

André Gradil

Development of a Remote
3D Visualisation, Control and Simulation

Framework for a Robotic Head

Dissertação de Mestrado em Engenharia Eletrotécnica e de Computadores

09/2016

UNIVERSITY OF COIMBRA

FACULTY OF SCIENCES AND TECHNOLOGY

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Development of a Remote 3D
Visualisation, Control and Simulation

Framework for a Robotic Head

André de Jesus Gradil

Supervisor:
Prof. Doctor João Filipe de Castro Cardoso Ferreira

Jury:
Prof. Doctor João Filipe de Castro Cardoso Ferreira

Prof. Doctor Jorge Nuno de Almeida e Sousa Almada Lobo
Prof. Doctor Nuno Miguel Mendonça da Silva Gonçalves

Dissertation submitted to the Electrical and Computer Engineering Department of the
Faculty of Science and Technology of the University of Coimbra in partial fulfilment of the

requirements for the Degree of Master of Science.

Coimbra, September of 2016

Acknowledgements

I would first like to thank my thesis advisor Prof. João Filipe Ferreira of DEEC at University
of Coimbra, he consistently allowed this paper to be my own work, but steered me in the
right the direction whenever he thought I needed it. My colleagues and friends for having
accompanied me through this path both in work and at leisure. Finally, I must express my
very profound gratitude to my parents and my brother for providing me with unfailing support
and continuous encouragement throughout my years of study and through the process of
researching and writing this thesis. This accomplishment would not have been possible
without them.

Thank you,
André Gradil

Abstract

In this text, we will present work on the design and development of a ROS-based remote
3D visualisation, control and simulation framework. This architecture has the purpose of
extending the usability of a system devised in previous work by this research team during the
CASIR project.

Recent advances in robotic development technology will provide the necessary support
for an exponential breakthrough in robotic research; in fact, the forecast is that robotics will
be witnessing a boom in the near future. Among this technology, development environments
such as the Robot Operating System (ROS) framework, simulation tools and the recent trend
of remote robotic laboratories will undoubtedly play an important role in promoting this
breakthrough. They will most probably lessen the burden on developers and users while they
operate the robotic systems they have been entrusted, many times consisting of expensive,
cumbersome, diverse equipment supported by complex, intricate software systems.

With this in mind, the proposed solution was implemented using ROS, and designed
to be used in three different ways. More specifically it will attend the needs of two user
groups – local and remote users and developers. It comprises hardware and simulator access
to local users, having an intuitive graphical user interface to support the use of the aforemen-
tioned feature, and provides access to remote users through a remote experimental robotic
laboratory. Experimentation using the simulated environment allows for the enactment of
offline experiments, in order to safely and controllably develop and test new algorithms or
components. Remote experimentation will allow researchers outside the laboratory to have
access to the CASIR-IMPEP system, in a secure and organised fashion through an interactive
website.

To this end, several tools and methods were analysed and compared, from 3D modelling
tools such as Blender and Maya, robotic simulator software such as Gazebo and WeBots,
several options for user interface software creation, and web solutions to open the Robot
Operating System (ROS) to non-ROS machines through a web browser.

Next, the framework was implemented, specifically consisting of: (1) a fully functional
simulator integrated with the ROS environment, including a faithful representation of the
IMPEP robot with every actuator and sensor emulated virtually, a human model with anima-

vi

tion capabilities and enough features for enacting human robot interaction scenarios, and a
virtual experimental setup with similar features as the real laboratory workspace; (2) a fully
functional and intuitive user interface with 2D and 3D image representation capabilities, also
allowing both common and advanced users or developers to launch specific sets of modules;
(3) a remote robotic laboratory that can connect remote users to the rest of the framework via
a web browser, providing them basic control of the simulated platform, via a virtual joystick
controller.

Finally, the proposed solution was thoroughly and systematically tested under operational
conditions, so as to assess its qualities in terms of features, ease-of-use and performance.
The final outcome was shown to fulfil the overall goals of this work – (1) the development
of hardware and simulator access to local users, with support of a intuitive local GUI; (2)
providing access to these assets to remote users through a remote robotic lab – and to
provide the many features that ensure that a user-friendly, high-performance framework was
developed.

Every component acts in a synergistic fashion so as to complement the core CASIR
framework in a simple, modular, and optimised fashion, trying in full to minimise resource
usage and computational burden of the main computer.

At the end of this dissertation, conclusions concerning the success and potential of this
research and development effort are drawn, and the foundations for future work will be
proposed.

Keywords: Visualisation, Simulation, Remote, ROS, Gazebo, Framework, GUI

vii

"You can mass-produce hardware; you cannot mass-produce software - you cannot
mass-produce the human mind." - Michio Kaku

Resumo

Neste texto, vamos apresentar o trabalho sobre a conceção e desenvolvimento de uma arquite-
tura de visualização remota 3D, controlo e simulação baseada em ROS. Esta arquitetura tem
o propósito de estender a usabilidade de um sistema desenvolvido em trabalhos anteriores
por esta equipa de investigação durante o projeto CASIR.

Os recentes avanços na tecnologia de desenvolvimento robótico irão fornecer o suporte
necessário para um avanço exponencial na pesquisa robótica, na verdade, a previsão é
que a robótica vai testemunhar um boom num futuro próximo. Entre estas tecnologias,
ambientes de desenvolvimento, tais como a arquitectura “Robot Operating System” (ROS),
ferramentas de simulação e a tendência recente de laboratórios robóticos remotos, sem dúvida
desempenharão um papel importante na promoção destes avanços. Eles provavelmente
irá diminuir a carga sobre os criadores e utilizadores enquanto eles operam os sistemas
robóticos lhes foram confiadas, sendo este muitas vezes caro, equipamento pesado ou muito
diversificado e apoiada por sistemas complexos de software.

Com isto em mente, a solução proposta foi implementada utilizando ROS, e projetada
para ser usada de três maneiras diferentes. Mais especificamente, irá atender às necessidades
de dois grupos de utilizadores - utilizadores e criadores locais e remotos.

A solução passa por garantir acesso a hardware e a um simulador aos utilizadores locais,
tendo o apoio de uma interface gráfica intuitiva e por fim fornecer acesso a usuários remotos
através de um laboratório robótico remoto experimental. Experimentação usando o ambiente
simulado permite a recriação de experiências off-line, a fim de desenvolver e testar novos
algoritmos ou componentes de forma segura e controlável. Experimentação remota permitirá
que pesquisadores externos ao laboratório terem acesso ao sistema CASIR-IMPEP, de uma
forma segura e organizada através de um site interativo.

Para este fim, várias ferramentas e métodos foram analisados e comparados, desde
ferramentas de modelação 3D como Blender e Maya, software simulação robótica como
Gazebo e Webots, várias opções para a criação de software com interface gráfica de utilizador
e soluções web para abrir o ROS a máquinas não-ROS através de um navegador web.

De seguida, a estrutura foi implementada, consistindo especificamente em: (1) um
simulador totalmente funcional integrado com o meio de ROS, incluindo uma representação

x

fiel do robô IMPEP com todos os actuadores e sensores emulado virtualmente, um modelo
humano com capacidades de animação e características suficientes para recriação de cenários
de interação do humano/robô, e uma configuração experimental virtual com características
semelhantes às do espaço de trabalho real do laboratório; (2) uma interface de utilizador
totalmente funcional e intuitiva, com capacidades de representação de imagem 2D e 3D,
permitindo que tanto os utilizadores comuns como avançados e até criadores possam correr
conjuntos específicos de módulos; (3) um laboratório robótico remoto que pode ligar os
utilizadores remotos ao resto da arquitetura através de um navegador web, proporcionando-
lhes o controlo básico da plataforma de simulação, através de um controlador joystick
virtual.

Finalmente, a solução proposta foi cuidadosamente e sistematicamente testados em
condições operacionais, de modo a avaliar as suas qualidades em termos de recursos, facili-
dade de uso e desempenho. Os resultados finais confirmaram cumprir os objetivos gerais
deste trabalho - (1) garantir acesso a hardware e a um simulador aos utilizadores locais, tendo
o apoio de uma interface gráfica intuitiva; (2) garantir que os utilizadores remotos tenham
acesso a esses recursos através de um laboratório robótico remoto - e fornecer os recursos
necessários a fim de garantir a criação de uma arquitetura amigável para o utilizador de alta
performance.

Cada componente age de uma forma sinérgica, de modo a complementar a arquitetura
central do projecto CASIR de uma forma simples, modular e otimizada, tentando na íntegra
para minimizar o uso de recursos e carga computacional do computador principal.

No final desta dissertação, serão retiradas conclusões sobre o sucesso e o potencial deste
esforço de pesquisa e desenvolvimento, propondo também as bases para o trabalho futuro.

Palavras chave: Visualização, Simulação, Remoto, ROS, Gazebo, Arquitectura, In-
terface

List of acronyms

CASIR Coordinated Attention for Social Interaction with Robots.

IMPEP Integrated Multimodal Perception Experimental Platform.

HRI Human-Robot Interaction.

ROS Robot Operative System.

YARP Yet Another Robot Platform.

IMU Inertial Measurement Unit.

OSRF Open-Source Robotics Foundation.

ODE Open Dynamics Engine.

DART Dynamic Animation and Robotics Toolkit.

V-Rep Virtual Robot Experimentation Platform.

GUI Graphical User Interface.

SDF Standard Data Format.

STL STereoLithography.

DXF Drawing Exchange Format.

MOOS Mission Oriented Operating Suite.

URBI Universal Real-Time Behavior. Interface.

API Application Programming Interface.

GPS Global Positioning System.

xii List of acronyms

HMI Human-Machine Interface.

BSD Berkeley Software Distribution.

LGPL Lesser General Public License.

HTML HyperText Markup Language.

JSON JavaScript Object Notation.

URDF Unified Robot Description Format.

RGB Red Green Blue.

HDR High Dynamic Range.

FOV Field Of View.

GPU Graphics Processing Unit.

