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Resumo

A Computação em Nuvem é uma mudança de paradigma que tem ganho força ao longo
dos últimos anos, sendo suportada pelo aumento da disponibilidade, omnipresença e fiabili-
dade das ligações sem fios à Internet. A Computação em Nuvem permite o acesso a recursos
computacionais aparentemente ilimitados e localizados num agrupamento de computadores
externos (a Nuvem). Em contrapartida, alguns robôs, como por exemplo drones, têm re-
quisitos de mobilidade, tais como um tamanho/peso máximo ou uma autonomia mínima, e
transportar mais recursos computacionais a bordo significa prejudicar estes requisitos.

Este princípio pode ser importado para o campo de Robótica, dando origem ao nome
Robótica em Nuvem. Neste caso, o objetivo é permitir que robôs consigam executar tare-
fas que não seriam capazes de executar em circunstâncias normais e/ou libertar recursos
computacionais a bordo, de modo a que mais tarefas ou tarefas mais complexas possam ser
executadas ao mesmo tempo por um robô móvel. Há muitas tarefas robóticas que podem
tirar proveito de poder de processamento massivo e armazenamento, tais como mapeamento
e localização simultâneos (SLAM), navegação, processamento de imagem, interação humano-
robô e aprendizagem. Todas estas tarefas podem esgotar rapidamente os recursos computa-
cionais de um robô, especialmente se algumas delas forem executadas simultâneamente.

No entanto, para estabelecer uma ligação e exportar dados para a Nuvem é necessária
alguma largura de banda, tornando assim o sistema num compromisso: por um lado, são
libertados carga computacional e espaço de armazenamento, por outro lado é colocada maior
pressão sobre o uso da rede sem fios. Esta dissertação tem como objetivo analisar este com-
promisso, adaptando duas tarefas multi-robô existentes, que operam sobre o Robot Operating
System (ROS), e comparar a abordagem baseada em Nuvem com o sistema tradicional.

Para validar as capacidades dos sistemas robóticos baseados na nuvem, foram realizadas
tanto simulações como experiências com robôs reais. Os resultados de simulação mostram
um claro ganho no tempo de CPU, enquanto que os testes com robôs reais confirmam que
os resultados das tarefas permanecem inalterados. Apesar dos sistemas baseados na Nuvem
exigirem muito maior largura de banda, um moderno Wi-Fi router consegue fornecer o
suficiente para suportar qualquer equipa realista de robôs.

Palavras-chave: Computação em Nuvem, Robótica em Nuvem, Tecnologia
Sem Fios, ROS, Recursos Computacionais, Largura de Banda.
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Abstract

Cloud Computing is a paradigm shift in computation that has been gaining traction
over the recent years, which is supported by the increasing availability and ubiquity of a
reliable wireless connection to the Internet. Cloud Computing enables the access to seem-
ingly unlimited computer resources that are located on an external computer cluster (the
Cloud). In contrast, some robots, e.g. drones, have mobility requirements such as maximum
size/weight or minimum autonomy, and carrying more onboard computer resources usually
means hindering these requirements.

This principle can be brought to the field of Robotics hence the name Cloud Robotics. In
this case, the goal is to allow robots to perform tasks they would not be able to under normal
circumstances and/or to free onboard resources so that more tasks or more complex tasks
can be executed at the same time by a mobile robot. There are many existing robotic tasks
that can take advantage of massive processing power and storage, such as simultaneous
localization and mapping (SLAM), navigation and trajectory planning, image processing,
pattern recognition, human-robot interaction and machine learning to name a few. All of
these can quickly drain the robot out of its computer resources, especially if some of these
tasks are running at the same time.

However, in order to access and export data to the Cloud some bandwidth is needed,
thus making the system a tradeoff: on the one hand, computation load and storage space is
being freed, while on the other hand more strain is being put on the wireless network usage.
As wireless connection protocols become more and more powerful, a Cloud-based solution
becomes more interesting. This dissertation aims to analyse this tradeoff by adapting two
existing multi-robot tasks, working on the Robotic Operating System (ROS), and compare
the Cloud-based approach to the traditional one.

To validate the capabilities of Cloud-based robotic systems, both simulations and exper-
iments with real robots were conducted. Simulation results show a clear gain in CPU time,
while the latter confirms the outcome of the tasks remains the same. Despite the Cloud-
based systems, requiring considerably more bandwidth, a modern off-the-shelf Wi-Fi router
can provide with enough to support any realistic team of robots.

Keywords: Cloud Computing, Cloud Robotics, Wireless Technology, ROS,
Computer Resources, Bandwidth.
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1 Introduction

Research and development over the years has sprouted a vast array of tasks able to
be executed by robots. Some of these tasks though have to be carried out by a team of
robots rather than a single one. A multi-robot system can benefit from several advantages
over a single robot one, especially in terms of performance to cost ratio and higher task
accomplishment speed, as well as eliminating the single point of failure that is a single robot
system [40].

Although the advantages of having a team of robots are trivial, its restraints are only
evident when considering practical implementations, namely cost restraints. It becomes
obvious that a team of robots has to be composed of multiple cheaper robots, meaning
machines with less processing power, but also easier to build, work with, repair and replace.
This creates the need for interaction among robots in order to solve complex problems and
run computationally heavy algorithms.

There are already example cases, like the Kiva Systems (now called Amazon Robotics)
[1], where the sharing of knowledge has been used to create a shared world model for better
autonomous navigation; and like the RoboCup [38], where sensor information is shared
among robot team members in order to allow for a more reliable dynamic object tracking.
Knowledge sharing has also been used for localization services, scene recognition and robotic
manipulation despite there being relatively little research on this topic [60].

In order to tackle the problem of communication between the elements of a multi-robot
system, two main areas of study have been in research recently: Cloud Computing [37]
and Robotic Clusters [40]. This dissertation explores a cloud-based solution to multi-robot
systems.

Cloud Computing is a new and emerging paradigm that takes advantage of network
connection availability as a resource for parallel processing and data storage and sharing
[43]. This Cloud infrastructure can not only provide the means for a robot which needs
external data to support its operation but also opens a myriad of ways to interact and
cooperate with many other robotic systems connected via Cloud.

Cloud-based systems have already proven useful for robotic applications, as is de case of
the cloud-inspired framework named Distributed Agents with Collective Intelligence (DAvinCi)
[20], which uses a team of robot as sensing nodes of a main frame that does all the neces-
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sary computing [33]. Google’s object recognition system is another noteworthy example,
which uses a massive cloud database of images and textual labels in order to facilitate object
recognition [37].

On the other hand, Robotic Clusters rely on each other, rather than on the Cloud, for
parallel processing. Each member of the Cluster shares his available processing power with
the remaining, thus enabling a clever usage of resources as a whole. In contrast with Cloud-
based architectures, Clusters function as ad hoc networks, thus trading connection to a wide
area network with the availability of a local area wireless network. Robotic Clusters have
shown to improve performance over traditional architectures as demonstrated in [40] and
[33], for the cases of SLAM (Simultaneous Localization and Mapping) and map merging
respectively.

1.1 Context and Motivation

The motivation to develop this dissertation emerged from the reduced processing power of a
fleet of smaller robots in the Institute of Systems and Robotics (ISR) [18] which still needed
to run computationally heavy algorithms. A cloud-based solution was therefore proposed.
However, having a mobile robot team being run mostly by a remote server (the Cloud) opens
up a vast doorway of opportunities more complex than a mere master-slave relationship.

A robotic system connected to the Internet has available to it large databases and server
farms for parallel processing. The use of these external processing units allows for onboard
computers to have less power consumption while allowing for a reduced processing delay
due to parallelization of tasks. These power savings are more relevant on smaller robots
where size, weight and power autonomy are of utmost importance. These savings (size,
weight and power) are also valid for data storage, while having more storage space remotely
than it would be possible onboard. The access to vast databases offers its own multiple
opportunities. Machine learning and artificial intelligence (AI) techniques greatly benefit
from huge data repositories and the biggest gain most likely lies on this particular field of
robotics [27]. Going even further, robot systems could turn to cloud-based knowledge to
expand the capabilities they were initially designed to have.

An always-on connection to the Internet does carry some concerns, namely privacy and
security. The potential of remote hacking cannot be overlooked as damage to people or in-
frastructures is a sensitive matter. On an industrial context, corporate secrecy or production
disruption could also be criminally targeted.

Decentralized architectures have proven many advantages, such as fault tolerance and
reliability, on distributed computer systems, which would also benefit multi-robot systems.
One noteworthy characteristic of such architectures in our context is the high level of ab-
straction provided by the Cloud: there is no need for the robot to know how the processing
is done on the server farms, how data is stored and retrieved or even what software or hard-
ware the Cloud uses; only a solid communication protocol is required. Consequently, on the
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robot end, there is no need to take into account server maintenance, outages, and software
or hardware updates.

Nowadays, embedded wireless LAN adapters are common in small robotic processing
boards, thus the strong communication required can be achieved with any of the existing
and proven wireless architectures and protocols, such as the ubiquitous Wi-Fi technology.
Over the recent years, the general public has seen a large increase of the availability of remote
computation on demand, as well as remote storage systems. Open source software has also
become widely available and accepted in the Robotics field, being ROS (Robot Operating
System) the prime example [53]. ROS is a set of tools and libraries that help to build robot
applications and is used by almost all robot developers. It is also run on Linux, an example of
open an source operating system. This high level of availability and existing trends in other
computer systems provide a favorable setting for the development of Cloud-based solutions
for multi-robot systems.

So far the advantages of a Cloud-based solution and why it is the right time to take
such approach have been discussed. However, such solution has its pitfalls. The most
relevant being the need for communication itself. While remote processing and storage can
greatly increase the scalability of the approach, the communication line provides a possible
bottleneck and a barrier to such scalability, when wireless communications are required.
Traffic created by large teams of robots can choke the wireless network, especially the more
dependant the robots are on the remote servers. Communication latency and overhead also
pose a problem to tackle, since performance degrades when such overhead is not negligible
relatively to computation time. Some tasks are also bound by hard real-time constraints,
such tasks cannot be held back by network traffic risking failure. The communication line
also presents itself as a critical point of failure, and how the whole system deals with such
event is not a trivial matter. These setbacks impose some tasks to be mandatorily run locally
rather than remotely, which shortens the range of applicable scenarios.

Overall it is difficult to predict the benefit of a Cloud-based system. Even tasks that
require a large amount of data, having more information being fed remotely does not result
necessarily into better performance [60]. This coupled with other initiatives that look towards
the future, such as the Internet of Things [21], serves as additional motivation for this
dissertation.

1.2 Objectives

The main objective of this work is to develop an application based on ROS that resorts to
cloud computing in order to enable robots with lackluster computational resources to perform
computationally heavy tasks. The developed software will be tested in two different multi-
robot tasks, in order to validate its usefulness: cooperative simultaneous localization and
mapping [42], and cooperative patrolling [49]. After the validation process, the objectives
are to study the scalability and network traffic of the application, as well as carry out

3



experiments with real robots.

1.3 Outline of the dissertation

This dissertation is organized into five chapters:

– Chapter 1 gives an introduction to the theme and the motivation behind studying it.

– Chapter 2 presents a study on the existing related work covered by this dissertation.

– Chapter 3 gives a more in-depth look on how to work with the chosen Cloud framework.

– Chapter 4 introduces the systems used as the basis for this dissertation and presents
the adaptations to the Cloud environment employed during the development of our
work.

– Chapter 5 presents the experiments and their results and analyses and discusses them.

– Chapter 6 gives a reflection on the adaptation to the Cloud and the vision for a possible
future complimentary work.
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2 Background and Related Work

2.1 Cloud Robotics

2.1.1 What is Cloud computing?

Cloud computing has been defined as being a model for providing remote access, on demand,
to a pool of computing resources. It refers to both hardware and software systems delivered
or made available primarily over the Internet, being servers, storage systems, applications
or services examples of Cloud computing [43].

