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ABSTRACT 

Mosaicking refers to the stitching of one or more correlated images, forming a 

much larger image of a scene. Super-resolution mosaicking refers to methods for 

enhancing the resolution of the mosaic, which can be affected by different sources of 

noise, as well as other effects such as camera translation and rotation. Methods to 

compute super-resolution mosaics use a low-resolution mosaic as an input. The mosaic 

can be generated from a panoramic view of a scene, digital video, satellite terrain 

imagery, surveillance footage, or images from many other sources. 

Unmanned Aircraft Systems (UAS) can be used for tracking and surveillance by 

exploiting the information captured by a digital imaging payload. Some of the most 

significant problems facing surveillance video captured by a small UAS aircraft (i.e., an 

airframe with a payload carrying capacity of less than 50 kilograms) include motion blur; 

the frame-to-frame movement induced by aircraft roll, wind gusts, and less than ideal 

atmospheric conditions; and the noise inherent within the image sensors. These effects 

have to be modeled to create a super-resolution mosaic from low-resolution UAS 

surveillance video frames, so that effective image analysis can be conducted. The goal of 

this dissertation is to perform super-resolution mosaicking of surveillance video captured 

by a UAS digital imaging payload, which involves recovering a high-resolution map of 

the region under surveillance using accurate camera and motion models with minimal 

computation for near-real-time operation. 
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This dissertation focuses on spatial domain methods based on image operators 

and iterated back-projection methods. We use a novel framework which does not require 

the construction of sparse matrices, efficient, robust, is independent (it constructs the 

super-resolution mosaic by itself from only video information), and is easy to implement. 

The results obtained in our simulations shows a great improvement of the resolution of 

the low resolution mosaic of up to 47.54 dB for synthetic images, and a great 

improvement in sharpness and visually details, for real UAS surveillance frame, in only 

ten iterations. 

Steepest descent, conjugate gradient and Levenberg Marquardt are used to solve 

the nonlinear optimization problem involved in the computation of super-resolution 

mosaic. A comparision in computation time and improvement in the resolution is 

peformed. The algorithm used for Levenberg Marquardt avoid the computation of the 

inverse of the pseudo Hessian matrix by solving a linear square problem using singular 

value decomposition (SVD). 

The use of the graphical processing unit (GPU) paradigm is used to speed up 

super-resolution mosaicking. Since, the registration step takes most of the time in feature 

based methods, we reduce this time by computing the SIFT features, matching and 

homography in the GPU. The remaining steps are performed over the CPUs (central 

processing unit).The speed up factor for the computation of the homography, used 

extensively in image registration and placement, is more than fifty times faster than using 

only CPUs. 
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CHAPTER  1  

INTRODUCTION 

This dissertation investigates sets of frames captured from UAS surveillance 

video, in which feature overlaps can be used to create a large image containing the entire 

view, with more resolution and details. The name for such techniques is super-resolution 

mosaicking. Using this, it is possible to extend the field of view beyond that of any single 

frame. The aim of this dissertation is to develop near-real-time, efficient, robust, 

independent, and automated frame super-resolution mosaiking with applications to UAS 

surveillance video. 

An essential step required to construct the super-resolution mosaic is image 

registration. The SIFT (Scale Invariant Feature Transform)[92] together with the 

RANSAC (Random Sample Consensus) [93], are used to estimated the homography, 

which gives us the image registration between two consecutive frames. But, SIFT takes a 

great deal of computational resources making the image registration slow, so it becomes 

the bottleneck for the computation of near-real-time super-resolution mosaics. For that 

reason, the graphical processing unit (GPU) is used to compute the image registration, 

showing a considerable speed up. 

Super-resolution mosaicking involves the understanding of both the generation of 

video mosaics and super-resolution reconstruction. Both of these areas have been studied 

by many researchers, and Chapter 2 will review the most important approaches. Most of 

these approaches have focused on small images (fewer number of pixels to process) and 
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synthetic images (images created with certain known parameters of motion, blur, and 

scaling). Conversely, this dissertation focuses on real video captured from a small UAS 

platform flown by the Unmanned Aircraft Systems Engineering (UASE) Laboratory at 

the University of North Dakota. 

1.1 Overview of the Dissertation 

Following this introduction, Chapter 2 presents some of the background theory 

necessary for a formal definition of the mosaicking and super-resolution problems. This 

chapter reviews the different approaches in the frequency and spatial domains. 

Chapter 3 reviews the different stochastic and deterministic regularization 

techniques used for the numerical computations involved in super-resolution 

reconstruction. Throughout this dissertation, the concept of the inverse problem and 

especially of the ill-posed inverse problem will recur. For this reason, a brief review of 

this interesting subject is provided. 

Chapter 4 details the construction of image and video mosaics. The use of MPEG 

I-frames are also detailed. Due to the fact that most of the real applications for video or 

image mosaicking for UAS also refer to the term “geo-referencing,” Chapter 4 details the 

construction of geo-referenced mosaics based on the information of three different 

sensors: GPS (Global Positioning Unit), IMU (Inertial Measurement Unit), and video 

frames. The fusion of these data is done using the unscented Kalman Filter (UKF) 

because of its generally good performance for non-linear systems. 

Chapter 5 details the construction of super-resolution mosaics by three different 

algorithms: steepest descent, conjugate gradient, and Levenberg Marquardt. All of these 

algorithms use a novel model to represent the super-resolution mosaic, where the 
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construction of the mosaic is represented by image operators. To solve the ill-posed 

inverse problem, a Huber prior is used. Also, the Lagrange multiplier is found using a 

robust method that does not require the construction of sparse matrices. The simulations 

were performed on both synthetic data, to be able to compute the PSNR qualitatively, and 

real frames captured by UAS to compare the results visually. Finally, a comparison 

between all three algorithms is shown; this comparison is based on visual quality and 

computation time. 

Chapter 6 has three parts. The first part involves a short explanation of the GPU 

paradigm, and the second part explains the construction of video mosaics using MPEG I-

frames implemented over GPU-CPU. The results demonstrate that it is possible to 

perform real-time video mosaicking with today’s hardware. Finally, the last part explains 

the construction of super-resolution mosaicking using GPU-CPU and a comparison with 

the results using only CPU. 
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CHAPTER  2 

BACKGROUND 

2.1 Introduction 

Super-resolution mosaicking involves many definitions and previous concepts to 

understand. This chapter provides some definitions of super-resolution and video 

mosaicking. An attempt is made to provide a perspective on how modern super-

resolution reconstruction and image mosaicking techniques have evolved from the 

beginning to the present. 

Section 2.2 provides a definition of super-resolution reconstruction and a high-

level overview of the different approaches to solve it. Mainly, there are two approaches: 

1) frequency-domain and 2) spatial-domain. Additionally, a brief definition of the ill-

posed inverse problem and how regularization plays an important role is briefly 

described. 

Section 2.3 explores the different techniques to construct a mosaic, the difference 

between static and dynamic mosaicking is shown, and how the accumulation of errors 

due to the projection model affects the construction of the mosaic. 

2.2 Super-resolution reconstruction 

Super-resolution reconstruction refers to methods for still image and video 

enhancement from multiple low-resolution, degraded observed images derived from an 

underlying scene [7], see Figure 1. The goal is to obtain a single image or video with 

better quality. There are two different categories of approaches: super-resolution in the 
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spatial-domain [8-12] and super-resolution in the frequency-domain [13,14], based on 

the motion estimation between consecutive frames. Frequency-domain super-resolution 

relies on motion vectors being comprised purely of horizontal and vertical displacements, 

which for real video data from UAS is almost never realistic. The frequency-domain is 

effective in making use of low-frequency components to register a set of images 

containing artifacts. The results with this type of approach generally have ringing effects. 

Spatial-domain super-resolution methods use the image registration between 

frames by computing the feature correspondence in the spatial domain. The motion 

models can be global for the entire image or local for a set of corresponding feature 

vectors [62]. In order to understand the super-resolution problem, equation (2.1) 

represents the observation model that relates the original high-resolution (HR) image to 

the observed (i.e, low-resolution LR) images. Considering the desired HR image of size 

2211 x NLNL
 
written in lexicographical notation as the vector 

T

Nxxx ],...,,[ 21x , where 

2211 x NLNLN  . The down-sampling factors in the horizontal and vertical directions are 

represented by 21xLL , respectively. Thus, each observed LR image is of size 21xNN . Let 

the k
th 

LR image be denoted in lexicographic notation as 
T

Mkkk xyy ],...,,[ 2,1,y , for 

pk ,...,2,1  and 21xNNM   [15]. Assuming x  (HR image) remains constant during the 

acquisition of multiple LR images, the model is: 

                        kkkk ηxMDBy   , for ,1 pk 
                 

  (2.1) 

where kM  represents the warp matrix of size 22112211 x NLNLNLNL , kB  represents an 

22112211 x NLNLNLNL
 
blur matrix, D  is an 2211

2

21 x)( NLNLNN  down-sampling matrix 
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and kη  represents a lexicographically-ordered noise vector.  Figure 2 shows a block 

diagram for the observation model of equation (2.1). 

The motion matrix represented by kM may contain global or local translations, 

rotations, and so on. Since this information is unknown, it is necessary to estimate the 

scene motion for each frame with respect to one particular frame, called the reference 

frame. The warping process is defined in terms of LR pixel spacing; therefore is 

necessary to interpolate the pixels to represent them on the HR grid.  

The blurring effect can be caused by many factors such as atmospheric blur, motion, and 

camera blur [16]. Most of the approaches model the LR sensor with a point spread 

function (PSF). This PSF is usually modeled as a spatial averaging operator or as a 2D – 

Gaussian. 

 

Figure 1. Different degradations of the HR image to create an LR image. Figure taken 

from [15]. 



7 

 

Figure 2. Block diagram of equation (2.1). Figure taken from [15]. 

 

The matrix D  generates aliased LR images from the warped and blurred HR 

image. Figure 4 shows the effects of down-sampling and up-sampling over 9x9 and 3x3 

images, respectively. In this dissertation, we assume that the blurring effects of the CCD 

are captured by the blur matrix kB , and therefore the CCD down-sampling process can 

be modeled by a simple periodic sampling of the high-resolution image. Thus, the 

corresponding up-sampling process is implemented as a zero-filling process. 

Equation (2.1) can be represented as 

kkk ηxHy   , for ,1 pk 
                  

   (2.2) 

where kH
 
represents the effect of the decimation, blurring and warping. This matrix kH  

is of size 2211

2

21 x)( NLNLNN . 

Based on (2.2), the aim of SR reconstruction is to estimate the HR image x  from 

the LR images ky  for pk ,...,1 . Therefore, SR is an inverse problem. 

According to Hadamard [17] an inverse problem is consider well-posed when a 

solution: 

1. exists for any data, 

2. is unique, and 

3. depends continuously on the data. 
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Figure 3. Low resolution and reconstruction flow. Figure taken from [45]. 
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Figure 4. Down-sampling D  and Up-sampling ( T
D ) effects on a 9x9 and 3x3 

image, respectively. 

 

If any of these conditions are not satisfied, then the inverse problem is ill-posed. 

For the case of SR, the solution is not unique to (2.1), so SR is an ill-posed inverse 

problem. 

Regularization refers to methods which are used to add additional information to 

compensate for the loss of information in the ill-posed problems. This additional 

information is typically referred to as a priori or prior information. This prior information 

cannot be derived from the observations or the observation process and must be known 

“before the fact.” Normally, the prior information is chosen to represent desired 

characteristics of the solution, e.g., smoothness, total energy, edge preservation, etc.  The 

role of this prior information is to reduce the space of solutions which are compatible 

with the observed data. A review of different regularization methods will be provided in 

Chapter 3. 

2.2.1 Frequency-domain methods 

These methods make explicit use of the aliasing that exists in each LR image to 

reconstruct an HR image [15,18]. The frequency-domain approach is based on the 

following three principles: i) the shifting property of the Fourier transform, ii) the 
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aliasing relationship between the continuous Fourier transform (CFT) of an original HR 

image and the discrete Fourier transform (DFT) of observed LR images, and iii) the 

assumption that the original HR image is bandlimited.  

Tsai and Huang [18] rely on the motion being composed purely of horizontal and 

vertical displacements, Tom and Katsaggelos [20, 21] take a two-phase super-resolution 

approach, where the first step is to register, deblur, and de-noise the low-resolution 

images, and the second step is to interpolate and integrate them into a high-resolution 

image grid. Figure 5 shows one LR synthetic image data and the SR image result of the 

algorithm proposed by Tom and Katsagegelos. 

  

Figure 5. Example of frequency-domain approach for super-resolution taken from Tom 

and Katsaggelos [20, 21]. Left: One of the four synthetic LR images. Right: SR image. 

There are several ringing artifacts, particularly along the image edges, but there is also a 

distinct improvement in the resolution of the image. 

 

2.2.2 Spatial-domain methods 

Spatial-domain methods actually perform better with additive noise, and a more 

natural treatment of the image point spread blur in cases where it cannot be approximated 

by a single convolution operation on the HR image [19].  
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The first spatial-domain methods were developed by Peleg [23], Keren [22], and 

Irani [24]. Peleg et al. [23] highlighted the use of subpixel motion to improve resolution.  

Keren [22] proposed a method to register two different images. This registration finds the 

translation and rotation within the plane of the image, but it generally fails with 

resampling and interpolation. Irani [24,25] used the same algorithm proposed by Keren, 

but proposed a more sophisticated method for super-resolution image recovery based on 

back-projection.  

Later work by Zomet et al. [26] proposed the use of medians to deal with large 

outliers caused by the parallax of moving specularities. Projection onto Convex Sets 

(POCS), which is set-theoretic approach to super-resolution, was used by Stark and 

Oskoi [27] that utilizes a maximum likelihood (ML) framework and also prior 

information; Patti et al. [32], as well as Elad and Feuer [28,29,30] use Kalman filtering to 

pose the problem in an easy way to solve.  

Figure 6 shows an example of the results using the method proposed by Zomet 

[26]. The left image is one of the LR images and the right image is the SR estimated 

image. Figure 7 shows four LR images from a set of 12 LR images and also the SR 

image using POCS. 

  

Figure 6. Example of spatial-domain approach for super-resolution taken from Zomet et 

al. [26]. Left: One of the input LR images. Right: SR image. 
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Figure 7. Example of POCS super-resolution taken from Patti et al. [32]. Left: Four of 12 

low-resolution images. Middle: Interpolated approximation to the high-resolution image. 

Right: Super-resolution image found using POCS technique in [32]. 

 

2.2.3 Methods of Solution 

One of the most important concerns in the solution of the ill-posed inverse super-

resolution problem is the cost of the computation, and how quickly it converges to a 

unique optimal solution. 

For the initial approaches based on frequency-domain least-squares (i.e., of 

format bAx   ), the super-resolution estimate is found using an iterative re-estimation 

process. However, the method proposed by Irani [24] generates different solutions 

depending on the initial guess.  

The ML estimator is explored by Capel [31], where the SR image is estimated 

directly by using the pseudoinverse. Since this is another convex problem, the algorithm 

is guaranteed to converge to the same global optimum whatever the initial condition. 

Maximum a posteriori (MAP) is one of the preferred methods. Some approaches 

can be re-interpreted as MAP because they use a regularized cost function whose terms 

can be matched to those of a posterior distribution over a high-resolution image, as the 

regularization term can be viewed as a type of image prior. If a prior over the high-

resolution image is chosen so that the log prior distribution is convex in the image pixels 
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and the basic ML solution itself is also convex, then the MAP solution will have a unique 

optimal super-resolution image. 

A popular form of convex regularizer is a quadratic function of the image pixels, 

2

2
Ax , for some matrix A  and image pixel vector x . If the objective function is taken as 

the exponential argument, it can be manipulated to give the probabilistic interpretation, 

because a term with the form 









2

22

1
exp Ax    is proportional to a zero-mean Gaussian 

prior over x with covariance AA
T . 

Schultz and Stevenson [33,34] look at video sequences with frames related by 

dense corrrespondence found using a hierarchical block-matching algorithm. They use 

the Huber Markov Random Field (HMRF) as a prior to regularize the super-resolution 

image recovery. The Huber function is quadratic for small values of input, but linear for 

larger values, so it penalizes edges less severely than a Gaussian prior. This Huber 

function models the statistics of real images more closely than a purely quadratic 

function, because real images contain edges. Therefore, they have much heavier-tailed 

first-derivative distributions than can be modeled by a Gaussian. Figure 8 shows one of 

the LR images on the left and the SR image on the right using the Schultz and Stevenson 

[33,34] method. 
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Figure 8. Example of MAP with Huber Markov Random Field (HMRF) prior extracted 

from Schultz and Stevenson [33,34]. Left: One of input LR images. Right: SR image. 

 

The total variation (TV) prior and a related technique called the bilateral filter was 

used by Farsiu et al. [35, 36, 37,38]. They introduced a regularization term called 

Bilateral-TV, which is inexpensive to implement and also preserves edges. Furthermore, 

they explore several ways to formulate quick solutions by working with 1L  norms, rather 

than the more common 2L  norms to solve the super-resolution problem. Figure 9 shows 

one of their results using the TV prior and the bilateral filter from [35, 36, 37,38]. 

Capel and Zisserman [39,40] compare the back–projection model of Irani and 

Peleg to simple spatial-domain ML approaches, and show that these perform much less 

well on a text image sequence than the HMRF method and the Total Variation (TV) 

estimator. Also, they consider super-resolution as a second step after image mosaicking, 

where the image registration (using a homography with eight degrees of freedom) is 

carried out in the mosaicking process. 
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Figure 9. Example of TV prior and bilateral filter from Farsiu et al. [35, 36, 37, 38]. Left: 

One of the input LR images. Right: SR image. 

 

Baker and Kanade [41,42] analyze the sources of noise and poor reconstruction in 

the ML case, by considering various forms of the PSF and their limitations. Their 

proposed method works by partitioning the low-resolution space into a set of classes, 

each of which has a separate prior model. For example, if a face is detected in the low 

resolution image set, a face-specific prior over the super-resolution image will be used. 

The classification of the low-resolution images is made using a pyramid of multi-scale 

Gaussian and Laplacian images, which were built up from training data. 

