onto suitable

bases, such as wavelets, sinusoids or the Karhunen–Loève

transform). This ‘estimation effectiveness’ is related to what

Höskuldsson [31] calls ‘the stability of predictors derived

from PLS methods’, later interpreted through a fit/variance

trade-off under the framework of the H-principle [16].

Furthermore, the use of orthogonal projections in this con-

text also seems to play in favour of PLS for highly hetero-

scedastic data, when compared with uncertainty-based non-

orthogonal projections or maximum likelihood projections

used by the uncPLS1 and MLPCR methods. Simulation

results show some evidence towards a lower variance of

the orthogonal projection scores relative to the one exhibited

by maximum likelihood projection scores, something that

does not occur under homoscedastic situations. It seems to

be the case that, for highly heteroscedastic scenarios, oscilla-

tions in the non-orthogonal projection line bring some added

variability to the scores, other than the one strictly arising

from the variability due to noise sources. This increased

dispersion in the reduced space of the scores, usually the one

relevant for prediction purposes, can increase prediction

uncertainty due to poorly estimated models. Since hetero-

scedastic conditions prevail in the scenarios studied in this

work, methods that use such non-orthogonal projections

may be affected in their performance because of this feature.

In spite of the fact that method uncPLS1 represents an

effort towards the explicit integration of uncertainty infor-

mation into the algorithmic structure of PLS, some simplifi-

cations were introduced into it. Namely, the uncertainty of

loading vectors and weights was neglected. Future develop-

ments should consider these issues, with the same concerns

applying also to MLPCR methods, where uncertainty in the

loads is also neglected when the propagation of uncertainties

to the scores is carried out. On the other hand, the extensive

solution of small optimization problems makes uncPLS1

more prone to numerical convergence problems than the

original PLS method. However, this type of numerical

problem does not represent a serious drawback in the

solution of bivariate estimation problems in uncPLS1 (unless

the X- and Y-scores are highly uncorrelated). The assumed

independence of uncertainties in the scores for the regression

step in MLPCR1 may also deserve more attention in future

studies.

The poor performance of MLS when predictors are highly

correlated may indicate that the inversion operation under-

taken at each iteration is interfering with its performance. In

fact, the matrix to be inverted in this method becomes quite

ill-conditioned under collinear situations of the predictors.

That being the case, the results obtained for the ridge

regularization of MLS (rMLS) show that an effective stabili-

zation of this inversion operation was achieved and the

collinearity problem therefore minimized.

5. CONCLUSIONS

In this paper we present the results of a comparative study

that involved the assessment of the prediction and para-

meter estimation performance of various methods under

different noise and data structure scenarios. PLS methods

(PLS, uncPLS1), as well as MLPCR and PCR, show good

overall performances. Several real world applications are

associated with contexts where uncertainty-based methods

can be used with potential benefits. They can also be applied

with added value to the analysis of industrial data sets,

where sparsity is often a problem, due the presence of

variables with different acquisition rates, along with ran-

domly missing data. Under such circumstances an option

consists of performing the data analysis on a coarser time

scale (days or weeks) than the one suggested by raw data

acquisition (minutes or hours). However, when taking ap-

propriate averages, some variables summarize much more

information than others (sampled less frequently) and there-

fore should be weighted differently in the analysis task. The

integration of data uncertainty information regarding these

averages on a coarser scale in our data analysis, through the

types of methods addressed in this paper, provides a sound

way to achieve this goal.

Our study covers a variety of data structures and noisy

scenarios, but other remaining ones are interesting enough to

deserve being addressed in future works, as is the case of

data structures arising from latent variable frameworks [32]

and of correlated noise, especially relevant in spectroscopic

applications [33].
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APPENDIX I: uncPLS1
IMPLEMENTATION DETAILS

AI.1. Computation of X-scores vector (t)
The calculation of the X-scores vector for each dimension

involves solving the optimization problem formulated in

step 3 of Table III. Its analytical solution can be derived

using multivariate calculus [34], but provides the same

numerical results as the maximum likelihood projection

formula for calculation of X-scores in MLPCA presented in

Reference [4]. Another issue in the calculation of the X-scores

is related to the computation of the associated uncertainties.

