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Resumo

Existe atualmente uma necessidade acrescida de recorrer a robôs autónomos para desempen-

har algumas tarefas indispensáveis e que possam ser facilmente substituídas, sem causar nenhum

transtorno à sociedade. Para isso, surgem os robôs de navegação centrados no humano, que são de-

senhados com o intuito de ajudar as pessoas a ultrapassarem algumas das suas di�culdades. Desde

robôs guias, a robôs de interacção e de serviço, são muitas as possibilidades que existem no mundo

da robótica, capazes de desempenhar este tipo de tarefas. Os robôs móveis que utilizam estratégias

de navegação são, habitualmente, desenvolvidos para serem usados em instalações industriais, para

o transporte de materiais ou outros componentes, em instalações hospitalares, para o acompan-

hamento e interacção com pacientes, em ambientes de escritório, onde podem desempenhar funções

de auxílio a pessoas, aumentando a sua produtividade, ou mesmo em museus, servindo de guia

para os visitantes. Para que estes robôs possam navegar, é necessário que se consigam localizar

no ambiente em que operam, planear e seguir trajectórias, evitando qualquer tipo de obstáculos e

adaptando-se às condições dinâmicas que possam surgir, tais como pessoas ou diversos obstáculos

dinâmicos em circulação no ambiente, dos quais o robô não tem conhecimento a priori. Para isso,

são necessários diversos módulos de software que integrem métodos de mapeamento, localização

e planeamento de caminhos, para que, em conjunto, formem um sistema de navegação que seja

e�ciente e robusto.

Esta dissertação de mestrado teve como objectivo propor o desenvolvimento de um sistema

integrado de navegação, aplicado num robô móvel desenvolvido no Instituto de Sistemas e Robótica

(ISR), denominado "Interbot - Social Robot", usando dados sensoriais provenientes de um laser range

�nder (Hokuyo UTM-30lX). Foram desenvolvidas várias arquitecturas de software para navegação

desta plataforma, a �m de se identi�carem quais as vantagens e desvantagens dos métodos usados

por cada arquitectura, após a realização de testes experimentais. Assim, pode-se apurar qual a

melhor arquitectura para ser usada pelo Interbot para navegação em long-term dentro de ambientes

de escritório, sem ter em conta, para já, pessoas e obstáculos dinâmicos. Como resultado �nal

dos trabalhos realizados conducentes a esta dissertação, foi possível deixar o robô Interbot pronto

a navegar no piso 0 do ISR, para que, no futuro, sejam realizadas melhorias e novas aplicações

com o Interbot, designadamente em tarefas de interacção com seres humanos e tarefas envolvendo

múltiplos robôs. Assim, como potenciais aplicações a curto prazo, estes robôs poderão ser usados

pela comunidade de investigadores do ISR ou também como guias de visitantes do ISR ou do

Departamento de Engenharia Eletrotécnica e de Computadores (DEEC).

Palavras chave: robôs autónomos, navegação, trajectórias, obstáculos, método de localização,

método de mapeamento, método de planeamento de caminhos, Interbot
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Abstract

Nowadays, there is a growing need to use autonomous robots to perform some necessary tasks

that can be easily replaced, without causing any disturb in the society. For that purpose, human-

centered navigation robots were developed with the intent of helping people to overcome some

of their di�culties. Guide robots, interaction and service robots, represent some of the existing

possibilities in robotics capable of performing these kind of tasks. The mobile robots that use

navigation strategies are usually developed with the purpose of being in industrial facilities, to

carry resources or other components, in hospital facilities, for monitoring and helping patients, in

o�ce environments, where they can perform messenger tasks, to improve employee's productivity,

or even at museums, to perform guided tours. In order to these robots being capable of navigating,

it is necessary that they can localize themselves in the environment where they operate, plan and

follow trajectories, avoiding any type of obstacles and adapting to the possible dynamic conditions,

such as people or several dynamic obstacles in its surroundings, of which the robot has no a priori

knowledge. To perform these tasks, several software modules that integrate mapping, localization

and path planning methods are necessary, therefore creating an e�cient and robust navigation

system.

