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Abstract

The field of deep learning has been the focus of plenty of research and development
over the last years. Deep Neural Networks (DNNs), and more specifically Convolutional
Neural Networks (CNNs) have shown to be powerful tools in tasks that range from or-
dinary, like check reading, to the most essential, being used in medical diagnosis. This
evolution in the field has lead to the development of frameworks, such as Torch and
Theano, that simplified the training process of a CNN, where the user only needs to cre-
ate the network architecture, select the ideal hyper-parameters and provide the inputs
and desired outputs. However, the easy access to these frameworks lead to an increase
in both network size as well as dataset size, since the networks had to become bigger
and more complex to be able to achieve more significant results. This lead to larger train-
ing times, that not even the improvement of Graphics Processing Units (GPUs) and more
specifically the use of General-Purpose GPU (GPGPU) could keep up to.

To solve that problem, several distributed training methods were developed, dividing
the workload through several GPUs on the same machine or through Central Processing
Units (CPUs) or GPUs on different machines. This distribution techniques can be di-
vided into 2 groups: data parallelism and model parallelism. The first method consists
on using replicas of the same network on each device and train them using different
data. Model parallelism divides the workload of the entire network through the differ-
ent devices used. However, none of these techniques used by the different frameworks
takes advantage of the parallelization offered by the CNNs, and trying to use a different
method with those frameworks ends up being a task too complex or even impossible.

In the present thesis, a new distributed training technique is developed, that makes
use of the parallelization that CNNs have to offer. The method is a variation of the model
parallelism, but only the convolutional layer is distributed. Every machine receives the
same inputs but a different set of kernels, and the result of the convolutions is then sent
to a main machine, known as master node.

This method was subjected to a series of test, varying the number of machines in-
volved as well as the network architecture, with the results being presented in this doc-
ument. The results show that this technique is capable of diminishing the training times
considerably without classification performance loss, for both the CPUs as well as the
GPUs. A detailed analysis regarding the influence of the network size and batch size was
also included in this document. Finally, a simulation was executed, that shows results
using a higher number of machines as well as a possible use of mobile GPUs, whose en-
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ergy efficiency applied to deep learning was also explored in this work, supported by the
contents of Appendix A.
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Resumo

A área de deep learning tem sido o foco de muita pesquisa e desenvolvimento ao
longo dos últimos anos. As DNNs, e mais concretamente as CNNs provaram ser ferra-
mentas poderosas em tarefas que vão desde as mais comuns, como leitura de cheques,
às mais essenciais, sendo usadas em diagnóstico médico. Esta evolução na área levou
ao desenvolvimento de frameworks, como o Torch e o Theano, que simplificaram o pro-
cesso de treino de uma CNN, sendo necessário apenas estruturar a rede, escolhendo os
parâmetros ideais e fornecer os inputs e outputs desejados. No entanto, o fácil acesso a
essas frameworks levou a um aumento no tamanho tanto das redes como dos conjuntos
de dados usados, uma vez que as redes tiveram que se tornar maiores e mais complexas
para obter resultados mais significativos. Isto levou a tempos de treinos maiores, que
nem a melhoria de GPUs e mais especificamente o uso de GPGPU conseguiu acompan-
har.

Para dar resposta a isso, foram desenvolvidos métodos de treino distribuído, di-
vidindo o trabalho quer por várias GPUs na mesma máquina, quer por CPUs e GPUs
em máquinas distintas. As diferentes técnicas de distribuição podem ser dividas em 2
grupos: paralelismo de dados e paralelismo de modelo. O primeiro método consiste em
usar réplicas de uma rede e treinar fornecendo dados diferentes. O paralelismo de mod-
elo passa por dividir o trabalho de toda a rede pelos diferentes dispositivos usados. No
entanto, nenhuma destas técnicas usadas pela diferentes frameworks existentes tira par-
tido da paralelização oferecida pelas CNNs, e tentar usar um outro método com essas
frameworks revela-se um trabalho demasiado complexo e muitas vezes impossível.

Nesta tese, é apresentada uma nova técnica de treino distribuído, que faz uso da par-
alelização que as CNNs oferecem. O método é uma variação do paralelismo de modelo,
onde apenas a camada de convolução é distribuída. Todas as máquinas recebem as mes-
mas entradas mas um conjunto diferente de filtros, sendo que no final das convoluções
os resultados são enviados para uma máquina central, designada como nó mestre.

Este método foi alvo de uma série de testes, variando o número de máquinas en-
volvidas e a arquitectura da rede, cujos resultados se encontram neste documento. Os
resultados mostram que esta técnica é capaz de diminuir os tempos de treino consider-
avelmente sem perda de desempenho de classificação, tanto para CPU como para GPU.
Também foi feita uma análise detalhada sobre a influência do tamanho da rede e do
batchsize no speedup conseguido. Por fim, foram também simulados resultados para
um número superior de máquinas usadas, bem como o possível uso de GPUs de dispos-
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itivos móveis, cuja eficiência energética aplicada ao deep learning foi também explorada
neste trabalhado, suportado pelo conteúdo do Appendix A.
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1. Introduction

Machine learning has been the engine behind tasks that are considered normal nowa-

days. From using search engines to depositing checks at the ATM [1], including filtering

content on social media, to tasks that range from medical diagnosis [2] to game playing [3].

It is ever more present all around, particularly on smart appliances (like smart homes [4,5]

and smartphones).

Currently, one of the major problems regarding machine learning in several real world

applications is the large amount of variables on which the data depends. For instance,

the image of a green shirt might look darker when there is low illumination, or the format

of a car might depend on the image’s angle. Simply using representation learning, which

is when a machine takes raw data to discover representations needed for classification,

is not very helpful, since it is necessary to obtain abstract features that seem normal to

humans but are difficult to express using logic or mathematical reasoning.

Deep learning is able to complement representation learning and solve this problem,

since it allows the creation of complex concepts out of simpler ones. This is achieved

by using multiple levels of representation, each more abstract than the previous layers.

Figure 1.1 shows this concept clearly. The layers from this type of model can be classified

according to three types: visible, hidden and output layer. The visible layer is named so

because it represents the variables that can be seen (like the pixel values of an image). On

the other hand, the values from the hidden layer are not explicit in the input data. Follow-

ing the given example, the first hidden layer is able to detect the presence or absence of

edges in certain orientations. Having the edge representations, the second hidden layer

is able to detect corners and contours, that are nothing more than arrangements of edges.

With the corners and contours representations, the third hidden layer is capable of iden-

tifying parts of certain objects. Finally, the output layer is able to say what is the object

present in the image. It should be noted that the most important aspect of these types of

models is that such layers are all learned from the data without any human intervention.

1.1 Motivation

Despite being around since the 1970’s and 80’s [7], even with commercial applica-

tions [8], it wasn’t until recently that deep learning really boomed. This can be attributed

to mainly two factors: the size of the datasets and the increase in model’s size.

Most datasets prior to the 1990’s, such as the Iris dataset [9,10] or the TIMIT dataset [11]

had less than a couple thousand instances available to train the networks. While it may

have been sufficient for classifying between three types of Iris, it became insufficient as

machine learning evolved and more complex tasks were required. The creation of new

datasets was almost nonexistent prior to 2000, but that changed as society evolved and

2



1.1 Motivation

Figure 1.1: Example of a deep learning model. Each layer represents a higher level of abstraction than the
previous layer [6].

became more dependent on new technologies. Since computers are evermore connected

and considering that information is kept, the number of datasets spiked, as well as the

number of instances they contain. This progression is visible in Figure 1.2.

On the other hand, the increase in model’s size relates to the number of neurons re-

quired to obtain significant results, as neural network with few neurons cannot solve the

most recent machine learning problems. Therefore, it was necessary to create larger mod-

els and networks, capable of achieving better results, even for the most complex tasks.

Thus, deep learning and particularly Deep Neural Networks (DNNs) emerged over the last

years.

Obviously this boom was only possible thanks to the technological development that

occurred since the 1980’s, that allowed the access to computational resources capable of

training increasingly larger neural networks, and also larger datasets. More specifically,

it was due to the development of faster Central Processing Units (CPUs) and Random-

Access Memories (RAMs), the increase in available memory/storage, and also due to the

improvement of distributed training infrastructures. It was only then that it was possi-

ble to create frameworks like DistBelief [12], capable of training networks with as much

as 1.7 billion parameters, currently one of the largest networks. However, it should be

noted that this framework uses thousands of CPU cores distributed along hundreds of

3
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Figure 1.2: Evolution of machine learning datasets through time.

machines and the training takes a few days. It produces very good results, achieving a

cross-validated classification accuracy of 15% on ImageNet dataset [13].

However, one of the most important technological developments that helped the evo-

lution of deep learning was the improvement of Graphics Processing Unit (GPU), more

specifically the use of General-Purpose GPU (GPGPU). These newly available resources

allowed the speeding up of network training time, through the development of parallel

computing frameworks like Open Computing Language (OpenCL) and Compute Unified De-

vice Architecture (CUDA). This is only possible because GPUs, despite working at smaller

frequencies than CPUs, have a higher number of cores and are more efficient at receiv-

ing a large batch of data and repeating the same operation very quickly, something that

happens during neural network training.

A demonstration of the GPU’s efficiency can be seen by analyzing the Commodity Off-

The-Shelf High Performance Computing (COTS HPC) system, that is able to train a network

with the same size as the one trained by DistBelief in only a couple of days using only

3 machines, each one with 4 GPUs, which represents a resource usage decrease by two
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orders of magnitude [14]. Moreover, it is capable of training a network with over 11 billion

parameters using 16 machines in only 3 days.

However, deep learning evolution evolved into a new kind of neural network: the

Convolutional Neural Network (CNN). The first major contribuition from a CNN to the

growth of deep learning appeared when this kind of network was used to win the Ima-

geNet Large Scale Visual Recognition Challenge (ILSVRC), the largest contest in object recog-

nition, by diminishing the top-5 error rate from 26.1% to 15.3% [15]. This means that the

CNN creates a list of possible categories for each image, from 1000 possible categories,

and the correct one always appears amongst the first 5 except 15.3% of the times.

The major evolution from DNNs towards CNNs lies in the convolution that is per-

formed during the training of this last type of network, which makes it the ideal choice

for the image and speech recognition, since both of these tasks rely heavily on the cor-

relation of neighboring data. The major problem with it is that the computation of the

convolution is computationally intensive, with 60% to as much as 90% of the total train-

ing time being spent doing convolutions, that only use about 5% of the parameters of the

whole network [16,17].

Although proprietary and closed methods for the training of CNNs exist, they ei-

ther distribute the whole network across different machines, making use of unnecessary

communications in intermediate layers, or creating replicas of the same network across

those devices, not being able to create large networks and losing some of the information

when the parameters of all the networks are averaged. Thus, the main motivation for

this thesis consists of developing an open source distribution technique that makes use

of the potential parallelization that convolutional layers have to offer, feeding different

devices the same feature maps but providing them with different kernels, gaining speed

up during the convolution computation that can even compensate the communication

time between the different nodes.

1.2 Objectives

Considering the above, the proposed goal of this thesis is to provide a new method to

distribute the training of a CNN, making use of the parallelization of the convolutional

layer. Therefore, the main focus is to be able to make the convolutions needed for the

network training across different machines, using different devices, like CPUs, GPUs

and hybrid combinations of both and be able to achieve significant speedups. The final

goal consists of analyzing the impact of the network hyperparameters, such as number

of kernels, latency time and specially the impact that the number of used devices has on

the global network training time.
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1.3 Main Contributions

In this thesis, a distribution of kernels among different machines is proposed, to op-

timize the convolutional phase of the training of a CNN, using several machines. Below

are highlighted the main contributions of this work:

• Distributed learning on clusters of CPUs;

• Distributed learning on clusters of GPUs;

• Distributed learning using hybrid CPU-CPU and GPU-GPU computing;

• Tradeoff analysis based on CNN size and number of devices available.

