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SUMMARY

One of the challenges in contact problems is the prediction of the actual contact surface and the kind of
contact that is established in each region. In numerical simulation of deep drawing problems the contact
conditions change continuously during the forming process, increasing the importance of a correct
evaluation of these parameters at each load step. In this work a new contact search algorithm devoted
to contact between a deformable and a rigid body is presented. The rigid body is modelled by parametric
B�ezier surfaces, whereas the deformable body is discretized with �nite elements. The numerical schemes
followed rely on a frictional contact algorithm that operates directly on the parametric B�ezier surfaces.
The algorithm is implemented in the deep drawing implicit �nite element code DD3IMP. This

code uses a mechanical model that takes into account the large elastoplastic strains and rotations.
The Coulomb classical law models the frictional contact problem, which is treated with an augmented
Lagrangian approach. A fully implicit algorithm of Newton–Raphson type is used to solve within a
single iterative loop the non-linearities related with the frictional contact problem and the elastoplastic
behaviour of the deformable body.
The numerical simulations presented demonstrate the performance of the contact search algorithm in

an example with complex tools geometry. Copyright ? 2003 John Wiley & Sons, Ltd.

KEY WORDS: contact with friction; large deformation; global contact search; local contact search;
parametric surfaces

1. INTRODUCTION

Nowadays the importance of the numerical simulation in the shortening of the conception
cycles of new deep drawn parts is unquestionable. This results from the ability it presents
in the optimisation of the process parameters involved like the lubrication conditions, the
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prediction of the required tools force (punch, blank holder and die), the gap, etc. Another
advantage is the fact that in function of the chosen material for the blank sheet it is possible
to perform a direct comparison of the process parameters’ behaviour.
Many di�erent strategies for solving this problem have been discussed and many numerical

simulation codes developed. The algorithms presented in this paper correspond to the ones
implemented in the �nite element code DD3IMP.‡ The mechanical model regarded takes
into account large elastoplastic strains and rotations. The plastic behaviour of the material is
described by the Hill’s 1948 yield criterion with isotropic and kinematic work hardening, and
by an associated �ow rule. Several work hardening constitutive models have been implemented
in order to allow a better description of the di�erent material mechanical behaviour [1]. The
kinematic description follows an updated Lagrangian formulation, with no simpli�cations of
membrane or shell type. The code uses solid �nite elements that allow to consider the sheet
as a real three-dimensional domain. Thus, the contact with both sides of the sheet is naturally
solved without any particular strategy. The use of solid elements presents an enormous cost
in terms of CPU time. Nevertheless, they allow an accurate calculation of the stress gradients
through the thickness of the sheet, as well as the thickness evolution [2–4]. The contact with
friction is described by the Coulomb law. The evolution of the contact surface and status
is controlled by a mixed formulation using an augmented Lagrangian approach, which has
been successfully applied in this kind of problems [5, 6]. The advantage of this formulation is
the transformation of the non-di�erential contact and frictional laws into a partial di�erential
problem without constraints, which resolution is possible applying an algorithm of Newton–
Raphson type. It results, in each equilibrium iteration, in a linear system of equations where
the unknowns are the incremental frictional contact forces and the incremental displacements.
The di�erent physical nature of the unknowns results in an ill-conditioned system. However,
it is possible to transform this mixed system in a reduced linear system of equations easier to
solve, where only the incremental displacements are unknowns. This is done without altering
the main characteristic of the global algorithm of DD3IMP code, that is the use of a single
iterative loop to solve the non-linearities related with both the mechanical behaviour and the
contact with friction [7, 8].
Following previous works, this paper discusses the use of a frictional contact algorithm

for the numerical simulation of contact problems that involve strongly curved rigid obstacles
[7, 9, 10]. In particular, it presents a new strategy in order to improve the performance of the
contact search when dealing with rigid bodies de�ned by parametric surface patches.
Section 2 presents a summary of the contact mechanics background and motivation.

Section 3 is devoted to the description of the mixed formulation of the contact with friction
problem based on an augmented Lagrangian approach. Special attention is given to the deriva-
tion of a frictional contact operator. In Section 4 the contact search algorithms are discussed,
with a special focus on a new strategy for the global contact search algorithm. The in�uence
of this global contact search algorithm on the local contact search algorithm is discussed in
Section 5, where a simple example is presented in order to demonstrate such in�uence. Finally,
the summary of the conclusions of this paper is presented in Section 6.