Table of contents

List of acronyms xi

List of figures xv

List of tables xvii

1 Introduction 1
1.1 Motivation and overall goals . 1
1.2 Related work . 2
1.3 Contributions . 5
1.4 Structure of dissertation . 5

2 Background and methods 6
2.1 An open-source framework for studying artificial perception and attention in

HRI . 6
2.2 The Robot Operating System (ROS) . 8
2.3 Simulation and 3D modelling tools for human-robot interaction 10
2.4 Graphic user interfaces for robotic applications 13
2.5 Remote robotic experimental laboratories 15

3 Implementation and results 18
3.1 Putting it all together – a ROS framework for the CASIR-IMPEP platform . 18
3.2 Implementation details for the Gazebo-based simulation package 20

3.2.1 IMPEP simulation – sensors . 22
3.2.2 IMPEP simulation – actuators . 25
3.2.3 Environmental simulation . 27
3.2.4 Avatar and interaction simulation 29

3.3 Implementation details for the rqt-based user interface 32

xiv Table of contents

3.4 Implementation details for the web service supporting the CASIR-IMPEP
remote lab . 36

3.5 Experimental results . 39
3.5.1 Simulation and visualisation proof-of-concept 40
3.5.2 Remote simulation and control proof-of-concept 45

4 Conclusions and future work 47

References 50

Appendix A Parsed URDF kinematic chain 53

List of figures

1.1 Desired features for most contemporary robotic projects. 2
1.2 Conceptual diagram for the IMPEP ROS framework for remote 3D visualisa-

tion, control and simulation. 4

2.1 Existing Attentional system design. 7
2.2 The Integrated Multimodal Perception Experimental Platform. 7
2.3 CASIR-IMPEP system architecture overview 8
2.4 Simulated cameras framegraber node communication. 9
2.5 From moddeling tools to simulator. 13
2.6 Care-O-Bot3 dashboard (srs_ui_pro) created in wxWidgets. 14
2.7 HMI development frameworks to work with ROS. 15
2.8 PR2 remote laboratory. 17

3.1 Framework goals for the IMPEP platform. 18
3.2 Simplified system dataflow . 19
3.3 IMPEP model packages for simulation. 21
3.4 IMPEP virtual model evolution . 22
3.5 Demonstration of the effect of Gaussian noise modelling on simulated IMPEP

camera image quality . 24
3.6 Virtual kinect output. 25
3.7 Revolution joints emulating pan and tilt motors 26
3.8 Gazebo empty world. 28
3.9 Comparison between simulated and real set-up 29
3.10 View of 3D actor model . 30
3.11 Feature detection example . 31
3.12 Rviz Interface . 32
3.13 Mockup of the first version of the rqt-based interface 33
3.14 Instantiation of the first version rqt-based interface 35

xvi List of figures

3.15 Instantiation of the final version rqt-based interface 36
3.16 CASIR-IMPEP remote lab. 37
3.17 Complete dataflow diagram of the web service. 38
3.18 Face and pose detection in simulated environment 40
3.19 Final simulated environment in action . 42
3.20 Final rqt interface with simulator topics. 43

4.1 Overview of the several components of the proposed solution running in
operational conditions . 47

4.2 New launcher plugin interface. 48

List of tables

1.1 Feature comparison between frameworks. 3
1.2 Availability comparison between frameworks. 3

2.1 Technical comparison between simulators 11
2.2 Support infrastructure of the simulation platforms 11
2.3 Supported robot families . 12
2.4 Most used development frameworks available for Unix systems 15

3.1 Guppy Firewire RGB cameras specifications 23
3.2 Microsoft Kinect V1 technical specifications 24
3.3 Motor characteristics. 26
3.4 Gazebo UI vs without Gazebo UI benchmark comparison. Percentages and

memory usage are relative to the specifications of the main computer 41
3.5 Local vs remote visualisation benchmark comparison, the specifications of

both machines are those in section 3.4 . 44
3.6 Results of the combining the aforementioned tests – data from the main

computer. 44
3.7 Results of the simulation and visualisation with the full attention middleware

running, data from the main computer. 45
3.8 Internet connection benchmark . 46

Chapter 1

Introduction

1.1 Motivation and overall goals

Robot sales have increased to record numbers during the past decade, about 29% to a number
of 229,261 units worldwide according to World Robotics 2015 [1], and increasing research
in this field has followed. However, robots often are too big to transport, too expensive to
replicate, or they may simply not be available to a researcher or developer at a convenient
moment in time.

Fortunately, with the increase of computational power, now more than ever, simulation
and remote access save time and resources (both physical and budget-related), increasing
the productivity of a research team and allowing the community to seamlessly work on the
same framework. A robotics simulation consists of a computer generated environment that
tries to accurately represent a robotic system by modelling sensor and actuator properties,
and also the surroundings it interacts with by modelling real objects and/or actors. There
are several advantages in robotic simulation, the most important of which the capability to
test new algorithms and routines, reproduce and repeat experiments, generate data under
different conditions, neuro-evolve robots and benchmark any of the robot characteristics,
without the risk of damaging the real robot [2]. In fact, having the possibility to repeat
complex experiments without external variables that may influence their outcome, especially
in human-robot interaction (HRI) applications, which depend critically on human subject
availability and for which exact repetition is impossible precisely due to this human factor, is
a definite advantage1. Additionally, there is often a need to open the project to the broader
research community, or simply give the development team access from anywhere outside the

1This subject will be detailed further in section 2.3.

2 Introduction

laboratory. To meet this demand, a recent trend has been the development of remote robotic
laboratories [3]2.

On the other hand, the increasing complexity of robotic systems, namely resulting from
the number of modules and functionalities it comprises, can overwhelm a developer or user
when trying to monitor its operation, and therefore having all of the data organized in a neat
and clear fashion is also paramount3.

The combined set of desired features resulting from this demand and its relationship with
potential user types is depicted in Fig. 1.1.

Fig. 1.1 Desired features for most contemporary robotic development frameworks.

The overall objective of the work presented in this dissertation was to endow the robotic
system developed during the FCT-funded project CASIR, devoted to studying the effect of
artificial multisensory attention in human-robot interaction (more details in section 2.1), with
these features, as a follow-up on future work planned in [4]. More specifically, the work
presented in this text had the following overall goals: (1) the development of hardware and
simulator access to local users, with support of a intuitive local GUI; (2) providing access to
these assets to remote users through a remote robotic lab.

1.2 Related work

As the effort of applying a systematic approach to meeting the demand of implementing
features such as those presented in Fig. 1.1 is a recent trend, a handful of related works exists
– these will be described in the following text.

The Care-O-Bot Research project [5] has a similar architecture to the CASIR framework;
however, it deals with a different application scope via a mobile manipulation platform. It

2Please find more details on this matter in section 2.5.
3Further details will be provided in section 2.4.

1.2 Related work 3

includes solutions for local and remote users, including simulation, all of them working
through a ROS layer.

The iCub simulator was created to complement the iCub project. It is a very specific
simulator with an unique architecture (it uses the same physics engine as Gazebo, however it
has its own software), it uses YARP (Yet Another Robot Platform [6]) instead of ROS and a
network wrapper for remote access, so it’s a custom architecture just for the iCub robot.

Another project, “The Construct Sim” [7], consists of a cloud based tool for remote
robotic simulation. This web service contains several simulators, such as gazebo 1.9 to 5.0
using ROS distributions from Hydro to Indigo (In the next chapter ROS will be elucidated
to you in detail), Webots and the Darpa Robotics Simulator. In spite having several known
robot models, for example Atlas, Reem and Darwin, there is nothing related with artificial
intelligence nor an IMPEP model. The Construct Sim has a very limited free user experience,
both in simulation time and in computational resources, so in order to properly simulate a
scenario one has to resort to the paid services.

A comparative study of these systems in relation to the proposed solution in terms of
implemented features and availability is presented in Tables 1.1 and 1.2, respectively.

Table 1.1 Feature comparison between frameworks.

Remote Lab GUI Simulator Hardware

PR2 yes yes yes yes
Construct Sim yes no yes no

iCub no yes yes yes
Care-O-Bot yes yes yes yes

CASIR-IMPEP yes yes yes yes

Table 1.2 Availability comparison between frameworks.

Remote Lab GUI Simulator Hardware

PR2 freely available freely available freely available 280 000C
Construct Sim several forms — several forms —

iCub — freely available freely available 250 000C + tax
Care-O-Bot on request on request on request on request

CASIR-IMPEP
free with

reservation
freely

available*
freely

available*
remote with
reservation

* - actual conditions of licensing (i.e. GPL or other) are to be decided in the future

4 Introduction

Fig. 1.2 Conceptual diagram for the IMPEP ROS framework for remote 3D visualisation,
control and simulation. The modules in orange refer to the contributions of the work presented
herewith, namely the simulator represented by the impep_simulation, the hardware access
that is not only the IMPEP but also it’s connection through the common driver API, GUI
that consists in a rqt-based software and finally the remote lab supported by the CASIR-
IMPEP web service .

As can be readily seen, the PR2 and Care-O-Bot have all of the desired features, while
the iCub lacks a remote lab and Construct Sim has no GUI nor hardware access.

In terms of availability, while the PR2 and iCub projects have their features freely
accessible, hardware can only be accessed via purchase, which in both cases is rather
expensive. Construct Sim has several payment options, but no hardware access, for obvious
reasons. Care-O-Bot is a different case – the price of every module is subject to a budget
analysis by the company.

Conversely, the framework described in this thesis will be developed so as to provide
all the features of Fig. 1.1 as freely available, and, in the case of the remote lab access
by a user external to the AP4ISR research team, with reservation of timeslots, all the time
ensuring system and hardware security.

1.3 Contributions 5

1.3 Contributions

In summary, the contributions of this work, represented in Fig. 3.1, resulting of the imple-
mentation of an integrated framework boasting the features presented in Fig. 1.1, consist of
providing the full feature set with the widest availability possible, as shown in Tables 1.1
and 1.2. This will allow the research team to access and develop the attention middleware
both locally and remotely, and also make a demonstrator of the CASIR framework available
to the wider scientific community.

1.4 Structure of dissertation

This dissertation will be divided into 4 chapters:

• The current chapter provides the motivations, overall goals, related research and
expected contributions of this work.

• In Chapter 2 discusses the background and methods for this work. More specifically,
the CASIR project and the IMPEP platform will be introduced, a prior on the Robot
Operating System (ROS) will be presented, followed by a study of the state of the art
on 3D modelling tools, robotic simulators, UI’s and remote experimental laboratories.

• In Chapter 3, implementation details and results will be presented. The construction
of the ROS framework, composed by the Gazebo based simulator, rqt visualizer and
rosbridge web service, will be described, followed by experimental results providing
proof-of-concept.

• Finally, in Chapter 4 we will draw conclusions and propose future work.

Chapter 2

Background and methods

2.1 An open-source framework for studying artificial per-
ception and attention in HRI

Several studies have shown that humans expect robots to exhibit intentionality and reciprocity
in HRI – many researchers believe that both these perceived traits result from unconsciously
acknowledging that robots are able to functionally mimic certain human skills, one of which
being attention, according to psychological studies a tell-tale of intentionality [8].

Following this line of thought, the Institute of Systems and Robotics obtained funding
from the Portuguese Foundation for Science and Technology (FCT) for studying the influence
of artificial, automatic (involuntary) attentional processes in HRI named CASIR (Coordinated
Attention for Social Interaction with Robots)1. During this project, a first draft of an artificial
attention framework designed to act as middleware between visual and auditory sensor
systems and a full-blown cognitive system was developed using ROS2 – see Fig. 2.1 and [9].

This framework is supported by the IMPEP infrastructure (acronym for Integrated Multi-
modal Perception Experimental platform) – see Fig. 2.2. For more information about this
platform and its hardware, please refer to [4, 10].

1FCT Contract PTDC/EEI-AUT/3010/2012, which ran from 15-04-2013 until 31-07-2015.
2The ROS development framework will be introduced in the following section.

2.1 An open-source framework for studying artificial perception and attention in HRI 7

Fig. 2.1 The perception module processes sensory signals to build an egocentric representation
of the environment and maintains it in the working memory. The top-down controller
generates control signals and sets of relative weights that modulate responses to different
features.The action module sends commands to actuators according to the attentional map
and to the exploration behaviour informed by the top-down controller. The reorienting
module checks for unexpected and behaviourally relevant stimuli, overriding the current
attentional set if necessary. (Taken from [9], with permission.)