1.4 Dissertation Outline

This thesis is organized in 6 chapters. Following the introduction, chapter 2 focuses

on CNN, and in alternative ways of performing the training of these Neural Networks

(NNs) distributed over a group of computing machines, in order to achieve real speedups

in terms of learning/training period/time, providing some insight on the most recent

techniques in that area. Chapter 3 discusses the major principles of GPU architectures,

which is then complemented with an explanation of the CUDA framework. Chapter

4 details the algorithm changes implemented on the training of a CNN as well as the

dataset and hardware adopted in the experimental results section. The experimental

results are presented in chapter 5 and the conclusions and future work are detailed in

chapter 6.
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Over the last years, Deep Neural Networks (DNNs) have shown great promise in sev-

eral practical applications, achieving state-of-the-art performance on a variety of differ-

ent tasks, including object recognition [18,19] and speech recognition [20,21], among others.

They were even able to achieve strong super-human performances, performing better

than all humans or the best ones at it, in games like chess [22] and Go [23].

However, despite having shown to be a powerful machine learning technique, DNNs

are usually applied to cases where the input dimension is large, like images or sound

bits. Because of this they often encompass complex and sizable networks, where a con-

siderably high number of connections and weights coexist. Additionally, their training

also requires the use of large datasets, which in addition to the aforementioned struc-

ture, makes them very demanding in terms of computational resources. For example,

given Figure 2.1 from the ImageNet dataset [13], which contains over 14 million images

separated over 21 thousand categories, considering the image size is 500 × 333 and is

Red Green Blue (RGB), the input layer would have 499500 inputs. For a fully connected

hidden layer having only 100 neurons, the number of weights would be 49950000.

Figure 2.1: Example from the ImageNet dataset [13] depicting a domestic dog.

Even considering the CIFAR-10 dataset [24], which consists of much smaller RGB im-

ages of 32× 32 size, the input layer would have 3072 inputs, with 307200 weights using

a fully connected hidden layer with 100 neurons, without even considering more hidden

layers or the output layer. Given that this dataset only has 60000 images, the network

would be too complex and overfitting would tend to happen.
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2.1 Convolutional Neural Networks

Another problem is that these networks neglect correlation between neighbouring

data, like translations and distortions, despite there being a relatively high amount of lo-

cal correlation in pattern recognition problems. Ideally, local features would be extracted

and analyzed to be able to detect certain beings or objects. Convolutional Neural Network

(CNN) however are able to overcome those issues by making use of 3 key factors: local

receptive fields, weight sharing and spatial pooling.

2.1 Convolutional Neural Networks

The concept of CNN was first introduced in 1995 by Yann LeCun and Yoshua Ben-

gio [25] and was greatly inspired by the discovery of locally sensitive and orientation-

selective neurons in the visual cortex of a cat. By using local receptive fields it is possible

to exploit local visual features, like edges, corners and end-points (in images). This is

advantageous because adjacent pixels tend to be strongly correlated while pixels that are

farther apart are usually uncorrelated, or have a weak correlation. Having the ability to

share weights across locally connected neurons allows reducing the amount of parame-

ters to train, decreasing the amount of data needed, making the training faster and easier,

achieving better classification performances when compared to DNNs.

The main differences between CNNs and DNNs are the use of convolutions and pool-

ing (or subsampling) operations, instead of simple matrix multiplication in at least one

layer. One of the most popular CNNs is LeNet-5 [8], illustrated in Figure 2.2. It contains 2

convolutional layers and 2 subsampling layers interleaved, ending with fully connected

layers. The network can be tuned by changing the number of layers, the number and size

of filters from the convolutional layer or the stride of the subsampling layer.

Figure 2.2: The architecture of LeNet-5 [8], a CNN used for digits recognition.

2.1.1 Convolutional Layer

The input of a convolutional layer is usually a multidimensional array of data, while

the kernel is a multidimensional array of parameters that readjusts through the network

training. A convolution operation then applies those kernels to the inputs, as to detect
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the most appropriate features. Thus, the outputs of the convolution are called feature

maps. Mathematically, for a 2D image and a 2D kernel:

F(i, j) = (K ∗ I)(i, j) = ∑
h

∑
w

I(i− h, j− w)K(h, w) (2.1)

where F is the output, or feature map, I is the image and K is the kernel. Despite the equa-

tion requiring to flip the kernel, this is not a necessary operation of a DNN implementa-

tion, as most neural network frameworks implement the cross-correlation operation, as

depicted in Equation 2.2, with the same objective. Strictly speaking, the two operations

are different, as one requires the kernel to be flipped while the other does not. However,

most of the times, the difference is irrelevant, since a network will learn the best values

for the kernel using both operations. It will just learn how to detect different features.

F(i, j) = (K ∗ I)(i, j) = ∑
h

∑
w

I(i + h, j + w)K(h, w) (2.2)

The reason for the popularity of convolutional layers is due to their ability to work

with variable sized inputs, to which sparse connectivity and parameter sharing provided

important contributions.

Sparse connectivity (or sparse weights) happens when the outputs only have a cer-

tain amount of connections. Considering the case of an image, that may have thousands

to millions of pixels, a kernel is used to detect small features, thus storing few parame-

ters and limiting the number of outputs. Figure 2.3 is able to demonstrate how sparse

connectivity works on CNNs.

Figure 2.3: Example of sparse connectivity with two layers. Considering the case where layer a is formed by
a convolution with a width 3 kernel, the output b3 is only affected by three inputs.

As depicted in Figure 2.3, the use of convolutional layers limits the direct interaction

between inputs and outputs, meaning that a change in one neuron only directly influ-

ences the value of 3 neurons, when the kernel width is 3.
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2.1 Convolutional Neural Networks

However, in the case of CNNs with several layers, the value of a neuron from a deep

layer can be indirectly influenced by the value of neurons from shallow layers. It is then

possible to create bigger and more convoluted filters, built from far simpler ones, as can

be seen in Figure 2.4.

Figure 2.4: Example of sparse connectivity with three layers. Even though the neuron c3 only depends on
three neurons on layer b, those neurons depend each on three neurons from layer a, meaning that neurons
from deeper layers are indirectly influenced by neurons from the first layers.

Parameter sharing is used to reduce the number of parameters, which can be achieved

using the same filter across the entire input. This means that instead of learning a separate

set of parameters for every possible location, it is only necessary to learn one set, allowing

to detect features regardless of their position in the input. To learn more features, more

filters must be used, so that they can be trained to detect different features.

After detecting a certain feature, only the approximate position in comparison to

other features is relevant. Considering the CIFAR10 dataset, by detecting antlers and

a snout relatively close to each other, it is easy to assert that the image contains a deer.

It is imperative to use only the relative positions, since the precise position of features is

likely to change in different images, and it may ruin the training of the network. A sim-

ple way to relativize the positions of certain features is to reduce the spatial resolution of

the feature map, which can be done using pooling, or subsampling, that are the final key

factor in a CNN. The goals at this point are to reduce the size of convolutional responses

and to add invariance to small transformations.
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2.1.2 Pooling Layer

The pooling layer is a form of non-linear down-sampling, that partitions its input

into several non-overlapping blocks and evaluates a pooling function over each block.

The most used pooling function is the max pooling, as seen in Figure 2.5, that outputs

the maximum value on each block, but there are several others like the average pool-

ing and the L2-norm pooling, that compute the average and the L2-norm of each block,

respectively.

Figure 2.5: Example of max pooling with a stride of 2. The inputs are separated into 2x2 blocks and the
maximum of each block is computed.

In every pooling function, the goal is to make the network invariant to small trans-

formations, meaning that if the input was translated by a small amount, the values of

most pooled outputs would remain the same, which is particularly important if the pres-

ence of a certain feature is more relevant than its position. Figure 2.6 shows exactly this

point. By taking the inputs of Figure 2.5 and shifting them to the right by 1 pixel, almost

all the values of the inputs were changed, but the output after the pooling function only

changed one value.

The pooling layer can also be used to perform dimensionality reduction in the feature

map, trimming the amount of parameters and computation required to train the network,

thus controlling the overfitting.

However, despite convolutional and pooling layers being the major differences be-

tween DNNs and CNNs, this type of neural networks makes use of several other layers,

particularly Rectified Linear Unit (ReLU), fully connected and loss layers.

2.1.3 ReLU Layer

The ReLU layer applies an activation function, named rectifier, defined as f (x) =

max(0, x), where x is the input of the neuron. Although before the creation of this layer,
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2.1 Convolutional Neural Networks

Figure 2.6: Example of max pooling with a stride of 2. The inputs are separated into 2x2 blocks and the
maximum of each block is computed. The inputs from Figure 2.5 where shifted to the right 1 pixel, but only
one value from the output was affected.

other types of activation functions were used, such as the logistic sigmoid or the hyper-

bolic tangent, it is considered that the rectifier is more biologically plausible [26]. Not only

that, but it is significantly less computationally expensive then other activation functions

and it is also able to train networks several times faster than equivalent ones using hy-

perbolic tangent [15]. There are cases where networks with such activation function can

have neurons that become inactive, since the weights can be updated in such a way that

the input of the neuron will always be negative, meaning the output of the neuron will

always be 0. However, selecting a proper value for the learning rate will diminish the

probability of it happening.

2.1.4 Fully Connected Layer

The fully connected layer has neurons with full connections to all activations, like in

regular DNNs. Their activations are calculated with a simple matrix multiplication, with

a bias offset. Usually they are the last layers used in CNNs, since they are not spatially

located and are one-dimensional, meaning that there cannot be convolutional layers after.

2.1.5 Loss Layer

The final layer of CNNs is the loss layer, that is a fully connected layer where a loss

function is applied, that allows to calculate the difference between the predicted and true

labels. Different tasks use the appropriate functions. The most used loss function for

classifying images is softmax, that predicts a single class of N mutually exclusive classes,

by normalizing the vector, which implies that every class has values from 0 to 1, and the

sum is always 1.
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However training the largest CNNs is becoming a real challenge even using Graphics

Processing Units (GPUs), either because these parallel machines are limited in memory or

simply because the training times are just too long. Performing the distributed training of

CNNs is an appropriate strategy that fosters accelerating this type of complex processing.

The next section aims to provide some insight regarding the most recent techniques of

distributed training.

2.2 Distribution Techniques

Distributed training can refer to distributing the training of the network across several

GPUs in the same computer or in different computers, with the latter also being applied

to Central Processing Units (CPUs). There are mainly two types of techniques for the

distribution: data parallelism and model parallelism.

2.2.1 Data Parallelism

In data parallelism the batch of data is split across the several nodes from the cluster,

may they be CPUs, GPUs or a combination of both. Each node is then responsible for

computing the gradients with respect to all the parameters, but does so using part of the

batch. However, since every node is running a replica, it is necessary to communicate

the gradients and parameters values on every update step. Another problem with this

approach is that since every node calculates different gradients, they need to be averaged,

and that causes the loss of information and may hinder the training process.

Another condition for the use of this type of parallelism, especially when using GPUs

is that the batch size must be large enough to be distributed and still be able to exploit

the highly parallel capabilities of the GPU. An example of data parallelism is present in

Figure 2.7.

