
SUPER-RESOLUTION MOSAICKING FROM DIGITAL SURVEILLANCE VIDEO

CAPTURED BY UNMANNED AIRCRAFT SYSTEMS (UAS)

by

Aldo Camargo, B.S.E.E., M.S.S.E.

A Dissertation

Submitted to the Graduate Faculty

of the

University of North Dakota

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Grand Forks, North Dakota

August

2010

 ii

Copyright 2010 Aldo Camargo

 iii

This dissertation, submitted by Aldo Camargo in partial fulfillment of the

requirements for the Degree of Doctor of Philosophy Ph.D. from the University of North

Dakota, has been read by the Faculty Advisory Committee under whom the work has

been done and is hereby approved.

 Chairperson

This dissertation meets the standards for appearance, conforms to the style and

format requirements of the Graduate School of the University of North Dakota, and is

hereby approved.

 Dean of the Graduate School

 Date

 iv

PERMISSION

Title Super-resolution Mosaicking from Digital Surveillance Video Captured by

Unmanned Aircraft Systems (UAS)

Department Electrical Engineering

Degree Doctor of Philosophy

In presenting this dissertation in partial fulfillment of the requirements for a

graduate degree from the University of North Dakota, I agree that the library of this

University shall make it freely available for inspection. I further agree that permission for

extensive copying for scholarly purposes may be granted by the professor who supervised

my thesis work or, in his absence, by the chairperson of the department or the dean of the

Graduate School. It is understood that any copying or publication or other use of this

thesis or part thereof for financial gain shall not be allowed without my written

permission. It is also understood that due recognition shall be given to me and to the

University of North Dakota in any scholarly use which may be made of any material in

my thesis.

 Signature ___________________________

 Date ___________________________

 v

TABLE OF CONTENTS

LIST OF FIGURES ... viii

LIST OF TABLES ... xvi

LIST OF ACRONYMS ... xix

ACKNOWLEDGMENTS .. xx

ABSTRACT .. xxii

CHAPTER

1. INTRODUCTION .. 1

 1.1. Overview of the Dissertation ... 2

2. BACKGROUND .. 4

 2.1. Introduction .. 4

 2.2. Super-resolution reconstruction ... 4

2.2.1. Frequency-domain methods .. 9

2.2.2. Spatial-domain methods.. 10

2.2.3. Methods of Solution .. 12

 2.3. Image Mosaicking .. 19

 2.4. Conclusion ... 27

3. STOCHASTIC AND DETERMINISTIC REGULARIZATION FOR SUPER

RESOLUTION ... 29

 3.1. Introduction .. 29

 3.2. Ill-posed and Ill-conditioned Inverse Problems 30

 3.3. Regularization .. 31

3.3.1. Tikhonov Regularization ... 32

3.3.2. Total Variation (TV) Regularization 34

3.3.3. Cross-Validation (CV) .. 34

 vi

3.3.4. Generalized Cross-Validation (GCV) 35

3.3.5. Bilateral-TV .. 35

3.3.6. Huber Prior .. 35

 3.4. Conclusions ... 38

4. MOSAICKING AND GEO-REFERENCING ... 39

 4.1. Introduction ... 39

 4.2. Image Mosaicking ... 39

4.2.1. Registration ... 40

4.2.2. SIFT and RANSAC to Estimate the Homography 43

4.2.3. Image Feature Matching and Homography Estimation 46

4.2.4. Reprojection .. 48

4.2.5. Blending .. 52

 4.3. Video Mosaicking .. 57

 4.4. Geo-referenced Mosaic .. 60

4.4.1. The Geometry of Geo-location ... 60

4.4.2. Data fusion between GPS/IMU and Video 65

5. SUPER-RESOLUTION MOSAICKING USING STEEPEST DESCENT,

CONJUGATE GRADIENT, AND LEVENBERG MARQUARDT

OPTIMIZATION .. 73

 5.1. Introduction .. 73

 5.2. Observation Model... 75

 5.3. Robust Super-resolution Mosaicking ... 76

 5.4. Super-resolution Mosaicking Using Steepest Descent 76

5.4.1. Experimental Results for Super-resolution Mosaicking

Using Steepest Descent ... 81

 5.5. Super-resolution Mosaicking Using Conjugate Gradient 89

 vii

5.5.1. Experimental Results for Super-resolution Mosaicking

Using Conjugate Gradient... 90

 5.6. Super-resolution Mosaicking Using Levenberg Marquardt 96

5.6.1. Results Using Synthetic Frames 98

5.6.2. Results Using Real Frames from UAS 101

 5.7. Comparison of metrics for Super-Resolution Mosaicking by the

 three algorithms ... 103

 5.8. Conclusions .. 111

6. GPU-CPU IMPLEMENTATION FOR VIDEO MOSAICKING AND

SUPER-RESOLUTION MOSAICKING ... 112

 6.1. Introduction .. 112

 6.2. GPU Programming Paradigm .. 113

 6.3. GPU-CPU Implementation for Video Mosaicking of UAS

Surveillance Video .. 115

 6.4. GPU-CPU Implementation for Super-Resolution Mosaicking of

 UAS Surveillance Video .. 118

6.4.1. GPU-CPU Implementation for Super-Resolution

Mosaicking Using Steepest Descent 119

6.4.2. GPU-CPU Implementation for Super-Resolution

Mosaicking Using Conjugate Gradient 124

6.4.3. GPU-CPU Implementation for Super-Resolution

Mosaicking Using the Levenberg-Marquardt 129

 6.5. Conclusions .. 134

7. CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH 135

 7.1. Summary of Research Contributions 135

 7.2. Future Research ... 138

APPENDICES .. 140

REFERENCES ... 153

 viii

LIST OF FIGURES

Figure Page

1. Different degradations of the HR image to create an LR image. Figure taken from

[15]. 6

2. Block diagram of equation (2.1). Figure taken from [15]. 7

3. Low resolution and reconstruction flow. Figure taken from [45]. 8

4. Down-sampling D and Up-sampling (T
D) effects on a 9x9 and 3x3 image,

respectively. 9

5. Example of frequency-domain approach for super-resolution taken from Tom and

Katsaggelos [20, 21]. Left: One of the four synthetic LR images. Right: SR image.

There are several ringing artifacts, particularly along the image edges, but there is

also a distinct improvement in the resolution of the image. 10

6. Example of spatial-domain approach for super-resolution taken from Zomet et al.

[26]. Left: One of the input LR images. Right: SR image. 11

7. Example of POCS super-resolution taken from Patti et al. [32]. Left: Four of 12 low-

resolution images. Middle: Interpolated approximation to the high-resolution image.

Right: Super-resolution image found using POCS technique in [32]. 12

8. Example of MAP with Huber Markov Random Field (HMRF) prior extracted from

Schultz and Stevenson [33,34]. Left: One of input LR images. Right: SR image. 14

9. Example of TV prior and bilateral filter from Farsiu et al. [35, 36, 37, 38]. Left: One

of the input LR images. Right: SR image. 15

10. Estimation of the cameraman image and blurs taken from [45]: (a) Degraded image.

(b) Result from the blind deconvolution algorithm [45], (c) Estimated PSF. 16

11. Super-resolution using MCMC and the bilateral filter taken from [47]. Left: One of

the low resolution images. Right: Super-resolution of the text image using the

MCMC and the outlier-sensitive bilateral method. 17

12. Super-resolution algorithm proposed by Pickup [19]: Top: One of the 30 original

low-resolution frames. Bottom: Every second input from the sequence, showing a

cropped region of interest. 18

13. Super-resolution algorithm proposed by Pickup [19]. Left column shows the super-

resolution images computed using a standard MAP approach, where the geometric

and photometric registration parameters are estimated and frozen before the high-

resolution pixel values are optimized. The right column shows the results using the

 ix

proposed MAP approach of [19], where both the pixels and registration values are

found simultaneously. 19

14. Basic steps to construct a mosaic, taken from [31]. 1) Registration: consists of

finding the homography between consecutive frames. 2) Reprojection: consists of

warping all the frames into a common coordinate system. 3) Blending: consists of

eliminating parallax effects. 20

15. Static and dynamic mosaicking taken from [48]. Top: Construction of the static

mosaic using the temporal median of a baseball game sequence. Bottom:

Construction of a dynamic mosaic of a baseball sequence. 22

16. Panoramic mosaic using manifold projection [51]. 23

17. Depth recovery example taken from [54]. Table with a stack of papers (a) as an

input image taken by moving the camera up and over the scene. (b) The resulting

depth-map as intensity-coded range values. (c-d) show the original intensity image

texture mapped onto the surface. (e-f) show a set of grid-lines overlayed on the

recovered surface. 23

18. Final mosaic taken from [55]. This mosaic was constructed using 80 images

matched using SIFT (Scale Invariant Feature Transform), rendered in spherical

coordinates, and blended using the multi-band technique. 24

19. Solution to the problem of error accumulation proposed by Capel [31]. 25

20. Top: A mosaic image obtained from [31]. The outlier of every 5
th

 frame is overlaid.

Left: A close-up view of the region of interested (red box). Right: The

corresponding region extracted from a single frame. 26

21. Top: A mosaic image after refinement of the homography by bundle-adjustment,

obtained from [31]. Left: A close-up view of the region of interest (red box of the

Figure 2.20). Right: The corresponding region extracted from a single frame. 27

22. The importance of the Lagrange multiplier in the regularization to solve super-

resolution [43]. 33

23. Huber function and corresponding distributions [19]. Top: Several functions

corresponding to a set of logarithmically-spaced values. Bottom: Three sets for v =

1, v = 10, and v = 100, each of them using the set of Huber functions. 37

24. Images of planes. There is a planar homography between two images of a plane

taken from different viewpoints, related by a rotation R and translation t . The

scene point X is projected to point x and x' in image 1 and image 2, respectively.

These points are related by xx H' . 42

 x

25. Rotation about the camera axis. As the camera is rotated, the points of intersection

of the rays with the image plane are related by a planar homography. Image points

x and x' correspond to the same scene point X . Points are related by xx H' . 42

26. SIFT descriptor: (1) detected region, (2) gradient image and location grid, (3)

dimensions of the histogram, (4) shows four of eight orientation planes, and (5)

Cartesian and log-polar location grids. 43

27. Evaluation of features descriptors for structured scene [73]: (a) viewpoint changes

40
o
-60

o
. (b) Scale changes of a factor 2-2.5 combined with image rotation of 30

o
 –

45
o
, (c) image rotation of 30

o
 – 45

o
, (d) image blur, (e) JPEG compression, and (f)

illumination changes. 45

28. Sequence of five consecutive IR (infrared frames) taken in 2007 by the UASE

Laboratory team at the University of North Dakota. Each frame contains 240x320

pixels. The first row of images shows the five frames, and the second row shows the

corresponding SIFT features for every frame. 47

29. Results of the matching step. From left-to-right: (a) 153 matches between frame 1

and frame 2, (b) 187 matches between frame 2 and frame 3, (c) 206 matches

between frame 3 and frame 4, and (d) 229 matches between frame 4 and frame 5. 47

30. Results of the reprojection step, choosing frame 1 as the reference frame. The size of

the mosaic is 360x360 pixels, and all the frames were offset 10 pixels in the x-

direction and 63 pixels y-direction The first row shows the reprojection of frame 1

and frame 2, the second row shows the reprojection of the frames 3 and frame 4, and

finally the third row shows the reprojection of frame 5. 50

31. Reprojection in a common rectangular coordinate systems (CRCS). The first row

shows the reprojection in the CRCS of frame 1 and frame 2, the second row shows

the reprojection in the CRCS for frame 3 and frame 4, and the third row shows the

reprojection in the CRCS for frame 5. 51

32. Creating the mask for multi-band blending. (a) and (b) show frame 1 and frame 2,

respectively. (b) and (e) are the corresponding weight functions, and (c) and (f) are

the masks that will be used in the multi-band blending. 53

33. Results of the multi-band blending algorithm. (a) Mosaic without blending and (b)

mosaic blended using the multi-band blending algorithm. 55

34. Example of MPEG Group of Pictures (GOP), I-frame, B-frame and P-frame. 57

35. Infrared (IR) video mosaicking for 5.120 seconds at 25 frames per second captured

in 2007 by the UASE Laboratory team at the University of North Dakota. 58

36. Video mosaicking for 4 seconds at 15 frames per second taken from the video

mosaicking demonstration in MATLAB/Simulink. 59

 xi

37. Top view of the coordinate frames. The inertial and vehicle (UAS) frames are

aligned with the world, the body is aligned with the airframe, and the gimbal and

camera frames are aligned with the camera. 61

38. Lateral view of the coordinate frames. 62

39. Rotation R and translation T from the camera. This rotation and translation are

related by H. x1, and x2, and they are both representations of the real world point p

in camera coordinates. 67

40. Example of geo-referenced mosaic taken from [77] . 71

41. Example of geo-referenced images using images from a color (red, green) and near

infrared (false color composite) camera along with GPS and IMU information.

(Photo: Courtesy of David Dvorak) . 72

42. Image Interpolation and decimation. 78

43. Local spatial interactions representing by four finite difference approximations of

the pixel
)(ˆ nx . 79

44. Results of SR mosaicking for synthetic frames using steepest descent algorithm. The

mosaic was constructed using five frames. Figures (a) and (d) show the mosaic for

the first and second set of synthetic frames, respectively. These mosaics are the

input to the algorithm. (b) and (e) are the super-resolved mosaics of (a) and (d)

respectively. These mosaics are the output of the proposed algorithm. Figures (c)

and (f) show the ground truth mosaics, which are the mosaics constructed using high

resolution frames. 82

45. Regularization parameter (Lagrange multiplier) versus the number of iterations for

the second set of synthetic color frames. The regularization parameter decreased as

expected. 83

46. Results of super-resolution mosaicking using the steepest descent algorithm. Left:

LR mosaic. Right: the SR mosaic. The mosaic was constructed using five frames of

size 320x240x3 pixels. 84

47. Results of the SR mosaic for real frames from UAS using the steepest descent

algorithm. The mosaic was constructed using five frames. Figures (a) and (c) show

the mosaic for the first and second set of frames, respectively. These mosaics are the

input to the algorithm. (b) and (d) are the super-resolved mosaics of (a) and (c),

respectively. These mosaics are the output of the proposed algorithm. 86

48. Region of Interest cropped to see a better comparison of the results of the algorithm

for the first set of real UAS video frames. Figure (a) shows the region of interest

selected from the whole LR mosaic, and (b) shows the selected LR area. Figure (c)

shows the region of interest selected from the whole SR mosaic, and (d) shows the

selected SR area. 87

 xii

49. Region of Interest cropped to see a better comparison of the results of the algorithm

for the second set of real UAS video frames. Figures (a) and (e) show the region of

interest selected from the whole LR mosaic. Figures (b) and (f) show the region of

interest selected from the whole LR mosaic. Figures (d) and (h) show the selected

SR area. 88

50. Regularization parameter
)(n (Lagrange multiplier) versus the number of iterations

for the second set of real IR video frames from UAS. The regularization parameter

decreased as expected. 89

51. Results of SR mosaicking for synthetic frames using the conjugate gradient

algorithm. The mosaics were constructed using five frames. Figures (a) and (d) show

the mosaics for the first and second set of synthetic frames respectively. These

mosaics are the input to the algorithm. (b) and (e) are the super-resolved mosaics

using the CG algorithm on (a) and (d), respectively. These mosaics are the output of

the proposed algorithm. Figures (c) and (f) show the ground truth mosaics, which

are the mosaics constructed using high-resolution frames. 92

52. Results of super-resolution mosaicking using the conjugate gradient algorithm. Left:

LR mosaicking. Right: SR mosaic. The mosaics were constructed using five frames

of a size of 320x240x3 pixels. 94

53. Results of the SR mosaic for real frames from UAS using the conjugate gradient

method. The mosaic was constructed using five frames. Figures (a) and (c) show the

mosaics for the first and second set of frames, respectively. These mosaics are the

input to the algorithm; (b) and (d) are the super-resolved mosaics of (a) and (c),

respectively. These mosaics are the output of the proposed conjugate gradient

method. 95

54. Results of SR mosaicking for synthetic frames using the Levenberg Marquardt

method. The mosaic was constructed using five frames. Figures (a) and (d) show the

mosaic for the first and second sets of synthetic frames, respectively. These mosaics

are the input to the algorithm. (b) and (e) are the super-resolved mosaics applying

the LM method to (a) and (d), respectively. These mosaics are the output of the

proposed algorithm. Figures (c) and (f) show the ground truth mosaics, which are

the mosaics constructed using high-resolution frames. 100

55. Result of super-resolution mosaicking using the proposed Levenberg Marquardt

method. Left: LR mosaicking. Right: SR mosaicking. The mosaics were constructed

using five frames of size of 320x240x3 pixels. 102

56. Results of the SR mosaic for real frames from UAS using the proposed Levenberg

Marquardt method. The mosaic was constructed using five frames. Figures (a) and

(c) show the mosaic for the first and second set of frames, respectively. These

mosaics are the input to the algorithm. (b) and (d) are the super-resolved mosaics of

(a) and (c) respectively. These mosaics are the output of the proposed LM algorithm.

 103

 xiii

57. Comparison of the three proposed algorithms: steepest descent, conjugate gradient,

and Levenberg Marquardt. These images belong to the first set of synthetic frames

created. (a) LR mosaic. (b) Ground truth HR mosaic. (c) SR mosaic using steepest

descent. (d) SR mosaic using conjugate gradient. (e) SR mosaic using Levenberg

Marquardt. 105

58. Comparison of the three proposed algorithms: steepest descent, conjugate gradient

and Levenberg Marquardt. These images belong to the second set of synthetic

frames created. (a) LR mosaic. (b) Ground truth HR mosaic. (c) SR mosaic using

steepest descent. (d) SR mosaic using conjugate gradient. (e) SR mosaic using

Levenberg Marquardt. 106

59. Comparison of the three proposed algorithms: steepest descent, conjugate gradient,

and Levenberg Marquardt. The images belong to the first set of color video frames

captured from UAS. (a) LR mosaic. (b) SR mosaic using steepest descent. (c) SR

mosaic using conjugate gradient. (d) SR mosaic using Levenberg Marquardt. 108

60. Comparison of the three proposed algorithms: steepest descent, conjugate gradient,

and Levenberg Marquardt. These images belong to the first set of real IR video

frames captured from UAS. (a) LR mosaic. (b) SR mosaic using steepest descent. (c)

SR mosaic using conjugate gradient. (d) SR mosaic using Levenberg Marquardt. 109

61. Comparison of the three proposed algorithms: steepest descent, conjugate gradient

and Levenberg Marquardt methods. These images belong to the second set of real IR

video frames captured from UAS. (a) LR mosaic. (b) SR mosaic using steepest

descent method. (c) SR mosaic using conjugate gradient. (d) SR mosaic using

Levenberg Marquardt. 110

62. GPU uses more transistors for data processing. 114

63. Programming model over GPU. 115

64. Real time video mosaicking constructed using GPU-CPU. The video belongs to

MATLAB/Simulink demonstrations. 116

65. Video mosaicking results for 5.120 seconds at 25 frames per second for the IR video

captured in 2007 by the UASE Laboratory team at the University of North Dakota.

Left: Mosaic result using only MPEG I-frames. Right: Result using all frames from

5.120 seconds of video. 118

66. Results of the SR mosaicking for synthetic frames the using steepest descent

algorithm implemented over GPU-CPU. The mosaics were constructed using five

frames. Figures (a) and (d) show the mosaics for the first and second set of synthetic

frames, respectively. These mosaics are the input to the algorithm. (b) and (e) are the

super-resolved mosaics of (a) and (d), respectively. These mosaics are the output of

the proposed algorithm. Figures (c) and (f) show the ground truth mosaics,

constructed using high-resolution frames. 121

 xiv

67. Result of super-resolution mosaicking using steepest descent implemented over

GPU-CPU. Left: LR mosaic. Right: SR mosaic. The mosaics were constructed using

five frames of size 320x240x3 pixels. 122

68. Results of SR mosaicking for real frames from UAS using steepest descent

implemented over GPU-CPU. The mosaics were constructed using five frames.

Figures (a) and (c) show the mosaics for the first and second sets of frames,

respectively. These mosaics are the input to the algorithm. (b) and (d) are the super-

resolved mosaics of (a) and (c) respectively. These mosaics are the output of the

steepest descent super-resolution mosaicking algorithm. 123

69. Results of SR mosaicking for synthetic frames using the conjugate gradient

algorithm implemented over GPU-CPU. The mosaics were constructed using five

frames. Figures (a) and (d) show the mosaics for the first and second sets of

synthetic frames, respectively. These mosaics are the input to the algorithm. (b) and

(e) are the super-resolved mosaics using the CG algorithm over GPU-CPU of (a)

and (d), respectively. These mosaics are the output of the CG algorithm. Figures (c)

and (f) show the ground truth mosaics, constructed using high-resolution frames. 126

70. Results of super-resolution mosaicking using the conjugate gradient algorithm

implemented over GPU-CPU. Left: LR mosaic. Right: SR mosaic. The mosaics was

constructed using five frames of size 320x240x3 pixels. 127

71. Results of SR mosaic for real frames from UAS using the conjugate gradient

algorithm implemented over GPU-CPU. The mosaics were constructed using five

frames. Figures (a) and (c) show the mosaics for the first and second sets of frames,

respectively. These mosaics are the input to the algorithm. (b) and (d) are the super-

resolved mosaics of (a) and (c), respectively. These mosaics are the output of the

proposed conjugate gradient super-resolution mosaicking algorithm. 128

72. Results of SR mosaicking for synthetic frames using the Levenberg Marquardt

algorithm implemented over GPU-CPU. The mosaics were constructed using five

frames. Figures (a) and (d) show the mosaics for the first and second set of synthetic

frames, respectively. These mosaics are the input to the algorithm. (b) and (e) are the

super-resolved mosaics using the LM algorithm of (a) and (d), respectively. These

mosaics are the output of the proposed algorithm. Figures (c) and (f) show the

ground truth mosaics, constructed using high-resolution frames. 131

73. Results of super-resolution mosaicking using the Levenberg Marquardt algorithm

implemented over GPU-CPU. Left: LR mosaic. Right: SR mosaic. The mosaics

were constructed using five frames of size 320x240x3 pixels. 132

74. Results of SR mosaicking for real frames from UAS using the Levenberg Marquardt

algorithm implemented over GPU-CPU. The mosaics were constructed using five

frames. Figures (a) and (c) show the mosaics for the first and second sets of frames,

respectively. These mosaics are the input to the algorithm. (b) and (d) are the super-

 xv

resolved mosaics of (a) and (c), respectively. These mosaics are the output of the

proposed Levenberg Marquardt super-resolution mosaicking algorithm. 133

 xvi

LIST OF TABLES

Table Page

1. Estimation of the homography between two images using RANSAC and SIFT. 49

2. Algorithm to compute the multi-band blending of two images given a region R. 55

3. Algorithm to construct a mosaic given N input images. ... 56

4. Algorithm to construct a video mosaic given an input MPEG video sequence. 59

5. Homogeneous transformation matrices between frames. ... 62

6. Algorithm for the pose estimation based on fusion of the GPS/IMU information and

video frames using UKF. .. 68

7. Algorithm to construct a super-resolved mosaic using steepest descent algorithm

given a set of input frames. ... 80

8. Results of the computation of super-resolution mosaicking using steepest descent

algorithm for two different sets of color synthetic frames. 83

9. Results of computing of super-resolution mosaics for two different sets of color

synthetic frames. ... 85

10. Algorithm to construct a super-resolved mosaic using conjugate gradient algorithm

given a set of N input frames. ... 91

11. Results of computating super-resolution mosaics using the conjugate gradient

algorithm for two different set of color synthetic frames. .. 93

12. Results of the capturing the super-resolution mosaics using the proposed conjugate

gradient algorithm for three different sets real frames from UAS. 93

13. Results computing super-resolution mosaics using Levenberg Marquardt algorithm

for two different sets of color synthetic frames. ... 98

14. Algorithm to construct a super-resolved mosaic using the Levenberg Marquardt

optimization method given a set of N input frames. ... 99

15. Results of computing the super-resolution mosaics using the proposed Levenberg

Marquardt algorithm for three different sets real frames from UAS. 101

 xvii

16. Comparison of the three proposed algorithms to compute super-resolution mosaics

for the first set of synthetic color frames. ... 104

17. Comparison of the three proposed algorithms to compute super-resolution mosaics

for the second set of synthetic color frames. ... 107

18. Comparison of the three proposed algorithms to compute super-resolution mosaics

for the first set of real video color frames captured by UAS. 107

19. Comparison of the three proposed algorithms to compute super-resolution mosaics

for the first set of real video IR frames captured by UAS. 109

20. Comparison of the three proposed algorithms to compute super-resolution mosaics

for the second set of real video IR frames captured by UAS. 111

21. Comparison of the computational time of the homography. 116

22. Algorithm to construct a video mosaic given an input video over GPU – CPU. ... 117

23. Comparison of the computational time for complete video mosaicking. 118

24. Algorithm to construct a super-resolved mosaic using steepest descent algorithm

over GPU-CPU given a set of N input frames. ... 120

25. Results of computating of super-resolution mosaics using steepest descent over

GPU-CPU for two different sets of color synthetic frames. 122

26. Results of computing of super-resolution mosaics using steepest descent over GPU-

CPU for three different sets of real frames captured by UAS. 123

27. Algorithm to construct a super-resolved mosaic using conjugate gradient over GPU-

CPU given a set of N input frames. ... 125

28. Results of computating super-resolution mosaics using the conjugate gradient

algorithm over GPU-CPU for two different sets of color synthetic frames............ 127

29. Results of computating of super-resolution mosaics using the conjugate gradient

algorithm over GPU-CPU for three different sets of real frames captured by UAS.