‡Contraction of ‘Deep Drawing 3-D IMPlicit’.
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2. CONTACT MECHANICS

To determine if a node that belongs to the boundary of the deformable body (�def ) is in contact
with the rigid body, it is necessary to know the current position x(u) of the node. From the
updated Lagrangian formulation, the nodal current position x(u) can be determined from the
equilibrium position in the prior load step added of the corresponding nodal displacement
vector u. Since the rigid obstacle is not stationary, it is preferable to associate a local frame
on the boundary of the rigid obstacle (�rig), and to determine the relative motion using the
rigid body as reference. The local contact frame in the rigid body is de�ned with the outward
unit normal vector to �rig, n(u). It is important to notice that due to the curved contact, in
particular in case of large slip, this vector is not constant. It is unknown at the beginning of
each load step, and it can assume di�erent values during the iterative equilibrium loop.
The contact kinematics is determined as a function of two variables: the signed normal

distance dn, and the relative tangential velocity Ṫt . They are both de�ned between a node
of �def and a reference position on �rig, designated here as xref (origin of the local contact
frame). The signed normal distance is involved in the formulation of the unilateral contact
law, and the relative tangential velocity in the formulation of the friction law.

2.1. Reference position

To determine the reference position xref two di�erent approaches can be used: an impact
algorithm or a projection algorithm. The impact algorithm is based in the relative displacement
of the node of �def and the obstacle �rig. If the node was in contact in the previous time
step, the reference position can be easily established from the displacement of the contact
obstacle. But, if the node was not in contact at the end of the previous step, the calculus of
a reference position is less trivial (see Section 4.3). The projection algorithm determines the
reference position with the orthogonal projection of the current position of the node of �def

on �rig, minimizing the normal distance between both positions (see Section 4.4).
In Figure 1 the use of the impact and projection strategies is described. For a known

updated current position x(u), the solution using the impact strategy is unique (xref ). On the
contrary, the computation of a projection point over a tool de�ned with several parametric
surface patches can conduct to multiple solutions. As depicted in this �gure, for this case,
the projection strategy leads to two di�erent solutions (PProj1 ;PProj2 ). The �gure also reveals
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Figure 1. De�nition of the kinematic variables with di�erent local contact search strategies. Di�erent
solutions for the contact search projection strategy.
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the fact that although the projection strategy performs a selection based on the minimum
normal distance, this may lead to an intuitively erroneous reference position (PProj2 ). The
impact solution is unique if the relative displacement between the node and the obstacle is
non-zero, however this algorithm is numerically less robust than the projection one. In some
particular situations the solution from both algorithms can be the same.
The deep drawing implicit code DD3IMP takes advantage of both strategies for the com-

putation of the reference position in its numerical model. At each time increment, the global
algorithm of DD3IMP code can be divided into two phases. The �rst determines an approx-
imate �rst solution for the incremental displacements, stresses and frictional contact forces
by an explicit method. Due to the non-linearity of the behaviour law and to the kinematics
of the process this explicit solution generally satis�es neither the variational principle nor
the consistency condition. In the second phase the explicit solution is therefore successively
corrected using an implicit method, until the structural equilibrium is ensured [3, 7].
In the determination of the explicit �rst solution is necessary to guarantee that a reference

position is established for all candidate nodes belonging to �def , in order to avoid contact
problems during the corrector phase. This reference position must be determined whether the
node was previously in contact or not. The impact search strategy allows a unique de�nition
of a reference position for each candidate node belonging to �def , which is associated with
the imposed displacement of the rigid body. Thus, this is the privileged strategy for the
computation of the reference position in the �rst phase. However, in order to assure that no
candidate node is neglected, if no reference position is established with the impact algorithm,
an assessment is performed with the projection algorithm. Finally, in the corrector phase
the static structural balance is assured by an iterative scheme in the vicinity of the explicit
con�guration. To perform these corrections it is better to calculate the reference position with
the projection algorithm, since this is numerically more robust and allows a better selection
between multiple close solutions.