2.2.2 Model Parallelism

Model parallelism consists of dividing the network’s computation across the several

nodes, that may differ considering the type of network used. In the DistBelief [12] case,

the DNN is partitioned across several nodes and only the nodes with edges that cross

partition boundaries need to have their state transmitted between nodes. Another im-

plementation [27] separates the first convolutional layer across several nodes, dividing the

number of kernels, with each node calculating a part of the network, having only cross

connections at one intermediate layer and at the very top fully connected layers. This

implementation is visible in Figure 2.8.
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Figure 2.7: Data parallelism.

Another type of model parallelism can also be considered by splitting the image in

tiles that are represented by thread blocks per output feature map. Each tile is analogous

to a thread block and each pixel is represented by a thread, where a tile represents a

different image [16]. However, this type of distribution is only efficient in cases where

the image and batch size is large enough, and when there are not many kernels to be

convoluted, since every node will need to have every kernel necessary.

The distribution technique devised in this thesis can be thought as another type of

model parallelism, since the workload of the network is distributed across several ma-

chines. This will be further detailed in Section 4.
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Figure 2.8: Model parallelism.
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Moore’s Law stated, in 1965, that the number of transistors in integrated circuits

had doubled every two years, and would continue at that rate or even increase over

the years [28]. It turned out to be true, as chips nowadays can contain billions of tran-

sistors [29,30]. With that increase in computational power, the single-core was quickly re-

placed with multicore, whose computational resources were exploited with the develop-

ment of parallel computing. With it, computer architectures evolved even further and are

currently monopolized by the massive use of two distinct platforms: the Central Process-

ing Unit (CPU) and the Graphics Processing Unit (GPU).

This chapter presents an overview of CPU and GPU architectures, as well as a focus

on GPU programming, specifically using the Compute Unified Device Architecture (CUDA)

framework.

3.1 Central Processing Unit (CPU) Overview

The CPU was created to execute general-purpose tasks, able to perform basic arith-

metic, as well as logical operations, but also input and output tasks, that are specified by

instructions. Although the CPU is in constant evolution, as stated above, the conceptual

hardware model stayed virtually the same. This architecture comprehends an Arithmetic

and Logic Unit (ALU), that performs arithmetic and logic operations, registers, that sup-

ply operands to the ALU and store results of ALU operations, and a control unit, which

is responsible for managing the flow of instructions.

A high-level view of the CPU is depicted in Figure 3.1.

Figure 3.1: High-level view of a CPU architecture.

Since the CPUs were developed to complete general-purpose tasks, one of the most

important aspects is memory access time, so the CPU is able to perform calculations and

make decisions as quickly as possible. In order to minimize that time, a pyramidal model

for the memory was developed, with the top corresponding to the fastest cache, but also
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the smallest, with the bottom containing the largest memories with the longer memory

access times.

As technological resources continue to evolve, CPUs increase their processing power,

adding more cores and enabling thread execution. This, allied with the enclosure of sev-

eral cores on certain levels of cache systems, provides a shared memory for threads to

access each other’s data with fast on-chip memories.

3.2 Graphics Processing Unit (GPU) Overview

Initially, the GPU was developed exclusively as a graphics processor, managing graph-

ics related functions, like image rendering. This allowed the GPU to evolve as a highly

specialized graphical oriented parallel machine, where most of the available chip area is

used by computational units. Unlike the CPU, that minimizes memory access time using

a hierarchic model of memory with small but fast caches, the GPU relegates that pyrami-

dal system to accommodate more ALUs, forgoing latency in favor of better throughput

performance, so as to complete the tasks as fast as possible. This allows the GPUs to

handle the many calculations required to manipulate and render the graphics, which

requires the execution of the same calculation over a large batch of data. Since that pro-

cessing must occur in real time, it needs to be completed as fast as possible.

This way, the GPU benefits from kernels with high arithmetic intensity, which is the

ratio between arithmetic and memory instructions, since it will overshadow the memory

latency. This is also possible due to their architecture, or more specifically due to the

number of cores that GPUs normally contain, which are all able to execute threads. As

each thread performs a task on a data sample, a large batch of information can be worked

on by all the threads simultaneously.

The memory system present in GPUs is Dynamic Random Access Memory (DRAM),

which uses capacitors to store the bit value. However, despite allowing the incorporation

of more memory on the chip area, it increases the latency. A high-level view of the GPU

is depicted in Figure 3.2 and is designed to serve as a comparison to the architecture of a

CPU, shown in Figure 3.1.

The DRAM is divided into cells, that store the actual data and have a rectangular,

grid like pattern. Since consecutive cells in the same row have successive addresses, the

latency of sequential accesses to the same row is low. Also, as a way to reduce overall

memory access time, the controller schedules accesses the same row before scheduling

accesses to different rows.
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Figure 3.2: High-level view of a GPU architecture.

Another key feature of the GPUs is the incorporation of large buses, that are able

to fetch large quantities of data to the compute units, thanks to the bandwidths they

provide.

All this confers the GPU an ability for high levels of parallelization, capable of out-

performing the CPU on arithmetic intensive algorithms.

3.3 GPU programming

As stated above, the GPU’s main advantage is its ability to execute a program in

parallel. When programming on a GPU, one of the most important things to do is locate

the potential parallelization in the algorithm. This is the best way to take advantage of the

GPU’s full computational potential. However, a CPU is always required when using the

GPU, since the CPU is required to manage the execution of the program. Specifically, the

CPU is necessary to determine which portions of the program are performed by the GPU

and the parameters needed. The CPU is also responsible for the memory management,

transfering memory from and to the GPU. However, it is a time costly operation and

should be limited as much as possible.

Other drawbacks from the GPU include the clock speed, as it is slower than the CPU’s,

less memory and cache. This limits the ability of the GPU to run in serial execution. For

a better use of the GPU’s computational resources, it is necessary to separate the portions

of the program that are serial from the ones that are parallel, and run the serial ones with

the CPU and the other with the GPU. If an operation has to be executed enough times and

can be done in parallel, then the GPU can more than compensate for its slower execution.
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3.3 GPU programming

3.3.1 CUDA

In order to turn GPUs into fully programmable devices, programming languages had

to be created. With the objective of having a dedicated language, NVIDIA created the

CUDA framework, that exclusively works with the company’s devices, as is the case of

almost all the computers used in this thesis. It provides a data parallel programming lan-

guage with C++ support, handling the GPU specificities through parallel data structure

and keywords, for parallel programing.

There are three key aspects in CUDA: the hierarchy of thread groups, the shared

memory model and barrier synchronization. Bundled together the three offer the pro-

grammer the design tools required to express algorithms for parallel execution.

The parallel part of a program is known as a kernel, an extension to the function

feature of the C programming language, that is executed across the GPU hardware, where

the execution grid is composed of threads and blocks of threads. Blocks can be one to

three dimensional and are defined by the programmer, limited by the amount of memory

resources that each thread consumes. This strategy is limited in communication and

synchronization allowed for threads in the execution grid. Threads can communicate via

shared memory and synchronize with the other threads in the same block, where each

block runs independently from one another.

The heterogeneous programming model behind CUDA assumes that the CPU acts as

a controller to the co-processor, i.e. the GPU, where the actual execution of a kernel will

take place. This model comes at the expense of having, at least, two different memory

regions, one controlled by the CPU, that acts as the host, and the other by the GPU,

that acts as the device. However, most recent architectures come with Direct Memory

Access (DMA), where the programmer no longer needs to maintain the memory spaces

coherence manually.

The CPU, or host, allocates the space in the device’s global memory and sends the

data segment to the device. This allows the GPU to already have all the necessary data

available to perform calculations when the kernel is called. Once the kernel finishes its

execution, the host copies the data to its memory, followed by deallocating the memory

space in the device.

The GPU is responsible for running the parallel kernels, where the kernel specifies

the amount of work each thread performs. It is built in a way that allows each thread to

be responsible for an index of the matrix. If memory accesses have the data pre-aligned

on the device’s memory, all indexes are calculated and stored at the same time.

However, one of the problems of developing parallel CUDA code programs lies with

using the resources in the most efficient way. In order to do so, there are some techniques

that can significantly improve the program’s performance. Beside the shared memory
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already discussed above, one of the things to avoid is thread divergence. Divergent con-

ditions such as if-else statements influence the processing time, because all the paths have

to be verified by all threads, adding more cycles. So, these branching statements should

be avoided while parallelizing. Another technique is to use loop unrolling, so as to re-

duce the number of times the condition to perform the jump is met. This can be done by

the programmer or by the CUDA compiler. The final technique is asynchronous memory

transfers, where the memory transfers are performed while executing the kernel, reduc-

ing the impact of memory transactions, increasing the throughput of the program.
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4. New methodology for distributed training of CNNs

The goal of this work is to provide a different method of distributed training that takes

advantage of the structure of a Convolutional Neural Network (CNN). As said in a previ-

ous chapter, the convolutional phase makes up for nearly 60% of the training time [16]

and may even contain up to 90% of computation time, using about 5% of the network’s

parameters [17].

4.1 Problem analysis

The first step towards implementation lies in the analysis and definition of the task

at hand. Chapter 2 provides the theory behind CNNs and the different methods of dis-

tributed training. It is important to note that the this method shares similarities with the

model parallelism, as part of the network is shared among several nodes and the next

section explains the differences and how they benefit the training of the network.

4.1.1 Distributed approach

The similarities between this distributed approach and model parallelism lie in shar-

ing part of the network. However, where the nodes using model parallelism always

compute the same part of the network and communications are kept to a minimum, this

approach only does the convolutions for the convolutional layer. This works because the

convolutional layers have high representation using less than 10% of the parameters [17],

meaning that the communication overhead will not be a relevant problem when com-

pared to the computation time saved.

The master node sends the size and number of inputs, that can be images or feature

maps from previous layers. It also sends the size and number of kernels needed for

the convolution, with different nodes receiving a different number of kernels, as further

explained in Section 4.1.2. All this information regarding input, kernel size and number

is necessary so that the slave knows how much data to read from the socket and how it

should reshape it, since data read from sockets comes in vector form. After every node

concludes their part of the convolutions, every slave sends their feature maps, where the

master node reshapes and rearranges them.