Fig. 2.2 The Integrated Multimodal Perception Experimental Platform [4].

8 Background and methods

The goals set out for future work on the CASIR-IMPEP ROS infrastructure already
involved the overall goals laid out in section 1.1, and consequently this thesis reports on
follow-up work of this project within the scope of these goals, as reflected in Fig. 2.3.

Fig. 2.3 CASIR-IMPEP system architecture overview [4] – only the bottom part of this
diagram was originally fully implemented during the duration of the CASIR project, while
the top part was planned as a future expansion.

2.2 Building robot applications for the global research com-
munity – the Robot Operating System (ROS)

ROS (Robot Operating system3) is a flexible framework for writing modular robot software,
capable of creating complex and robust behaviour in different types of robotic platforms.

This framework aims to be [11] :

• Peer-to-peer

• Tool-based

• Multi-lingual

• Thin

• Open-Source

3In spite of its name, ROS is not an actual operating system in the traditional sense of process management
and scheduling.

2.2 The Robot Operating System (ROS) 9

The ROS framework involves several core concepts, such as packages, nodes, topics,
services and messages, which will be explained next.

Packages are the software organization unit of ROS code. Each package can be a
collection of libraries, executables and scripts. In a lower level we have nodes, in essence
executables from a certain package that communicate with other nodes.

Conventionally a robot control system will comprise many nodes – for example one node
controls the wheels of the robot, while a second node is responsible for the navigation and a
third for localisation. There are several advantages in this type of modular framework, such
as fault tolerance (if a crash occurs in a node it will be isolated from the other nodes) and
reduced code complexity.

The communication between nodes is made through services or topics (basically named
buses) over which nodes exchange messages in a publish-subscribe pattern. To publish/sub-
scribe a topic the node needs to know both the name and type of the transmitted message.

A peer-to-peer system built with ROS will have a ROS Master whose role is to enable
individual nodes to locate each other while providing naming and registration services. It
also tracks publishers and subscribers to topics.

Fig. 2.4 Simulated cameras framegraber node communication.

In the example shown in Figure 2.4, the simulated robot model for IMPEP is publishing
from all of its control nodes to the main node of the simulation software Gazebo (explained
in the following section). That node is being subscribed by the impep_sensing node that
receives the camera topic from Gazebo. Finally, the impep_sensing node publishes the
processed topic to the image_saver node.

10 Background and methods

Dealing with a massive runtime environment may seem daunting; however, with small
tools dividing all the tasks, following the modular principle of ROS, it is easier to manage
complex systems and increase the stability. Another benefit of the modularity is that it
allows ROS to be language-independent – in other words, users can create nodes in C++,
Python, Octave and Lisp without losing the possibility of communication between them if
the messaging interface is maintained.

ROS has a wide user-base, mostly because it is free and open source – every user can
contribute to the framework. As a result, there is an immense number of useful packages
available, albeit not always with the clearest documentation; however, documentation tends
to be properly updated over time to meet user demands4.

2.3 Simulation and 3D modelling tools for human-robot in-
teraction

Virtual simulation is one of the most widest accepted recent technologies in robot develop-
ment. There are numerous software tools used for simulation with big diversity in features
(supporting a variety of robotic middleware, available sensors and actuators, and compatible
with several types of robots) and also diversity in infrastructure (code quality, technical and
community support).

According to [12], currently there are about 40 simulation tools used by the scientific
community; however, since this work follows the CASIR project which is supported by ROS,
we are only going to compare the main tools compatible with this framework, narrowing the
competitors under analysis to Gazebo [13], MORSE [14], V-Rep [15] and Webots [16].

Gazebo was developed by the OSRF (Open-Source Robotics Foundation) and supports
several physics engines like ODE, Bullet and DART. Gazebo offers the ability to accurately
and efficiently simulate populations of robots in complex indoor and outdoor environments,
it can also be easily extended with new features due to having a modular and plugin-based
structure [13].

Morse is a simulator for academic robots with the primary objective of simulating realistic
3D environments, both indoor and outdoor with a single robot or a swarm of tenths of robots.
Its rendering is based on the Blender Game Engine and uses the physics engine Bullet [14].

V-Rep, by Coppelia Robotics, is a software platform for robot simulations with a dis-
tributed control architecture in which each object can be controlled individually. It supports
several physics engines like ODE, Bullet and Vortex [15].

4Some of these packages are going to be mentioned later in this dissertation, such as rviz and rqt.

2.3 Simulation and 3D modelling tools for human-robot interaction 11

Webots by Cyberbotics is a development environment for simulating mobile robots, in
which the user can design his/her own complex robotic setup, with one or several robots.
Webots uses a custom version of the ODE as its physics engine [16].

A comparison of their technical characteristics is presented in Table 2.1, while a compari-
son of the support infrastructure provided by each developer and/or community is presented
in Table 2.2. Moreover, only Gazebo provides the percentage of coverage from function and
branch testing (52.9% and 44.5% respectively) as seen in the Gazebo website [13].

Table 2.1 Technical comparison between simulators

Software
Programming

Language
Supported
Formats

Extensibility
Robotic

Middleware
User

Interface
Headless

Simulation

Gazebo C++ SDF/URDF Plugins (C++) ROS, Player, Sockets GUI Yes

MORSE Python unknown Python
Sockets, YARP,
ROS, Pocolibs,

MOOS

Command Line Yes

V-Rep LUA
OBJ, STL,
DXF, 3DS,

COLLADA, URDF
API, Addons, Plugins Sockets, ROS GUI Yes

Webots C++ WBT, VRML’97 Plugins (C++), API ROS, URBI, NaoQI GUI Yes

Table 2.2 Support infrastructure of the simulation platforms

Software
Mailing

List
API

Documentation
Public Forum

User
Manual

Issue
Tracker

Gazebo Yes Yes Yes Yes Yes
MORSE Yes N/A No Yes Yes
V-Rep No Yes Yes Yes Unknown
Webots No Yes Yes Yes Yes

In terms of available actuators and sensors, all of them have the same support: both
generic kinematic chains and force-controlled motion actuators. Regarding sensor types, all
of these simulation environments support modelling odometry, IMU, collision, GPS, cameras
(monocular, stereo and depth), laser scanners (2D and 3D), and boast a full Microsoft Kinect
model.

12 Background and methods

The robot families supported by each simulator are reported in Table 2.3.

Table 2.3 Supported robot families

Software
Ground
mobile
robots

Aerial
robots

Underwater
robots

Robotic
arms

Robotic
hands

Humanoid
robots

Human
avatars

Gazebo Yes Yes Yes Yes Yes Yes Yes
MORSE Yes Yes Partial Partial No No Yes
V-Rep Yes Yes No Yes Yes Yes Yes
Webots Yes Yes Yes Yes Yes Yes Yes

Analysing this objective information we can conclude that Gazebo and Webots stand out
from the 4; however Gazebo is slightly ahead in terms of support infrastructure.

Finally, according with a survey about simulation frameworks based on user feedback[12],
Gazebo is the most used and known simulation software amongst the population in study,
mostly for the community around it, being open source and for being the most suitable for
research in a subjective point of view.

In order to simulate an environment, one needs to build the models using 3D modelling
tools, and in this case (robotic applications) these tools must be able to work with the
COLLADA format (easily parsed to SDF or URDF), as it is a type of format that contains
all of the 3D information and the materials, being the only compatible with Gazebo to do
so [17]. The most relevant tools in this case are Maya, 3DStudioMax and Blender. This 3
solutions are very similar in features, so the criteria for comparison should be price, ease of
use and operative system compatibility.

Regarding the first criterion, the open source software Blender is superior comparing
with its competition that are subject to licensing costs of thousands of euros. As for ease of
use, Blender is also superior, since 3DStudioMax and Maya are professional software tools
used in the game develop and animation industries – due to the simplicity of the modelling
demands of the work reported in this thesis, and without the use of complex animations,
Blender is the most suitable solution, with no added difficulty for the user. Finally, both
Maya and Blender are compatible with Linux, OSX and Windows, while 3DStudioMax is
Windows only.

2.4 Graphic user interfaces for robotic applications 13

Fig. 2.5 IMPEP and table model created in Blender and inserted into a Gazebo world.

Considering all this information and that previous existing models of IMPEP were already
made in Blender, this software was chosen to build the final and current version of the IMPEP
model used in the simulator. The development pipeline for modelling in this work can be
seen in figure 2.5.

2.4 Graphic user interfaces for robotic applications

As described in section 1.1, with the growth in complexity of robotic systems, a user or even
a developer can easily become overwhelmed with information, thus becoming more difficult
to have an overall view of the operations, control the system and acquire and handle data. In
order to organise all of this information and give the desired control to the use, the graphic
user interface must be designed in order to be simple and intuitive. We are surrounded by
human-machine interfaces (HMI) in our daily life, ranging from a LED showing the on/off
status of a TV to the interface of an automatic register in a supermarket.

Applying HMI to robotics is as important as the system itself – it is critical that the user
possesses and and is familiar with the right tools to work with the system.

14 Background and methods

Fig. 2.6 Care-O-Bot3 dashboard (srs_ui_pro) created in wxWidgets. In 1 we have the Tools
menu, in 2 a request events panel, 3 the skype panel for communications, 4 actions panel, 5
status panel, 6 options panel and finally 7 with objects on tray panel. — publicly available
online, taken from [18] .

As with any software development project, there are several choices to make, from the
programming language to the development framework itself. The most relevant frameworks
are listed in Table 2.4. Among these, Qt [19] or wxWidgets [20] (an example can be seen in
Fig. 2.6) allow the developer to create a complex and attractive GUI completely personalised
to his/her system.

However, in recent ROS distributions there is a tool named rqt that is basically a frame-
work for plugin development. In rqt, a developer can build his/her own perspective from
plugins of all the existing GUI tools in ROS, namely image viewer, terminal, 2D plot, node
and package graphs, pose viewer and even Rviz itself [21]. If the available plugins are not
suitable for the needs of a project, the developer can either edit an existing plugin or even
create his/her own plugin (either in C++ or Python). All of this information is conveniently
summarised in Fig. 2.7.

2.5 Remote robotic experimental laboratories 15

Table 2.4 Most used development frameworks available for Unix systems

Toolkit name
Operative System

compatibility
Programming

language License

Qt Windows, OSX, Unix C++ LGPL
wxWidgets Windows, OSX, Unix C++ WxWindows license
Ultimate++ Windows, Unix C++ BSD

GTK+ Windows, OSX, Unix C LGPL

Fig. 2.7 HMI development frameworks supporting ROS.

2.5 Remote robotic experimental laboratories

Nowadays with the emergence of robot middleware and systems, robotics have drastically
advanced. However there are some restrictions that can hinder this evolution, namely the
price of the equipment, limited experimentation time and even availability of resources. In
order to deal with these restrictions, a recent trend has emerged – remote experimental labs.
These allow remotely sharing robot middleware infrastructures in a modular way with the
broader scientific community, making it easier to compare and contribute to the research of
others.

Many robotic researchers have resorted to web technologies for remote robot experimen-
tation, data collection and HRI studies. There are examples of remote access and control of
robots from as early as 1995, in the case of [22].