2.2. Kinematic variables

The knowledge of the reference position xref allows the calculus of the kinematic variables.
The outward unit normal vector n(u), evaluated in xref , changes in agreement with the pre-
dicted implicit local reference position. In this way, for each candidate node to contact, a
normal distance to the rigid body that imposes the constraints is established:

∀x(u)∈�def ; dn = �x(u)− xref � · n(u) (1)

In quasi-static formulations the relative tangential velocity (Ṫt) can be directly replaced by
the tangential slip increment (Tt). The outward unit normal vector n(u) leads to the de�nition
of the relative tangential displacement increment as:

Tt = [x(u)− xref ]− {�x(u)− xref � · n(u)}n(u) (2)

2.3. Contact and friction laws

The kinematic variables are essential in the formulation of the contact and friction laws, which
also depend on the static variables. The normal and tangential components of the contact

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 58:2083–2101



STRONGLY CURVED CONTACT PROBLEMS 2087

force are:

[= �nn(u) + [t (3)

The unilateral contact law is usually de�ned by an impenetrability condition, a compression
condition, and a complementary condition, respectively:

dn ¿ 0; �n 6 0; dn�n = 0 (4)

The Coulomb classic friction contact law is traditionally expressed by a slip rule, a friction
criterion, and a complementary condition, respectively:

Ṫt = |Ṫt| [
t

|[t| ; |[t|6 −��n; |Ṫt|�|[t|+ ��n�=0 (5)

where � is the friction coe�cient.

3. MIXED FORMULATION

In the absence of contact and friction, the necessary conditions for a structural balance can
be express with the following generic form:

F int(u)− Fext = 0 (6)

F int(u) and Fext are the vectors of internal and external forces and u is the displacement �eld
vector, solution of the problem. Coupling the contact with friction problem corresponds to
constrain Equation (6) with the boundary conditions imposed by the contact with friction.
To obtain a system of equations is necessary to eliminate the ambiguous character of the
contact and friction relations (Equations (4) and (5)). Therefore, an augmented multiplier is
introduced:

�(u; [) = �n(u; [)n(u) + � t(u; [)

= (�n(u; [) + rdn(u))n(u) + ([t(u; [) + rTt(u)) (7)

where r is the penalty coe�cient. The contact and friction conditions are computed based on
a linear combination of the kinematic and static variables [5, 6]. The use of an augmented
multiplier allows the formulation of an exactly equivalent problem for all strictly positive
value of the penalty parameter r, which can generically be written as follows [5]:{

F int(u) + Fequi(u; [)

Fsup p(u; [)

}
=

{
Fext

0

}
(8)

The non-linear system of equations (8) corresponds, for each node belonging to �def , to
a system of six equations with six unknowns, the displacements u and the contact forces
[. The sub-operators introduced represent the constraints imposed by the obstacle in the
equilibrium, Fequi(u; [), and the supplementary equations necessary to evaluate the contact
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forces, Fsup p(u; [), de�ned as follows:

Fequi(u; [) = proj�−{�n(u; [)}n(u) + projCaug(�n+rdn(u)){� t(u; [)}

Fsup p(u; [) =− 1
r
[�n(u; [)− proj�−{�n(u; [)}]n(u)

− 1
r
[[t(u; [)− projCaug(�n+rdn(u)){� t(u; [)}] (9)

where the classical convex that results from the Coulomb friction law [11] is replaced by an
augmented one, de�ned by

Caug(�n + rdn(u))=C{proj�−(�n + rdn(u))} (10)

The sub-operators depend directly on the kinematic and static contact variables, conducting
to di�erent de�nitions according with the contact status. Owing to the use of the augmented
multiplier the contact status of each node is determined by a linear combination of both
kinematic and static variables. A node is considered in contact only if a negative normal
component of the augmented multiplier, �n(u; [), is detected; otherwise, the ‘gap’ status is
assigned. For a node in contact it is necessary to evaluate the magnitude of the tangential
component of the augmented multiplier � t(u; [). If |� t(u; [)| + ��n¡0 the ‘stick’ status is
assigned to the node, otherwise it will correspond to a ‘slip’ node. Therefore, the expressions
for the sub-operators can be derived from (9) as function of the augmented multiplier [10]:

�n¿0⇒
{
Fequi(u; [)

Fsup p(u; [)

}∣∣∣∣∣
∣∣∣∣∣
gap

=

{
0

− 1
r [

}
(11)

|� t|+ ��n¡0⇒
{
Fequi(u; [)

Fsup p(u; [)

}∣∣∣∣∣
∣∣∣∣∣
stick

=

{
�n(u; [)n(u) + � t

dn(u)n(u) + Tt(u)

}
(12)

|� t|+ ��n¿0⇒
{
Fequi(u; [)

Fsup p(u; [)

}∣∣∣∣∣
∣∣∣∣∣
slip

=

{
�n(u; [)[n(u)− � t(u; [)]

dn(u)n(u)− 1
r [[

t(u) + ��n(u; [)t(u; [)]

