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ABSTRACT: This paper describes a user-friendly software for the calculation of general

piping system networks composed of virtually any parallel and series pipe arrangement.

Solution of the network is made with recourse to the iterative method of Hardy Cross. Solution

is provided for pressure and flow-rate in each branch. Dimensioning problems, where pump

characteristics or a pipe diameter are sought for achieving a pre-specified flow-rate condition,

may also be tackled.�2004 Wiley Periodicals, Inc. Comput Appl Eng Educ 12: 117�125, 2004; Published

online in Wiley InterScience (www.interscience.wiley.com); DOI 10.1002/cae.20006
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INTRODUCTION

Piping networks have quite a wide range of practical

applications, from water and gas distribution systems

to air conditioning installations. Although simple

problems, such as for instance, a single branch

connecting two reservoirs, may be solved analytically,

more complex network problems need an iterative

approach, recurring to a digital computer. The most

popular method for solving this type of problems is

the Hardy-Cross method [1], which was firstly

devised for hand calculations, in 1936. This method

is based on the successive addition of flow-rate

corrections in each branch, in order to achieve

satisfaction of energy conservation along every path

in the network. The present computer implementation

is primarily intended for academic applications. The

easiness of building a new network or modifying an

existing one allows the student to readily observe how

small changes in the network configuration may

produce interesting results such as a flow reversal in a

certain branch.

THEORETICAL BACKGROUND

Before proceeding, it is convenient to make some

definitions:

* A network is composed of a set of interconnected

branches.
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* The junction of two or more branches defines a

punctual location called node. Inner branches

connect two nodes, while outer branches lead to

the outer domain.
* Each node is assigned an index. The outer

domain is assigned index ‘0’.
* Inner branches may be composed of several sub-

branches, each of them with its own length,

roughness, and diameter.
* The connection between two sub-branches may

be done through a valve, pump, bend, or other

accident.
* Accidents cause minor losses (punctual losses) in

a pipe, such as a turbine, a bend, a diameter

change, etc. Pumps are also defined as accidents.
* Flow-rates in each branch are defined as positive

if they point from the lower index node to the

higher index node.

Mass Conservation Equation

For solving a piping network, mass and energy

conservation must be satisfied. Mass conservation

implies that the sum of flow-rates arriving at a node

should equal the sum of flow-rates leaving the node.

Thus, referring to Figure 1, the following equation

must be satisfied:

Q1 þ Q2 þ Q3 � Q4 ¼ 0 ð1Þ

Energy Conservation Equation

Energy conservation should be observed at defined

paths in the network. Closed paths will have a null

total energy loss, by definition, while opened paths

will have a energy loss dictated by the flow condition

at the path end points. This subject will be addressed

next.

The head loss in a branch connecting point ‘1’ to

point ‘2,’ is determined through the application of the

generalized Bernoulli equation. Thus, assuming that

the flow is from point 1 to point 2, one obtains:

h1!2 ¼
p1 � p2

rg
þ v21 � v22

2g
þ z1 � z2

¼ 8Q2

p2g

X 1

d4
f
DL
d

þ k

� �� �
�
X

hp þ
X

ht

ð2Þ

where: p, pressure; k, minor loss coefficient; v,

velocity; ht, turbine head loss; z, height; hp, pump

elevation height; f, Darcy-Weisbach friction factor;

DL, branch length; Q, volumetric flow-rate; g, accel-

eration of gravity; d, pipe diameter; r fluid density.

Equation 2 may be written in the following form:

h1!2 ¼ af Q2 �
X

hp þ
X

ht ð3Þ

with

af ¼
8

p2g

X 1

d4
f
DL
d

þ k

� �� �
ð4Þ

where the summations are for the total number of sub-

branches, minor losses, pumps, and turbines in each

branch.

Generalizing Equation 3 for the head loss

between two end points in a pipe with an arbitrary

flow direction, the following equation applies:

ha!b ¼ dxdyaf Q2 � dx
X

hp þ dxdy
X

ht ð5Þ

where the dx is the so called ‘path sign’:

dx ¼ sign b� að Þ ð6Þ

with ‘a’ and ‘b’ as the indexes of the nodes defining

the end points of the pipe, and dy is:

dy ¼ sign Qð Þ ð7Þ

Volumetric flow-rate and pump elevation height

are defined positive if they point from the node with

the lower index to the node with the higher index.