16 Background and methods

Unlike ROS’s architecture of distributed publishers and subscribers, remote experimental
labs use a client-server architecture. This kind of systems divide the workload, with dedicated
servers being responsible for providing services requested by each client. The arrival of
new web technologies such as HTML5 and JavaScript makes it possible for developers to
create appealing and sophisticated interfaces. With the use of protocols such as Rosbridge,
the communication between a web browser and ROS can be made through data messages
contained in JSON. JSON is a lightweight data-interchange format with which Rosbridge
communicates with ROS itself [23].

In the code snip presented in Listing 2.1, we can witness this concept in use via a
Javascript example of a topic publication defining the name and message type as well as the
message itself, composed of linear and angular velocity vectors.

// ----------------------- Publishing a Topic ----------------------//

var cmdVel = new ROSLIB.Topic({

ros : ros ,

name : '/cmd_vel ',

messageType : 'geometry_msgs/Twist'

});

var twist = new ROSLIB.Message ({

linear : { x : 0.1, y : 0.2, z : 0.3},

angular : { x : -0.1, y : -0.2, z : -0.3}

});

cmdVel.publish(twist);

Listing 2.1 Rosbridge Topic Declaration and message publishing

With the above style of coding, the developer can easily create widgets to incorporate
functionalities such as teleoperation controllers, topic and node listings in similar to the PR2
remote laboratory seen in Fig. 2.8.

2.5 Remote robotic experimental laboratories 17

Fig. 2.8 PR2 remote laboratory using Rosbridge and mjpeg_server [24]. In this remote lab
we can se a teleoperation interface, bandwidth logs and camera streams. Figure from [25].

In order to address the development of a great variety of applications, RobotWebTools
[26] created three libraries to help with web-based HRI, namely roslibjs, ros2djs and ros3djs
for visualising either 2D or 3D ROS data types, allowing the user to see both RGB messages
and point clouds in a HTML <canvas> element.

Besides seeing ROS information in the form of images, we also need to transmit them
over rosbridge – for this end, the ROS package named web_video_server is used. Within
this package there are two streaming options for the developers to use. The first option is
based on the deprecated package mjpeg_server, and consists in converting the video stream
from the desired ROS topic into a mjpeg stream (a sequence of jpeg images), this stream
can then be embedded into any HTML tag. The second option consists in coding the
video with the VP8 codec, as stated in [27] – this codec has a low computational complexity
and high compression efficiency. To embed the stream using this codec, the developer has to
use the new <video> tag in HTML5, this creates a limitation in the web browsers supported
(typically Chrome and Firefox have a good support). This option also has an unavoidable
delay in the transmission due to the buffering within the video codec itself.

Chapter 3

Implementation and results

3.1 Putting it all together – a ROS framework for the CASIR-
IMPEP platform

The expected outcome of this work is a unified ROS-supported framework designed so as
to attain the objectives laid down in section 1.2, allowing the CASIR attention middleware
represented in Fig. 2.1 to be used within the context defined by those objectives and the use
of the IMPEP platform. Additionally, it is a desired property that this framework be easily
adaptable to conform with any robotic head with some or all of the same characteristics
as IMPEP, so as to be used with any robotic platform with innate multisensory attention
capabilities. A diagram summarising these desiderata is shown in Fig 3.1.

Fig. 3.1 Framework goals for the IMPEP platform, addressing both local and remote user
needs while providing a viable bridge to the existing middleware.

3.1 Putting it all together – a ROS framework for the CASIR-IMPEP platform 19

This system, detailed in the diagram of Fig. 3.2, we can have either the simulated or
the real version running at once, both of them publishing sensor information to the same
ROS topics (a concept represented by the Common Driver API module in the diagram). The
published topics can be subscribed by the attention middleware nodes or seen directly by the
remote and local users through the respective GUIs.

Fig. 3.2 Simplified system dataflow.

Commands, on the other hand, follow almost the inverse path, the only difference being
the non-existence of a direct connection between the GUIs themselves and the physical, as
well as virtual, actuators. Manual control of both versions of the robot can be made through
a node in the attention middleware using terminal commands, which can be sent within the
local GUI (see section 3.4).

Since the CASIR was built on an older ROS distribution – ROS Fuerte, the last distribution
to use rosbuild (a CMake based build system for ROS) as the build method – a full scale
migration had to be done to the entire middleware. This was due to an incompatibility with
recent tools selected for this project (e.g. gazebo version, rqt itself), the previous system
didn’t have the minimum capabilities to execute such framework in the desired fashion.

With this migration, the CASIR-IMPEP middleware was now up-to-date and running
with ROS Indigo, one of the most used ROS distributions, now using catkin. This successor
of rosbuild combines CMake macros and Python scripts to provide improved functionality
over CMake’s normal work flow. Since it was a prerequisite for the migration, the operative
system itself was upgraded from Ubuntu 12 to 14.04, and the CUDA1 and OpenCV APIs,

1A GPU programming environment by NVIDIA. The CASIR-IMPEP middleware uses this API indirectly
through OpenCL, an open-source GPU programming environment. Please refer to [28] for more information.

20 Implementation and results

and also all hardware drivers, were updated accordingly. In a nutshell, this migration allowed
us to use more recent and powerful tools and ROS packages to create the desired modules.

Throughout the remainder of this chapter each of the developed modules are going to be
described in detail, both in terms of implementation and behaviour.

3.2 Implementation details for the Gazebo-based simula-
tion package

As seen in section 2.3, Gazebo stands out from the abundant variety of robotic simulator
options that exist in the research community nowadays. However there are also multiple
versions of Gazebo that differ from one another in features, support and system compatibility.

In the previous version of the system (as mentioned previously, using ROS Fuerte and
Ubuntu 12), there already existed a tentative ROS package named simulator_gazebo, a
preliminary, crude attempt at a Gazebo project. After the migration, we were able to use
a more recent and standalone version of Gazebo. The official Gazebo version for ROS
Indigo is 2.2 from 2013-11-07; however version 4.0 was the last released under the ROS
Indigo distribution and added very important features, not only for the work at hand, but
also for future work. More specifically, Gazebo 4.0 is the first to include a human model
with animation capabilities, an essential tool for generating HRI simulations, and features
such as copy-and-paste models via GUI. It also includes clear documentation, and, most
importantly, Razer Hydra and Oculus Rift support, which are very interesting for future work
on simulation.

In our case, there were three main packages to create in order to build a complete
robot model that is fully compatible with ROS: impep_gazebo, impep_controller and
impep_description.

3.2 Implementation details for the Gazebo-based simulation package 21

Fig. 3.3 IMPEP model packages for simulation.

As seen in Fig. 3.3 the main package is impep_gazebo, which includes the world file
(addressed in more detail in subsection 3.2.3), the avatar scripts (section 3.2.4) and the ROS
launch file.

The impep_description, package is responsible for the robot model itself and contains
the 3D meshes of each individual part (modelled using Blender – see section 2.4) which
will be the links of our robot. The links are static parts, which connect the joints of an robot
together, while the joints are parts of the robot which actually bend or move, together these
components form a kinematic chain. Using the meshes we can build the URDF (Unified
Robot Description Format) model, which is an XML format describing the links and joints
of the robot, defining the geometry, position and collision mesh of each 3D component, and
consequently resulting in models such as represented in Fig. 3.4.

22 Implementation and results

Fig. 3.4 IMPEP virtual model evolution. Model (1) was the pre-existing, preliminary IMPEP
model: it had no controller, no defined collisions, and did not faithfully represent its geometry.
Model (2) is the upgraded physical model of IMPEP, completely to scale in terms of mass and
dimensions. Finally, model (3) shows the addition of the collision mesh and joint referentials,
which all together make up the final version of the simulated IMPEP.

Natively in ROS Indigo there is a tool named check_urdf that, if the URDF file is well
built, parses the file and prints a description of the resulting kinematic chain2.

With the URDF file successfully created and parsed, the next step was to address the
sensors and actuators of the model. The models for the former, described in the following
section, are also included in the impep_description package. For the latter, a third and
final package, impep_controller was developed. This package is responsible for joint
controllers and will be addressed in section 3.2.2.

3.2.1 IMPEP simulation – sensors

The IMPEP model has three visual sensors: two RGB cameras, and a Microsoft Kinect
sensor: These were modelled as faithfully as possible in the URDF IMPEP model.

More specifically, the RGB stereovision set-up, mounted so as to allow pan, tilt and
version using IMPEPs actuators, consists of a pair of Guppy F-036 [29]. These are ultra-
compact VGA cameras for high contrast applications that support HDR (High Dynamic
Range) mode. Further information and specifications are presented in Table 3.1.

2The output of this tool for the upgraded IMPEP model is included in Appendix A.

3.2 Implementation details for the Gazebo-based simulation package 23

Table 3.1 Guppy Firewire RGB cameras specifications

Guppy F-036 Specifications

Interface IEEE 1394a - 400mb/s
Resolution 752 (H) x 480 (V)
Sensor OnSemi MT9V022
Sensor type CMOS Progressive
Max frame rate at full resolution 64 fps
ADC 10 bit
Bit depth 8 bit
Mono modes Mono8
Raw modes Raw8
Power requirements 8V to 36V
Power consumption (@12V) <2W
Mass 50 g
Body dimensions (L x W x H in mm) 48.2 x 30 x 30 (including connectors)

Two types of important characteristics in terms of simulation modelling are presented in
this table, the first of which being physical characteristics of the camera, such as mass and
body dimensions. In order to create a faithful virtual representation of the cameras, their 3D
model followed these parameters exactly. While the mass has to be inserted in the URDF
and can be altered with the change of a variable, the dimensions on the other hand must be
changed in the 3D mesh itself, implying a change of the corresponding Blender model.

The second type of relevant characteristics are the technical specifications of the camera,
namely its frame rate, resolution and bit depth. In order to create a virtual camera with these
specifications, a Gazebo sensor with the type "camera" was added and a Gazebo-ROS plugin
named libgazebo_ros_camera.so attached to both right and left camera lens models. Next,
image height and width as well as the frame rate were defined. The above mentioned plugin
is responsible for the publication of the camera data to a rostopic specified in its parameter
definition.

24 Implementation and results

Fig. 3.5 Demonstration of the effect of Gaussian noise modelling on simulated IMPEP
camera image quality. Gaussian noise with zero-mean was applied in all cases: from left to
right, the standard deviations are 0.007, 0.1 and 1, respectively.

Finally, the effect of Gaussian noise was also modelled in order to simulate residual
imperfections intrinsic to every real camera. An example of the effect of different standard
deviations can be seen in Fig. 3.5 – as can be readily seen, this is an important variable that
can heavily influence the outcomes of image processing.

Having successfully integrated the virtual camera sensors into the IMPEP model, the
next step was to add the depth camera, the Microsoft Kinect V1 RGB-D sensor. There
already exists a Microsoft Kinect 3D model natively available in Gazebo that follows the
body dimensions presented in Table 3.2; however, the remainder of the parameters had to be
inserted into the model by hand.