Generalized cross-validation (GCV) was proposed Nguyen in his dissertation 

[43]. GCV is used to compute the regularization factor used in the solution of the ill-

posed super-resolution problem. GCV works well for overdetermined, underdetermined, 

and square systems. GCV is simple cross-validation applied to the original system after it 
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has undergone a unitary transformation. GCV is also known to be less sensitive to large 

outliers than cross-validation [43]. 

Šroubek and Flusser [45, 46] developed an alternating minimization scheme 

based on a maximum a posteriori (MAP) blind deconvolution with a prior distribution of 

blurs derived from the multichannel framework and a prior distribution of original 

images. This method combines the benefits of edge preserving denoising techniques and 

the one-step subspace eigenvector-based method (EVAM) reconstruction method. Figure 

10 shows one of the LR images on the left and the SR image with the estimated PSF on 

the right using the deconvolution method proposed by Šroubek and Flusser [45, 46]. 

 

(a) 

 

(b) 

 

 

(c) 

Figure 10. Estimation of the cameraman image and blurs taken from [45]: (a) Degraded 

image. (b) Result from the blind deconvolution algorithm [45], (c) Estimated PSF.  

 

Tian and Ma [47] proposed a Markov Chain Monte Carlo (MCMC) algorithm 

with outlier-sensitive bilateral filtering. The idea of MCMC is to generate N  samples 
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with )( YXp . The number of samples has to be large enough to guarantee the 

convergence of MCMC. They use a bilateral filter to reduce the noise effect within the 

pixels. Figure 11 shows an example of the computation of SR using the MCMC. 

Figure 11. Super-resolution using MCMC and the bilateral filter taken from [47]. Left: 

One of the low resolution images. Right: Super-resolution of the text image using the 

MCMC and the outlier-sensitive bilateral method. 

 

Pickup [19] studies the different effects of the geometric and photometric 

registration challenges related to super-resolution. Also, she proposed a model that finds 

both the blur and the super-resolution image. This model is Bayesian based and leads to a 

direct method of optimizing the super-resolution image pixel values, resulting in better 

SR images. Furthermore, she introduces a texture-based prior for super-resolution using 

MAP. Figures 12 and 13 show some results obtained with the method proposed by 

Pickup [19]. 
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Figure 12. Super-resolution algorithm proposed by Pickup [19]: Top: One of the 30 

original low-resolution frames. Bottom: Every second input from the sequence, showing 

a cropped region of interest. 
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Figure 13. Super-resolution algorithm proposed by Pickup [19]. Left column shows the 

super-resolution images computed using a standard MAP approach, where the geometric 

and photometric registration parameters are estimated and frozen before the high-

resolution pixel values are optimized. The right column shows the results using  the 

proposed MAP approach of [19], where both the pixels and registration values are found 

simultaneously. 

 

2.3 Image Mosaicking 

Image mosaicking is the alignment (i.e., stitching) of multiple images into larger 

compositions which represent portions of a 3D scene [31]. For the construction of the 

mosaic, the camera needs to take different views by panning, tilting, or zooming. In order 

to build the mosaic, it is necessary that images be warped, using computed 

homographies, into a common coordinate frame, and combined to form a single image. 

The basic steps to construct a mosaic are 1) registration, 2) reprojection, and 3) blending. 

For registration, this finds the homography between consecutive frames, in the case of 

digital video. To find the homography, it is necessary to find robust features that will 

then be matched with the similar features in the next frame or images. Reprojection 

warps all the frames to a simple coordinate system. To do that, it is necessary to choose a 
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frame as a reference frame. Blending consist of eliminating the vignetting parallax 

effects. Figure 14 illustrates these three steps to create a mosaic. 

 

Figure 14. Basic steps to construct a mosaic, taken from [31]. 1)  Registration: consists of 

finding the homography between consecutive frames. 2) Reprojection: consists of 

warping all the frames into a common coordinate system. 3) Blending: consists of 

eliminating parallax effects. 

 

Irani et al. [48, 49, 50] reviews image mosaicking and its many applications: 

video compression, video enhancement, and enhanced visualization, as well as other 

applications in video indexing, search, and manipulation. Furthermore, she constructs 

and analyzes two different types of mosaic: 1) static mosaic, where the input video is 

usually segmented into contiguous scene subsequences, and the mosaic is constructed for 

each scene subsequence; and 2) dynamic mosaic, where the mosaic captures the dynamic 
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changes in the scene. Figure 15 shows both static and dynamic mosaics taken from [48, 

49, 50]. 

Peleg et al. [51,52] consider mosaics composed of strips extracted from the input 

images. The strips are chosen such that the direction of optical flow is orthogonal to the 

axis of the strip. By doing this, and with a suitable blending, it is possible to make 

approximate mosaics for situations including camera translation. Figure 16 shows one 

example of the mosaic using the method proposed by Peleg [51,52]. 

Kan and Szeliski [53] proposed constructing a mosaic composed of a hemisphere 

of an image to represent the view in every direction at a particular point in the world. 

They construct the mosaic at many points, and match the image features across the 

mosaics to perform a wide-baseline 3D scene reconstruction. Szeliski [54] constructs 

mosaic using 2D transformations and depth information. The intention is to use the 

creation of the mosaic to recover a full 3D model, which has many applications including 

3D model acquisition for inverse CAD, model acquisition for computer animation and 

special effects, virtual reality, etc. Figure 17 shows an example of the construction of 

mosaics based on depth information for virtual reality proposed by Kan and Szeliski 

[53]. 
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Figure 15. . Static and dynamic mosaicking taken from [48]. Top: Construction of the 

static mosaic using the temporal median of a baseball game sequence. Bottom: 

Construction of a dynamic mosaic of a baseball sequence. 
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Figure 16. Panoramic mosaic using manifold projection [51]. 

 

 

Figure 17. Depth recovery example taken from [54]. Table with a stack of papers (a) as 

an input image taken by moving the camera up and over the scene. (b) The resulting 

depth-map as intensity-coded range values. (c-d) show the original intensity image 

texture mapped onto the surface. (e-f) show a set of grid-lines overlayed on the recovered 

surface. 
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Brown and Lowe [55] proposed a method to construct mosaic panoramas without 

the help of human input. They use SIFT (Scale Invariant Features Transform) to select 

the features within the images that are then matched using the RANSAC algorithm. They 

use a probabilistic model to verity the match. Bundle adjustment based on the Levenberg 

Marquardt algorithm is then used eliminate the accumulation of errors. Finally, Multi-

band blending is used. Figure 18 shows one of the results of the mosaic construction 

using the method proposed by Brown and Lowe [55]. 

Capel [31] proposed a novel algorithm for an efficient matching of features across 

multiple views which are related by projective transformations. Also, he proposed a new 

method to reduce the effect of the projective distortion for two and N-view cases. Figure 

19 shows the pre-image point X , which generates interest points 21, xx , and 
3x  in three 

different views. The distances 21,dd , and 
3d  are to be minimized with respect to the 

homographies 21,HH , and 
3H  and the point X . 

 

Figure 18. Final mosaic taken from [55]. This mosaic was constructed using 80 images 

matched using SIFT (Scale Invariant Feature Transform), rendered in spherical 

coordinates, and blended using the multi-band technique. 
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Figure 19. Solution to the problem of error accumulation proposed by Capel [31]. 

 

Figure 20 shows a comparison of the close-up views between the region of 

interest (red box) and the real region extracted from a single frame in the sequence. It is 

easy to see a clear mismatch between the first and the last frames in the sequence, caused 

by the accumulation of error in the construction of the mosaic. 

Figure 21 shows the result of the mosaic construction after refinement of the 

homographies by bundle-adjustment using the Levenberg Marquardt algorithm. The 

mismatch presented in Figure 20 has been removed. 
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Figure 20. Top: A mosaic image obtained from [31]. The outlier of every 5
th

 frame is 

overlaid. Left: A close-up view of the region of interested (red box). Right: The 

corresponding region extracted from a single frame. 
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Figure 21. Top: A mosaic image after refinement of the homography by bundle-

adjustment, obtained from [31]. Left: A close-up view of the region of interest (red box 

of the Figure 20). Right: The corresponding region extracted from a single frame. 

 

2.4 Conclusion 

This section presented a summary of the most recent and important approaches 

super-resolution reconstruction and image mosaicking. Scenarios for super-resolution 

frequency-domain and spatial-domain reconstruction are. The spatial-domain methods 
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are the most appropriate for real UAS video frames, but they require great deal of 

computational resources. Most of the spatial-domain approaches require the construction 

of a sparse matrix to represent equation (2.2), so the problem is converted in the solution 

of a non-linear sparse problem. 

The motion estimation is a key component for super-resolution reconstruction and 

image mosaicking. Most of the first approaches for super-resolution use direct methods 

to find the motion vectors. These methods, like block matching, often fail at object edges 

or are susceptible to parallax effects (optical flow). Conversely, feature-based methods 

are: 1) invariant to a wide range of photometric and geometric transformations of the 

image; 2) robustness to outliers, because by using RANSAC (Random Sampling 

Algorithm and Consensus), the outliers are rejected and not taking into consideration to 

find the homography. The advantage of direct methods over feature-based methods is 

computational efficiency, because a carefully implementation of them has proved 

successful in real-time tracking applications. 
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CHAPTER  3 

STOCHASTIC AND DETERMINISTIC REGULARIZATION FOR SUPER-

RESOLUTION 

 

3.1 Introduction 

Mathematical background about regularization is presented in this chapter. 

Section 3.2 explains the ill-posed and ill-conditioned inverse problems. Different 

approaches for regularization are shown in Section 3.3. 

There has been much research to solve linear ill-posed inverse problems stably, 

especially the Fredholm integral equations of the first kind [43]. These equations can be 

expressed as: 

    ,),()(),( qRssfdttxtsh                (3.1) 

with )((.,.) 2  xLh . If ),( tsh  is translation invariant, then )(),( tshtsh   and (3.1) 

becomes a convolution equation with kernel )(sh : 

                                                                                                                           (3.2) 

                                                                                                                           (3.3) 

In this case, * denotes the convolution operator. Let  )()(: 22  LLH  be the linear 

convolution operator xhHx * . Then H  is a compact operator with the singular value 

expansion, 

                                                                                                   (3.4) 
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where *H is the adjoint operator, j  is a non-increasing sequence of positive singular 

values jju ,  are the corresponding singular functions. Now, if we expand the right-hand 

side, such that 

                                                                                                                            (3.5) 

with (.,.)  representing the inner product, the solution  fHx 1  converges only if f  

satisfies the Picard condition. 

In practice, the right-hand side of f  contains noise, (i.e., from the camera 

sensors, for the case of super-resolution) and modeling errors. This problem is 

considered an ill-conditioned inverse problem, since a small change in f  can result in a 

wild oscillation approximation to x   

3.2 Ill-posed and Ill-conditioned Inverse Problems 

According to Keller [58], an inverse problem is defined as: “We call two 

problems inverses of one another if the formulation of each involves all or part of the 

solution of the other. Often, for historical reasons, one of the two problems has been 

studied extensively for some time, while the others have never been studied and not so 

well understood. In such cases, the former is called a direct problem, while the latter is 

the inverse problem. ” 

Borman [7] provides a historical solution of the heat equation. The problem is, 

given an initial temperature distribution at time 
0tt   , determine the evolution of the 

temperature profile for times 
0tt  . Consider, however, the following: assume that the 

temperature profile at time 0ttt f  is provided. The challenge is to determine the 

original temperature profile at the earlier time 0tt  . This is the inverse problem of the 

),,(, fuuf jjjj  
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direct heat equation. It turns out, however, that while the direct problem is easily solved, 

the inverse problem is not. 

According to Hadamard’s requirements, solving the direct heat equation meets 

all three requirements, so it is well-posed. But, for the case of inverse problem, that of 

determining the initial temperature distribution given the final temperature distribution, 

turns out to be highly problematic. The problems are intimately related to the 

irrecoverable loss of information. This irrecoverable loss of information does not present 

significant difficulties for the direct problem. In particular, the loss of information 

implies that there exist a multiple of initial temperature distributions which could give 

rise to an observed temperature distribution at time 
0tt  . Therefore, since the inverse 

problem fails to have a unique solution (Hadamard’s second requirement), it is an ill-

posed problem. 

3.3 Regularization 

Regularization is a term which refers to methods that utilize additional 

information to compensate for the information loss in the ill-posed problems.  This 

additional information is typically referred as a priori or prior information, and adds 

prior knowledge about the desired estimate to make the ill-posed problem well-posed.  

Tikhonov [59] was the pioneer in introducing deterministic theory of regularized 

solutions to ill-posed problems. Tikhonov regularization is a deterministic technique 

which restricts the solution space, using a metric to distinguish between possible 

solutions. 
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3.3.1 Tikhonov Regularization 

In the Tikhonov approach, a family of approximate solutions to the inverse 

problem is constructed, with the family of solutions controlled by a nonnegative real-

valued regularization parameter. Recall equation (2.2) from Chapter 2, which represents 

the super-resolution problem. Equation (3.6) can be rewritten as (3.7), representing a 

more general equation for all the images or frames: 

kkk ηxHy   , for ,1 pk 
                              

 (3.6) 
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ηHxY 

                                                                      (3.7) 

In order to obtain a reasonable estimate for x , we need to regularize that 

equation. For noisy, over-determined systems we search for solutions to fit the noisy 

data, such that 

 

2

2

2

2min xYHx L
x


                                                     (3.8)

 

where L  is a regularization operator,   is related to the Lagrange multiplier, and 

2| |.| |  represents the Euclidean (L2) norm. The first term of (3.8) ensures that the 

estimated solution has small residuals, and the second term ensures “well-behaved” 

solutions.  

 The Lagrange multiplier allows for a balance between the two requirements. If 

 is too large, the regularized system is too far from the original equation. But, if it is 
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too small, the system behaves as an ill-conditioned problem. Figure 22 illustrates this 

behavior of the Lagrange multiplier [63]. For the case of an under-regularized problem, 

the solution is overwhelmed with noise and registration artifacts. But, for the case of an 

over-regularized problem, the solution smooths out the final output. The matrix L  can 

also include prior knowledge of the problem, e.g., degree of smoothness [60]. 

 

Figure 22. The importance of the Lagrange multiplier in the regularization to solve super-

resolution [43]. 

 

Now, taking the derivatives of (3.8) and setting them to 0, we obtain 

                                                                                                                           (3.9) 

A common assumption is that the images are primarily smooth. Tikhonov proposed a 

generic stabilizer based on the m
th

 order Sobolev norm [61], which conveys the 

assumption of function continuity. H  is also called the linear compact injective operator 

between Hilbert spaces U  and F . The solution of x  and data Y  belongs to U   and  

F , respectively. In the context of low-level vision problems, the first-order Tikhonov 

stabilizer is called a thin plate [62]. Both elements are “stretched” across the data, and 

their minimum states provide the estimates. 

  

YHHHx
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3.3.2 Total Variation (TV) Regularization 

Let L  be a subset of 
2R , and define Y  as a real function over L . Also, 

assuming that the high resolution images are those whose domain is  , we have  

  ,
2

minargˆ 22

2
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                           (3.10)
 

where k  is the variance of the white noise with zero mean, and k  represents the 

Lagrange multipliers for every low-resolution image. 

The model expressed by (3.10) solves a more general problem of super-resolution 

using the total variation (TV) norm as the regularizing function, allowing homogeneous 

Newmann boundary conditions.  

3.3.3 Cross-Validation (CV) 

The idea of cross-validation (CV) to choose the Lagrange multiplier  from the 

data is simple. To estimate   , the data is divided into two sets: one set is used to 

construct an approximate solution based on  , and the other is used to measure the error 

of that approximation [63]. For example, the validation error by using the j
th

 pixel value 

as the validation set is 

                                   .)()(
2

2
jjjj yhCV   x                                   (3.11) 

The optimal regularization parameter  CV minimizes the total validation error: 
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3.3.4 Generalized Cross-Validation (GCV) 

 Generalized Cross-Validation (GCV) is simply CV applied to the original system 

after it has undergone a unitary transformation. Also, it is known to be more robust to 

outliers than CV [64]. For overdetermined systems, it has been shown that the 

asymptotically optimum regularization parameter according to GCV is given by [65]: 

 

                                                                                                                        (3.13) 

GCV is used for calculating regularization parameters for Tikhonov-regularized 

overdetermined and underdetermined least squares problems [43]. 

3.3.5 Bilateral-TV 

Based on the TV (Total Variation) criterion and the bilateral filter [65,66], the 

bilateral TV is based on both of these methods and is found by  

 

                                                                                        ,                                 (3.14) 

where the matrices (operators) 
l
xS  and 

m
yS   shift x  by l  and m  pixels in the x  and y  

directions, respectively. The scalar   is a weight between 0 and 1. The parameter “P” 

defines the size of the corresponding bilateral filter kernel [67].The BTV regularization 

preserves edges and is less computationally expensive than Tikhonov regularization. 

3.3.6 Huber Prior 

The Huber function is used as a simple prior for image super-resolution, which 

benefits from penalizing edges less severely than Gaussian image priors. The form of the 

prior is 

                                                                                    ,                                                            (3.15) 
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where D  is a set of gradient estimates, given by  xD  [19]. The parameter v  is a prior 

strength somewhat similar to a variance term, Z  is the normalization constant, and   is 

a parameter of the Huber function specifying the gradient value at which the penalty 

switches from being quadratic to linear: 

                                                                                                                                          (3.16) 

 

Figure 23 shows different Huber functions and their corresponding distributions, note that 

the value of   determines the behavior of the Huber function, and controls the overall 

shape of the edge-preserving function. v controls the behavior of distributions: 

                                                                                                                        (3.17) 

By integrating (3.16) Z can be expressed as 

                                                                                         .                               (3.18) 

One important feature of why Huber prior is one of the most prior used is because 

makes the problem convex, therefore most of the optimization algorithms can converge 

to a local minima. 
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Figure 23. Huber function and corresponding distributions [19]. Top: Several functions 

corresponding to a set of logarithmically-spaced values. Bottom: Three sets for v  = 1, 
v  = 10, and v  = 100, each of them using the set of Huber functions. 

 

3.3.7 Spatially Adaptive Prior 

The objects in most images have edges with coherently varying pixel intensities. 