This master's dissertation had the aim of purposing the development of an integrated navigation

system, applied in a mobile robot developed at Institute of Robotics and System (ISR), named

"Interbot - Social Robot", using sensorial data from laser range �nder (Hokuyo UTM-30lX). Several

software architectures for the navigation of this platform were developed, in order to identify the

advantages and disadvantages of the methods used by each architecture, after performing several

experimental tests. Therefore, it can be identi�ed which is the best architecture to be used by

Interbot for a long-term navigation in indoor o�ce environments, without taking into account, for

now, people and dynamic obstacles. As �nal result of the works conducted by this dissertation,

it will be possible to deploy the Interbot robot in the ISR ground �oor, autonomously navigating,

so that, in the future, some improvements can be applied and new applications using Interbot can

be developed, such as interaction tasks with humans and tasks involving multiple robots. Thus,

as potential short-term applications, these robots can be used by the ISR researchers community,

or as guides for potential visitors of the ISR or Electrical and Computers Engineering Department

(DEEC).

Key words: autonomous robots, navigation, trajectories, obstacles, localization method, map-

ping method, planning method, Interbot
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�Everything is theoretically impossible, until it is done."

� Robert A. Heinlein
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Chapter 1

Introduction

This chapter summarizes motivations that led to this dissertation, the main goals and the key

contributions, as well as a resume of each chapter to contextualize the reader.

1.1 Motivation and Context

In the recent past, robotics had a great advance in terms of robotic navigation. Several methods and

mobile robots were developed with a constant expansion and evolution. These mobile robots have to

be capable of autonomously navigating in the environment were they are deployed and perform some

activities and tasks which can be, at some level, helpful for humans. Taking this into account, these

robots have to be human-centered platforms, so they have to know how to behave in environments

where it can exist interaction with humans, in order to be socially accepted. Nowadays, this factor

is still a problem that mobile robots developers have to face, because society is not used to this

kind of technology, so there is the need to �nd strategies to make it more appealing. Mobile robots

can be used in several environments, for instance, in industrial facilities, where they can carry

resources and components, in medical institutions, for helping and interacting with patients, and

in o�ce environments or research institutions, to assist people and improve heir productivity. To

this end, these robots have to own a navigation system with a software architecture composed by

di�erent modules. Each of these modules should be easily replaced once they integrate methods

that are frequently updated. The most important modules and those that are worth to mention

are the Perception module, where localization and mapping are part of, allowing the robot to

know its surroundings and where it is at, and Path Planning module, which includes methods

for computing trajectories for the robot to follow between several locations, always considering

information obtained from the Perception module.

This dissertation work relies on applying a navigation system to a mobile robot named "Interbot-

Social Robot". This robot was developed in ISR thanks to the work of several researchers, in par-

ticular, André Lopes, Daniel Almeida and Tiago Barros. The main challenge of this work was to

develop a navigation system for the Interbot, based on laser scan readings, in order to enable a

safe navigation, considering its surroundings and taking the shortest possible path, adapting to

the several possible changes in the environment where it is inserted. Therefore, several software

architectures using di�erent methods for Perception and Path Planning were studied, implemented

and tested using the Robot Operating System (ROS) framework, so that the advantages and limi-

tations of each of these architectures were analyzed, for determining the methods to be integrated

in Interbot, for indoor environment navigation purposes. In this �rst stage, dynamic environments

were not taken into account. This research project can be the start of new and more ambitious ones

1



1.2. GOALS

involving Interbot platforms. The Interbot can be replicated and used in ISR for other researching

purposes, as well as it can be useful for performing simple tasks, like guide visitors, and complex

ones, involving the cooperation of multiple robots.

1.2 Goals

The purpose of this work was to integrate several software architectures in a navigation system

and determine which one need to be used in Interbot for a long-term navigation, considering the

advantages and limitations of each method used by the Perception and Path Planning modules.