 ... 128

30. Algorithm to construct super-resolved mosaics using the Levenberg Marquardt

algorithm over GPU-CPU given a set of N input frames. 130

31. Results of the computating of super-resolution mosaicks using the Levenberg

Marquardt algorithm over GPU-CPU for two different set of color synthetic frames.

 ... 132

 xviii

32. Results of computing of super-resolution mosaics using the Levenberg Marquardt

algorithm over GPU-CPU for three different sets of real frames captured by UAS.

 ... 133

 xix

LIST OF ACRONYMS

LR .. Low Resolution

SR ...Super-Resolution

SD .. Steepest Descent

CG .. Conjugate Gradient

LM...Levenberg Marquardt

CPU ... Central Processing Unit

GPU... Graphical Processing Unit

SVM ... Singular Value Decomposition

SIFT ... Scale-Invariant Feature Transform

RANSAC .. Random Sample Concensus

UAS..Unmanned Aircraft System

UASE .. Unmanned Aircraft Systems Engineering

TV ... Total Variation

CV ... Cross -Validation

GCV ... Generalized Cross-Validation

GPS ... Global Positioning System

IMU ... Inertial Measurement Unit

HMRF ... Hubert Markov Random Field

 xx

ACKNOWLEDGMENTS

 First at all, I would like to thank God for all his blessing that he always gave me

and keep giving me.

 I wish to thank Dr. Richard R. Schultz for all his support, understanding, teaching,

mentoring and guidance in the development of my research and the completion of my

Ph.D. studies at the University of North Dakota.

I wish to thank my father Walter, my mother Vilma, and brothers: Eduardo, Enzo,

Wendy, Richard, Fernando and Giancarlo for their support, understanding and prays.

I also want to wish to thank all of the professors of the Department of Electrical

Engineer at the University of North Dakota, for their teaching and time that they spent

with me. Also, I would like to thank Dr. Jeremiah Neubert and Dr. William H. Semke

from the Mechanical Engineering Department, and Dr. Ryan Zerr and Dr. Mike Minnotte

of Mathematics Department, Dr. Mike Poellot from Atmospheric Sciences Department

and Dr Ronald A. Fevig from the Space Studies Deparment at the University of North

Dakota.

The author also would like to recognize the students of the School of Engineering

and Mines for their proficiency and comradeship, especially the contributions of the

Unmanned Aircraft Systems Engineering (UASE) Laboratory team.

This research was supported in part by the FY2006 Defense Experimental

Program to Stimulate Competitive Research (DEPSCoR) program, Army Research

 xxi

Office grant number 50441-CI-DPS, Computing and Information Sciences Division,

“Real-Time Super-Resolution ATR of UAV-Based Reconnaissance and Surveillance

Imagery,” (Richard R. Schultz, Principal Investigator, active dates June 15, 2006, through

June 14, 2010). This research was also supported in part by the Joint Unmanned Aircraft

Systems Center of Excellence contract number FA4861-06-C-C006, “Unmanned Aerial

System Remote Sense and Avoid System and Advanced Payload Analysis and

Investigation,” as well as the North Dakota Department of Commerce grant, “UND

Center of Excellence for UAV and Simulation Applications.”

To my wife Jenny, my daughter Angela Sofia and son Angelo Mathias.

 xxii

ABSTRACT

Mosaicking refers to the stitching of one or more correlated images, forming a

much larger image of a scene. Super-resolution mosaicking refers to methods for

enhancing the resolution of the mosaic, which can be affected by different sources of

noise, as well as other effects such as camera translation and rotation. Methods to

compute super-resolution mosaics use a low-resolution mosaic as an input. The mosaic

can be generated from a panoramic view of a scene, digital video, satellite terrain

imagery, surveillance footage, or images from many other sources.

Unmanned Aircraft Systems (UAS) can be used for tracking and surveillance by

exploiting the information captured by a digital imaging payload. Some of the most

significant problems facing surveillance video captured by a small UAS aircraft (i.e., an

airframe with a payload carrying capacity of less than 50 kilograms) include motion blur;

the frame-to-frame movement induced by aircraft roll, wind gusts, and less than ideal

atmospheric conditions; and the noise inherent within the image sensors. These effects

have to be modeled to create a super-resolution mosaic from low-resolution UAS

surveillance video frames, so that effective image analysis can be conducted. The goal of

this dissertation is to perform super-resolution mosaicking of surveillance video captured

by a UAS digital imaging payload, which involves recovering a high-resolution map of

the region under surveillance using accurate camera and motion models with minimal

computation for near-real-time operation.

 xxiii

This dissertation focuses on spatial domain methods based on image operators

and iterated back-projection methods. We use a novel framework which does not require

the construction of sparse matrices, efficient, robust, is independent (it constructs the

super-resolution mosaic by itself from only video information), and is easy to implement.

The results obtained in our simulations shows a great improvement of the resolution of

the low resolution mosaic of up to 47.54 dB for synthetic images, and a great

improvement in sharpness and visually details, for real UAS surveillance frame, in only

ten iterations.

Steepest descent, conjugate gradient and Levenberg Marquardt are used to solve

the nonlinear optimization problem involved in the computation of super-resolution

mosaic. A comparision in computation time and improvement in the resolution is

peformed. The algorithm used for Levenberg Marquardt avoid the computation of the

inverse of the pseudo Hessian matrix by solving a linear square problem using singular

value decomposition (SVD).

The use of the graphical processing unit (GPU) paradigm is used to speed up

super-resolution mosaicking. Since, the registration step takes most of the time in feature

based methods, we reduce this time by computing the SIFT features, matching and

homography in the GPU. The remaining steps are performed over the CPUs (central

processing unit).The speed up factor for the computation of the homography, used

extensively in image registration and placement, is more than fifty times faster than using

only CPUs.

1

CHAPTER 1

INTRODUCTION

This dissertation investigates sets of frames captured from UAS surveillance

video, in which feature overlaps can be used to create a large image containing the entire

view, with more resolution and details. The name for such techniques is super-resolution

mosaicking. Using this, it is possible to extend the field of view beyond that of any single

frame. The aim of this dissertation is to develop near-real-time, efficient, robust,

independent, and automated frame super-resolution mosaiking with applications to UAS

surveillance video.

An essential step required to construct the super-resolution mosaic is image

registration. The SIFT (Scale Invariant Feature Transform)[92] together with the

RANSAC (Random Sample Consensus) [93], are used to estimated the homography,

which gives us the image registration between two consecutive frames. But, SIFT takes a

great deal of computational resources making the image registration slow, so it becomes

the bottleneck for the computation of near-real-time super-resolution mosaics. For that

reason, the graphical processing unit (GPU) is used to compute the image registration,

showing a considerable speed up.

Super-resolution mosaicking involves the understanding of both the generation of

video mosaics and super-resolution reconstruction. Both of these areas have been studied

by many researchers, and Chapter 2 will review the most important approaches. Most of

these approaches have focused on small images (fewer number of pixels to process) and

2

synthetic images (images created with certain known parameters of motion, blur, and

scaling). Conversely, this dissertation focuses on real video captured from a small UAS

platform flown by the Unmanned Aircraft Systems Engineering (UASE) Laboratory at

the University of North Dakota.

1.1 Overview of the Dissertation

Following this introduction, Chapter 2 presents some of the background theory

necessary for a formal definition of the mosaicking and super-resolution problems. This

chapter reviews the different approaches in the frequency and spatial domains.

Chapter 3 reviews the different stochastic and deterministic regularization

techniques used for the numerical computations involved in super-resolution

reconstruction. Throughout this dissertation, the concept of the inverse problem and

especially of the ill-posed inverse problem will recur. For this reason, a brief review of

this interesting subject is provided.

Chapter 4 details the construction of image and video mosaics. The use of MPEG

I-frames are also detailed. Due to the fact that most of the real applications for video or

image mosaicking for UAS also refer to the term “geo-referencing,” Chapter 4 details the

construction of geo-referenced mosaics based on the information of three different

sensors: GPS (Global Positioning Unit), IMU (Inertial Measurement Unit), and video

frames. The fusion of these data is done using the unscented Kalman Filter (UKF)

because of its generally good performance for non-linear systems.

Chapter 5 details the construction of super-resolution mosaics by three different

algorithms: steepest descent, conjugate gradient, and Levenberg Marquardt. All of these

algorithms use a novel model to represent the super-resolution mosaic, where the

3

construction of the mosaic is represented by image operators. To solve the ill-posed

inverse problem, a Huber prior is used. Also, the Lagrange multiplier is found using a

robust method that does not require the construction of sparse matrices. The simulations

were performed on both synthetic data, to be able to compute the PSNR qualitatively, and

real frames captured by UAS to compare the results visually. Finally, a comparison

between all three algorithms is shown; this comparison is based on visual quality and

computation time.

Chapter 6 has three parts. The first part involves a short explanation of the GPU

paradigm, and the second part explains the construction of video mosaics using MPEG I-

frames implemented over GPU-CPU. The results demonstrate that it is possible to

perform real-time video mosaicking with today’s hardware. Finally, the last part explains

the construction of super-resolution mosaicking using GPU-CPU and a comparison with

the results using only CPU.

4

CHAPTER 2

BACKGROUND

2.1 Introduction

Super-resolution mosaicking involves many definitions and previous concepts to

understand. This chapter provides some definitions of super-resolution and video

mosaicking. An attempt is made to provide a perspective on how modern super-

resolution reconstruction and image mosaicking techniques have evolved from the

beginning to the present.

Section 2.2 provides a definition of super-resolution reconstruction and a high-

level overview of the different approaches to solve it. Mainly, there are two approaches:

1) frequency-domain and 2) spatial-domain. Additionally, a brief definition of the ill-

posed inverse problem and how regularization plays an important role is briefly

described.

Section 2.3 explores the different techniques to construct a mosaic, the difference

between static and dynamic mosaicking is shown, and how the accumulation of errors

due to the projection model affects the construction of the mosaic.

2.2 Super-resolution reconstruction

Super-resolution reconstruction refers to methods for still image and video

enhancement from multiple low-resolution, degraded observed images derived from an

underlying scene [7], see Figure 1. The goal is to obtain a single image or video with

better quality. There are two different categories of approaches: super-resolution in the

5

spatial-domain [8-12] and super-resolution in the frequency-domain [13,14], based on

the motion estimation between consecutive frames. Frequency-domain super-resolution

relies on motion vectors being comprised purely of horizontal and vertical displacements,

which for real video data from UAS is almost never realistic. The frequency-domain is

effective in making use of low-frequency components to register a set of images

containing artifacts. The results with this type of approach generally have ringing effects.

Spatial-domain super-resolution methods use the image registration between

frames by computing the feature correspondence in the spatial domain. The motion

models can be global for the entire image or local for a set of corresponding feature

vectors [62]. In order to understand the super-resolution problem, equation (2.1)

represents the observation model that relates the original high-resolution (HR) image to

the observed (i.e, low-resolution LR) images. Considering the desired HR image of size

2211 x NLNL

written in lexicographical notation as the vector

T

Nxxx],...,,[21x , where

2211 x NLNLN  . The down-sampling factors in the horizontal and vertical directions are

represented by 21xLL , respectively. Thus, each observed LR image is of size 21xNN . Let

the k
th

LR image be denoted in lexicographic notation as
T

Mkkk xyy],...,,[2,1,y , for

pk ,...,2,1 and 21xNNM  [15]. Assuming x (HR image) remains constant during the

acquisition of multiple LR images, the model is:

 kkkk ηxMDBy  , for ,1 pk 

 (2.1)

where kM represents the warp matrix of size 22112211 x NLNLNLNL , kB represents an

22112211 x NLNLNLNL

blur matrix, D is an 2211

2

21 x)(NLNLNN down-sampling matrix

6

and kη represents a lexicographically-ordered noise vector. Figure 2 shows a block

diagram for the observation model of equation (2.1).

The motion matrix represented by kM may contain global or local translations,

rotations, and so on. Since this information is unknown, it is necessary to estimate the

scene motion for each frame with respect to one particular frame, called the reference

frame. The warping process is defined in terms of LR pixel spacing; therefore is

necessary to interpolate the pixels to represent them on the HR grid.

The blurring effect can be caused by many factors such as atmospheric blur, motion, and

camera blur [16]. Most of the approaches model the LR sensor with a point spread

function (PSF). This PSF is usually modeled as a spatial averaging operator or as a 2D –

Gaussian.

Figure 1. Different degradations of the HR image to create an LR image. Figure taken

from [15].

7

Figure 2. Block diagram of equation (2.1). Figure taken from [15].

The matrix D generates aliased LR images from the warped and blurred HR

image. Figure 4 shows the effects of down-sampling and up-sampling over 9x9 and 3x3

images, respectively. In this dissertation, we assume that the blurring effects of the CCD

are captured by the blur matrix kB , and therefore the CCD down-sampling process can

be modeled by a simple periodic sampling of the high-resolution image. Thus, the

corresponding up-sampling process is implemented as a zero-filling process.

Equation (2.1) can be represented as

kkk ηxHy  , for ,1 pk 

 (2.2)

where kH

represents the effect of the decimation, blurring and warping. This matrix kH

is of size 2211

2

21 x)(NLNLNN .

Based on (2.2), the aim of SR reconstruction is to estimate the HR image x from

the LR images ky for pk ,...,1 . Therefore, SR is an inverse problem.

According to Hadamard [17] an inverse problem is consider well-posed when a

solution:

1. exists for any data,

2. is unique, and

3. depends continuously on the data.

8

Figure 3. Low resolution and reconstruction flow. Figure taken from [45].

9

Figure 4. Down-sampling D and Up-sampling (T
D) effects on a 9x9 and 3x3

image, respectively.

If any of these conditions are not satisfied, then the inverse problem is ill-posed.

For the case of SR, the solution is not unique to (2.1), so SR is an ill-posed inverse

problem.

Regularization refers to methods which are used to add additional information to

compensate for the loss of information in the ill-posed problems. This additional

information is typically referred to as a priori or prior information. This prior information

cannot be derived from the observations or the observation process and must be known

“before the fact.” Normally, the prior information is chosen to represent desired

characteristics of the solution, e.g., smoothness, total energy, edge preservation, etc. The

role of this prior information is to reduce the space of solutions which are compatible

with the observed data. A review of different regularization methods will be provided in

Chapter 3.

2.2.1 Frequency-domain methods

These methods make explicit use of the aliasing that exists in each LR image to

reconstruct an HR image [15,18]. The frequency-domain approach is based on the

following three principles: i) the shifting property of the Fourier transform, ii) the

10

aliasing relationship between the continuous Fourier transform (CFT) of an original HR

image and the discrete Fourier transform (DFT) of observed LR images, and iii) the

assumption that the original HR image is bandlimited.

Tsai and Huang [18] rely on the motion being composed purely of horizontal and

vertical displacements, Tom and Katsaggelos [20, 21] take a two-phase super-resolution

approach, where the first step is to register, deblur, and de-noise the low-resolution

images, and the second step is to interpolate and integrate them into a high-resolution

image grid. Figure 5 shows one LR synthetic image data and the SR image result of the

algorithm proposed by Tom and Katsagegelos.

Figure 5. Example of frequency-domain approach for super-resolution taken from Tom

and Katsaggelos [20, 21]. Left: One of the four synthetic LR images. Right: SR image.

There are several ringing artifacts, particularly along the image edges, but there is also a

distinct improvement in the resolution of the image.

2.2.2 Spatial-domain methods

Spatial-domain methods actually perform better with additive noise, and a more

natural treatment of the image point spread blur in cases where it cannot be approximated

by a single convolution operation on the HR image [19].

11

The first spatial-domain methods were developed by Peleg [23], Keren [22], and

Irani [24]. Peleg et al. [23] highlighted the use of subpixel motion to improve resolution.

Keren [22] proposed a method to register two different images. This registration finds the

translation and rotation within the plane of the image, but it generally fails with

resampling and interpolation. Irani [24,25] used the same algorithm proposed by Keren,

but proposed a more sophisticated method for super-resolution image recovery based on

back-projection.

Later work by Zomet et al. [26] proposed the use of medians to deal with large

outliers caused by the parallax of moving specularities. Projection onto Convex Sets

(POCS), which is set-theoretic approach to super-resolution, was used by Stark and

Oskoi [27] that utilizes a maximum likelihood (ML) framework and also prior

information; Patti et al. [32], as well as Elad and Feuer [28,29,30] use Kalman filtering to

pose the problem in an easy way to solve.

Figure 6 shows an example of the results using the method proposed by Zomet

[26]. The left image is one of the LR images and the right image is the SR estimated

image. Figure 7 shows four LR images from a set of 12 LR images and also the SR

image using POCS.

Figure 6. Example of spatial-domain approach for super-resolution taken from Zomet et

al. [26]. Left: One of the input LR images. Right: SR image.

12

Figure 7. Example of POCS super-resolution taken from Patti et al. [32]. Left: Four of 12

low-resolution images. Middle: Interpolated approximation to the high-resolution image.

Right: Super-resolution image found using POCS technique in [32].

2.2.3 Methods of Solution

One of the most important concerns in the solution of the ill-posed inverse super-

resolution problem is the cost of the computation, and how quickly it converges to a

unique optimal solution.

For the initial approaches based on frequency-domain least-squares (i.e., of

format bAx ), the super-resolution estimate is found using an iterative re-estimation

process. However, the method proposed by Irani [24] generates different solutions

depending on the initial guess.

The ML estimator is explored by Capel [31], where the SR image is estimated

directly by using the pseudoinverse. Since this is another convex problem, the algorithm

is guaranteed to converge to the same global optimum whatever the initial condition.

Maximum a posteriori (MAP) is one of the preferred methods. Some approaches

can be re-interpreted as MAP because they use a regularized cost function whose terms

can be matched to those of a posterior distribution over a high-resolution image, as the

regularization term can be viewed as a type of image prior. If a prior over the high-

resolution image is chosen so that the log prior distribution is convex in the image pixels

13

and the basic ML solution itself is also convex, then the MAP solution will have a unique

optimal super-resolution image.

A popular form of convex regularizer is a quadratic function of the image pixels,

2

2
Ax , for some matrix A and image pixel vector x . If the objective function is taken as

the exponential argument, it can be manipulated to give the probabilistic interpretation,

because a term with the form









2

22

1
exp Ax is proportional to a zero-mean Gaussian

prior over x with covariance AA
T .

Schultz and Stevenson [33,34] look at video sequences with frames related by

dense corrrespondence found using a hierarchical block-matching algorithm. They use

the Huber Markov Random Field (HMRF) as a prior to regularize the super-resolution

image recovery. The Huber function is quadratic for small values of input, but linear for

larger values, so it penalizes edges less severely than a Gaussian prior. This Huber

function models the statistics of real images more closely than a purely quadratic

function, because real images contain edges. Therefore, they have much heavier-tailed

first-derivative distributions than can be modeled by a Gaussian. Figure 8 shows one of

the LR images on the left and the SR image on the right using the Schultz and Stevenson

[33,34] method.

14

Figure 8. Example of MAP with Huber Markov Random Field (HMRF) prior extracted

from Schultz and Stevenson [33,34]. Left: One of input LR images. Right: SR image.

The total variation (TV) prior and a related technique called the bilateral filter was

used by Farsiu et al. [35, 36, 37,38]. They introduced a regularization term called

Bilateral-TV, which is inexpensive to implement and also preserves edges. Furthermore,

they explore several ways to formulate quick solutions by working with 1L norms, rather

than the more common 2L norms to solve the super-resolution problem. Figure 9 shows

one of their results using the TV prior and the bilateral filter from [35, 36, 37,38].

Capel and Zisserman [39,40] compare the back–projection model of Irani and

Peleg to simple spatial-domain ML approaches, and show that these perform much less

well on a text image sequence than the HMRF method and the Total Variation (TV)

estimator. Also, they consider super-resolution as a second step after image mosaicking,

where the image registration (using a homography with eight degrees of freedom) is

carried out in the mosaicking process.

15

Figure 9. Example of TV prior and bilateral filter from Farsiu et al. [35, 36, 37, 38]. Left:

One of the input LR images. Right: SR image.

Baker and Kanade [41,42] analyze the sources of noise and poor reconstruction in

the ML case, by considering various forms of the PSF and their limitations. Their

proposed method works by partitioning the low-resolution space into a set of classes,

each of which has a separate prior model. For example, if a face is detected in the low

resolution image set, a face-specific prior over the super-resolution image will be used.

The classification of the low-resolution images is made using a pyramid of multi-scale

Gaussian and Laplacian images, which were built up from training data.

Generalized cross-validation (GCV) was proposed Nguyen in his dissertation

[43]. GCV is used to compute the regularization factor used in the solution of the ill-

posed super-resolution problem. GCV works well for overdetermined, underdetermined,

and square systems. GCV is simple cross-validation applied to the original system after it

16

has undergone a unitary transformation. GCV is also known to be less sensitive to large

outliers than cross-validation [43].

Šroubek and Flusser [45, 46] developed an alternating minimization scheme

based on a maximum a posteriori (MAP) blind deconvolution with a prior distribution of

blurs derived from the multichannel framework and a prior distribution of original

images. This method combines the benefits of edge preserving denoising techniques and

the one-step subspace eigenvector-based method (EVAM) reconstruction method. Figure

10 shows one of the LR images on the left and the SR image with the estimated PSF on

the right using the deconvolution method proposed by Šroubek and Flusser [45, 46].

(a)

(b)

(c)

Figure 10. Estimation of the cameraman image and blurs taken from [45]: (a) Degraded

image. (b) Result from the blind deconvolution algorithm [45], (c) Estimated PSF.