Energy Conservation Along a Closed Path

During the iterative process, the total loss along a

closed path will not be null, unless the final solution is

achieved. Thus, one may write:

Xnj
j¼1

h�j ¼
Xnj
j¼1

dxidyaf Q
2 � dxi

X
hp þ dxidy

X
ht

� �
j

ð8Þ

where ‘nj’ is the total number of branches composing

the closed path ‘i’. The superscript ‘*’ indicates that

the head loss corresponds to a non-converged solution.Figure 1 Flow-rate at a node.
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A flow-rate correction �Q must then be added as a

correction to each branch in the closed path ‘i’

Xnj
j¼1

dxidyaf Qþ DQð Þ2�dxi
X

hp þ dxidy
X

ht

� �
j

ffi
Xnj
j¼1

dxidyaf Q2 þ 2QDQ
� �

� dxi
X

hp þ dxidy
X

ht

� �
j

¼ 0 ð9Þ

where, based on the assumption that the corrections

are small enough, the higher order terms were

neglected. As a necessary condition for keeping mass

conservation at every node, DQj j must be the same at

every branch of the closed path. According to this, and

combining Equations 9 and 8, the following equation

for the flow-rate correction is obtained:

DQij ¼
�
Pnj
j¼1

h�j

2dxij
Pnj
j¼1

af Qj j
� �

j

ð10Þ

Corrections are applied to every branch ‘j’ in each

closed path ‘i’, as follows:

Qnþ1
j ¼ Qn

j þ gDQij; i ¼ 1; ni; j ¼ 1; nj ð11Þ

where ‘ni’ represents the total number of closed paths

and � is a under-relaxation factor.

Thus, referring to Figure 2, assuming that, at a

certain stage of the iterative procedure, the non-

converged solution leads to a positive total head loss

along the closed path, following the direction pre-

sented, according to Equation 10, flow-rate corrections

will decrease Q1 and Q4, while increasing Q2 and Q3.

These are, in fact, the correct trends to ensure a de-

crease in the total loss, in order to force it to approach

zero. Note that mass conservation in each node is not

affected, as DQ1j j ¼ DQ2j j ¼ DQ3j j ¼ DQ4j j.

Energy Conservation Along an Opened Path

Opened paths are defined as the paths connecting two

outer branches with imposed pressures. The corre-

sponding energy equation may be written as follows:

Xnk
k¼1

h�k ¼
p1 � p2

rg
þ v21 � v22

2g
þ z1 � z2

¼
Xnk
k¼1

dxmdyaf Q
2 � dxm

X
hp þ dxmdy

X
ht

� �
k

ð12Þ

where ‘nk’ is the number of inner branches forming

the opened path ‘m’. Following a similar methodology

as for the closed paths, corrections are:

DQmk ¼

p1�p2
rg þ v2

1
�v2

2

2g
þ z1 � z2

� �
�

Pnk
k¼1

h�k

2dxmk
Pnk
k¼1

af Qj j
� �

k

ð13Þ

and thus, for every opened path ‘m’:

Qnþ1
k ¼ Qn

k þ gDQkm; k ¼ 1; nk; m ¼ 1; nm

ð14Þ

where ‘nm’ is the total number of opened paths. This

correction is also applied to the last outer branch in the

path, thus ensuring mass conservation at the corre-

sponding node. If the first outer branch has imposed

pressure and flow-rate, no correction is needed. If only

pressure is specified, a global balance applied to every

outer branch in the whole network provides for mass

conservation.

Boundary Conditions

Boundary conditions are defined, in the present con-

text, as the variables (pressure and/or flow-rate) and

corresponding values imposed at the outer branches.

For a problem to be physically well defined, the

following criteria must be met:

* the sum of all imposed variables must equal the

total number of outer branches.
* Simultaneous imposition of both pressure and

flow-rate may be done at, the maximum, one

outer branch. Consequently, from the first

condition, only one outer branch may be set

free, without any specification of variables.
* Pressure must be known, at least, at one outer

branch. This a necessary condition for the

computation of pressure in the network.
* Due to issues concerning the solving procedure,

both pressure and flow-rate must be specified at anFigure 2 Path along a closed path.
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outer branch, if possible. This applies for the case

where flow-rates are known at every outer branch.