The pixel-scale intensity differences alone are not sufficient to characterize objects of 

multiple scales. Thus, continuous texture information within a larger scale should be used 

to discriminate information from singularities or noise. This is the basis of the Spatial 

Adaptive (SA) prior model. SA uses a large nonlocal neighborhood N to incorporate 

geometrical configuration information [68]. The SA prior can be formalized as follows: 
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   (3.22) 

 

In this case, SAU  is the energy function for the SA prior, bjw  represents the classification 

of the neighbor pixels in the search neighborhood jN , rjN is the number of neighbor 

pixels with nonzero bjw  in the neighborhood jN , and   is the threshold parameter. 

The value of the distance bjdis is determined by a distance measurement between the two 

translated neighborhoods bn  and jn , respectively. 

3.4 Conclusions 

The problem of super-resolution has the form of the Fredholm integral equation of 

the first kind. This chapter explains why super-resolution is an inverse ill-posed problem 

and presents the different regularization techniques to solve it. The reason why Huber 

prior is preferred in super-resolution reconstruction is also explained. 
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CHAPTER  4 

MOSAICKING AND GEO-REFERENCING 

 

4.1 Introduction 

This chapter describes in detail the process of constructing of a video dynamic 

mosaic and also its geo-referencing from image coordinates to world coordinates. Section 

4.2 explains the construction of the image mosaic based on the computation of the 

homography between consecutive images. This homography is computed using SIFT, 

because of its robustness. Examples using real data from frames obtained in flight tests of 

the Unmanned Aircraft Systems Engineering (UASE) Laboratory at the University of 

North Dakota are shown. Section 4.3 explains the construction of a video mosaic using 

MPEG video, and results using real data are shown. Finally, Section 4.4 explains the 

construction of a geo-referenced mosaic based on the Unscented Kalman Filter (UKF). 

4.2 Image Mosaicking 

There are three general steps for the construction of an image mosaic: (1) 

registration, (2) reprojection, and (3) blending. In the following sections these steps are 

described in more detail. Image mosaicking is the alignment of multiple images into a 

larger composition which represents portions of a 3D scene [31]. The mosaic method 

used in this dissertation is concerned with images that can be registered by a planar 

homography: views of a planar scene from a camera that has a rotation and a translation. 
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4.2.1 Registration 

Registration is a fundamental task in digital video processing, especially for 

mosaicking and super-resolution, where we need sub-pixel accuracy. The need to register 

images has arisen in many practical problems: (1) integrating information taken from 

different sensors, (2) finding changes in images taken at different times and/or in 

different conditions, (3) inferring 3D information from images, and (4) object and target 

recognition. Registration methods can be viewed as different combinations of choices for 

the following four components: (a) a feature space, (b) a search space, (c) a search 

strategy, and (d) similarity metric. 

The feature space use a sparse set of corresponding image features (e.g., points, 

or lines) to estimate the image-to-image mapping. The search space is the class of 

transformations that are capable of aligning the images. The search strategy decides how 

to choose the next transformation from this space, which will be tested in the search for 

the optimal transformation. The similarity metric determines the relative merit for each 

test.  

This dissertation uses feature-based registration and planar homography, which is 

the mapping that arises in the perspective image of planes. There are two important 

situations where the image-to-image mapping is exactly captured by a planar 

homography: images of a plane viewed by a camera rotating about its optic center and/or 

zooming, which is the typical case for UAS surveillance imaging. These two situations 

are illustrated in Figures 24 and 25. Furthermore, the homography is appropriate for this 

dissertation due to a camera viewing a distant scene, such as is the case for UAS 
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surveillance imaging. For all cases, it is assumed that the images are obtained by a 

perspective pin-hole camera. 

A point is represented by homogeneous coordinates, so that point  yx,   is 

represented as  1,, yx . However, the point  321 ,, xxx  in homogeneous coordinates 

corresponds to the inhomogeneous point  3231 /,/ xxxx  . Under a planar homography 

(called also plane projective, collineation, or projectivity), those points are mapped as 

[69]: 
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Hxx'                                                           (4.2) 

The matrix H  is called homogeneous, because this matrix can be multiplied by a factor 

(scale) without altering the projective transformation. There are eight independent ratios 

among the nine elements of H . 

There are many methods to find the homography, which are grouped in two ways: 

(1) direct correlation methods and (2) feature-based methods. As was mentioned before, 

this dissertation will use feature-based methods to find the registration parameters.  
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Figure 24. Images of planes. There is a planar homography between two images of a 

plane taken from different viewpoints, related by a rotation R  and translation t . The 

scene point X  is projected to point x  and x'  in image 1 and image 2, respectively. 

These points are related by xx H' . 

 

Figure 25. Rotation about the camera axis. As the camera is rotated, the points of 

intersection of the rays with the image plane are related by a planar homography. Image 

points x  and x' correspond to the same scene point X . Points are related by xx H' . 
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4.2.2 SIFT and RANSAC to Estimate the Homography 

There are many ways to find the features within an image, but according to [92] 

SIFT (Scale-Invariant Feature Transform) features are robust to photometric and 

geometric changes within two consecutive frames. Figure 27 shows different evaluations 

for feature descriptors: changes of viewpoint, scale changes combined with image 

rotation, image rotation only, image blur, JPEG compression, and illumination changes. 

SIFT descriptors are computed for normalized image patches. A descriptor is a 

3D histogram of gradient location and orientation. The location is quantized into a 4x4 

location grid, and the gradient angle is quantized into eight orientations. The resulting 

descriptor is of dimension 128. Figure 26 illustrates this approach.  

Each orientation plane represents the gradient magnitude corresponding to a given 

orientation. In order to obtain illumination invariance, the descriptor is normalized by the 

square root of the sum of squared components. 

 

(1) (2) (3) (4) (5) 

Figure 26. SIFT descriptor: (1) detected region, (2) gradient image and location grid, (3) 

dimensions of the histogram, (4) shows four of eight orientation planes, and (5) Cartesian 

and log-polar location grids. 

 

The SIFT corner detector consists of the following four steps [62]: 
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1. Scale-space extreme detection: The scale-space extreme are the 

maximum and minimum of the difference-of-Gaussian images. They are 

potential distinctive features, detected by comparing a pixel with its 26 

neighboring pixels in the current and adjacent scales.  

2. Key point localization: The key points are selected through a second-

order Taylor series expansion. Given the difference-of-Gaussian 

),,( yxD , its Taylor expansion is given as 
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3. Orientation assignment: One or more orientations are assigned to each 

key point location by selecting the peaks of the smoothed histogram of 

local gradients.   

4. Key point descriptor: There are eight bins for a 4 x 4 gradient window 

around each key point. Thus, each key point can be described as a 128-

dimensional vector.  

 

Mikolajczyk et al. [73] compared different descriptors under different tests. The 

conclusion of their research was that SIFT is the best feature descriptor at the moment. 

Figure 27 shows the results of some tests taken from [73]. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 27. Evaluation of features descriptors for structured scene [73]: (a) viewpoint 

changes 40
o
-60

o
. (b) Scale changes of a factor 2-2.5 combined with image rotation of 30

o
 

– 45
o
, (c) image rotation of 30

o
 – 45

o
, (d) image blur, (e) JPEG compression, and (f) 

illumination changes. 

 

SIFT features are located at scale-space maxima/minima of the difference of 

Gaussian function, which gives a similarity-invariant frame. This allows edges to shift 
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slightly without altering the descriptor of the vector, giving robustness to affine changes. 

After extracting the features of the first two frames, it is necessary to extract the first set 

of matching features between them. The next section describes this process. Obviously 

for video mosaicking, the SIFT features are computed for every frame. 

Figure 28 shows the SIFT features for five different frames taken from an infrared 

(IR) camera during flight tests 2007 by the UASE Laboratory at the University of North 

Dakota. The numbers of SIFT features for these frames are, in the order that they appear: 

frame 1: 228, frame 2: 293, frame 3: 361, frame 4: 387, and frame 5: 387. 

4.2.3 Image Feature Matching and Homography Estimation 

Once the SIFT features have been found within the input images, the next step is 

to find the matching features between consecutive frames. Given a set of features in one 

frame, we find the matching features in the other frame by finding the image’s 

approximate k  nearest neighbors in a kd  tree using Best Bin First Search [85]. 

We use the full homography because is more accurate than the affine and 

Euclidean homography [64]. RANSAC (random sample consensus) [63] is used to find 

the homography, because of its robustness and minimal set of randomly sampled 

correspondences to estimate image transformation parameters. A solution is computed 

that has the best consensus with the data. Four correspondences is the minimum number 

necessary between two frames to instantiate the model defined by least-squares to find 

the planar homography H . We repeat this N times until we obtain an error less than 0.01 

pixels.  
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Figure 28. Sequence of five consecutive IR (infrared frames) taken in 2007 by the UASE 

Laboratory team at the University of North Dakota. Each frame contains 240x320 pixels. 

The first row of images shows the five frames, and the second row shows the 

corresponding SIFT features for every frame. 

 

Figure 29. Results of the matching step. From left-to-right: (a) 153 matches between 

frame 1 and frame 2, (b) 187 matches between frame 2 and frame 3, (c) 206 matches 

between frame 3 and frame 4, and (d) 229 matches between frame 4 and frame 5. 

 

Figure 29 shows the feature matches for the frames in Figure 28. There are 153 

matches between frame 1 and frame 2, 187 matches between frame 2 and frame 3, 206 

matches between frame 3 and frame 4, and 229 matches between frame 4 and frame 5. 

Table 1 shows the algorithm for the estimation of the homography between two images 

using RANSAC consensus and SIFT features. 

     

     

 

(a) 

 

(b) 

 

(c) 

 

(d) 
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4.2.4 Reprojection 

Each time that a new frame is gathered by the surveillance camera of the UAS, 

the homography that relates it with the previous one is computed.  The position of the 

frame in mosaic coordinates is computed by multiplying the current homography with all 

the previous homographies until the reference frame is reached. Equation (4.6) shows 

how to compute the homography between frame j and frame i: 

(4.6) 

We use this homography to start the construction of the mosaic. The mosaic is expressed 

in rectangular coordinates ( x  and y ), because the use of cylindrical coordinates suffers 

from singularities at the poles [71].  

Figure 30 shows the reprojection of the frames shown in Figure 28. The 

reprojection was shifted ten pixels in the x -direction and 63 pixels in the y -direction to 

have a complete view of the mosaic construction. The homographies for this reprojection 

were computed based on (4.6). Figure 31 shows the creation of the mosaic based on the 

reprojection of the frames in Figure 28. The last column of this figure shows the final 

mosaic. 
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Table 1. Estimation of the homography between two images using RANSAC and SIFT. 

 

Objective: Compute the 2D homography between two video frames. 

Algorithm: 

1. Features: Compute interest point features in each image to subpixel 

accuracy using SIFT features. 

2. Putative correspondences: Compute a set of interest point matches based 

on k  nearest neighbors in a kd-tree using Best Bin First Search. 

3. RANSAC robust estimation: Repeat for N samples: 

a) Select a random sample of four correspondences and compute the 

homography H. 

b) Compute the geometric image distance error for each putative 

correspondence. 

c) Compute the number of inliers consistent with H by the number of 

correspondences for which the distance error is less than a threshold. 

Choose the H with the largest number of inliers. 

4. Optimal estimation: Re-estimate H from all correspondences classified as 

inliers, by minimizing the ML cost function using least squares. 

5. Guided matching: Further interest point correspondences are now 

determined using the estimated H to define a search region about the 

transferred point position. 

The last two steps can be iterated until the number of correspondences is stable. 
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Figure 30. Results of the reprojection step, choosing frame 1 as the reference frame. The 

size of the mosaic is 360x360 pixels, and all the frames were offset 10 pixels in the x-

direction and 63 pixels y-direction The first row shows the reprojection of frame 1 and 

frame 2, the second row shows the reprojection of the frames 3 and frame 4, and finally 

the third row shows the reprojection of frame 5. 
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Figure 31. Reprojection in a common rectangular coordinate systems (CRCS). The first 

row shows the reprojection in the CRCS of frame 1 and frame 2, the second row shows 

the reprojection in the CRCS for frame 3 and frame 4, and the third row shows the 

reprojection in the CRCS for frame 5. 
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4.2.5 Blending 

In the ideal case, every frame will have the same intensity level for the same 

image position in the mosaic. However, because of parallax effects, vignetting, mis-

registration errors, radial distortion, and so on, there is always difference in intensity 

between the overlapping frames that form the mosaic. Therefore, there are image edges 

which are still visible.  

In order to solve this problem, we use multi-band blending [75]. This algorithm 

needs the construction of masks where the frame is going to be blended. For the 

construction of the mask, it is necessary to first construct the weight function

)()(),( ywxwyxW  , where )(xw  and )(yw vary linearly from 1 at the center of the 

image to 0 at the edge of the image [76], )(xw  is for the width, and )(yw is for the 

height of the image. The weight functions have to be warped into the mosaic coordinates 

),( yxW i

H . 

The mask that is used in the blending is found using the weight functions for 

every frame. The values of the mask will be defined by which corresponding weight 

function has the largest value in the mosaic coordinates: 



 


.

),,(maxarg),(

,0

,1
),(max

yxWyxW

otherwise

if
yxW

j

Hj

i

Hi
  (4.7 ) 

Figure 32 shows the weight functions for two different frames (frame 1 and frame 2 from 

Figure 28) and their respective masks. Figures 32-b and 32-e are the weight functions for 

frame 1 and frame 2, respectively.  Figures 32-c and 32-f are the respective masks for 

frame 1 and frame 2. Note that the weight function decreases linearly in both axes ( x  and 

y ); also, the final mask has only two values (0 or 1).  



53 

The masks shown in Figures 32 (c) and 32 (f) are used in the multi-band blending 

algorithm [75]. Basically, it is necessary to construct two pyramids: Gaussian and 

Laplacian. The Gaussian pyramid is constructed with a sequence of lowpass filtered 

images. The lowest row, 0G , is the original image. The value of each node in the next 

level, lG , is computed as a weighted average of a 5x5 array of 0G  nodes, the same for 

2G , and so on. The sample distance is doubled with each iteration, so that successive 

arrays are half as large in dimension as their predecessors.  

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 32. Creating the mask for multi-band blending. (a) and (b) show frame 1 and 

frame 2, respectively. (b) and (e) are the corresponding weight functions, and (c) and (f) 

are the masks that will be used in the multi-band blending. 

The Gaussain pyramid is computed as 

,)2,2(),(),(
5

1,

1


 
nm

ll njmiGnmwjiG                           (4.8) 
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where ),( nmw is a pattern of weights used to generate each pyramid level from its 

predecessors. 

The Laplacian pyramid is constructed by subtracting each level of the Gaussian 

pyramid from the next lowest level. Since these arrays differ in sample density, it is 

necessary to interpolate new samples between those of a give array before it is subtracted 

from the next lowest arrays. The Laplacian pyramid is computed as 









2

1,

1,, )
2

2
,

2

2
(4),(

nm

klkl

njmi
GjiG                           (4.9) 

1,1 lll GGL                                                               (4.10) 

For the N
th

 level, 
NN GL   since there is no higher level array to subtract from NG  Table 

2 shows the algorithm for multiband-blending.  Finally, Table 3 shows the complete 

algorithm to construct a mosaic for N  input images. 
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Table 2. Algorithm to compute the multi-band blending of two images given a region R. 

 

Objective: Blend two images using multi-band blending. 

Algorithm: 

1. Build the Gaussian pyramids GA and GB for images A and B. 

2. Build the Laplacian pyramids LA and LB for images A and B. 

3. Build the Gaussian pyramid GR for region R. 

4. Form the blending pyramid LS from LA and LB using nodes of GR as 

weights: 

),()),(1(),(),(),( jiLBjiGRjiLAjiGRjiLS lllll   

5. Obtain the blended image S by expanding and summing the levels of the 

pyramid LS.  

 

Figure 33. Results of the multi-band blending algorithm. (a) Mosaic without blending and 

(b) mosaic blended using the multi-band blending algorithm. 

 

 

 

 

(a) 

 

(b) 
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Table 3. Algorithm to construct a mosaic given N input images. 

 

Objective: Construct a mosaic image from N input images. 

Algorithm: 

1. Compute the SIFT features for all N input images. 

2. Compute the homography Hij between consecutive images; i.e., between 

images 1 and 2. 

3. Choose an image as a reference image, normally the first image. 

4. Reproject all the remaining images to the common coordinate system. 

5. Blend the resulting mosaic to eliminate the parallax effect. 
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4.3 Video Mosaicking 

This section expands the idea of image mosaicking to video mosaicking. The 

creation of a video mosaic follows the same steps, but there are some additional 

important considerations. One of these considerations involves MPEG video, commonly 

used in UAS surveillance systems. In the MPEG format, there are three different kinds of 

frames: I frames, B frames, and P frames [77]. The I-frame, also called the Intra picture is 

coded separately by itself. The B frame, also called the Bidirectionally Predictive picture, 

is coded with respect to the immediate next I- or P- frame. The P frame also called 

Predictive picture, is coded with respect to the immediately previous I- or P-frame. 

 

 

Figure 34. Example of MPEG Group of Pictures (GOP), I-frame, B-frame and P-frame. 

 

MPEG encodes the video in a stream, The basic unit of the stream is a group of 

pictures (GOP), made up of I-frames, B-frames, and P-frames. The I-frames are coded 

using essentially JPEG compression, meaning that the information storage is complete 

enough to decode the frame without reference to any adjacent frames. B-frames and P-

frames must be reconstructed by referring to the I-frame. Normally, there is only one I-

frame per GOP (see Figure 34). Figures 35 and 36 show two different examples of video 
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mosaicking. Figure 35 shows the video mosaic constructed from an IR video captured in 

2007 by the UASE Laboratory team at the University of North Dakota. Every frame has 

240x320 pixels. Figure 36 shows a video mosaic constructed from a demonstration video 

of MATLAB/Simulink. The implementation of the algorithm shown in Table 4 uses 

OpenCV for most of the video and image processing, and FFMPEG to select the I-frame 

of the input video. 