Tian and Ma [47] proposed a Markov Chain Monte Carlo (MCMC) algorithm

with outlier-sensitive bilateral filtering. The idea of MCMC is to generate N samples

17

with)(YXp . The number of samples has to be large enough to guarantee the

convergence of MCMC. They use a bilateral filter to reduce the noise effect within the

pixels. Figure 11 shows an example of the computation of SR using the MCMC.

Figure 11. Super-resolution using MCMC and the bilateral filter taken from [47]. Left:

One of the low resolution images. Right: Super-resolution of the text image using the

MCMC and the outlier-sensitive bilateral method.

Pickup [19] studies the different effects of the geometric and photometric

registration challenges related to super-resolution. Also, she proposed a model that finds

both the blur and the super-resolution image. This model is Bayesian based and leads to a

direct method of optimizing the super-resolution image pixel values, resulting in better

SR images. Furthermore, she introduces a texture-based prior for super-resolution using

MAP. Figures 12 and 13 show some results obtained with the method proposed by

Pickup [19].

18

Figure 12. Super-resolution algorithm proposed by Pickup [19]: Top: One of the 30

original low-resolution frames. Bottom: Every second input from the sequence, showing

a cropped region of interest.

19

Figure 13. Super-resolution algorithm proposed by Pickup [19]. Left column shows the

super-resolution images computed using a standard MAP approach, where the geometric

and photometric registration parameters are estimated and frozen before the high-

resolution pixel values are optimized. The right column shows the results using the

proposed MAP approach of [19], where both the pixels and registration values are found

simultaneously.

2.3 Image Mosaicking

Image mosaicking is the alignment (i.e., stitching) of multiple images into larger

compositions which represent portions of a 3D scene [31]. For the construction of the

mosaic, the camera needs to take different views by panning, tilting, or zooming. In order

to build the mosaic, it is necessary that images be warped, using computed

homographies, into a common coordinate frame, and combined to form a single image.

The basic steps to construct a mosaic are 1) registration, 2) reprojection, and 3) blending.

For registration, this finds the homography between consecutive frames, in the case of

digital video. To find the homography, it is necessary to find robust features that will

then be matched with the similar features in the next frame or images. Reprojection

warps all the frames to a simple coordinate system. To do that, it is necessary to choose a

20

frame as a reference frame. Blending consist of eliminating the vignetting parallax

effects. Figure 14 illustrates these three steps to create a mosaic.

Figure 14. Basic steps to construct a mosaic, taken from [31]. 1) Registration: consists of

finding the homography between consecutive frames. 2) Reprojection: consists of

warping all the frames into a common coordinate system. 3) Blending: consists of

eliminating parallax effects.

Irani et al. [48, 49, 50] reviews image mosaicking and its many applications:

video compression, video enhancement, and enhanced visualization, as well as other

applications in video indexing, search, and manipulation. Furthermore, she constructs

and analyzes two different types of mosaic: 1) static mosaic, where the input video is

usually segmented into contiguous scene subsequences, and the mosaic is constructed for

each scene subsequence; and 2) dynamic mosaic, where the mosaic captures the dynamic

21

changes in the scene. Figure 15 shows both static and dynamic mosaics taken from [48,

49, 50].

Peleg et al. [51,52] consider mosaics composed of strips extracted from the input

images. The strips are chosen such that the direction of optical flow is orthogonal to the

axis of the strip. By doing this, and with a suitable blending, it is possible to make

approximate mosaics for situations including camera translation. Figure 16 shows one

example of the mosaic using the method proposed by Peleg [51,52].

Kan and Szeliski [53] proposed constructing a mosaic composed of a hemisphere

of an image to represent the view in every direction at a particular point in the world.

They construct the mosaic at many points, and match the image features across the

mosaics to perform a wide-baseline 3D scene reconstruction. Szeliski [54] constructs

mosaic using 2D transformations and depth information. The intention is to use the

creation of the mosaic to recover a full 3D model, which has many applications including

3D model acquisition for inverse CAD, model acquisition for computer animation and

special effects, virtual reality, etc. Figure 17 shows an example of the construction of

mosaics based on depth information for virtual reality proposed by Kan and Szeliski

[53].

22

Figure 15. . Static and dynamic mosaicking taken from [48]. Top: Construction of the

static mosaic using the temporal median of a baseball game sequence. Bottom:

Construction of a dynamic mosaic of a baseball sequence.

23

Figure 16. Panoramic mosaic using manifold projection [51].

Figure 17. Depth recovery example taken from [54]. Table with a stack of papers (a) as

an input image taken by moving the camera up and over the scene. (b) The resulting

depth-map as intensity-coded range values. (c-d) show the original intensity image

texture mapped onto the surface. (e-f) show a set of grid-lines overlayed on the recovered

surface.

24

Brown and Lowe [55] proposed a method to construct mosaic panoramas without

the help of human input. They use SIFT (Scale Invariant Features Transform) to select

the features within the images that are then matched using the RANSAC algorithm. They

use a probabilistic model to verity the match. Bundle adjustment based on the Levenberg

Marquardt algorithm is then used eliminate the accumulation of errors. Finally, Multi-

band blending is used. Figure 18 shows one of the results of the mosaic construction

using the method proposed by Brown and Lowe [55].

Capel [31] proposed a novel algorithm for an efficient matching of features across

multiple views which are related by projective transformations. Also, he proposed a new

method to reduce the effect of the projective distortion for two and N-view cases. Figure

19 shows the pre-image point X , which generates interest points 21, xx , and
3x in three

different views. The distances 21,dd , and
3d are to be minimized with respect to the

homographies 21,HH , and
3H and the point X .

Figure 18. Final mosaic taken from [55]. This mosaic was constructed using 80 images

matched using SIFT (Scale Invariant Feature Transform), rendered in spherical

coordinates, and blended using the multi-band technique.

25

Figure 19. Solution to the problem of error accumulation proposed by Capel [31].

Figure 20 shows a comparison of the close-up views between the region of

interest (red box) and the real region extracted from a single frame in the sequence. It is

easy to see a clear mismatch between the first and the last frames in the sequence, caused

by the accumulation of error in the construction of the mosaic.

Figure 21 shows the result of the mosaic construction after refinement of the

homographies by bundle-adjustment using the Levenberg Marquardt algorithm. The

mismatch presented in Figure 20 has been removed.

26

Figure 20. Top: A mosaic image obtained from [31]. The outlier of every 5
th

 frame is

overlaid. Left: A close-up view of the region of interested (red box). Right: The

corresponding region extracted from a single frame.

27

Figure 21. Top: A mosaic image after refinement of the homography by bundle-

adjustment, obtained from [31]. Left: A close-up view of the region of interest (red box

of the Figure 20). Right: The corresponding region extracted from a single frame.

2.4 Conclusion

This section presented a summary of the most recent and important approaches

super-resolution reconstruction and image mosaicking. Scenarios for super-resolution

frequency-domain and spatial-domain reconstruction are. The spatial-domain methods

28

are the most appropriate for real UAS video frames, but they require great deal of

computational resources. Most of the spatial-domain approaches require the construction

of a sparse matrix to represent equation (2.2), so the problem is converted in the solution

of a non-linear sparse problem.

The motion estimation is a key component for super-resolution reconstruction and

image mosaicking. Most of the first approaches for super-resolution use direct methods

to find the motion vectors. These methods, like block matching, often fail at object edges

or are susceptible to parallax effects (optical flow). Conversely, feature-based methods

are: 1) invariant to a wide range of photometric and geometric transformations of the

image; 2) robustness to outliers, because by using RANSAC (Random Sampling

Algorithm and Consensus), the outliers are rejected and not taking into consideration to

find the homography. The advantage of direct methods over feature-based methods is

computational efficiency, because a carefully implementation of them has proved

successful in real-time tracking applications.

29

CHAPTER 3

STOCHASTIC AND DETERMINISTIC REGULARIZATION FOR SUPER-

RESOLUTION

3.1 Introduction

Mathematical background about regularization is presented in this chapter.

Section 3.2 explains the ill-posed and ill-conditioned inverse problems. Different

approaches for regularization are shown in Section 3.3.

There has been much research to solve linear ill-posed inverse problems stably,

especially the Fredholm integral equations of the first kind [43]. These equations can be

expressed as:

   ,),()(),(qRssfdttxtsh (3.1)

with)((.,.) 2  xLh . If),(tsh is translation invariant, then)(),(tshtsh  and (3.1)

becomes a convolution equation with kernel)(sh :

 (3.2)

 (3.3)

In this case, * denotes the convolution operator. Let)()(: 22  LLH be the linear

convolution operator xhHx * . Then H is a compact operator with the singular value

expansion,

 (3.4)




 dttxtshsf)()()(

)(*)(sxsh

,...,2,1,, *  juHuH jjjjjj 

30

where *H is the adjoint operator, j is a non-increasing sequence of positive singular

values jju , are the corresponding singular functions. Now, if we expand the right-hand

side, such that

 (3.5)

with (.,.) representing the inner product, the solution fHx 1 converges only if f

satisfies the Picard condition.

In practice, the right-hand side of f contains noise, (i.e., from the camera

sensors, for the case of super-resolution) and modeling errors. This problem is

considered an ill-conditioned inverse problem, since a small change in f can result in a

wild oscillation approximation to x

3.2 Ill-posed and Ill-conditioned Inverse Problems

According to Keller [58], an inverse problem is defined as: “We call two

problems inverses of one another if the formulation of each involves all or part of the

solution of the other. Often, for historical reasons, one of the two problems has been

studied extensively for some time, while the others have never been studied and not so

well understood. In such cases, the former is called a direct problem, while the latter is

the inverse problem. ”

Borman [7] provides a historical solution of the heat equation. The problem is,

given an initial temperature distribution at time
0tt  , determine the evolution of the

temperature profile for times
0tt  . Consider, however, the following: assume that the

temperature profile at time 0ttt f  is provided. The challenge is to determine the

original temperature profile at the earlier time 0tt  . This is the inverse problem of the

),,(, fuuf jjjj  

31

direct heat equation. It turns out, however, that while the direct problem is easily solved,

the inverse problem is not.

According to Hadamard’s requirements, solving the direct heat equation meets

all three requirements, so it is well-posed. But, for the case of inverse problem, that of

determining the initial temperature distribution given the final temperature distribution,

turns out to be highly problematic. The problems are intimately related to the

irrecoverable loss of information. This irrecoverable loss of information does not present

significant difficulties for the direct problem. In particular, the loss of information

implies that there exist a multiple of initial temperature distributions which could give

rise to an observed temperature distribution at time
0tt  . Therefore, since the inverse

problem fails to have a unique solution (Hadamard’s second requirement), it is an ill-

posed problem.

3.3 Regularization

Regularization is a term which refers to methods that utilize additional

information to compensate for the information loss in the ill-posed problems. This

additional information is typically referred as a priori or prior information, and adds

prior knowledge about the desired estimate to make the ill-posed problem well-posed.

Tikhonov [59] was the pioneer in introducing deterministic theory of regularized

solutions to ill-posed problems. Tikhonov regularization is a deterministic technique

which restricts the solution space, using a metric to distinguish between possible

solutions.

32

3.3.1 Tikhonov Regularization

In the Tikhonov approach, a family of approximate solutions to the inverse

problem is constructed, with the family of solutions controlled by a nonnegative real-

valued regularization parameter. Recall equation (2.2) from Chapter 2, which represents

the super-resolution problem. Equation (3.6) can be rewritten as (3.7), representing a

more general equation for all the images or frames:

kkk ηxHy  , for ,1 pk 

 (3.6)







































































pppy

y

η

η

x

H

H

.

.

.

.

.

.

.

.

.

111

 (3.6.a)

ηHxY 

 (3.7)

In order to obtain a reasonable estimate for x , we need to regularize that

equation. For noisy, over-determined systems we search for solutions to fit the noisy

data, such that

2

2

2

2min xYHx L
x


 (3.8)

where L is a regularization operator,  is related to the Lagrange multiplier, and

2| |.| | represents the Euclidean (L2) norm. The first term of (3.8) ensures that the

estimated solution has small residuals, and the second term ensures “well-behaved”

solutions.

 The Lagrange multiplier allows for a balance between the two requirements. If

 is too large, the regularized system is too far from the original equation. But, if it is

33

too small, the system behaves as an ill-conditioned problem. Figure 22 illustrates this

behavior of the Lagrange multiplier [63]. For the case of an under-regularized problem,

the solution is overwhelmed with noise and registration artifacts. But, for the case of an

over-regularized problem, the solution smooths out the final output. The matrix L can

also include prior knowledge of the problem, e.g., degree of smoothness [60].

Figure 22. The importance of the Lagrange multiplier in the regularization to solve super-

resolution [43].

Now, taking the derivatives of (3.8) and setting them to 0, we obtain

 (3.9)

A common assumption is that the images are primarily smooth. Tikhonov proposed a

generic stabilizer based on the m
th

 order Sobolev norm [61], which conveys the

assumption of function continuity. H is also called the linear compact injective operator

between Hilbert spaces U and F . The solution of x and data Y belongs to U and

F , respectively. In the context of low-level vision problems, the first-order Tikhonov

stabilizer is called a thin plate [62]. Both elements are “stretched” across the data, and

their minimum states provide the estimates.

YHHHx
TTT LL 1)()( 

34

3.3.2 Total Variation (TV) Regularization

Let L be a subset of
2R , and define Y as a real function over L . Also,

assuming that the high resolution images are those whose domain is  , we have

  ,
2

minargˆ 22

2
1 











 


k

N

k

k
x 


HxYxx

 (3.10)

where k is the variance of the white noise with zero mean, and k represents the

Lagrange multipliers for every low-resolution image.

The model expressed by (3.10) solves a more general problem of super-resolution

using the total variation (TV) norm as the regularizing function, allowing homogeneous

Newmann boundary conditions.

3.3.3 Cross-Validation (CV)

The idea of cross-validation (CV) to choose the Lagrange multiplier  from the

data is simple. To estimate  , the data is divided into two sets: one set is used to

construct an approximate solution based on  , and the other is used to measure the error

of that approximation [63]. For example, the validation error by using the j
th

 pixel value

as the validation set is

 .)()(
2

2
jjjj yhCV   x (3.11)

The optimal regularization parameter CV minimizes the total validation error:

 




K

j

CV CV

1

)(minarg   (3.12)

35

3.3.4 Generalized Cross-Validation (GCV)

 Generalized Cross-Validation (GCV) is simply CV applied to the original system

after it has undergone a unitary transformation. Also, it is known to be more robust to

outliers than CV [64]. For overdetermined systems, it has been shown that the

asymptotically optimum regularization parameter according to GCV is given by [65]:

 (3.13)

GCV is used for calculating regularization parameters for Tikhonov-regularized

overdetermined and underdetermined least squares problems [43].

3.3.5 Bilateral-TV

Based on the TV (Total Variation) criterion and the bilateral filter [65,66], the

bilateral TV is based on both of these methods and is found by

 , (3.14)

where the matrices (operators)
l
xS and

m
yS shift x by l and m pixels in the x and y

directions, respectively. The scalar  is a weight between 0 and 1. The parameter “P”

defines the size of the corresponding bilateral filter kernel [67].The BTV regularization

preserves edges and is less computationally expensive than Tikhonov regularization.

3.3.6 Huber Prior

The Huber function is used as a simple prior for image super-resolution, which

benefits from penalizing edges less severely than Gaussian image priors. The form of the

prior is

 , (3.15)

 

))((1

2

1

minarg 








IHH

YIHH







T

T

GCV
tr

1
0 0

)(
L

m

y

l

x

P

l

P

m

lm

BTV SS XXX 
 



,),(exp
1

)(
)(







 

 xDg

gv
Z

xp 

36

where D is a set of gradient estimates, given by  xD [19]. The parameter v is a prior

strength somewhat similar to a variance term, Z is the normalization constant, and  is

a parameter of the Huber function specifying the gradient value at which the penalty

switches from being quadratic to linear:

 (3.16)

Figure 23 shows different Huber functions and their corresponding distributions, note that

the value of  determines the behavior of the Huber function, and controls the overall

shape of the edge-preserving function. v controls the behavior of distributions:

 (3.17)

By integrating (3.16) Z can be expressed as

 . (3.18)

One important feature of why Huber prior is one of the most prior used is because

makes the problem convex, therefore most of the optimization algorithms can converge

to a local minima.










otherwisex

xifx
g

,2

,
),(

2

2






 ),(exp
1

)( xv
Z

xp 

  }{2exp
1 2

1

2 verf
v

v
v

Z 















37

Figure 23. Huber function and corresponding distributions [19]. Top: Several functions

corresponding to a set of logarithmically-spaced values. Bottom: Three sets for v = 1,
v = 10, and v = 100, each of them using the set of Huber functions.

3.3.7 Spatially Adaptive Prior

The objects in most images have edges with coherently varying pixel intensities.

The pixel-scale intensity differences alone are not sufficient to characterize objects of

multiple scales. Thus, continuous texture information within a larger scale should be used

to discriminate information from singularities or noise. This is the basis of the Spatial

Adaptive (SA) prior model. SA uses a large nonlocal neighborhood N to incorporate

geometrical configuration information [68]. The SA prior can be formalized as follows:

 (3.18)
)/)(()()(2

rj

j Nb

bj

j

jSA NfjfbwfUfU
j

 


38



 


.,0

,1

otherwise

disif
w

bj
bj


 (3.19)

 (3.20)

 (3.21)

 (3.22)

In this case, SAU is the energy function for the SA prior, bjw represents the classification

of the neighbor pixels in the search neighborhood jN , rjN is the number of neighbor

pixels with nonzero bjw in the neighborhood jN , and  is the threshold parameter.

The value of the distance bjdis is determined by a distance measurement between the two

translated neighborhoods bn and jn , respectively.

3.4 Conclusions

The problem of super-resolution has the form of the Fredholm integral equation of

the first kind. This chapter explains why super-resolution is an inverse ill-posed problem

and presents the different regularization techniques to solve it. The reason why Huber

prior is preferred in super-resolution reconstruction is also explained.

2
2

)()()(
jb nl

l

nlEjbj fffnfndis   

 blb nlffn  :)(

 
jlj nlffn  :)(

39

CHAPTER 4

MOSAICKING AND GEO-REFERENCING

4.1 Introduction

This chapter describes in detail the process of constructing of a video dynamic

mosaic and also its geo-referencing from image coordinates to world coordinates. Section

4.2 explains the construction of the image mosaic based on the computation of the

homography between consecutive images. This homography is computed using SIFT,

because of its robustness. Examples using real data from frames obtained in flight tests of

the Unmanned Aircraft Systems Engineering (UASE) Laboratory at the University of

North Dakota are shown. Section 4.3 explains the construction of a video mosaic using

MPEG video, and results using real data are shown. Finally, Section 4.4 explains the

construction of a geo-referenced mosaic based on the Unscented Kalman Filter (UKF).

4.2 Image Mosaicking

There are three general steps for the construction of an image mosaic: (1)

registration, (2) reprojection, and (3) blending. In the following sections these steps are

described in more detail. Image mosaicking is the alignment of multiple images into a

larger composition which represents portions of a 3D scene [31]. The mosaic method

used in this dissertation is concerned with images that can be registered by a planar

homography: views of a planar scene from a camera that has a rotation and a translation.

40

4.2.1 Registration

Registration is a fundamental task in digital video processing, especially for

mosaicking and super-resolution, where we need sub-pixel accuracy. The need to register

images has arisen in many practical problems: (1) integrating information taken from

different sensors, (2) finding changes in images taken at different times and/or in

different conditions, (3) inferring 3D information from images, and (4) object and target

recognition. Registration methods can be viewed as different combinations of choices for

the following four components: (a) a feature space, (b) a search space, (c) a search

strategy, and (d) similarity metric.

The feature space use a sparse set of corresponding image features (e.g., points,

or lines) to estimate the image-to-image mapping. The search space is the class of

transformations that are capable of aligning the images. The search strategy decides how

to choose the next transformation from this space, which will be tested in the search for

the optimal transformation. The similarity metric determines the relative merit for each

test.

This dissertation uses feature-based registration and planar homography, which is

the mapping that arises in the perspective image of planes. There are two important

situations where the image-to-image mapping is exactly captured by a planar

homography: images of a plane viewed by a camera rotating about its optic center and/or

zooming, which is the typical case for UAS surveillance imaging. These two situations

are illustrated in Figures 24 and 25. Furthermore, the homography is appropriate for this

dissertation due to a camera viewing a distant scene, such as is the case for UAS

41

surveillance imaging. For all cases, it is assumed that the images are obtained by a

perspective pin-hole camera.

A point is represented by homogeneous coordinates, so that point  yx, is

represented as  1,, yx . However, the point  321 ,, xxx in homogeneous coordinates

corresponds to the inhomogeneous point  3231 /,/ xxxx . Under a planar homography

(called also plane projective, collineation, or projectivity), those points are mapped as

[69]:


















































3

2

1

333231

232221

131211

'

3

'

2

'

1

x

x

x

hhh

hhh

hhh

x

x

x

 (4.1)

Hxx' (4.2)

The matrix H is called homogeneous, because this matrix can be multiplied by a factor

(scale) without altering the projective transformation. There are eight independent ratios

among the nine elements of H .

There are many methods to find the homography, which are grouped in two ways:

(1) direct correlation methods and (2) feature-based methods. As was mentioned before,

this dissertation will use feature-based methods to find the registration parameters.

42

Figure 24. Images of planes. There is a planar homography between two images of a

plane taken from different viewpoints, related by a rotation R and translation t . The

scene point X is projected to point x and x' in image 1 and image 2, respectively.

These points are related by xx H' .

Figure 25. Rotation about the camera axis. As the camera is rotated, the points of

intersection of the rays with the image plane are related by a planar homography. Image

points x and x' correspond to the same scene point X . Points are related by xx H' .

43

4.2.2 SIFT and RANSAC to Estimate the Homography

There are many ways to find the features within an image, but according to [92]

SIFT (Scale-Invariant Feature Transform) features are robust to photometric and

geometric changes within two consecutive frames. Figure 27 shows different evaluations

for feature descriptors: changes of viewpoint, scale changes combined with image

rotation, image rotation only, image blur, JPEG compression, and illumination changes.

SIFT descriptors are computed for normalized image patches. A descriptor is a

3D histogram of gradient location and orientation. The location is quantized into a 4x4

location grid, and the gradient angle is quantized into eight orientations. The resulting

descriptor is of dimension 128. Figure 26 illustrates this approach.

Each orientation plane represents the gradient magnitude corresponding to a given

orientation. In order to obtain illumination invariance, the descriptor is normalized by the

square root of the sum of squared components.

(1) (2) (3) (4) (5)

Figure 26. SIFT descriptor: (1) detected region, (2) gradient image and location grid, (3)

dimensions of the histogram, (4) shows four of eight orientation planes, and (5) Cartesian

and log-polar location grids.

The SIFT corner detector consists of the following four steps [62]:

44

1. Scale-space extreme detection: The scale-space extreme are the

maximum and minimum of the difference-of-Gaussian images. They are

potential distinctive features, detected by comparing a pixel with its 26

neighboring pixels in the current and adjacent scales.

2. Key point localization: The key points are selected through a second-

order Taylor series expansion. Given the difference-of-Gaussian

),,(yxD , its Taylor expansion is given as

xxxx
2

2

2

1
)0()(

x

D

x

D
DD

T
T

T









 (4.4)

 In the extreme position, we have , and for x as

xx

x



















DD
1

2

2

ˆ . (4.5)

3. Orientation assignment: One or more orientations are assigned to each

key point location by selecting the peaks of the smoothed histogram of

local gradients.

4. Key point descriptor: There are eight bins for a 4 x 4 gradient window

around each key point. Thus, each key point can be described as a 128-

dimensional vector.

Mikolajczyk et al. [73] compared different descriptors under different tests. The

conclusion of their research was that SIFT is the best feature descriptor at the moment.

Figure 27 shows the results of some tests taken from [73].