COMPUTER IMPLEMENTATION

Initialization of the Flow Field

The flow field is initialized with arbitrary flow-rates,

restricted to the condition that mass conservation is

verified. This aspect is crucial, since during the

iterative procedure, the flow correction at each

node does not modify the net flow-rate in the nodes.

The process is as follows: outer and inner branches are

initialized with arbitrary values, except for imposed

flow-rates in the outer branches, ensuring global mass

conservation. Initial values for inner branches flow-

rate are obtained solving Equation 15, which represent

the mass conservation equation at every node, except

for one. The missing node does not need to be

modeled in the equation, since global mass conserva-

tion at the outer branches ensures that condition.

a11 a12 ::: a1;nb
a21 a22 ::: a2;nb

:
ann�1;1 ann�1;2 ::: ann�1;nb

2
664

3
775

Q1

Q2

:
Qnb

2
664

3
775¼

b1
b2
:

bnn�1

2
664

3
775

ð15Þ

The bj terms are the flow-rates at the outer branches

connected to nodes with index ‘j’, ‘nn’ is the total

number of nodes and ‘nb’ is the number of inner

branches. The aij coefficients are null if the ‘j’ branch

is not connected to the ‘i’ node. Otherwise:

aij ¼ sign nx � ið Þ ð16Þ

with branch ‘j’ connecting nodes indexed ‘i’ and ‘nx.’

Solution of this linear system of equations is obtained

through the Gauss�Seidel method.

Construction of Closed Paths

As previously stated, energy conservation must be

satisfied at every closed path in the network. In fact, it

is only necessary to satisfy the energy conservation

requirement at set of closed paths, provided they

satisfy the following requirements:

Figure 3 Example of a network.

Figure 4 Dialog-Box for definition of the network

layout. [Color figure can be viewed in the online issue,

which is available at www.interscience.wiley.com.]

Table 1 Boundary Conditions Example 1

Branch

Diameter

[cm]

Boundary

condition Value

22 1.0

Pressure and

flow-rate 1 kPa; 2 L/s

21 1.0 Pressure 5 kPa

20 1.0 Pressure 10 kPa

23 1.0 None —

Figure 5 Sub-menu for definition of accidents.

[Color figure can be viewed in the online issue, which

is available at www.interscience.wiley.com.]
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* The closed paths are linearly independent from

each other.
* The number of closed paths is equal to the

maximum of linearly independent closed paths

that is possible to find in the network.

The construction of the closed paths is comple-

tely automated. The goal is to find the maximum

number of closed paths, provided they are linearly

independent of each other. In a first phase, starting at

chosen branch, all the possible closed paths are

generated. This leads to a matrix in the following

form:

a11 a12 ::: a1;nb
a21 a22 ::: a2;nb

:
ac;1 ac;2 ::: ac;nb

2
664

3
775 ð17Þ

where each line corresponds to a path. The number of

paths found is c and aij is the coefficient of the branch

‘i’ connecting nodes ‘a’ and ‘b,’ along the path

direction, computed as follows:

aij ¼ sign b� að Þ ð18Þ

If a certain branch does not belong to the path, its

coefficient will be, evidently, null. The second step is

to condense the matrix Equation 17, in order to reject

the linearly dependent paths. This is performed with

the Gauss-Seidel method, leading to a matrix with the

maximum number of linearly independent paths.

Construction of Opened Paths

Opened paths must be generated between pairs of

outer branches with imposed pressures. In the present

implementation, all opened paths start at a common

outer branch with imposed pressure. The software

implements a wise searching method that ensures that

a path is always found up to the end branch. Although

the only requirement for each path is that it connects

the starting and the end point, it is convenient, for

minimization of round-off errors, that the paths are as

short as possible. For that purpose, after generation of

an opened path, an optimization procedure is applied

for minimizing its total number of branches.

Solution Method

As previously referred, two types of problems may be

solved:

Table 2 Data for Definition of Accidents

Inner

branch

Accident

number

Type of

accident

Distance to

previous location

Height Characterization

value

Sub-branch

diameter

Sub-branch

roughness

Figure 6 The interface for the Run command. [Color

figure can be viewed in the online issue, which is

available at www.interscience.wiley.com.]