}
(13)

where t(u; [) is the tangential slip direction unit vector de�ned by

t(u; [)= � t(u; [)=
∣∣� t(u; [)∣∣ (14)

A correct prediction of the contact surface and status is of fundamental importance since
the sub-operators depend on the local contact frame through n(u) [10]. This dependency is
even more evident in the elemental contact Jacobian matrix, which has to be computed in
order to use the Newton–Raphson method to solve the global non-linear problem (Equations
(8)):

J(u; [)=
[
[∇uFequi(u; [)] [∇[Fequi(u; [)]

[∇uFsup p(u; [)] [∇[Fsup p(u; [)]

]
(15)
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Deriving Equation (11) for the case of a ‘gap’ node, the Jacobian matrix takes the form:

Jgap =

[
[0ij] [0ij]

[0ij] [−Iij=r]

]
; i; j=1; 2; 3 (16)

where I is the identity second-order tensor. Taking into account Equation (12), the elementary
contributions for a node in contact with ‘stick’ status are evaluated as

Jstick =

[
[Pij + Cij] [Iij]

[(Pij + C∗
ij)=r] [0ij]

]
; i; j=1; 2; 3 (17)

Unlike C and C∗; P does not depend on the gradient of the normal to the rigid body:

Pij= r�Iij − ninj + ni∇ujdn�; Cij= − r�(�tk + dnnk)∇ujnkni�
and

C∗
ij= − r�� tkni∇ujnk + �pnp∇ujni�; i; j; k; p=1; 2; 3 (18)

Analogously, deriving Equation (13), for the ‘slip’ case, the Jacobian matrix is given as

Jslip =

[
[rMij + Nik∇ujnk] [Eij]

[Mij + Nik∇ujnk=r] [Eij=r − Iij]

]
; i; j; k=1; 2; 3 (19)

In this case is possible to couple all the terms that depend on the gradient of the curvature
in the second-order tensor, N, de�ned as

Nij= �k[ni − �ti] + �nIik + �[(�k + r�k)ni − (�p + r�p)np(titk − Iik)]; i; j; k; p=1; 2; 3 (20)

M and E are given by the following expressions:

Mij = [ni − �ti]∇ujdn + �[Iij − ninj − titj]
Eij = [ni − �ti]nj + ��Iij − ninj − titj�; i; j=1; 2; 3

(21)

with �= −��n=|� t|. In 2D applications, these terms disappear since �Iij − ninj − titj�= 0 [5].
The de�nitions of the sub-operators Fequi(u; [) and Fsup p(u; [) presented in Equation (9) are

independent of the geometrical description of the tools [9, 10]. The generality of the numerical
simulation codes use a �nite element mesh description of the rigid body. This discretization
of the forming tools clearly leads to problems in the contact treatment, and it is necessary
to use reliable algorithms aim of which is to introduce the necessary continuity for general
quadratic convergence [12–14]. In the following sections is assumed that the forming tools
are modelled by parametric B�ezier surfaces [15, 16]. The use of parametric B�ezier surfaces
to describe the rigid body simpli�es the contact search algorithms as long as the necessary
continuity between adjacent patches is guaranteed [17, 18]. Besides, the patches surfaces are
naturally smooth.
The contact detection algorithm must �nd the correct patch where each node of the de-

formable body establishes contact with the tools. Function of the complexity of the process
to be simulated, a high number of patches may be needed to model each tool. In these cases
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one needs to test, for each node, all the surface patches that de�ne the each tool. This in-
creases the di�culty in the contact detection algorithm. However, it is possible to associate
to each node of the deformable body a reduced number of surface patches, based on simple
geometrical considerations. To perform this, a global contact search algorithm should be used
at each time increment.

4. GLOBAL AND LOCAL CONTACT SEARCH

In terms of global contact search, the �rst geometrical consideration that can be performed is
to associate to each node � of the deformable body a prede�ned set of tools. The organization
of these sets of tools is based on the orientation of each surface patch outward normal vector to
the blank sheet. After this �rst geometrical selection, let us suppose that the set of candidate
tools to contact with node � contains N patches. This number is highly dependent on the
complexity of the geometry of the forming tools. So, it is desirable to reduce this number of
candidates to �N¡N patches. This strategy is adopted in order to carry out the local contact
search algorithms of impact and projection only on the �N previously selected patches, during
the time increment [7, 9]. In this work, two di�erent global contact search algorithms for the
selection of the candidate patches to contact will be presented and compared.