0
)(






x

xD

45

(a) (b)

(c) (d)

(e) (f)

Figure 27. Evaluation of features descriptors for structured scene [73]: (a) viewpoint

changes 40
o
-60

o
. (b) Scale changes of a factor 2-2.5 combined with image rotation of 30

o

– 45
o
, (c) image rotation of 30

o
 – 45

o
, (d) image blur, (e) JPEG compression, and (f)

illumination changes.

SIFT features are located at scale-space maxima/minima of the difference of

Gaussian function, which gives a similarity-invariant frame. This allows edges to shift

46

slightly without altering the descriptor of the vector, giving robustness to affine changes.

After extracting the features of the first two frames, it is necessary to extract the first set

of matching features between them. The next section describes this process. Obviously

for video mosaicking, the SIFT features are computed for every frame.

Figure 28 shows the SIFT features for five different frames taken from an infrared

(IR) camera during flight tests 2007 by the UASE Laboratory at the University of North

Dakota. The numbers of SIFT features for these frames are, in the order that they appear:

frame 1: 228, frame 2: 293, frame 3: 361, frame 4: 387, and frame 5: 387.

4.2.3 Image Feature Matching and Homography Estimation

Once the SIFT features have been found within the input images, the next step is

to find the matching features between consecutive frames. Given a set of features in one

frame, we find the matching features in the other frame by finding the image’s

approximate k nearest neighbors in a kd tree using Best Bin First Search [85].

We use the full homography because is more accurate than the affine and

Euclidean homography [64]. RANSAC (random sample consensus) [63] is used to find

the homography, because of its robustness and minimal set of randomly sampled

correspondences to estimate image transformation parameters. A solution is computed

that has the best consensus with the data. Four correspondences is the minimum number

necessary between two frames to instantiate the model defined by least-squares to find

the planar homography H . We repeat this N times until we obtain an error less than 0.01

pixels.

47

Figure 28. Sequence of five consecutive IR (infrared frames) taken in 2007 by the UASE

Laboratory team at the University of North Dakota. Each frame contains 240x320 pixels.

The first row of images shows the five frames, and the second row shows the

corresponding SIFT features for every frame.

Figure 29. Results of the matching step. From left-to-right: (a) 153 matches between

frame 1 and frame 2, (b) 187 matches between frame 2 and frame 3, (c) 206 matches

between frame 3 and frame 4, and (d) 229 matches between frame 4 and frame 5.

Figure 29 shows the feature matches for the frames in Figure 28. There are 153

matches between frame 1 and frame 2, 187 matches between frame 2 and frame 3, 206

matches between frame 3 and frame 4, and 229 matches between frame 4 and frame 5.

Table 1 shows the algorithm for the estimation of the homography between two images

using RANSAC consensus and SIFT features.

(a)

(b)

(c)

(d)

48

4.2.4 Reprojection

Each time that a new frame is gathered by the surveillance camera of the UAS,

the homography that relates it with the previous one is computed. The position of the

frame in mosaic coordinates is computed by multiplying the current homography with all

the previous homographies until the reference frame is reached. Equation (4.6) shows

how to compute the homography between frame j and frame i:

(4.6)

We use this homography to start the construction of the mosaic. The mosaic is expressed

in rectangular coordinates (x and y), because the use of cylindrical coordinates suffers

from singularities at the poles [71].

Figure 30 shows the reprojection of the frames shown in Figure 28. The

reprojection was shifted ten pixels in the x -direction and 63 pixels in the y -direction to

have a complete view of the mosaic construction. The homographies for this reprojection

were computed based on (4.6). Figure 31 shows the creation of the mosaic based on the

reprojection of the frames in Figure 28. The last column of this figure shows the final

mosaic.





i

jk

kkji

1

)1(
ˆ HH

49

Table 1. Estimation of the homography between two images using RANSAC and SIFT.

Objective: Compute the 2D homography between two video frames.

Algorithm:

1. Features: Compute interest point features in each image to subpixel

accuracy using SIFT features.

2. Putative correspondences: Compute a set of interest point matches based

on k nearest neighbors in a kd-tree using Best Bin First Search.

3. RANSAC robust estimation: Repeat for N samples:

a) Select a random sample of four correspondences and compute the

homography H.

b) Compute the geometric image distance error for each putative

correspondence.

c) Compute the number of inliers consistent with H by the number of

correspondences for which the distance error is less than a threshold.

Choose the H with the largest number of inliers.

4. Optimal estimation: Re-estimate H from all correspondences classified as

inliers, by minimizing the ML cost function using least squares.

5. Guided matching: Further interest point correspondences are now

determined using the estimated H to define a search region about the

transferred point position.

The last two steps can be iterated until the number of correspondences is stable.

50

Figure 30. Results of the reprojection step, choosing frame 1 as the reference frame. The

size of the mosaic is 360x360 pixels, and all the frames were offset 10 pixels in the x-

direction and 63 pixels y-direction The first row shows the reprojection of frame 1 and

frame 2, the second row shows the reprojection of the frames 3 and frame 4, and finally

the third row shows the reprojection of frame 5.

51

Figure 31. Reprojection in a common rectangular coordinate systems (CRCS). The first

row shows the reprojection in the CRCS of frame 1 and frame 2, the second row shows

the reprojection in the CRCS for frame 3 and frame 4, and the third row shows the

reprojection in the CRCS for frame 5.

52

4.2.5 Blending

In the ideal case, every frame will have the same intensity level for the same

image position in the mosaic. However, because of parallax effects, vignetting, mis-

registration errors, radial distortion, and so on, there is always difference in intensity

between the overlapping frames that form the mosaic. Therefore, there are image edges

which are still visible.

In order to solve this problem, we use multi-band blending [75]. This algorithm

needs the construction of masks where the frame is going to be blended. For the

construction of the mask, it is necessary to first construct the weight function

)()(),(ywxwyxW  , where)(xw and)(yw vary linearly from 1 at the center of the

image to 0 at the edge of the image [76],)(xw is for the width, and)(yw is for the

height of the image. The weight functions have to be warped into the mosaic coordinates

),(yxW i

H .

The mask that is used in the blending is found using the weight functions for

every frame. The values of the mask will be defined by which corresponding weight

function has the largest value in the mosaic coordinates:



 


.

),,(maxarg),(

,0

,1
),(max

yxWyxW

otherwise

if
yxW

j

Hj

i

Hi
 (4.7)

Figure 32 shows the weight functions for two different frames (frame 1 and frame 2 from

Figure 28) and their respective masks. Figures 32-b and 32-e are the weight functions for

frame 1 and frame 2, respectively. Figures 32-c and 32-f are the respective masks for

frame 1 and frame 2. Note that the weight function decreases linearly in both axes (x and

y); also, the final mask has only two values (0 or 1).

53

The masks shown in Figures 32 (c) and 32 (f) are used in the multi-band blending

algorithm [75]. Basically, it is necessary to construct two pyramids: Gaussian and

Laplacian. The Gaussian pyramid is constructed with a sequence of lowpass filtered

images. The lowest row, 0G , is the original image. The value of each node in the next

level, lG , is computed as a weighted average of a 5x5 array of 0G nodes, the same for

2G , and so on. The sample distance is doubled with each iteration, so that successive

arrays are half as large in dimension as their predecessors.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 32. Creating the mask for multi-band blending. (a) and (b) show frame 1 and

frame 2, respectively. (b) and (e) are the corresponding weight functions, and (c) and (f)

are the masks that will be used in the multi-band blending.

The Gaussain pyramid is computed as

,)2,2(),(),(
5

1,

1


 
nm

ll njmiGnmwjiG (4.8)

54

where),(nmw is a pattern of weights used to generate each pyramid level from its

predecessors.

The Laplacian pyramid is constructed by subtracting each level of the Gaussian

pyramid from the next lowest level. Since these arrays differ in sample density, it is

necessary to interpolate new samples between those of a give array before it is subtracted

from the next lowest arrays. The Laplacian pyramid is computed as









2

1,

1,,)
2

2
,

2

2
(4),(

nm

klkl

njmi
GjiG (4.9)

1,1 lll GGL (4.10)

For the N
th

 level,
NN GL  since there is no higher level array to subtract from NG Table

2 shows the algorithm for multiband-blending. Finally, Table 3 shows the complete

algorithm to construct a mosaic for N input images.

55

Table 2. Algorithm to compute the multi-band blending of two images given a region R.

Objective: Blend two images using multi-band blending.

Algorithm:

1. Build the Gaussian pyramids GA and GB for images A and B.

2. Build the Laplacian pyramids LA and LB for images A and B.

3. Build the Gaussian pyramid GR for region R.

4. Form the blending pyramid LS from LA and LB using nodes of GR as

weights:

),()),(1(),(),(),(jiLBjiGRjiLAjiGRjiLS lllll 

5. Obtain the blended image S by expanding and summing the levels of the

pyramid LS.

Figure 33. Results of the multi-band blending algorithm. (a) Mosaic without blending and

(b) mosaic blended using the multi-band blending algorithm.

(a)

(b)

56

Table 3. Algorithm to construct a mosaic given N input images.

Objective: Construct a mosaic image from N input images.

Algorithm:

1. Compute the SIFT features for all N input images.

2. Compute the homography Hij between consecutive images; i.e., between

images 1 and 2.

3. Choose an image as a reference image, normally the first image.

4. Reproject all the remaining images to the common coordinate system.

5. Blend the resulting mosaic to eliminate the parallax effect.

57

4.3 Video Mosaicking

This section expands the idea of image mosaicking to video mosaicking. The

creation of a video mosaic follows the same steps, but there are some additional

important considerations. One of these considerations involves MPEG video, commonly

used in UAS surveillance systems. In the MPEG format, there are three different kinds of

frames: I frames, B frames, and P frames [77]. The I-frame, also called the Intra picture is

coded separately by itself. The B frame, also called the Bidirectionally Predictive picture,

is coded with respect to the immediate next I- or P- frame. The P frame also called

Predictive picture, is coded with respect to the immediately previous I- or P-frame.

Figure 34. Example of MPEG Group of Pictures (GOP), I-frame, B-frame and P-frame.

MPEG encodes the video in a stream, The basic unit of the stream is a group of

pictures (GOP), made up of I-frames, B-frames, and P-frames. The I-frames are coded

using essentially JPEG compression, meaning that the information storage is complete

enough to decode the frame without reference to any adjacent frames. B-frames and P-

frames must be reconstructed by referring to the I-frame. Normally, there is only one I-

frame per GOP (see Figure 34). Figures 35 and 36 show two different examples of video

58

mosaicking. Figure 35 shows the video mosaic constructed from an IR video captured in

2007 by the UASE Laboratory team at the University of North Dakota. Every frame has

240x320 pixels. Figure 36 shows a video mosaic constructed from a demonstration video

of MATLAB/Simulink. The implementation of the algorithm shown in Table 4 uses

OpenCV for most of the video and image processing, and FFMPEG to select the I-frame

of the input video.

Figure 35. Infrared (IR) video mosaicking for 5.120 seconds at 25 frames per second

captured in 2007 by the UASE Laboratory team at the University of North Dakota.

59

Figure 36. Video mosaicking for 4 seconds at 15 frames per second taken from the video

mosaicking demonstration in MATLAB/Simulink.

Table 4. Algorithm to construct a video mosaic given an input MPEG video

sequence.

Objective: Construct a video mosaic from an MPEG video sequence.

Algorithm:

1. Read the information of the video file (duration, frames per second, size of

the frames, codec type, etc.)

2. Read the video frame-by-frame and do the following:

a) Select the I-frames.

b) Select the first frame as a reference frame.

c) Compute the SIFT features for every frame and save them into

memory.

d) Compute the homography for two consecutive frames.

e) Reproject the frame into a common coordinate system.

60

4.4 Geo-referenced Mosaic

In this section, the construction of a geo-referenced mosaic is explained. The first

part covers the mathematical transformations to consider in the algorithms described in

the next section. Section 4.4.2 explains the use of the Unscented Kalman Filter to geo-

reference a mosaic in world coordinates.

4.4.1 The Geometry of Geo-location

The coordinate frames associated with the geo-referenced mosaic of UAS

surveillance video include the inertial frame, the vehicle frame, the body frame, the

gimbal frame, and the camera frame. The inertial frame, denoted by),,(III ZYX , which

is a fixed frame with IX directed to North, IY directed to East and, IZ directed towards

the center of the Earth. The vehicle frame is denoted by),,(vvv ZYX , is oriented

identically to the initial frame, but its origin is at the vehicle center of mass. The body

frame is denoted by),,(bbb ZYX , which is also centered at the center of mass of the UAS.

bX points through the nose of the UAS, bY points through the right wing, and bZ points

out the belly (see Figures 37 and 38). The gimbal frame is represented by),,(ggg ZYX ,

and its originates at the gimbal rotation center and is oriented so that gX points along the

optical axis, gY points in the image plane and gZ points down in the image plane. The

camera is denoted by),,(ccc ZYX , and it originates at the optical center of the camera,

with cX pointing up in the image, cY pointing right in the image plane, and cZ directed

along the optical axis.

In order to use these different frames, it is necessary to construct transformation

matrices. The homogeneous transformation matrix from frame i to frame j is given by

61













 


10

j

i

j

ij

i

dR
T , (4.11)

where 30  is a row vector, and j

id is the resolved j
th

coordinate frame. The inverse

transformation is given by














 

10

1
j

i

Tj

i

Tj

ij

i

i

j

dRR
TT (4.12)

Figure 37. Top view of the coordinate frames. The inertial and vehicle (UAS) frames are

aligned with the world, the body is aligned with the airframe, and the gimbal and camera

frames are aligned with the camera.

62

Figure 38. Lateral view of the coordinate frames.

Table 5. Homogeneous transformation matrices between frames.

Transformation Description

v

IT Inertial to UAS frame vehicle

b

vT UAS vehicle to UAS body frame

g

bT

UAS body frame to Gimbal frame

c

gT

Gimbal to Camera frame

63

Transformation from the Inertial to the Vehicle (UAS) Frame

The transformation from the inertial to the vehicle frame is given by

,
10 












 


v
Iv

I

dI
T (4.13)

where

.




















UAS

UAS

UAS

v
I

h

y

x

d (4.14)

In this expression, .UASx and .UASy represent the North and East locations of the UAS as

measured by the GPS sensor, and hUAS represents the altitude as measured by a relevant

sensor, all data are provided by the TASE gimbal [93].

Transformation from the vehicle to the body frame

The transformation from the vehicle to the UAS body frame, b

vT , consists of a

rotation based on measurements of the Euler angles by the INS,
















10

0b

vb

v

R
T (4.15)

where































cccssscsscsc

csccssssccss

ssccc

Rb

v . (4.16)

 Here,  ,  , and 

represent the UAS roll, pitch, and heading angles in radians. Also,

 cosc and  sins . All these angles are gathered by TASE gimbal.

64

Transformation from UAS body frame to the gimbal frame

The transformation from the body of the UAS to the gimbal frame, g

bT depends

on the location of the UAS center of mass with respect to the gimbal’s rotation center,

denoted by the vector g

bd . g

bT also depends on the rotation that aligns the gimbal’s

coordinate frame with the UAS’s body frame. This rotation is denoted as g

bR and

requires measurements of the camera’s azimuth and elevation angles,








 


10

g

b

g

bg

b

dR
T (4.17)

where

azel zy

g

b
RRR

 ,,






















elazelazel

azel

elazelazel

csscs

cs

ssccc

0 (4.18)

Here, az denotes the azimuth angle of rotation about gZ and el the elevation angle

of rotation about gY , after az . This information is also provided by the TASE gimbal.

Transformation from the gimbal to the camera frame

The transformation from the gimbal to the camera reference, c

gT , depends on the

vector c

gd , which describes the location of the gimbal’s rotation center relative to the

camera’s optical center, and is resolved in the camera’s coordinate frame. c

gT depends

also on a fixed rotation c

gR , which aligns the camera’s coordinates to the gimbal

coordinates. This transformation is given by

65

,
10 












 


c
g

c
gc

g

dR
T (4.19)

where















 



001

010

100
c

gR . (4.20)

4.4.2 Data fusion between GPS/IMU and Video

The data fusion of the GPS/IMU and video data from the UAS improves the

accuracy of its pose estimation. There are many ways to do this, most commonly via the

Kalman Filter [78]. This section presents an Unscented Kalman Filter (UKF) based on

[79, 80, 81]. The advantage to using UKF is because of its ability to combine data with

varying uncertainty in highly non-linear systems. The state of the UKF is a 12x1 vector

representing the two most recent poses of the UAS. The state is initialized as

 Tyyx 100 , , (4.21)

 where ty represents the pose of the UAS at time t. This pose includes three parameters

for the location of the UAS,)ˆ,ˆ,ˆ(zyx , and three parameters for the attitude,),,( .

The reason behind this is because it is necessary to keep two pose estimates to extract

information about camera motion.

 Whenever a new pose estimate is received from the GPS/IMU (TASE gimbal

telemetry information), the state of the UKF is updated to contain the most recent pose

measurement, and the previous refined estimate,

 Tttt yyx 1

' ,  , (4.22)

66

By keeping a refined pose estimate in the state of the UKF, the pose estimates becomes

more accurate over time. Corresponding steps are taken with the covariance matrix

associated with the state of the UKF.

In order to generate refined pose estimates, it is necessary to (1) define the state-

measurement function, and (2) implement the measurement update step of the UKF.

State-measurement function

The displacement of the camera from one point to another is related to the

homography, as was shown in Section 4.1.1.2. Furthermore, the homography can be

expressed as

1

12)
1

(


 KTN
d

RKH T
, (4.23)

where R is the rotation of camera 1 to camera 2, and T is the translation (see Figure 4.16)

from camera 1 to camera 2 [79, 80]. Because the gimbal has only one camera, K1 = K2 =

K , and thus

1)
1

( KTN
d

RKH T
. (4.24)

For the state vector  Tttt yyx 1

' ,  in the UKF, two rotation matrices

 
1

,
tt wcwc RR can be obtained from the world frame (inertial frame as in Section 4.3.1) to

the coordinate frame of the camera at time t and t+1. In the same way, two translation

vectors for the cameras in world coordinates (inertial frame) can be derived.

67

Figure 39. Rotation R and translation T from the camera. This rotation and translation are

related by H. x1, and x2, and they are both representations of the real world point p in

camera coordinates.

The rotation R and translation T can be computed using the rotations of point 1

and point 2 as:

T

wcwc RRR 12 (4.25)

)(212 wcwcwc TTRT  (4.26)

To obtain N, the normal of the plane in world (inertial frame) coordinates, Nw must be

rotated into camera 1 coordinates,

wwc NRN 1 . (4.27)

Since it is assumed that the world is perfectly flat, Nw = [0,0,1], and

1

1212)(
1 









 KRNTT

d
IKRH T

wc

T

w

w

wc

w

wcwc . (4.28)

Then, it is necessary to normalize (4.28) as

3,3h

H
H  . (4.29)

68

Measurement Update

The measurement update of the UKF uses the current state, the current

homography measurement, and their associated covariance matrices to estimate a more

accurate current state. To do this, it is necessary to transform the state-covariance matrix

into the measurement space. UKF achieves this transformation by sampling the

distributions of the state variables to come up with a number of sample states. Table 6

shows the algorithm using UKF to compute a more accurate pose estimation using GPS,

IMU, and video frames from a UAS. Equation (4.31) requires the computation of hP ,

which is the covariance of the homography. In order to do this, it is necessary to first

compute first the homography following the steps of the algorithm shown in Table 1.

Table 6. Algorithm for the pose estimation based on fusion of the GPS/IMU information

and video frames using UKF.

 Objective: Update the measurement by using UKF to estimate the pose of the UAS.

Algorithm:

1. Create the augmented state vector:

 Ttt

a vyy ,,'

1x (4.30)

2. Create an augmented covariance matrix from the covariance





















h

t

t

a

P

P

P

P

00

00

001

 (4.31)

Continued…

69

3. Construct the set of sample points i :

ax
0



 
i

aa

i
PkLx)(

 (4.32)

 
i

aa

i
PkLx)(

Here,
aPkL)( is the i

th
column of the matrix square root of

aPkL)( . The value of k is set such that L+k = 3 [78].

4. Transform the sample points with the state-measurement transformation:

)(
ii

 

 (4.33)

5. Find the mean of the sample homographies:

.ˆ
2

0





L

i

iiW h

 (4.34)

6. Compute the covariance from the weighted outer product of the transformed

points

  



L

i

T

iiihh WP
2

0

ˆˆ hh  (4.35)

7. Compute the state-measurement cross-correlation from the weighted outer

product of both sets of points:

  



L

i

T

iiixh WP
2

0

ĥx  (4.36)

8. Compute the Kalman gain

1
 hhxh PPK

 (4.37)

Continued …

70

9. Update the pose estimates

)ˆ(ˆ hhxx  K

 (4.38)

10. Update the state covariance

T

hhxxxx KKPPP 

 (4.39)

From the estimation of the homography, we obtain a set of inlier SIFT features.

Using these inliers. we can compute the standard deviation of this residual error,  , by

n

n

i

ii




 1

2
'

H

 , (4.40)

where n is the number of inlier SIFT features. Using  , we can compute the covariance

matrix, P

, representing the uncertainty in all features in both x and y locations in the

image:

I
2

2
P

 (4.41)

Due the non-linearity of the transformation from point correspondences to a

homography matrix, it is necessary to use UKF. In order to do that, a set of sample point

correspondences is created, transforming them into homography matrices and computing

the covariance of the resulting matrices.

A set of 14 n sample points i are created as follows:

'0 

 PkLi)(' 

 (4.42)

 PkLi)(' 

71

Here, L = 2n, k = 3 – L, and  ''

1

' ... n .

A homography is computed for each sample i by computing the sample point

with the feature points  ''

1

' ... n using the algorithm shown in Table 1, creating

14 n vectorized homography matrices, i . Each homography is then normalized using

equation (4.29). The covariance of the homographies is computed as

   ,
2

1
0

2

1

0

T

i

n

i

ih
n

P   


 (4.43)

Figure 40 shows an example of geo-referenced mosaic taken from [80], and

Figure 41 shows geo-referenced images taken from a color (red, green) and near infrared

(false color composite) camera, along with GPS and IMU data.

Figure 40. Example of geo-referenced mosaic taken from [80] .

72

Figure 41. Example of geo-referenced images using images from a color (red, green) and

near infrared (false color composite) camera along with GPS and IMU information.

(Photo: Courtesy of David Dvorak) .

73

CHAPTER 5

SUPER-RESOLUTION MOSAICKING USING STEEPEST DESCENT, CONJUGATE

GRADIENT, AND LEVENBERG MARQUARDT OPTIMIZATION

5.1 Introduction

In this chapter, different optimization algorithms are used to compute the super-

resolution mosaic. The optimization algorithms used are: 1) steepest descent (SD) 2)

conjugate gradient (CG), and 3) Levenberg Marquardt (LM). The use of the Levenberg

Marquardt algorithm is a novel optimization method for super-resolution. Furthermore,

super-resolution mosaicking can be represented as a large sparse linear system, but we

present a different framework for solving this system efficiently using spatial-domain

operations.

Super-resolution mosaicking combines both methods, and it has a number of

applications when UAS or satellite surveillance video is enhanced. One clear application

is the surveillance of certain areas even during night with the use of an uncooled infrared

(IR) imaging system. The UAS can fly over areas of interest and generate super-resolved

mosaics that can be analyzed at the ground control station. Other important applications

involve the supervision of high voltage transmission lines, oil pipes, and the highway

system. NASA also uses super-resolution mosaics to study the surface of Mars, the

moon, and other planets.