Associated with this model is the term Cloud, which refers to the data centre that
provides such service. We can then segregate this concept into Public Cloud when a Cloud
is available to anyone with Internet access, and a Private Cloud when access is restricted
to members of one organization or business [19]. This concept can be easily comprehended
comparing it with Wide Area Network (WAN) and Local Area Network (LAN). Variations of
these deployment methods can be achieved, as are the cases of Community Cloud, where the
use of the cloud is restricted to a group of consumers in the former, and Hybrid cloud, where
the cloud is composed by two or more data centres bound by standardized or proprietary
technology [43].

Cloud computing is characterized for having access on demand, without the need for
human interaction with the service provider, coupled with the availability of access on any
connection point of the network, despite the client platform used for the access. This means
that any platform able to connect to the cloud is able to access and use the same computing
resources and services as any other. Such resources can be measured and distributed fairly
across the range of users at any given time, while being flexible enough to be allocated or
released according to the increase/decrease of the user base at any given time. In other
words, one user only uses the resources needed for task completion, while being given the
appearance of infinite resources.
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2.1.2 Service Models using classic cloud infrastructures

Cloud computing service models can be grouped in three categories, ranging from a low to
high level services. These categories are as follows:

– Infrastructure as a Service (IaaS): the consumer is provided with minimal soft-
ware (bare operating system) to operate the hardware resources. In other words, the
consumer has no control over the cloud infrastructure, but can choose which operating
system/storage system/applications to be run on the cloud. The Amazon EC2 is an
example of such cloud service, where the client has control of the cloud like it would
on a local machine while benefitting from the flexibility of cloud computing resources
[3].

– Platform as a Service (PaaS): the cloud provides an operating system, as well
as a range of programming languages, libraries, tools and frameworks with which the
consumer can develop its owns applications. Despite offering little control over the
cloud and restricting the programming environment, this kind of cloud service provides
an easier use, since low-level operations are already provided. As examples of PaaS
we can point out the Google App Engine [2] or Heroku [4] where applications are
developed and run entirely on the cloud.

– Software as a Service (SaaS): the user can only access applications already im-
plemented on the cloud, having no control over the infrastructure, servers, storage or
individual application capabilities. This is the highest level of cloud structure being
the most restrictive one but also the easier to use. The Google Docs is a fine example
of a SaaS, where the client has access to applications like a text editor, which is usually
installed and run locally on a machine, that are run instead on remote servers.

As we have seen, there are many offers in the market for cloud services, however they do
not cater specifically to robots nor present the right tools to develop robotic applications.
Lack of compatibility with existing robotics application frameworks and failure to meet
robotic applications requirements limit the applicability of these existing cloud computing
platforms to robot application scenarios [44].

2.1.3 Service Models providing robotic services

The concept of accessing applications, storage systems, or processing units can be developed
into other kinds of services, namely robotic services. In other words, we can use the same
paradigm as traditional cloud computing to access, for instance, real-time video or sensor
data, among other robotic services [31]. We can then consider three kinds of delivery model:
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– Function as a Service (FaaS) or Equipment as a Service (EaaS): this low-
level model uses the cloud to provide robot resources, such as sensors and cameras
or robotic tasks solvers like SLAM frameworks. In [59], the authors use information
from a remote camera and cloud processing to control the formation and movement
of several robots. These robots (iRobot Create) possess low processing power, so not
only do they take advantage from the cloud’s better processing capabilities but also
extract data from a remote camera as aid to their task. The capability of accessing
remote equipment data becomes even more relevant with the recent research advances
on the topic of the Internet of Things [37] [21].

– Robot as a Service (RaaS): in this model the user has access to a robotic platform
such as a teleoperated robot. In [32] the authors propose UNR-PF, which consists on
an open-source, standards-based platform that enables multi-location daily life support
services from a cloud of robots. In a more recent work [23], authors present a system
for an autonomous assistive robot working in a smart environment. This system uses
the Cloud to improve the ability of the connected robots, by not only providing elastic
storage and computational resources but also connecting the robot to caregivers and
familiars. On a practical use case, the robot used speech recognition to identify certain
keywords and browse the Cloud to retrieve useful information on how to reach the user
and perform the requested service.

– Robotic Service as a Service (RSaaS): this high-level model intends to offer the
user a robotic service without the user specifying the platform that executes such
service. For example, while in RaaS the user would ask the framework for a specific
robot and then control it to complete a task, in RSaaS the user would ask the framework
for a task to be completed, without knowing which robot would be used to complete
said task.

We can view these models as internal clouds in a fleet of robots. For example, a small
robot with few sensors and low processing power can access a remote cloud to execute
algorithms posing a high computing demand, while accessing sensor information from the
internal cloud that is composed by all the fleet members of a multi-robot system. Here
the term internal cloud has a similar meaning to a robotic cluster, i.e. a group of robots
provide their sensor data and computational resources to one member of the team forming a
similar cloud structure, without resorting to external computer units. Naturally, an external
cloud employs computer units foreign to the robotic ecosystem in order to provide with
computational resources. With the increasing number of services made available through
cloud computing, the term Anything as a Service (XaaS) has also been used to classify cloud
computing services [12].
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2.1.4 Challenges for Cloud Robotics

So far we have seen how a multi-robot system can use internal and external networking
to enhance task solving and speed up algorithm processing. On an internal ad-hoc cloud,
sensor and computational resources can be pooled to form an infrastructure for collaborative
processing and decision-making, whereas storage and processing resources can be allocated
elastically on an external cloud in order to meet given task requirements. These are the
wonders of cloud computing which can be exploited to increase efficiency and cleverly reduce
costs. However, such architectures present their own set of challenges to be tackled.

In [35], the authors give a systematic view on how cloud computing can be used to
overcome some limitations of networked robotics, as well as the implementation challenges
faced by this new paradigm.

One of the prime benefits of cloud computing is the ability to offload a computationally
heavy task to the cloud, while taking benefit of its parallel processing capabilities to have
a relatively low execution time when compared to a machine with good processing power
running the same task locally. Hence, the following issues arise: How much data should be
offloaded to the cloud? How should the cloud spread the task across its resources? Energy
consumption and deadline requirements are proposed as deciding factors when offloading a
task to the cloud, thus a robot should not process a task locally if it means consuming more
energy or failing a temporal deadline, and vice-versa.

Time required in communication between robot and the cloud, being it an internal or
external cloud, must also be taken into consideration, especially when considering mobile
robots whose only reasonable source of connection is through some wireless network. As wire-
less communication systems are prone to delivery failures, either by environmental reasons or
channel clutter, a probabilistic approach must be taken into consideration when calculating
the time consumed while exchanging messages between client and cloud. Package overhead
is also a contributing factor, which coupled with communication failures can make a cloud-
based solution to a multi-robot system less desirable, especially when considering real-time
scenarios.

Finally we can identify security challenges. For obvious reasons, a remote data centre can
be attacked, more so if it interfaces with its users wirelessly. Consequently strong barriers
against outside malicious threats must be taken into consideration, with virtualization of
resources being the most used form of security. Cloud stored data must also be protected, so
confidentiality protection mechanisms are also needed to ensure data integrity and privacy.

2.1.5 Cloud Robotics Architectures

Over recent years some cloud robotics frameworks have been proposed in the effort of ex-
ploring this growing computational paradigm. We highlight and explore the most significant
of these frameworks in this section.
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DAvinCi framework
The motivation for the DAvinCi framework (Fig. 2.1) is the regular employment of

computationally intensive tasks in large environments, such as computer vision and mapping
[20]. Every robot is assumed to have an embedded controller with Wi-Fi connectivity and
basic proprioceptive sensors, i.e. a low-cost, single-axis gyro and wheel encoders. Apart from
these basic sensors, a range of sensors required to complete the task at hand is distributed
among the fleet of robots. Sensor information is uploaded to a central controller, becoming
available to every robot on demand and allowing for the completion of a task that requires
sensor information from multiple robots.

Figure 2.1: Overview of the DAvinCi architecture. Figure reproduced from [20].

The DAvinCi system can be classified as a PaaS, supplying tasks as global map building
in the cloud environment. The system is composed of a server that makes the connection be-
tween the robot fleet and a Hadoop cluster. The ROS middleware [11] is used for sensor data
collection and communication, where the server runs the ROS Master node. ROS messages
are wrapped in HTTP requests/responses for robot/server communication. The Hadoop
Distributed File System (HDFS) cluster is used for data storage and runs the MapReduce
framework for the parallel processing [6]. Note here that parallelizable algorithms are key
to the speed up of processing.

Besides managing file storage, the HDFS also splits data files into smaller blocks for
easier parallel processing. These blocks are then distributed by the MapReduce framework
across the cluster for processing. The MapReduce framework is a programming model for
processing large datasets across a cluster [6] [28]. The model operates based on two proce-
dures: Map which filters and sorts an input of (in_key, in_value) into an output (out_key,
out_value); Reduce which performs a summary operation, taking all values from a given key
and generating an output value. This technique was developed for search and indexing of
large number text files, but nowadays its applications have been extended to other fields,
although algorithms need to be written as Map and Reduce procedures.

The ROS messaging system is used, as said, for communication between the DAvinCi
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server and the robots. On the server side these messages are collected by ROS Subscriber
Nodes that function as an HDFS client, which push the information to the HDFS file system
to be processed by the Map/Reduce tasks. More information on how ROS implements
message communication is described in section 2.4.

The authors present a Grid-Based FastSLAM [57] algorithm adapted to the MapReduce
model, and a simulation of the execution of such algorithm using one-, two-, four- and eight-
node cluster. The speed increase is notable as the time taken is significantly lower in the
four- and eight-node clusters for a high number of particles, proving the parallelization of
the algorithm.

Rapyuta framework
Rapyuta [8] [44] is an open-source cloud robotics platform that was closely developed

to the RoboEarth [60] knowledge repository, having become also known as the RoboEarth
Cloud Engine. This close association comes from the fact that all the processing needed
in order to interact with RoboEarth repository can easily be done in the cloud rather than
locally. Nevertheless, the main purpose of Rapyuta, in similarity with other cloud robotics
frameworks, is to help robots offload tasks to the cloud and utilizing its resources, presenting
itself as a Platform as a Service (PaaS) cloud computing model specifically tailored towards
multiprocess high-bandwidth robotics applications.

Rapyuta is a ROS-compatible environment whose communication protocols are based
on web sockets, thus it allows for ROS robots but also other machines with browser access
to connect to the system. Similarly with other cloud computing frameworks, the quality of
connection to the network can bottleneck the performance of the system. Internally, Rapyuta
dynamically allocates computing environments for the robots, which are used for sharing
services and information among them. The system is composed by four main components:
the aforementioned computing environments, a set of communication protocols, four core
task sets, and a command data structure.

The computing environments are Linux containers which offer a virtualization environ-
ment that allows for processes from different robots to be separated from each other in a
secure and scalable manner. The containers allow for an easy distribution of memory and
processing time, while maintaining application speed as if there was no process isolation.
This method presents a clever way of tackling the security and scalability issues of cloud
computing. Since the system is based on ROS, all the processes within a single container
can easily communicate with each other using the ROS inter-process communication.

The communication protocols are handled by processes named Endpoint (Fig. 2.2),
which are composed of Interfaces and Ports. This design was developed to achieve a bal-
ance between system complexity and latency in inter-process communication. A low system
complexity could be achieved by a bus-based communication at the cost of high latencies,
while a low latency system could be achieved by a direct connection of ROS nodes at the
cost of high complexity. Interfaces are used to establish communication between a Rapyuta
internal process and an external one by the use of the WebSockets protocol; here an external
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Figure 2.2: Communications in the Rapyuta framework. Figure reproduced from [44].

process can be a ROS node running on the robot or on the cloud environment. Interfaces
also convert the data from internal to external formats and vice versa. Ports on the other
hand deal only with Rapyuta’s internal communication by the use of UNIX sockets.