Table 3.2 Microsoft Kinect V1 technical specifications

Microsoft Kinect Specifications

Depth image size VGA 640 (H) x 480 (H)
Operation Range 0.6 meters ∼ 4.6 meteres (at least)
Max frame rate at full resolution 30 fps
Power requirements 12V
Power consumption idle (@12V) ∼ 3.3W
Power consumption active (@12V) ∼ 4.7W
Body dimensions (L x W x H in mm) 63.5 x 279.4 x 100 (including connectors)
Mass 1370 g
VGA Horizontal FOV 62º
IR Horizontal FOV 58º

3.2 Implementation details for the Gazebo-based simulation package 25

As with the RGB cameras, for the Kinect we introduced a virtual sensor in the model,
referenced to the Kinect link, this time with the type "depth", in which we defined image reso-
lution, frame rate, FOV (field of view) and its operating range (minimum and maximum). For
the simulated depth camera to communicate with ROS, the libgazebo_ros_openni_kinect.so
plugin was used, allowing us to define the camera namespace and topics, with the plugin
fully configured and tested we had the output seen in figure 3.6.

Fig. 3.6 Point cloud generated by the virtual Kinect sensor, transmitted to ROS through a
topic. Visualization in Rviz.

After implementing all the visual sensors in the model, the kinaesthetic sensors, i.e. the
limit/end of movement sensors, were modelled. In the real IMPEP, this limit signal is sent by
several micro-switches, both for the pan and tilt movements of the head itself, as well as for
the pan movement of the individual cameras.

In order to implement a virtual version of this feature, we were forced to restrict the range
of motion in certain joints; as this relates also to the virtual actuators we will explain the
specifics of this implementation in the next section.

3.2.2 IMPEP simulation – actuators

IMPEP was built with two different types of DC motors – two PMA-11A-100-01-E500ML
motors (one for pan one for tilt) and two PMA-5A-80-01-E512ML motors (one for each
camera axis) all from Harmonic Drive (further information about the motors in table 3.3 and
[30]).

26 Implementation and results

Table 3.3 Motor characteristics.

Unit PMA-5A PMA-11A

Maximum output torque Tmax [Nm] 0.39 5.0
Maximum output speed nmax [rpm] 180 100
Maximum motor speed nmax [rpm] 9000 5000
Rated motor speed nN [rpm] 4500 3500
Armature Resistance R [Ω] 7.4 1.58
Armature Inductance L [mH] 0.3 0.29
Weight without brake m [kg] 0.1 0.5
Moment of inertia without brake Jout[x10-4 kgm2] 3.68 109
Dimensions [mm] 100 x 100 x 3 150 x 150 x 6
PID units [100, 0.1, 10]* [100, 0.1, 10]*

* - generic PID, this works with extra intrinsics joint parameters inserted in each motor joint of the XML file
such as damping

To emulate virtual motors using URDF, all joints corresponding to each motor must be
appropriately defined. For example, a joint that only connects two links with no movement
(in our example, the stand of IMPEP and the base of the head) will be stated as“fixed”, while
a joint connecting two links that will rotate in one of the referential axis (e.g. the base of the
head and bottom of the frame where the pan movement occurs) will be stated as a “revolute”
joint.

Fig. 3.7 Revolution joints emulating pan and tilt motors. Circles represent around which axis
the rotation occurs.

3.2 Implementation details for the Gazebo-based simulation package 27

The differentiation between fixed and revolute joints will result from the low-level
foundation implementing the virtual actuators according to the technical specifications of
each motor.

As mentioned at the end of section 3.2.1, the implementation of end of movement
sensors consists in creating an upper and lower movement limit in the revolute joints. For
example, the head pan joint will be limited to movements between -1.57 to 1.57 Radians (or
approximately -90º to 90º). With these restrictions in place, the virtual IMPEP will have the
same range of motion as the real one in every moving joint.

In addition to movement, effort and velocity limits were also implemented, not only
to emulate the safety mechanisms of the real IMPEP, but also to further approximate the
behaviour between both versions of the robot.

With all the limits and joint parameters defined, the impep_controller ROS package
was developed using the libgazebo_ros_control.so plugin in order to allow communica-
tion between Gazebo and ROS, similarly to the camera plugins. This package is responsible
for several actions:

• 1st - Corresponding each joint to an actuator interface, while defining the mechanical
reduction and type of Joint Command Interface

• 2nd - Defining a specified rate in which the joint states will be published

• 3rd - Corresponding each PID coefficients to the respective effort controller

• 4th - Converting joint states to TF transforms for rviz and other ROS tools

3.2.3 Environmental simulation

In a robotic simulation, modelling the virtual surroundings that constitute the experimental
environment the robotic platform will operate on is as crucial as modelling the platform itself.
This requirement was taken particularly seriously, given that the CASIR-IMPEP framework
is meant to be used in the highly unstructured and dynamic context of HRI.

Rigorously applying simulation terminology, this environment in a Gazebo simulator is
called “world”, and this term is used to describe a collection of not only robots and objects,
but also global parameters including the sky, ambient light, and physics properties.

The foundation to build a custom world is the Gazebo preset named empty.world, shown
in Fig. 3.8, which is used by the developer to populate with objects and change textures
according to the desired specifications.

28 Implementation and results

Fig. 3.8 The default Gazebo world, called empty world, in which a set of default parameters,
such as gravity and ambient lighting, are already predefined.

When defining the physics parameters of the simulator, a great care was invested in
configuring parameters such as gravity and update rate in order to achieve the most realistic
result possible while keeping real-time performance.

In this respect, achieving
realtime f actor = 1 (3.1)

means
∆Tsimulated = ∆Treal (3.2)

In the case of our project, it was important to model a virtual experimental environment
that would resemble the environment of our real-life lab, specifically the work area for HRI,
where the user has a table with several objects of different colours designed to purposefully
study attention mechanisms.

3.2 Implementation details for the Gazebo-based simulation package 29

(a) Simulated set up (b) Real set up

Fig. 3.9 Comparison between simulated and real set-up for HRI.

In Fig. 3.9 we have a direct comparison between the work area of the simulated and
real IMPEP. Some key variables like distance to the table, table-top and experimental object
colour were approximated as much as possible in the simulated environment. The rest of
simulated laboratory was populated with roughly the same kind of static objects (e.g. tables
and bookshelves); some additional objects in the room were purposely modelled as being
red, so as to add perceptually salient entities, which can be used as potential distractors in
attention studies [31].

Objects were introduced into our custom world through the Gazebo GUI with the de-
sired position and orientation, using the UI features present in Gazebo 4.0. However the
change of textures, physics and fine tune of parameters were made directly into the world
XML file, room_only.world, which will be called in the main launch file of the package
impep_gazebo.

3.2.4 Avatar and interaction simulation

Being able to repeat complex experiments in real and simulated human-robot interaction
(HRI) settings is one of the objectives of this work. Therefore, a very important feature in
this simulator, described in this section, is the availability of a virtual human model with
movement and interaction capabilities. Fortunately, as stated at the beginning of section 3.2,
the chosen version of Gazebo was the first to include such a feature.

In Gazebo, animated models are called actors – as the name indicates, these extend
common models by adding animation capabilities.

These animations may be divided into three classes:

30 Implementation and results

1. Skeleton animations in which the motion is relative between links in one model.
Gazebo supports two different skeleton animation file formats, COLLADA (.dae) and
Biovision Hierarchy (.bvh).

2. Trajectory animations in which the body moves as a whole through a series of prede-
fined waypoints.

3. A combination of both that allows for a skeleton animation to move around the world.

Animations are relevant if a project requires entities following predefined paths in sim-
ulation without being affected by the physics engine; in other words, if the actor’s body is
not supposed to have a collision mesh or be influenced by gravity, avoiding accidental falls
during an odd trajectory waypoint. Their 3D meshes and respective motion will, however, be
detected by any visual sensor, yielding images such as shown in Fig. 3.10, and appearing in
3D reconstructions such as the point cloud shown in Fig. 3.6.

Fig. 3.10 View from a virtual RGB camera of a 3D actor model inserted into an empty
Gazebo world.

In a preliminary animated scene of a simple walking skeleton controlling a male 3D
model moving in a circular trajectory was implemented, thus simulating a male subject
walking in front of the IMPEP set up. This was implemented in the human model XML
file itself and then included in the room_only.world file, thus building the complete world
where the IMPEP will be inserted. More animations will be created in future work taking this
preliminary animation as a template, using more complex coding and advanced technologies
– this will be discussed in section 4.

3.2 Implementation details for the Gazebo-based simulation package 31

Fig. 3.11 Image of actor model taken by one of the RGB cameras with facial features detected
by the CASIR attention middleware (note: in this preliminary test, the image was captured
and processed while the actor was stationary).

Experiments in the spirit of the CASIR project, in which artificial attention mechanisms
imply both exhibiting attentional behaviour but also reacting to the attentional behaviour of
the interlocutor, require that the fixation point of the human subject is determined by the
attention framework (a process called head pose and gaze estimation). This requires that the
3D model of the actors includes detectable facial features (as seen in figure 3.11) – see [32].

In conclusion, for the purpose of studying the role of attention in HRI, animated human
avatars representing experimental subjects will be required to be able to not only perform
scripted full-body motion (i.e. walking and/or running, sitting, laying down, etc.), but also
scripted head movements, so as to emulate focus-of-attention changes (i.e. gaze shifts).

32 Implementation and results

3.3 Implementation details for the rqt-based user interface

Fig. 3.12 Rviz Interface, visualising simulated camera images and a 3D point cloud recon-
struction.

In most projects, spatial visualisation is implemented using Rviz, as shown in Fig. 3.12. In
this figure, we can see what a GUI would be like in our application context if we only used
Rviz – in spite of appearing to be a very complete tool, it is not as simple or interactive
as required for our project. In order to capitalise on the advantages of Rviz while adding
increased flexibility in GUI design, rqt_rviz was used [33]. This plugin embeds Rviz into an
rqt interface while keeping all of its features and functionalities; however, unlike the rqt 2D
visualisation plugin, it still has a dependence on its ROS counterpart.

The first step for building an intuitive and simple graphic user interface was to understand
the specific needs of the user/developer. With the abundance of visual representations
required to monitor camera feeds or processing results from the attention middleware (e.g.
point clouds, 3D reconstructions, audio signal waveforms, etc.), the developed GUI must be
able to display the greatest variety of information possible, while maintaining an uncluttered
dashboard so as to present a maximum level of detail for each data visualisation, and all of
this allowing the greatest degree of on-the-fly reconfigurability possible. For development
and debugging purposes, the convenience of not having to change windows in the Desktop to
access text terminals should be addressed. Therefore, the GUI dashboard was configured so
as to allow the display of text terminals in embedded frames in the interface.

3.3 Implementation details for the rqt-based user interface 33

Fig. 3.13 Mockup of the first version of the rqt-based interface. Each frame in the interface
in this version, all of which with predefined fixed sizes in the dashboard, was preconfigured
to display information as follows: (1) is the main camera visualisation frame; (2) is the
main processed data (e.g. 3D reconstructions, signal waveforms, etc.) visualisation frame;
(3) contains two secondary frames for camera (or related data, such as depth maps, etc.)
visualisation; (4) contains frames for two support terminals. Note, however, that all of these
frames are reconfigurable to display whatever is needed by the user/developer on the fly.