The process is repeated until the training of the network is over, with the master node

sending a shutdown flag to every slave. This training distribution technique can be better

evaluated by analyzing the Algorithms 4.1 and 4.2, referring to the master node and the

slave nodes, respectively.
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Algorithm 4.1 Master node

for slave = 1 to numSlaves do
connectSocket(slave)

end for

while training do
for layer = 1 to numLayers do

if convolutional layer then
for slave = 1 to numSlaves do

/*All slaves receive the same inputs*/
inputWidth, inputHeight, numInputs⇒ writeSocket(slave)
input⇒ writeSocket(slave)

/*Different slaves receive different kernels*/
numOutputMaps(slave)⇒ writeSocket(slave)
kernelWidth, kernelHeight, numKernels(slave)⇒ writeSocket(slave)
kernels(slave)⇒ writeSocket(slave)

end for

for outputMaps = 1 to numOutputMaps do
output⇐ convn(input, kernels) /* The outputs are the feature maps */

end for

/*Master node receives and combines all the feature maps*/
for slave = 1 to numSlaves do

outputWidth, outputHeight, numOutputs⇐ readSocket(slave)
output⇐ readSocket(slave)
output⇐ reshape(output, [outputWidth, outputHeight, numOutputs])
allOK ⇒ writeSocket(slave)

end for
end if

end for
end while

for slave = 1 to numSlaves do
trainOver ⇒ writeSocket(slave)

end for

4.1.2 Hybrid CPU-CPU and GPU-GPU computing

One of the major problems that arises with the usage of computers having differ-

ent Central Processing Units (CPUs) and Graphics Processing Units (GPUs) is that different

devices are able to complete the same workload in different times. This can become a

problem, especially when one or more of the devices are relatively slower. For example,

considering two devices: Device 1, that can complete an arbitrary workload in only 10

seconds, and Device 2, that completes the same work in 20 seconds. If the workload were

25



4. New methodology for distributed training of CNNs

Algorithm 4.2 Slave nodes

connectSocket(server)

/*When the training is over, the master sends a bit that tells the slaves to shutdown*/
while trainOver = 0 do

while bytesReceived = 0 do
pause(1)

end while

inputWidth, inputHeight, numInputs⇐ readSocket(server)
input⇐ readSocket(server)
input⇐ reshape(input, [inputWidth, inputHeight, numInputs])

numOutputMaps⇐ readSocket(server)
kernelWidth, kernelHeight, numKernels⇐ readSocket(server)
kernels⇐ readSocket(server)
kernels⇐ reshape(kernels, [kernelWidth, kernelHeight, numKernels])

for outputMaps = 1 to numOutputMaps do
output⇐ convn(input, kernels) /* The outputs are the feature maps */

end for

outputWidth, outputHeight, numOutputs⇒ writeSocket(server)
output⇒ writeSocket(server)

/*After every batch, the server sends a bit that acknowledges that it received the
feature maps*/
allOK ⇐ readSocket(server)

end while

to be distributed equally, Device 1 would complete the task in 5 seconds while Device 2

would take 10 seconds. If Device 1 were to be used as the comparison basis, the speed

up would be below 1x, as computation time would remain the same, but communication

times would be introduced.

In order to mitigate this problem, it is necessary to find beforehand the suitable work-

load for each device, which in this case is the number of kernels, so that each device can

finish all it’s convolutions at approximately the same time.

To do so, every device runs a N-dimensional convolution with both the size of the

images as well as the size of the kernels provided by the master device, that tries to simu-

late part of the convolutional layer. The convolution is run using random values, because

only the time spent on it is relevant. After the respective simulations, the computation

time is sent to the master node in order to find the performance ratio between devices,

either CPUs or GPUs. The slave nodes only need to know the Internet Protocol (IP) ad-
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dress of the master node, while the master node only needs to know the number of slave

nodes, making it 100% usable across devices that have MATLAB.

Considering the same example as before, the performance values would be [2, 1], for

Device 1 and Device 2, respectively. Device 1 would then have twice as much kernels

as Device 2, for the same arbitrary workload, with Device 1 in charge of two thirds of it,

while Device 2 convolving using one third of the kernels. This means that both devices

would finish their convolutions in about 6.67 seconds, which taking into consideration

the previous computing time of 10 seconds represents a speed up of 1.5x. This difference

in performance between devices comes from the differences regarding data transfers and

computing capabilities.

However, considering that during the experiment 3 to 4 computers will be used, it is

necessary to further clarify how the attribution of performance values and subsequent

distribution of work is done, in cases with more than 2 devices. For example, consider-

ing an arbitrary workload, the 4 devices complete the task in 10, 15, 20 and 30 seconds

respectively. To calculate how the workload should be distributed to each device, one

must divide all the processing times by the slowest computer’s time and invert that re-

sult. This way, the performance values of the devices for this particular example are [3,

2, 1.5, 1], where the first device is in charge of 3
3+2+1.5+1 , or 3

7.5 of the workload, while the

remaining devices handle 2
7.5 , 1.5

7.5 and 1
7.5 respectively.

4.2 Hardware platforms setup

This section discloses the computer platforms, and their specifications, used to exe-

cute the experiment.

CPU GPU
OS

Name RAM Name RAM

PC1
Intel Core i5-3210M

CPU @ 2.50 GHz
6GB

Radeon
HD 7500M

N/A Arch Linux

PC2
Intel Core i7-4700HQ

CPU @ 2.40 GHz
8GB

NVIDIA GeForce
840M

2GB Windows 8.1

PC3
Intel Core i7-5500U

CPU @ 2.40 GHz
8GB

NVIDIA GeForce
940M

2GB Ubuntu 14.04

PC4
Intel Core i7-6700HQ

CPU @ 2.60 GHz
16GB

NVIDIA GeForce
GTX 950M

4GB Ubuntu 14.04

Table 4.1: Platforms used during the experiment.

As it can be noticed from Table 4.1, the computers are all composed by different de-

vices, so both hybrid CPU-CPU and GPU-GPU computing was necessary. As the code
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4. New methodology for distributed training of CNNs

from this experiment was all written in Matlab, the only framework for parallel com-

puting compatible is Compute Unified Device Architecture (CUDA), meaning that the GPU

cluster has only 3 computers (PC2, PC3 and PC4), since only NVIDIA GPUs are sup-

ported, while the CPU cluster can run with all computers available.

4.3 Network architecture and Dataset

For this experiment, the dataset used was the CIFAR10 [24]. It is a labeled subset of the

80 million tiny images dataset [31] and was collected by Alex Krizhevsky, Vinod Nair and

Geoffrey Hinton.

The dataset consists of 60000 32× 32 colour images separated into 10 classes, with

each class having 6000 images. Of the 60000 images, 50000 are intended to be used for

training and the remaining 10000 for testing. The classes present in this dataset are: air-

plane, automobile, bird, cat, deer, dog, frog, horse, ship and truck.

This dataset was chosen particularly for consisting of colour images, which is the

norm for most recent image datasets, but also for having a considerably small dataset

with small images, which allows to test several CNNs architectures in a shorter period of

time than other datasets like Imagenet [13] and is able to serve as a proof of concept.

The chosen architecture for the network is as follows:

• Convolutional layer (henceforth known as C1), with kernels with 5× 5 pixels size;

• Normalization layer;

• Pooling layer, with stride 2;

• Convolutional layer (henceforth known as C2), with kernels with 5× 5 pixels size;

• Normalization layer;

• Pooling layer, with stride 2;

• Fully connected layer;

• Loss layer, with softmax loss;

The goal of the experiment is threefold: 1) analyze the speedup achieved using a

varying number of devices; 2) study the influence that the number of kernels in each

convolutional layer have on the speedups; 3) evaluate how the batch size impacts the

speedups.

To achieve that, the number of kernels on each convolutional layer was varied, testing

4 different network architectures. The smallest tested CNN has 50 kernels in the first

28



4.3 Network architecture and Dataset

convolutional layer and 500 on the second one. The remaining layers use 150 and 300

kernels for the first layer and 800 and 1000 kernels for the second one, while the largest

tested network has 500 and 1500 kernels on each layer.
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5. Experimental Results

This chapter presents the results obtained by applying the distribution devised in the

previous chapter and assess its performance for the two case studies considered: Central

Processing Unit (CPU) cluster and Graphics Processing Unit (GPU) cluster. This section

begins with an analysis of the speedup achieved using a variation in number of devices.

At a second stage, the effects of the batch size and number of kernels per convolutional

layer are also considered for this type of distribution method. Finally a comparison of

the overall performance of the CPU and GPU (and combinations of both) considering the

same experimental parameters is performed.

The elapsed time is relative to only one batch of data, since the time for the training of

an entire epoch is linear. The full training time is divided into 3 parts: Comm. time refers

to the communication time between the master node and the slaves. Conv. time is the

time spent in convolutions by each node, or by the slowest node, as opposed to being the

cumulative time spent in convolutions by all the nodes. Finally, Comp. time is the time

spent on computation of layers other than the convolutional ones.

5.1 Results using CPU-cluster

1 2 3 4
0

5

10

15

20

25

30

35

Number of CPUs

E
la

ps
ed

 T
im

e 
(s

ec
on

ds
)

 

 
Comp. Time
Conv. Time
Comm. Time

(a) C1 = 50 and C2 = 500 kernels.
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(b) C1 = 150 and C2 = 800 kernels.
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(c) C1 = 300 and C2 = 1000 kernels.
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(d) C1 = 500 and C2 = 1500 kernels.

Figure 5.1: Elapsed time for a batch size with 64 images, with different network architectures, using a CPU
cluster raging from 1 to 4 PCs.
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(a) C1 = 50 and C2 = 500 kernels.
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(b) C1 = 150 and C2 = 800 kernels.
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(c) C1 = 300 and C2 = 1000 kernels.
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(d) C1 = 500 and C2 = 1500 kernels.

Figure 5.2: Elapsed time for a batch size with 128 images, with different network architectures, using a CPU
cluster raging from 1 to 4 PCs.
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(a) C1 = 50 kernels and C2 = 500 kernels.
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(b) C1 = 150 kernels and C2 = 800 kernels.
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(c) C1 = 300 kernels and C2 = 1000 kernels.
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(d) C1 = 500 kernels and C2 = 1500 kernels.

Figure 5.3: Elapsed time for a batch size with 256 images, with different architectures, using a CPU cluster
raging from 1 to 4 PCs.
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(a) C1 = 50 kernels and C2 = 500 kernels.
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(b) C1 = 150 kernels and C2 = 800 kernels.
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(c) C1 = 300 kernels and C2 = 1000 kernels.
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(d) C1 = 500 kernels and C2 = 1500 kernels.

Figure 5.4: Elapsed time for a batch size with 512 images, with different architectures, using a CPU cluster
raging from 1 to 4 PCs.
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(a) C1 = 50 kernels and C2 = 500 kernels.
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(b) C1 = 150 kernels and C2 = 800 kernels.
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(c) C1 = 300 kernels and C2 = 1000 kernels.
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(d) C1 = 500 kernels and C2 = 1500 kernels.

Figure 5.5: Elapsed time for a batch size with 1024 images, with different architectures, using a CPU cluster
raging from 1 to 4 PCs.

34



5.1 Results using CPU-cluster

5.1.1 Introduction

In order to better understand the analysis of the results, there is a key aspect in the

methodology followed that should be taken into consideration. Since only the convolu-

tional phase was parallelized, the computation of the remaining layers is always made

by the master node, this explains why the comp. time always remains the same when

considering the same architecture trained with the same batch size, apart from minor

fluctuations that are bound to happen in every practical experiment.

Following the notation used in Chapter 4.2, PC1 serves as the master node for the

CPU implementation, being the reference of comparison when using a single CPU. The

rest of the devices considered, PC2, PC3, and PC4 are introduced in this order to test the

introduction of more nodes for the cases with 2, 3, and 4 devices, respectively.

All subfigures present in Figures 5.1 to 5.5 document results by keeping the same

batch size and varying the network architecture, more specifically altering the number of

kernels in both convolutional layers. Thus it is possible to make a detailed analysis of the

influence of the convolutional layer on the performance of this distribution technique.

By analyzing Figure 5.1, it is visible that a speedup always exists, even when consid-

ering the smallest network, which contain 50 kernels on the first convolutional layer and

500 kernels on the second one. Looking at the results of that network, visible in subfigure

5.1a), it is noticeable that the introduction of more CPUs contributes to an improvement

on processing time, achieving speedups of 1.20x with 2 CPUs and nearing 1.35 on both

3 and 4 CPUs. However, the communication time clearly overshadows the rest of the

processing time, representing almost 4.51x the convolution time in the case of 4 CPUs,

which results in much less significant speedups. The time relative to the computation of

other layers always stays constant with any number of devices used, since that was not a

target of any kind of parallelization.