The core task sets are series of functionalities that are grouped together as processes to
administer the system. On a standard case, each of the four core task sets composes a process
thus building a PaaS framework. The Master Task Set is the main controller that monitors
all the other task sets, organizes the connection between robots and Rapyuta and processes
configuration requests from robots. The Robot Task Set makes the connection between
robots and the Master Task Set, handling all the communication format conversion necessary.
The Environment Task Set deals with the communication between the Rapyuta System and
the computing environments, while the Container Task Set deals with starting/stopping
computing environments.

Finally, the Rapyuta system is organized in a centralized command data structure divided
into four components: Network, User, LoadBalancer and Distributor. The Network compo-
nent provides a layer of abstraction to be taken advantage of by the other components. The
User represents someone who connects his robots to the system. The LoadBalancer manages
the machines that run as computing environments. And the Distributor distributes incoming
connections to available Endpoint processes.

REALcloud framework
The REALcloud [15] framework follows the Platform as a Service (PaaS) model to provide

the REALabs platform [24] developed by the same authors. This platform is accessed over
the public Internet and, after a validated access, it provides with robotic services. Robotic
applications are then developed on the REALabs servers that also provides with specialized
hardware such as powerful GPUs and FPGAs along with a greater processing power than
one possessed by a personal computer. In order to provide a wider range of possible robotic
applications this platform was integrated on the cloud computing environment REALcloud.

The platform has four main packages that work in tandem with the Cloud environment.
The Embedded package contains HTTP micro servers to be run on the mobile robots the
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platform offers access to. These robots are expected to have limited processing power, so
these components only aggregate some basic operations while the processing is done entirely
by the servers. The Protocol Handler package handles all the security checking, proxying
and network address translation. The Front-end package offers APIs to the user, providing
with a high-level interface between the developed robotic applications and the robot itself.
Finally the Management package administrates the system and resource access.

Fig. 2.3 shows how the REALcloud framework offers access to the REALabs platform.
Here each user is confined to his virtual machine (VM) while accessing the REALcloud
environment, which is also run on a virtualized manner. Virtualization (which is done by
VirtualBox) not only allows for process separation and conflict avoidance but also introduces
a layer of security, since it becomes more difficult for a VM to access the data or resources
of another VM. Here it becomes more clear where the aforementioned packages are run:
the Front-end packages are run on client side while the Management and Protocol Handler
packages are run on server side. The packages run by the REALcloud environment, the VM
Management, and the Session Validation, control the process of creation, reconfiguration and
destruction of VM, and manage the access of robotic resources by applications, respectively.

Figure 2.3: Overview of the REALcloud architecture. Figure reproduced from [15].

Robot-Cloud framework
The Robot-Cloud framework [29] was developed to allow low cost robots to offload com-

putationally heavy tasks to the cloud. Fig. 2.4 represents the normal work process of this
cloud framework. A central unit (Cloud Controller) is embedded in the ROS Master Node
and administers the whole system. This unit forwards all the service requests to the Service
Administration Point in order to check for authorization. The Service registration/removal
then checks for service availability, which if unavailable puts the request into a queue. If
permission is granted, the Cloud Controlled is notified and a reference to the service is
passed to the requesting robot. The services provided by the cloud framework include a
Map/Reduce computing cluster, storage system, and robotic services such as path planning
and map building.
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Figure 2.4: Overview of the Robot-Cloud architecture. Figure reproduced from [29].

Robotics In Concert framework
Nowadays ROS is one of the most used toolkits for robot programming, gathering a large

amount of drivers, libraries and developer tools [11] (ROS will be further discussed in section
2.4). However, this framework was not conceived for distributed robotic systems, thus the
reasoning behind the framework Robotics in Concert (RoCon) [10]. RoCon is a multimaster
system, based on ROS communication mechanisms, that administrates robot interactions in
a centralized architecture.

Although it is not strictly a cloud computing framework, its objectives and architectures
are in line with the ones from cloud robotics, making it a framework worth studying. More-
over, the concept of cloud as an external resource for computational power and storage is
present on the framework. Additionally, as it will be further explained, the main concept
of the RoCon framework is having a central entity that coordinates client (robot or human)
interactions and allows for the farm of resources and functionalities. Such entity can be
easily projected to the cloud.

It is important to understand the motivation behind the development of this framework as
the authors have a much more practical, day-to-day view, contrasting with the more academic
approach usually seen on scientific research. The primary objective is to develop a framework
that enables application developers to take a more high level approach to robot programming.
This high-level programming could enable industrial/commercial robotic solutions to be
more marketable since they become more easily developed. On the one hand, making the
development of robotic services easier reduces its cost; on the other hand, having a central
unit which supplies cheaper robots with the necessary computational resources would mean
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more viability for robotic solutions, since most of them are dropped as business opportunities
on early stages due to high robot cost. With this in mind, the authors highlight four key
aspects that could enable marketable robotic solutions:

1. Cheaper Robots: the use of external processing resources allows for lower cost robots
without losing utility;

2. Retaskable Robots: robots should not be restricted to one task, reprogrammability
is highly valued;

3. Interactivity: if day-to-day markets are to be explored a system must take human
interaction into consideration;

4. New Markets: devices that integrate human interaction with multi-robot systems
should be explored, based on the premise that robots should only be part of the solution
rather than the solution itself.

Figure 2.5: Overview of the RoCon multimaster framework. Figure reproduced from [10].

The framework architecture is as presented in Fig. 2.5. There are three main components:
a concert, the concert clients and an abstraction layer between them. Concert clients are
the robots or humans that interact with the system. The concert is the centralized multi-
robot framework that encapsulates the concert master, which is a model that gathers the
components necessary in order to establish a concert, and the orchestration.

The orchestration platform presents the tools needed in order to make a solution easier
to conceive (the whole motivation behind this framework). Here the term solution represents
the high-level concept that wants to be achieved. It is composed of a set of services relevant
to the solution such as map building and teleoperation: the Interactions Handler package,
which manages the connections to human applications; the Conductor package, which de-
tects, invites and accepts new clients; the Resource Scheduler, which administrates resource
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distribution among provided services; and the Software Farm packages, which provides with
software such as database management and computing modules.

Lastly, in order to provide with a high-level interface for the application developers,
the abstraction layer exists to make the connection between high-level concepts (such as
resources and functionalities) and the robot hardware.

2.1.6 Comparison between the selected frameworks

Bellow, it is presented a table comparing each of the frameworks mentioned in the last
subsection. Each framework was evaluated with the objectives and motivation of our work
in mind.

Table 2.1: Pros and Cons of the selected frameworks.

Framework Pros & Cons
DAvinCi [20] Pros:

+ Communication is based on HTTP which is an established proto-
col with proven results. Although HTTP requires inspection, real
time tasks are not suitable to be run in a Cloud environment
+ The Hadoop cluster allows for algorithms to be run in parallel
automatically

Cons:
- The whole system shares a singles ROS master node run in the
server, meaning less robustness and reliability due to the single
point of failure on that node
- Algorithms must be written in Map Reduce procedures, lowering
the flexibility of the system
- No process separation or security
- It is not publicly available

Rapyuta [44] Pros:
+ Communication is based on web sockets (http request/response)
+ Allows for converters to be developed to make robot-cloud com-
munication more efficient
+ A browser could potentially be used as a client or manager of
the cloud environment
+ Individual virtual environments offer a layer of security
+ Containers offer an easy way of distributing computer resources
(scalability)
+ Ports and interfaces strike a balance between latency and com-
plexity
+ Easy access to the RobotEarth knowledge repository
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+ It is open source
+ Allows for a multimaster architecture
+ Communication mechanisms make the system very flexible

Cons:
- Comparatively to other multimaster frameworks it is harder to
debug since processes are run on the containers
- Centralized architecture, only one machine runs the rce-master
node
- Parallelization must be done by hand by allocating different ROS
nodes to different containers

REALcloud [15] Pros:
+ Communication is based on HTTP which is an established pro-
tocol with proven results. Although HTTP requires inspection,
real-time tasks are not suitable to be run in a Cloud environment
+ Virtual environment and session validation offer a layer of secu-
rity

Cons:
- It is not publicly available
- Any existing onboard computer resources are not available for use

Robot-Cloud [29] Pros:
+ Integrates a map-reduce computing cluster as well as storage
space
+ The Service Administration Point offers a layer of security
+ The Service registration/removal offer a resource management
mechanism

Cons:
- The whole system shares a singles ROS master node run in the
server, meaning less robustness and reliability due to the single
point of failure on that node
- Algorithms must be written in Map Reduce procedures, lowering
the flexibility of the system
- No process separation
- Robot-Cloud is not publicly available
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Robotics in
Concert [10]

Pros:
+ Includes human interaction as a client like a robot
+ Multimaster architecture, each robot has a ROS master node,
which increases the overall robustness and reliability of the system
+ It is open source

Cons:
- Centralized architecture
- Not focused on exporting computationally heavy tasks to the
cloud. Although it offers the ability to do so, it does not do so
in a clear way as the other frameworks

All of the studied Cloud architectures offer different positive characteristics that could
be exploited in this work. However, only two of them are publicly available (Rapyuta and
RoCon), limiting our choice in the matter. That being said, the DAvinCi and the Robot-
Cloud frameworks have a more limited application as they mostly rely on a map-reduce
cluster for processing and run only one ROS master node. As the core of this work is
the transition of a multi-robot system to the Cloud, these characteristics give them little
flexibility.

The REALcloud framework, shares some of these problems as it does not offer, as far as
our knowledge goes, the necessary communication mechanisms in order to set up a multi-
master system. Despite not being a necessary condition to a multi-robot system, we believe
allowing for a ROS Master node to be present on each robot is a strategy that should be
pushed forward, as it offers advantages in terms of robustness and reliability, which are key
when a distributed strategy is in mind. The concept of ROS Master will be further explained
in section 2.4.

The possibility of using RoCon during this work was rejected, mainly due to the fact
that it does not focus on running tasks in the Cloud. Although there is the possibility of
doing so, the main objective of RoCon is to setup a multimaster architecture, which overall
does not align as well with the objectives of this work as the Rapyuta framework does.
Moreover, despite being a project in development, RoCon’s communication protocols are
stalled waiting for the release of ROS 2.0. It would make more sense to reconsider this
framework after significant development is done on this subject.

Finally, the Rapyuta framework was chosen as the basis of this work, as its characteristics
offer very high flexibility and easy conversion of existing ROS packages to work inside the
Rapyuta’s Cloud Environment. Moreover, the creation of multimaster architectures comes
naturally with the way the communication is handled by the framework.
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2.2 SLAM

2.2.1 Single robot SLAM

The problem of a mobile robot building a map of the environment and localizing itself in it
is known as simultaneous localization and mapping, or SLAM. The name comes from the
fact that both operations occur at the same time. SLAM techniques have been developed
mostly for indoor static environments, however the same principles can be applied to outdoor,
underwater, and airborne environments [30].

There are usually three types of systems robots can use to gather relevant data for SLAM
procedures. These include laser range finders and sonar-based systems, which are fast but
depend on noisy sensors like odometer, and vision systems that are very computationally
demanding [22]. In order to build a map of the environment, a robot not only needs to
process sensor data but also to keep map information on memory. This means that most
approaches cannot perform consistent maps for large areas, mainly due to the increase of
the computational cost [22], and that cheaper robots (with less resources) will struggle to
complete the required tasks. To tackle this problem, solutions that offload processing to
remote locations or that resort to resource sharing have been proposed on recent years. One
can clearly see how a cloud computing environment could help in such conditions. Apart
from environment observation models, the SLAM problem also requires for a motion model,
since the control signals sent to the robot’s actuators do not necessarily represent how the
robot moves, only how it is intended to move [41].