4.1. Global contact search – 1st algorithm

The group of candidate patches to establish contact with node � is reduced according to
the distance between the co-ordinates of the node (x�) and the middle point of each patch.
For each of the N patches of the set, the middle point is calculated according to the total
displacement of the tool containing the patch, utool|S in the loading step S:

Pmidk (�; �)=Pmidk

(
1
2
;
1
2

)
=

m∑
i=0

n∑
j=0
bijk

(
1
2

)i (1
2

)j
+ utoolk

∣∣
S ; k=1; 2; 3 (22)

The patch is de�ned as a function of the curvilinear coordinates (�; �)∈ [0; 1] and the cor-
responding polynomial coe�cients bijk , with m and n being the degrees of the polynomial
functions in � and �, respectively.
The distance between node �, of the deformable body, and the middle point of each surface

patch is given by

�Dmid = [(Pmidk − x�k)(Pmidk − x�k)]1=2; k=1; 2; 3 (23)

The algorithm will only retain the �N surfaces closest to the node �, ( �N6N ). The number
�N of surfaces to be retained is also important. If the tools are modelled with surfaces of
simple geometry and similar dimensions, �N can be set equal to 4, what still guarantees that
the surface that will result in the correct reference vector will be correctly selected. If the
geometry is more complex, the node can be near many surfaces, even of di�erent tools.
That is why it is more suitable to increase �N to a higher value (Example with �N =9 in
Reference [9]).

4.2. Global contact search – 2nd algorithm

In the case of tools of complex geometry de�ned by many surfaces with di�erent dimensions,
a similar algorithm that uses not only the co-ordinates of the middle point of the patch, but
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Figure 2. Selected patches for the global contact search strategies with the �rst and second algorithms.

also the co-ordinates of each vertex may determine the �N group of candidates. In this case it
is necessary to calculate the position of the middle point (Equation (22)) and of each vertex,
as follows:

P1k (�; �)=P
1
k (0; 0)=

m∑
i=0

n∑
j=0
bijk0i0j + utoolk |S

P2k (�; �)=P
2
k (0; 1)=

m∑
i= 0

n∑
j=0
bijk0i1j + utoolk |S

P3k (�; �)=P
3
k (1; 0)=

m∑
i=0

n∑
j=0
bijk1i0j + utoolk |S

P4k (�; �)=P
4
k (1; 1)=

m∑
i=0

n∑
j=0
bijk1i1j + utoolk |S

k=1; 2; 3 (24)

The distance between the middle point and the node � of the deformable body is calculated
from Equation (23). The distance between each vertex and the node � is calculated as

�Dq=[(Pqk − x�k)(Pqk − x�k)]1=2; k=1; 2; 3 q=1; 2; 3; 4 (25)

The minimum distance between node � and the four vertexes and the middle point of the
patch (min(�Dq;�Dmid)) will be retained. After testing the N candidate patches of the set,
the algorithm retains only the �N patches closest to node �, as in the previous case.
Figure 2 presents an example of a complex geometry, de�ned with more than 17 patches,

all with di�erent dimensions. Both global contact search algorithms were performed in order
to determine the �N closest patches to node �. The table in Figure 2 presents the sequence of
the nine closest patches to node �, determined with both algorithms. Although the patch that
results in a correct reference position is the number six, this patch will never belong to the
candidate group �N if the selection algorithm is based only in the distance to the middle point
of the patch. This is caused by the di�erences in area between this patch and its neighbours.

4.3. Local contact search – impact algorithm

For each of the �N pre-selected patches candidates to establish contact with node � it is nec-
essary to determine the associated reference vector in order to choose the correct patch. This
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is performed with an impact algorithm, based on the intersection of displacement trajectories
of the patch and the node.
The impact algorithm is based on the total displacement of the tool, in the loading step

S, u tool|S and the displacement of the node �(u�|S). The relative displacement is de�ned as
�U rel

k = utoolk |S − u�k |S. An additional parameter T is introduced in order to adjust the relative
displacement �U rel

k , such that an impact between the node and the obstacle can be established.
The co-ordinates ( ��; ��; �T ) de�ne the position of the impact point on the patch, and are solution
of the equation:

F Im pk ( ��; ��; �T )= x�k −
m∑
i=0

n∑
j=0
bijk ��i ��j − �T�U rel

k =0k ; k=1; 2; 3; ��; ��∈ [0; 1]; �T ∈ [�] (26)

Equation (26) is non-linear in ( ��; ��). To its solution a Newton–Raphson algorithm is applied
leading to the following solution for iteration I :