 

 

Figure 35. Infrared (IR) video mosaicking for 5.120 seconds at 25 frames per second 

captured in 2007 by the UASE Laboratory team at the University of North Dakota. 
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Figure 36. Video mosaicking for 4 seconds at 15 frames per second taken from the video 

mosaicking demonstration in MATLAB/Simulink. 

Table 4. Algorithm to construct a video mosaic given an input MPEG video 

sequence. 

 

Objective: Construct a video mosaic from an  MPEG video sequence. 

Algorithm: 

1. Read the information of the video file (duration, frames per second, size of 

the frames, codec type, etc.) 

2. Read the video frame-by-frame and do the following: 

a) Select the I-frames. 

b) Select the first frame as a reference frame. 

c) Compute the SIFT features for every frame and save them into 

memory. 

d) Compute the homography for two consecutive frames. 

e) Reproject the frame into a common coordinate system. 
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4.4 Geo-referenced Mosaic 

In this section, the construction of a geo-referenced mosaic is explained. The first 

part covers the mathematical transformations to consider in the algorithms described in 

the next section. Section 4.4.2 explains the use of the Unscented Kalman Filter to geo-

reference a mosaic in world coordinates. 

4.4.1 The Geometry of Geo-location 

The coordinate frames associated with the geo-referenced mosaic of UAS 

surveillance video include the inertial frame, the vehicle frame, the body frame, the 

gimbal frame, and the camera frame. The inertial frame, denoted by ),,( III ZYX , which 

is a fixed frame with IX  directed to North, IY  directed to East and, IZ directed towards 

the center of the Earth. The vehicle frame is denoted by ),,( vvv ZYX , is oriented 

identically to the initial frame, but its origin is at the vehicle center of mass. The body 

frame is denoted by ),,( bbb ZYX , which is also centered at the center of mass of the UAS. 

bX  points through the nose of the UAS, bY points through the right wing, and bZ  points 

out the belly (see Figures 37 and 38). The gimbal frame is represented by ),,( ggg ZYX  , 

and its originates at the gimbal rotation center and is oriented so that gX  points along the 

optical axis, gY  points in the image plane and gZ points down in the image plane. The 

camera is denoted by ),,( ccc ZYX  , and it originates at the optical center of the camera, 

with cX pointing up in the image, cY  pointing right in the image plane, and cZ  directed 

along the optical axis. 

In order to use these different frames, it is necessary to construct transformation 

matrices. The homogeneous transformation matrix from frame i to frame j is given by 
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where 30   is a row vector, and j

id   is the resolved  j
th 

coordinate frame. The inverse 

transformation is given by 
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Figure 37. Top view of the coordinate frames. The inertial and vehicle (UAS) frames are 

aligned with the world, the body is aligned with the airframe, and the gimbal and camera 

frames are aligned with the camera. 
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Figure 38. Lateral view of the coordinate frames. 

 

Table 5. Homogeneous transformation matrices between frames. 

 

Transformation Description 

v

IT  Inertial to UAS frame vehicle 

b

vT  UAS vehicle to UAS body frame 

g

bT

 

UAS body frame to Gimbal frame 

c

gT

 

Gimbal to Camera frame 
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Transformation from the Inertial to the Vehicle (UAS) Frame 

The transformation from the inertial to the vehicle frame is given by 

,
10 


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v
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I
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T                                                           (4.13) 

where 
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d                                                           (4.14) 

In this expression, .UASx and .UASy represent the North and East locations of the UAS as 

measured by the GPS sensor, and hUAS represents the altitude as measured by a relevant 

sensor, all data are provided by the TASE gimbal [93]. 

Transformation from the vehicle to the body frame 

The transformation from the vehicle to the UAS body frame, b

vT  , consists of a 

rotation based on measurements of the Euler angles by the INS,  


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T                                                           (4.15) 

where 
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 Here,   ,   , and  

 

represent the UAS roll, pitch, and heading angles in radians. Also, 

 cosc  and   sins  . All these angles are gathered by TASE gimbal. 
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Transformation from UAS body frame to the gimbal frame 

The transformation from the body of the UAS to the gimbal frame, g

bT   depends 

on the location of the UAS center of mass with respect to the gimbal’s rotation center, 

denoted by the vector g

bd  . g

bT  also depends on the rotation that aligns the gimbal’s 

coordinate frame with the UAS’s body frame. This rotation is denoted as g

bR  and 

requires measurements of the camera’s azimuth and elevation angles, 








 


10

g

b

g

bg

b

dR
T                                                       (4.17) 

where 
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Here, az   denotes the azimuth angle of rotation about gZ   and  el  the elevation angle 

of rotation about gY  , after az  . This information is also provided by the TASE gimbal. 

Transformation from the gimbal to the camera frame 

The transformation from the gimbal to the camera reference, c

gT  , depends on the 

vector  c

gd  , which describes the location of the gimbal’s rotation center relative to the 

camera’s optical center, and is resolved in the camera’s coordinate frame. c

gT  depends 

also on a fixed rotation c

gR , which aligns the camera’s coordinates to the gimbal 

coordinates. This transformation is given by 
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where 
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4.4.2 Data fusion between GPS/IMU and Video 

The data fusion of the GPS/IMU and video data from the UAS improves the 

accuracy of its pose estimation. There are many ways to do this, most commonly via the 

Kalman Filter [78]. This section presents an Unscented Kalman Filter (UKF) based on 

[79, 80, 81]. The advantage to using UKF is because of its ability to combine data with 

varying uncertainty in highly non-linear systems.  The state of the UKF is a 12x1 vector 

representing the two most recent poses of the UAS. The state is initialized as 

 Tyyx 100 , ,                                                         (4.21) 

 where  ty   represents the pose of the UAS at time t. This pose includes three parameters 

for the location of the UAS, )ˆ,ˆ,ˆ( zyx  , and three parameters for the attitude, ),,(  . 

The reason behind this is because it is necessary to keep two pose estimates to extract 

information about camera motion. 

 Whenever a new pose estimate is received from the GPS/IMU (TASE gimbal 

telemetry information), the state of the UKF is updated to contain the most recent pose 

measurement, and the previous refined estimate, 

 Tttt yyx 1

' ,  ,                                                         (4.22) 
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By keeping a refined pose estimate in the state of the UKF, the pose estimates becomes 

more accurate over time.  Corresponding steps are taken with the covariance matrix 

associated with the state of the UKF. 

In order to generate refined pose estimates, it is necessary to (1) define the state-

measurement function, and (2) implement the measurement update step of the UKF.  

State-measurement function 

The displacement of the camera from one point to another is related to the 

homography, as was shown in Section 4.1.1.2.  Furthermore, the homography can be 

expressed as 

1

12 )
1

(


 KTN
d

RKH T
,                                        (4.23) 

where R is the rotation of camera 1 to camera 2, and T is the translation (see Figure 4.16) 

from camera 1 to camera 2 [79, 80]. Because the gimbal has only one camera,  K1 = K2 = 

K , and thus 

1)
1

(  KTN
d

RKH T
.                                        (4.24) 

For the state vector  Tttt yyx 1

' ,   in the UKF, two rotation matrices 

 
1

,
tt wcwc RR  can be obtained from the world frame (inertial frame as in Section 4.3.1) to 

the coordinate frame of the camera at time t and t+1. In the same way, two translation 

vectors for the cameras in world coordinates (inertial frame) can be derived. 
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Figure 39. Rotation R and translation T from the camera. This rotation and translation are 

related by H. x1, and x2, and they are both representations of the real world point p in 

camera coordinates. 

 

The rotation R and translation T can be computed using the rotations of point 1 

and point 2 as: 

T

wcwc RRR 12                                              (4.25) 

)( 212 wcwcwc TTRT                                           (4.26) 

To obtain N, the normal of the plane in world (inertial frame) coordinates, Nw must be 

rotated into camera 1 coordinates, 

wwc NRN 1  .                                            (4.27) 

Since it is assumed that the world is perfectly flat, Nw = [0,0,1], and 
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Then, it is necessary to normalize (4.28) as 

3,3h

H
H  .                                                       (4.29) 
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Measurement Update 

The measurement update of the UKF uses the current state, the current 

homography measurement, and their associated covariance matrices to estimate a more 

accurate current state.  To do this, it is necessary to transform the state-covariance matrix 

into the measurement space.  UKF achieves this transformation by sampling the 

distributions of the state variables to come up with a number of sample states. Table 6 

shows the algorithm using UKF to compute a more accurate pose estimation using GPS, 

IMU, and video frames from a UAS. Equation (4.31) requires the computation of  hP  , 

which is the covariance of the homography. In order to do this, it is necessary to first 

compute first the homography following the steps of the algorithm shown in Table 1. 

Table 6. Algorithm for the pose estimation based on fusion of the GPS/IMU information 

and video frames using UKF. 

 

 Objective: Update the measurement by using UKF to estimate the pose of the UAS. 

Algorithm: 

1. Create the augmented state vector:  

 Ttt

a vyy ,,'

1x                                             (4.30) 

2. Create an augmented covariance matrix from the covariance  
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Continued… 
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3. Construct the set of sample points i : 

ax
0


 

 
i
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i
PkLx )( 

 

                              (4.32) 
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Here, 
aPkL )(   is the i

th 
column of the matrix square root of  

aPkL )(  .  The value of k is set such that L+k = 3 [78]. 

4. Transform the sample points with the state-measurement transformation: 
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5. Find the mean of the sample homographies: 
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                                               (4.34) 

6. Compute the covariance from the weighted outer product of the transformed 

points 
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7. Compute the state-measurement cross-correlation from the weighted outer 

product of both sets of points: 
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8. Compute the Kalman gain 

1
 hhxh PPK

    

                                           (4.37) 

Continued … 
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9. Update the pose estimates 

)ˆ(ˆ hhxx  K

    

                                           (4.38) 

10. Update the state covariance 

T

hhxxxx KKPPP 

    

                                           (4.39) 

 

From the estimation of the homography, we obtain a set of inlier SIFT features. 

Using these inliers. we can compute the standard deviation of this residual error,  , by 
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  ,                                        (4.40) 

where n is the number of inlier SIFT features. Using   , we can compute the covariance 

matrix, P

 

, representing the uncertainty in all features in both x  and y  locations in the 

image: 

I
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2
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                                           (4.41) 

Due the non-linearity of the transformation from point correspondences to a 

homography matrix, it is necessary to use UKF. In order to do that, a set of sample point 

correspondences is created, transforming them into homography matrices and computing 

the covariance of the resulting matrices. 

A set of  14 n  sample points i  are created as follows: 

'0 
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Here, L = 2n, k = 3 – L, and  ''

1

' ... n . 

A homography is computed for each sample i   by computing the sample point 

with the feature points  ''

1

' ... n  using the algorithm shown in Table 1, creating 

14 n vectorized homography matrices, i . Each homography is then normalized using 

equation (4.29). The covariance of the homographies is computed as 
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                               (4.43) 

Figure 40 shows an example of geo-referenced mosaic taken from [80], and 

Figure 41 shows geo-referenced images taken from a color (red, green) and near infrared 

(false color composite) camera, along with GPS and IMU data.  

 

Figure 40. Example of geo-referenced mosaic taken from [80] . 
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Figure 41. Example of geo-referenced images using images from a color (red, green) and 

near infrared (false color composite) camera along with GPS and IMU information. 

(Photo: Courtesy of David Dvorak) . 
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CHAPTER  5 

SUPER-RESOLUTION MOSAICKING USING STEEPEST DESCENT, CONJUGATE 

GRADIENT, AND LEVENBERG MARQUARDT OPTIMIZATION 

5.1 Introduction 

In this chapter, different optimization algorithms are used to compute the super-

resolution mosaic. The optimization algorithms used are: 1) steepest descent (SD) 2) 

conjugate gradient (CG), and 3) Levenberg Marquardt (LM). The use of the Levenberg 

Marquardt algorithm is a novel optimization method for super-resolution. Furthermore, 

super-resolution mosaicking can be represented as a large sparse linear system, but we 

present a different framework for solving this system efficiently using spatial-domain 

operations.  

Super-resolution mosaicking combines both methods, and it has a number of 

applications when UAS or satellite surveillance video is enhanced. One clear application 

is the surveillance of certain areas even during night with the use of an uncooled infrared 

(IR) imaging system. The UAS can fly over areas of interest and generate super-resolved 

mosaics that can be analyzed at the ground control station.  Other important applications 

involve the supervision of high voltage transmission lines, oil pipes, and the highway 

system.  NASA also uses super-resolution mosaics to study the surface of Mars, the 

moon, and other planets. 

Super-resolution mosaicking has been studied by many researchers. Zomet and 

Peleg [85] used the overlapping area within a sequence of video frames to create a super-

resolved mosaic. In this method, the SR reconstruction technique proposed in [24] is 
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applied to a strip rather than a entire image. This means that the resolution of each strip is 

enhanced by the use of all the frames that contain that particular strip. The disadvantage 

is that this method is computationally expensive. Ready and Taylor [91] use a Kalman 

filter to compute the super-resolved mosaic. They add unobserved data to the mosaic 

using Dellaert’s method [86, 91]. Basically, they construct a matrix that relates the 

observed pixels to estimated mixel values. This matrix is constructed using the 

homography matrix and the point spread function (PSF). The problem is that this matrix 

is extremely large, so they use a Kalman filter and diagonalization of the covariance 

matrix to reduce the amount of storage and computation required. The drawback of this 

algorithm is the use of the large matrix, and the best results with synthetic data obtain a 

peak signal-to-noise ratio (PSNR) of 31.6 dB.  Simolic and Wiegand [87] use a method 

based on image warping. In this method, each pixel of each frame is mapped onto the SR 

mosaic, and its gray level value is assigned to the corresponding pixel in the SR mosaic 

within a range of ± 0.2 pixel units. The drawback of this method is that it requires highly 

accurate motion vectors and homography estimates, which is difficult when dealing with 

real surveillance video from UAS. Wang, Fevig, and Schultz [94] use the overlapped area 

within five consecutive frames from a video sequence. Then they use sparse matrices to 

model the relationship between the LR and SR frames, which is solved using maximum a 

posteriori estimation. To deal with the ill-posed problem of the super-resolution model, 

they use hybrid regularization. The drawback of this method is that it has to be used 

every five frames, which means that for every five frames, several sparse matrices have 

to be constructed. Therefore, this method does not seem to be appropriate to deal with a 

real video sequence which has thousand of frames. Pickering and Ye [83] proposed an 
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interesting model for mosaicking and super-resolution of video sequences using the 

Laplacian operator to find the regularization factor. The problem with the use of the 

Laplacian factor is that it forces spatial smoothness. Therefore, edge pixels are removed 

in the regularization process, eliminating sharp edges [83]. Arican and Frossard [95] use 

the Levenberg Marquardt algorithm to compute the SR of onmidirectional images. Chung 

[96] proposed different Gauss Newton methods to compute the SR of images, the 

disadvantage is that this optimization technique works only for small images. 

In this chapter, different algorithms to compute super-resolution mosaics are 

presented, and compared to one another. The advantages of these proposed algorithms are 

that they do not need the creation of huge sparse matrices, and they are fast, adaptive and 

robust. Therefore, it is feasible to apply the algorithms to a relatively large image 

sequences to obtain a video mosaics. Also, we use Huber regularization, which preserves 

high frequency pixels so sharp edges are preserved. 

5.2 Observation Model 

Assuming that there are K frames of LR images available, the observation model 

can be represented as 

.                                     (5.1) 

Here , ky  (k =1,2, …, K), x , and  kη  represent the k
th

 LR image, the part of the real 

world depicted by the super-resolution mosaic, and the additive noise, respectively. The 

observation model in (5.1) introduces k][xR  , which represents the reconstruction of the 

k
th

 warped SR image from the original high-resolution data x  [83]. The geometric warp 

operator and the blur matrix between x  and the k
th

 LR image, ky  are represented by kW  

and kB , respectively. The decimation operator is denoted by D . 

kkkkkkk ηxHηR[x]WDBy 
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5.3 Robust Super-resolution Mosaicking 

The estimation of the unknown SR mosaic image is not only based on the 

observed LR images, but also on many assumptions such as the blurring process and 

additive noise. The motion model is computed as a projective model using the 

homography between frames; the blur is considered only optical. The additive noise, kη  , 

is considered to be independent and identically distributed white Gaussian noise. 

Therefore, the problem of finding the maximum likelihood estimate of the SR mosaic 

image x̂   can be formulated as 




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

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 
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k

kkkk xRWDByx x .                                        (5.2) 

In this case, 
2

 

denotes the Euclidean norm. As the SR reconstruction is an ill-posed 

inverse problem, we need to add another term for regularization, which must contain 

prior information for the SR mosaicking. This regularization term helps to convert the ill-

posed problem into a well-posed problem. We use Huber regularization, because it 

preserves edges and high frequency information [69,70]: 

 (5.3) 

 

The Huber function is defined as 
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5.4 Super-resolution Mosaicking Using Steepest Descent 

Based on the gradient descent algorithm for minimizing (5.3), the robust iterative 

update for x̂  can be expressed as 
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(5.5) 

where G

 

is the gradient operator over the cliques [81,7], and )(n , the regularization 

operator can be computed as 
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Furthermore, the derivative of the Huber function is given as: 
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In this case, 

 R  and T
R  : R  represents the reconstruction from the mosaic image, and T

R  

represents the construction of a mosaic. 

 W  and 
T

W : W represents the backward warping inverse of the homography, 

and
T

W
 
is the forward warping using the homography. The homography is 

computed using the SIFT (Scale Invariant Feature Transform) features and 

RANSAC (Random Sample Consensus) algorithm detailed in Chapter 4, Table 1. 

 B  and T
B : B   represents the blurring effect, and is implemented by a 

convolution with the PSF kernel. T
B  is implemented by convolution with the 

flipped PSF kernel. 

  ),ˆ(]ˆ[(ˆˆ )(')(

1

)()()()1(  nTnK

kk

n

kkk

TT

k

T

k

Tnnn GxGxRWDByDBWRxx 






78 

 D  and T
D  : D  represents image interpolation T

D  represents image decimation. 

Image interpolation refers to the process of upsampling followed by appropriate 

lowpass filtering, and image decimation refers to downsampling after appropriate 

anti-alias filtering (see Figure 42). 