5.1.2 Number of Kernels

To understand the effects of the number of kernels, it is necessary to analyze the re-

maining subfigures. As subfigure 5.1b) shows, an increase of kernels on both convolu-

tional layers leads to a significant decrease in the proportion of time spent in communi-

cation. Considering the specific case of 4 CPUs, where in the architecture with 50 kernels

on the first layer and 500 on the second the communication time corresponded to 47% of

total training time, as presented in subfigure 5.1a), in this case the communication time

totals 30% of global training time. The obtained speedup is 1.67x, 1.80x and 1.95x to 2, 3

and 4 CPUs respectively, showing an improvement over the last architecture.

By further analyzing the effect of the network architecture, a quick study of subfigure

5.1c) shows that a new increase in number of kernels on both layers leads to enhancing
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performances, with speedups between 1.61x and 2.18x, according to the number of de-

vices used. For the largest network tested, with 500 kernels on the first convolutional

layer and 1500 on the second one, the speedup reaches 2.27x for 4 CPUs and communica-

tion time dwindles to 19%, showing that this type of distribution is not communication

bounded. As communication time depends solely on the amount of data sent and band-

width, even considering a data transmission 5 times slower, the attained speedup would

still be 1.27x. However, it should be noted that the computation time of the remaining

layers has become the bottleneck, occupying from 25% to 56% of total training time. With-

out any kind of parallelization of the remaining layers, the increase in number of CPUs

used has a theoretical maximum speedup of 4 times, for this particular architecture, using

CPUs.

5.1.3 Batch Size

A batch size influence analysis on the distribution technique performance starts by

comparing subfigures that represent the same network architecture but use different

batch sizes by comparing subfigures 5.1a) to 5.5a), subfigures 5.1b) to 5.5b), all the way to

the largest networks tested. For the smallest network considered, the difference in batch

sizes does not introduce significant changes. The speedup for 2 CPUs is between 1.27x

and 1.33x, for 3 CPUs is between 1.33x and 1.47x and it reaches a 1.50x speedup with 4

CPUs. Using any batch size, the communication time continues to overshadow the re-

maining training time, showing that convolution distribution for smaller networks is not

really worth it.

For the two next architectures, with 150 kernels on the first convolutional layer and

800 kernels on the second one, and 300 kernels on the first layer and 1000 on the second,

the differences are almost non existent: there is a performance gain accompanying the

increase in convolutional layers sizes that is considerably constant with the increment of

batch size. Furthermore, an analysis of equal sized networks trained with different batch

sizes shows that the ratio between communication, convolution and computation time

also stays constant.

However, for the largest network tested, there is a more prominent difference when

training it with different batch sizes. By analyzing the training time using 1 CPU on

the different subfigures, it is visible a decrease in percentage of time dedicated to the

computation of different layers, going from 25% with a batch size of 64 images to 13%

when using 1024 images to train. Taking it into consideration, a more thorough analysis

of the largest network using a batch with 1024 images shows that, as it can be seen in

subfigure 5.5d), the use of 2 CPUs achieves a speedup of 1.98x, while for 3 and 4 CPUs

the attained speedup is 2.73x and 3.28x, respectively. Considering that the computation
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of the remaining layers only occupies 13% of the total training time using one CPU, the

theoretical maximum speedup achievable for this particular case would be about 7.76x.

5.2 Results using GPU-cluster
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(a) C1 = 50 and C2 = 500 kernels.
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(b) C1 = 150 and C2 = 800 kernels.
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(c) C1 = 300 and C2 = 1000 kernels.
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(d) C1 = 500 and C2 = 1500 kernels.

Figure 5.6: Elapsed time for a batch size with 64 images, with different network architectures, using a GPU
cluster raging from 1 to 3 PCs.

5.2.1 Introduction

In order to analyze the results obtained with the GPU clusters, it is necessary to clar-

ify some constraints, namely regarding the number of GPUs used in the experiments.

Considering that the code was developed using MATLAB, GPU integration is only pos-

sible using CUDA, that only allows its execution on NVIDIA GPUs. Taking into account

that only 3 of the 4 computers complete that requirement, the maximum size of the GPU

cluster is 3 machines, which only allows the comparison between CPU and GPU up to a

certain point.

Another aspect to consider is the computational capabilities of the GPUs. As stated

previously in Section 3.2, the GPU is much more effective than the CPU when it comes

to receiving large quantities of data and repeat the same operation, mostly sum and mul-
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(a) C1 = 50 and C2 = 500 kernels.
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(b) C1 = 150 and C2 = 800 kernels.
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(c) C1 = 300 and C2 = 1000 kernels.
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(d) C1 = 500 and C2 = 1500 kernels.

Figure 5.7: Elapsed time for a batch size with 128 images, with different network architectures, using a GPU
cluster raging from 1 to 3 PCs.
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(a) C1 = 50 kernels and C2 = 500 kernels.
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(b) C1 = 150 kernels and C2 = 800 kernels.
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(c) C1 = 300 kernels and C2 = 1000 kernels.
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(d) C1 = 500 kernels and C2 = 1500 kernels.

Figure 5.8: Elapsed time for a batch size with 256 images, with different architectures, using a GPU cluster
raging from 1 to 3 PCs.
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(a) C1 = 50 kernels and C2 = 500 kernels.
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(b) C1 = 150 kernels and C2 = 800 kernels.
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(c) C1 = 300 kernels and C2 = 1000 kernels.
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(d) C1 = 500 kernels and C2 = 1500 kernels.

Figure 5.9: Elapsed time for a batch size with 512 images, with different architectures, using a GPU cluster
raging from 1 to 3 PCs.
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(a) C1 = 50 kernels and C2 = 500 kernels.
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(b) C1 = 150 kernels and C2 = 800 kernels.
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(c) C1 = 300 kernels and C2 = 1000 kernels.
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(d) C1 = 500 kernels and C2 = 1500 kernels.

Figure 5.10: Elapsed time for a batch size with 1024 images, with different architectures, using a GPU cluster
raging from 1 to 3 PCs.
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tiplication, very quickly, due to its large number of parallel cores. However, for smaller

amounts of data globally the GPU handles these tasks more slowly than the CPU would.

Finally, as in the CPU case, only the convolutional layers were parallelized using GPU

computing, which implies that the computation of the remaining layers is performed on

the CPU. Since the node used as master for the CPU cluster is not available for GPU

parallelization, the values of the computation time will be different between CPU and

GPU implementations.

For this particular case, since PC1 is not a NVIDIA GPU, the PC2 serves as the master

node, also being the reference for the case of a single GPU. PC3 and PC4 are introduced

in this order to test the introduction of more nodes for the cases with 2 and 3 devices,

respectively. This notation respects the one used in Chapter 4.2.

As before, all subfigures present in Figures 5.6 to 5.10 document results by keeping the

same batch size and varying the network architecture, thus allowing a detailed analysis of

the influence of the convolutional layer on the performance of this distribution technique.

By analyzing Figure 5.6, it is possible to observe that speedup is always achievable

for any type of network architecture considered. However, the speedup presented in

some specific cases is not completely linear. By observing the results from the smallest

network, with 50 kernels on the first convolutional layer and 500 and the second one,

visible in subfigure 5.6a), the introduction of GPUs brings considerable improvements

on processing time, reaching speedups of 1.92x with 2 GPUs and nearing 2.50x with 3

GPUs. However, it is necessary to perform a deeper analysis, comparing this result with

the one obtained using the CPU cluster because, by comparing these results with the ones

in subfigure 5.1a), it is possible to see that in the case of only 1 device, the CPU runs faster

than using the GPU. This happens because the amount of data to parallelize is too small

to make use of the vast GPU parallel processing resources. Taking into consideration the

result obtained using only 1 CPU, the speedups achieved would only be 1.15x and 1.50x

for 2 and 3 GPUs respectively, which is close to the ones obtained using CPU. It is also

possible to notice that the communication time rises considerably with the increase in

number of GPUs, but that effect is minimized with the ability to do faster convolutions

using the different machines available.

5.2.2 Number of kernels

To understand the effects that the number of kernels have on the speedups, it is nec-

essary to analyze the remaining subfigures. As subfigure 5.6b) shows, an increase of

kernels in the GPU case makes almost no difference concerning communication time

and speedup, and that is also visible in the rest of the tested architectures, trained using

batches of 64 images. All the architectures tested with this batch size show an attained
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speedup between 1.63x and 1.80x for 2 GPUs and between 2.02x and 2.20x using 3 GPUs,

with the ratio between communication, convolution and computation time being virtu-

ally the same on the 3 considered experiments, with the communication time rising from

19% with 2 GPUs to 30% when using all 3 GPUs.

The major difference between the CPU and GPU results is that while using the CPUs,

the computation time was the major bottleneck on that experiment. However, in the

GPU, the communication and computation time share about the same percentage of full

training time, when using 3 GPUs, which is explained by the fact that the GPU is able to

accelerate the convolutional phase.

Another comparison between the different devices can be made using subfigures

5.1b) and 5.6b), because using only 1 of the devices gives about the same processing time.

Analyzing both cases, it is possible to see that where the CPUs only achieve speedups of

1.62x and 1.75x with 2 and 3 devices, the GPUs are capable of achieving 1.85x and 2.22x

on those same conditions.

5.2.3 Batch Size

The analysis of the influence of batch sizes on the distribution technique performance

starts by comparing subfigures that represent the same network architecture but use dif-

ferent batch sizes, like in the CPU case. Considering the smallest network tested, the

difference in batch size brings a significant change: the increase, in ratio, of the commu-

nication case, with the percentage going from 25% using 2 GPUs and 40% for 3 GPUs,

with a batch of 64 images, to about 33% and 52% with 2 and 3 GPUs, when training the

network with 1024 images.

However, the remaining network architectures show little to no difference with the

increase in batch size, with the obtained speedups fluctuating between 1.55x for 2 GPUs

and 1.90x when using 3 GPUs, with the communication, convolution and computation

time percentage staying approximately the same.

5.3 Comparison between CPU and GPU

The following two tables show the best attained speedups between each network

architecture for a given number of devices, for both CPU and GPU:

As table 5.1 shows, the difference between speedups using multiple CPUs, for a given

architecture, increases with the growing convolutional layers. The speedup improvement

using 2 CPUs is particularly small, although it reaches almost 2.00x on the largest tested

network. However, this tendency fades with the increase in CPUs. By training the net-

work with 3 CPUs, the speedup is almost 2.00x for the second smallest network, reaching
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5. Experimental Results

`````````````̀Network
Num. of CPU

2 3 4

50:500 1.40x 1.51x 1.56x
150:800 1.68x 1.93x 2.10x
300:1000 1.69x 2.15x 2.33x
500:1500 1.98x 2.74x 3.28x

Table 5.1: Best speedups achieved by network architecture and number of CPUs used.

`````````````̀Network
Num. of GPU

2 3

50:500 1.96x 2.45x
150:800 1.89x 2.23x

300:1000 1.78x 2.09x
500:1500 1.66x 2.00x

Table 5.2: Best speedups achieved by network architecture and number of GPUs used.

2.75x for the largest architecture. Using 4 CPUs gives a considerable gain in speedup, par-

ticularly between the network with 300 kernels on the first convolutional layer and 1000

kernels on the second one, and the largest trained network. This is explained because the

increase in communication time due to sending dozens more kernels to other nodes, that

are only a couple of kBs, is counterbalanced by the convolutions parallelization.