�aIk = �a
I−1
k − F Im pj |I−1

�∇j F Im pk |I−1 ; j; k=1; 2; 3 (27)

where �a I−1 = [ ��; ��; �T ] is the solution vector at iteration I − 1, and �∇jF Im pk is the Jacobian
matrix of Equation (26).
The convergence criterion is based on the simultaneous satisfaction of the two following

conditions: 

| �aIk − �aI−1k |6 	Conv:a

|F Im pk |I−1|6 	Conv:F

⇒ Convergence in iteration I (28)

where 	Conv:a and 	Conv:F are some prede�ne limit values.
If convergence is attained within the maximum allowed number of iterations, then the

reference vector is the one that corresponds to vector �a=[ ��; ��; �T ] with the minimum absolute
value for T [7, 9]:

x refk =
m∑
i=0

n∑
j=0
bijk ��i ��j + utoolk |S; k=1; 2; 3 (29)

If no impact solution is found for node �, the ‘gap’ status will be assigned for the current
load step.
This impact algorithm has no solution if the patch belongs to a tool with no imposed

displacement and if node � presents also null displacement. In this case it is necessary to
perturb the relative displacement between the patch and the node, as follows:

If �U rel
k =0k ⇒�U rel

k = 	k ; k=1; 2; 3 (30)

This perturbation vector 	 dictates the convergence of the impact algorithm described earlier.
The magnitude of the perturbation has no in�uence on the result. However, the direction
of the perturbation vector determines the precision of the reference vector calculated by the
impact algorithm [9].
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Figure 3. In�uence of the direction of the perturbation vector in the solution for the impact algorithm:
(a) no impact due to wrong perturbation vector; and (b) impact correctly calculated.

In order to improve the impact algorithm solution for this particular case, the perturbation
vector must be calculated based on the ‘expected impact direction’, dIm p. This vector is
function of the direction of the displacement of the tool that controls the loading step, and of
the outward normal of the candidate patch, as follows:

dIm pk =sign(nk)�u
controlling tool
k ; k=1; 2; 3 (31)

The outward normal vector is not known (particularly in patches of high curvature) once the
impact point in the patch is the unknown of algorithm. This normal is taken in the point of
the patch considered as trial solution for the Newton–Raphson algorithm in Equation (27),
and then the perturbation vector is calculated as follows:

	k = nk + sign(nk)�u
controlling tool
k ; k=1; 2; 3 (32)

Figure 3 illustrates the in�uence of the sign of the outward normal vector on the impact
direction vector and consequently on the direction of the perturbation vector.

4.4. Local contact search – projection algorithm

When a fully implicit algorithm is used to solve the global elastoplastic problem with contact
and friction, during the equilibrium loop the node � must be projected on the candidate
surface. This allows to de�ne the implicit co-ordinate system associated with the node � and
to update the reference vector xref . To perform this, one needs to determine for each candidate
surface patch previously selected in the global contact search, the co-ordinates (�̂; �̂) and d̂n

such as

F Projk (�̂; �̂; d̂n) =
m∑
i=0

n∑
j=0
bijk �̂i�̂j + utoolk |S

+ d̂nnk(�̂; �̂)− x�k =0k ; k=1; 2; 3; �̂; �̂∈ [0; 1]; d̂n ∈ [�] (33)

As for Equation (26), the projection vector and the outward normal to the surface are
non-linear functions of the parametric co-ordinates (�̂; �̂); the system de�ned in the former
equation is non-linear in the same variables. To its solution is necessary to resort to the
Newton–Raphson iterative algorithm, which can be summarized, for iteration I ,
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as follows:

âkI = âkI−1 −
F Projj |I−1
�∇jF Projk |I−1

; j; k=1; 2; 3 (34)

where â I−1 = [�̂; �̂; d̂n] presents the solution vector at iteration I−1, and �∇jFProjk is the Jacobian
matrix of Equation (33).
As in the case of the impact algorithm, the convergence criterion is based on the simulta-

neous satisfaction of the two following conditions:

|âkI − âkI−1|6 	Conv:a

|FProjk |I−1|6 	Conv:F

⇒Convergence in iterations I (35)

where 	Conv:a and 	Conv:F are some prede�ne limit values.
In case of multiple solutions the algorithm selects the one with minimum normal distance

dn. In fact, this parameter represents warrantable geometrical measure to distinguish the var-
ious solutions [7, 9]. It is important to notice that, after convergence, the �rst two lines of
( �∇j F Projk |Conv:)−1 de�ne the transformation matrix from the curvilinear system to the Cartesian
system. This transformation matrix is required in the calculus of the gradient of the outward
normal vector to the obstacle. The third line de�nes the gradient of the normal distance. Both
gradients are needed to the elemental and global �nite element ‘sti�ness’ matrices (Equations
(17) and (19)) [7, 9]). The quality and accuracy of the solution of this algorithm is crucial
for the global convergence of the contact problem.