The main goals were:

1. Study di�erent methods for mapping, localization and path planning;

2. Adapt the Hybrid Motion Planner (HMP) framework integrated in Collabnav node [1] into

Interbot;

3. Integrate several architecture systems for navigation, taking into account the hardware avail-

able at Interbot platform;

4. Implementation of an integrated navigation architecture, in ROS environment, composed by

the selected methods, with the purpose of achieving a long-term navigation.

1.3 Implementations and key contributions

The implementation of several software architectures for building a system on ROS framework,

capable of performing a long-term navigation, was the major key contributions of this dissertation.

Figure 1.1 shows the main modules composing the navigation system. The chapters that com-

pose this dissertation are presented and resumed below:

Interbot Platform (Chapter 4)

� A system overview about the Interbot low-level part containing a brief description about the

mechanical and electronic components.

� Interbot's system architecture, describing all the components that are part of the hardware

architecture, as well as a brief description about the main modules that compose the software

architecture.

Perception Module (Chapter 5)

� Description of the methods that were used for localization (AMCL), mapping (Costmaps

Building) and methods for Simultaneous Localization and Mapping (SLAM), for instance,

Hector_SLAM and Gmapping.

2
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Figure 1.1: Navigation System main modules.

Path Planner Module (Chapter 5)

� Description of the methods that were used for path planning, in particular, move_base and

HMP.

� Implemented global planning algorithm for being used along with HMP.

Interbot Integrations (Chapter 5)

� Five di�erent software architecture, implemented in ROS, for the navigation system integrated

in Interbot.

The Chapter 6 describes all the scenarios used to test the implemented architectures and their

results are presented and discussed.
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Chapter 2

State of the art

2.1 Indoor Mobile Robots

Robot navigation takes a fundamental role in mobile robotics. Research and development on this

topic started many years ago and nowadays there are approaches and methods that are constantly

evolving and are applied in many projects. Like a human being, for a safe and e�cient navigation,

a robot has to perceive its surroundings and decide a way to move from a point to another, avoiding

obstacles and taking an appropriate path to a target location. For this simple task it is necessary

modules for perception, including localization and mapping, and path planning. In other words,

the robot uses sensor information so it can localize itself using a map of the environment and

decide which direction and velocity are better to accomplish its target location, not forgetting its

surroundings and possible new static and moving obstacles.

The following sections describe these modules and examples of algorithms that can be used in

navigation systems. Figure 2.1 represents the navigation modules explored in this chapter.

Figure 2.1: Typical modules for indoor mobile robots: mapping, localization, SLAM and Path

Planning.

2.2 Mapping

Mapping corresponds to the ability for an autonomous robot to build a �oor plan map that represents

walls and other signi�cant environment features using idiothetic (e.g.:encoders) and allothetic (e.g.:
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lidar or sonar) sources. Therefore, these maps are often used by localization algorithms so that the

robot can localize itself, and also by navigation algorithms in order to generate global and local

paths from a point to another.

In [2], the two major map types for indoor environments are presented: metric and topological

maps.

2.2.1 Metric Maps

Metric maps are also known as grid-based maps, and consist of a two-dimensional representation

of the environment involving the robot by the mean of a discrete occupancy grid with a certain

resolution. Examples of methods for obtaining these type of maps were proposed by Elfes, in [3],

and Moravec, in [4].

Each grid cell has an associated occupation value which represents the probability of that cell

being occupied by an obstacle. Basically, this cell occupation value increments in each iteration if

the sensor beam indicates that cell as occupied and decrements it if the sensor beam indicates that

cell as empty. These maps are easy to build and to maintain and their resolution is independent

of the environment complexity because the resolution is determined by the cells size: a decrease on

the cell size means an increase on the map resolution.

An example of a metric map is represented in Figure 2.2, where the black areas correspond

occupied cells and the gray areas are the empty cells.

Figure 2.2: Metric map example.