The most successful models of mapping [25] are comprised of dense 2D laser range-
finder data (grid-based metric maps) or sparse 2D/3D feature points (topological maps) –
see Fig. 2.6. Grid-based maps are learned through Bayesian approaches and the whole
environment, including obstacles, is mapped. On these metric maps, each cell represents
the probability of being occupied [41], this means that the memory required to maintain
such a map greatly increases with resolution and environment size, which prohibits efficient
planning and problem solving, reducing the method’s scalability [58]. On the other hand,
topological maps present a graph with various nodes connected with each other. Each node
represents a landmark and each connection a travelling path between landmarks. Since
only a fraction of the real environment is mapped, memory is less of a concern, although
in this situation we don’t have a scaled map of the real environment, only known available
pathways through it. Although this kind of map can be used more effectively, they are
also more difficult to learn in large environments and have difficulty in differentiating two
places that look the same, which can lead to a misidentification of a landmark [58]. Some
architectures have employed both methods of mapping in order to merge the strengths of
both approaches [46, 58].

Sensors used in SLAM, notably odometric sensors, generate a considerable amount of
cumulative noise, thus probabilistic methods are used rather than mathematical, simpler
ones. These probabilistic algorithms tackle the problem by explicitly modeling different
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Figure 2.6: Comparison between grid-based map (left) and a topological map (right). Figure
reproduced from [58].

sources of noise and their effects on the measurements [22], which leads to a higher demand
for processing power. Another problem comes from the necessity for data alignment (a.k.a.
data association). For every scan the robot makes it needs to check if the current position
matches a previous one, by comparing features with past scans. This process allows the
closure of a loop in the environment, otherwise a robot would pass through the same position
multiple times while considering it a new location, resulting in an faulty map. Accumulated
errors along the trajectory (drift), might lead to an inconsistent reconstructed map, i.e. the
loop of the trajectory is not closed properly [22].

SLAM solutions come in the form of either filtering techniques, which are the most
common, or graph-based. Filtering techniques are based on Bayes filters, which are an
extension to the Bayes Rule. Many variations of the Bayes filter have been developed over
the years and [22] presents a brief overview of the most popular ones.

Graph-based techniques keep all gathered data, including past poses, in the form of a
graph (hence the name graph-based). Since all data is kept, and all data is processed on
every step, more computation power is required. However, the resulting graphs can be easily
shared with collaborating robots [46], which is a mandatory asset in a multi-robot system.

2.2.2 Multi-Robot SLAM

Multi-Robot SLAM (MR-SLAM) is an extension of the original SLAM problem that tries
to take advantage of characteristics offered by a multi-robot system such as parallelism and
redundancy [41]. Exploring an environment with a team of robots rather than a single one
is always going to be more efficient and reliable, however, multi-robot systems present with
new challenges, namely unknown robot poses, map fusion and scalability [25]. Networking
challenges also apply to this kind of robotic ecosystem since robots need to work together
by sharing gathered sensor data and processed information. Having multiple robots is also
more expensive, so the elements of a team of robots generally need to be cheaper in order to
compensate for the numbers, this means less processing power and storage space. So means of
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sharing data and computational resources become necessary and the use of remote computing
environments becomes a more attractive solution for teams of cheaper robots. Despite the
decrease of costs with time of computing resources, scalability is always a concern, thus such
solutions are always relevant.

One of the aforementioned problems is that algorithms in MR-SLAM need to know the
initial relative positions of the remaining robots. This problem is trivial if all the robots
have started in the same position, but such approach is very limiting. Other techniques can
be employed, such as in, [25] which presents a solution where it is considered that robots can
compute the relative position under special circumstances, e.g. meeting or staying in line of
sight. Upon contact between two robots, map information is shared, but the algorithm must
be able to compute the relative initial positions on a time-reverse order: from the present
relative positions, map information is presented as if the robot was moving backwards.

Since in a multi-robot environment each member of a team of robots creates each own
map segment of the whole environment, this information must then be shared among the
remaining robots so that a complete map can be built. This is known as map fusion. This
task in inherent to any approach to MR-SLAM, and here we can see that a cloud environment
could benefit the robotic environment by providing with a more trivial trade of information.
Moreover, the ability to maintain a complete map on the cloud would allow a new robot to
have easy access to it, without having to re-explore the environment.

2.3 Multi-Robot Patrolling

2.3.1 Overview of the Multi-Robot patrolling problem

In a robotic patrolling scenario, a robot/team of robots must sweep the surveilled environ-
ment repeatedly. Patrolling algorithms define a metric that is intended to be optimized, such
as visit frequency of each location or the distance each robot has to travel to complete its
course [36]. The most commonly used metric is the time elapsed between consecutive visits
on the same node, usually referred to as idleness.

This problem is usually presented in a patrolling scenario, however the same approach
can be used in other circumstances, such as mine clearance or search and rescue operations
[48]. Although one could implement a patrolling system with a single agent, the advantages
of having multiple ones are rather imposing in this specific scenario, as multiple agents
always allow for a more frequent patrol, thus such systems are almost always employed in
this manner. However, as we have seen, and considering mobile robots as agents, having a
multi-robot system presents with its own problems to be tackled, being one of them cost
constraints. Many researches do not take into consideration this kind of real world problem,
as it is more common to present results in a simulation environment. However, an algorithm’s
scalability falls if the costs of maintaining a larger team are too high, thus in a large team
robots tend to have to be cheaper to compensate for the numbers. As stated before, this
means less computational resources and less memory available. Even if we discard cost limits,
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size may also be posed as a restraint. Greater computational resources require more power,
which in turn requires a larger battery to maintain a reasonable autonomy. We can see here
two situations that can take advantage of cloud computing in order to increase scalability in
a real world scenario.

In a Multi-Robot Patrolling problem, each robot needs to decide which position to move
next while maintaining a global trajectory that not only covers the whole environment but
that is also efficient, in other words, the individual robot trajectories should not intercept
each other. Most approaches solve trajectory generation with a centralized planner that
commands all the robots’ paths, while others implement distributed mechanisms that gener-
ate trajectories in real time [49], however this is more demanding in terms of computational
resources to the robots as there is no a priori processing, nor can they rely on external re-
sources. Moreover, patrolling also involves some task related to perceiving the environment,
such as image processing or pattern recognition, in order to detect any anomaly or intru-
sion. These kind of tasks tend to be costly in terms of computational resources, and coupled
with the navigation and obstacle avoidance tasks that run continuously, these resources can
quickly become overburdened.

The surveillance method needs to take into account the robot’s sensory capabilities:
the environment can be modeled by a grid-based map where robots must verify each cell
(known as the coverage problem); or the environment can be modeled by a topological map,
considering the robots can surveil a single place from just one or a few locations (known
as the area patrolling problem) [49], as we have seen before, in this case, each node of the
graph represents a landmark to be patrolled and each connection the path to said location.
Grid-based and topological maps have been described in section 2.2.

There are three takes on patrolling problems: adversarial patrol, where the robotic team
is tasked to find an identified threat, perimeter and area patrol, where the task is to frequently
visit important areas of the environment. The difference between perimeter and area patrol
is that while in the former robots patrol only the outer rim of the environment, in the latter
all areas are surveiled [49]. However, within the same system more than one method can be
implemented. As an example, [34] performs area patrol until a threat is detected, in which
case it changes to adversarial patrol.

2.3.2 Related work

Pioneer work was developed by [39] where authors defined criteria for evaluating multi-agent
systems (MAS): idleness (average number of cycles without a visit), worst idleness (greatest
number of cycles without a visit) and exploration time (number of cycles to visit all the
nodes). Normalized values of the criteria based on the relation between the number of
agents and the number of nodes was also defined in order to evaluate the optimization. In
order words, if the agents are in a greater number, the criteria defined above will tend to be
lower, however this does not mean that the system is running more efficiently.

In order to test different methods authors defined a few varying parameters: type (re-
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active/cognitive), communication, next node choice, coordination strategy and monitoring
capability. Various methods with different parameter combination were tested in a simula-
tion environment, where the best results were obtained by the following algorithms:

1. Conscientious Reactive: since it is a reactive method, it has a limited field of view
of adjacent nodes (in this case only the immediate neighboring nodes are perceived);
no communication is conducted; the choice of node is computed based on local idleness
values without knowledge of other agents’ movement; and coordination is done in a
decentralized manner.

2. Conscientious Cognitive: since it is a cognitive method, it has a field of view of
up to the global map; no communication is conducted; the choice of node is computed
based on global idleness values without knowledge of other agents’ movement; and
coordination is done in a decentralized manner.

3. Idleness Coordinator: cognitive method; communication is conducted by messages
between agents; the choice of node is computed based on global idleness values with
knowledge of other agents’ movement; and coordination is done in a centralized manner.

While this was pioneer work that set the pace for patrolling research, many considera-
tions/simplifications during simulation were taken that limit the validity of these results in
a live scenario [48]. Most of these considerations come from the background of Artificial In-
telligence development in a video game, which differs greatly from our case study of robotic
patrolling.

Over the years many different approaches have been proposed, each based on different
principles [48]. The pioneer work described above was further developed in [16]. Here the
author presents Heuristic Agents, which improve on the path finding and decision making
process by taking a broader approach that takes into consideration not only the idleness and
distance values when planning a path, but also the values carried by the neighboring nodes.

The solution to the Traveling Salesman Problem (TSP) gives the shortest circular path
between a number of locations. As maps are usually represented in a topological fashion,
the patrolling problem can be seen as a TSP, and in the case of a multi-agent system, a
single map can be divided into smaller sections, giving each agent the task of following the
route given by the solution to the TSP associated with each section [17]. In work [26], the
author describes single-agent patrolling based on TSP and generalizes the approach to the
multi-agent case, showing how multiple agents can take advantage of graph partitioning.
Another example of this methodology that involves dividing the global map (graph) into
smaller subgraphs can be found in [47].

Other techniques involving negotiation mechanisms and reinforcement learning have also
been used to grant agents a more reactive and adaptative behavior. These solutions come
from approaches taken in other works related to Multi-Robot systems that revealed promising
results [50]. Finally, in [49] authors present two methods based on the Bayes rule with
the intent to create a more flexible solution that can adapt to environment changes or
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agent failures. In this solution no central planner is used, giving the team of robots full
autonomy and moving away from pre-computed cyclic routes or partition schemes. This
work is further developed in [51] by the same authors, introducing memory to the system by
way of maintaining the history of visits of each teammate and adopting concurrent reward-
based training in order to reduce the overall complexity of the system.

As one could note, centralized processing is already widely used in multi-robot patrolling
platforms, so a cloud framework becomes a natural extension to such systems in order to
increase their functionalities, such as parallelism capabilities. Moreover, the concept of using
remote processing is not strange to robotic patrolling. In work [55], robots communicate to
a central computer system their current state, which does all the computing necessary and
instructs the robots one their route. Having said that, distributed platforms can also take
advantage of a cloud environment, because smaller, cheaper robots can be introduced in the
robotic team and cooperate with other robots by simply offloading computationally heavier
tasks to the cloud. Either by having a main role as a route planner or by being just a
service of computational resources, the cloud presents promising capabilities to multi-robot
patrolling systems.

2.4 ROS

As the name suggests, ROS (Robot Operating System) [53] is an operating system for robots.
Albeit not an operating system per se, it offers the same services as one, such as hardware
abstraction, low-level drivers, process message-passing, etc. by providing a communications
layer on top of the host computer operating system. Over the years it has become one of
the most used toolkits for robot programming, gathering a large amount of drivers, libraries
and developer tools.

The main motivation behind ROS is the fact that different robots vary greatly from
one another, even if they are built for the same purpose, thus making code reuse rather
complicated, which is a major barrier to research and development. In other words, making
a robotic application requires deep knowledge on how the robots work, from low-level driver
components to high-level application algorithms. While the latter can be ported from one
robot to another, the former cannot, making code reuse an arduous task.