 

Figure 42. Image Interpolation and decimation. 

 

The gradient operator G   has the advantage over the Total Variation (TV) prior; 

the function and its gradient with respect to )(ˆ n
x   are continuous as well as convex [90]. 

Therefore, the optimization problem can be solved easily using gradient-descent methods 

such as steepest descent and conjugate gradient methods. 

The clique structure determines the spatial interactions. The spatial interactions 

are used with our proposed method, and its activity is computed using finite difference 

approximations to second-order directional derivatives (vertical, horizontal, and two 

diagonal directions) in each super-resolution mosaic )(ˆ n
x . 
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Figure 43 graphically shows these finite four difference approximations for the pixel n in 

the super-resolution mosaic 
)(ˆ nx . 

 

Figure 43. Local spatial interactions representing by four finite difference approximations 

of the pixel 
)(ˆ nx . 
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Table 7 describes the construction of a super-resolved mosaic given a set of N 

input frames or images using steepest descent algorithm. 

Table 7. Algorithm to construct a super-resolved mosaic using steepest descent algorithm 

given a set of input frames. 

 

Objective: Construct a super-resolved mosaic using steepest descent algorithm 

from a set of N input frames. 

Algorithm: 

1. Compute the homography using Table 1 between consecutive frames; i.e., 

NNhhh ,12312 ,...,,  . 

2. Reproject all the input frames to a common coordinate system using 

equation (4.6). The result of this step becomes the initial condition )0(
x̂ SR 

mosaic (iteration 0). 

3. While iteration n is less than the maximum number of iterations: 

a) Construct a set of N reconstructed frames based on )(ˆ n
x .  

b) Construct a set of N difference frames, subtracting the input frames 

from the set of frames in a). 

c) Construct a mosaic using Table 1 with the set of difference frames. 

d) Construct the regularization factor given by ),ˆ( )(')(  nTn GxG .  

e) Subtract the result of c) from d) and then add to the previous SR 

mosaic )1(ˆ n
x .  
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5.4.1 Experimental Results for Super-resolution Mosaicking Using Steepest Descent  

We conducted four different tests, the first two are with synthetic data and the last 

two with real frames from UAS surveillance video. The parameter )(n )
 was chosen to be 

1.75 for the entire test, and the algorithm was set to run 10 iterations.  

Results Using Synthetic Frames 

We created synthetic LR frames from a single high resolution image. These LR 

frames where created using different translations (18 to 95 pixels), rotations (5
o
 to 10

o
), 

and scales (1 to 1.5); we blurred the frames with a Gaussian kernel of size 3x3. Figure 5.3 

shows the results of the proposed algorithm for two different sets of data. Figures 44 (a) 

and 44 (d) are the input LR mosaics, and Figures 44 (b) and 44 (e) are SR mosaics 

obtained by the proposed algorithm. Finally, Figures 44 (c) and 44 (f) are the mosaics 

generated using the high-resolution frames, these mosaic are going to be our ground truth 

for computing the PSNR. The results obtained by our algorithm are close to high-

resolution mosaicking. Both set of images consist of five frames of 128x128x3 pixels. 

 

 

 

(

a) 

(

b) 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 44. Results of SR mosaicking for synthetic frames using steepest descent 

algorithm. The mosaic was constructed using five frames. Figures (a) and (d) show the 

mosaic for the first and second set of synthetic frames, respectively. These mosaics are 

the input to the algorithm. (b) and (e) are the super-resolved mosaics of (a) and (d) 

respectively. These mosaics are the output of the proposed algorithm. Figures (c) and (f) 

show the ground truth mosaics, which are the mosaics constructed using high resolution 

frames. 

 

The PSNR was computed according to (5.12), resulting in a values of 43.86 dB  

(5.12) 
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and 47.52 dB for the first and second sets of synthetic images, respectively Table 8 shows 

more results including the total time of processing all computations. This time also 

includes the computation of the mosaic. Figure 45 shows the evolution in every iteration 

of the Lagrange multiplier. 

 

Table 8. Results of the computation of super-resolution mosaicking using steepest 

descent algorithm for two different sets of color synthetic frames. 

Test PSNR (dB) 

Final error 

2

21
ˆˆ

k

kk

x

xx 
 

Total Processing Time 

on CPU (sec) 

First set of five synthetic 

color frames. 
43.86 0.006391 4.625 

Second set of five 

synthetic color frames 
47.52 0.0029404 3.875 

 

 

Figure 45. Regularization parameter (Lagrange multiplier) versus the number of 

iterations for the second set of synthetic color frames. The regularization parameter 

decreased as expected. 
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Results Using Real Frames from UAS 

This section presents the results of the computation of super-resolution 

mosaicking for real UAS frames. There were three different tests performed: 1) using 

color frames, 2) using IR frames taken of buildings, and 3) using IR frames taken of 

vegetation. Figure 46 shows the results for the first test, where is clear to see significant 

visual improvement. The image on the left is the LR mosaic, and on the right is the SR 

mosaic.  The SR mosaic contains more details, is less cloudy, and also the colors and 

textures are much better than the LR mosaic.  

The LR mosaic was constructed using five different frames, courtesy of Cloud 

Cap Technology. The original size of the images were 640x480x3 pixels, but because of 

memory issues with the GNU Scientific Library (GSL), that is used to compute the 

homography, we had to downsample the images to 320x240x3 pixels. 

Figure 46. Results of super-resolution mosaicking using the steepest descent algorithm. 

Left: LR mosaic. Right: the SR mosaic. The mosaic was constructed using five frames of 

size 320x240x3 pixels. 
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Figure 47 shows the results for the second and third tests. Both of these tests were 

applied to IR (infrared) frames captured in 2007 by the UASE Laboratory team at the 

University of North Dakota. The size of these frames is 320x240 pixels. Figure 48 (b, d) 

shows the LR mosaic and the SR mosaic for the second test. There is more detail in the 

SR mosaic, the buildings are sharper, and the trees have more texture. Figure 49(a-b,c-d) 

shows the LR mosaic and the SR mosaic for the third test. In this case, the difference is 

clearer, the SR mosaic is less cloudy and sharper and the trees have more texture. Figure 

50 shows the evolution for every iteration of the Lagrange multiplier 
)(n . 

Table 9. Results of computing of super-resolution mosaics for two different sets of color 

synthetic frames. 

Test 

Final error 

2

21
ˆˆ

k

kk

x

xx 

 

Total Processing 

Time on CPU (sec) 

Test #1: color frames 

of a road and forest. 
0.002469 16.218 

Test #2: IR frames of 

buildings 
0.002004 10.844 

Test #3: IR frames of a 

forest. 
0.001018 16.688 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 47. Results of the SR mosaic for real frames from UAS using the steepest descent 

algorithm. The mosaic was constructed using five frames. Figures (a) and (c) show the 

mosaic for the first and second set of frames, respectively. These mosaics are the input to 

the algorithm. (b) and (d) are the super-resolved mosaics of (a) and (c), respectively. 

These mosaics are the output of the proposed algorithm. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 48. Region of Interest cropped to see a better comparison of the results of the 

algorithm for the first set of real UAS video frames. Figure (a) shows the region of 

interest selected from the whole LR mosaic, and (b) shows the selected LR area. Figure 

(c) shows the region of interest selected from the whole SR mosaic, and (d) shows the 

selected SR area. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

Figure 49. Region of Interest cropped to see a better comparison of the results of the 

algorithm for the second set of real UAS video frames. Figures (a) and (e) show the 

region of interest selected from the whole LR mosaic. Figures (b) and (f) show the region 

of interest selected from the whole LR mosaic. Figures (d) and (h) show the selected SR 

area. 
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Figure 50. Regularization parameter 
)(n  (Lagrange multiplier) versus the number of 

iterations for the second set of real IR video frames from UAS. The regularization 

parameter decreased as expected. 

 

5.5 Super-resolution Mosaicking Using Conjugate Gradient  

Based on the conjugate gradient method for minimizing (5.3), the robust iterative 

update for x̂  can be expressed as 

)()()()1( ˆˆ nnnn
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,                                         (5.13) 

where 
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p

 

is  chosen to be conjugate to all previous search directions with respect to the 

Hessian matrix H  : 
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Therefore, the resulting search directions are mutually linearly independent. 
)(n

p  can be 

chosen using only knowledge of  
)1( n

p  , )ˆ( )1(  nf x and )ˆ( )(nf x [79], given as 
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The gradient vector, )ˆ( )(nf x  ,is given by the following expression: 
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where G

 

and )(n   are computed in the same manner that for the case of the steepest 

descent algorithm.  Table 10 details the implementation of the conjugate gradient for the 

computation of super-resolution mosaic. 

5.5.1 Experimental Results for Super-resolution Mosaicking Using Conjugate 

Gradient  

We conducted four different tests, the first two are with synthetic data and the last 

two with real frames from UAS surveillance video. The parameter 
)(n  was chosen to be 

1.75 for the entire test, and the algorithm was set to run for 10 iterations. The results of 

both tests are show in the next sections. 

Results Using Synthetic Frames 

This section shows the results of the conjugate gradient algorithm for the same 

data set of synthetic images as Section 5.2.1.1. Figure 51 shows the results for two sets of 

synthetic color frames. Figure 51 (b) and 51 (e) are the SR mosaics obtained by the 

proposed CG algorithm. These images are very close to the ground truth; the color, 

texture, and sharpness are recovered in most of the images. Table 11 shows the PSNR, 

execution time, and final error for both sets of images. According to this table, the results 

of using CG are slightly better in comparison with SD in quality, but it takes more 

computation time.  
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Table 10. Algorithm to construct a super-resolved mosaic using conjugate gradient 

algorithm given a set of N input frames. 

 

Objective: Construct a super-resolved mosaic using conjugate gradient 

algorithm from a set of N input frames. 

Algorithm: 

1. Compute the homography using Table 1 between consecutive frames; i.e., 

NNhhh ,12312 ,...,,  . 

2. Reproject all the input frames to a common coordinate system using 

equation (4.6). The result of this step becomes the initial condition of the 

)0(
x̂ SR mosaic (iteration 0), and it is used to compute the gradient for 

iteration 0 using (5.16). 

3. While iteration n is less than the maximum number of iterations: 

a) Construct the gradient using equation (5.16). 

b) Construct 
)(n

p using equation (5.15). 

c) Update )(ˆ n
x , using equation (5.13). 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 51. Results of SR mosaicking for synthetic frames using the conjugate gradient 

algorithm. The mosaics were constructed using five frames. Figures (a) and (d) show the 

mosaics for the first and second set of synthetic frames respectively. These mosaics are 

the input to the algorithm. (b) and (e) are the super-resolved mosaics using the CG 

algorithm on (a) and (d), respectively. These mosaics are the output of the proposed 

algorithm. Figures (c) and (f) show the ground truth mosaics, which are the mosaics 

constructed using high-resolution frames. 
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Table 11. Results of computating super-resolution mosaics using the conjugate gradient 

algorithm for two different set of color synthetic frames. 

Test PSNR (dB) 

Final error 

2

21
ˆˆ

k

kk

x

xx 

 

Total Processing Time 

on CPU (sec) 

First set of five synthetic 

color frames. 
43.98 0.004381 5.047 

Second set of five 

synthetic color frames 
47.54 0.006212 4.250 

 

Results Using Real Frames from UAS 

This section shows the results of the conjugate gradient method for the same data 

set of real frames captured by UAS as described in Section 5.2.1. Figure 52 shows the 

results applying the conjugate gradient algorithm to super-resolution mosaicking for a set 

of five color frames from a UAS. The results are similar as that for the case of steepest 

descent method, but the color and sharpness show a slight improvement. Table 12 shows 

more details of the results with the three data sets. This table shows the final error and the 

total processing time in seconds for the three tests. 

Table 12. Results of the capturing the super-resolution mosaics using the proposed 

conjugate gradient algorithm for three different sets real frames from UAS. 

Test 

Final error 

2

21
ˆˆ

k

kk

x

xx 

 

Total Processing Time 

on CPU (sec) 

Test #1: color frames of a 

road and forest. 
0.005055 16.891 

Test #2: IR frames of 

buildings 
0.003379 11.907 

Test #3: IR frames of a 

forest. 
0.003655 11.219 
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Figure 52. Results of super-resolution mosaicking using the conjugate gradient algorithm. 

Left: LR mosaicking. Right: SR mosaic. The mosaics were constructed using five frames 

of a size of 320x240x3 pixels. 

 

Figure 53 shows the results of using conjugate gradient for computing SR mosaic for real 

IR video frames. The results are now clearer than for steepest descent method. The SR 

mosaic has more details, even the shape of the buildings are more clear (see Figure 53 

(b)); also, the trees are sharper. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 53 . Results of the SR mosaic for real frames from UAS using the conjugate 

gradient method. The mosaic was constructed using five frames. Figures (a) and (c) show 

the mosaics for the first and second set of frames, respectively. These mosaics are the 

input to the algorithm; (b) and (d) are the super-resolved mosaics of (a) and (c), 

respectively. These mosaics are the output of the proposed conjugate gradient method. 
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5.6 Super-resolution Mosaicking Using Levenberg Marquardt  

The Levenberg Marquardt (LM) method was proposed by [1,97] as a new method 

to solve nonlinear problems. This algorithm shares with gradient methods their ability to 

converge from an initial guess which may be outside of the region of convergence of 

other methods. Based on the Levenberg Marquardt method for minimizing (5.3), and 

defining )(xf  as  
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xxxx  Jff  )()( ,                                       (5.17) 

 

where )(xJ  is given as the Jacobian matrix: 

 

(5.18) 

 

(5.19) 

 

The Levenberg Marquardt method is iterative. Initiated at the starting point )0(
x̂ , 

the method requires finding x
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x is found by solving a linear least squares problem. The minimum is attained when 

εx J  is orthogonal to the column space of J . This leads to: 
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                                                        (5.21) 

where *H  is called the pseudo Hessian, defined as JJH T*
Levenberg Marquardt 

solves equation (5.21), adding a damping term to the diagonal elements of *H . 

Therefore, the Levenberg Marquardt equation is  

             

,)( *
εx

TJcIH  
                                               (5.22)

 

where x  is found by solving   

 
2

*minarg εxx x

TJcIH   
.                       (5.23) 

Then,  

   xxx  )()1( ˆˆ nn ,                                           (5.24) 

where c is the Levenberg Marquardt damping term that determines the behavior of the 

gradient in each iteration. If c is close to zero, then the algorithm behaves like a Gauss 

Newton (GN) method, but if c , then the algorithm behaves like the steepest 

descent (SD) algorithm. The values of c during the iterative process are chosen in the 

following way: at the beginning of the iterations, c   is set to a large value, so that the 

LM method uses the robustness of SD, and the initial guess of the solution to (5.3) can be 

chosen with less caution. It is necessary to save the value of the errors for each iteration, 

and do the comparison between two consecutive errors. In the case that 

)1()(  kk errorerror , c  is decreased by a certain amount so that LM behaves like 

Gauss-Newton to take advantage of the speed up to convergence. Otherwise, c increases 

to a larger value, thus increasing the searching area, which means that LM behaves like 

SD. The )(kerror is defined as  
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The following section shows the experimental results with synthetic and real data 

from UAS. 

5.6.1 Results Using Synthetic Frames 

This section shows the results of the Levenberg Marquardt method for the same 

data set of synthetic images as shown in Section 5.2. Figure 54 shows the results for the 

two sets of synthetic color frames. Figures 54 (b) and 54 (e) are the SR mosaics obtained 

by the proposed algorithm based on Levenberg Marquardt. These images are very close 

to the ground truth as well, even the color is recovered. 

Table 13 shows the algorithm used to compute the super-resolution mosaic using 

Levenberg Marquardt algorithm, this table shows the PSNR, final error obtained in ten 

iterations and the total processing time in seconds.  

Table 14 shows the algorithm to compute super-resolution mosaic using 

Levenberg Marquardt 

Table 13. Results computing super-resolution mosaics using Levenberg Marquardt 

algorithm for two different sets of color synthetic frames. 

Test PSNR (dB) 

Final error 

2

21
ˆˆ

k

kk

x

xx 
 

Total Processing Time 

on CPU (sec) 

First set of five synthetic 

color frames. 
43.77 0.002833 5.109 

Second set of five 

synthetic color frames 
47.45 0.002505 4.281 
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Table 14. Algorithm to construct a super-resolved mosaic using the Levenberg Marquardt 

optimization method given a set of N input frames. 

 

Objective: Construct a super-resolved mosaic using the Levenberg Marquardt 

optimization method from a set of N input frames. 

Algorithm: 

1. Compute the homography using Table 1 between consecutive frames; i.e., 

NNhhh ,12312 ,...,,  . 

2. Reproject all the input frames to a common coordinate systems using 

equation (4.6). The result of this step becomes the initial condition of the 

)0(
x̂ SR mosaic (iteration 0). 

3. While iteration n is less than the maximum number of iterations: 

a) Construct the Jacobian using equation (5.19). 

b) Construct the pseudo Hessian matrix given by JJ T*
H . 

c) Solve the linear least squares equation using the singular value 

decomposition (SVD) for x , in equation (5.23). 

d) Update )(ˆ n
x  in equation (5.24). 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 54. Results of SR mosaicking for synthetic frames using the Levenberg Marquardt 

method. The mosaic was constructed using five frames. Figures (a) and (d) show the 

mosaic for the first and second sets of synthetic frames, respectively. These mosaics are 

the input to the algorithm. (b) and (e) are the super-resolved mosaics applying the LM 

method to (a) and (d), respectively. These mosaics are the output of the proposed 

algorithm. Figures (c) and (f) show the ground truth mosaics, which are the mosaics 

constructed using high-resolution frames. 
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5.6.2 Results Using Real Frames from UAS 

This section shows the results of the Levenberg Marquardt algorithm for the same 

data set of real frames captured by UAS in Section 5.2.1.2. Figure 55 shows the results 

applying the Levenberg Marquardt method for super-resolution mosaicking to a set of 

five color frames from a UAS. The results are similar to those for the case of steepest 

descent, but the color and sharpness have better improvement. But, there are also some 

artifacts introduced by the solution of the equation (5.23); the reason of this is because 

the pseudo Hessian is close to be singular. Table 15 shows more details of the results 

with the three data sets (three different tests).  