A first version of the GUI layout implementing these features is presented in Fig. 3.13.
As rqt implements the various GUI tools in the form of plugins, there was a need to study
which plugins were suitable for this implementation, what is their operating principle and
how they could be included in order to comply with this mockup.

The plugin used for 2D visualisation is called rqt_image_view [34] – it is an rqt version
of ROS’s image_view [35], in which the system uses image_transport to provide classes and
nodes capable of transmitting images in arbitrary over-the-wire representations; however
they have no dependencies between them. With this plugin, the developer can abstract from
the complexity of communication, seeing only sensor_msg/image type messages. Alas,
image_view is not very user friendly, since the desired topic must be selected by specifying
it when running the tool in a terminal. Fortunately, the rqt version sidesteps this issue by
adding a dropdown menu feature showing all of the sensor_msg/image messages available.
Two additional interesting features of this plugin are save image and topic refresh buttons
(relevant in case new publisher nodes are launched).

34 Implementation and results

The final feature of the GUI was the ability to embed a terminal in an interface frame.
For this end, we used rqt_shell [36], a Python GUI plugin that allows the developer to have
several terminals in an rqt layout. This plugin supports a fully functional embedded XTerm3

[36]. The main difference between XTerm and Terminal (Ubuntu’s default terminal) is that,
despite the fact that the latter includes more features, while XTerm is minimalistic some of
its features are more advanced than the ones in Terminal.

Having chosen the appropriate plugins, these were used to assemble the desired interface.
Assembly was performed by resorting to additional interesting features of rqt, namely the
ability to dock multiple widgets in a single window. Since this feature only defines the relative
position of the widgets, in order to fine tune the rqt-based user interface a .perspective

file needs to be generated and edited to define interface specifications. This file is essentially
a configuration file for the layout and all of the plugins – it contains, not only the relative
position of every widget, but also the options and configurations of each one of the plugins,
such as:

• Default subscribed topics.

• Parameters of Pointcloud representation.

• Terminal default path.

• Rviz active windows and tools.

Using the .perspective file, the user can run the rqt interface in any computer with a
ROS distribution version equal to or above Indigo to be fully functional. We were, therefore,
able to meet the important requirement of separating the computational workload resulting
from the attentional middleware processing and visualisation, as depicted in Fig. 2.3.

A running instantiation of the first prototype of the GUI is presented in Fig. 3.14.

3It therefore needs xterm and only works on X11 with Qt 4.

3.3 Implementation details for the rqt-based user interface 35

Fig. 3.14 Running instantiation of the first version rqt-based interface applied to the real
system. All of the displayed topics are from the real Kinect sensor and RGB cameras –
rectified RGB image from left camera on the main frame on the top left, colour-coded 3D
point cloud reconstruction from the Kinect on the main frame on the top right, and the
grayscale image corresponding to the right camera and a depth map on the secondary frames
on the bottom left, respectively from left to right. Instructions such as motor commands or
package launching, and also other system commands, are conveniently conveyed through the
two embedded terminals on the bottom right frames.

Despite this first prototype already being a relatively complete and functional user
interface, it is more appropriate for developers who are knowledgeable enough to run
necessary launch files through the terminals (e.g. to switch between feeds of the real
system to the outputs of the Gazebo simulator, or to run or stop any specific set of attention
middleware modules), so there was a need to further improve the interface by adding a new
feature – a user-friendly package launcher. To do so we explored an experimental plugin
named rqt_launch, which allows the user to:

• See all .launch files on the local file system through a dropdown menu.

• See all nodes defined in a .launch file (after selecting a .launch from the previous
item).

• Run and stop the active .launch file.

• Run and stop individual nodes from the active .launch file

36 Implementation and results

Consequently, this feature was added together with an improvement to the terminal
plugin, allowing it to display two windows in the same space (with the use of tabs). The final
version of the rqt-based interface is shown in Fig. 3.15.

Fig. 3.15 Instantiation of the final version rqt-based interface applied to the real system. All
of the topics are from real IMPEP sensors, as in Fig. 3.14. On the bottom right frame, the
launcher plugin can be seen in action – files and nodes are launched using interface buttons
provided by this plugin.

3.4 Implementation details for the web service supporting
the CASIR-IMPEP remote lab

The second goal of the work presented in this thesis, as stated in section 1.1, was to provide
a means for any authorised researcher from anywhere outside the laboratory to access the
CASIR-IMPEP framework via a common web browser. As stated in section 2.5, this module
was designed so as to use a client-server architecture.

As explained in section 2.5, to open a ROS environment to non-ROS systems, Rosbridge
is the tool of choice. Additionally, since streams of image topics are to be displayed in the
HTML interface, therefore requiring a sustained connection with the appropriate bandwidth
and upload/download speeds, the Web_Video_Server tool was also used [37].

The first implementation step was to set up the server side. Rosbridge is a package that
does not come in the native ROS installation, so it needs to be installed using: sudo apt-get

install ros-<rosdistro>-rosbridge-suite, with <rosdistro> corresponding to the

3.4 Implementation details for the web service supporting the CASIR-IMPEP remote lab37

Fig. 3.16 CASIR-IMPEP remote lab, the HTML web page already connected to the server
and streaming one topic.

appropriate ROS distribution, in our case Indigo. After installing, the server IP and port need
to be configured. As the laboratory has a firewalled LAN, a “tunnel” had to be created in
order to grant outside access to the main project computer (that will be our server).

After the connection was configured, it was necessary to create and configure the video
stream as well using Web_Video_Server. This tool opens a local port, and waits for incoming
HTTP requests. When a video stream of a ROS image topic is requested via HTTP, it
subscribes to the corresponding topic and creates an instance of the video encoder.

In order to easily launch all the packages necessary to run the servers and middleware
launch files, several shell scripts were created. The main shell script is responsible for
launching:

• A roscore node.

• Rosbridge Server.

• Web Video Server.

• All of the real IMPEP’s sensors.

There is also a simulation counterpart of this script, that launches the Gazebo simulator
instead. Any desired combination of launches can be achieved and scripted according to
specific needs. The launches, however, don’t necessarily need to be scripted: they can be ran
individually through the terminal by the user.

For the client side of the web service, the user interface was created using a simple
HTML file – see Fig. 3.16. The created webpage appears to its user as an empty frame with

38 Implementation and results

a connection button and a textbox with a default IP address (which should correspond to the
server IP address). In a lower layer, however, it has JavaScript modules that communicate
with Rosbridge through websockets, namely:

• Starting_01.js is responsible for loading the page and initializing an empty con-
nection.

• Connection_01.js creates the connection defining the IP address, advertises, unad-
vertises, subscribes, unsubscribes topics and services.

• Ros.js ensures that JSON and WebSocket are available. An exception is thrown if not.

• Info_01.js gives information about topics, nodes and services running at server.

• Camera_01.js initialises the camera GUI and button listeners.

• Joystick_01.js sends control signals to defined command topics by joystick.

To create these scripts, we used as a template the work by Blaha et al., 2013 [38],
updated them with contemporary plugins and custom parameters so as to conform with our
requirements.

Fig. 3.17 Complete dataflow diagram of the web service. It can be divided into four layers:
Hardware Interfaces, ROS Middleware, Web Services and finally User Interface. The modules
in yellow represent the possibility to expand the system with new features. The "HTML Web
Server" represents an online host for the website, at present time the can be used with direct
possession of the html file and javascripts.

3.5 Experimental results 39

An overview of the complete system, from server to client passing through the communi-
cation protocols, can be seen in Fig. 3.17, including possibilities of expansion4.

3.5 Experimental results

The final stage of the work presented in this thesis was to test and evaluate the performance of
the developed framework in full-blown operation. To better understand the conditions under
which these tests were conducted, in the following text the specifications of the computational
hardware supporting the framework (Fig. 2.3) will be presented in detail.

The main computer comprises:

• GPU: 2 Asus GTX780 3GB DirectCU II OC units.

• CPU: 4 core Intel® Core™ i7-3770 @ 3.40GHz.

• Motherboard: Asrock Z77 OC Formula.

• RAM: 16GB DDR3-1600Mhz.

• SSD: 128GB KINGSTON SSDNow V200.

• HDD: Seagate Barracuda 1TB.

The visualisation computer is expected not to be as powerful as the main unit. To
validate this assumption we used a virtual machine (emulated in VMWare software) with the
following specifications:

• GPU: Gallium 0.4 on SVGA3D.

• CPU: 2 core Intel® Core™ i5-6300HQ CPU @ 2.30GHz.

• RAM: 3GB DDR3-2300MHz.

• HDD: 76.0 GB.

As for the remote CASIR-IMPEP lab clients, several different machines with various
operating systems were used for testing.

Our solution was evaluated in terms of features, usability and technical benchmarks –
results of this evaluation will be described in the following sections.

4More details in section 4

40 Implementation and results

3.5.1 Simulation and visualisation proof-of-concept

The CASIR-IMPEP simulator was designed, as explained in previous text, to provide a
virtual IMPEP model capable of interacting with the artificial attention middleware through
ROS, to provide a virtual representation of the laboratory, and finally to offer an animated
human model with enough features to be used in conjunction with the CASIR middleware so
as to produce functioning simulated HRI experiments.

These features were successfully implemented:

• The robotic model was created and is fully functional. It was compared manually to the
real IMPEP in terms of movement – while on manual control, sending the commands
to both versions of IMPEP at the same time, they had the same behaviour and response
time.

• The experimental environment was implemented with enough detail (i.e. objects, table,
etc.) so as to reproduce the most important aspects of the work area for HRI described
in [4], as seen in Fig. 3.9.

• A human model was added to the environment and its features proved to be realistic
enough for appropriate processing by the attention middleware, as can be seen in
Fig. 3.18.

Fig. 3.18 Face and pose detection in simulated environment seen through a post-processed
output window.

Fig. 3.19 shows a global view of the simulator taken from a third person perspective
with a high-resolution virtual camera. This third person perspective, besides providing a
useful overview of the current state of a given experiment, also allows conducting important

3.5 Experimental results 41

technical benchmarks, in order to assess CPU and GPU loads as well as RAM usage in the
main computer.

CPU and RAM usage was measured using htop5, while GPU usage was measured using
nvidia-smi6.

With further configuration of the simulator launch file, we were able to launch only the
backend of Gazebo – in other words, the Gazebo server without the client (Desktop UI).
This way all of the packages, controllers, computations and topics were active and being
published in ROS, however only in background. As a consequence, the user had no way of
seeing what is happening in the simulated world other than through IMPEP’s cameras and
the third-person view, making it all the more useful the existence of the latter for monitoring
the simulated experiment.

Table 3.4 Gazebo UI vs without Gazebo UI benchmark comparison. Percentages and memory
usage are relative to the specifications of the main computer

CPU RAM GPU

UI 24.18% 1422Mb 438Mb
Without UI 12.51% 1267Mb 276Mb

As can be seen in Table 3.4, the absence of a Gazebo UI reduced almost 12% of the CPU
load despite the need for an extra camera with higher resolution. As for main memory usage,
the difference was not that remarkable. GPU usage, on the other hand, was expected to also
drop slightly, since there was no need to render the entire world in real-time.

5htop is an interactive process viewer for Unix systems. It is a text-mode application (for console or X
terminals).