However, for the GPU implementation case, the values of the speedups diminish with

the enlargement of the convolutional layers. This happens because for smaller layers the

computation complexity is low and the GPU is not using its computational abilities to

their fullest, even being slower than the CPU in some cases. Therefore, the convolution

time is going to be higher than it was supposed to and any parallelization will benefit

from a high speedup. In cases where the GPU is being used more efficiently, the speedup

is smaller, since the convolutions are made very quickly and the communication time

between nodes ends up being a larger portion of the total processing time, becoming a

bottleneck. Even the transmission of a couple of kernels ends up not compensating since

the convolutions are made much faster than the increase in communication time.

5.4 Scalability

One of the most important details when developing a distribution technique is scal-

ability. As with other methods for distributed learning, speedups may only exist when

using up to a certain number of nodes. For a more detailed study on scalability, it is

necessary to know some details regarding the experiments conducted. First, the amount

of data transmitted between master and slave nodes on the convolutional layers. This

42



5.4 Scalability

depends only on the number of convolutional layers and the size of their inputs, includ-

ing width, height and number of input channels, size and number of kernels and the

batch size. Taking this information into consideration, the number of elements that are

necessary to exchange between master and slave nodes can be described as:

upload =
layers

∑
i=1

in2
i × inChi × batch + k2

i × numKi × inChi + out2
i × numKi × batch (5.1)

where layers refers to the number of convolutional layers that need to be distributed, in

is the convolutional layer’s input width or height, considering a square image, like this

particular case, inCh represents the input channels, k is the kernel size, numK represents

the number of kernels for each convolutional layer, out refers to the output’s size and

batch is the batch size. The size in MB of the values passed between nodes is given by

uploadMB = upload× 8/1024/1024, since all values transmitted are of the type double.

The next detail to consider is the velocity at which the data is transmitted across nodes.

A quick study of the several results show that the bandwidth is constant, averaging at 5

MBps. Another thing to take into account is the number of kernels that should be passed

to each worker, which is explored more in detail in Section 4.1.2.

Knowing these details, it is possible to accurately predict the communication time

when more nodes are added, the convolution time and therefore the total processing

time. Three different cases where considered. The first two pertain to the CPU case,

where the processing time for the smallest and largest networks were simulated for the

addition of more nodes, up to 32 CPUs. For the simulations, the remaining CPUs where

considered to have a processing power between the worst and best CPU. These results

are shown in Figure 5.11.
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(a) C1 = 50 kernels and C2 = 500 kernels.
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(b) C1 = 500 kernels and C2 = 1500 kernels.

Figure 5.11: Elapsed time for the smallest network, using a batch with 64 images, and the largest network,
with a batch size of 1024 images, using a CPU cluster raging from 1 to 32 PCs.
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As results show, the method is scalable without incurring in performance losses, de-

spite becoming irrelevant the introduction of more nodes up to a certain value. Both the

case of the smallest network as the largest one benefit little from the addition of more

nodes from 4 CPUs, and there is a stabilization in speedup from 8 nodes. This occurs

because the inclusion of more CPUs leads to a slight increase in information to be sent

by the master node, that is counterbalanced by the decrease in time obtained by the par-

allelization. It is also possible to notice that while using 1 CPU, the convolution time is

the bottleneck using several CPUs, this situation is reversed and the communication and

computation times become the bottlenecks. The former can be solved with faster data

transmission, but the latter can only be fixed by parallelizing.

The final case refers to the GPU case, where only the largest network was simulated

up to 32 nodes. This has to do with the fact that the GPU needs to be used efficiently,

and that happens more in the largest network, trained with the largest batch of 1024

images. As in the CPU case, the added nodes where considered to have processing power

between the worst and best GPU. The results are detailed in Figure 5.12.
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Figure 5.12: Elapsed time for the largest network, with a batch size of 1024 images, using a GPU cluster
raging from 1 to 32 PCs.

As in the cases considered for simulations using CPUs, the solution using GPUs is

also scalable, with the speedup virtually stagnating for 8 or more nodes. Since the convo-

lution is done more quickly on a GPU then on a CPU, the maximum theoretical speedup

in this case is much smaller (6.70x for the CPU vs. 2.15x for the GPU) and the communica-
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5.5 Discussion

tion and computation times assume greater impact as bottlenecks. As stated previously,

the communication time can be diminished with a faster data transmission, while the

computation time can be dealt with parallelization.

5.5 Discussion

Despite achieving considerable speedups for the tested networks, some essential as-

pects of the experiment are to be considered.

The first aspect to highlight is the difference between CPU and GPU speedups. This

is explained by the fact that speedups are calculated with respect to the use of a sin-

gle device. Since the convolutional layer is computed significantly faster with a GPU,

the computation phase will occupy a larger percentage in total processing time, thus de-

creasing the maximum speedup achievable. So, to better analyze the real speedup of the

GPU, it is necessary to directly compare it with the results using the same number of

CPUs. The speedups of the GPU over the CPU were only calculated for the largest and

computationally more intensive tested network, using a batch of 1024 images, because it

represents the case where the GPU is more efficiently used, and the results are presented

in Table 5.3.

hhhhhhhhhhhhhhhhhNetwork
Num. of Devices

1 2 3

50:500 1.22x 1.28x 1.28x
150:800 1.94x 1.67x 1.62x

300:1000 2.35x 1.92x 1.67x
500:1500 2.96x 2.41x 2.01x

Table 5.3: Speedups achieved by the GPU over CPU, using the same number of devices, by network archi-
tecture and number of devices used.

The most visible effect is the gain in speedup that accompanies the expansion of the

convolutional layers. This happens because with the increase in kernel numbers, the

GPU is able to exploit more efficiently its computational resources, in comparison to a

CPU. The general decrease in speedup with an increasing number of devices is also

related to the GPU’s computational abilities. Considering that the maximum theoretical

speedup for the GPU is smaller, the decrease in processing time with each added GPU is

considerably less compared to the decrease adding more CPUs.

Another aspect is internet speed, where data transmission rate is bound to vary. This

impacts communication times, that influences final processing time, leading to a better

or worst speedup.

45



5. Experimental Results

The final aspect pertains the used devices. Some of the laptops used are over 2 years

old, which makes both the CPU and GPU considered low to mid range devices by today’s

standards.

So, as a way to generalize even more this distribution technique, the values of the

data transmission speed are varied and two cases are considered. The first is to use a

cluster, both CPU and GPU for low to mid range devices, while the second case if to use

high end devices on the cluster.

The results for the CPU and GPU are present in Figures 5.13 and 5.14.
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(a) Low to mid range CPU cluster

1 4 8 16 32
0

1

2

3

4

5

6

7

8

9

10

Number of CPUs

S
pe

ed
up

 A
ch

ie
ve

d

 

 
1 Mbps
2.5 Mbps
5 Mbps
10 Mbps
25 Mbps
50 Mbps

(b) High end CPU cluster

Figure 5.13: Speedup achieved on the largest network, trained with 1024 images for a cluster of 32 nodes
using low mid range and high end CPUs.

1 4 8 16 32
0

1

2

3

4

5

6

7

8

Number of GPUs

S
pe

ed
up

 A
ch

ie
ve

d

 

 
1 Mbps
2.5 Mbps
5 Mbps
10 Mbps
25 Mbps
50 Mbps

(a) Low mid range GPU cluster
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(b) High end GPU cluster

Figure 5.14: Speedup achieved on the largest network, trained with 1024 images for a cluster of 32 nodes
using low mid range and high end GPUs.

Interestingly, results show that, the difference between using low end or high end

devices is almost non-existent. This happens because the bottlenecks of this distribution

technique end up being the communication and computation time. This means that the

only difference between using the two types of devices has to do with how many nodes
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5.5 Discussion

are needed for the speedup to start stabilizing around a maximum, with fewer nodes

required for the high end devices.

However, the Internet speed is extremely important, and this has to do with the fact

that with faster data transmissions, the communication time stops acting as the main

cause for a bottleneck and the network has the ability to achieve higher speedups. The

contrary also stands true, with a slower data transmission diminishing the speedup, with

the GPU case showing that the training may even be slower than using only 1 GPU.

5.5.1 Mobile GPUs

Another aspect to consider is devices that are considerably slower than the ones used.

Specifically speaking, about 10 times slower than the GPUs used, as are mobile GPUs,

which is more detailed in the experimental results from Appendix A. For this simulation,

the same variables as before are varied: internet speed and number of nodes. One par-

ticular difference is that the master node was still a desktop GPU. The results for this

simulation are shown in Figure 5.15.
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(a) Mobile GPU cluster using 32 nodes.
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(b) Mobile GPU cluster using 128 nodes.

Figure 5.15: Speedup achieved on the largest network, trained with 1024 images for a mobile GPU cluster of
32 and 128 nodes.

An initial simulation had only considered 32 nodes. As subfigure 5.15a) shows, 31

mobile GPUs are not sufficient to achieve the same values of speedups as desktop GPUs,

so a new simulation had to be ran, with a maximum of 128 nodes, with the results docu-

mented in subfigure 5.15b).

Although mobile GPUs have only a tenth of the processing power as their desktop

counterpart and achieve considerably worse throughput performance, they should still

be considered as a viable alternative, specially because of their power consumption. As

Appendix A explains in detail, various different mobile GPUs had their computational

capabilities tested and compared against one of the best GPU in the market, Nvidia Titan

GTX, achieving the same results but taking ten times as long. However, their average
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power was nearly three orders of magnitude lower than the reference GPU, which re-

sulted in energy consumption around two orders of magnitude lower.

This means that almost 100 mobile phones could be used as a replacement for one

single GPU and still be able to run a similar workload and approximately consume the

same amount of energy.

5.5.2 Roofline Model

The final aspect that should be addressed regarding the GPU implementation is check

the convolution performance regarding the limitations of the used hardware, so as to

ponder ways to optimize the algorithm. This study can be accomplished using the Roofline

model [32] which combines bandwidth, floating point performance and arithmetic inten-

sity to evaluate the attained performance regarding the used GPUs.

The most basic Roofline model is depicted in Figure 5.16, and plots the floating point

performance against the arithmetic intensity. The resulting graphic illustrates the two

platform specific performance ceilings: a ceiling derived from the memory bandwidth

and one derived from the processor’s peak performance.
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Figure 5.16: Roofline Model example.

Thus, the upper bound of a kernel’s performance depends on two things. If the arith-

metic intensity of the kernel reaches the flat part of the roof, then the performance is

compute bounded. If, instead, it hits the diagonal part of the roof, then the performance

is memory bounded. Ideally, the arithmetic intensity of a kernel would lie in the ridge
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point, where the horizontal and diagonal roofs meet, because the kernel would exhaust

the memory bandwidth and Floating-Point Operations per second (FLOPs) capacity at the

same time, thus requiring the minimum arithmetic intensity to achieve maximum per-

formance.

Figure 5.17 shows the Roofline model for each covered architecture used in this ex-

periment. The values of memory bandwidth and FLOPs were taken from the vendor’s

specification manual.
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Figure 5.17: Roofline Model for the used GPUs.

The roofline model shows that both the PC2 and PC3 have similar peak performances

with the PC3 having better memory bandwidth than PC2. PC4 is the best GPU from the

ones used in this experiment, having a larger bandwidth and more processing power.

Knowing the roofline models for the hardware used, the next step is measure the FLOPs

and arithmetic intensity to know the kernel’s performance upper bound. To do so, the

nvprof profiling tool from NVIDIA was used, which retrieves information regarding the

amount of transferred bytes and floating-point operations. These results are presented in

Figure 5.18.