2.2.2 Topological Maps

Topological maps map the environment using graphs with nodes and arcs, so it can be considered

a high-level representation of the environment. Each node represents a speci�c place or landmark

(eg. doorway) and they are connected using arcs, corresponding to paths between them.

The topological map resolution is determined by the environment complexity, so, generally, they

are more compact than to the grid-based maps. This can become more intuitive for the user and,

internally, the path planning is simpli�ed and faster since the used computational resources are

reduced.
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This kind of map is build using a metric map. The free-space of the metric map is divided

into several regions corresponding to rooms or corridors, separated by lines which represent narrow

passages or doorways. For each region it is created a node and, as mentioned above, each node will

be connected to another node using a arcs representing a path. Figure 2.3 presents an example of

this type of map. As it can be seen, the nodes correspond to speci�c points of the metric map that

can be critical for the navigation, such as door entrances or corridor corners, and the arcs are the

paths between those nodes.

Figure 2.3: Topological map example. The map is represented by the light blue lines (paths) and

the red spots (nodes).

Table 2.1 resumes the advantages and disadvantages of these types of maps described above.

These types of maps are often combined to improve accuracy and e�ciency for a reliable navigation.

Table 2.1: Comparison of metric and topological maps (adapted from [2])

Metric approaches Topological approaches

⊕ easy to build, represent, and maintain

⊕ recognition of places (based on geome-

try) is non-ambiguous

⊕ facilitates computation of shortest paths

⊕ allows global e�cient planning, low

space complexity (resolution depends on

the complexity of the environment)

⊕ does not require accurate determination

of the robot's position

	 global planning ine�cient, space con-

suming (resolution does not depend on the

complexity of the environment)

	 requires accurate determination of the

robot's position

	 di�cult to construct and maintain in

larger environments

	 recognition of places (based on land-

marks) often ambiguous

	 may yield suboptimal paths

2.3 Localization

For an autonomous navigation, the robot has to keep track of its own pose, relatively to the envi-

ronment where it is inserted. There are several localization techniques, the majority of them based

on probabilistic localization.
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According to [5] and [6], a belief is represented using a conditional probability distribution

and corresponds to the robot's knowledge about the state of the environment involving it. This

belief is the posterior probability distribution over a state variable, taking into account preceding

measurements and it is given by

bel(xt) = p(xt|z1:t, u1:t), (2.1)

where xt is the state at time t, z1:t are the measurements obtained until t and u1:t are the past

commands.

At time t, the posterior continuous probability distribution can be computed by applying the

Bayes Filter in a recursive function, using the belief at time t−1 and the most recent command and

measurement data. The resulting algorithm can be divided into two steps: a motion update, where

a belief b̄el(xt) is calculated using the prior belief over state xt−1, bel(xt−1), and the command data

ut; a measurement update, where b̄el(xt) is multiplied by p(zt|xt), which is the sensor measurement

model, and by η, which is a normalization factor. Methods that use continuous distributions in

the belief equation 2.1 are the Kalman �lter ([7]) and Multi-Hypothesis Tracking (MHT) ([8]), for

instance.

Discrete distributions can also be used in Bayes Filter, although the posterior distribution

p(xt|z1:t, u1:t) has to be approximated by a �nite number of values, each one corresponding to

a region in space. For the purpose of this work, only methods that use this type of discrete dis-

tribution are important, so examples of this methods, for instance, grid-based Markov Localization

and AMCL, are described below.

2.3.1 Grid-based Markov Localization

In accordance with [5], in Grid-based Markov Localization, the state space is partitioned in adjacent

grid cells, each one of them with a corresponding belief value. this method is accurate and robust

against sensor noise although it is dependent on the grid resolution in a way that a better resolution

results in a higher accuracy but takes much computational e�ort.

Initially, the belief values are uniformly distributed over the pose state space. In each cycle

iteration, the belief values increase in cells around the actual robot's pose and decrease as we move

away from that location. This calculation is done recurring to the current scan and the latter state

space. After some iterations, the probability mass is centered around the robot's actual pose and

the robot is now localized.