Table 15. Results of computing the super-resolution mosaics using the proposed 

Levenberg Marquardt algorithm for three different sets real frames from UAS. 

Test 

Final error 

2

21
ˆˆ

k

kk

x

xx 
 

Total Processing Time 

on CPU (sec) 

Test #1: color frames of a 

road and forest. 
0.005424 17.485 

Test #2: IR frames of 

buildings. 
0.003514 11.766 

Test #3: IR frames of a 

forest. 
0.004298 11.391 
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Figure 55. Result of super-resolution mosaicking using the proposed Levenberg 

Marquardt method. Left: LR mosaicking. Right: SR mosaicking. The mosaics were 

constructed using five frames of size of 320x240x3 pixels. 

 

Figure 56 shows the results of using the Levenberg Marquardt algorithm for real 

IR video frames. The SR mosaic has more details, even the shape of the buildings are 

more clear (see Figure 56 (b)); also, the trees are more sharp. However, there are some 

also artifacts since the Levenberg Marquardt requires the pseudo Hessian which has a 

sparse structure and is close to singular. Note that these artifacts are not produced in the 

real color frames from the UAS video (Figure 55). 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 56. Results of the SR mosaic for real frames from UAS using the proposed 

Levenberg Marquardt method. The mosaic was constructed using five frames. Figures (a) 

and (c) show the mosaic for the first and second set of frames, respectively. These 

mosaics are the input to the algorithm. (b) and (d) are the super-resolved mosaics of (a) 

and (c) respectively. These mosaics are the output of the proposed LM algorithm. 

 

5.7 Comparison of metrics for Super-Resolution Mosaicking by the three algorithms 

This section compares the results of the three proposed algorithms for super-

resolution mosaicking. The comparison will be based on PSNR, time, and error for the 

synthetic data sets, and time and error for the real frames from UAS because there is no 

ground truth data available to compute the PSNR with real frames. 
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From the comparisons shown in Figures 57 to 61 and from Tables 16 to 20, all the 

methods improve the resolution of the LR mosaic, and all of them improve the color, 

details, and sharpness. But, when the image is black and white (IR images), the 

Levenberg Marquardt produces some artifacts since it solves linear squares equation that 

is close to be singular (5.23). The final error for the steepest descent and conjugate 

gradient algorithms decreases with every iteration, which means that they find the 

optimal solution in every iteration; but for the Levenberg Marquardt algorithm, this error 

can decrease or increase due to the use of the damping factor, c , which accelerates the 

search for the optimal solution. 

Table 16. Comparison of the three proposed algorithms to compute super-resolution 

mosaics for the first set of synthetic color frames. 

Algorithm PSNR (dB) 

Final error 

2

21
ˆˆ

k

kk

x

xx 
 

Total Processing 

Time on CPU (sec) 

Super-resolution using steepest 

descent algorithm. 
43.86 0.006391 4.625 

Super-resolution using conjugate 

gradient algorithm. 
43.98 0.004381 5.047 

Super-resolution using 

Levenberg Marquardt algorithm. 
43.77 0.002833 5.422 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

 

Figure 57. Comparison of the three proposed algorithms: steepest descent, conjugate 

gradient, and Levenberg Marquardt. These images belong to the first set of synthetic 

frames created. (a) LR mosaic. (b) Ground truth HR mosaic. (c) SR mosaic using steepest 

descent. (d) SR mosaic using conjugate gradient. (e) SR mosaic using Levenberg 

Marquardt. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

 

Figure 58. Comparison of the three proposed algorithms: steepest descent, conjugate 

gradient and Levenberg Marquardt. These images belong to the second set of synthetic 

frames created. (a) LR mosaic. (b) Ground truth HR mosaic. (c) SR mosaic using steepest 

descent. (d) SR mosaic using conjugate gradient. (e) SR mosaic using Levenberg 

Marquardt. 
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Table 17. Comparison of the three proposed algorithms to compute super-resolution 

mosaics for the second set of synthetic color frames. 

Algorithm PSNR (dB) 

Final error 

2

21
ˆˆ

k

kk

x

xx   

Total Processing 

Time on CPU 

(sec) 

Super-resolution using 

steepest descent algorithm. 
47.52 0.0029404 3.875 

Super-resolution using 

conjugate gradient 

algorithm. 

47.54 0.006212 4.250 

Super-resolution using 

Levenberg Marquardt 

algorithm. 

47.45 0.002505 4.281 

 

Table 18. Comparison of the three proposed algorithms to compute super-resolution 

mosaics for the first set of real video color frames captured by UAS. 

  

Algorithm Final error 

2

21
ˆˆ

k

kk

x

xx   

Total Processing 

Time on CPU 

(sec) 

Super-resolution using 

steepest descent method. 

0. 002469 16.218 

Super-resolution using 

conjugate gradient method. 

0.005055 16.891 

Super-resolution using 

Levenberg Marquardt 

method. 

0.005424 17.485 
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(a) 

 

(b) 

 

(c) 

 

(d) 

  

Figure 59. Comparison of the three proposed algorithms: steepest descent, conjugate 

gradient, and Levenberg Marquardt. The images belong to the first set of color video 

frames captured from UAS. (a) LR mosaic. (b) SR mosaic using steepest descent. (c) SR 

mosaic using conjugate gradient. (d) SR mosaic using Levenberg Marquardt. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

  

Figure 60. Comparison of the three proposed algorithms: steepest descent, conjugate 

gradient, and Levenberg Marquardt. These images belong to the first set of real IR video 

frames captured from UAS. (a) LR mosaic. (b) SR mosaic using steepest descent. (c) SR 

mosaic using conjugate gradient. (d) SR mosaic using Levenberg Marquardt. 

Table 19. Comparison of the three proposed algorithms to compute super-resolution 

mosaics for the first set of real video IR frames captured by UAS. 

Algorithm Final error 

2

21
ˆˆ

k

kk

x

xx 

 

Total Processing 

Time on CPU (sec) 

Super-resolution using steepest 

descent algorithm. 

0.065014 10.844 

Super-resolution using conjugate 

gradient algorithm. 

0.097590 11.907 

Super-resolution using 

Levenberg Marquardt algorithm. 

0.068155 11.750 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

 

 

 

Figure 61. Comparison of the three proposed algorithms: steepest descent, conjugate 

gradient and Levenberg Marquardt methods. These images belong to the second set of 

real IR video frames captured from UAS. (a) LR mosaic. (b) SR mosaic using steepest 

descent method. (c) SR mosaic using conjugate gradient. (d) SR mosaic using Levenberg 

Marquardt. 
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Table 20. Comparison of the three proposed algorithms to compute super-resolution 

mosaics for the second set of real video IR frames captured by UAS. 

Algorithm 

Final error 

2

21
ˆˆ

k

kk

x

xx 

 

Total Processing 

Time on CPU 

(sec) 

Super-resolution using 

steepest descent algorithm. 
0.001018 16.688 

Super-resolution using 

conjugate gradient algorithm 
0.003655 11.907 

Super-resolution using 

Levenberg Marquardt 

algorithm 

0.004298 11.391 

 

5.8 Conclusions 

Three algorithms, based on steepest descent, conjugate gradient and Levenberg 

Marquardt are introduced for the computation of the super-resolution mosaicking. 

Levenberg Marquardt is a novel algorithm in this regard. All these algorithms use the 

same prior and Lagrange multiplier based on the Huber function. The computation of the 

super-resolution mosaic for all the proposed methods takes five low-resolution frames as 

input, then constructs the mosaic, applies the regularization factor, and finally applies the 

corresponding optimization method to solve it. Therefore, the proposed methods are 

complete, robust, adaptive, and independent.  

The results show that the three proposed algorithms work not only with synthetic 

images, but also with real images in both color and gray pixel levels. Furthermore, the 

size of the test frames are standard sizes for video frames. The processing time is also 

reduced, which makes these algorithms capable of dealing with real data in real 

applications.  
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CHAPTER  6 

GPU-CPU IMPLEMENTATION FOR VIDEO MOSAICKING AND SUPER-

RESOLUTION MOSAICKING 

 

6.1 Introduction 

The construction of video mosaics and the super-resolution reconstruction of 

mosaics for a set of color (EO) and IR frames has been analyzed and explained in 

previous chapters. The computations of those results all used CPU (Central Processing 

Unit) processing. This chapter implements the video mosaicking and super-resolution 

mosaicking over GPU (Graphical Process Unit) and CPU processors, using the same 

algorithms of Chapters 4, and 5. 

In order to create a “good” video mosaic and super-resolution mosaic, the 

registration between the frames should be accurate at the sub-pixel level. SIFT (Scale 

Invariant Feature Transform) has been chosen because of its robustness, invariance to 

change of illumination, and highly distinctive features, all of which help in the matching 

process [70]. Once the SIFT features are found, it is necessary to match them and find the 

best transformation matrix between them called a homography. All this registration 

process takes a great deal of computational resources, serving as the computation 

bottleneck of the whole process for video (image) mosaicking and super-resolution 

mosaicking. 

This chapter implements the registration process on GPU and the NVIDIA 

CUDA
TM

 technology. The GPU is a highly parallel, multithread, many core processor 
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with tremendous computational horsepower and very high memory bandwidth. 

Algorithms developed using the GPU as programming platforms are commonly referred 

as GPGPU (General Purpose Computation on GPU) [2]. The speed up of the registration 

process is up to 54 times faster than using CPU technology. All the results that we show 

in this section were obtained on with a desktop Dell computer with the GeForce 9800 GT 

GPU card installed.  

 Section 6.2 explains the use of GPU and CUDA
TM

 technology, Section 6.3 shows 

the implementation of GPU-CPU for the computation of video mosaics based on the 

algorithms in Chapter 4, and the use of I-frames generated for MPEG video. Section 6.4 

shows the results for the computation of super-resolution mosaics using GPU-CPU and a 

performance comparison between the results obtained using GPU-CPU with only CPU 

(extracted from Chapter 5). 

6.2 GPU Programming Paradigm  

The use of the graphical processing unit (GPU) to accelerate general-purpose 

computations has become an important technique in scientific research. Graphics 

hardware has evolved tremendously over the last several years. It started with basic 

polygon rendering via 3dfx’s Voodoo Graphics in 1996, and continued with custom 

vertex manipulations four years later. Within ten years, the GPU increased its speed by 

approximately 750 times (1996 to 2006), and is still growing exponentially each year. 

Conversely, CPU performance doubles only every 22 months. 

GPU is designed for math-intensive, parallel problems (see Figure 62). More 

specifically, the GPU is especially well-suited to address problems that can be expressed 

as data-parallel computations. Because the same program is executed for each data 
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element, there is a lower requirement for sophisticated flow control, and the memory 

latency can be hidden with calculations instead of large data caches. CUDA 
TM

 was 

introduced by NVIDIA in November 2006. CUDA
TM

 is a C-based general purpose 

parallel computing architecture, with a new parallel programming model and instruction 

set architecture, which leverages the parallel compute engine in NVIDIA GPUs. 

Successful use of GPU for general purpose computation requires taking into 

account the significant overhead incurred in executing and managing GPU kernels, which 

includes queuing, overhead, scheduling overhead, and the GPU progress check period. 

 

Figure 62. GPU uses more transistors for data processing.  

 

The kernels, C functions, are executed as a grid of thread blocks. A thread block 

is a batch of threads that can cooperate with one another by sharing data through shared 

memory or synchronizing their execution. The threads from different blocks cannot 

cooperate.  Figure 63 shows a kernel in the host (CPU side), which is implemented in the 

device (GPU side). Note that a grid is a set of blocks, and a block is a set of threads.  

Recently, GPUs can handle more than 512 independent thread processors, 

whereas CPUs at the desktop level have only reached eight cores. 
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Figure 63. Programming model over GPU. 

 

6.3 GPU-CPU Implementation for Video Mosaicking of UAS Surveillance Video  

In this section, the construction of dynamic video mosaicking using GPU-CPU is 

presented. The GPU is used to compute the homography for registration, and the CPU is 

allocated the remaining jobs: read the video data and reprojection. 
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Figure 64. Real time video mosaicking constructed using GPU-CPU. The video belongs 

to MATLAB/Simulink demonstrations. 

 

Table 21 shows the time comparison between GPU and CPU for the computation 

of the homography. The GPU is almost 55 times faster than the CPU for this process. 

This represents a good speed up that can allow us to achieve our goal of real-time video 

mosaicking. 

Table 22 details the algorithm to construct the video mosaic using GPU-CPU; 

also Figure 64 shows an example of video mosaicking constructed in real time. This 

video mosaic was taken from a video demonstration in MATLAB/ Simulink. 

Table 21. Comparison of the computational time of the homography. 

Type of Test 

Time 

GPU 

(ms) 

Time CPU 

(ms) 

Time CPU/ Time 

GPU 

Find the Homography 

for UAS IR video 
20.8580 1141.0 54.7 
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Table 22. Algorithm to construct a video mosaic given an input video over GPU – CPU. 

 

Objective: Construct a video mosaic from a video input using GPU-CPU.  

Algorithm: 

1. Read the information from the video file (duration, frames per second, size 

of the frames, codec type, etc.). 

2. Read the video frame-by-frame and do the following: 

a) Select the I-frames (for MPEG video). 

b) Select the first frame as a reference frame. 

c) Copy the frame from the host (CPU) memory to device (GPU) 

memory. 

d) Compute the SIFT features for every frame and save them into a 

GPU memory. 

e) Compute the homography for two consecutive frames. 

f) Copy the homography matrix from device memory to host memory. 

g) Reproject the frame into a common coordinate system. 

 

Table 23 shows a computational time comparison for different tests. Here, the 

time considers the whole process to construct the video mosaic according to Table 21. It 

is important to note that the performance of constructing the video mosaic using MPEG I-

frames generates not only better results (see Figure 65), but is also faster than using all of 

the frames. 
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Table 23. Comparison of the computational time for complete video mosaicking. 

Type of Test Condition Time GPU – 

CPU 

(sec) 

Time 

CPU 

(sec) 

Time CPU/ 

Time GPU-

CPU 

Video Mosaicking of 

the demo video of 

MATLAB 

Reading 

at 15 fps 

9.297  107.125 11.52 

Video Mosaicking of 

the UAS IR video 

Reading 

at 25 fps 

17.938 135.953 7.58 

Video Mosaicking of 

the UAS IR video 

Using 

MPEG-I 

frames 

4.234 14.468 3.41 

 

 

 

(a) 

 

(b) 

Figure 65. Video mosaicking results for 5.120 seconds at 25 frames per second for the IR 

video captured in 2007 by the UASE Laboratory team at the University of North Dakota. 

Left: Mosaic result using only MPEG I-frames. Right: Result using all frames from 5.120 

seconds of video. 

 

6.4 GPU-CPU Implementation for Super-Resolution Mosaicking of UAS Surveillance 

Video 

This section shows the results of using GPU-CPU implementation for the 

computation of super-resolution mosaics using the three different optimization 
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algorithms: steepest descent, conjugate gradient, and Levenberg Marquardt. The tests 

performed use the same data as in Chapter 5. 

6.4.1 GPU-CPU Implementation for Super-Resolution Mosaicking Using Steepest 

Descent  

This section presents the results for the computation of super-resolution 

mosaicking using the steepest descent algorithm over GPU-CPU. Table 24 details the 

algorithm used; basically, this is almost the same as the algorithm in Chapter 5, with the 

difference being that the registration step is performed over the GPU, increasing the 

speed up by more than 50 times (see Table 21). 

Figure 66 shows the results for the first and second set of synthetic images. As 

expected, the results are similar to those obtained using only CPU, but the PSNR is a 

little bit lower than using only CPU (Table 25); the time difference is about 1.4 to 1.7 

seconds faster, since the registration is done using GPU, with remaining task taken over 

by the CPU (Figure 44). 

Figure 67 shows the LR and SR mosaics for a set of five color frames captured by 

a UAS. This SR mosaic has less quality than that obtained using only CPU (Figure 46). 

The reason for this is that GPU registration had some issues with this set of images, 

especially with the second and third frames. The result was that the homography between 

them was not accurate enough. 

Figure 68 shows the LR and SR mosaics for two different sets of IR frames 

captured in 2007 by the UASE Laboratory team at the University of North Dakota. The 

results are similar to those obtained using only CPU (Figure 47). 
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Table 24. Algorithm to construct a super-resolved mosaic using steepest descent 

algorithm over GPU-CPU given a set of N input frames. 

  

Objective: Construct a super-resolved mosaic using the steepest descent 

algorithm over GPU-CPU from a set of N input frames. 

Algorithm: 

1. Compute the homography on the GPU side, using Table 1 between 

consecutive frames, i.e., NNhhh ,12312 ,...,,   

2. Copy the homography from the device memory (GPU) to the host memory 

(CPU). 

3. Reproject all the input frames to a common coordinate system using 

equation (4.6). The result of this step becomes the initial condition )0(
x̂ for 

the SR mosaic (iteration 0). 

4. While iteration n is less than the maximum number of iterations: 

a) Construct a set of N reconstructed frames based on )(ˆ n
x . 

b) Construct a set of N difference frames but subtracting the input 

frames from the set of frames in a). 

c) Construct a mosaic using Table 1 with the set of difference frames. 

d) Construct the regularization factor given by ),ˆ( )(')(  nTn GxG .  

e) Subtract the result of c) from d) and then add to the previous SR 

mosaic )1(ˆ n
x . 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 66. Results of the SR mosaicking for synthetic frames the using steepest descent 

algorithm implemented over GPU-CPU. The mosaics were constructed using five frames. 

Figures (a) and (d) show the mosaics for the first and second set of synthetic frames, 

respectively. These mosaics are the input to the algorithm. (b) and (e) are the super-

resolved mosaics of (a) and (d), respectively. These mosaics are the output of the 

proposed algorithm. Figures (c) and (f) show the ground truth mosaics, constructed using 

high-resolution frames. 

 

Table 26 shows the results obtained with the three different sets of real UAS 

frames. Additionally, information for the results using only CPU is included. The 

advantage of GPU-CPU over CPU is clear in this table, and the speed up is significant.  
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Table 25. Results of computating of super-resolution mosaics using steepest descent over 

GPU-CPU for two different sets of color synthetic frames. 