Figure 7 Post-processing window. [Color figure can

be viewed in the online issue, which is available at

www.interscience.wiley.com.]

HARDY-CROSS METHOD 121



Flow-Rate Problem. In this case, the entire network

is specified in terms of pipe diameter, length and

roughness, as well as pumps, valves, or turbines

characteristics. The goal is to find the flow-rate in

every branch. For that, Equations 11 and 14 are

applied successively until corrections DQ are below a

pre-defined threshold D
max

:

D ¼ max 100
DQi

Qi

� �
< Dmax; i ¼ 1; nb ð19Þ

Dimensioning Problem. If, further to the boundary

conditions imposed at the outer branches, a specified

flow-rate (goal flow-rate) is to be reached at a certain

inner branch, a free variable should be set. In the

present implementation, free variables may be:

* the diameter of a certain branch or a single value

for the diameter of every branch.
* the length of a certain branch or single value for

the length of every branch.

* a pump elevation height; a turbine head loss; a

valve or a bend head loss coefficient.

The solution process for this type of problems is,

in fact, a series of ‘n’ flow-rate computation problems

(‘n’ outer iterations), were the free variable is conti-

nuously updated in the course of the outer iterations

until the desired goal flow-rate is reached:

fnþ1 ¼ fn þ fn � fn�1

Qn � Qn�1

� �a
Qg � Qn
� �

ð20Þ

where ‘n’ is the outer iteration, f stands for the free

variable value, and Qg is the goal-flow. The exponent

‘a’ controls the sensitivity of the free variable to the

goal flow-rate changes. If the free variable is the pipe

diameter, a¼ 0.5. Otherwise, a¼ 1.

This type of problems may lead to poor

convergence or even divergence of the iterative

process if the boundary conditions are not properly

set from the physical point of view. This is the case

when, for instance, the free variable has little or no

Table 3 First Paths Generation for Example 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

�1 �1 1

1 1 �1

�1 �1 1

�1 1 �1

1 1 �1

1 �1 1

�1 �1 1

�1 �1 1

�1 �1 1

�1 1 �1

1 1 1 �1

1 1 1 �1

�1 �1 �1 1

�1 �1 �1 1

�1 �1 �1 1

�1 �1 �1 1

1 1 1 �1

�1 �1 �1 1

Table 4 Linearly Independent Paths Generated for Example 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

�1 �1 1

1 1 �1

�1 1 �1

�1 �1 1

1 1 1 �1

�1 �1 �1 1
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influence on the goal-flow. It may also happen that the

goal-flow is physically impossible to be reached. Care

must, thus, be exercised when defining this type of

problems.

Graphical Interface-Example of
Flow-Rate Problem

Network Layout. The network depicted in Figure 3

will be our example for describing data input and the

graphical interface.

The user draws the network with the aid of the

mouse, in the Dialog-Box depicted in Figure 4. As the

network is drawn, branches and nodes are automati-

cally numbered, for reference. Tools are available for

correcting the network, either through insertion of

nodes in branches, removal of branches or displace-

ment of nodes.

Dimensions. For the specification of dimensions,

the Dialog-Box depicted in the previous figure is

updated to reflect the new data input. For each branch,

the user specifies diameter, length, roughness length,

and roughness type (absolute or relative). Nodes

height should also be entered.

For the present example, all branches have a

length of 10 m, except for branch 10 with 5 m length

and branch 12 with 15 m length. The pipe diameter is

1 cm with an absolute roughness of 0.02 mm.

Boundary Conditions. Boundary conditions must be

imposed at each outer branch. The user specifies the

type of boundary condition (pressure, flow-rate, pres-

sure and flow-rate, or none) in the Dialog-Box of

Figure 4, updated for the boundary conditions input.

For the present example, the data presented in Table 1

is entered.

Accidents. Minor losses or pumps separate contig-

uous sub-branches. Their specification is made in a

sub-menu of the Dialog-Box depicted in Figure 4,

updated for the accidents definition, as may be seen in

Figure 5. For each accident, data presented in Table 2

should be supplied by the user. The present example

has no defined accidents.

The Run Interface. The problem solver is con-

trolled in the Dialog-Box depicted in Figure 6. It has

several controls, such as the maximum number of

iterations, relaxation coefficients, etc. Output data

concerning the iterative solution process is displayed,

as well as final data for the whole network, such as

branches flow-rate, head loss, nodes pressure, etc. An

output file with all this information may be saved in

text format.