In our uncPLS1 procedure we calculate uncertainties propa-

gated to the scores, assuming that uncertainties in the

weights or loadings are negligible (a more complete treat-

ment can be built upon the results of Goodman and

Haberman [35]). As the scores can be given as maximum

likelihood projections onto the subspace spanned by the

weight vector, we can use an expression similar to Equation

(6) in order to calculate uncertainty propagated to the ath X-

scores. Furthermore, we assumed errors affecting variables

to be independent.

AI.2. Computation of X-weights (w)
and X-loadings (p) vectors
In the calculation of the X-weights vector the optimization

problem can be seen as a succession of univariate regression

problems of the Y-score, u, onto X(:, j) (the jth column of X),

with zero intercept. However, as both u and X(:, j) have
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associated uncertainties, the most adequate way of estimat-

ing the w(j) coefficient, in the sense of the optimization

subtask formulated in step 2, is by using BLS (without

intercept). The same applies to the calculation of the X-

loadings, where BLS is now applied to the regression of t

onto X(:,j), with the score uncertainties calculated as referred

to above and the X-uncertainties provided as inputs or

calculated for the residual matrices, obtained after deflation,

as shown below.

AI.3. Computation of uncertainties for the
X and y residual matrices
After deflation, in order to carry on with uncPLS1, we need

to update the uncertainties associated with residual matrices

Ea and Fa, which play, for a> 1, the same role that X and y

have played during the calculations for a¼ 1. This can be

done by applying error propagation theory (once again, we

have assumed that only the scores carry significant uncer-

tainties).

Table VIII. Summary of results regarding comparison metric RMSEPW for the simulation scenarios covered in case study 1. The

mean, standard deviation (SD) and number of ‘losses’ (L), ‘ties’ (T) and ‘wins’ (W) are indicated for each method and simulation

scenario. Simulation scenario settings are identified through the code ‘case study/COST NOISEL HLEV’

Case/ 1/111 1/112 1/121 1/122 1/211 1/212 1/221 1/222
scenario Mean/SD Mean/SD Mean/SD Mean/SD Mean/SD Mean/SD Mean/SD Mean/SD
Method L T W L T W L T W L T W L T W L T W L T W L T W

PLS 0.45/0.06 0.47/0.04 0.34/0.03 0.39/0.04 0.68/0.07 0.73/0.07 0.61/0.05 0.65/0.06
3 2 3 0 0 8 0 2 6 0 2 6 0 5 3 2 3 3 1 0 7 1 0 7

uncPLS1 0.41/0.04 1.01/0.09 0.37/0.05 0.40/0.04 0.68/0.44 5.60/0.17 0.57/0.05 0.60/0.05
0 0 8 6 0 2 3 0 5 1 1 6 6 0 2 6 0 2 0 0 8 0 0 8

RR 0.46/0.07 0.53/0.07 0.46/0.05 0.52/0.07 0.68/0.07 0.73/0.07 0.64/0.06 0.70/0.07
5 2 1 4 1 3 4 1 3 5 0 3 0 5 3 2 3 3 2 2 4 3 0 5

rMLS 0.45/0.06 0.50/0.06 0.47/0.05 0.42/0.05 0.68/0.07 0.73/0.06 0.67/0.07 0.72/0.08
3 2 3 1 1 6 4 2 2 4 0 4 0 5 3 0 1 7 6 0 2 5 0 3

PCR 0.43/0.04 0.49/0.06 0.34/0.03 0.40/0.05 0.68/0.07 0.73/0.07 0.63/0.06 0.68/0.07
1 1 6 1 1 6 0 2 6 3 0 5 0 5 3 2 3 3 2 2 4 2 0 6