Super-resolution mosaicking has been studied by many researchers. Zomet and

Peleg [85] used the overlapping area within a sequence of video frames to create a super-

resolved mosaic. In this method, the SR reconstruction technique proposed in [24] is

74

applied to a strip rather than a entire image. This means that the resolution of each strip is

enhanced by the use of all the frames that contain that particular strip. The disadvantage

is that this method is computationally expensive. Ready and Taylor [91] use a Kalman

filter to compute the super-resolved mosaic. They add unobserved data to the mosaic

using Dellaert’s method [86, 91]. Basically, they construct a matrix that relates the

observed pixels to estimated mixel values. This matrix is constructed using the

homography matrix and the point spread function (PSF). The problem is that this matrix

is extremely large, so they use a Kalman filter and diagonalization of the covariance

matrix to reduce the amount of storage and computation required. The drawback of this

algorithm is the use of the large matrix, and the best results with synthetic data obtain a

peak signal-to-noise ratio (PSNR) of 31.6 dB. Simolic and Wiegand [87] use a method

based on image warping. In this method, each pixel of each frame is mapped onto the SR

mosaic, and its gray level value is assigned to the corresponding pixel in the SR mosaic

within a range of ± 0.2 pixel units. The drawback of this method is that it requires highly

accurate motion vectors and homography estimates, which is difficult when dealing with

real surveillance video from UAS. Wang, Fevig, and Schultz [94] use the overlapped area

within five consecutive frames from a video sequence. Then they use sparse matrices to

model the relationship between the LR and SR frames, which is solved using maximum a

posteriori estimation. To deal with the ill-posed problem of the super-resolution model,

they use hybrid regularization. The drawback of this method is that it has to be used

every five frames, which means that for every five frames, several sparse matrices have

to be constructed. Therefore, this method does not seem to be appropriate to deal with a

real video sequence which has thousand of frames. Pickering and Ye [83] proposed an

75

interesting model for mosaicking and super-resolution of video sequences using the

Laplacian operator to find the regularization factor. The problem with the use of the

Laplacian factor is that it forces spatial smoothness. Therefore, edge pixels are removed

in the regularization process, eliminating sharp edges [83]. Arican and Frossard [95] use

the Levenberg Marquardt algorithm to compute the SR of onmidirectional images. Chung

[96] proposed different Gauss Newton methods to compute the SR of images, the

disadvantage is that this optimization technique works only for small images.

In this chapter, different algorithms to compute super-resolution mosaics are

presented, and compared to one another. The advantages of these proposed algorithms are

that they do not need the creation of huge sparse matrices, and they are fast, adaptive and

robust. Therefore, it is feasible to apply the algorithms to a relatively large image

sequences to obtain a video mosaics. Also, we use Huber regularization, which preserves

high frequency pixels so sharp edges are preserved.

5.2 Observation Model

Assuming that there are K frames of LR images available, the observation model

can be represented as

. (5.1)

Here , ky (k =1,2, …, K), x , and kη represent the k
th

 LR image, the part of the real

world depicted by the super-resolution mosaic, and the additive noise, respectively. The

observation model in (5.1) introduces k][xR , which represents the reconstruction of the

k
th

 warped SR image from the original high-resolution data x [83]. The geometric warp

operator and the blur matrix between x and the k
th

 LR image, ky are represented by kW

and kB , respectively. The decimation operator is denoted by D .

kkkkkkk ηxHηR[x]WDBy 

76

5.3 Robust Super-resolution Mosaicking

The estimation of the unknown SR mosaic image is not only based on the

observed LR images, but also on many assumptions such as the blurring process and

additive noise. The motion model is computed as a projective model using the

homography between frames; the blur is considered only optical. The additive noise, kη ,

is considered to be independent and identically distributed white Gaussian noise.

Therefore, the problem of finding the maximum likelihood estimate of the SR mosaic

image x̂ can be formulated as













 


2

21

][minargˆ
K

k

kkkk xRWDByx x . (5.2)

In this case,
2

denotes the Euclidean norm. As the SR reconstruction is an ill-posed

inverse problem, we need to add another term for regularization, which must contain

prior information for the SR mosaicking. This regularization term helps to convert the ill-

posed problem into a well-posed problem. We use Huber regularization, because it

preserves edges and high frequency information [69,70]:

 (5.3)

The Huber function is defined as



 




,

otherwise.,2

if,
),(

2

2





x

x

x
x (5.4)

5.4 Super-resolution Mosaicking Using Steepest Descent

Based on the gradient descent algorithm for minimizing (5.3), the robust iterative

update for x̂ can be expressed as













 
 xg

kkk

K

k

k g
G

x xRWDByx),(][minargˆ

2

21



77

(5.5)

where G

is the gradient operator over the cliques [81,7], and)(n , the regularization

operator can be computed as

.
),(

]ˆ[

2

1
2

)(

)(





























Gxg

K

k

k

n

kkk
n

gK 


xRWDBy

…… ………..(5.6)

Furthermore, the derivative of the Huber function is given as:



 


,

otherwise.),(2

if,2
),('






x

xsign

x
x

 (5.7)

In this case,

 R and T
R : R represents the reconstruction from the mosaic image, and T

R

represents the construction of a mosaic.

 W and
T

W : W represents the backward warping inverse of the homography,

and
T

W

is the forward warping using the homography. The homography is

computed using the SIFT (Scale Invariant Feature Transform) features and

RANSAC (Random Sample Consensus) algorithm detailed in Chapter 4, Table 1.

 B and T
B : B represents the blurring effect, and is implemented by a

convolution with the PSF kernel. T
B is implemented by convolution with the

flipped PSF kernel.

  ),ˆ(]ˆ[(ˆˆ)(')(

1

)()()()1( nTnK

kk

n

kkk

TT

k

T

k

Tnnn GxGxRWDByDBWRxx 




78

 D and T
D : D represents image interpolation T

D represents image decimation.

Image interpolation refers to the process of upsampling followed by appropriate

lowpass filtering, and image decimation refers to downsampling after appropriate

anti-alias filtering (see Figure 42).

Figure 42. Image Interpolation and decimation.

The gradient operator G has the advantage over the Total Variation (TV) prior;

the function and its gradient with respect to)(ˆ n
x are continuous as well as convex [90].

Therefore, the optimization problem can be solved easily using gradient-descent methods

such as steepest descent and conjugate gradient methods.

The clique structure determines the spatial interactions. The spatial interactions

are used with our proposed method, and its activity is computed using finite difference

approximations to second-order directional derivatives (vertical, horizontal, and two

diagonal directions) in each super-resolution mosaic)(ˆ n
x .

79

],1[ˆ],[ˆ2],1[ˆˆ
21

)(

21

)(

21

)()(

1 nnxnnxnnxx nnnn  (5.8)

]1,[ˆ],[ˆ2]1,[ˆˆ
21

)(

21

)(

21

)()(

2  nnxnnxnnxx nnnn
 (5.9)

]1,1[ˆ
2

1
],[ˆ]1,1[ˆ

2

1
ˆ

21

)(

21

)(

21

)()(

3  nnxnnxnnxx nnnn
 (5.10)

]1,1[ˆ
2

1
],[ˆ]1,1[ˆ

2

1
ˆ

21

)(

21

)(

21

)()(

4  nnxnnxnnxx nnnn
 (5.11)

Figure 43 graphically shows these finite four difference approximations for the pixel n in

the super-resolution mosaic
)(ˆ nx .

Figure 43. Local spatial interactions representing by four finite difference approximations

of the pixel
)(ˆ nx .

80

Table 7 describes the construction of a super-resolved mosaic given a set of N

input frames or images using steepest descent algorithm.

Table 7. Algorithm to construct a super-resolved mosaic using steepest descent algorithm

given a set of input frames.

Objective: Construct a super-resolved mosaic using steepest descent algorithm

from a set of N input frames.

Algorithm:

1. Compute the homography using Table 1 between consecutive frames; i.e.,

NNhhh ,12312 ,...,,  .

2. Reproject all the input frames to a common coordinate system using

equation (4.6). The result of this step becomes the initial condition)0(
x̂ SR

mosaic (iteration 0).

3. While iteration n is less than the maximum number of iterations:

a) Construct a set of N reconstructed frames based on)(ˆ n
x .

b) Construct a set of N difference frames, subtracting the input frames

from the set of frames in a).

c) Construct a mosaic using Table 1 with the set of difference frames.

d) Construct the regularization factor given by),ˆ()(')( nTn GxG .

e) Subtract the result of c) from d) and then add to the previous SR

mosaic)1(ˆ n
x .

81

5.4.1 Experimental Results for Super-resolution Mosaicking Using Steepest Descent

We conducted four different tests, the first two are with synthetic data and the last

two with real frames from UAS surveillance video. The parameter)(n)
 was chosen to be

1.75 for the entire test, and the algorithm was set to run 10 iterations.

Results Using Synthetic Frames

We created synthetic LR frames from a single high resolution image. These LR

frames where created using different translations (18 to 95 pixels), rotations (5
o
 to 10

o
),

and scales (1 to 1.5); we blurred the frames with a Gaussian kernel of size 3x3. Figure 5.3

shows the results of the proposed algorithm for two different sets of data. Figures 44 (a)

and 44 (d) are the input LR mosaics, and Figures 44 (b) and 44 (e) are SR mosaics

obtained by the proposed algorithm. Finally, Figures 44 (c) and 44 (f) are the mosaics

generated using the high-resolution frames, these mosaic are going to be our ground truth

for computing the PSNR. The results obtained by our algorithm are close to high-

resolution mosaicking. Both set of images consist of five frames of 128x128x3 pixels.

(

a)

(

b)

82

(a)

(b)

(c)

(d)

(e)

(f)

Figure 44. Results of SR mosaicking for synthetic frames using steepest descent

algorithm. The mosaic was constructed using five frames. Figures (a) and (d) show the

mosaic for the first and second set of synthetic frames, respectively. These mosaics are

the input to the algorithm. (b) and (e) are the super-resolved mosaics of (a) and (d)

respectively. These mosaics are the output of the proposed algorithm. Figures (c) and (f)

show the ground truth mosaics, which are the mosaics constructed using high resolution

frames.

The PSNR was computed according to (5.12), resulting in a values of 43.86 dB

(5.12)

2

2

10
ˆ

255
log10

xx 


N
PSNR

83

and 47.52 dB for the first and second sets of synthetic images, respectively Table 8 shows

more results including the total time of processing all computations. This time also

includes the computation of the mosaic. Figure 45 shows the evolution in every iteration

of the Lagrange multiplier.

Table 8. Results of the computation of super-resolution mosaicking using steepest

descent algorithm for two different sets of color synthetic frames.

Test PSNR (dB)

Final error

2

21
ˆˆ

k

kk

x

xx 

Total Processing Time

on CPU (sec)

First set of five synthetic

color frames.
43.86 0.006391 4.625

Second set of five

synthetic color frames
47.52 0.0029404 3.875

Figure 45. Regularization parameter (Lagrange multiplier) versus the number of

iterations for the second set of synthetic color frames. The regularization parameter

decreased as expected.

1 2 3 4 5 6 7 8 9 10
0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

Plot of lambda in every iteration

 iteration


(n

)

84

Results Using Real Frames from UAS

This section presents the results of the computation of super-resolution

mosaicking for real UAS frames. There were three different tests performed: 1) using

color frames, 2) using IR frames taken of buildings, and 3) using IR frames taken of

vegetation. Figure 46 shows the results for the first test, where is clear to see significant

visual improvement. The image on the left is the LR mosaic, and on the right is the SR

mosaic. The SR mosaic contains more details, is less cloudy, and also the colors and

textures are much better than the LR mosaic.

The LR mosaic was constructed using five different frames, courtesy of Cloud

Cap Technology. The original size of the images were 640x480x3 pixels, but because of

memory issues with the GNU Scientific Library (GSL), that is used to compute the

homography, we had to downsample the images to 320x240x3 pixels.

Figure 46. Results of super-resolution mosaicking using the steepest descent algorithm.

Left: LR mosaic. Right: the SR mosaic. The mosaic was constructed using five frames of

size 320x240x3 pixels.

85

Figure 47 shows the results for the second and third tests. Both of these tests were

applied to IR (infrared) frames captured in 2007 by the UASE Laboratory team at the

University of North Dakota. The size of these frames is 320x240 pixels. Figure 48 (b, d)

shows the LR mosaic and the SR mosaic for the second test. There is more detail in the

SR mosaic, the buildings are sharper, and the trees have more texture. Figure 49(a-b,c-d)

shows the LR mosaic and the SR mosaic for the third test. In this case, the difference is

clearer, the SR mosaic is less cloudy and sharper and the trees have more texture. Figure

50 shows the evolution for every iteration of the Lagrange multiplier
)(n .

Table 9. Results of computing of super-resolution mosaics for two different sets of color

synthetic frames.

Test

Final error

2

21
ˆˆ

k

kk

x

xx 

Total Processing

Time on CPU (sec)

Test #1: color frames

of a road and forest.
0.002469 16.218

Test #2: IR frames of

buildings
0.002004 10.844

Test #3: IR frames of a

forest.
0.001018 16.688

86

(a)

(b)

(c)

(d)

Figure 47. Results of the SR mosaic for real frames from UAS using the steepest descent

algorithm. The mosaic was constructed using five frames. Figures (a) and (c) show the

mosaic for the first and second set of frames, respectively. These mosaics are the input to

the algorithm. (b) and (d) are the super-resolved mosaics of (a) and (c), respectively.

These mosaics are the output of the proposed algorithm.

87

(a)

(b)

(c)

(d)

Figure 48. Region of Interest cropped to see a better comparison of the results of the

algorithm for the first set of real UAS video frames. Figure (a) shows the region of

interest selected from the whole LR mosaic, and (b) shows the selected LR area. Figure

(c) shows the region of interest selected from the whole SR mosaic, and (d) shows the

selected SR area.

88

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 49. Region of Interest cropped to see a better comparison of the results of the

algorithm for the second set of real UAS video frames. Figures (a) and (e) show the

region of interest selected from the whole LR mosaic. Figures (b) and (f) show the region

of interest selected from the whole LR mosaic. Figures (d) and (h) show the selected SR

area.

89

Figure 50. Regularization parameter
)(n (Lagrange multiplier) versus the number of

iterations for the second set of real IR video frames from UAS. The regularization

parameter decreased as expected.

5.5 Super-resolution Mosaicking Using Conjugate Gradient

Based on the conjugate gradient method for minimizing (5.3), the robust iterative

update for x̂ can be expressed as

)()()()1(ˆˆ nnnn
pxx 

, (5.13)

where
)(n

p

is chosen to be conjugate to all previous search directions with respect to the

Hessian matrix H :

njjTn 0,)()(
Hpp

 (5.14)

Therefore, the resulting search directions are mutually linearly independent.
)(n

p can be

chosen using only knowledge of
)1(n

p ,)ˆ()1( nf x and)ˆ()(nf x [79], given as

)1(

)1()1(

)()(
)()(

)ˆ()ˆ(

)ˆ()ˆ(
)ˆ(

 











 n

nTn

nTn
nn

ff

ff
f p

xx

xx
xp . (5.15)

The gradient vector,)ˆ()(nf x ,is given by the following expression:

1 2 3 4 5 6 7 8 9 10
0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

Plot of lambda in every iteration

 iteration


(n
)

90

 ),ˆ(]ˆ[()ˆ()(')(

1

)()( nTnK

kk

n

kkk

TT

k

T

k

Tn Gf xGxRWDByDBWRx 


 (5.16)

where G

and)(n are computed in the same manner that for the case of the steepest

descent algorithm. Table 10 details the implementation of the conjugate gradient for the

computation of super-resolution mosaic.

5.5.1 Experimental Results for Super-resolution Mosaicking Using Conjugate

Gradient

We conducted four different tests, the first two are with synthetic data and the last

two with real frames from UAS surveillance video. The parameter
)(n was chosen to be

1.75 for the entire test, and the algorithm was set to run for 10 iterations. The results of

both tests are show in the next sections.

Results Using Synthetic Frames

This section shows the results of the conjugate gradient algorithm for the same

data set of synthetic images as Section 5.2.1.1. Figure 51 shows the results for two sets of

synthetic color frames. Figure 51 (b) and 51 (e) are the SR mosaics obtained by the

proposed CG algorithm. These images are very close to the ground truth; the color,

texture, and sharpness are recovered in most of the images. Table 11 shows the PSNR,

execution time, and final error for both sets of images. According to this table, the results

of using CG are slightly better in comparison with SD in quality, but it takes more

computation time.

91

Table 10. Algorithm to construct a super-resolved mosaic using conjugate gradient

algorithm given a set of N input frames.

Objective: Construct a super-resolved mosaic using conjugate gradient

algorithm from a set of N input frames.

Algorithm:

1. Compute the homography using Table 1 between consecutive frames; i.e.,

NNhhh ,12312 ,...,,  .

2. Reproject all the input frames to a common coordinate system using

equation (4.6). The result of this step becomes the initial condition of the

)0(
x̂ SR mosaic (iteration 0), and it is used to compute the gradient for

iteration 0 using (5.16).

3. While iteration n is less than the maximum number of iterations:

a) Construct the gradient using equation (5.16).

b) Construct
)(n

p using equation (5.15).

c) Update)(ˆ n
x , using equation (5.13).

92

(a)

(b)

(c)

(d)

(e)

(f)

Figure 51. Results of SR mosaicking for synthetic frames using the conjugate gradient

algorithm. The mosaics were constructed using five frames. Figures (a) and (d) show the

mosaics for the first and second set of synthetic frames respectively. These mosaics are

the input to the algorithm. (b) and (e) are the super-resolved mosaics using the CG

algorithm on (a) and (d), respectively. These mosaics are the output of the proposed

algorithm. Figures (c) and (f) show the ground truth mosaics, which are the mosaics

constructed using high-resolution frames.

93

Table 11. Results of computating super-resolution mosaics using the conjugate gradient

algorithm for two different set of color synthetic frames.

Test PSNR (dB)

Final error

2

21
ˆˆ

k

kk

x

xx 

Total Processing Time

on CPU (sec)

First set of five synthetic

color frames.
43.98 0.004381 5.047

Second set of five

synthetic color frames
47.54 0.006212 4.250

Results Using Real Frames from UAS

This section shows the results of the conjugate gradient method for the same data

set of real frames captured by UAS as described in Section 5.2.1. Figure 52 shows the

results applying the conjugate gradient algorithm to super-resolution mosaicking for a set

of five color frames from a UAS. The results are similar as that for the case of steepest

descent method, but the color and sharpness show a slight improvement. Table 12 shows

more details of the results with the three data sets. This table shows the final error and the

total processing time in seconds for the three tests.

Table 12. Results of the capturing the super-resolution mosaics using the proposed

conjugate gradient algorithm for three different sets real frames from UAS.

Test

Final error

2

21
ˆˆ

k

kk

x

xx 

Total Processing Time

on CPU (sec)

Test #1: color frames of a

road and forest.
0.005055 16.891

Test #2: IR frames of

buildings
0.003379 11.907

Test #3: IR frames of a

forest.
0.003655 11.219

94

Figure 52. Results of super-resolution mosaicking using the conjugate gradient algorithm.

Left: LR mosaicking. Right: SR mosaic. The mosaics were constructed using five frames

of a size of 320x240x3 pixels.

Figure 53 shows the results of using conjugate gradient for computing SR mosaic for real

IR video frames. The results are now clearer than for steepest descent method. The SR

mosaic has more details, even the shape of the buildings are more clear (see Figure 53

(b)); also, the trees are sharper.

95

(a)

(b)

(c)

(d)

Figure 53 . Results of the SR mosaic for real frames from UAS using the conjugate

gradient method. The mosaic was constructed using five frames. Figures (a) and (c) show

the mosaics for the first and second set of frames, respectively. These mosaics are the

input to the algorithm; (b) and (d) are the super-resolved mosaics of (a) and (c),

respectively. These mosaics are the output of the proposed conjugate gradient method.

96

5.6 Super-resolution Mosaicking Using Levenberg Marquardt

The Levenberg Marquardt (LM) method was proposed by [1,97] as a new method

to solve nonlinear problems. This algorithm shares with gradient methods their ability to

converge from an initial guess which may be outside of the region of convergence of

other methods. Based on the Levenberg Marquardt method for minimizing (5.3), and

defining)(xf as

  



xGg

K

k

kkkk gyxf),(][)(

2

21

xRWDB
,

xxxx  Jff )()(, (5.17)

where)(xJ is given as the Jacobian matrix:

(5.18)

(5.19)

The Levenberg Marquardt method is iterative. Initiated at the starting point)0(
x̂ ,

the method requires finding x

that minimizes

xxxxxxx  JJff )(ˆ)ˆ(ˆ

 (5.20)

x is found by solving a linear least squares problem. The minimum is attained when

εx J is orthogonal to the column space of J . This leads to:

 ),ˆ(]ˆ[()(')(

1

)( nTnK

kk

n

kkk

TT

k

T

k

T GGxJ xRWDByDBWR 


x

xRWDBy

x

x























 xGg

kkk

K

k

k g
f

J

),(][
)(

2

21



97

εx

εx

T

TT

JH

JJJ








*

 (5.21)

where *H is called the pseudo Hessian, defined as JJH T*
Levenberg Marquardt

solves equation (5.21), adding a damping term to the diagonal elements of *H .

Therefore, the Levenberg Marquardt equation is

,)(*
εx

TJcIH  
 (5.22)

where x is found by solving

 
2

*minarg εxx x

TJcIH   
. (5.23)

Then,

 xxx )()1(ˆˆ nn , (5.24)

where c is the Levenberg Marquardt damping term that determines the behavior of the

gradient in each iteration. If c is close to zero, then the algorithm behaves like a Gauss

Newton (GN) method, but if c , then the algorithm behaves like the steepest

descent (SD) algorithm. The values of c during the iterative process are chosen in the

following way: at the beginning of the iterations, c is set to a large value, so that the

LM method uses the robustness of SD, and the initial guess of the solution to (5.3) can be

chosen with less caution. It is necessary to save the value of the errors for each iteration,

and do the comparison between two consecutive errors. In the case that

)1()( kk errorerror , c is decreased by a certain amount so that LM behaves like

Gauss-Newton to take advantage of the speed up to convergence. Otherwise, c increases

to a larger value, thus increasing the searching area, which means that LM behaves like

SD. The)(kerror is defined as

98

2

21

)(
ˆ

ˆˆ

k

kk

k
error

x

xx 



 (5.25)

The following section shows the experimental results with synthetic and real data

from UAS.

5.6.1 Results Using Synthetic Frames

This section shows the results of the Levenberg Marquardt method for the same

data set of synthetic images as shown in Section 5.2. Figure 54 shows the results for the

two sets of synthetic color frames. Figures 54 (b) and 54 (e) are the SR mosaics obtained

by the proposed algorithm based on Levenberg Marquardt. These images are very close

to the ground truth as well, even the color is recovered.

Table 13 shows the algorithm used to compute the super-resolution mosaic using

Levenberg Marquardt algorithm, this table shows the PSNR, final error obtained in ten

iterations and the total processing time in seconds.

Table 14 shows the algorithm to compute super-resolution mosaic using

Levenberg Marquardt

Table 13. Results computing super-resolution mosaics using Levenberg Marquardt

algorithm for two different sets of color synthetic frames.

Test PSNR (dB)

Final error

2

21
ˆˆ

k

kk

x

xx 

Total Processing Time

on CPU (sec)

First set of five synthetic

color frames.
43.77 0.002833 5.109

Second set of five

synthetic color frames
47.45 0.002505 4.281

99

Table 14. Algorithm to construct a super-resolved mosaic using the Levenberg Marquardt

optimization method given a set of N input frames.

Objective: Construct a super-resolved mosaic using the Levenberg Marquardt

optimization method from a set of N input frames.

Algorithm:

1. Compute the homography using Table 1 between consecutive frames; i.e.,

NNhhh ,12312 ,...,,  .