With this in mind, ROS was developed to create a framework usable on a wide variety of
situations, which has almost become a standard in robotics, thus allowing for a converging
of research efforts. Following this characteristic of versatility, ROS supports various pro-
gramming languages, namely C++, python and LISP, with experimental libraries in Java
and Lua [9].

With the code reusability premise in mind, ROS was developed as a framework distributed
by various packages. These packages contain runtime processes called nodes, libraries and
other relevant files. Packages are a way of grouping files that together offer some sort
of functionality, reducing complexity and allowing code to be written without any ROS
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dependencies, resulting in an easier reusability and a modular fine-grained framework. As
an example, it is possible for a robot that uses wheels to move around to use the same code
to patrol an environment as a robot that uses tracks, by using different locomotion drivers
but the same patrolling package.

As we have seen, a ROS system is composed of many nodes, each providing certain func-
tionality. These nodes communicate with each other by messages, which are data structures
like in any programming language. Messages can be passed among nodes by asynchronous
(topics) or synchronous (services) mechanisms. Topics are a publish-subscribe method of
inter-process (or inter-node) communication. When a node publishes a message to one topic,
each node that subscribed to that topic will receive that message. On the other hand, ser-
vices are a request-reply method of inter-node communication. In this case, a node requests
a message to another and waits for the reply before continuing.

As ROS provides this structured communication layer there must be some form of ad-
ministrating the ongoing communications. Here we can introduce the concept of the Master
node. This node is part of the roscore, a set of nodes that provide the minimal structure
and functionality to a ROS system, and its function is to administrate the system’s commu-
nication lines by keeping track of all the topics and services, so that nodes can communicate
to one another in a peer-to-peer manner. Moreover, the master node provides with naming
and registration services. The need for these services comes from the fact that a stack (set
of nodes with the same purpose) can require multiple instances of the same node, for exam-
ple a robot might need two nodes to control each of its tracks. Thus namespaces allow for
topics of twin nodes to be addressed without changing any code. Traditional multi-robot
architectures exploit the use of namespaces by having a central machine running the master
node and multiple robots running nodes communicating to the master under namespaces.

Although the multi-robot situation described above is a clever work-around of ROS in-
herent limitations, having only one ROS master node in a central machine means that in
case a robot loses connection to said machine, it will stop working. This is not of great
concern to static robots that can have a wired connection to the central machine with high
availability. However, mobile robots require a wireless, and inherently less stable connection,
posing a great barrier of reliability to any architecture developed this way. As such, multi-
master systems have been proposed. On these systems, one roscore is run on each robot,
which allows for more autonomy and reliability, as robots can continue to operate even if
the wireless connection is interrupted.

Key aspects that multimaster frameworks must tackle are the development of building
blocks and tools, communication layer, and web tools integration [56]. This new approach
to multi-robot systems has sprouted a few projects such as RoCon and Multimaster FKIE,
as described in section 2.1.5.
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2.5 Summary

In this chapter, we presented the key aspects on which our work will be built upon. We
started by going over cloud computing (section 2.1) in general and how it can be deployed in
practice, as well as robotic approaches to it, which represent a small shift in the paradigm,
where robots, sensors or services are provided rather than just computer resources. We also
went over the challenges faced by cloud robotics and the most significant frameworks, in the
context of our motivation.

Sections 2.2 and 2.3 present an overview of the SLAM and Multi-Robot Patrolling prob-
lems, which will be used as test cases for the developed cloud robotics application. Finally,
section 2.4 presents with an overview of ROS, which will be the framework used for robotic
software development.

Having selected the Rapyuta framework as the basis for our cloud adaptation of multi-
robot tasks, section 3 will present how it is used from both the cloud and user sides.
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3 Cloud Robotics using Rapyuta

In the previous chapter, we discussed the mechanisms of the Rapyuta framework and
the reason it was picked over the others for this work (sections 2.1.5 and 2.1.6). In this
chapter, we will go over how the framework is used in practice from both the point of view
of a Cloud user and a Cloud manager. We will also take a more in depth look at Rapyuta’s
communication mechanisms as they are a key component in setting up a functional system.

3.1 Setting up Rapyuta’s Cloud environment

To setup a computing cluster – or in this case a Cloud – with Rapyuta there are three key
components: the master task set (run with rce-master), the robot task set (run with rce-robot
and not to be confused with the robots that connect to the Cloud) and the container task
set (run with rce-container). While the master task set is unique to the cloud, i.e. only
one in execution, the other two run on every machine that belongs to the cluster. In other
words, the machine that runs the master task set can optionally run the other two, while
every other machine will run both robot and container task sets but not the master one (Fig.
3.1). Setting up a computer cluster with an arbitrary number of machines is made rather
easy, since the process of adding/removing machines is decoupled from the master task set,
meaning that the size of the cluster can be dynamic since no a priori information of which
and how many machines compose the cluster is needed. Only the IP address of the machine
running the master task set needs to be known.

The reason for the robot and container task sets being separate from one another is that
the container task set needs to be run under super user privileges in order to create and
destroy the Linux containers. Thus, severe security issues could arise if the robot task set
were to be one with the container task set, since it makes the connection to an outside
robot (user), the users would communicate to the Cloud environment with these super user
privileges.

In similarity with a machine joining the computing cluster (or Cloud), a user connecting to
Rapyuta’s environment (run with rce-ros) only needs to know the IP of the machine running
the master task set to setup a foreign computing environment for itself. Here a user refers to
a robot (the common case) or any machine with a WebSockets protocol compatible browser.

27



Figure 3.1: Cloud setup using Rapyuta. The dashed box represents optional task sets.

After contacting the master task set the connection is forwarded to one of the machines
in the cluster. This machine is assigned by the master that manages these connections so
that one machine does not get overloaded while others stay empty. These machines running
the robot and container task sets will offer computing environments based on virtualization
(discussed in section 2.1.5).

While the users do not control which machine they are assigned to nor how much process-
ing power they are given, they can choose how many virtual environments are created, what
runs on each environment and which connections are made to their local machine. To do so,
while in contact with the master task set, they must provide a file in JSON (JavaScript Ob-
ject Notation) format specifying said options. As Rapyuta is targeted towards ROS systems,
these JSON files include information on Linux containers to be created, which ROS nodes
run on which containers, parameter values assigned to the roscore, and which interfaces are
to be created.

Binary executable files are not passed to the Cloud during the communication setup, only
the referred JSON file (Fig. 3.2). Instead each ROS package or executable must be previously
installed on each machine that joins the computing cluster. Each of these packages is then
accessible by each container with a path pointer. The virtual environments (containers) have
their own file system, with their own root directory and their own version of ROS. While
possible, it is cumbersome to install sourced ROS packages in this file system, so the packages
can be installed normally if a pointer to them is provided in Rapyuta’s configuration file. On
some special cases, for example whenever uncommon libraries are used, the packages must
be compiled inside the container file system (run with rce-make), so that these libraries
are found on runtime. This process basically runs a chroot command to the container file
system’s root directory and the package is compiled from there, which also means it will not
run outside of a container.
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Figure 3.2: Process of connecting to the Cloud.

The interfaces allow for both local machine-to-container and container-to-container com-
munication. At its core, ROS establishes a messaging protocol among running nodes (refer
to section 2.4) and since interfaces deal with topics and services transportation they play
a crucial role in the setup of a working ROS system. While on a traditional ROS system
the communication among nodes is seamless, meaning that the publishing or subscription of
a topic comes with no additional work from the user’s point of view, if a node running on
Rapyuta’s Cloud environment subscribes to a topic being published on a local machine or
on a different container, this topic must be explicitly propagated via interfaces.

There are two types of interfaces: converters and interfaces. Note that so far we have
used interface in the common sense of the word, however, here interface is a type of method
of communication that is hold by an endpoint of either a container or a local machine’s ROS
system (refer to section 2.1.5). While interfaces handle communication from one container to
another, i.e. carry a published topic or provided service, converters handle communication
from a container in the Cloud to a user’s local machine. The main reason for the difference
is in the communication hardware. While it is safe to assume that all machines in the
computing cluster will be connected via Ethernet, it is safe to assume that users (namely
robots) will connect wirelessly. That being said, interfaces simply mirror topics as wired
connections are fast enough to handle any topic or service independently of its size. On
the other hand, converters transform any ROS messages in binary blobs before being sent.
This lack of data meaning allows for compression algorithms to be applied to the message.
For example, Rapyuta comes predefined with a converter that applies the lossless PNG
compression technique to ROS sensor_msgs/Image. This mechanism can be exploited to
greatly reduce the required bandwidth, though it introduces an overhead of a few milliseconds
[44]. Whenever a robot connects to Rapyuta, a ROS node is executed, both locally and inside
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the containers, that subscribes and publishes the topics defined by the interfaces created.
The fact that connections must be explicitly created brings the advantage that topic

names can be modified to suit occasional needs. For instance, consider a case where a sim-
ulation is being carried with two robots and there are two containers in the Cloud receiving
each analyzing sensor readings from a single robot. These containers can be launched with
the same nodes and without topic remapping, since this remapping can be done by giving
the correct name to the interfaces: robot_0/scan local topic will be connected to the scan
topic on one container while the robot_1/scan will be connected to the scan topic of the
second container.

By nature, Rapyuta implements a multimaster system, as in a common case there are at
least two master roscore running at a given time: one running in the local machine and one
in the container. Moreover, Rapyuta is blind to the number of different roscore that connect
to it, which proves to be an easy tool to setup multimaster systems (Fig. 3.3).

Figure 3.3: Comparison between a single and multimaster systems interacting with
Rapyuta’s Cloud environment. In both systems two robots are simulated in stage [13] and
robot_1 mimics the movemt of robot_0 in reverse.

On a side note, Rapyuta’s messaging mechanisms can be explored to create a multimaster
topic and service distributor, since it can be used to pass ROS messages from one machine
to another even without the creation of containers or the execution of nodes in the Cloud.
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3.2 Summary

This chapter went over Rapyuta’s mechanisms to setup and use the Cloud, from both a user
the Cloud provider perspectives. Below is a quick overview of the steps to setup and use
Rapyuta’s Cloud environment.

To setup a Cloud or computer Cluster:

1. Launch the master task set on a single machine. This machine’s IP must be known by
all other machines, including the users’.

2. Launch the robot and container task sets on any number of machines to form the
cluster. The machine that launched the master task set may optionally launch these
two task sets as well.

3. The machine referred on 1. will be contacted by users to create computing envi-
ronments. It does so by forwarding communications to the machines referred in 2.,
selecting a machine based on free processing resources.

To use Rapyuta as a user:

1. Launch a regular roscore.

2. Contact master task set on the Cloud, providing a JSON formatted file containing the
desired container, parameter, nodes and interfaces.

3. A node is launched mirroring topics and services to/from the Cloud.

The next chapter will go over the adaptations made to the selected multi-robot tasks so
as to work under Rapyuta’s cloud environment.
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4 Two Use Cases of Rapyuta

4.1 Use Case 1: Multi-Robot SLAM

4.1.1 The mrgs ROS stack

Moving the onboard processing to the Cloud has its array of advantages and compromises
that were discussed in chapter 2. In order to make a Cloud-based solution more interesting,
only minimal efforts ought to be required to make such transition. In other words, significant
changes to the traditional system should not be needed. In order to prove this kind of
flexibility, a working multi-robot SLAM solution was adapted in order to run under the
Rapyuta Cloud environment. The solution used was mrgs [41], a ROS stack developed in
the AP4ISR Lab. at ISR — University of Coimbra that enables any working single robot
SLAM technique to be performed by a team of robots, provided that such technique conform
to ROS standards and outputs occupancy grids.

It should be noted that the ROS fuerte distribution was used, as Rapyuta was originally
developed for this ROS version. Neither the more recent indigo distribution of ROS currently
used in out lab, nor the version 14.04 of Ubuntu are currently supported by Rapyuta.