Test PSNR 

(dB) 

(GPU-

CPU) 

PSNR 

(dB) 

(CPU) 

Final error (GPU-

CPU) 

2

21
ˆˆ

k

kk

x

xx 
 

Final error (CPU) 

2

21
ˆˆ

k

kk

x

xx 
 

Total 

Processing 

Time on 

GPU-CPU 

(sec) 

Total 

Processing 

Time on 

CPU (sec) 

First set of five 

synthetic color 

frames. 

35.16 43.86 0.002608 0.006391 3.234 4.625 

Second set of 

five synthetic 

color frames 

46.41 47.52 0.002727 0.0029404 3.156 3.875 

 

 

Figure 67. Result of super-resolution mosaicking using steepest descent implemented 

over GPU-CPU. Left: LR mosaic. Right: SR mosaic. The mosaics were constructed using 

five frames of size 320x240x3 pixels. 
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Table 26. Results of computing of super-resolution mosaics using steepest descent over 

GPU-CPU for three different sets of real frames captured by UAS. 

Test Final error (GPU-CPU) 

2

21
ˆˆ

k

kk

x

xx 
 

Final error (CPU) 

2

21
ˆˆ

k

kk

x

xx 
 

Total 

Processing 

Time on 

GPU-CPU 

(sec) 

Total 

Processing 

Time on 

CPU (sec) 

Test #1: color 

frames of a road 

and forest. 

0.003089 0.005055 8.594 16.891 

Test #2: IR 

frames of 

buildings. 

0.001849 0.003379 8.547 11.907 

Test #3: IR 

frames of a forest. 

0.001036 0.003655 8.469 11.219 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 68. Results of SR mosaicking for real frames from UAS using steepest descent 

implemented over GPU-CPU. The mosaics were constructed using five frames. Figures 

(a) and (c) show the mosaics for the first and second sets of frames, respectively. These 

mosaics are the input to the algorithm. (b) and (d) are the super-resolved mosaics of (a) 

and (c) respectively. These mosaics are the output of the steepest descent super-resolution 

mosaicking algorithm. 
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6.4.2 GPU-CPU Implementation for Super-Resolution Mosaicking Using Conjugate 

Gradient  

This section presents the results for the computation of super-resolution mosaics 

using the conjugate gradient algorithm over GPU-CPU. Table 27 details the algorithm 

used, essentially the same as the algorithm in Chapter 5 with the difference being that the 

registration step is performed over GPU. 

Figure 69 shows the results for the first and second sets of synthetic images. The 

results are similar to those obtained using only CPU (Figure 51), but the PSNR is a little 

bit lower than using only CPU (Table 28); the time difference is about 0.9 to 1.2 seconds 

faster. 

Figure 70 shows the LR and SR mosaics for a set of five color frames captured by 

a UAS. This SR mosaic has slightly less quality than obtained using only CPU (Figure 

52). 

Figure 71 shows the LR and SR mosaics for two different sets of IR frames 

captured in 2007 by the UASE Laboratory team at the University of North Dakota. The 

results shown are similar to those obtained using only CPU (Figure 53). 

Table 29 shows the results obtained with the three different sets of real UAS 

frames, along with information for the results using only CPU. The advantage of GPU-

CPU over CPU is clear in this table, and the speed up is significant.  
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Table 27. Algorithm to construct a super-resolved mosaic using conjugate gradient over 

GPU-CPU given a set of N input frames. 

  

Objective: Construct a super-resolved mosaic using the conjugate gradient 

optimization algorithm over GPU-CPU from a set of N input 

frames. 

Algorithm: 

1. Compute the homography on the GPU side using Table 1 between 

consecutive frames; i.e., NNhhh ,12312 ,...,,   .  

2. Copy the homography from the GPU (device memory) to the CPU (host 

memory). 

3. Reproject all the input frames to a common coordinate system using 

equation (4.6). The result of this step becomes the initial condition for the 

)0(
x̂ SR mosaic (iteration 0), and it is used to compute the gradient for the 

iteration 0 using (5.16). 

4. While iteration n is less than the maximum number of iterations: 

a) Construct the gradient using equation (5.16). 

b) Construct 
)(n

p using equation (5.15). 

c) Update )(ˆ n
x  using equation (5.13). 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 69. Results of SR mosaicking for synthetic frames using the conjugate gradient 

algorithm implemented over GPU-CPU. The mosaics were constructed using five frames. 

Figures (a) and (d) show the mosaics for the first and second sets of synthetic frames, 

respectively. These mosaics are the input to the algorithm. (b) and (e) are the super-

resolved mosaics using the CG algorithm over GPU-CPU of (a) and (d), respectively. 

These mosaics are the output of the CG algorithm. Figures (c) and (f) show the ground 

truth mosaics, constructed using high-resolution frames. 
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Table 28. Results of computating super-resolution mosaics using the conjugate gradient 

algorithm over GPU-CPU for two different sets of color synthetic frames. 

  

Test 

PSNR 

(dB) 

(GPU-

CPU) 

PSNR 

(dB) 

(CPU) 

Final error (GPU-

CPU) 

2

21
ˆˆ

k

kk

x

xx 
 

Final error (CPU) 

2

21
ˆˆ

k

kk

x

xx 
 

Total 

Processing 

Time on 

GPU-CPU 

(sec) 

Total 

Processing 

Time on 

CPU (sec) 

First set of 

five synthetic 

color frames. 

35.17 43.98 0.006790 0.004381 3.218 5.047 

Second set of 

five synthetic 

color frames 

46.59 47.54 0.008713 0.006212 3.187 4.250 

 

Figure 70. Results of super-resolution mosaicking using the conjugate gradient algorithm 

implemented over GPU-CPU. Left: LR mosaic. Right: SR mosaic. The mosaics was 

constructed using five frames of size 320x240x3 pixels. 
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Table 29. Results of computating of super-resolution mosaics using the conjugate 

gradient algorithm over GPU-CPU for three different sets of real frames captured by 

UAS. 

Test Final error (GPU-CPU) 

2

21
ˆˆ

k

kk

x

xx 
 

Final error (CPU) 

2

21
ˆˆ

k

kk

x

xx 
 

Total 

Processing 

Time on 

GPU-CPU 

(sec) 

Total 

Processing 

Time on CPU 

(sec) 

Test #1: Color frames 

of a road and forest. 

0.009512 0.005055 9.093 16.891 

Test #2: IR frames of 

buildings. 

0.005004 0.003379 8.797 11.907 

Test #3: IR frames of 

a forest. 

0.004392 0.003655 8.719 11.219 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 71. Results of SR mosaic for real frames from UAS using the conjugate gradient 

algorithm implemented over GPU-CPU. The mosaics were constructed using five frames. 

Figures (a) and (c) show the mosaics for the first and second sets of frames, respectively. 

These mosaics are the input to the algorithm. (b) and (d) are the super-resolved mosaics 

of (a) and (c), respectively. These mosaics are the output of the proposed conjugate 

gradient super-resolution mosaicking algorithm. 



129 

6.4.3 GPU-CPU Implementation for Super-Resolution Mosaicking Using the 

Levenberg-Marquardt  

This section presents the results for the computation of super-resolution mosaics 

using the Levenberg Marquardt algorithm over GPU-CPU. Table 30 details the algorithm 

used. Essentially, it is the same as the algorithm in Chapter 5, with the difference being 

that the registration step is performed over the GPU. 

Figure 72 shows the results for the first and second sets of synthetic images. The 

results are similar to those obtained using only CPU (Figure 54), but the PSNR is a little 

bit lower than using only CPU (Table 31); the difference in computation time is about 0.8 

to 0.9 seconds. 

Figure 73 shows the LR and SR mosaics for sets of five color frames captured by 

a UAS. These SR mosaic has less quality than those obtained using only CPU (Figure 

55). 

Figure 74 shows the LR and SR mosaics for two different sets of IR frames 

captured in 2007 by the UASE Laboratory team at the University of North Dakota. The 

results shown are similar to those obtained using only CPU (Figure 56). 

Table 32 shows the results obtained with the three different sets of real UAS 

frames, along with information of the results using only CPU. The advantage of GPU-

CPU over CPU is clear in this table, and the speed up is significant. 
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Table 30. Algorithm to construct super-resolved mosaics using the Levenberg Marquardt 

algorithm over GPU-CPU given a set of N input frames. 

  

Objective: Construct a super-resolved mosaic using the Levenberg Marquardt 

algorithm over GPU-CPU from a set of N input frames. 

Algorithm: 

1. Compute the homography on the GPU side using Table 1 between 

consecutive frames; i.e., NNhhh ,12312 ,...,,   . 

2. Copy the homography from the GPU (device memory) to the CPU (host 

memory). 

3. Reproject all the input frames to a common coordinate system using 

equation (4.6). The result of this step becomes the initial condition for the 

)0(
x̂ SR mosaic (iteration 0). 

4. While iteration n is less than the maximum number of iterations: 

a) Construct the Jacobian using equation (5.19). 

b) Construct the pseudo Hessian matrix given by JJ T*
H . 

c) Solve the linear least squares equation using  the singular value 

decomposition (SVD) for x ., in equation (5.21) 

d) Update )(ˆ n
x  in equation (5.24). 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 72. Results of SR mosaicking for synthetic frames using the Levenberg Marquardt 

algorithm implemented over GPU-CPU. The mosaics were constructed using five frames. 

Figures (a) and (d) show the mosaics for the first and second set of synthetic frames, 

respectively. These mosaics are the input to the algorithm. (b) and (e) are the super-

resolved mosaics using the LM algorithm of (a) and (d), respectively. These mosaics are 

the output of the proposed algorithm. Figures (c) and (f) show the ground truth mosaics, 

constructed using high-resolution frames. 
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Table 31. Results of the computating of super-resolution mosaicks using the Levenberg 

Marquardt algorithm over GPU-CPU for two different set of color synthetic frames. 

 

Test 

PSNR 

(dB) 

(GPU-

CPU) 

PSNR 

(dB) 

(CPU) 

Final error (GPU-

CPU) 

2

21
ˆˆ

k

kk

x

xx 
 

Final error (CPU) 

2

21
ˆˆ

k

kk

x

xx 
 

Total 

Processing 

Time on 

GPU-CPU 

(sec) 

Total 

Processing 

Time on 

CPU (sec) 

First set of five 

synthetic color 

frames. 

35.14 43.77 0.006790 0.002833 3.359 5.109 

Second set of 

five synthetic 

color frames 

46.49 47.45 0.008713 0.002505 3.391 4.281 

 

Figure 73. Results of super-resolution mosaicking using the Levenberg Marquardt 

algorithm implemented over GPU-CPU. Left: LR mosaic. Right: SR mosaic. The 

mosaics were constructed using five frames of size 320x240x3 pixels. 
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Table 32. Results of computing of super-resolution mosaics using the Levenberg 

Marquardt algorithm over GPU-CPU for three different sets of real frames captured by 

UAS.  

Test Final error (GPU-CPU) 

2

21
ˆˆ

k

kk

x

xx 
 

Final error (CPU) 

2

21
ˆˆ

k

kk

x

xx 
 

Total 

Processing 

Time on 

GPU-CPU 

(sec) 

Total 

Processing 

Time on CPU 

(sec) 

Test #1: color frames of 

a road and forest. 

0.009512 0.016835 10.547 17.485 

Test #2: IR frames of 

buildings 

0.005004 0.004181 9.328 11.766 

Test #3: IR frames of a 

forest. 

0.004392 0.005295 9.266 11.391 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 74. Results of SR mosaicking for real frames from UAS using the Levenberg 

Marquardt algorithm implemented over GPU-CPU. The mosaics were constructed using 

five frames. Figures (a) and (c) show the mosaics for the first and second sets of frames, 

respectively. These mosaics are the input to the algorithm. (b) and (d) are the super-

resolved mosaics of (a) and (c), respectively. These mosaics are the output of the 

proposed Levenberg Marquardt super-resolution mosaicking algorithm. 
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6.5 Conclusions 

The use of GPU for a highly computation step in the super-resolution mosaicking 

process decreases the computational time significantly. The results for most of the tests 

performed are quite similar to those obtained using CPU.  Conversely, for the first set of 

synthetic images, the PSNR of the super-resolved mosaics using only CPU are much 

better than using GPU-CPU for all the three algorithms: steepest descent, conjugate 

gradient, and Levenberg Marquardt. 

The use of GPU for the computation of the homography is at least 50 times faster 

than using CPU. The computation time in the construction of the super-resolved mosaic 

can be reduced even more, if more functions are moved from CPU to GPU. 

The use of MPEG I-frames reduces the accumulation of error, which is inherent to 

the projection model, in the computation of the video mosaic. 
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CHAPTER  7 

CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH 

This dissertation investigated super-resolution mosaicking of video frames 

captured by UAS. Additionally, a focus on reducing the computational time using GPU 

was explained. Since most of the tests were performed with real data and with actual size 

frames captured by modern video cameras, this research can be applied almost 

immediately applied to actual commercial or military surveillance data. A summary of 

the contributions and their importance to image and video processing will be discussed in 

the next sections. 

7.1 Summary of Research Contributions 

The background information presented in Chapter 2, combined with a brief 

tutorial for the regularization methods presented in Chapter 3, provided a complete and 

accessible introduction to the computation of video mosaic and super-resolution mosaics. 

Additionally, Chapter 2 provided a comprehensive survey of the literature on multi-frame 

super-resolution reconstruction and mosaicking. 

Chapter 4 explained the reason why SIFT was chosen to be the feature detector. 

Also, Chapter 4 explained how to compute the computation of the homography with sub-

pixel accuracy. This accuracy is important for both super-resolution and mosaicking. 

Furthermore, a detailed explanation of the construction of video and image mosaicking 

was given. The use of MPEG I-frames instead of all frames in the construction of video 
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mosaics was also explained and how this can help to reduce distortion was shown in 

Chapter 6. 

Chapter 5 used a novel framework to compute super-resolution mosaics. This 

framework is based on the iterative back projection method [24], and image operators 

including convolution, warping, and down-sampling. Also, this framework adds a 

regularization term based on cliques over the estimated super-resolution mosaic, using 

the Huber function to incorporate prior information. The computation of the Lagrange 

multiplier was performed using cliques and the Huber function, but without the 

construction of sparse matrices. Also, this computation of the Lagrange multiplier is 

robust to mis-registration that always occurs when dealing with real UAS surveillance 

video frames. Three different optimization algorithms were used to find the super-

resolution mosaics: 1) steepest descent, 2) conjugate gradient, and 3) Levenberg 

Marquardt. This last method is a novel algorithm proposed in this dissertation for super-

resolution mosaicking. The results showed a great improvement in the resolution in both 

color and gray pixel levels. 

Chapter 6 presented the use of GPU in the computation of super-resolution 

mosaics. Basically, GPU is used to solve the bottleneck in the entire process of the 

construction of super-resolution mosaics, which is the image registration step. The results 

showed that the GPU is more than 50 times faster than the CPU. Then, the CPU takes the 

results of the registration, called the homography, to continue with the reprojection and 

the solution to the optimization problem using the three algorithms of Chapter 5. A 

comparison of the results of video mosaicking and super-resolution mosaicking using 

GPU-CPU and the CPU alone were provided. Here, the GPU-CPU implementation 
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reduces significantly the computational time and the visual results are slightly inferior 

compared to using only CPU. 
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7.2 Future Research 

A number of potential research avenues exist related to the topics addressed in 

this dissertation for improvements to the presented research: 

 The parameters )(n , for the steepest descent algorithm, and the parameter 

)(n , for the conjugate gradient algorithm , were set to a fixed values in every 

iteration. These parameters can be computed iteratively to create a more 

adaptive algorithm.  

 Different prior information can be used, such as Gaussian, Lorentzian, or 

others that introduce good prior information for the computation of super-

resolution mosaics. 

 The framework used allows for the implementation of any optimization 

algorithm with no need for using sparse matrices. The following algorithms 

can be also used with the framework proposed in this dissertation: Gauss-

Newton, Quasi Newton’s, and Davidson Fletcher-Powell.  

 The PSF was assumed known a priori, but it can be estimated using “blind” 

deconvolution as was used in [45,46]. 

 Geo-referenced super-resolution mosaicking can be performed based on the 

information detailed in Chapters 4 and 5. The use of the particle filter can also 

be used to estimate the pose of the mosaic. Geo-referenced mosaics have a 

number of applications. They can be used for tracking recognition, for target 

detection, and for mapping a certain area in Google Earth. The advantage over 

Google Earth is that it will increase the resolution of the data.  



139 

 Bundle adjustment can be used to correct the error propagation in the 

construction of the video mosaics. This bundle adjustment can also be tied to 

the construction of the geo-referenced mosaic. 

 Speed up can be increased with the use of more GPUs in parallel and also if 

more of the functions are implemented on the GPU side. Therefore, real-time 

super-resolution mosaicking of actual UAS video frames can be achieved with 

today’s hardware. 

 

 



APPENDICES



141 

Appendix A 

Use of MPEG I-frames for Video Processing Using FFMPEG  
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/* --Sparse Optical Flow Demo Program-- 

 * Written by David Stavens (david.stavens@ai.stanford.edu) 

 * Modified by Aldo Camargo (aldo.camargo@und.edu) to work with only I frames ( 

using ffmpeg library ) and generates  

 * a video output in avi, the input could be any video format ( I tested with AVI and 

MPEG formats ) 

 */ 

#include <stdio.h> 

#include <cv.h> 

#include <highgui.h> 

#include <math.h> 

#include <ffmpeg/avcodec.h>  //add to work with ffmpeg 

#include <ffmpeg/avformat.h> //add to work with ffmpeg 

 

static const double pi = 3.14159265358979323846; 

 

inline static double square(int a) 

{ 

 return a * a; 

} 

 

/* This is just an inline that allocates images.  I did this to reduce clutter in the 

 * actual computer vision algorithmic code.  Basically it allocates the requested image 

 * unless that image is already non-NULL.  It always leaves a non-NULL image as-is 

even 

 * if that image's size, depth, and/or channels are different than the request. 