MLPCR 0.45/0.06 1.95/0.23 0.34/0.03 0.38/0.05 0.68/0.14 11.26/0.09 0.64/0.06 0.74/0.08
3 5 0 7 1 0 0 2 6 0 1 7 7 0 1 7 0 1 3 2 3 6 0 2

MLPCR1 0.43/0.05 1.95/0.23 1.20/0.76 1.31/1.89 0.68/0.14 11.36/0.09 0.71/0.08 0.79/0.09
1 1 6 7 1 0 7 0 1 7 0 1 8 0 0 8 0 0 7 0 1 7 1 0

OLS 0.46/0.07 0.53/0.07 0.47/0.05 0.53/0.08 0.68/0.07 0.73/0.07 0.64/0.06 0.70/0.07
5 2 1 4 1 3 5 1 2 6 0 2 0 5 3 2 3 3 3 2 3 4 0 4

MLS 0.46/0.07 0.51/0.07 2.90/3.59 2.24/3.45 0.68/0.07 0.73/0.06 0.73/0.09 0.80/0.11
7 1 0 3 0 5 8 0 0 8 0 0 0 5 3 0 1 7 8 0 0 7 1 0

Table IX. Summary of results regarding comparison metric MRAE for the simulation scenarios covered in case study 1. The

mean, standard deviation (SD) and number of ‘losses’ (L), ‘ties’ (T) and ‘wins’ (W) are indicated for each method and simulation

scenario. Simulation scenario settings are identified through the code ‘case study/COST NOISEL HLEV’

Case/ 1/111 1/112 1/121 1/122 1/211 1/212 1/221 1/222
scenario Mean/SD Mean/SD Mean/SD Mean/SD Mean/SD Mean/SD Mean/SD Mean/SD
Method L T W L T W L T W L T W L T W L T W L T W L T W

PLS 2.40/0.60 1.97/0.04 5.81/2.23 5.94/2.53 0.47/0.11 0.49/0.13 18.80/3.92 19.47/4.04
2 1 3 1 1 4 1 0 5 0 0 6 0 5 1 2 3 1 1 0 5 1 0 5

uncPLS1 1.94/0.03 1.68/0.05 28.77/18.6 13.6/12.1 0.68/0.74 7.24/0.22 9.48/3.92 15.87/4.42
0 1 5 0 0 6 2 0 4 1 0 5 6 0 0 6 0 0 0 0 6 0 0 6

RR 2.55/0.67 2.65/0.62 69.3/17.7 68.5/19.4 0.68/0.11 0.49/0.13 22.17/5.02 24.68/5.54
4 1 1 5 1 0 3 1 2 4 0 2 0 5 1 2 3 1 2 2 2 3 1 2

rMLS 2.41/0.62 2.31/0.53 70.1/16.9 36.3/9.73 0.68/0.11 0.46/0.12 23.43/5.53 24.38/6.59
2 1 3 3 0 3 3 2 1 3 0 3 0 5 1 0 1 5 5 0 1 2 3 1

PCR 1.98/0.44 2.04/0.46 5.47/2.33 18.2/10.9 0.68/0.11 0.49/0.13 21.69/4.51 23.33/5.08
0 1 5 1 1 4 0 0 6 2 0 4 0 5 1 2 3 1 2 2 2 2 1 3

OLS 2.55/0.67 2.65/0.62 70.7/18.2 70.1/19.9 0.68/0.11 0.49/0.13 22.17/5.03 24.70/5.56
4 1 1 5 1 0 4 1 1 5 0 1 0 5 1 2 3 1 2 2 2 4 1 1

MLS 2.55/0.67 2.43/0.57 630/783 442/647 0.68/0.11 0.46/0.12 27.38/6.88 29.56/9.13
6 0 0 4 0 2 6 0 0 6 0 0 0 5 1 0 1 5 6 0 0 6 0 0

APPENDIX II: DETAILED RESULTS FOR CASE STUDY 1
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