5. NUMERICAL EXAMPLE

In this section, the in�uence of the global contact search on the performance of the local
contact search algorithms is evaluated.
The Newton–Raphson method used to solve the two-presented local contact search algo-

rithms is known to present quadratic convergence rate in the vicinity of the solution. So, a
good selection of the �rst trial solution is very important. When the global contact search is
performed with the �rst algorithm, the trial solution used is the middle point of the patch,
as it was this geometrical measure that allowed to assort the patches. The use of the second
algorithm for the global contact search allows the choice of the trial solution between the
middle point and one of the vertices of the patch. The use of the second algorithm also
allows an improved prediction of the perturbation introduced in the Impact algorithm, in case
of tools with no displacement. In fact, the outward normal vector used in the prediction of
the impact direction vector is, in this case, the one corresponding to the nearest point of the
patch selected between the middle point and the vertices, which can be very important in case
of tools with complex geometries.
Previous works indicate that the impact and projection algorithms converge in almost any

situation, with a number of iterations that are function of the patch curvature. The impact
algorithm for plane patches normally uses two iterations, and for a patch with strong curvature
it takes about six iterations. The projection algorithm, if the degree of the patch is high
(m; n¿4), may require between four and eight iterations [9].
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Figure 4. Forming tools geometry, patches de�nition and numeration for each tool.

Table I. Summary of the input data for the numerical simulation of a rail.

Initial sheet geometry
Width/2 150 mm
Length 300 mm
Thickness 1 mm

Material data
Young’s modulus, Poisson ratio 211 000 MPa, 0.3
Isotropic hardening �=553:5 (	 + 0:00163)0:227 (MPa)

Process parameters
Friction coe�cient 0.1
Blank holder constant force 90 000 N

To compare the presented global contact search algorithms, the simulation of the deep
drawing of a rail was performed with the �rst algorithm (Equations (27) and (28)), and
with the second algorithm (Equations (29) and (30)). The selected deep drawing problem is
presented in Figure 4 [19]. The process conditions used are summarized in Table I.
This problem requires three di�erent tools: the punch, the blank holder and the die,

as presented in Figure 4. They were all de�ned with B�ezier surfaces. Owing to symmetry
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Table II. Summary of the numerical data used for the presented numerical simulations.

Impact algorithm Projection algorithm

Maximum number of iterations 20 20

	Conv:a (Equations (28) and (35)) 1× 10−10 1× 10−10
	Conv:F (Equations (28) and (35)) 1× 10−10 1× 10−10

Global contact search algorithm 1st 2nd 1st 2nd

Trial solution �u 0 0.5 uclosest vertex û0 0.5 uclosest vertex

�v 0 0.5 vclosest vertex v̂0 0.5 vclosest vertex

T 0 0.0 0.0 dn
0

0.0 0.0

conditions only one half of the tools were modelled using CAD software, resulting in twelve
surfaces for the die, �ve surfaces for the punch and two for the blank holder. The degree of
the patches that describe the punch and die shoulder is six in longitudinal direction and �ve
in the radial direction. This is kept equal in adjacent patches in order to guarantee an equal
number of characteristic points for the common patch curves assuring G0 continuity [17].
The patches that de�ne the die were cut along the middle plane and split in two, in order
to evaluate the in�uence of the size of the patches in the impact and projection algorithms
(Figure 4).
The numerical parameters de�ned for the local contact search algorithms are summarized

in Table II. The blank sheet is modelled with a uniform coarse mesh of average element
size of 10 millimetres in the plane, and two layers in thickness. This mesh is too coarse to
evaluate process conditions. However, this discretization is su�cient for the evaluation of the
behaviour of both global contact search algorithms.
Figure 5 shows the geometrical con�guration obtained for both algorithms after a punch