As the results show, this kernel is memory bounded, which means that the accesses

to memory overshadowed the floating points operations, particularly the sums and mul-

tiplications. As such, the kernel was not able to efficiently exploit the GPUs available

computational resources, which results in a speedup lower than it could potentially be

for the GPU implementation.
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Figure 5.18: Roofline Model for the used GPUs.

To improve the algorithms performance and move the point of operation closer to

the ridge point, the memory accesses should be kept to a minimum, in favor of float-

ing point operations. To do so, the best course of action is to move a larger portion of

the image to the registers [33]. Considering the kernels used are 5x5, the region of the

image prefetched should be at least 6x6. Then, storing the convolution filter in the con-

stant memory, the output pixels are computed and stored. Thus, with a 5x5 kernel and

a 6x6 region, each thread produces 4 output pixels, reducing the memory accesses and

maintaining the number of floating point operations.
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6. Conclusions

The emergence of Convolutional Neural Networks (CNNs) brought an improvement

in classification performance, when compared to Deep Neural Networks (DNNs), but it

also hauled a higher computational necessity, that not even the use of Graphics Processing

Units (GPUs) could fully support, due to the size of the networks involved, as well as

the datasets. So it was necessary to develop distributed training techniques, that could

use all processing units available in a machine, or across differently located machines.

The existing techniques of distributed training are based on data parallelism and model

parallelism. In the first one each device receives part of the data batch and does its own

training individually, only to report the final parameters to a node that serves as master,

that averages them and sends the new parameters to all the nodes used. The model

parallelism allows the training of only a single replica of the network, with each node

processing part of each layer, but requiring a constant communication across every layer.

However, none of these methods makes use of the CNN architecture, since about 60% [16]

to 90% [17] of training time is spent convolving, depending on the number and size of the

kernels, as well as amount of convolutional layers. So the main goal of this thesis was

the development of a method for distributed training that made use of the parallelization

that the convolutional layer allows.

The proposed technique is of easy implementation, because unlike the methods of

model parallelism, it only occurs in the convolutional layer and the only data that needs

to be transmitted are the inputs as well as a number of kernels that is calculated during

runtime, so that each node can do its part of the workload, which eliminates the convo-

lution phase as a bottleneck, for an implementation using both Central Processing Units

(CPUs) as well as GPUs.

That could be achieved with all the tested networks, with attained speedups for every

architecture trained with all the considered batch sizes, when adding more devices. The

best reached speedup using CPUs is 3.28x for 4 nodes, when training the largest network,

with 1024 images in the batch, and is 2.45x for 3 GPUs. However, these speedups could

be largely surpassed using a faster data transmission, as the results from the simulations

show. Even considering the case where only 2 devices are used (both CPU and GPU), the

speedup is always existent, being very close to 2x, on both tested cases.

Furthermore, this is the best technique to use with CPUs and/or GPUs with different

processing resources, thanks to the hybrid CPU-CPU and GPU-GPU computing. Using

data parallelism, the training time is always dependent on the slowest device, or in the

case of asynchronism, the slowest device might train with old parameters. The alterna-

tive would be to split the data batch unevenly, but that would cause loss of information

during the averaging of the parameters. With model parallelism, since it is necessary to
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define which neurons must communication between the nodes, it would be required to

know all the processing information of each device a priori.

The simulations further show that the attained speedups depend very little of the

processing capabilities of each individual device, for laptops ranging from low and mid

range to high end, for a number larger than 4, since the lower computational resources

are largely compensated by the parallelization.

Finally, the decision to develop this method in Matlab was made not only because of

its intuitive nature regarding matrices, and operations involving them, but mainly due

to the possibility of working using devices with different operating systems, without the

need to develop cross-platform software, which can become a highly complex task.

6.1 Future Work

The developed solution proves to be a useful tool for the distributed training of

CNNs. Although good performances were achieved, there is one other aspect that could,

and should, be further explored, and that is implementation using Open Computing Lan-

guage (OpenCL), as opposed to Compute Unified Device Architecture (CUDA). Not only

would that mean that other GPUs could be used, like AMD’s, but more importantly, it

would allow for the distribution of the training to be done using mobile GPUs, as well

as Field-Programmable Gate Arrays (FPGAs) and other lower power processors. Despite

not having the same computational resources as desktop CPUs and GPUs, they are far

more energy efficient, and it would allow to study the impact on the energy consumption

performance, trying to achieve a smaller energy consumption without compromising the

throughput and classification performance.
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On the evaluation of energy-efficient deep learning
with stacked autoencoders on mobile GPUs

G. Falcao, Senior Member, IEEE, L. A. Alexandre, J. Marques, X. Frazao, J. Maria

Abstract—Over the last years, deep learning architectures have
gained traction by winning important international detection and
classification competitions. However, due to high levels of energy
consumption, the need to use low power devices at acceptable
throughput performance is higher than ever. This paper tries to
solve this problem by introducing energy efficient deep learning
based on mobile GPU low-power parallel architectures, all conve-
niently supported by the same high-level description of the deep
network. Also, it proposes to discover the maximum dimensions
that a particular type of deep learning architecture, the stacked
autoencoder, can support by finding the hardware limitations of
a representative group of mobile GPUs and platforms.

Index Terms—Embedded processors, Parallel processing, Low-
power, Energy saving, Hardware Limits, Deep Learning, Stacked
Autoencoders

I. INTRODUCTION

TO address both the increasing size of training datasets
and corresponding high computational cost, modern deep

learning approaches of neural networks have been turning
towards the cooperative use of GPU clusters [1]. However,
training can still take hours, days or even weeks to complete.

While the current trend in machine learning is using con-
volutional neural networks (CNNs), such current state-of-the-
art implementations tend to consume high levels of energy in
order to produce the expected results, which directly impacts
the processing costs of big data and creates constraints in their
utilization in low-power-driven autonomous vehicles/robots.

In this paper we propose a scalable parallel solution for
stacked autoencoder (SAE) architectures in mobile GPUs. The
paper builds upon [2] as a first step towards the implementation
of more complex approaches to deep learning, such as CNNs,
so as to understand the possible gains in terms of energy
savings that arrive from switching from desktop GPUs to low
powered devices, as well as comprehend the limitations at
hardware and software levels, namely the maximum allowed
size of the neural network of said transition.

Mobile platforms concede having small autonomous
robots/vehicles, such as drones, with deep learning capabil-
ities. Such platforms consume at least one order of magnitude
less energy while providing similar throughput and classifica-
tion error, when compared to desktop GPUs or CPUs. Thus
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the envisioned application scenarios consist of deep learning
mobile apps and autonomous robots that learn online being
retrained without the need for accessing a GPU cluster, adapt-
ing on-the-fly to environmental conditions. Such an approach
offers higher flexibility since there is no need of a permanent
high-quality wireless connection or access to a GPU cluster.

The goal is to conciliate the performance of deep learning
applications, such as object detection and classification, with
real-time execution capabilities at low-energy consumption
budgets and discover the associated hardware constraints.

Also, the hardware and code development of unique
OpenCL-based parallel kernels, which address this computa-
tional challenge under a set of different low-power embedded
devices, is addressed. The source code is provided to the sci-
entific community that wishes to replicate these experiments.

Currently, several frameworks allow the training and eval-
uation of deep learning models, such as Theano [3] and
Torch7 [4]. However, these do not allow to change all aspects
of the algorithm necessary for the proposed experiment. Which
required the development of code that allows higher degrees of
control over all aspects of execution and model parallelization.

II. DEEP LEARNING AND STACKED AUTOENCODERS

The use of more than two hidden layers in neural network
supervised learning was seen as unnecessary until around
2006. After that, it has become a major trend in machine
learning and deep learning is currently the state-of-the-art
approach in multiple domains.

The potential advantages that come with using deep learning
are the possibility of having increasingly more abstract levels
of representation, reusing the intermediate level representa-
tions across different tasks and also obtaining a more compact
and efficient representation for certain types of problems [5].

An autoencoder (AE) is a network that tries to produce
at the output what is presented in the input. The most basic
AE is a multi-layered perceptron that has one hidden and one
output layer, such that the weight matrix of the last layer is the
transpose of the weight matrix of the hidden layer (clamped
weights) and the number of output neurons is equal to the
number of inputs. An AE is trained in an unsupervised manner
(no class information is used).

To obtain a deep architecture using AEs they are stacked
on top of each other such that the output of an AE is the
input for the next one. This stacking can produce a deep
network: the SAE. The SAE is obtained as follows: first pre-
train several AEs such that the first learns to approximate the
inputs from the dataset, the second learns to approximate the
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Algorithm 1: Training Phase
1: Load training set from disk
2: if load checkpoint = true then
3: Load weights from previous checkpoint
4: else
5: Generate random weights
6: end if
7: Initialize OpenCL
8: for layer = 0 to number of layers: do
9: Allocate INPUT, OUTPUT and WEIGHTS buffers

10: Allocate ERROR and GRADIENT buffers
11: for batch = 0 to number of batches: do
12: {Parallel Encoder’s Feed-Forward}
13: INPUT ⇐ Host, WEIGHTS ⇐ Host
14: Enqueue the Feed-Forward parallel kernel (HiddenNodes × BatchSize

work-items)
15: Compute the encoder’s feed-forward phase on the OpenCL device
16: Host ⇐ OUTPUT
17:
18: {Parallel Decoder’s Feed-Forward}
19: Decoder INPUT ⇐ Encoder OUTPUT
20: Enqueue the Feed-Forward parallel kernel (VisibleNodes × BatchSize

work-items)
21: Compute the decoder’s feed-forward phase on the OpenCL device
22: Host ⇐ OUTPUT
23:
24: {Parallel Decoder’s Back-Propagation}
25: Enqueue the Back-Propagation - Output Layer parallel kernel (VisibleNodes

work-items)
26: Compute the encoder’s Back-Propagation phase on the OpenCL device
27: Host ⇐ ERROR
28:
29: {Parallel Encoder’s Back-Propagation}
30: Decoder GRADIENT ⇐ Encoder GRADIENT
31: Enqueue the Back-Propagation - Hidden Layer parallel kernel

(HiddenNodes work-items)
32: Compute the decoder’s back-propagation phase on the OpenCL device
33: Host ⇐ GRADIENT
34: Update weights for the next epoch
35: end for
36: Release all buffers
37: end for

hidden representations of the first and so on. A final layer of
neurons is placed on top of the AE that is the output layer and
will have as many neurons as there are classes in the problem
(e.g. a softmax layer). The training is then performed for all
layers in a supervised manner (called fine-tuning).

III. HARDWARE PARALLELISM FOR NEURAL NETWORKS

A. Mapping parallel OpenCL kernels on the device

For the parallel development of the training phase, three
OpenCL kernels were created. The first one relates to the
feed-forward algorithm, sending the data through the network,
layer-by-layer, and computing the results. The second kernel
computes the AE reconstruction error at the output layer and
begins the gradient-based back-propagation algorithm. The
back-propagation, as the feed-forward, has data-dependencies
from the previous layer. Since the back-propagation for the
hidden layer is dependent on the gradient calculations from
the output layer, this results in a third kernel for that purpose.
The training phase is described in Algorithm 1.

After the training process, the SAE is ready to classify
the provided test samples. The decoder’s feed-forward and all
back-propagation are now withdrawn from the computation,
leaving the network with only the encoder from each AE.
This phase is described in Algorithm 2.