2. Reproject all the input frames to a common coordinate systems using

equation (4.6). The result of this step becomes the initial condition of the

)0(
x̂ SR mosaic (iteration 0).

3. While iteration n is less than the maximum number of iterations:

a) Construct the Jacobian using equation (5.19).

b) Construct the pseudo Hessian matrix given by JJ T*
H .

c) Solve the linear least squares equation using the singular value

decomposition (SVD) for x , in equation (5.23).

d) Update)(ˆ n
x in equation (5.24).

100

(a)

(b)

(c)

(d)

(e)

(f)

Figure 54. Results of SR mosaicking for synthetic frames using the Levenberg Marquardt

method. The mosaic was constructed using five frames. Figures (a) and (d) show the

mosaic for the first and second sets of synthetic frames, respectively. These mosaics are

the input to the algorithm. (b) and (e) are the super-resolved mosaics applying the LM

method to (a) and (d), respectively. These mosaics are the output of the proposed

algorithm. Figures (c) and (f) show the ground truth mosaics, which are the mosaics

constructed using high-resolution frames.

101

5.6.2 Results Using Real Frames from UAS

This section shows the results of the Levenberg Marquardt algorithm for the same

data set of real frames captured by UAS in Section 5.2.1.2. Figure 55 shows the results

applying the Levenberg Marquardt method for super-resolution mosaicking to a set of

five color frames from a UAS. The results are similar to those for the case of steepest

descent, but the color and sharpness have better improvement. But, there are also some

artifacts introduced by the solution of the equation (5.23); the reason of this is because

the pseudo Hessian is close to be singular. Table 15 shows more details of the results

with the three data sets (three different tests).

Table 15. Results of computing the super-resolution mosaics using the proposed

Levenberg Marquardt algorithm for three different sets real frames from UAS.

Test

Final error

2

21
ˆˆ

k

kk

x

xx 

Total Processing Time

on CPU (sec)

Test #1: color frames of a

road and forest.
0.005424 17.485

Test #2: IR frames of

buildings.
0.003514 11.766

Test #3: IR frames of a

forest.
0.004298 11.391

102

Figure 55. Result of super-resolution mosaicking using the proposed Levenberg

Marquardt method. Left: LR mosaicking. Right: SR mosaicking. The mosaics were

constructed using five frames of size of 320x240x3 pixels.

Figure 56 shows the results of using the Levenberg Marquardt algorithm for real

IR video frames. The SR mosaic has more details, even the shape of the buildings are

more clear (see Figure 56 (b)); also, the trees are more sharp. However, there are some

also artifacts since the Levenberg Marquardt requires the pseudo Hessian which has a

sparse structure and is close to singular. Note that these artifacts are not produced in the

real color frames from the UAS video (Figure 55).

103

(a)

(b)

(c)

(d)

Figure 56. Results of the SR mosaic for real frames from UAS using the proposed

Levenberg Marquardt method. The mosaic was constructed using five frames. Figures (a)

and (c) show the mosaic for the first and second set of frames, respectively. These

mosaics are the input to the algorithm. (b) and (d) are the super-resolved mosaics of (a)

and (c) respectively. These mosaics are the output of the proposed LM algorithm.

5.7 Comparison of metrics for Super-Resolution Mosaicking by the three algorithms

This section compares the results of the three proposed algorithms for super-

resolution mosaicking. The comparison will be based on PSNR, time, and error for the

synthetic data sets, and time and error for the real frames from UAS because there is no

ground truth data available to compute the PSNR with real frames.

104

From the comparisons shown in Figures 57 to 61 and from Tables 16 to 20, all the

methods improve the resolution of the LR mosaic, and all of them improve the color,

details, and sharpness. But, when the image is black and white (IR images), the

Levenberg Marquardt produces some artifacts since it solves linear squares equation that

is close to be singular (5.23). The final error for the steepest descent and conjugate

gradient algorithms decreases with every iteration, which means that they find the

optimal solution in every iteration; but for the Levenberg Marquardt algorithm, this error

can decrease or increase due to the use of the damping factor, c , which accelerates the

search for the optimal solution.

Table 16. Comparison of the three proposed algorithms to compute super-resolution

mosaics for the first set of synthetic color frames.

Algorithm PSNR (dB)

Final error

2

21
ˆˆ

k

kk

x

xx 

Total Processing

Time on CPU (sec)

Super-resolution using steepest

descent algorithm.
43.86 0.006391 4.625

Super-resolution using conjugate

gradient algorithm.
43.98 0.004381 5.047

Super-resolution using

Levenberg Marquardt algorithm.
43.77 0.002833 5.422

105

(a)

(b)

(c)

(d)

(e)

Figure 57. Comparison of the three proposed algorithms: steepest descent, conjugate

gradient, and Levenberg Marquardt. These images belong to the first set of synthetic

frames created. (a) LR mosaic. (b) Ground truth HR mosaic. (c) SR mosaic using steepest

descent. (d) SR mosaic using conjugate gradient. (e) SR mosaic using Levenberg

Marquardt.

106

(a)

(b)

(c)

(d)

(e)

Figure 58. Comparison of the three proposed algorithms: steepest descent, conjugate

gradient and Levenberg Marquardt. These images belong to the second set of synthetic

frames created. (a) LR mosaic. (b) Ground truth HR mosaic. (c) SR mosaic using steepest

descent. (d) SR mosaic using conjugate gradient. (e) SR mosaic using Levenberg

Marquardt.

107

Table 17. Comparison of the three proposed algorithms to compute super-resolution

mosaics for the second set of synthetic color frames.

Algorithm PSNR (dB)

Final error

2

21
ˆˆ

k

kk

x

xx 

Total Processing

Time on CPU

(sec)

Super-resolution using

steepest descent algorithm.
47.52 0.0029404 3.875

Super-resolution using

conjugate gradient

algorithm.

47.54 0.006212 4.250

Super-resolution using

Levenberg Marquardt

algorithm.

47.45 0.002505 4.281

Table 18. Comparison of the three proposed algorithms to compute super-resolution

mosaics for the first set of real video color frames captured by UAS.

Algorithm Final error

2

21
ˆˆ

k

kk

x

xx 

Total Processing

Time on CPU

(sec)

Super-resolution using

steepest descent method.

0. 002469 16.218

Super-resolution using

conjugate gradient method.

0.005055 16.891

Super-resolution using

Levenberg Marquardt

method.

0.005424 17.485

108

(a)

(b)

(c)

(d)

Figure 59. Comparison of the three proposed algorithms: steepest descent, conjugate

gradient, and Levenberg Marquardt. The images belong to the first set of color video

frames captured from UAS. (a) LR mosaic. (b) SR mosaic using steepest descent. (c) SR

mosaic using conjugate gradient. (d) SR mosaic using Levenberg Marquardt.

109

(a)

(b)

(c)

(d)

Figure 60. Comparison of the three proposed algorithms: steepest descent, conjugate

gradient, and Levenberg Marquardt. These images belong to the first set of real IR video

frames captured from UAS. (a) LR mosaic. (b) SR mosaic using steepest descent. (c) SR

mosaic using conjugate gradient. (d) SR mosaic using Levenberg Marquardt.

Table 19. Comparison of the three proposed algorithms to compute super-resolution

mosaics for the first set of real video IR frames captured by UAS.

Algorithm Final error

2

21
ˆˆ

k

kk

x

xx 

Total Processing

Time on CPU (sec)

Super-resolution using steepest

descent algorithm.

0.065014 10.844

Super-resolution using conjugate

gradient algorithm.

0.097590 11.907

Super-resolution using

Levenberg Marquardt algorithm.

0.068155 11.750

110

(a)

(b)

(c)

(d)

Figure 61. Comparison of the three proposed algorithms: steepest descent, conjugate

gradient and Levenberg Marquardt methods. These images belong to the second set of

real IR video frames captured from UAS. (a) LR mosaic. (b) SR mosaic using steepest

descent method. (c) SR mosaic using conjugate gradient. (d) SR mosaic using Levenberg

Marquardt.

111

Table 20. Comparison of the three proposed algorithms to compute super-resolution

mosaics for the second set of real video IR frames captured by UAS.

Algorithm

Final error

2

21
ˆˆ

k

kk

x

xx 

Total Processing

Time on CPU

(sec)

Super-resolution using

steepest descent algorithm.
0.001018 16.688

Super-resolution using

conjugate gradient algorithm
0.003655 11.907

Super-resolution using

Levenberg Marquardt

algorithm

0.004298 11.391

5.8 Conclusions

Three algorithms, based on steepest descent, conjugate gradient and Levenberg

Marquardt are introduced for the computation of the super-resolution mosaicking.

Levenberg Marquardt is a novel algorithm in this regard. All these algorithms use the

same prior and Lagrange multiplier based on the Huber function. The computation of the

super-resolution mosaic for all the proposed methods takes five low-resolution frames as

input, then constructs the mosaic, applies the regularization factor, and finally applies the

corresponding optimization method to solve it. Therefore, the proposed methods are

complete, robust, adaptive, and independent.

The results show that the three proposed algorithms work not only with synthetic

images, but also with real images in both color and gray pixel levels. Furthermore, the

size of the test frames are standard sizes for video frames. The processing time is also

reduced, which makes these algorithms capable of dealing with real data in real

applications.

112

CHAPTER 6

GPU-CPU IMPLEMENTATION FOR VIDEO MOSAICKING AND SUPER-

RESOLUTION MOSAICKING

6.1 Introduction

The construction of video mosaics and the super-resolution reconstruction of

mosaics for a set of color (EO) and IR frames has been analyzed and explained in

previous chapters. The computations of those results all used CPU (Central Processing

Unit) processing. This chapter implements the video mosaicking and super-resolution

mosaicking over GPU (Graphical Process Unit) and CPU processors, using the same

algorithms of Chapters 4, and 5.

In order to create a “good” video mosaic and super-resolution mosaic, the

registration between the frames should be accurate at the sub-pixel level. SIFT (Scale

Invariant Feature Transform) has been chosen because of its robustness, invariance to

change of illumination, and highly distinctive features, all of which help in the matching

process [70]. Once the SIFT features are found, it is necessary to match them and find the

best transformation matrix between them called a homography. All this registration

process takes a great deal of computational resources, serving as the computation

bottleneck of the whole process for video (image) mosaicking and super-resolution

mosaicking.

This chapter implements the registration process on GPU and the NVIDIA

CUDA
TM

 technology. The GPU is a highly parallel, multithread, many core processor

113

with tremendous computational horsepower and very high memory bandwidth.

Algorithms developed using the GPU as programming platforms are commonly referred

as GPGPU (General Purpose Computation on GPU) [2]. The speed up of the registration

process is up to 54 times faster than using CPU technology. All the results that we show

in this section were obtained on with a desktop Dell computer with the GeForce 9800 GT

GPU card installed.

 Section 6.2 explains the use of GPU and CUDA
TM

 technology, Section 6.3 shows

the implementation of GPU-CPU for the computation of video mosaics based on the

algorithms in Chapter 4, and the use of I-frames generated for MPEG video. Section 6.4

shows the results for the computation of super-resolution mosaics using GPU-CPU and a

performance comparison between the results obtained using GPU-CPU with only CPU

(extracted from Chapter 5).

6.2 GPU Programming Paradigm

The use of the graphical processing unit (GPU) to accelerate general-purpose

computations has become an important technique in scientific research. Graphics

hardware has evolved tremendously over the last several years. It started with basic

polygon rendering via 3dfx’s Voodoo Graphics in 1996, and continued with custom

vertex manipulations four years later. Within ten years, the GPU increased its speed by

approximately 750 times (1996 to 2006), and is still growing exponentially each year.

Conversely, CPU performance doubles only every 22 months.

GPU is designed for math-intensive, parallel problems (see Figure 62). More

specifically, the GPU is especially well-suited to address problems that can be expressed

as data-parallel computations. Because the same program is executed for each data

114

element, there is a lower requirement for sophisticated flow control, and the memory

latency can be hidden with calculations instead of large data caches. CUDA
TM

 was

introduced by NVIDIA in November 2006. CUDA
TM

 is a C-based general purpose

parallel computing architecture, with a new parallel programming model and instruction

set architecture, which leverages the parallel compute engine in NVIDIA GPUs.

Successful use of GPU for general purpose computation requires taking into

account the significant overhead incurred in executing and managing GPU kernels, which

includes queuing, overhead, scheduling overhead, and the GPU progress check period.

Figure 62. GPU uses more transistors for data processing.

The kernels, C functions, are executed as a grid of thread blocks. A thread block

is a batch of threads that can cooperate with one another by sharing data through shared

memory or synchronizing their execution. The threads from different blocks cannot

cooperate. Figure 63 shows a kernel in the host (CPU side), which is implemented in the

device (GPU side). Note that a grid is a set of blocks, and a block is a set of threads.

Recently, GPUs can handle more than 512 independent thread processors,

whereas CPUs at the desktop level have only reached eight cores.

115

Figure 63. Programming model over GPU.

6.3 GPU-CPU Implementation for Video Mosaicking of UAS Surveillance Video

In this section, the construction of dynamic video mosaicking using GPU-CPU is

presented. The GPU is used to compute the homography for registration, and the CPU is

allocated the remaining jobs: read the video data and reprojection.

116

Figure 64. Real time video mosaicking constructed using GPU-CPU. The video belongs

to MATLAB/Simulink demonstrations.

Table 21 shows the time comparison between GPU and CPU for the computation

of the homography. The GPU is almost 55 times faster than the CPU for this process.

This represents a good speed up that can allow us to achieve our goal of real-time video

mosaicking.

Table 22 details the algorithm to construct the video mosaic using GPU-CPU;

also Figure 64 shows an example of video mosaicking constructed in real time. This

video mosaic was taken from a video demonstration in MATLAB/ Simulink.

Table 21. Comparison of the computational time of the homography.

Type of Test

Time

GPU

(ms)

Time CPU

(ms)

Time CPU/ Time

GPU

Find the Homography

for UAS IR video
20.8580 1141.0 54.7

117

Table 22. Algorithm to construct a video mosaic given an input video over GPU – CPU.

Objective: Construct a video mosaic from a video input using GPU-CPU.

Algorithm:

1. Read the information from the video file (duration, frames per second, size

of the frames, codec type, etc.).

2. Read the video frame-by-frame and do the following:

a) Select the I-frames (for MPEG video).

b) Select the first frame as a reference frame.

c) Copy the frame from the host (CPU) memory to device (GPU)

memory.

d) Compute the SIFT features for every frame and save them into a

GPU memory.

e) Compute the homography for two consecutive frames.

f) Copy the homography matrix from device memory to host memory.

g) Reproject the frame into a common coordinate system.

Table 23 shows a computational time comparison for different tests. Here, the

time considers the whole process to construct the video mosaic according to Table 21. It

is important to note that the performance of constructing the video mosaic using MPEG I-

frames generates not only better results (see Figure 65), but is also faster than using all of

the frames.

118

Table 23. Comparison of the computational time for complete video mosaicking.

Type of Test Condition Time GPU –

CPU

(sec)

Time

CPU

(sec)

Time CPU/

Time GPU-

CPU

Video Mosaicking of

the demo video of

MATLAB

Reading

at 15 fps

9.297 107.125 11.52

Video Mosaicking of

the UAS IR video

Reading

at 25 fps

17.938 135.953 7.58

Video Mosaicking of

the UAS IR video

Using

MPEG-I

frames

4.234 14.468 3.41

(a)

(b)

Figure 65. Video mosaicking results for 5.120 seconds at 25 frames per second for the IR

video captured in 2007 by the UASE Laboratory team at the University of North Dakota.

Left: Mosaic result using only MPEG I-frames. Right: Result using all frames from 5.120

seconds of video.

6.4 GPU-CPU Implementation for Super-Resolution Mosaicking of UAS Surveillance

Video

This section shows the results of using GPU-CPU implementation for the

computation of super-resolution mosaics using the three different optimization

119

algorithms: steepest descent, conjugate gradient, and Levenberg Marquardt. The tests

performed use the same data as in Chapter 5.

6.4.1 GPU-CPU Implementation for Super-Resolution Mosaicking Using Steepest

Descent

This section presents the results for the computation of super-resolution

mosaicking using the steepest descent algorithm over GPU-CPU. Table 24 details the

algorithm used; basically, this is almost the same as the algorithm in Chapter 5, with the

difference being that the registration step is performed over the GPU, increasing the

speed up by more than 50 times (see Table 21).

Figure 66 shows the results for the first and second set of synthetic images. As

expected, the results are similar to those obtained using only CPU, but the PSNR is a

little bit lower than using only CPU (Table 25); the time difference is about 1.4 to 1.7

seconds faster, since the registration is done using GPU, with remaining task taken over

by the CPU (Figure 44).

Figure 67 shows the LR and SR mosaics for a set of five color frames captured by

a UAS. This SR mosaic has less quality than that obtained using only CPU (Figure 46).

The reason for this is that GPU registration had some issues with this set of images,

especially with the second and third frames. The result was that the homography between

them was not accurate enough.

Figure 68 shows the LR and SR mosaics for two different sets of IR frames

captured in 2007 by the UASE Laboratory team at the University of North Dakota. The

results are similar to those obtained using only CPU (Figure 47).

120

Table 24. Algorithm to construct a super-resolved mosaic using steepest descent

algorithm over GPU-CPU given a set of N input frames.

Objective: Construct a super-resolved mosaic using the steepest descent

algorithm over GPU-CPU from a set of N input frames.

Algorithm:

1. Compute the homography on the GPU side, using Table 1 between

consecutive frames, i.e., NNhhh ,12312 ,...,, 

2. Copy the homography from the device memory (GPU) to the host memory

(CPU).

3. Reproject all the input frames to a common coordinate system using

equation (4.6). The result of this step becomes the initial condition)0(
x̂ for

the SR mosaic (iteration 0).

4. While iteration n is less than the maximum number of iterations:

a) Construct a set of N reconstructed frames based on)(ˆ n
x .

b) Construct a set of N difference frames but subtracting the input

frames from the set of frames in a).

c) Construct a mosaic using Table 1 with the set of difference frames.

d) Construct the regularization factor given by),ˆ()(')( nTn GxG .

e) Subtract the result of c) from d) and then add to the previous SR

mosaic)1(ˆ n
x .

121

(a)

(b)

(c)

(d)

(e)

(f)

Figure 66. Results of the SR mosaicking for synthetic frames the using steepest descent

algorithm implemented over GPU-CPU. The mosaics were constructed using five frames.

Figures (a) and (d) show the mosaics for the first and second set of synthetic frames,

respectively. These mosaics are the input to the algorithm. (b) and (e) are the super-

resolved mosaics of (a) and (d), respectively. These mosaics are the output of the

proposed algorithm. Figures (c) and (f) show the ground truth mosaics, constructed using

high-resolution frames.

Table 26 shows the results obtained with the three different sets of real UAS

frames. Additionally, information for the results using only CPU is included. The

advantage of GPU-CPU over CPU is clear in this table, and the speed up is significant.

122

Table 25. Results of computating of super-resolution mosaics using steepest descent over

GPU-CPU for two different sets of color synthetic frames.

Test PSNR

(dB)

(GPU-

CPU)

PSNR

(dB)

(CPU)

Final error (GPU-

CPU)

2

21
ˆˆ

k

kk

x

xx 

Final error (CPU)

2

21
ˆˆ

k

kk

x

xx 

Total

Processing

Time on

GPU-CPU

(sec)

Total

Processing

Time on

CPU (sec)

First set of five

synthetic color

frames.

35.16 43.86 0.002608 0.006391 3.234 4.625

Second set of

five synthetic

color frames

46.41 47.52 0.002727 0.0029404 3.156 3.875

Figure 67. Result of super-resolution mosaicking using steepest descent implemented

over GPU-CPU. Left: LR mosaic. Right: SR mosaic. The mosaics were constructed using

five frames of size 320x240x3 pixels.

123

Table 26. Results of computing of super-resolution mosaics using steepest descent over

GPU-CPU for three different sets of real frames captured by UAS.

Test Final error (GPU-CPU)

2

21
ˆˆ

k

kk

x

xx 

Final error (CPU)

2

21
ˆˆ

k

kk

x

xx 

Total

Processing

Time on

GPU-CPU

(sec)

Total

Processing

Time on

CPU (sec)

Test #1: color

frames of a road

and forest.

0.003089 0.005055 8.594 16.891

Test #2: IR

frames of

buildings.

0.001849 0.003379 8.547 11.907

Test #3: IR

frames of a forest.

0.001036 0.003655 8.469 11.219

(a)

(b)

(c)

(d)

Figure 68. Results of SR mosaicking for real frames from UAS using steepest descent

implemented over GPU-CPU. The mosaics were constructed using five frames. Figures

(a) and (c) show the mosaics for the first and second sets of frames, respectively. These

mosaics are the input to the algorithm. (b) and (d) are the super-resolved mosaics of (a)

and (c) respectively. These mosaics are the output of the steepest descent super-resolution

mosaicking algorithm.

124

6.4.2 GPU-CPU Implementation for Super-Resolution Mosaicking Using Conjugate

Gradient

This section presents the results for the computation of super-resolution mosaics

using the conjugate gradient algorithm over GPU-CPU. Table 27 details the algorithm

used, essentially the same as the algorithm in Chapter 5 with the difference being that the

registration step is performed over GPU.

Figure 69 shows the results for the first and second sets of synthetic images. The

results are similar to those obtained using only CPU (Figure 51), but the PSNR is a little

bit lower than using only CPU (Table 28); the time difference is about 0.9 to 1.2 seconds

faster.

Figure 70 shows the LR and SR mosaics for a set of five color frames captured by

a UAS. This SR mosaic has slightly less quality than obtained using only CPU (Figure

52).

Figure 71 shows the LR and SR mosaics for two different sets of IR frames

captured in 2007 by the UASE Laboratory team at the University of North Dakota. The

results shown are similar to those obtained using only CPU (Figure 53).

Table 29 shows the results obtained with the three different sets of real UAS

frames, along with information for the results using only CPU. The advantage of GPU-

CPU over CPU is clear in this table, and the speed up is significant.

125

Table 27. Algorithm to construct a super-resolved mosaic using conjugate gradient over

GPU-CPU given a set of N input frames.

Objective: Construct a super-resolved mosaic using the conjugate gradient

optimization algorithm over GPU-CPU from a set of N input

frames.

Algorithm:

1. Compute the homography on the GPU side using Table 1 between

consecutive frames; i.e., NNhhh ,12312 ,...,,  .

2. Copy the homography from the GPU (device memory) to the CPU (host

memory).

3. Reproject all the input frames to a common coordinate system using

equation (4.6). The result of this step becomes the initial condition for the

)0(
x̂ SR mosaic (iteration 0), and it is used to compute the gradient for the

iteration 0 using (5.16).

4. While iteration n is less than the maximum number of iterations:

a) Construct the gradient using equation (5.16).

b) Construct
)(n

p using equation (5.15).

c) Update)(ˆ n
x using equation (5.13).

126

(a)

(b)

(c)

(d)

(e)

(f)

Figure 69. Results of SR mosaicking for synthetic frames using the conjugate gradient

algorithm implemented over GPU-CPU. The mosaics were constructed using five frames.

Figures (a) and (d) show the mosaics for the first and second sets of synthetic frames,

respectively. These mosaics are the input to the algorithm. (b) and (e) are the super-

resolved mosaics using the CG algorithm over GPU-CPU of (a) and (d), respectively.

These mosaics are the output of the CG algorithm. Figures (c) and (f) show the ground

truth mosaics, constructed using high-resolution frames.

127

Table 28. Results of computating super-resolution mosaics using the conjugate gradient

algorithm over GPU-CPU for two different sets of color synthetic frames.