6nvidia-smi is a command line utility, supported by the NVIDIA Management Library (NVML), intended
to aid in the management and monitoring of NVIDIA GPU devices.

42 Implementation and results

Fig. 3.19 Final simulated environment in action with human model walking, seen from the
third-person perspective of the external simulated high-resolution camera.

The CASIR-IMPEP GUI was designed, as explained previously, to be fully connected
with the ROS middleware, to provide an intuitive interface with which any user can easily
select any topics he/she wants to visualise, namely complex views of processed data, and
finally to offer a means to start or stop any desired set of system modules. As a consequence:

• All of the sensor_msgs/Image messages published in ROS are visible in the UI.

• As seen in Fig. 3.20, in most of the frames in the dashboard, the user only needs to
select the desired topic from drop-down menus.

• Visualisation of complex displays of processed data has been implemented. As an
example, Fig. 3.20 shows us, in frame (2), the Rviz plugin displaying the pointcloud
data.

• The user can start and stop launch files, either using terminal commands in (3) or from
the launcher in (4) – see figure 3.20.

3.5 Experimental results 43

Fig. 3.20 [Final rqt interface with simulator topics and human model walking seen from high
resolution room camera (1). Depth information seen in rviz(2), cpu and memory usage in the
embedded terminal (3) and also the launcher (4).

Exhaustive tests were conducted to evaluate visualisation performance, namely including
CPU, RAM and GPU measurements, either running the GUI directly in the main computer
or passing topics to the visualisation computer, where they were shown using the rqt
interface running in a local ROS installation. These tests serve the purpose of assessing how
much of an added value there is in running visualisation in a separate computer.

More specifically, two operational scenarios were used: (1) local visualisation, where
we use the main computer to run everything, including real sensor drivers management and
the visualisation of IMPEP camera topics and point cloud data; (2) external visualisation,
where the main computer still runs real sensor drivers, but all visualisation is relegated to the
separate dedicated computer, described above, displaying the same topics.

44 Implementation and results

Table 3.5 Local vs remote visualisation benchmark comparison, the specifications of both
machines are those in section 3.4

Main Computer Benchmark

CPU RAM GPU
Local Visualisation 12.51% 1444Mb 344MB
External Visualisation 9.00% 1038Mb 144MB

Visualisation Computer Benchmark

Local Visualisation
(visualisation computer idle)

2% 824MB N/A

External Visualisation 61.30% 1217MB N/A

Table 3.5 shows the results for the two operational scenarios, in which we can see
that in the external visualisation scenario, the CPU load decreases in 3.51% for the main
computer. Furthermore, a decrease 400MB of RAM used and 200MB of graphical memory
in this computer is observed when comparing with the local visualisation scenario. On
the other hand, analysing benchmark values for the visualisation computer, we can see that
its computational load increases – CPU usage suffers by far the largest increase; however,
we need to take into consideration that the percentage for the main computer referes to a 4
core, 8-threaded CPU with 3.4 GHz of clock frequency, while the visualisation computer
only has 2 cores and 2 threads of lower clock frequency for the exact same computations.
Conversely, memory usage has a more direct comparison since it increases exactly in the
amount it decreases for the main computer.

Finally, we can measure the computational weight of both simulation and visualisation
running simultaneously, comparing the effects of the lack of UI.

Table 3.6 Results of the combining the aforementioned tests – data from the main computer.

CPU RAM GPU

UI + VIS 49.65% 2048Mb 535Mb
no UI + VIS 35.48% 1603Mb 368Mb
no UI + Remote VIS 31.38% 1240Mb 180Mb

Taking a closer look at Table 3.6, data is still coherent with the previous results: CPU
drops significantly after taking out the UI and even further with remote visualisation. As for
memory usage, conclusions are similar.

3.5 Experimental results 45

Testing these modules while connecting them to allnodes.launch, the main launch file
that runs every node of the attention middleware, however, becomes problematic.

Table 3.7 Results of the simulation and visualisation with the full attention middleware
running, data from the main computer.

CPU RAM GPU
Allnodes 99.93% 2956Mb 1662Mb
Allnodes + VIS 100.00% 3088Mb 1717Mb
Allnodes + VIS + no UI 100.00% 3310Mb 1879Mb

Having tested the computational burden of this launch alone we obtained the results
presented in Table 3.7. It is easy to see that the major system load comes from the middleware
itself, from Allnodes + VIS to Allnodes + VIS + no UI there is no difference in CPU usage
because it is already overloaded, the noticeable difference in this case is the decrease of the
real time factor in the simulator, it decreases to about 0.6.

In other words, using the current setup, and even relegating visualisation to an external
computer and removing the need to fully render the simulated environment on Gazebo, each
second passed in the “real world”, only 0.6 seconds were processed in the simulator, a very
important factor that needs to be taken into account by future developers and users.

3.5.2 Remote simulation and control proof-of-concept

The remote lab is the module for which less features were implemented and with more room
for improvement. Currently, only the core web service and a front-end interface of the remote
lab have been implemented. The interface, following the diagram of Fig. 3.17, allows the user
to see topics from the main computer from anywhere with just an internet connection and
the HTML file itself. It also allows to send commands to defined topics through a joystick
feature.

In summary, using the remote lab currently a user can:

• Select what topics to visualise.

• See what nodes, topics and services are available and running.

• Change the resolution and/or quality of the stream, to adjust to the speed of the internet
connection of the client.

• Control the simulated version of IMPEP with a joystick.

46 Implementation and results

The developer, someone with the capability of editing the JavaScripts above mentioned,
on the other hand, can do more than that, since the HTML and scripts are not hosted online
at the moment:

• Change the encryption of the video stream.

• Change any default values and parameters of the scripts.

• Create and include new scripts with ease - as the web site was created in a modular
fashion.

In order to benchmark network resource usage, the remote lab was tested through three
separate internet connections, specified in Table 3.8. In this study, several influential experi-
mental conditions were fixed, such as selected topic /right/camera/image_rect_color
(real system), resolution (640x480 the camera’s default), stream quality at 100%. Addition-
ally, in all experimental runs the chosen browser was Google Chrome (the most optimized
for Web_video_server applications7.)

Table 3.8 Internet connection benchmark. 1 - cabled connection inside the lab, 2 - wifi
connection at the Electrical Engineering Department (same building), 3 - wifi connection at
home.

Download Upload Ping Fps (avg.) Bandwidth (avg.)

Ethernet Cable 79.61 Mbs 96.12 Mbs 5 ms 25 12.2 Mbs
Wireless 1 23.90 Mbs 23.70 Mbs 5 ms 25 12.2 Mbs
Wireless 2 15.54 Mbs 17.47 Mbs 6 ms 25 12.2 Mbs

Considering the specifications of the three connections, and assessing their performance
in the conditions, we can confirm that the system is stable, exhibiting an fps average of 25
and 12.2Mbs of bandwidth occupation. Note that the same test was repeated having both
wireless clients running at the same time, without any change of values in each case.

The same test was performed with the simulated environment, and in this case, mostly
due to including joystick publishing commands (manual remote command of the real IMPEP
head is not allowed, for obvious safety reasons), average fps dropped to 22 and the bandwidth
occupation increased to 16Mbs. In any case, this does not represent a significant change in
performance.

7in point 3-Latency of [37]

Chapter 4

Conclusions and future work

Throughout this text, and in particular in Chapter 3, the overall objective and goals defined in
section 1.1 were shown to be satisfactory attained, and all the identified requirements met.

The simulator offers a faithful and useful model of IMPEP, and also provides a functional
virtual environment for HRI experimentation, including a simulated human actor with
animation capabilities and enough features for the CASIR attention middleware to promote
purposeful interaction.

The rqt-based visualisation software is intuitive, exhibits 2D and 3D visualisation capa-
bilities, features easy ROS topic selection, a launcher selector and advanced user terminal
embedding for debug and/or manual launch. It can also be used in a separate workstation
to save precious computational resources, and, as demonstrated in section 3.5.1, it can be
successfully ran in even a very low end computer with few restrictions.

As for the remote robotic laboratory it can connect researchers outside of the lab to the
framework via the Internet, and can even provide control of the simulated platform motors.

Every component acts in a synergistic fashion so as to complement the base framework
in a simple, modular, and optimised fashion, trying in full to minimise resource usage and
computational burden of the main computer.

Fig. 4.1 Overview of the several components of the proposed solution running in operational
conditions.

48 Conclusions and future work

Several improvements can be added to the proposed framework in future work. Fur-
ther improvements have been planned in two tracks: software improvement and hardware
inclusion.

In the first case – software improvement – starting with the Gazebo simulator, the major
advance can be made in terms of furthering the development of the simulated human actors.
The model itself can be improved (despite already displaying core features), for example by
resorting to 3D scanning [39] and creating the skeleton and joints accordingly, making it
possible to have a much more realistic reproduction of a human subject within the simulator.
In fact, on a much larger scale this can be applied to the entire room. A second improvement
related with the human model consists in the creation of a suite of action scripts, and later on
the development of a user-friendly toolkit to assist with script generation. Finally, it would be
important to add more joints to the skeleton, so as to allow for more sophisticated simulation
of human-robot interaction details, such as gaze shifts.

As for the rqt visualiser, the launcher section of the UI could be redesigned in order to
make it even more user-friendly, especially on what concerns non-developers. An improve-
ment that has already been planned for the near future involves implementing the layout
sketched in Fig. 4.2.

Fig. 4.2 New launcher plugin interface.

With this simplified design, two buttons and two switches, the main launch sequences
could be performed in one go, giving an advanced user still a way to launch more specific
nodes through the embedded terminals already implemented, or even through alternative
button dashboards. This new layout would allow to launch the following combinations:

• Simulation environment with all attention nodes (except the real cameras) .

• Simulation environment with manual motor position control.

49

• Real system with all attention nodes.

• Real system with manual motor control nodes.

Other obvious improvements would be to develop visualisation screens for the diverse
data displays needed for attention middleware development and monitoring (as mentioned
before, for example, different types of 3D reconstructions, signal waveforms, etc.).

Finally, as for the remote lab, the most important follow-up work would be, hosting the
web site in a server and to provide a safe handshake procedure for access authorisation. This
will imply the creation of a welcoming homepage through which the users would login and
request time slots to the webmasters, as currently only the action page of the remote robotic
lab has been developed. The action page should only be accessible to users already accepted
by the webmasters as the current time slot owners. In order to implement this, a PHP (PHP:
Hypertext Preprocessor) and SQL (Structured Query Language) front-end is needed. This
will allow the creation of a user database and a login system, essential for the future usability
and true opening to the outside community while ensuring safe access.

In terms of hardware inclusion, as stated in section3.2, Gazebo 4 comes with Oculus Rift
and Razer Hydra compatibility, which would give the user a higher level of immersion, and
more possibilities of human/object interaction inside the simulator.

References

[1] International Federation of Robotics, “Statistics - IFR International Federation of
Robotics.” [http://www.ifr.org/industrial-robots/statistics/ Online; accessed 1-August-
2016].

[2] V. Tikhanoff, A. Cangelosi, P. Fitzpatrick, G. Metta, L. Natale, and F. Nori, “An
OpenSource Simulator for Cognitive Robotics Research The Prototype of the iCub
Humanoid Robot Simulator.” 2008.