1) Feed-forward: When the samples from the dataset and
weights for that layer are loaded to the device’s global mem-
ory, the initial phase is started by sending data through the

Algorithm 2: Testing Phase
1: Load training set from disk
2: Load weights from training phase
3: Initialize OpenCL
4: for layer = 0 to number of layers: do
5: Allocate INPUT, OUTPUT and WEIGHTS buffers
6: for batch = 0 to number of batches: do
7: {Parallel Encoder’s Feed-Forward}
8: INPUT ⇐ Host, WEIGHTS ⇐ Host
9: Enqueue the Feed-Forward parallel kernel (HiddenNodes × BatchSize

work-items)
10: Compute the encoder’s feed-forward phase on the OpenCL device
11: Host ⇐ OUTPUT
12: end for
13: end for
14: Compute final classification accuracy

network. The kernel is launched on the device across two
dimensions, the first being equal to the output nodes of the
current layer and the second relative to the amount of samples
from the dataset. This means that one particular work-item
is responsible for one output node when all the input nodes
from one sample go through it. Inside the kernel, a weighted
sum is computed in a loop, over all the layer input nodes and
respective weights for that particular output node, computing
the overall sum of that product. An activation function (the
sigmoid function), is then applied to that sum plus the bias of
that output node. This kernel is valid for both the encoder and
decoder phase of the AE, the only difference being the input
varying between the original image for the encoder layer and
the encoder output for the decoder layer.

2) Back-propagation (output layer): After computing the
feed-forward across the AE (encoder, then decoder), the result-
ing decoder output is of the same size as the encoder’s input.
We then have the possibility of calculating a reconstruction
error. The kernel developed for this phase calculates that
error and then computes the gradient descent on the back-
propagation. Since we are batch training the network, this
time the kernel is launched only on one dimension, that of
the number of output nodes. If, as before, in the feed-forward
phase, the kernel was also launched across two dimensions, in
the case of back-propagation the resulting memory block size
needed to avoid data-dependencies would be too large to fit
into the device’s memory. The algorithm inside the kernel then
loops over all dataset samples, computing the reconstruction
error and gradient for each sample. The partial derivative for
the weights is then calculated via the gradient. The value for
the bias is obtained directly from the gradient, with the weights
also being dependent on the output from the previous hidden
layer. When all the samples have been processed, the mean of
the gradient is needed due to the batch training.

3) Back-propagation (hidden layer): The kernel used for
the back propagation in the hidden layer is close to that of the
output layer. We do not have a reconstruction error for this
layer but we are dependent on the gradient calculated in the
output layer. The kernel is then launched with one dimension,
the size of the hidden layer output nodes.

The product of the weights of this layer and the output
gradient is summed across the input nodes, with the resulting
sum replacing the error in the previous algorithm, finally
obtaining the gradient for this layer. The kernel then proceeds



IEEE EMBEDDED SYSTEMS LETTERS, VOL. X, NO. X, APRIL 2016 3

to compute the partial derivatives as described in the output
layer kernel.

When the back propagation for this hidden layer comes to
an end, the partial derivatives are then copied to the host where
a simple loop updates the weights and bias, this being a fast
and low computationally demanding operation.

In order to implement the aforementioned parallel kernels,
we developed parallel kernels for mobile GPUs that are
exploited under the OpenCL framework context. In the next
subsections we identify the main optimizations performed for
this novel approach.

B. Mobile GPU specific high-level memory optimizations
For the mobile GPU case, the memory embedded in the

system on chip (SoC), present in smartphones with ARM
CPUs and mobile GPUs, differs from regular OpenCL devices.
Usually, on conventional desktop GPUs, there is a host mem-
ory and a separate memory, directly on the device’s (GPU)
board . These systems require memory transactions (copies,
reads and writes) between host and device, ususally via the
PCI-e bus linking them together, so the data is accessible
on the faster device’s memory. For SoC implemented in
smartphone and similar devices, a single memory is available
and thus shared by host and device. The memory transactions
between host and device are therefore unnecessary, as the
memory space is the same across both of them.

1) Shared memoryAn algorithmic limitation with impact in
the utilization of mobile resources consists of the need of
floating-point calculation to be performed on input data and
weights product. between host and device: To ensure an im-
plementation with zero-copy buffers, allocation of said buffers
must be first performed via a call to clCreateBuffer with
the flag CL_MEM_ALLOC_HOST_PTR, resulting in a buffer
visible by both host CPU and GPU OpenCL device. This
ensures the buffer is automatically memory aligned to the
device, and that an unnecessary copy and data duplication
is not performed at a later stage in the pipeline. After the
allocation is complete, the buffer can be mapped to a host
pointer with clEnqueueMapBuffer and filled with the
necessary data to be processed. The buffer can then be returned
to the device’s control via clEnqueueUnmapMemObject,
after which the kernel is launched.

This process is necessary, since buffers created on the
host side via malloc() cannot be mapped to the device’s
memory space and, furthermore, buffers created with the
CL_MEM_USE_HOST_PTR flag and then linked to an existing
host side pointer will still result in a time expensive copy and
in data duplication.

2) Floating-Point Processing: Since the dynamic range of
the weights will vary even if the initial random generation is
limited to a small interval, we can expect a superior behavior
from the SAE by mapping weights and inputs/outputs as
floating-point values. In fact, although fixed-point computa-
tions are more efficient in both throughput performance and
resource usage, the most recent mobile phones are being
deployed with DSP blocks capable of raising floating-point
computing resources and minimizing the impact in throughput
performance.
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Fig. 1. Topology of the Stacked Autoencoder for the MNIST dataset.

IV. EXPERIMENTAL RESULTS ON LOW-POWER
ARCHITECTURES

The goal of the experiments was three-fold: 1) validate the
implementations in all devices; 2) allow comparing energy
consumption between the tested platforms; and 3) find their
hardware limitations namely due to memory and processing
capabilities. For this we have chosen a well known dataset,
the MNIST [6]. It consists of grayscale images of 28 by 28
pixels, each containing one hand written digit, obtained from
around 250 different writers. The digits were size-normalized
and centered. The dataset was divided into a training set with
50000 images, and validation and test sets with 10000 images
each. The five computing platforms used in these experiments
are listed in Table I.

TABLE I
COMPUTING PLATFORMS. MOBILE DEVICES HAVE SHARED RAM.

Platform CPU GPU
refGPU i7 4770k, 32GB GTX Titan, 6GB
mGPU1 ARMv7 Krait 400, Adreno 330, 2GB
mGPU2 ARMv7-A Krait 450 Adreno 420, 3GB
mGPU3 ARMv7 Krait 400 Adreno 330, 3GB
mGPU4 ARMv8-A Cortex-A57 Adreno 430, 4GB

The desktop GPU is used only for reference, since our
focus is on low-power devices. The training hyper-parameters
defined for the SAE consist of a training batch of 64 images
and an initial learning rate of 0.45 on a network of size
784−500−250−10, as depicted in Fig 1. For this particular
SAE we achieved a classification error of 1.47% training
during 1500 epochs.

For the energy consumption analysis in Table II we kept
the same SAE architecture using 1 epoch. These measurments
scale linearly with the number of epochs. Power consumption
was calculated measuring the idle requirements of the entire
system (host and device) and then launching the application,
measuring the power difference (load - idle) over the SAE
execution time, using a power meter for the desktop refGPU
and the PowerTutor [7] application for the remaining devices.

By analyzing Table II, it is possible to verify that regarding
energy consumption, mobile devices are clearly better than the
reference desktop refGPU, achieving the same results while
consuming only from 0.69% to 1.61% of the energy, which
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TABLE II
EXECUTION TIME OF 1 EPOCH AND ENERGY CONSUMPTION ON A

NETWORK OF SIZE 784-500-250-10 (*LOWER IS BETTER)

Exec. Average Energy Energy
Device Time Power Consump. Consump.

(min|sec) (W) (Wh)* (vs GPU)*
refGPU 54s 247 3.7050 -
mGPU1 13m25s 0.242 0.0541 1.46%
mGPU2 11m33s 0.230 0.0436 1.18%
mGPU3 12m15s 0.317 0.0593 1.61%
mGPU4 10m58s 0.140 0.0256 0.69%

can be atributed to both the optimizations performed and the
hardware, since mobile GPUs are far more energy efficient
than the desktop counterpart. Regarding the experiments from
the energy-efficiency point of view, mobile devices clearly
outperform the GPU used as reference, despite taking 15 times
more time to complete the same task. It should be noted,
however, that using the power meter to measure the average
power for both smartphone platforms (mGPU1 and mGPU2)
we achieve approximately 3.4W, which represents the power
required by the entire development platform. Nonetheless,
using those values as basis for energy consumption calculation
would give 0.7603Wh and 0.6451Wh, respectively. Even for
such worst case scenarios, mobile devices still require only
20% of the energy of the desktop GPU.

For the hardware limitations analysis we test an increasing
number of neurons for the first hidden layer until a maximum
is reached (i.e., device kills the process), thus achieving the
maximum weights that each device can train using its GPU.
Table III indicates the maximum dimensions achieved.

TABLE III
EXECUTION TIME OF 1 EPOCH AND MAXIMUM NUMBER OF WEIGHTS FOR

EACH MOBILE DEVICE

Device Execution First Hidden Number of
Time Layer Neurons Weights

mGPU1 1h51m24s 3150 3263010
mGPU2 3h50m19s 5950 6161010
mGPU3 3h10m44s 5000 5177760
mGPU4 3h58m13s 7250 7506510

As a term of comparison, the desktop GPU ran the SAE
for each mobile devices’ largest architecture in 5m43s, 9m13s,
7m40s and 11m40s, respectively.

Although Table III shows that due to hardware limitations
the devices perform significantly slower for very large neural
networks, they run fast small to medium sized networks (as
seen in Table II), albeit execution times are higher than they
normally would in desktop GPUs. However, energy consump-
tion savings make up for such higher execution times.

To further grasp hardware limitations results, there are
several factors that need to be considered: first, mobile GPUs
do not have dedicated memory, so the memory that is available
is small and managed by the SoC, varying between devices
(as can be seen with mGPU2 and mGPU3 that have the
same amount of RAM but support different maximum sizes

of the deep neural networks); also, even using the same SoC,
results can vary by simply using different OS versions that can
implement different resource management policies; and finally,
we have to consider that mobile devices only recently started
supporting OpenCL, so these implementations have still mar-
gin to progress. With the expected advances of hardware and
new OpenCL implementations, OpenCL capabilities in mobile
devices will likely improve considerably in the near future.

V. CONCLUSIONS

This work presented energy-efficient training and testing of
deep neural networks of the SAE type on mobile smartphones
and low-power GPUs. We addressed implementation details
and experimental analysis by comparing the energy consump-
tion of 5 different and representative embedded architectures.
We have found the limits in terms of the maximum deep neural
network size that fits their restricted hardware resources.

Despite being one order of magnitude slower than on a
desktop GPU, the training on mobile GPUs uses less than
2% energy than it would on the desktop counterpart, opening
the doors to start performing demanding algorithms directly on
autonomous vehicles, robots and other low-power applications,
and even cases where online training is not possible.

Moreover, this study paves the way for a future technology
progression, as mobile GPUs with more hardware resources
are developed. This may use state-of-the-art networks, such
as CNNs, running exclusively on low-power devices achieving
top results in energy savings as well as classification accuracy.
Additionaly, the use of approaches such as BinaryConnect [8]
and Deep compression [9] to improve speed and reduce storage
needs can further contribute to this goal.

Regarding the hardware, higher integration between RAM
access of CPUs and GPUs can introduce a substantial reduc-
tion in processing times, as suggested by the Heterogeneous
System Architecture(HSA) proposed by AMD and ARM.

Finally, we have made the OpenCL source code available1

to the community that wishes to replicate these experiments.
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