Test

PSNR

(dB)

(GPU-

CPU)

PSNR

(dB)

(CPU)

Final error (GPU-

CPU)

2

21
ˆˆ

k

kk

x

xx 

Final error (CPU)

2

21
ˆˆ

k

kk

x

xx 

Total

Processing

Time on

GPU-CPU

(sec)

Total

Processing

Time on

CPU (sec)

First set of

five synthetic

color frames.

35.17 43.98 0.006790 0.004381 3.218 5.047

Second set of

five synthetic

color frames

46.59 47.54 0.008713 0.006212 3.187 4.250

Figure 70. Results of super-resolution mosaicking using the conjugate gradient algorithm

implemented over GPU-CPU. Left: LR mosaic. Right: SR mosaic. The mosaics was

constructed using five frames of size 320x240x3 pixels.

128

Table 29. Results of computating of super-resolution mosaics using the conjugate

gradient algorithm over GPU-CPU for three different sets of real frames captured by

UAS.

Test Final error (GPU-CPU)

2

21
ˆˆ

k

kk

x

xx 

Final error (CPU)

2

21
ˆˆ

k

kk

x

xx 

Total

Processing

Time on

GPU-CPU

(sec)

Total

Processing

Time on CPU

(sec)

Test #1: Color frames

of a road and forest.

0.009512 0.005055 9.093 16.891

Test #2: IR frames of

buildings.

0.005004 0.003379 8.797 11.907

Test #3: IR frames of

a forest.

0.004392 0.003655 8.719 11.219

(a)

(b)

(c)

(d)

Figure 71. Results of SR mosaic for real frames from UAS using the conjugate gradient

algorithm implemented over GPU-CPU. The mosaics were constructed using five frames.

Figures (a) and (c) show the mosaics for the first and second sets of frames, respectively.

These mosaics are the input to the algorithm. (b) and (d) are the super-resolved mosaics

of (a) and (c), respectively. These mosaics are the output of the proposed conjugate

gradient super-resolution mosaicking algorithm.

129

6.4.3 GPU-CPU Implementation for Super-Resolution Mosaicking Using the

Levenberg-Marquardt

This section presents the results for the computation of super-resolution mosaics

using the Levenberg Marquardt algorithm over GPU-CPU. Table 30 details the algorithm

used. Essentially, it is the same as the algorithm in Chapter 5, with the difference being

that the registration step is performed over the GPU.

Figure 72 shows the results for the first and second sets of synthetic images. The

results are similar to those obtained using only CPU (Figure 54), but the PSNR is a little

bit lower than using only CPU (Table 31); the difference in computation time is about 0.8

to 0.9 seconds.

Figure 73 shows the LR and SR mosaics for sets of five color frames captured by

a UAS. These SR mosaic has less quality than those obtained using only CPU (Figure

55).

Figure 74 shows the LR and SR mosaics for two different sets of IR frames

captured in 2007 by the UASE Laboratory team at the University of North Dakota. The

results shown are similar to those obtained using only CPU (Figure 56).

Table 32 shows the results obtained with the three different sets of real UAS

frames, along with information of the results using only CPU. The advantage of GPU-

CPU over CPU is clear in this table, and the speed up is significant.

130

Table 30. Algorithm to construct super-resolved mosaics using the Levenberg Marquardt

algorithm over GPU-CPU given a set of N input frames.

Objective: Construct a super-resolved mosaic using the Levenberg Marquardt

algorithm over GPU-CPU from a set of N input frames.

Algorithm:

1. Compute the homography on the GPU side using Table 1 between

consecutive frames; i.e., NNhhh ,12312 ,...,,  .

2. Copy the homography from the GPU (device memory) to the CPU (host

memory).

3. Reproject all the input frames to a common coordinate system using

equation (4.6). The result of this step becomes the initial condition for the

)0(
x̂ SR mosaic (iteration 0).

4. While iteration n is less than the maximum number of iterations:

a) Construct the Jacobian using equation (5.19).

b) Construct the pseudo Hessian matrix given by JJ T*
H .

c) Solve the linear least squares equation using the singular value

decomposition (SVD) for x ., in equation (5.21)

d) Update)(ˆ n
x in equation (5.24).

131

(a)

(b)

(c)

(d)

(e)

(f)

Figure 72. Results of SR mosaicking for synthetic frames using the Levenberg Marquardt

algorithm implemented over GPU-CPU. The mosaics were constructed using five frames.

Figures (a) and (d) show the mosaics for the first and second set of synthetic frames,

respectively. These mosaics are the input to the algorithm. (b) and (e) are the super-

resolved mosaics using the LM algorithm of (a) and (d), respectively. These mosaics are

the output of the proposed algorithm. Figures (c) and (f) show the ground truth mosaics,

constructed using high-resolution frames.

132

Table 31. Results of the computating of super-resolution mosaicks using the Levenberg

Marquardt algorithm over GPU-CPU for two different set of color synthetic frames.

Test

PSNR

(dB)

(GPU-

CPU)

PSNR

(dB)

(CPU)

Final error (GPU-

CPU)

2

21
ˆˆ

k

kk

x

xx 

Final error (CPU)

2

21
ˆˆ

k

kk

x

xx 

Total

Processing

Time on

GPU-CPU

(sec)

Total

Processing

Time on

CPU (sec)

First set of five

synthetic color

frames.

35.14 43.77 0.006790 0.002833 3.359 5.109

Second set of

five synthetic

color frames

46.49 47.45 0.008713 0.002505 3.391 4.281

Figure 73. Results of super-resolution mosaicking using the Levenberg Marquardt

algorithm implemented over GPU-CPU. Left: LR mosaic. Right: SR mosaic. The

mosaics were constructed using five frames of size 320x240x3 pixels.

133

Table 32. Results of computing of super-resolution mosaics using the Levenberg

Marquardt algorithm over GPU-CPU for three different sets of real frames captured by

UAS.

Test Final error (GPU-CPU)

2

21
ˆˆ

k

kk

x

xx 

Final error (CPU)

2

21
ˆˆ

k

kk

x

xx 

Total

Processing

Time on

GPU-CPU

(sec)

Total

Processing

Time on CPU

(sec)

Test #1: color frames of

a road and forest.

0.009512 0.016835 10.547 17.485

Test #2: IR frames of

buildings

0.005004 0.004181 9.328 11.766

Test #3: IR frames of a

forest.

0.004392 0.005295 9.266 11.391

(a)

(b)

(c)

(d)

Figure 74. Results of SR mosaicking for real frames from UAS using the Levenberg

Marquardt algorithm implemented over GPU-CPU. The mosaics were constructed using

five frames. Figures (a) and (c) show the mosaics for the first and second sets of frames,

respectively. These mosaics are the input to the algorithm. (b) and (d) are the super-

resolved mosaics of (a) and (c), respectively. These mosaics are the output of the

proposed Levenberg Marquardt super-resolution mosaicking algorithm.

134

6.5 Conclusions

The use of GPU for a highly computation step in the super-resolution mosaicking

process decreases the computational time significantly. The results for most of the tests

performed are quite similar to those obtained using CPU. Conversely, for the first set of

synthetic images, the PSNR of the super-resolved mosaics using only CPU are much

better than using GPU-CPU for all the three algorithms: steepest descent, conjugate

gradient, and Levenberg Marquardt.

The use of GPU for the computation of the homography is at least 50 times faster

than using CPU. The computation time in the construction of the super-resolved mosaic

can be reduced even more, if more functions are moved from CPU to GPU.

The use of MPEG I-frames reduces the accumulation of error, which is inherent to

the projection model, in the computation of the video mosaic.

135

CHAPTER 7

CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH

This dissertation investigated super-resolution mosaicking of video frames

captured by UAS. Additionally, a focus on reducing the computational time using GPU

was explained. Since most of the tests were performed with real data and with actual size

frames captured by modern video cameras, this research can be applied almost

immediately applied to actual commercial or military surveillance data. A summary of

the contributions and their importance to image and video processing will be discussed in

the next sections.

7.1 Summary of Research Contributions

The background information presented in Chapter 2, combined with a brief

tutorial for the regularization methods presented in Chapter 3, provided a complete and

accessible introduction to the computation of video mosaic and super-resolution mosaics.

Additionally, Chapter 2 provided a comprehensive survey of the literature on multi-frame

super-resolution reconstruction and mosaicking.

Chapter 4 explained the reason why SIFT was chosen to be the feature detector.

Also, Chapter 4 explained how to compute the computation of the homography with sub-

pixel accuracy. This accuracy is important for both super-resolution and mosaicking.

Furthermore, a detailed explanation of the construction of video and image mosaicking

was given. The use of MPEG I-frames instead of all frames in the construction of video

136

mosaics was also explained and how this can help to reduce distortion was shown in

Chapter 6.

Chapter 5 used a novel framework to compute super-resolution mosaics. This

framework is based on the iterative back projection method [24], and image operators

including convolution, warping, and down-sampling. Also, this framework adds a

regularization term based on cliques over the estimated super-resolution mosaic, using

the Huber function to incorporate prior information. The computation of the Lagrange

multiplier was performed using cliques and the Huber function, but without the

construction of sparse matrices. Also, this computation of the Lagrange multiplier is

robust to mis-registration that always occurs when dealing with real UAS surveillance

video frames. Three different optimization algorithms were used to find the super-

resolution mosaics: 1) steepest descent, 2) conjugate gradient, and 3) Levenberg

Marquardt. This last method is a novel algorithm proposed in this dissertation for super-

resolution mosaicking. The results showed a great improvement in the resolution in both

color and gray pixel levels.

Chapter 6 presented the use of GPU in the computation of super-resolution

mosaics. Basically, GPU is used to solve the bottleneck in the entire process of the

construction of super-resolution mosaics, which is the image registration step. The results

showed that the GPU is more than 50 times faster than the CPU. Then, the CPU takes the

results of the registration, called the homography, to continue with the reprojection and

the solution to the optimization problem using the three algorithms of Chapter 5. A

comparison of the results of video mosaicking and super-resolution mosaicking using

GPU-CPU and the CPU alone were provided. Here, the GPU-CPU implementation

137

reduces significantly the computational time and the visual results are slightly inferior

compared to using only CPU.

138

7.2 Future Research

A number of potential research avenues exist related to the topics addressed in

this dissertation for improvements to the presented research:

 The parameters)(n , for the steepest descent algorithm, and the parameter

)(n , for the conjugate gradient algorithm , were set to a fixed values in every

iteration. These parameters can be computed iteratively to create a more

adaptive algorithm.

 Different prior information can be used, such as Gaussian, Lorentzian, or

others that introduce good prior information for the computation of super-

resolution mosaics.

 The framework used allows for the implementation of any optimization

algorithm with no need for using sparse matrices. The following algorithms

can be also used with the framework proposed in this dissertation: Gauss-

Newton, Quasi Newton’s, and Davidson Fletcher-Powell.

 The PSF was assumed known a priori, but it can be estimated using “blind”

deconvolution as was used in [45,46].

 Geo-referenced super-resolution mosaicking can be performed based on the

information detailed in Chapters 4 and 5. The use of the particle filter can also

be used to estimate the pose of the mosaic. Geo-referenced mosaics have a

number of applications. They can be used for tracking recognition, for target

detection, and for mapping a certain area in Google Earth. The advantage over

Google Earth is that it will increase the resolution of the data.

139

 Bundle adjustment can be used to correct the error propagation in the

construction of the video mosaics. This bundle adjustment can also be tied to

the construction of the geo-referenced mosaic.

 Speed up can be increased with the use of more GPUs in parallel and also if

more of the functions are implemented on the GPU side. Therefore, real-time

super-resolution mosaicking of actual UAS video frames can be achieved with

today’s hardware.

APPENDICES

141

Appendix A

Use of MPEG I-frames for Video Processing Using FFMPEG

142

/* --Sparse Optical Flow Demo Program--

 * Written by David Stavens (david.stavens@ai.stanford.edu)

 * Modified by Aldo Camargo (aldo.camargo@und.edu) to work with only I frames (

using ffmpeg library) and generates

 * a video output in avi, the input could be any video format (I tested with AVI and

MPEG formats)

 */

#include <stdio.h>

#include <cv.h>

#include <highgui.h>

#include <math.h>

#include <ffmpeg/avcodec.h> //add to work with ffmpeg

#include <ffmpeg/avformat.h> //add to work with ffmpeg

static const double pi = 3.14159265358979323846;

inline static double square(int a)

{

 return a * a;

}

/* This is just an inline that allocates images. I did this to reduce clutter in the

 * actual computer vision algorithmic code. Basically it allocates the requested image

 * unless that image is already non-NULL. It always leaves a non-NULL image as-is

even

 * if that image's size, depth, and/or channels are different than the request.

 */

inline static void allocateOnDemand(IplImage **img, CvSize size, int depth, int

channels)

{

 if (*img != NULL) return;

 *img = cvCreateImage(size, depth, channels);

 if (*img == NULL)

 {

 fprintf(stderr, "Error: Couldn't allocate image. Out of memory?\n");

 exit(-1);

 }

}

void SaveFrame(AVFrame *pFrame, int width, int height, int iFrame) {

 FILE *pFile;

 char szFilename[32];

 int y;

 // Open file

143

 sprintf(szFilename, "frame%d.ppm", iFrame);

 pFile=fopen(szFilename, "wb");

 if(pFile==NULL)

 return;

 // Write header

 fprintf(pFile, "P6\n%d %d\n255\n", width, height);

 // Write pixel data

 for(y=0; y<height; y++)

 fwrite(pFrame->data[0]+y*pFrame->linesize[0], 1, width*3, pFile);

 // Close file

 fclose(pFile);

}

int main(int argc, char *argv[])

{

 AVFormatContext *pFormatCtx;

 AVCodecContext *pCodecCtx;

 AVCodec *pCodec;

 AVFrame *pFrame;

 AVFrame *pFrameRGB;

 int numBytes;

 uint8_t *buffer;

 int i, videoStream;

 AVPacket packet;

 int frameFinished;

 int j;

 float framerate;

/////

///// This is the first part of the OpenCV Initialization

/////

 if (argc != 2)

 {

 fprintf(stderr, "usage: %s input.avi\n", argv[0]);

 return -1;

 }

 /* Step 1: Open Input Video */

 /* Create an object that decodes the input video stream. */

 CvCapture *input_video = cvCaptureFromFile(argv[1]);

 if (input_video == NULL)

 {

144

 /* Either the video didn't exist OR it uses a codec OpenCV

 * doesn't support.

 */

 fprintf(stderr, "Error: Can't open video.\n");

 return -1;

 }

 ////

 //// Initialization of ffmpeg

 ////

 // Register all formats and codecs

 av_register_all();

// Open video file

 if(av_open_input_file(&pFormatCtx, argv[1], NULL, 0, NULL)!=0)

 return -1; // Couldn't open file

 // Retrieve stream information

 if(av_find_stream_info(pFormatCtx)<0)

 return -1; // Couldn't find stream information

 // Dump information about file onto standard error

 dump_format(pFormatCtx, 0, argv[1], 0);

 // Find the first video stream

 videoStream=-1;

 for(i=0; i<pFormatCtx->nb_streams; i++)

 if(pFormatCtx->streams[i]->codec->codec_type==CODEC_TYPE_VIDEO) {

 videoStream=i;

 break;

 }

 if(videoStream==-1)

 return -1; // Didn't find a video stream

 // Get a pointer to the codec context for the video stream

 pCodecCtx=pFormatCtx->streams[videoStream]->codec;

 // Find the decoder for the video stream

 pCodec=avcodec_find_decoder(pCodecCtx->codec_id);

 if(pCodec==NULL) {

 fprintf(stderr, "Unsupported codec!\n");

 return -1; // Codec not found

 }

 // Open codec

 if(avcodec_open(pCodecCtx, pCodec)<0)

145

 return -1; // Could not open codec

 // Allocate video frame

 pFrame=avcodec_alloc_frame();

 // Allocate an AVFrame structure

 pFrameRGB=avcodec_alloc_frame();

 if(pFrameRGB==NULL)

 return -1;

 // Determine required buffer size and allocate buffer

 numBytes=avpicture_get_size(PIX_FMT_RGB24, pCodecCtx->width,

 pCodecCtx->height);

 buffer=(uint8_t *)av_malloc(numBytes*sizeof(uint8_t));

 // Assign appropriate parts of buffer to image planes in pFrameRGB

 // Note that pFrameRGB is an AVFrame, but AVFrame is a superset

 // of AVPicture

 avpicture_fill((AVPicture *)pFrameRGB, buffer, PIX_FMT_RGB24,

 pCodecCtx->width, pCodecCtx->height);

////

//// End of ffmpeg initialization

////

/////

///// OpenCV Initialization

/////

 cvQueryFrame(input_video);

 /* Step 2: Read AVI Properties */

 /* Read the video's frame size out of the AVI. */

 CvSize frame_size;

 frame_size.height =

 (int) cvGetCaptureProperty(input_video,

CV_CAP_PROP_FRAME_HEIGHT);

 frame_size.width =

 (int) cvGetCaptureProperty(input_video,

CV_CAP_PROP_FRAME_WIDTH);

 framerate = (float)cvGetCaptureProperty(input_video, CV_CAP_PROP_FPS);

 /* Determine the number of frames in the AVI. */

 long number_of_frames;

 /* Go to the end of the AVI (ie: the fraction is "1") */

 cvSetCaptureProperty(input_video, CV_CAP_PROP_POS_AVI_RATIO, 1.);

146

 /* Now that we're at the end, read the AVI position in frames */

 number_of_frames = (int) cvGetCaptureProperty(input_video,

CV_CAP_PROP_POS_FRAMES);

 printf("\n The total number of frames is %d \n", number_of_frames);

 /* Return to the beginning */

 cvSetCaptureProperty(input_video, CV_CAP_PROP_POS_FRAMES, 0.);

///

/// Optical flow

///

 /* Create a windows called "Optical Flow" for visualizing the output.

 * Have the window automatically change its size to match the output.

 */

 cvNamedWindow("Optical Flow", CV_WINDOW_AUTOSIZE);

 long current_frame = 0;

/// ffmpeg ////

 // Read frames and save first five frames to disk

 i=0;

 j=0;

CvVideoWriter *output = cvCreateVideoWriter("../../video2test/output.avi",

CV_FOURCC('D', 'I', 'V', 'X'), framerate, cvSize(frame_size.width,frame_size.height),1);

 while(av_read_frame(pFormatCtx, &packet)>=0) {

 // Is this a packet from the video stream?

 if(packet.stream_index==videoStream) {

///

// Decode video frame

 avcodec_decode_video(pCodecCtx, pFrame, &frameFinished,

packet.data, packet.size);

// Did we get a video frame?

 if(frameFinished) {

 if(pFrame->pict_type == FF_I_TYPE) { // is the frame I frame ?

// while(1)

// {

 static IplImage *frame = NULL, *frame1 = NULL, *frame1_1C = NULL,

*frame2_1C = NULL, *eig_image = NULL, *temp_image = NULL, *pyramid1 =

NULL, *pyramid2 = NULL;

 /* Go to the frame we want. Important if multiple frames are queried in

 * the loop which they of course are for optical flow. Note that the very

147

 * first call to this is actually not needed. (Because the correct position

 * is set outsite the for() loop.)

 */

 current_frame = pFrame->coded_picture_number/number_of_frames;

 //cvSetCaptureProperty(input_video, CV_CAP_PROP_POS_FRAMES,

current_frame);

 cvSetCaptureProperty(input_video, CV_CAP_PROP_POS_AVI_RATIO,

current_frame);

 printf("\n The current frame is %d: \n " , pFrame-

>coded_picture_number);

 /* Get the next frame of the video.

 * IMPORTANT! cvQueryFrame() always returns a pointer to the _same_

 * memory location. So successive calls:

 * frame1 = cvQueryFrame();

 * frame2 = cvQueryFrame();

 * frame3 = cvQueryFrame();

 * will result in (frame1 == frame2 && frame2 == frame3) being true.

 * The solution is to make a copy of the cvQueryFrame() output.

 */

 frame = cvQueryFrame(input_video);

 if (frame == NULL)

 {

 /* Why did we get a NULL frame? We shouldn't be at the end. */

 fprintf(stderr, "Error: Hmm. The end came sooner than we

thought.\n");

 return -1;

 }

 /* Allocate another image if not already allocated.

 * Image has ONE channel of color (ie: monochrome) with 8-bit "color"

depth.

 * This is the image format OpenCV algorithms actually operate on

(mostly).

 */

 allocateOnDemand(&frame1_1C, frame_size, IPL_DEPTH_8U, 1);

 /* Convert whatever the AVI image format is into OpenCV's preferred

format.

 */

 cvConvertImage(frame, frame1_1C, 0);

 /* We'll make a full color backup of this frame so that we can draw on it.

 * (It's not the best idea to draw on the static memory space of

cvQueryFrame().)

 */

148

 allocateOnDemand(&frame1, frame_size, IPL_DEPTH_8U, 3);

 cvConvertImage(frame, frame1, 0);

 /* Get the second frame of video. Same principles as the first. */

 frame = cvQueryFrame(input_video);

 if (frame == NULL)

 {

 fprintf(stderr, "Error: Hmm. The end came sooner than we

thought.\n");

 return -1;

 }

 allocateOnDemand(&frame2_1C, frame_size, IPL_DEPTH_8U, 1);

 cvConvertImage(frame, frame2_1C, 0);

 /* Shi and Tomasi Feature Tracking! */

 /* Preparation: Allocate the necessary storage. */

 allocateOnDemand(&eig_image, frame_size, IPL_DEPTH_32F, 1);

 allocateOnDemand(&temp_image, frame_size, IPL_DEPTH_32F, 1);

 /* Preparation: This array will contain the features found in frame 1. */

 CvPoint2D32f frame1_features[400];

 /* Preparation: BEFORE the function call this variable is the array size

 * (or the maximum number of features to find). AFTER the function call

 * this variable is the number of features actually found.

 */

 int number_of_features;

 /* I'm hardcoding this at 400. But you should make this a #define so that

you can

 * change the number of features you use for an accuracy/speed tradeoff

analysis.

 */

 number_of_features = 400;

 /* Actually run the Shi and Tomasi algorithm!!

 * "frame1_1C" is the input image.

 * "eig_image" and "temp_image" are just workspace for the algorithm.

 * The first ".01" specifies the minimum quality of the features (based on

the eigenvalues).

 * The second ".01" specifies the minimum Euclidean distance between

features.

 * "NULL" means use the entire input image. You could point to a part of

the image.

 * WHEN THE ALGORITHM RETURNS:

 * "frame1_features" will contain the feature points.

149

 * "number_of_features" will be set to a value <= 400 indicating the

number of feature points found.

 */

 cvGoodFeaturesToTrack(frame1_1C, eig_image, temp_image,

frame1_features, &number_of_features, .01, .01, NULL,3,0,0.04);

 /* Pyramidal Lucas Kanade Optical Flow! */

 /* This array will contain the locations of the points from frame 1 in frame

2. */

 CvPoint2D32f frame2_features[400];

 /* The i-th element of this array will be non-zero if and only if the i-th

feature of

 * frame 1 was found in frame 2.

 */

 char optical_flow_found_feature[400];

 /* The i-th element of this array is the error in the optical flow for the i-th

feature

 * of frame1 as found in frame 2. If the i-th feature was not found (see the

array above)

 * I think the i-th entry in this array is undefined.

 */

 float optical_flow_feature_error[400];

 /* This is the window size to use to avoid the aperture problem (see slide

"Optical Flow: Overview"). */

 CvSize optical_flow_window = cvSize(3,3);

 /* This termination criteria tells the algorithm to stop when it has either

done 20 iterations or when

 * epsilon is better than .3. You can play with these parameters for speed

vs. accuracy but these values

 * work pretty well in many situations.

 */

 CvTermCriteria optical_flow_termination_criteria

 = cvTermCriteria(CV_TERMCRIT_ITER |

CV_TERMCRIT_EPS, 20, .3);

 /* This is some workspace for the algorithm.