[3] L. Gomes and S. Bogosyan, “Current trends in remote laboratories,” IEEE Transactions
on Industrial Electronics, vol. 56, no. 12, pp. 4744–4756, 2009.

[4] P. Lanillos, J. N. Oliveira, and J. F. Ferreira, “Experimental Setup and Configuration for
Joint Attention in CASIR,” Tech. Rep. MRL-CASIR-2013-11-TR001, Mobile Robotics
Lab – Institute of Systems and Robotics, Coimbra, Portugal, November 2013.

[5] F. Weißhardt, “Care-o-bot-research: Providing robust robotics hardware to an open
source community,” 2011. [presentation].

[6] G. Metta, P. Fitzpatrick, and L. Natale, “YARP: Yet Another Robot Platform,” Interna-
tional Journal on Advanced Robotics Systems, p. 3(1):43–48, 2006.

[7] T. Construct, “The Construct - Just Simulate!,” 2016. [http://www.theconstructsim.com/
Online; accessed 29-February-2016].

[8] J. F. Ferreira and J. Dias, “Attentional Mechanisms for Socially Interactive Robots–A
Survey,” in IEEE Transactions on Autonomous Mental Development, vol. 6, pp. 110 –
125, IEEE, 2014.

[9] P. Lanillos, J. F. Ferreira, and J. Dias, “Designing an Artificial Attention System for
Social Interaction,” in 2015 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 4171 – 4178, IEEE, 2015.

[10] P. Lanillos and J. F. Ferreira, “The CASIR-IMPEP Attention Framework for Social
Interaction with Robots,” Tech. Rep. MRL-CASIR-2013-12-TR004, Mobile Robotics
Lab – Institute of Systems and Robotics, Coimbra, Portugal, December 2013.

[11] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Y.
Ng, “Ros: an open-source robot operating system,” in ICRA workshop on open source
software, vol. 3, p. 5, Kobe, Japan, 2009.

References 51

[12] S. Ivaldi, J. Peters, V. Padois, and F. Nori, “Tools for simulating humanoid robot dynam-
ics: A survey based on user feedback,” in 2014 IEEE-RAS International Conference on
Humanoid Robots, pp. 842 – 849, IEEE, 2014.

[13] Open Source Robotics Foundation, “Gazebo,” 2014. [http://www.gazebosim.org/
Online; accessed 12-July-2016].

[14] LAAS-CNRS, “MORSE.” [https://www.openrobots.org/morse/doc/stable/morse.html
Online; accessed 12-July-2016].

[15] Coppelia Robotics, “V-Rep: Virtual Robot Experimentation Platform.”
[http://www.coppeliarobotics.com/ Online; accessed 12-July-2016].

[16] Cyberbotics, “Webots - robot simulator.” [https://www.cyberbotics.com/ Online; ac-
cessed 12-July-2016].

[17] R. Diankov, R. Ueda, K. Okada, and H. Saito, “COLLADA: An Open Standard for
Robot File Formats,” in 2011 RSJ The 29th Annual Conference of the Robotics Society
of Japan, 2011.

[18] OSRF, “srs_ui_pro - ROS wiki.” [http://wiki.ros.org/srs_ui_pro Online; accessed
12-July-2016, last edit 17-October-2012 10:54:10].

[19] The Qt Company, “Qt.” [https://www.qt.io/developers/ Online; accessed 09-August-
2016].

[20] wxWidgets, “Wxwidgets: Cross-Platform GUI Library.” [http://www.wxwidgets.org/
Online; accessed 09-August-2016].

[21] OSRF, “Rqt - Ros Wiki .” [http://wiki.ros.org/rqt Online; accessed 09-August-2016,
last edit 11-February-2015 18:57:04].

[22] A. L. Taylor and J. T. Wright, “A telerobot on the world wide web,” in In National
Conference of the Australian Robot Association, 1995.

[23] C. Crick, G. Jay, B. Pitzer, and O. C. Jenkins, “Rosbridge: Ros for non-ros users,”

[24] B. Pitzer, S. Osentoski, G. Jay, C. Crick, and O. C. Jenkins, “Pr2 remote lab: An
environment for remote development and experimentation,” in Robotics and Automation
(ICRA), 2012 IEEE International Conference on, pp. 3200–3205, IEEE, 2012.

[25] “PR2 Remote Lab.” [https://sites.google.com/site/sosentos/Home/research Online;
accessed 24-August-2016].

[26] R. Toris, J. Kammerl, D. V. Lu, J. Lee, O. C. Jenkins, S. Osentoski, M. Wills, and
S. Chernova, “Robot web tools: Efficient messaging for cloud robotics,” in Intelligent
Robots and Systems (IROS), 2015 IEEE/RSJ International Conference on, pp. 4530–
4537, IEEE, 2015.

[27] J. Bankoski, P. Wilkins, and Y. Xu, “Technical overview of vp8, an open source video
codec for the web.,”

52 References

[28] J. F. Ferreira, J. Lobo, and J. Dias, “Fast Exact Bayesian Inference for High-Dimensional
Models,” in Workshop on Unconventional Computing for Bayesian Inference, 2015
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS2015),
2015.

[29] Allied Vision Technologies GmbH, “GUPPY F-036 Datasheet.”
[https://www.alliedvision.com/en/products/cameras/detail/Guppy/F-036.html
Online; accessed 24-August-2016].

[30] Harmonic Drive AG, “Engineering Data DC servo Actuators PMA.”
[http://harmonicdrive.de/mage/media/catalog/category/ED_PMA_E_1019821_12_2015
_V01_6.pdf Online; accessed 24-August-2016].

[31] M. Kuniecki, J. Pilarczyk, and S. Wichary, “The color red attracts attention in an
emotional context. an erp study,” Frontiers in human neuroscience, vol. 9, 2015.

[32] E. Murphy-Chutorian and M. M. Trivedi, “Head pose estimation in computer vision: A
survey,” IEEE transactions on pattern analysis and machine intelligence, vol. 31, no. 4,
pp. 607–626, 2009.

[33] OSRF, “Rqt_rviz - Ros Wiki .” [http://wiki.ros.org/rqt_rviz Online; accessed 09-August-
2016, last edit 06-September-2012 18:45:49].

[34] OSRF, “Rqt_image_view - Ros Wiki .” [http://wiki.ros.org/rqt_image_view Online;
accessed 09-August-2016, last edit 25-November-2015 18:56:46].

[35] OSRF, “Image_view - Ros Wiki .” [http://wiki.ros.org/image_view Online; accessed
09-August-2016, last edit 18-July-2016 20:32:06].

[36] OSRF, “Rqt_shell - Ros Wiki .” [http://wiki.ros.org/rqt_shell Online; accessed 09-
August-2016, last edit 02-May-2013 18:45:49].

[37] OSRF, “Web_video_server - Ros Wiki .” [http://wiki.ros.org/web_video_server Online;
accessed 09-August-2016, last edit 09-March-2015 05:49:16].

[38] M. Blaha, M. Krec, P. Marek, T. Nouza, and T. Lejsek, “Rosbridge web interface,” tech.
rep., Department of Cybernetics Faculty of Electrical Engineering, Czech Technical
University Technická, 166 27 Prague 6, Czech Republic, May 2013.

[39] J. Tong, J. Zhou, L. Liu, Z. Pan, and H. Yan, “Scanning 3d full human bodies using
kinects,” IEEE transactions on visualization and computer graphics, vol. 18, no. 4,
pp. 643–650, 2012.

Appendix A

Parsed URDF kinematic chain

//----------------------- stand -world joint -----------------------//

<link name='stand'>

<inertial >

<mass value='500'/>

<origin xyz='0 0 .25' rpy='1.57079633 0 0'/>

<inertia ixx="1" ixy="0" ixz="0" iyy="1" iyz="0" izz="1"/>

</inertial >

<visual name='stand_visual '>

<origin xyz='0 0 .25' rpy='1.57079633 0 0'/>

<geometry ><mesh filename = 'model: //impep/meshes/stand.dae'/></

geometry >

</visual >

<collision name="stand_collision">

<origin xyz='0 0 .25' rpy='1.57079633 0 0'/>

<geometry ><mesh filename = 'model: //impep/meshes/stand.dae'/></

geometry >

</collision >

</link>

<link name="world"/>

<joint name="fixed_stand" type="fixed">

<origin xyz="0 0 0.76" rpy="0 0 3.1415"/> <!-- a ver -->

<parent link="world"/>

<child link="stand"/>

</joint>

Listing A.1 Code graft regarding the first link of the model and the world itself

world

fixed_stand

xyz: 0 0 0.76
rpy: 0 -0 0

stand

fixed_stand_base

xyz: 0 0 0
rpy: 0 -0 0

base_mid

fixed_base

xyz: 0 0 0
rpy: 0 -0 0

base_top

tilt_frame

xyz: 0 0 0
rpy: 0 -0 0

frame_bot

fixed_motor

xyz: 0 0 0.24
rpy: 0 -0 0

pan_frame

xyz: 0 0 0.24
rpy: 0 -0 0

motor frame_top

fixed_kinect

xyz: 0 0 0.125
rpy: 0 -0 1.5708

fixed_leftcamframe

xyz: 0 0 0
rpy: 0 -0 0

fixed_leftcampod

xyz: 0 0 0
rpy: 0 -0 0

fixed_rightcamframe

xyz: 0 0 0
rpy: 0 -0 0

fixed_rightcampod

xyz: 0 0 0
rpy: 0 -0 0

tilt_leftcam

xyz: 0.05 0 0
rpy: 0 -0 0

tilt_rightcam

xyz: -0.05 0 0
rpy: 0 -0 0

kinect camframe_left campod_left camframe_right campod_right cam_left

fixed_leftlens

xyz: 0.005 0 -0.007
rpy: 0 -0 1.5708

camlens_left

cam_right

fixed_rightlens

xyz: 0 0 -0.007
rpy: 0 -0 1.5708

camlens_right

54 Parsed URDF kinematic chain

	List of acronyms
	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Motivation and overall goals
	1.2 Related work
	1.3 Contributions
	1.4 Structure of dissertation

	2 Background and methods
	2.1 An open-source framework for studying artificial perception and attention in HRI
	2.2 The Robot Operating System (ROS)
	2.3 Simulation and 3D modelling tools for human-robot interaction
	2.4 Graphic user interfaces for robotic applications
	2.5 Remote robotic experimental laboratories

	3 Implementation and results
	3.1 Putting it all together – a ROS framework for the CASIR-IMPEP platform
	3.2 Implementation details for the Gazebo-based simulation package
	3.2.1 IMPEP simulation – sensors
	3.2.2 IMPEP simulation – actuators
	3.2.3 Environmental simulation
	3.2.4 Avatar and interaction simulation

	3.3 Implementation details for the rqt-based user interface
	3.4 Implementation details for the web service supporting the CASIR-IMPEP remote lab
	3.5 Experimental results
	3.5.1 Simulation and visualisation proof-of-concept
	3.5.2 Remote simulation and control proof-of-concept

	4 Conclusions and future work
	References
	Appendix A Parsed URDF kinematic chain