displacement of 10 mm. In this �gure the tools are described by triangular elements only for
visualisation post processing purposes. The di�erence between the contact zones in the punch
predicted from the �rst and second algorithm of the global contact search is evident. In fact,
it is possible to observe penetration between the punch and the blank sheet near the symmetry
plane, when the global contact search is performed with the �rst algorithm. Such situation
only occurs because a ‘gap’ status is assigned to the nodes with penetration after the local
contact search algorithm. This incorrect prediction of the contact status is not observed when
dealing with nodes contacting the die surfaces, in both algorithms. The incorrect solution
results from an erroneous selection of the candidate patches performed by the �rst algorithm,
since it does not occur for the contact with the punch predicted by the second algorithm.
The �rst algorithm also seems to be more sensitive to the dimension of the patches, since no
incorrect local contact search solution appears when the nodes establish contact with the die.
One should remember that the patches that de�ne the die were cut along the middle plane
and split in two, so they are smaller in area than the punch patches.
In order to evaluate this penetration problem with more detail, two nodes contacting the

punch were selected for analysis. The positions of the selected nodes (A and B) are presented
in Figure 5, being A in the symmetry plane. The resume of the results obtained for the impact
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Figure 5. Contact areas with the punch and die after a punch displacement of 10mm, with
the two presented global contact search algorithms.

and projection algorithms are shown in Table III, but only for patch 13, which corresponds
to the correct solution for the reference position. As mentioned earlier, the degree of this
patch is six in the punch shoulder direction and �ve in the other direction. From Table III
the in�uence of the trial solution in the solution and convergence rate of the impact and
projection algorithms is clear.
In terms of the impact algorithm, the number of iterations necessary to assure the required

precision is reduced by a factor of two when the second global contact search algorithm is
used instead of the �rst algorithm. The projection algorithm is more sensitive to the trial
solution. In fact, for a not so good trial solution the convergence rate decreases (Node A), or
the algorithm can even diverge (Node B). An evaluation of the number of iterations required
for the process convergence indicates a reduction factor of three, if the trial solution used is the
closest vertex of the patch to the node of the deformable body. These results also con�rm that
the erroneous geometrical solution predicted by the code with the �rst algorithm results from
an incorrect solution of the projection algorithm. In fact, during the convergence procedure
Node A passes through solutions that are clearly out of the patch, and the implemented
algorithm abandons that candidate patch before reaching iteration fourteen. Consequently, a
‘gap’ status is assigned to both nodes A and B, and so they are able to present those values
of penetration.
In terms of CPU time, it is not possible to make any direct comparison since the solutions

obtained with the distinct global contact search algorithms lead to di�erent algorithm evolu-
tions. Apparently, at least for the present case, the time spent on the selection of the closest
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vertex of the patch to the contact node is counterbalanced by the reduction in the number of
iterations of the Newton–Raphson procedure in local contact search algorithms. The di�erence
in CPU time between the two simulations presented is less then 1.5%.

6. CONCLUSIONS

This paper proposes a new global contact search algorithm for complex 3D geometries mod-
elled with parametric surface patches. For large-scale applications it is fundamental to reduce
the number of candidate surfaces to contact with each �nite element node of the deformable
body. The selection of the closest patches to each node can be performed based on the distance
between the node of the deformable body and the middle point of each patch. In complex
geometries that require a larger number of patches with di�erent dimensions, it is better to
rely on the distance from the node to the middle point and to each vertex of the patch. If
the selection of the candidate surface patches is performed based on the patch vertexes, it is
also possible to store the information about the closest vertex to the node of the deformable
node. This information can be used latter as trial solution for the Newton–Raphson algorithm,
which is required for the determination of the reference vector and the implicit co-ordinate
system. The comparison between the numerical behaviour of the impact and projection algo-
rithms, with a trial solution either constant or updated in function of the nearest vertex to
the node, shows that the latest converges faster and reduces the chances of divergence of the
local contact search algorithm. The results also show that the number of iterations indicated
in previous works may not be su�cient in case of surfaces presenting large dimensions, and
if the trial solution for the Newton–Raphson algorithm is constant and equal to the position
of the middle patch vector. However, if the trial solution is obtained from the closest vertex
of the patch to the node of the deformable body the number of iterations referred is su�cient.
The proposed global contact search algorithm has contributed for an improvement of the

global behaviour of the �nite element code DD3IMP. It prevents situations with erroneous
contact status associated to nodes of the deformable body that could conduct to convergence
problems of the global simulation. Furthermore, the solution in each load step is improved
due to the correct contact status. The increase of CPU time associated to the computation of
each vertex and middle point of each candidate patch is compensated by the reduction in the
number of iterations in the impact and projection algorithms.
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