The Post-Processing Interface. In the post-proces-

sing interface, the user has access to all data. The

closed and opened paths considered for the energy

balances may be visualized, as well as flow direction

in each branch. Pressure and flow-rate at any location

in the network may also be displayed (cf. Fig. 7). The

software may plot graphics showing pressure varia-

tion along each branch. Data may also be exported for

representation with other graphical software.

Paths and Convergence

Closed Paths. Some details are now provided on the

solving process for the previous example. As already

Figure 8 Closed paths considered for example 1.

Table 5 Opened Paths for Example 1

14 15 16 17 18 19 20 21 22

�1 �1 1 �1 �1 1

�1 1 �1 1

Figure 9 Convergence history for example 1.
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mentioned, as a first step towards the solution, a large

number of paths is automatically found. For the

present case, 16 paths are generated, as defined in the

matrix of Table 3. Since not all these paths are linearly

dependent, a condensation process is carried out to

filter the extra information. Condensation of the

previous matrix rejects nine paths, leading to six

linearly independent paths that may be considered for

the present case. It must be noted that any six paths

could be a solution, as long as their linear indepen-

dence is verified. The matrix of Table 4 depicts the

corresponding paths and Figure 8 shows their

visualization.

Opened Paths. For the present example, opened

paths were established between outer branch 22,

where both pressure and flow-rate are specified, and

each of the two outer branch where pressure was

imposed. The corresponding branches are represented

in Table 5.

The spare outer branch will be, in this case,

branch 23, where no variables are imposed. Flow-rate

in this branch is computed with a global outer mass

balance. It must be emphasized that the previous

processes are fully automated, without intervention of

the user.

Convergence History. Convergence rate is quite

fast. For the present problem, an under-relaxation

factor of 0.8 was chosen, and a maximum percentage

adjustment of flow-rate in each branch of 1e-5 was set

as limit, leading to a total of 39 iterations to reach a

converged solution (cf. Fig. 9). Computation time is

almost negligible.

Dimensioning Problem

In the second example, shown in Figure 10, the goal is

to find the power that is extracted by the turbine, for a

flow-rate of 10 L/s. All branches have a diameter of 5

cm, with a length of 50 m and a relative roughness of

0.001. The reservoirs are simulated by assigning a

large diameter to the corresponding outer nodes. For

Figure 10 Example for dimensioning problem: (a) physical problem; (b) computer

implementation.

Table 6 Boundary Data for Example 2

Branch Diameter [cm] Boundary condition Value (kPa) Node Height [m]

4 1,000 Pressure 98.1 1 90

5 1,000 Pressure 19.62 4 0

6 1,000 Pressure 49.05 3 15

2 50
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pressure, the hydrostatic value corresponding to the

water column height is considered.

Table 6 summarizes boundary data:

There are no closed paths, in this case. Opened

paths are established as follows Table 7.

The problem is initialized assigning a head loss of

0.001 m to the turbine and a maximum error of 0.01%

is imposed for the goal flow-rate. The turbine head

loss is continuously updated after each outer iteration,

according to Equation 20. The convergence history

may be appreciated in Figure 11, where both the value

for the flow-rate at branch 1 and the turbine head loss

are depicted. As can be seen, convergence rate is quite

fast. The final head loss is 56.88 m, corresponding to a

power of 5.58 kW extracted by the turbine.

CONCLUSIONS

The present paper describes a user-friendly imple-

mentation of the Hardy-Cross method for solving

piping networks. The software is particularly suited

for academic applications, allowing the user to solve

both flow-rate problems and dimensioning problems,

with different types of boundary conditions. The

program automatically finds opened and closed paths

for energy conservation, rendering the utilization of

the software quite easy. Post-processing tools allow

the computation of flow characteristics in any point in

the network. Tests conducted so far showed very good

convergence rates. A demo version of the software

may be obtained at: http://www2.dem.uc.pt/antonio.

gameiro/netflow/NetFlow_English.htm
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Table 7 Opened Paths for Example 2

1 2 3

�1 �1

�1 1

Figure 11 Convergence history for the dimensioning

problem.
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