This method can solve kidnapping problems after some iterations and does not need an initial

pose if a global grid is used, although this compromises the computational complexity.

2.3.2 Augmented Monte Carlo Localization

According to [5], Monte Carlo Localization (MCL) is an algorithm applicable to both local and global

localization problems and it represents the robot's belief about position by a set of M particles with

a certain importance weight.

The initial global uncertainty is obtained through a set of particles drawn random and uniformly

over the pose space and as the robot senses something di�erent over time, importance factors are
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assigned to each particle. After re-sampling and incorporating the robot motion, the particle set has

uniform importance weights and the most relevant places have a greater particle number associated.

After several iterations, the location that has the most particles associated is the most likely location

and correspond to the approximated robot's position.

MCL was not robust enough to recover from problems like global localization failures or kid-

napping because, over time, the particles associated to locations other than the most likely poses

gradually disappear and the algorithm is unable to recover in some cases. A second version of this

algorithm named Augmented Monte Carlo Localization (AMCL) solves those possible problems by

adding random particles based on some estimation of the location accuracy at each iteration. Short

and long-term average of the measurement likelihood are tracked and if the short-term likelihood

is better or equal to the long-term likelihood, none random particle is added. In the other hand,

if the short-term likelihood is worse than the long-term likelihood, a number of random particles

proportional to the quotient of these values is added. For instance, if the robot is kidnapped there

is a sudden decay in measurement likelihood, so the number of random particles increases and after

some iterations it is able to relocalize itself.

Figure 2.4: AMCL inputs and outputs.

2.4 Simultaneous Localization and Mapping

A robust navigation is only possible if an e�cient localization and a map building algorithm is used

which can reliably represent the robot's surrounding environment. There are algorithms that can

perform both localization and mapping, known as SLAM algorithms .

Those algorithms are able to map the environment, localize the robot and they need to be

capable of working in real-time. Among this algorithms, those which are worth to mention are, for

instance, Hector SLAM [9], Gmapping [10],[11], 6D SLAM [12] or Fast SLAM [13].

For the propose of this work the last two algorithms were dismissed from the beginning because

6D SLAM needed the acquisition of 3D laser scans of the environment and Visual SLAM was not

robust enough and caused high load on the CPU. So the algorithms that are worth mentioning due

to the possible applications at the platform taking into account the available material are Hector

SLAM and Gmapping which are mentioned below.
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2.4.1 Hector SLAM

Using laserscan data, any navigation robot can use Hector SLAM ([9]) for grid map building and

localization. In comparison with other grip-mapping techniques, hector slam is a good choice for

systems that use high accuracy laser range�nders but can't rely on wheel odometry and for systems

that have low-power, low-weight and low-cost processors because it consumes low computational re-

sources. This can be an advantage relatively to systems like Gmapping that uses accurate odometry

and does not bene�t so much from LIDAR systems.

This approach is based on the alignment optimization of the laser scan's endpoints with the grid

map that is being published or has been obtained before (a priori map). There is no need for an

association between the laser scans or a pose search which could overcharge the processor, because

as those laser scans are aligned with the grid map, the matching process takes into account the

preceding scans. The scan-matching is processed using a Gaussian-Newton equation, which �nds

the rigid transformation ξ = (px, py, ψ)T that �ts the laser beams with the map.

If there are new static obstacles that do not exist in the map obtained so far, the occupancy

grids are updated so that the robot can avoid them. It should be taken into consideration that

further experiments with hector can con�rm that this algorithm needs some iterations to make sure

that a certain dynamic obstacle is not a static one. For instance, if a person is moving at the front

of the laser, this person is not updated in the map.

One disadvantage of Hector SLAM, is that it is not a good option for large world scenarios

because it does not provide loop closure, although results presented in the literature [9] show that

this algorithm can accurately close the loops in many real world scenarios.

Figure 2.5: Hector SLAM inputs and outputs.