 * (The algorithm actually carves the image into pyramids of different

resolutions.)

 */

 allocateOnDemand(&pyramid1, frame_size, IPL_DEPTH_8U, 1);

 allocateOnDemand(&pyramid2, frame_size, IPL_DEPTH_8U, 1);

150

 /* Actually run Pyramidal Lucas Kanade Optical Flow!!

 * "frame1_1C" is the first frame with the known features.

 * "frame2_1C" is the second frame where we want to find the first frame's

features.

 * "pyramid1" and "pyramid2" are workspace for the algorithm.

 * "frame1_features" are the features from the first frame.

 * "frame2_features" is the (outputted) locations of those features in the

second frame.

 * "number_of_features" is the number of features in the frame1_features

array.

 * "optical_flow_window" is the size of the window to use to avoid the

aperture problem.

 * "5" is the maximum number of pyramids to use. 0 would be just one

level.

 * "optical_flow_found_feature" is as described above (non-zero iff

feature found by the flow).

 * "optical_flow_feature_error" is as described above (error in the flow for

this feature).

 * "optical_flow_termination_criteria" is as described above (how long the

algorithm should look).

 * "0" means disable enhancements. (For example, the second array isn't

pre-initialized with guesses.)

 */

 cvCalcOpticalFlowPyrLK(frame1_1C, frame2_1C, pyramid1, pyramid2,

frame1_features, frame2_features, number_of_features, optical_flow_window, 5,

optical_flow_found_feature, optical_flow_feature_error,

optical_flow_termination_criteria, 0);

 /* For fun (and debugging :)), let's draw the flow field. */

 for(i = 0; i < number_of_features; i++)

 {

 /* If Pyramidal Lucas Kanade didn't really find the feature, skip it.

*/

 if (optical_flow_found_feature[i] == 0) continue;

 int line_thickness; line_thickness = 1;

 /* CV_RGB(red, green, blue) is the red, green, and blue

components

 * of the color you want, each out of 255.

 */

 CvScalar line_color; line_color =

CV_RGB(255,0,0);

 /* Let's make the flow field look nice with arrows. */

151

 /* The arrows will be a bit too short for a nice visualization

because of the high framerate

 * (ie: there's not much motion between the frames). So let's

lengthen them by a factor of 3.

 */

 CvPoint p,q;

 p.x = (int) frame1_features[i].x;

 p.y = (int) frame1_features[i].y;

 q.x = (int) frame2_features[i].x;

 q.y = (int) frame2_features[i].y;

 double angle; angle = atan2((double) p.y - q.y, (double)

p.x - q.x);

 double hypotenuse; hypotenuse = sqrt(square(p.y - q.y) +

square(p.x - q.x));

 /* Here we lengthen the arrow by a factor of three. */

 q.x = (int) (p.x - 3 * hypotenuse * cos(angle));

 q.y = (int) (p.y - 3 * hypotenuse * sin(angle));

 /* Now we draw the main line of the arrow. */

 /* "frame1" is the frame to draw on.

 * "p" is the point where the line begins.

 * "q" is the point where the line stops.

 * "CV_AA" means antialiased drawing.

 * "0" no fractional bits in the center cooridinate or radius.

 */

 cvLine(frame1, p, q, line_color, line_thickness, CV_AA, 0);

 /* Now draw the tips of the arrow. I do some scaling so that the

 * tips look proportional to the main line of the arrow.

 */

 p.x = (int) (q.x + 9 * cos(angle + pi / 4));

 p.y = (int) (q.y + 9 * sin(angle + pi / 4));

 cvLine(frame1, p, q, line_color, line_thickness, CV_AA, 0);

 p.x = (int) (q.x + 9 * cos(angle - pi / 4));

 p.y = (int) (q.y + 9 * sin(angle - pi / 4));

 cvLine(frame1, p, q, line_color, line_thickness, CV_AA, 0);

 }

 /* Now display the image we drew on. Recall that "Optical Flow" is the

name of

 * the window we created above.

 */

 cvShowImage("Optical Flow", frame1);

 /* And wait for the user to press a key (so the user has time to look at the

image).

152

 * If the argument is 0 then it waits forever otherwise it waits that number

of milliseconds.

 * The return value is the key the user pressed.

 */

 //int key_pressed;

 //key_pressed = cvWaitKey(0);

 cvWriteFrame(output, frame1);

 /* If the users pushes "b" or "B" go back one frame.

 * Otherwise go forward one frame.

 */

 // if (key_pressed == 'b' || key_pressed == 'B') current_frame--;

 // else current_frame++;

 /* Don't run past the front/end of the AVI. */

 //if (current_frame < 0) current_frame = 0;

 //if (current_frame >= number_of_frames - 1) current_frame =

number_of_frames - 2;

 } // end of the if for the I frame

 } //end of if(frameFinished)

// } //end while(1) of OpenCV

 } // end of if ffmpeg

 // Free the packet that was allocated by av_read_frame

 av_free_packet(&packet);

 } // end of while ffmpeg

 // Free the RGB image

 av_free(buffer);

 av_free(pFrameRGB);

 // Free the YUV frame

 av_free(pFrame);

 // Close the codec

 avcodec_close(pCodecCtx);

 // Close the video file

 av_close_input_file(pFormatCtx);

 cvReleaseVideoWriter(&output);

 return 0;

}

153

REFERENCES

[1] Levmar : "Levenberg-Marquardt nolinear least squares algorithms in C/C++".

http://www.ics.forth.gr/~lourakis/levmar/

[2] General-Purpose Computation on Graphics Hardware

(GPGPU).http://gpgpu.org/.

[3] Mårten Björkman. School of Computer Science and Communication. "A

CUDA implementation of SIFT". http://www.csc.kth.se/~celle/

[4] Rob Hess. School of EECS at the Oregon State University. "SIFT feature

detector". http://web.engr.oregonstate.edu/~hess/.

[5] CUDA Zone. NVIDIA. http://www.nvidia.com/object/cuda_home_new.

[6] OpenCL - The open standard for parallel programming of heterogeneous

systems. Khronos group.http://www.khronos.org/opencl/

[7] S. Borman. Topics in Multiframe Superresolution Restoration. PhD

dissertation, University of Notre Dame, Notre Dame, Indiana, May 2004.

[8] M. C. Chiang and T. E. Boulte, “Efficient Super-Resolution Image via Image

Warping,” Image Vis. Comput., vol. 18, no. 10, July 2000.

[9] M. Elad and Y. Hel-Or, “A Fast Super-Resolution Reconstruction Algorithm

for Pure Translational Motion and Common Space Invariant Blur.” IEEE

Trans. Image Processing, vol. 10, Aug. 2001.

[10] M. Irani, B. Rousso, and S. Peleg, “Computing Occluding and Transparent

Motions.” International Journal of Computer Vision, vol. 12, no. 1, pp. 5-16,

Feb. 1994.

[11] D. Keren, S. Peleg, and R. Brada, “Image Sequence Enhancement Using Sub-

Pixel Displacements.” Proceedings of IEEE Computer Society Conference on

Computer Vision and Pattern Recognition (CVPR ‘88), pp. 742–746, Ann

Arbor, Michigan, June 1988.

[12] A. Zomet, A. Rav-Acha, and S. Peleg, “Robust Superresolution.” Proceedings

of IEEE Computer Society Conference on Computer Vision and Pattern

Recognition (CVPR ‘01), vol. 1, pp. 645–650, Kauai, Hawaii, Dec. 2001.

154

[13] R. Y. Tsai and T. S. Huang, “Multiframe Image Restoration and

Registration.” In Advances in Computer Vision and Image Processing, vol. 1,

chapter 7, pp. 317–339, JAI Press, Greenwich, Connecticut 1984.

[14] P. Vandewalle, S. Susstrunk, and M. Vetterli, “A Frequency Domain

Approach to Registration of Aliased Images with Application to Super-

Resolution.” EURASIP Journal on Applied Signal Processing, vol. 2006, pp.

1-14, Article ID 71459.

[15] Sung Cheol Park, Min Kyu Park, and Moon Gi Kang, “Super-Resolution

Image Reconstruction: A Technical Overview.” IEEE Signal Processing

Magazine, May 2003.

[16] Sina Farsiu. “A Fast and Robust Framework for Image Fusion and

Enhancement.” PhD dissertation, University of California Santa Cruz,

December 2005.

[17] J. Hadamard, Lectures on the Cauchy Problem in Linear Partial Differential

Equations. Yale University Press, New Haven, CT (1923).

[18] R.Y. Tsai and T.S. Huang, “Multipleframe image restoration and

registration.” Advances in Computer Vision and Image Processing.

Greenwich, CT:JAI Press Inc., 1984, pp. 317-339.

[19] Lyndsey C. Pickup. Machine Learning in Multiframe Image Super-resolution.

PhD dissertation, University of Oxford, Oxford, United Kingdom, 2007.

[20] B. C. Tom and A. K. Katsaggelos. “Reconstruction of a high-resolution image

by simultaneous registration, restoration, and interpolation of low-resolution

images.” In Proceedings of the IEEE International Conference on Image

Processing (ICIP), pages 2539–2542, 1995.

[21] B. C. Tom, A. K. Katsaggelos, and N. P. Galatsanos. “Reconstruction of a

highresolution image from registration and restoration of low resolution

images.” In Proceedings of the IEEE International Conference on Image

Processing(ICIP), pages 553–557, 1994.

[22] D. Keren, S. Peleg, and R. Brada. “Image sequence enhancement using

subpixel displacements.” In IEEE Conference on Computer Vision and

Pattern Recognition, pages 742–746, Ann Arbor, MI, June 1988.

[23] S. Peleg, D. Keren, and L. Schweitzer. “Improving image resolution using

subpixel motion.” Pattern Recognition Letters, 5(3):223–226, 1987..

[24] M. Irani and S. Peleg. “Improving resolution by image registration.”

Graphical Models and Image Processing, 53:231–239, 1991.

155

[25] M. Irani and S. Peleg. “Motion analysis for image enhancement:resolution,

occlusion, and transparency.” Journal of Visual Communication and Image

Representation, 4:324–335, 1993.

[26] A. Zomet, A. Rav-Acha, and S. Peleg. “Robust super-resolution”. In

Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, Kauai, Hawaii, pages 645–650, December 2001.

[27] H. Stark and P. Oskoui. “High resolution image recovery from image-plane

arrays, using convex projections.” J. Opt. Soc. Am. A, 6(11):1715–1726,

1989.

[28] M. Elad and A. Feuer. “Super-resolution reconstruction of continuous image

sequences.” In ICIP, pages 817–834, Kobe, Japan, October 1999.

[29] M. Elad and A. Feuer. “Super-resolution reconstruction of image sequences.”

IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(9):817–

834, 1999.

[30] M. Elad and A. Feuer. “Super-resolution restoration of continuous image

sequence adaptive filtering approach.” IEEE Tranactions on Image

Processing, 8(3):387–395, March 1999.

[31] D. P. Capel. “Image Mosaicing and Super-resolution.” PhD thesis, University

of Oxford, Oxford, United Kingdom, 2001.

[32] A. J. Patti, M. I. Sezan, and A. M. Tekalp. “Super resolution video

reconstruction with arbitrary sampling lattices and nonzero aperture time.”

IEEE Transactions on Image Processing, pages 1064–1078, August 1997.

[33] R. R. Schultz and R. L. Stevenson. “A bayesian approach to image expansion

for improved definition.” IEEE Transactions on Image Processing, 3(3):233–

242, 1994.

[34] R. R. Schultz and R. L. Stevenson. “Extraction of high-resolution frames from

video sequences.” IEEE Transactions on Image Processing, 5(6):996–1011,

June 1996.

[35] S. Farsiu, M. Elad, and P. Milanfar. “A practical approach to super-

resolution.” In Proc. of the SPIE: Visual Communications and Image

Processing, San-Jose, 2006.

[36] S. Farsiu, D. Robinson, M. Elad, and P. Milanfar. “Robust shift and add

approach to super-resolution.” In Proc. of the 2003 SPIE Conf. on

Applications of Digital Signal and Image Processing, pages 121–130, August

2003.

156

[37] S. Farsiu, D. Robinson, M. Elad, and P. Milanfar. “Advances and challenges

in super-resolution.” International Journal of Imaging Systems and

Technology, Special Issue on High Resolution Image Reconstruction,

14(2):47–57, August 2004.

[38] S. Farsiu, M. D. Robinson, M. Elad, and P. Milanfar. “Fast and robust

multiframe super resolution.” Image Processing, 13(10):1327–1344, October

2004.

[39] D. Capel and A. Zisserman. “Automated mosaicing with super-resolution

zoom.” In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, Santa Barbara, pages 885–891, June 1998.

[40] D. P. Capel and A. Zisserman. “Super-resolution enhancement of text image

sequences.” In Proceedings of the International Conference on Pattern

Recognition, pages 600–605, 2000.

[41] S. Baker and T. Kanade. “Super-resolution: Reconstruction or recognition?”

In IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing,

Baltimore,Maryland, June 2001. IEEE.

[42] S. Baker and T. Kanade. “Limits on super-resolution and how to break them.”

IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(9):1167–

1183, 2002.

[43] N. Nguyen. “Numerical Algorithms for Image Superresolution.” PhD

dissertation, Stanford University,California, July 2000.

[44] Filip Sroubek, Michael Sorel, Jiru Boldys, and Jan Flusser. “PET Image

Reconstruction Using Prior Information from CT or MRI.” Proceedings of the

IEEE 16th International Conference on Image Processing ICIP 2009. Cairo.

[45] Filip Sroubek and Jan Flusser. “Multichannel Blind Iterative Image

Restoration.” IEEE Transactions on Image Processing, Vol. 12. N0 9.

September 2003.

[46] Filip Sroubek and Jan Flusser. “Multichannel Blind Deconvolution of

Spatially Misaligned Images.” IEEE Transactions on Image Processing, Vol.

14. N0 7. July 2005

[47] Jiang Tian and Kai-Kuang Ma. “Markov Chain Monte Carlo Super-resolution

Image Reconstruction With Artifacts Suppression.” APCCAS 2006. IEEE

Asia Pacific Conference on.

[48] M. Irani, P. Anandan, J. Bergen, R. Kumar, and S. Hsu. “Efficient

representations of video sequences and their applications.” Signal Processing:

Image Communication, 8(4):327-351,May 1996.

157

[49] M. Irani, P. Anandan, and S. Hsu. “Mosaic based representations of video

sequences and their applications.” In Proc. 5th International Conference on

Computer Vision, Boston, pages 605-611, 1995.

[50] R. Kumar, P. Anandan, M. Irani, J. Bergen, and K. Hanna. “Representation of

scenes from collections of images.” In ICCVWorkshop on the Representation

of Visual Scenes, 1995.

[51] S. Peleg. “Panoramic mosaics by manifold projection.” Technical report,

Hebrew University of Jerusalem, 1997.

[52] S. Peleg, B. Rousso, A. Rav-Acha, and A. Zomet. “Mosaicing with strips on

adaptive manifolds.” In Panoramic Vision: Sensors, Theory, Applications,

pages 309?325, 2001.

[53] S.B. Kang and R. Szeliski. “3 D scene data recovery using omnidirectional

multibaseline stereo.” In Proc. IEEE Conference on Computer Vision and

Pattern Recognition, pages 364-370, 1996.

[54] R. Szeliski. “Image Mosaicing for Tele-Reality Applications.” Technical

Report 94/2, Digital Equipment Corporation, Cambridge Research Lab, June

1994.

[55] M. Brown and D.G. Lowe. “Recognising Panoramas,” International

Conference on Computer Vision (ICCV 2003), Nice France (October 2003),

pp. 1218-25.

[56] W. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgibbon. “Bundle

Adjustment: A Modern Synthesis.” In Vision Algorithms: Theory and

Practice, number 1883 in LNCS, pages 298–373. Springer-Verlag,

Corfu,Greece, September 1999.

[57] P. J. Burt and E. H. Adelson. “A multiresolution spline with application to

image mosaics.” ACM Transactions on Graphics, 2(4):217–236, 1983.

[58] J. Keller. “Inverse problems.” American Mathematical Monthly, 83(2):

107{118(February 1976).

[59] A. Tikhonov and V. Arsenin, “Solutions of Ill-Posed Problems.” V. H.

Winston & Sons, Washington, D.C. (1977).

[60] M. Hanke and P. Hansen. “Regularization methods for large-scale problems.”

Survey on Mathematics for Industry, 3:253-315, 1993

[61] Richard R.Schultz. “Multichannel Stochastic Image Models: Theory,

Applications and Implementations.” PhD dissertation. University of Notre

Dame, Indiana.

158

[62] He Qiang, Richard Schultz, Aldo Camargo, Yi Wang and Florent Martel.

“Super-resolution image reconstruction from UAS surveillance video through

affine invariant interest point-based motion estimation.” Proc. SPIE

6968(2008).

[63] M. Fischler and R. Bolles. “Random sample consensus: A paradigm for model

fitting with application to image analysis and automated cartography.”

Communications of the ACM, 24: 381-395, 1981.

[64] Fernando Caballero, Luis Merino Joaquin Ferruz, and Anibal Ollero.

“Homography Based Kalman Filter for Mosaic Building. Applications to

UAV postion estimation.” 2007 IEEE International Conference on Robotics

and Automation. Roma, Italy, April 2007.

[65] R. Szeliski, “Bayesian Modeling of Uncertainty in Low-Level Vision.”

Kluwer Academic Publishers, 1989.

[66] G. Wahba. “Practical approximate solutions to linear operators equations

when the data are noisy.” SIAM J. Numer. Anal., 14:651-667, 1977.

[67] P. Mcintosh and G. Veronis. “Solving underdetermined tracer inverse

problems by spatial smoothing and cross validation.” Journal of Physical

Oceanography, 23:716 730, Apr. 1993.

[68] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” in

Proceedings of IEEE Int.Conf. on Computer Vision, pp. 836–846, Jan. 1998.

[69] M. Elad, “On the bilateral filter and ways to improve it,” IEEE Trans. Image

Processing 11, pp. 1141–1151, Oct. 2002.

[70] N. Nguyen, P. Milanfar, and G. Golub. “Blind superresolution with

generalized cross-validation using gauss-type quadrature rules.” In

Proceedings of the 33rd Asilomar Conference on Signals, Systems, and

Computers, October 1999.

[71] EURASIP Journal on Advances in Signal Processing Volume 2010 (2010),

Article ID 508089, 10 pages

[72] R. I. Hartley and A. Zisserman. “Multiple View Geometry in Computer

Vision.” Cambridge University Press, ISBN: 0521623049, 2000.

[73] Krystian Mikolajczyk and Cordelia Schmid. “A Performance Evaluation of

Local Descriptors.” IEEE Transactions of Pattern Analysis and Machine

Intelligence. Vol.27 No 10, October 2005.

[74] Benny Rousso, Shmuel Peleg, and Ilan Finci. “Video Mosaicking using

Manifold Projection.” British Machine Vision Conference.

159

[75] Burt, P. J., and Adelson, E. H. “The Laplacian pyramid as a compact image

code.” IEEE Trans. Communications 31 (1983), 532–540.

[76] M. Brown and D. Lowe. “Automatic Panoramic Image Stitching using

Invariant Features.” International Journal of Computer Vision, 74(1), pages

59-73, 2007.

[77] Barry G. Haskell, Atul Puri, and Arun N. Netravali., [Digital Video: An

Introduction to MPEG-2], International Thomson Publishing, 149-152 (1997).

[78] Zhingang Zhu, Edward M. Riseman, Allen R. Hanson, and Howard

Schultz.”An efficient method for geo-referenced video mosaicing for

environmental monitoring,” Journal in Machine Vision and Applications, June

2005.

[79] Evan D. Andersen, and Clark N. Taylor. “Improving MAV Pose Estimation

Using Visual Information.” Proceedings of the IEEE/RSJ International

Conference on Intelligence Robots and Systems. San Diego, 2007.

[80] Evan D. Andersen. “A Surveillance System to Create and Distribute Geo-

Referenced Mosaics from SUAV Video.” Master Thesis, Brigham Young

University, UT.

[81] S. J. Julier and J. K. Uhlmann, “A new extension of the kalman filter to

nonlinear systems,” in The Proceedings of AeroSense: The 11th International

Symposium on Aerospace/Defense Sensing, Simulation and Controls, Multi

Sensor Fusion, Tracking and Resource Management II, 1997.

[82] G. H. Golub and C. F. Van Loan. “Matrix Computations.” The

JohnsHopkinsUniversity Press, Baltimore, MD, second edition, 1989.

[83] Mark Pickering, Getian Ye, Michael Frater and Jhon Arnold. “A Transform-

Domain Approach to Super-Resolution Mosaicing of Compressed Images.”

4th AIP International Conference and the 1st Congress of the IPIA. Journal of

Physics: Conference Series 124 (2008) 012039.

[84] Richard R Shultz, Li Meng, and Robert L. Stevenson. “Subpixel motion

estimation for multiframe resolution enhancement.” Visual Communication

and Image Processing 1997, pp 1317-1328.

[85] Assaf Zomet, and Shmuel Peleg. “Efficient Super-resolution and Applications

to Mosaics.” Proc of International Conference of Pattern Recognition, Sept

2000.

[86] Bryce B. Ready, Clark N. Taylor and Randal W. Beard. “A Kalman-filter

Based Method for Creation of Super-resolved Mosaicks.” Robotics and

Automation, 2006. UCRA 2006.

160

[87] Aljoscha Smolic and Thomas Wiegand. “High-resolution video mosaicing.”

Proc. ICIP2001, IEEE International Conference on Image Processing,

Thesaloniki, Greece, October 2001.

[88] D. Terzopoulos, “Regularization of inverse visual problems involving

discontinuities.” IEEE Transactions on Pattern Analysis and Machine

Intelligence, PAMI-8(4), 1986, 413–424. Reprinted in Computer Vision:

Advances and Applications R. Kasturi and R. Jain (eds.), IEEE Computer

Society Press, Los Alamitos, CA, 1991, 183–194.

[89] R.I. Hartley. “In defense of the eight-point algorithm.” In IEEE Transactions

on Pattern Analysis and Machine Intelligence, pages 580-593, October 1997.

[90] TASE Gimbal Data sheet. Cloud Cap Technology. TASE Gimbal Data sheet.

http://www.cloudcaptech.com/gimbal_tase.shtm.

[91] F. Dellaert, S. Thrun, and C. Thorpe, “Jacobian images of superresolved

texture maps for model-based motion estimation and tracking,” IEEE

Workshop on Applications of Computer Vision (WACV’98), 1998.

[92] Lowe, D. G., “Distinctive Image Features from Scale-Invariant Keypoints”,

International Journal of Computer Vision, 60, 2, pp. 91-110, 2004.

[93] Martin A. Fischler and Robert C. Bolles (June 1981). "Random Sample

Consensus: A Paradigm for Model Fitting with Applications to Image

Analysis and Automated Cartography". Comm. of the ACM 24: 381–395

[94] Yi Wang, Ronald Fevig and Richard R. Schultz. “Super-resolution

Mosaicking of UAV Surveillance Video” , ICIP 2008, pp 345-348, 2008.

[95] Zafer Arican and Pascal Frossard. “Joint Registration and Super-resolution

with Omnidirectional Images”. IEEE Transactions on Image Processing.

2009.

[96] Julianne Chung and James G. Nagy. “Nonlinear Least Squares and Super

Resolution”. Journal of Physics: Conference Series 124 (2008) 012019.

[97] D.W. Marquardt. An Algorithm for the Least-Squares Estimation of Nonlinear

Parameters. SIAM Journal of Applied Mathematics, 11(2):431–441, Jun.1963

http://www.cloudcaptech.com/gimbal_tase.shtm