A robot running the mrgs multi-robot SLAM solution without resorting to a cloud-
computing framework has five running nodes [41], as seen on Fig. 4.1 (note that the node
slam_gmapping is not a part of the mrgs stack).

Figure 4.1: Interaction between the nodes and topics of the mrgs stack.
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The map_dam_node is a simple auxiliary node that subscribes to the map topic, which
is fed by a single-robot SLAM technique such as gmapping, and cuts out the excessive space
that these techniques usually use (see Fig. 4.2). This map trimming will reduce the overall
network load. The result of this operation is then forwarded to the data_interface_node by
a ROS topic.

Figure 4.2: Comparison between the occupancy grid output by gmapping (right) and the one
output by map_dam_node (left). While both occupancy grids contain the same amount of
useful information, the one on the left is trimmed down to reduce the total size.

The data_interface_node is responsible for broadcasting the robot’s local map output by
the map_dam_node to the remaining robotic agents, while receiving their local maps. Note
that these nodes implement a compression algorithm (LZ4) in order to reduce the bandwidth
necessary during operations [42]. A map vector containing the local maps of all the robotic
agents is then forwarded to the complete_map_node. Overall this node makes the bridge
between a single- and multi-robot system, as all interactions flow through it.

The complete_map_node upon receiving an updated map vector calls a service provided
by the align_node building a global map in a hierarchical fashion. The following diagram
illustrates how this node minimizes the number of fusion services it needs to call.

As the diagram in Fig. 4.3 shows, maps are coupled and merged. The resulting map
from the merging process then moves up in the pyramid, being itself coupled with another
map resulting from the same merging process. In the event of an odd number of maps, the
last one automatically moves up. This process repeats itself until only one global map is
found. Whenever one of the local (bottom) maps is changed only the subsequent maps that
depend on it are remerged, thus avoiding costly and unnecessary merging operations.

The align_node provides a service that receives two occupancy grids as input, computes
a transformation (a translation coupled with a rotation) between them, and outputs a new
occupancy grid representing the result of the merging process, based on the aforementioned
transformation. The algorithm is based on computer vision (namely OpenCV libraries [7]),
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Figure 4.3: Representation of the tree-like process of map merging.

as such, the environment must be endowed with defining features in order to aid align_node’s
algorithm in finding the correct correspondence between input maps.

Finally, the remote_nav_node is another auxiliary node, whose function is to propagate
the transform information from the data_interface_node and the complete_map_node to
the tf ROS topic. This sort of information is key in the correct representation of information.

These five nodes are modular enough to enable three different configurations [41]. If
all of the nodes are running on each robot, the system assumes a distributed form, where
each robot receives each other’s local map and subsequently computes the global map. This
type of configuration is more reliable and robust since there is no single point of failure.
On the other hand, if only one robot (or base station) runs the complete_map_node, then
the system takes the shape of a centralized one, where only that machine will compute the
global map. While this kind of configuration introduces a single point of failure, the need
for onboard computing power is considerably lower. The third possible configuration is a
mixed one, where some of the robots merely explore the environment, while others receive
and compute information, thus having access to the global map.

As stated before, all the multi-robot interactions pass through the data_interface_node,
therefore this is where most of our attention will be focused. As is, in the case of a distributed
configuration, the bandwidth requirements of mrgs grows linearly with map size but also
exponentially with team size, as one local map must be shared with each one of the team’s
agents.

4.1.2 Contribution to the improvement of the mrgs ROS stack

As was stated in the previous chapter, the align_node provides a ROS service, which takes
in two occupancy grids as input and outputs the result of the merging process. Despite
working properly, albeit with the expected frailties, under a team of two robots, this node
failed rather notoriously for larger teams. In other words, the merging of two maps that had
already been merged themselves was unsuccessful. The figure below shows, the results of a
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team of three simulated robots.

Figure 4.4: Failed merging process of three similar local maps.

In this case, the failure occurred while trying to merge the local map of the third robot
with the resulting map of the merging of the first and second robots. Here we can clearly
observe the recurring behavior of the system: the first two maps are merged properly with a
slight mismatch, while the third one is placed way off the expected position. Note that this
represents a redundant test, meaning that each local map had a representation of the global
map, thus the align_node ROS node should be able to properly merge all three maps, since
every map was similar to one another.

The mrgs stack was developed in a modular fashion, so that the alignment node could be
easily replaced with a more robust and efficient one. However, most of the existing solutions
to this problem assume that the relative initial positions of the agents of a robotic team are
known between each other, a condition that might not be true in some robotic situations,
and that certainly restricts the possible application of this multi-robot system.

The solution was then to review the code and try to find the bug that was causing
subsequent maps to be poorly merged with the first couple. It was found that, while the
align_node node assumed the maps it received were trimmed, the end map that was returned
as output to the service was not. As a part of the merging process, padding to the maps is
used in order to allocate sufficient memory resources, for example if one map continues the
bottom part of the other, the final map must have increased size in order to accommodate
all of the data in only one occupancy grid. Referring to Fig. 4.4 again, it is possible to see
that the map contains unnecessary column and rows on the top and right sides.

Adding a simple function that trims the final result of the merging process, like the one
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the map_dam_node node uses (see section 4.1.1), resolves the problem: since the output of
the first call to the alignment service is trimmed, when it is used as the input to a further
alignment service call, it already obeys to the necessary conditions.

Although with this change the systems function properly for teams of more than two
robots, the merging algorithm is still imperfect and lacks robustness. As it is based on
computer vision, it greatly depends on map features and common areas in order to produce
a reasonable result. The tradeoff of not relying on knowledge of relative initial positions to
build the global map is the fact that the zones of the map need to be easily distinguishable.

4.1.3 Adaptation of the mrgs ROS stack to Rapyuta Cloud envi-

ronment

In the traditional system, mrgs can be run in a distributed or centralized manner (see section
4.1.1). Adapting this stack to the Rapyuta Cloud environment maintains this ability, due to
the flexibility provided by Rapyuta’s messaging mechanisms.

Distributed mode
In the traditional system, this mode eliminates the single point of failure that is a base

station, while all the tasks are run entirely by the robots. Adapting such architecture to the
Cloud does not possess much merit at first glance, because if we can rely on the wireless
network to export all the processing to the cloud, then we can also rely on the network to
connect to a base station. However, in a centralized architecture if the base station fails,
so does the system, while running a distributed mode over the Cloud means that if any of
the machines from the Cloud cluster fails the system does not fail entirely, only the robots
allocated to said machines will stop functioning as intended.

While in the traditional system a robot needs to run both a SLAM technique and the
mrgs stack, in the Rapyuta’s adaptation a robot only needs to run a node that transmits to
the Cloud the necessary sensor readings and transforms (see Fig. 4.5), heavily relieving the
robot of the need for local processing resources.

Figure 4.5: ROS environment of a robot that is running the mrgs stack on Rapyuta.

Centralized mode
From the robot’s perspective nothing changes between this mode of operation or the

distributed one, as all processing is done on the Cloud environment (Fig. 4.5). However, the
differences between the adapted centralized system and the traditional centralized system
diminish: while the bandwidth requirements stay the same, only the SLAM technique used is
relieved from the robot with the Cloud adaptation in comparison to the traditional system.
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Common to both modes of operation are the bandwidth requirement differences between
the adapted and the traditional systems. While in the traditional system each robot sends
each other compressed (using the LZ4 compression technique) versions of the local map,
in the adapted system only sensor data and transforms are sent over the wireless network.
Here the difference is somewhat difficult to compare. On the one hand, occupancy grids are
extremely compressible (in [41] the techniques tested presented a compression ratio of at least
10), but their compressed size will vary greatly with map size and complexity. On the other
hand, sending sensor readings and transforms guaranties a fixed bandwidth requirement,
which can be controlled by the amount of readings done by the sensor. Moreover, in a
distributed architecture, the traditional system’s bandwidth requirement grows exponentially
with the team size as each robot must send its local map to every other agent, while in the
adapted system this growth is linear, since each robot only communicates to the Cloud
despite team size.

Fig. 4.6 shows a graphical comparison of the aforementioned modes of running the mrgs
stack.

Figure 4.6: Comparison between distributed (left) and centralized (right) modes of opera-
tion under Rapyuta’s Cloud environment. The boxes labeled with LXC (Linux Containers)
represent containers running on Cloud machines.

The process of adapting the traditional system to work under Rapyuta’s Cloud envi-
ronment revolves around the removal of the dependencies on the wifi_comm package [14],
so that the system uses Rapyuta’s messaging mechanisms instead. This package allows for
the creation of a multimaster system by mirroring foreign topics on a local roscore. The
messages that would ordinarily come in and out using these foreign relays are now replaced
by two simple ROS topics: one that receives foreign maps and another that sends the robot’s
local map. This way, in distributed mode every robot has an input topic that is connected to
the remaining robots’ output topic and one output topic that is connected to the remaining
robots’ input topic. In the centralized mode, the central computer has only one input topic,
while each robot has only one output topic. In order to allow for multiple robots to be
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simulated under one computer, the MAC address identification system that was originally
present [41] was changed to an ID-based system given by the user.

Despite being flexible, Rapyuta’s messaging mechanisms come with their setback. As all
connections must be explicitly stated, the robotic team size must be known a priori, i.e.
the team can increase in number over time but a new agent must be aware of all remaining
active agents in order to make the necessary connections. This knowledge was not required
in the original system. It is, however, a minor concern since it is the user that owns the
connections and not the robots, thus they do not need to be made during launch time.

4.2 Use Case 2: Multi-Robot Patrolling

4.2.1 The patrol_isr_demo ROS package

The multi-robot patrolling problem was selected as a second use case, since some other task
is usually included with it. In other words, while in a SLAM scenario a team of robots can
be deployed solely to map a certain area, in this scenario the act of patrolling itself is futile
if not coupled with some other task such as intruder detection or object search. Having said
that, a Cloud computing architecture could benefit the patrolling act in two ways: offloading
the computer resources required to navigate through the environment to the Cloud would
allow for more resources to be available to the secondary task; or offloading every task to
the cloud, including the task of perceiving abnormal situations (e.g. using image processing
to detect intruders or unexpected objects), which can be computationally demanding, would
mean that cheaper robots with less computational resources would be able to patrol as well
as robots with considerable onboard resources.

In order to prove this concept the patrol_isr_demo, a ROS package developed in the
AP4ISR Lab., was chosen to serve as use case [52]. The basic principles described in section
4.1 were applied here as well, meaning that changes made to the original system should be
kept to a minimum in order to prove the Cloud environment’s flexibility.

The patrol_isr_demo package takes advantage of the navigation stack, namely the
move_base, amcl and map_server nodes [5], in order to provide a single robot a way to
move through the environment. These three nodes work together so that given a goal pose
(meaning position and orientation coordinates) they output the correct velocity commands in
order to reach said goal, while avoiding unexpected obstacles. These nodes require not only
sensor data and transforms but also odometry information. Note that, once again, despite
the concept of stack no longer existing in newer versions of ROS, all work was developed in
ROS fuerte as Rapyuta has not yet been updated to support a newer ROS version.

The patrol_isr_demo implements the Travelling Salesman Problem and the Concurrent
Bayesian Learning Strategy (CBLS) methods of patrolling [52]. The TSP technique imple-
mented in the TSP ROS node was selected as it is well known but also offers more predictable
agents’ trajectories. The package also implements a monitor node, which only aids in the
synchronization of the robotic team’s agents and logs all the data, thus the node can be shut
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down after the patrolling starts.
The patrolling task is achieved by the cooperation between the TSP and the previously

mentioned navigation stack nodes (Fig. 4.7). The TSP node computes a trajectory based
on the algorithm with the same name and informs the remaining agents of its intentions.
Secondly, it provides a goal (or target pose) to the navigation stack, which represents the
next vertex to be visited. The navigation stack then takes care of moving through the
environment as well as avoiding obstacles.