2.4.2 Gmapping

Gmapping is based on Rao-Blackwellized Particle Filters (RBPF) [11] and the main goal is to

estimate the map and robot's localization using odometry and sensor's information. Basically,

RBPF divides the process into two steps: �rst, using the odometry data and sensor's information,

the robot's trajectory can be estimated; �nally, given the trajectory estimated in the �rst step and

using the sensor's observations, the map is computed.

Using a particle �lter, RBPF estimates the possible posterior trajectory poses and since the map

is dependent on the trajectory, a map is also computed for each trajectory. The chosen trajectory

corresponds to the one that has the highest probability and the associated map is the output of the

algorithm.

Gmapping improves the RBPF-SLAM performance by considering not only the robot's move-

ment but also the most recent observation. With this improvement, the posterior poses take into
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account previous odometry from the encoders and the most recent sensor's data information. Addi-

tionally, with this map and pose estimations, a scan-matcher is used to match up the observations

with the current map, which gives the most likely robot's pose.

2.5 Path Planning

Path planning takes an important part in a robot's navigation system, once it is responsible for the

decision of the best trajectory to follow considering the current velocity and collision avoidance,

requiring sensor information, robust localization and costmaps to represent the environment being

navigated by the robot.

Methods for path planning are divided into global planning, local planning and hybrid planning.

Since the �rst two have advantages and disadvantages, hybrid planners were developed to combine

the advantages of global deliberative planning and local reactive planning. These three methods

are speci�ed bellow.

2.5.1 Global Planners

This type of planning approaches have the advantage of o�ine computing a complete trajectory

from the starting point to the end point, even if the end point is not reachable by the robot's sensors

when the robot is at the start point. This can be a disadvantage as global planning do not consider

unexpected changes in the environment involving the robot.

Another disadvantage is if the global world is inaccurate or if it is not available for some reason,

for instance, in a populated indoor environment. This algorithms are relatively slow owning to the

fact that this robot motion planning is really complex due to the repeated adjustments of the global

planning.

These kind of approaches can also be divided into sampling-based and search-based algorithms.

Sampling-based algorithms, such as probabilistic roadmaps [14], randomized path planners [15]

and rapidly-exploring random trees [16], use a randomization of the con�guration space. Search-

based algorithms, for instance, A*[17] and D* [18], generate a graph representation of the planning

problem.

2.5.2 Local Planners

Local path planning approaches cannot produce optimal solutions because they use small parts of

the world model to generate robot control, and therefore rely on local environment information. For

this reason, these algorithms require low computation, which represents an advantage for keeping

up with the high rates of sensor information. They only consider a small subset of obstacles near the

robot, allowing a fast re-adaptation to unforeseen obstacles and dynamic changes in the environment.

Examples of these approaches are: potential �eld methods [19], where obstacles impose negative

forces on the robot and the goal location imposes a positive force; the vector �eld histogram [20],

which uses an occupancy grid of the environment to construct an histogram representing the free

space around the robot and it is used to compute velocities; Dynamic Window Approach (DWA),

which is speci�ed in section 3.1.
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2.5.3 Hybrid Planners

As described in [1], hybrid planners gather the advantages of the global and local approaches and

combine them into a single method. As result, the planned path will be the collision free shortest-

distance path, taking into account a dynamic environment and providing a safe navigation. The

majority of these algorithms uses the DWA's local path-planning approach.

Examples of these approaches are, for instance, D* combined with DWA [21], global DWA

for holonomic robots [22] or for non-holonomic robots [23] and Hybrid Motion Planner (HMP),

described in section 3.3.

2.6 Guide and interaction robots

Robots that provide tour guides and interact with people or perform some services like a night

security or a messenger always have to put safety �rst and be interactive so that they can be

trustful and somehow not intimidating. This required safety is associated with secure trajectory

plans, safe obstacle avoidance and velocities that are suitable for navigation in populated indoor

environments.