 */ 

inline static void allocateOnDemand( IplImage **img, CvSize size, int depth, int 

channels ) 

{ 

 if ( *img != NULL ) return; 

 

 *img = cvCreateImage( size, depth, channels ); 

 if ( *img == NULL ) 

 { 

  fprintf(stderr, "Error: Couldn't allocate image.  Out of memory?\n"); 

  exit(-1); 

 } 

} 

 

void SaveFrame(AVFrame *pFrame, int width, int height, int iFrame) { 

  FILE *pFile; 

  char szFilename[32]; 

  int  y; 

   

  // Open file 
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  sprintf(szFilename, "frame%d.ppm", iFrame); 

  pFile=fopen(szFilename, "wb"); 

  if(pFile==NULL) 

    return; 

   

  // Write header 

  fprintf(pFile, "P6\n%d %d\n255\n", width, height); 

   

  // Write pixel data 

  for(y=0; y<height; y++) 

    fwrite(pFrame->data[0]+y*pFrame->linesize[0], 1, width*3, pFile); 

   

  // Close file 

  fclose(pFile); 

} 

int main(int argc, char *argv[]) 

{ 

      

     AVFormatContext *pFormatCtx; 

     AVCodecContext  *pCodecCtx; 

     AVCodec         *pCodec; 

     AVFrame         *pFrame;  

     AVFrame         *pFrameRGB; 

     int             numBytes; 

     uint8_t         *buffer;  

     int             i, videoStream; 

     AVPacket        packet; 

     int             frameFinished; 

     int j; 

     float framerate; 

 

///// 

/////  This is the first part of the OpenCV Initialization 

///// 

 

 

 if (argc != 2) 

 { 

  fprintf(stderr, "usage: %s input.avi\n", argv[0]); 

  return -1; 

 } 

 /* Step 1: Open Input Video */ 

 /* Create an object that decodes the input video stream. */ 

 CvCapture *input_video = cvCaptureFromFile( argv[1] ); 

 if (input_video == NULL) 

 { 
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  /* Either the video didn't exist OR it uses a codec OpenCV 

   * doesn't support. 

   */ 

  fprintf(stderr, "Error: Can't open video.\n"); 

  return -1; 

 } 

 

  //// 

  ////   Initialization of ffmpeg 

  //// 

 

      // Register all formats and codecs 

       av_register_all(); 

  

// Open video file 

  if(av_open_input_file(&pFormatCtx, argv[1], NULL, 0, NULL)!=0) 

    return -1; // Couldn't open file 

   

  // Retrieve stream information 

  if(av_find_stream_info(pFormatCtx)<0) 

    return -1; // Couldn't find stream information 

   

  // Dump information about file onto standard error 

  dump_format(pFormatCtx, 0, argv[1], 0); 

   

  // Find the first video stream 

  videoStream=-1; 

  for(i=0; i<pFormatCtx->nb_streams; i++) 

    if(pFormatCtx->streams[i]->codec->codec_type==CODEC_TYPE_VIDEO) { 

      videoStream=i; 

      break; 

    } 

  if(videoStream==-1) 

    return -1; // Didn't find a video stream 

   

  // Get a pointer to the codec context for the video stream 

  pCodecCtx=pFormatCtx->streams[videoStream]->codec; 

   

  // Find the decoder for the video stream 

  pCodec=avcodec_find_decoder(pCodecCtx->codec_id); 

  if(pCodec==NULL) { 

    fprintf(stderr, "Unsupported codec!\n"); 

    return -1; // Codec not found 

  } 

  // Open codec 

  if(avcodec_open(pCodecCtx, pCodec)<0) 



145 

    return -1; // Could not open codec 

   

  // Allocate video frame 

  pFrame=avcodec_alloc_frame(); 

   

  // Allocate an AVFrame structure 

  pFrameRGB=avcodec_alloc_frame(); 

  if(pFrameRGB==NULL) 

    return -1; 

   

  // Determine required buffer size and allocate buffer 

  numBytes=avpicture_get_size(PIX_FMT_RGB24, pCodecCtx->width, 

         pCodecCtx->height); 

  buffer=(uint8_t *)av_malloc(numBytes*sizeof(uint8_t)); 

   

  // Assign appropriate parts of buffer to image planes in pFrameRGB 

  // Note that pFrameRGB is an AVFrame, but AVFrame is a superset 

  // of AVPicture 

  avpicture_fill((AVPicture *)pFrameRGB, buffer, PIX_FMT_RGB24, 

   pCodecCtx->width, pCodecCtx->height); 

 

 

//// 

////  End of ffmpeg initialization 

////   

 

///// 

/////  OpenCV Initialization 

///// 

 cvQueryFrame( input_video ); 

 

 /* Step 2: Read AVI Properties */ 

 /* Read the video's frame size out of the AVI. */ 

 CvSize frame_size; 

 frame_size.height = 

  (int) cvGetCaptureProperty( input_video, 

CV_CAP_PROP_FRAME_HEIGHT ); 

 frame_size.width = 

  (int) cvGetCaptureProperty( input_video, 

CV_CAP_PROP_FRAME_WIDTH ); 

 framerate = (float)cvGetCaptureProperty( input_video, CV_CAP_PROP_FPS ); 

 

 /* Determine the number of frames in the AVI. */ 

 long number_of_frames; 

 /* Go to the end of the AVI (ie: the fraction is "1") */ 

 cvSetCaptureProperty( input_video, CV_CAP_PROP_POS_AVI_RATIO, 1. ); 
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 /* Now that we're at the end, read the AVI position in frames */ 

 number_of_frames = (int) cvGetCaptureProperty( input_video, 

CV_CAP_PROP_POS_FRAMES ); 

 

 printf("\n The total number of frames is %d \n", number_of_frames); 

 

 /* Return to the beginning */ 

 cvSetCaptureProperty( input_video, CV_CAP_PROP_POS_FRAMES, 0. ); 

/// 

///   Optical flow 

/// 

 /* Create a windows called "Optical Flow" for visualizing the output. 

  * Have the window automatically change its size to match the output. 

  */ 

 

 cvNamedWindow("Optical Flow", CV_WINDOW_AUTOSIZE); 

 long current_frame = 0; 

 

/// ffmpeg //// 

  // Read frames and save first five frames to disk 

  i=0; 

  j=0; 

 

CvVideoWriter  *output  =  cvCreateVideoWriter("../../video2test/output.avi", 

CV_FOURCC('D', 'I', 'V', 'X'), framerate, cvSize(frame_size.width,frame_size.height),1); 

 

  while(av_read_frame(pFormatCtx, &packet)>=0) { 

    // Is this a packet from the video stream? 

    if(packet.stream_index==videoStream) { 

///   

// Decode video frame 

  avcodec_decode_video(pCodecCtx, pFrame, &frameFinished, 

packet.data, packet.size); 

// Did we get a video frame? 

      if(frameFinished) { 

 

    if(pFrame->pict_type ==  FF_I_TYPE) { // is the frame I frame ? 

 

// while(1) 

// { 

       static IplImage *frame = NULL, *frame1 = NULL, *frame1_1C = NULL, 

*frame2_1C = NULL, *eig_image = NULL, *temp_image = NULL, *pyramid1 = 

NULL,         *pyramid2 = NULL; 

 

  /* Go to the frame we want.  Important if multiple frames are queried in 

   * the loop which they of course are for optical flow.  Note that the very 
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   * first call to this is actually not needed. (Because the correct position 

   * is set outsite the for() loop.) 

   */ 

                current_frame = pFrame->coded_picture_number/number_of_frames; 

  //cvSetCaptureProperty( input_video, CV_CAP_PROP_POS_FRAMES, 

current_frame ); 

 

  cvSetCaptureProperty( input_video, CV_CAP_PROP_POS_AVI_RATIO, 

current_frame ); 

 

  printf("\n The current frame is %d: \n " , pFrame-

>coded_picture_number); 

 

  /* Get the next frame of the video. 

   * IMPORTANT!  cvQueryFrame() always returns a pointer to the _same_ 

   * memory location.  So successive calls: 

   * frame1 = cvQueryFrame(); 

   * frame2 = cvQueryFrame(); 

   * frame3 = cvQueryFrame(); 

   * will result in (frame1 == frame2 && frame2 == frame3) being true. 

   * The solution is to make a copy of the cvQueryFrame() output. 

   */ 

  frame = cvQueryFrame( input_video ); 

  if (frame == NULL) 

  { 

   /* Why did we get a NULL frame?  We shouldn't be at the end. */ 

   fprintf(stderr, "Error: Hmm. The end came sooner than we 

thought.\n"); 

   return -1; 

  } 

  /* Allocate another image if not already allocated. 

   * Image has ONE channel of color (ie: monochrome) with 8-bit "color" 

depth. 

   * This is the image format OpenCV algorithms actually operate on 

(mostly). 

   */ 

  allocateOnDemand( &frame1_1C, frame_size, IPL_DEPTH_8U, 1 ); 

  /* Convert whatever the AVI image format is into OpenCV's preferred 

format. 

   */ 

  cvConvertImage(frame, frame1_1C, 0); 

 

  /* We'll make a full color backup of this frame so that we can draw on it. 

   * (It's not the best idea to draw on the static memory space of 

cvQueryFrame().) 

   */ 
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  allocateOnDemand( &frame1, frame_size, IPL_DEPTH_8U, 3 ); 

  cvConvertImage(frame, frame1, 0); 

 

  /* Get the second frame of video.  Same principles as the first. */ 

  frame = cvQueryFrame( input_video ); 

  if (frame == NULL) 

  { 

   fprintf(stderr, "Error: Hmm. The end came sooner than we 

thought.\n"); 

   return -1; 

  } 

  allocateOnDemand( &frame2_1C, frame_size, IPL_DEPTH_8U, 1 ); 

  cvConvertImage(frame, frame2_1C, 0); 

 

  /* Shi and Tomasi Feature Tracking! */ 

  /* Preparation: Allocate the necessary storage. */ 

  allocateOnDemand( &eig_image, frame_size, IPL_DEPTH_32F, 1 ); 

  allocateOnDemand( &temp_image, frame_size, IPL_DEPTH_32F, 1 ); 

 

  /* Preparation: This array will contain the features found in frame 1. */ 

  CvPoint2D32f frame1_features[400]; 

 

  /* Preparation: BEFORE the function call this variable is the array size 

   * (or the maximum number of features to find).  AFTER the function call 

   * this variable is the number of features actually found. 

   */ 

  int number_of_features; 

   

  /* I'm hardcoding this at 400.  But you should make this a #define so that 

you can 

   * change the number of features you use for an accuracy/speed tradeoff 

analysis. 

   */ 

  number_of_features = 400; 

 

  /* Actually run the Shi and Tomasi algorithm!! 

   * "frame1_1C" is the input image. 

   * "eig_image" and "temp_image" are just workspace for the algorithm. 

   * The first ".01" specifies the minimum quality of the features (based on 

the eigenvalues). 

   * The second ".01" specifies the minimum Euclidean distance between 

features. 

   * "NULL" means use the entire input image.  You could point to a part of 

the image. 

   * WHEN THE ALGORITHM RETURNS: 

   * "frame1_features" will contain the feature points. 
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   * "number_of_features" will be set to a value <= 400 indicating the 

number of feature points found. 

   */ 

  cvGoodFeaturesToTrack(frame1_1C, eig_image, temp_image, 

frame1_features, &number_of_features, .01, .01, NULL,3,0,0.04); 

 

  /* Pyramidal Lucas Kanade Optical Flow! */ 

 

  /* This array will contain the locations of the points from frame 1 in frame 

2. */ 

  CvPoint2D32f frame2_features[400]; 

 

  /* The i-th element of this array will be non-zero if and only if the i-th 

feature of 

   * frame 1 was found in frame 2. 

   */ 

  char optical_flow_found_feature[400]; 

 

  /* The i-th element of this array is the error in the optical flow for the i-th 

feature 

   * of frame1 as found in frame 2.  If the i-th feature was not found (see the 

array above) 

   * I think the i-th entry in this array is undefined. 

   */ 

  float optical_flow_feature_error[400]; 

 

  /* This is the window size to use to avoid the aperture problem (see slide 

"Optical Flow: Overview"). */ 

  CvSize optical_flow_window = cvSize(3,3); 

   

  /* This termination criteria tells the algorithm to stop when it has either 

done 20 iterations or when 

   * epsilon is better than .3.  You can play with these parameters for speed 

vs. accuracy but these values 

   * work pretty well in many situations. 

   */ 

  CvTermCriteria optical_flow_termination_criteria 

   = cvTermCriteria( CV_TERMCRIT_ITER | 

CV_TERMCRIT_EPS, 20, .3 ); 

 

  /* This is some workspace for the algorithm. 

   * (The algorithm actually carves the image into pyramids of different 

resolutions.) 

   */ 

  allocateOnDemand( &pyramid1, frame_size, IPL_DEPTH_8U, 1 ); 

  allocateOnDemand( &pyramid2, frame_size, IPL_DEPTH_8U, 1 ); 
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  /* Actually run Pyramidal Lucas Kanade Optical Flow!! 

   * "frame1_1C" is the first frame with the known features. 

   * "frame2_1C" is the second frame where we want to find the first frame's 

features. 

   * "pyramid1" and "pyramid2" are workspace for the algorithm. 

   * "frame1_features" are the features from the first frame. 

   * "frame2_features" is the (outputted) locations of those features in the 

second frame. 

   * "number_of_features" is the number of features in the frame1_features 

array. 

   * "optical_flow_window" is the size of the window to use to avoid the 

aperture problem. 

   * "5" is the maximum number of pyramids to use.  0 would be just one 

level. 

   * "optical_flow_found_feature" is as described above (non-zero iff 

feature found by the flow). 

   * "optical_flow_feature_error" is as described above (error in the flow for 

this feature). 

   * "optical_flow_termination_criteria" is as described above (how long the 

algorithm should look). 

   * "0" means disable enhancements.  (For example, the second array isn't 

pre-initialized with guesses.) 

   */ 

  cvCalcOpticalFlowPyrLK(frame1_1C, frame2_1C, pyramid1, pyramid2, 

frame1_features, frame2_features, number_of_features, optical_flow_window, 5, 

optical_flow_found_feature, optical_flow_feature_error, 

optical_flow_termination_criteria, 0 ); 

   

  /* For fun (and debugging :)), let's draw the flow field. */ 

  for(i = 0; i < number_of_features; i++) 

  { 

   /* If Pyramidal Lucas Kanade didn't really find the feature, skip it. 

*/ 

   if ( optical_flow_found_feature[i] == 0 ) continue; 

 

   int line_thickness; line_thickness = 1; 

   /* CV_RGB(red, green, blue) is the red, green, and blue 

components 

    * of the color you want, each out of 255. 

    */  

   CvScalar line_color;   line_color = 

CV_RGB(255,0,0); 

  

   /* Let's make the flow field look nice with arrows. */ 

 



151 

   /* The arrows will be a bit too short for a nice visualization 

because of the high framerate 

    * (ie: there's not much motion between the frames).  So let's 

lengthen them by a factor of 3. 

    */ 

   CvPoint p,q; 

   p.x = (int) frame1_features[i].x; 

   p.y = (int) frame1_features[i].y; 

   q.x = (int) frame2_features[i].x; 

   q.y = (int) frame2_features[i].y; 

 

   double angle;  angle = atan2( (double) p.y - q.y, (double) 

p.x - q.x ); 

   double hypotenuse; hypotenuse = sqrt( square(p.y - q.y) + 

square(p.x - q.x) ); 

 

   /* Here we lengthen the arrow by a factor of three. */ 

   q.x = (int) (p.x - 3 * hypotenuse * cos(angle)); 

   q.y = (int) (p.y - 3 * hypotenuse * sin(angle)); 

 

   /* Now we draw the main line of the arrow. */ 

   /* "frame1" is the frame to draw on. 

    * "p" is the point where the line begins. 

    * "q" is the point where the line stops. 

    * "CV_AA" means antialiased drawing. 

    * "0" no fractional bits in the center cooridinate or radius. 

    */ 

   cvLine( frame1, p, q, line_color, line_thickness, CV_AA, 0 ); 

   /* Now draw the tips of the arrow.  I do some scaling so that the 

    * tips look proportional to the main line of the arrow. 

    */    

   p.x = (int) (q.x + 9 * cos(angle + pi / 4)); 

   p.y = (int) (q.y + 9 * sin(angle + pi / 4)); 

   cvLine( frame1, p, q, line_color, line_thickness, CV_AA, 0 ); 

   p.x = (int) (q.x + 9 * cos(angle - pi / 4)); 

   p.y = (int) (q.y + 9 * sin(angle - pi / 4)); 

   cvLine( frame1, p, q, line_color, line_thickness, CV_AA, 0 ); 

  } 

  /* Now display the image we drew on.  Recall that "Optical Flow" is the 

name of 

   * the window we created above. 

   */ 

  cvShowImage("Optical Flow", frame1); 

  /* And wait for the user to press a key (so the user has time to look at the 

image). 
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   * If the argument is 0 then it waits forever otherwise it waits that number 

of milliseconds. 

   * The return value is the key the user pressed. 

   */ 

  //int key_pressed; 

  //key_pressed = cvWaitKey(0); 

    

  cvWriteFrame( output, frame1); 

 

  /* If the users pushes "b" or "B" go back one frame. 

   * Otherwise go forward one frame. 

   */ 

 // if (key_pressed == 'b' || key_pressed == 'B') current_frame--; 

 // else current_frame++; 

  /* Don't run past the front/end of the AVI. */ 

  //if (current_frame < 0) current_frame = 0; 

  //if (current_frame >= number_of_frames - 1) current_frame = 

number_of_frames - 2; 

             } // end of the if for the I frame 

    } //end of  if(frameFinished)  

// } //end while(1) of OpenCV 

    } // end of if ffmpeg 

 

 // Free the packet that was allocated by av_read_frame 

    av_free_packet(&packet); 

  } // end of while ffmpeg 

 

  // Free the RGB image 

  av_free(buffer); 

  av_free(pFrameRGB); 

   

  // Free the YUV frame 

  av_free(pFrame); 

   

  // Close the codec 

  avcodec_close(pCodecCtx); 

   

  // Close the video file 

  av_close_input_file(pFormatCtx); 

  

  cvReleaseVideoWriter( &output ); 

    

  return 0;   

 

} 
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