Figure 4.7: Interaction between the nodes and topics of the patrol_isr_demo package.

In order for the TSP node to compute a valid route and to send valid goals, two files
containing detailed map information are needed. As was discussed in section 2, it is common
for topological information from a map to be used as a way of determining the regions of
interest (or vertexes) in the Multi-Robot Patrolling problem. With this purpose, a simple
text file containing all the necessary information to make a web of vertexes is used to represent
a map. This information includes coordinates, neighbours, direction of each neighbour and
the cost to move to each one. Since the optimal TSP route (in case one exists) does not
change over time, another file containing this route is fed to the node so that it does not
need to be computed every time. Having established the general TSP route, the node has to
determine afterwards where to start (since the route is cyclical). To do so, it consults a coded
list of initial positions that, based on the robot’s ID, provides a correct starting position.
However, this assumes the robot with a given ID always starts on the same position.

Upon starting execution, communication among agents is required to compute a degree of
proximity and to adjust trajectories accordingly, so as to avoid potential collisions. Finally,
each goal provided to the navigation stack nodes are based on the coordinates retrieved from
the file containing the map’s topological information.

Throughout the whole execution of the navigation stack nodes, a considerable amount
of computer resources are consumed, even if the robot is held to a stop, since the nodes are
continuously scanning for obstacles and computing/sending velocity commands.

In similarity with the use case of section 4.1.1, the patrol_isr_demo uses the wifi_comm
package in order to establish communication among the robotic team’s agents, thus this
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was the main focus point in the adaptation of this package to the use on Rapyuta’s cloud
environment.

4.2.2 Adaptation of the patrol_isr_demo ROS package to Rapyuta

Cloud environment

There are three main components that need to be launched to start patrolling: a single mon-
itor to synchronize all agents, navigation stack nodes running on all agents and a node that
implements a patrolling algorithm also running on all agents. Inter-agents communication
is done via a single topic that connects the monitor and all algorithms implementing nodes.

This single topic was spread over the multimaster setup by the wifi_comm package
that mirrors foreign topics. In this way, the dependency on this package was removed and
replaced by simple publishers and subscribers, similarly to the distributed case of mrgs
described on section 4.1.3. The package had traces on the code that indicated it had been
tested under a single master setup, in other words, the system had a hidden ability to
function with many robots working under a single roscore (in such case, there is no usage
of the wifi_comm package). This meant that, with the flexibility Rapyuta’s messaging
mechanisms offer, adapting the traditional system was a matter of having the algorithm
implementing nodes believe they were running on a single master environment while using
Rapyuta’s abilities to distribute messages over a multimaster one (Fig. 4.8).

Figure 4.8: The patrol_isr_demo package and the navigation stack nodes running on
Rapyuta’s Cloud environment. The boxes labeled with LXC (Linux Containers) represent
containers running on Cloud machines.

Again, similarly to section 4.1.3’s distributed case, the bandwidth requirements for this
package grow exponentially with team size, since all agent communication is a broadcast to
the remaining. However, messages consist of four int8 integers, making it realistically always
lower than the bandwidth needed to run the system on Rapyuta, which grows linearly with
team size.
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Most of the workload comes from the navigation stack nodes, due to the constant exe-
cution path planning and obstacle avoidance tasks. This means that to take advantage of a
Cloud environment all of the processing must be offloaded, thus bandwidth requirement is
being tradeoff with CPU time.

Another consideration with the adaptation of the traditional system is how the navigation
stack’s parameters are launched, as Rapyuta does not provide the possibility of loading yaml
files that are commonly used in ROS to configure complex nodes in a flexible way. However
it does provide a way of launching parameters one by one, thus all yaml files must be
incorporated in the configuration file used to launch a container or a node in the Cloud
environment.

Moreover, the value the parameters used in traditional system should be reconsidered
when adapting to the cloud, since wireless connections take a considerable amount of time.
This means that the agents’ maximum velocity should be lowered in order to allow more time
to react to an unexpected obstacle. In the same train of thought, the trajectory generation
should be comparatively more conservative, i.e. agents ought to corner further from the wall
to give enough time in case of a miscalculated route or trajectory slip.

4.3 Summary

This chapter described the use cases chosen to work as proof of concept of a Cloud-based
solution to a multi-robot task. A detailed comparison between the traditional and the
adapted systems was also presented, as well as what changes were made in the adaptation
process and what tradeoffs are incurred upon offloading the chosen tasks to the Cloud.

These theoretical assumptions are further explored in the next chapter, where live simu-
lations are conducted to demonstrate empirically the expected results.
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5 Results and Discussion

As discussed previously, the main characteristic that a Cloud-based solution provides to
a robotic system is the scalability it provides in terms of computer resources. Not only these
resources can be made seemingly infinite to the robots, but also forming a large robotic team
is made much cheaper. As such, we believe experiments involving such a team should be
conducted as a proof of concept of this highly desirable characteristic. While other works
have already taken advantage of the Cloud for external processing [54] [45], only experiments
with two robots were conducted. Thus, we carried out experiments with twenty robots in
a simulation environment using the stage simulator available in ROS. We believe simulated
robots are only justifiable if the order of magnitude of the size of the team of simulated
robots is greater than the one achievable with the existing live robots. On the other hand,
we only had available three desktop machines with Intel® Core™2 Quad Processor Q6600,
Intel® Core™2 Quad Processor Q9300 and Intel® Core™2 Quad Processor Q9400, which
limited the Cloud’s resources and the size of the robotic team to the specified twenty.

Apart from providing with a proof of concept, it was also our objective to evaluate the
tradeoff between CPU time and bandwidth that comes with a Cloud-based approach, from
the point of view of a single robot. Despite our beliefs that a Cloud-based solution is more
attractive when considering larger scales, this characteristic comes solely from the fact that
each individual in a robotic team can be considered weak in terms of computer resources,
so the point of view of the robot is also a key aspect. With this in mind, experiments were
conducted that used the ps Linux command in order to register the CPU time spent by
the considered robotic tasks in both the traditional and the Cloud-adapted systems. For
bandwidth measurements we used both the command rostopic and the program nethogs
available in a Linux system with ROS.

The use of simulation time and clock mismatches in the Cloud and local machines can
cause timing mismatch errors, especially on the tf ROS topic. Moreover, delay in the trans-
mission over the network of these time sensitive topics can further increase the occurrence of
timing errors. However, most of these errors, and in our use cases all of them, are artificial
errors, meaning that they are caused not by a fault in the system but because of lack of
clock synchronization and the fact that the Cloud machines receive topics with a transmis-
sion delay. In order to solve this, we implemented a ROS node that runs on every container
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and subscribes to every time sensitive topic and republishes them with the machine’s local
current time. Due to the topic naming that Rapyuta’s interfaces provide, these topics do not
overlap. Still on this topic, it is important to note that these timing considerations can have
a negative impact on the robotic task or even make it unreliable to run in the Cloud. This is
specially true for tasks with strict hard real-time constraints. While clock desynchronization
between machines can be easily overcome, delays caused by network transmission can not.

5.1 Multi-Robot SLAM Simulation

As stated above, two types of simulation experiments were conducted. On this first exper-
iment, as a proof of concept, we launched twenty robots on the stage simulator [13] in a
multimaster setting, meaning that there were twenty roscore’s and twenty instances of the
stage simulator. This configuration resembles the most that of an actual team of twenty in-
dependent (with its own roscore) robots. On the side of the Cloud, there was one container
running the merging and global map building nodes and twenty other containers (one for
each simulated robot) running the local map building nodes.

Each simulated robot feeds the laser scan data and its transforms to the rce-ros node,
which propagates them to a container in the Cloud under a different topic name due to the
aforementioned timing constraints. These topics are then republished under their normal
name and with a new timestamp to be read by the gmapping node. When a new local map
is generated, the map_dam_node processes it and the data_interface_node propagates it
to the merging container.

Fig. 5.1 represents a successful experiment of this setup. Each of the simulated robots
discovered the central area and one of the twenty outside branches. The end result was a
global map similar to the original. Predictably, the aligning process is not perfect, which
results in an accumulative error evidenced by the thick lines and the cloudy effect on the
common areas.

A second set of experiments centered around the point of view of the robot, rather
than the results of the system as a whole, was conducted in order to evaluate and better
comprehend the tradeoff between CPU time and bandwidth imposed by this Cloud solution.
On the previous experiment there was one different trajectory for each of the robots, so now
we repeated the same trajectories but this time we registered the CPU time demand in both
the traditional and the Rapyuta-adapted systems.

For the case of the Rapyuta-adapted system, only one node (rce-ros) is running at all
times, while on the traditional system, under a centralized mode, there are three: gmapping,
map_dam_node and the data_interface_node. However, the data_interface_node CPU
time demand was not registered because it was negligible.

As Tab. 5.1, Fig. 5.2 and Fig. 5.3 show, the difference in terms of computational power
required to run the system on both approaches is stark. Not only do you save up a lot of
CPU time on the Cloud approach, but you also gain a more predictable CPU consumption.
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Figure 5.1: Global map generated by the merging process of twenty different local maps.

Table 5.1: Comparison between the CPU time used by the mrgs stack on the traditional
and Rapyuta-adapted systems from the point of view of one robot.

Mean (%) Max (%) Min (%)
Rapyuta-adapted system 2.4 2.5 2.3
Traditional system (41.5+3.5)=45.0 (42.5+3.7)=46.1 (40.2+3.4)=43.7

While the rce-ros node requires the same amount from the CPU, the nodes run under the
traditional system might require more or less depending on environment complexity or the
robot speed through the environment. This is evidenced by the fact that the first, second
and third quartiles are stacked on each other for the Cloud-based system (Fig. 5.2).

Although the differences in CPU time are clear and significant, the bandwidth aspect is
trickier to evaluate. The Cloud approach requires a steady amount of bandwidth as it is
moving local topics that are published at a predefined rate (10 Hz in this case) to the Cloud.
On the other hand the traditional system does not possess this characteristic, making it hard
to register non-faulty values of bandwidth consumption. Moreover, in this case, the required
amount of bandwidth depends a lot on the environment. As the maps are compressed, a
larger amount of features in the environment will lead to a worse compression rate, while a
blank featureless one will lead to a higher one. The size of the environment will also take a
considerable impact on the final size of the maps to be sent to the network. Maps are also
not sent at a steady rate but only when a significant change to the local map is detected, thus
the speed of the robot is another variable that impacts the traditional system’s bandwidth
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Figure 5.2: Box plot of the CPU time used by the Rapyuta-adapted mrgs system from the
point of view of one robot.

Figure 5.3: Box plot of the CPU time used by the traditional mrgs system from the point
of view of one robot.

requirements.
Having said that, we registered the bandwidth used for the Rapyuta-adapted system and

the amount of data propagated through the network by the topics of the traditional system.
The latter will give an idea to which degree the map size changes even on our simple and
small sized (25x25 meters) map. This will not result in a direct comparison between both,
but rather in an analysis on how many robots could be viably deployed under current Wi-Fi
standards.

Although the amount of data sent to the Cloud is steady (see Tab. 5.2 and Fig. 5.4),
there is still some variation, due to the fact that TCP requires acknowledge packages to
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be sent, as well as error checking that might lead to some being resent. Nevertheless, the
bandwidth required by each robot is somewhat predictable. Additionally, laser scan length
and sample rate are variables that we control and that have great impact on bandwidth,
which gives the system an appealing flexibility.

Table 5.2: Bandwidth required by one robot running the Rapyuta-adapted mrgs system.

Rapyuta-adapted System KB/s
Mean 31.0
Max 35.5
Min 25.9

Figure 5.4: Box plot of the bandwidth used by the Rapyuta-adapted mrgs system from the
point of view of one robot.

A modern and off the shelf 802.11n compatible router can provide a wireless speed of
65 Mb/s (or 8125 MB/s), which can serve, in theory, a total 228 robots, if we consider
they require the maximum value of 35.5 KB/s. While theoretical values might be far from
practical ones, the resulting number is high enough to comfortably say that a dedicated
network could serve any realistic team of robots.

Furthermore, with the right setup, the 802.11n protocol is reported to reach speeds of
600 Mb/s and the newest 802.11ac over 1Gb/s. Again, despite being only theoretical values,
they give a sense on how advanced wireless networks are nowadays, and that they could
easily provide a good enough connection to a large robotic team.

In the case of the traditional system, instead of simply measuring the consumed band-
width by the data_interface_node (node that sends/receives local maps), we registered the
size of the topics used to propagate local maps through the robotic team (Tab. 5.3). Due to
the unsteady way maps are generated, i.e. after a map is sent there is a considerable period
of time where there is no bandwidth usage, reading the bandwidth would result in improper
values. Thus we present the growth in size of the topic over the course of the experiments.
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Table 5.3: Size of the topic exchanged among robots running the traditional mrgs system.

rostopic Mean Max Min
Mean (KB) 26.4 27.7 25.0
Min (KB) 5.3 5.6 5.3
Max (KB) 35.8 38.0 34.2
Average rate (KB/s) 4.9 5.2 4.5

This gives us a rough estimate of the volume of data transmitted over the network in the
traditional system. Note that the actual values would be a bit higher due to TCP related
issues already mentioned.

The first point to note is that the average rate is negligible due to the fact that local
maps are only sent once significant changes have occurred. During the experiments each
robot only sent around 22 local maps, over the course of 2 to 3 minutes. However, while
in the Rapyuta-adapted system, the volume of information is steady and predictable, in the
traditional system, network load comes in the form of bursts, which is not an appealing
feature.

Secondly, the table perfectly shows clearly the high variability on map size growing from
a minimum of 5.3 KB to a maximum of 38.0 KB. This tells us that we can never predict the
total bandwidth necessary of the whole system, as the size and rate of messages depend on
uncontrollable variables, and transmission over the network in a burst fashion.

5.2 TSP Patrol Simulation

Similarly to the previous use case, we conducted two experiments with two different focuses
for the multi-robot patrolling use case. On the first experiment, a stage simulator with 20
robots fed data to twenty containers on the Cloud (see Fig. 5.5). Note that in this case,
we did not run the experiment in a multimaster setting, solely for visualization purposes.
Although we could have run the system with twenty different roscore’s, this would have
made it difficult to show the results of the patrolling of the whole environment in action.
The containers in the Cloud ran every node associated with the patrolling package, including
the node needed to republish topics under a valid timestamp, and except for the monitor
node that was only run in one of the containers.

In order to evaluate the differences in CPU time required by each of the systems, we
conducted a second set of experiments. In these experiments, only a single robot was de-
ployed in the stage simulator, in order to measure this time from the robot’s point of view.
We identified the move_base, amcl and TSP nodes on the traditional system as the ones
that required a relevant amount of CPU time. As Tab. 5.4 shows, CPU time is one order
of magnitude lower in the Rapyuta-adapted system, when compared to the traditional one,
which is a considerable gain.

48



Figure 5.5: This figure represents a successful experiment with 20 simulated robots patrolling
a TSP generated trajectory. The considered vertexes are placed in a grid-like fashion, where
each square is surrounded by four vertexes to a total of one hundred.

Table 5.4: Comparison between the CPU time used by the patrol_isr_demo stack on the
traditional and Rapyuta-adapted systems from the point of view of one robot.

CPU time (%)
Rapyuta-adapted System 3.8
Traditional system (move_base+amcl+TSP) (34.6+3.4+1.1)=39.1

Another experiment was conducted to check if obstacles increased or not the CPU time
required by the move_base node. Obstacles were introduced in the stage simulator as shown
by Fig. 5.6. However no significant changes were observed on the usage of CPU time, thus
further tests were set aside.

In this case, as robots only exchange vectors containing four elements of type int8 (total
of four bytes) among each other, there is little reason to compare bandwidth requirements
between the two systems as the Rapyuta-adapted one will always require much more than
the traditional one. Thus, this is a rather extreme case of the tradeoff present when moving
a system to the Cloud: although it is possible to reduce CPU time by a considerable amount,
the bandwidth required to do so can be much larger. However, as stated before, wireless
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Figure 5.6: Environment used while testing the impact of obstacles in the usage of CPU
time.

technology is increasingly more powerful and a dedicated network for robots can provide
with more than enough bandwidth for any realistic robotic team.

Tab. 5.5 and Fig. 5.7 present the results of consumed bandwidth registered in the course
of twenty experiments. On each experiment, one robot patrolled an environment similar
to Fig. 5.5 for around six minutes. Despite the theoretical value of required bandwidth to
transport the necessary local topics to the Cloud being constant, there are external variables
related to the traffic of the network that can increase this value in practice, thus the need
for more than one experiment.

Table 5.5: Bandwidth required by one robot running the Rapyuta-adapted patrol_isr_demo
system.

KB/s
Average 47.1
Max 53.5
Min 39.4

Figure 5.7: Box plot of the bandwidth used by the Rapyuta-adapted patrol_isr_demo system
from the point of view of one robot.
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Once again, despite the Rapyuta-adapted system requiring a lot more bandwidth than
the traditional one, a common off-the-shelf home 802.11n router that provides a speed 65
Mb/s could theoretically support 165 robots. Keep in mind that this protocol can reach
speeds of up to 600 Mb/s and the more recent 802.11ac can reach over 1 Gb/s. Nowadays’
wireless Internet speeds give enough bandwidth room to consider a Cloud-based solution for
multi-robot systems.

5.3 Experiments with real robots

In order to further prove the concept, experiments with real robots were conducted 1. These
experiments had the objective of proving the applicability of a Cloud-based solution on
real world scenarios. Although simulation provides a close approximation to reality under
ideal conditions, real experiments are subject to erroneous sensor readings, robot slips during
movement and a not ideal wireless Internet connection. All of these impact the final outcome,
and it is important for the system to be robust enough to handle such imperfections if the
system is to be applicable outside of the laboratory.

Figure 5.8: Experiment with real robots running the Rapyuta-adapted mrgs system.

Fig. 5.8 represents a successful multi-robot SLAM experiment where all processing was
done on the Cloud, which was made of a single desktop for this case. Similarly to the map
used in simulation in section 5.1, there was a common corridor open to all the robots and
three side branches to be explored by only one. Despite the few holes on the environment
picked up by the laser range finders and a few erroneous readings, the global map built by
the system is usable and a close approximation to reality, thus providing a result equivalent
to the one obtained by a traditional multi-robot system not resorting to the Cloud.

The first idea for the following experiment was to patrol the whole floor where our
laboratory is located. This was not possible because the Wi-Fi access points (AP) are
located inside the laboratories, which causes the Internet connection to degrade quickly.
This is due to the long corridors causing the thickness of the wall between robot and AP to

1Demonstrative video of our work https://goo.gl/1GVfrK
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Figure 5.9: Experiment of a real robot running the Rapyuta-adapted patrol_isr_demo sys-
tem.

increase greatly. Thus we restricted the patrolling area to the vertexes with good Internet
connection, which are being patrolled as shown in Fig. 5.9. This solidifies the idea that a
solid Internet access coverage is required for any Cloud-based system. Only one robot was
used for these experiments for two main reasons: firstly there was not enough space with
proper Internet access to justify adding a second robot; secondly the behaviour of the acting
robot would not change by adding a team mate, unless their trajectories intersected each
other.

Despite the robot patrolling just a portion of the whole building it does so repeatedly
proving the correct behaviour of the Cloud-based system. This tells us that if a proper
Internet access coverage was available, the robot would have been able to patrol the entire
floor as tried in a first approach.

Figs. 5.10 and 5.11 show the values of CPU time registered during the experiments.
Each robot had a netbook with an Intel® Atom™ Processor N2800, thus having limited
computation power when compared with a common laptop computer. Similarly to simulation
results, the differences are stark between the local and Cloud-based systems. The initial
downwards slope evidenced by the local system’s curves is created during the moments
between launching the nodes and running the task. It is also noteworthy that in the patrolling
scenario, one of the CPU cores 2 is completely used by the task, while the Cloud-based system
requires only 14%. During these experiments, the consumed bandwidth values were 39.4
KB/s and 42.6 KB/s for the multi-robot SLAM and patrol tasks. The increased bandwidth

2The processor is dual core.
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observed during the multi-robot SLAM experiment comparatively to simulation values can
be explained by the increased volume of data provided by the laser range finder.

Figure 5.10: CPU time registered during the experiments of multi-robot SLAM with three
real robots.

Figure 5.11: CPU time registered during the experiments of multi-robot patrol with a real
robot.
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5.4 Summary

In this chapter, we presented the experiment results of both multi-robot SLAM and patrolling
systems, evidencing the expected tradeoff between CPU load and bandwidth. The gain in
freed CPU time is considerable on a Cloud-based system and while the need for bandwidth
is higher, we believe modern wireless routers can provide with more than enough to support
any team of real robots with an arbitrary team size.

Experiments with real robots were also conducted in order to further prove the concept
of Cloud-based multi-robot systems.
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6 Conclusion

A Cloud-based solution always presented itself as a tradeoff between computer resources
(namely CPU time and storage) and network bandwidth. We have successfully proven
that tradeoff favourably, as high bandwidth wireless internet connection is highly available
nowadays with off-the-shelf components. However, it should be noted that the tasks run on
the Cloud can not degrade with time delays, i.e., there should be no hard-real time deadlines.

The Cloud-based solution was also shown as a scalable one as long as the computer
cluster that forms the Cloud is powerful enough and the tasks running in it enable such
scaling. During the adaptation process of existing robotic tasks to the Cloud not many
changes to the original systems were needed, thus this Cloud-based ecosystem can coexist
with traditional systems. This becomes a key aspect when developing new robotic tasks,
as debugging a program running on a foreign machine is much more troublesome. We also
believe the multimaster nature of the presented Cloud environment is a big plus, as it allows
for robots to be more independent, multi-robot system to be more modular and if the robot
control is done locally, a robot is not lost in the case of network failure.

That being said, the solution is far from perfect, as only large teams or robots with little
computer resources take the full benefit from it. Moreover a permanent and reliable Internet
connection is mandatory, which might not be available is some scenarios.

Overall we believe to have been successful in demonstrating the utility of Cloud environ-
ments in the field of Robotics.

At the time this dissertation is being written and submitted, the author is preparing
together with his supervisor a scientific paper presenting the main conclusions of the work
developed in this dissertation, to be submitted on September 2016 to the 32nd ACM SIGAPP
Symposium On Applied Computing (SAC 2017).

6.1 Future work

Here we present a more complete vision of how the Cloud could be used in Robotics, either
on a laboratory/classroom or a corporate robotic service provider context; in both cases
keeping costs low and ensuring a long product life are key aspects.
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An always-on infrastructure should interface with any web browser to make the connec-
tion to the Cloud in a more intuitive way. This infrastructure would provide with existing
installed robotic tasks on the Cloud and allow the users to choose which of these tasks were
to be run. This way a robot connecting to this service would have access to any robotic task
without the need to go through the process of installing all of them (only requiring ROS
topics and services declaration to be installed), relieving the robot of some storage space.
The JSON files used to communicate with the Cloud would be automatically generated and
ready to use.

On a laboratory/classroom context a researcher could easily set up a team of robots to
do some robotic task on the Cloud, while local computer resources would be used for the
developing task. After development, the new robotic task could be added to the list of tasks
provided by the Cloud infrastructure. On a corporate context, large teams of robots could
be used in many different scenarios always having access to the latest version of robotic tasks
software, without ever needing to update them locally or replace the non-faulty robots due
to a lack of computer resources.
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