One of the main challenges presented over the years was to execute a safe and reliable navigation

through crowds, which implies a navigation at approximate walking speed and at the same time

not colliding with people and static or moving objects. Obstacles that are invisible to sensors (ex:

glass cages) or the frequent modi�cation of the environment are two of the most di�cult problems

to overcome. Along with this safe navigation, it is required an intuitive and appealing user interface

in a way that these robots do not cause indi�erence or intimidate people. For this purpose, the

design of these robots must be intuitive and user-friendly and must provide easy-to-use interfaces.

Several human-centered robots developed for guidance, interaction and service are presented in

the next tables. Table 2.2 summarizes methods used for localization and mapping and Table 2.3

presents methods used for global and local planning. These tables can show how these methods have

been evolving over the years, from the �rst autonomous robot deployed in a populated environment,

to a robot that is able to navigate in an o�ce environment 24 hours a day.

Table 2.2: Description, localization and mapping of interaction indoor mobile robots.

Robot Description/Sensors Localization Mapping

Rhino

(1997)

[24],[25]

Deployed during 6 days in �Deutsches Mu-

seum Bonn� , it was designed to guide peo-

ple during museum tours. It could be con-

trolled using a web interface.

It was equipped with sonars proximity sen-

sors, infrared sensors, laser range �nders

and a dual-color camera system mounted

on a pan/tilt unit.

Markov algorithm was im-

plemented along with an

"entropy �lter". This �lter

discards, for instance, sen-

sor readings correspond-

ing to people obstructing

robot's sonars.

A metric map of the environ-

ment is provided. When the

robot reaches a goal, it resets

it's map to the initial one, en-

suring that if a passage is once

blocked it won't be avoided in-

de�nitely.
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Robot Description/Sensors Localization Mapping

Minerva

(1998)

[26]

Is the second version of Rhino with new

implementations that improved its perfor-

mance. It was �rst deployed in the �Smith-

sonian's National Museum of American

History� during two weeks of testing.

It had laser range �nders, sonars, cameras,

a pan/tilt unit and a touch-sensitive dis-

play.

It uses the same strategy

than Rhino for separating

corrupted sensor readings

from authentic ones.

It is used a texture map of

the ceiling for orientation

as well, in order to solve

the problem of high density

of people surrounding the

robot.

An occupancy map is obtained

using laser range �nders and

sonars.

A texture map of the ceiling

is learned using images from a

camera pointed to the ceiling.

Robox

(2001)

[27]

Designed to guide people at the Swiss Na-

tional Exhibition expo.02. A group of ten

of these robots guided nearly a million peo-

ple during 5 months, seven days a week,

eleven hours a day.

Its hardware included laser scanners, a

camera looking at the ceiling and tactile

sensors.

An adaptation of the local-

ization is applied [28].

It is used a topological map.

It contains ghost points which

act like invisible barriers or vir-

tual readings so that the robot

cannot reach forbidden areas

that are not detected by its

sensors like doors or staircases,

for instance.

Jinny

(2004)

[29],[30]

Designed at Korea Institute of Science and

Technology (KIST), it has been tested in

o�ce buildings and exhibits of Hyundai

heavy industries. It is designed to interact

with people and to perform some tasks.

It has two laser range �nders set up in front

and rear sides, two infrared sensors at dif-

ferent heights and an optical �ber gyro-

scope for localization improvement.

Its localization method is

based on MCL.

The robot uses 3 types of maps:

a topological map (global path

planning), grid maps (map-

matching) and active maps (lo-

cal path planning).

PR2

(2010)

[31]

Designed by Willow Garage, this is an au-

tonomous indoor navigation robot for real

o�ce environments. It is regularly left run-

ning unattended at the o�ce, during the

night .

It is equipped with an Hokuyo UTM-30lx

laser scanner at the base, another hokuyo

on a tilting platform for 3D view, a camera

mounted on a pan/tilt platform, two stereo

camera pairs and an Inertial Measurement

Unit (IMU).

If there is no a priori map, the robot's pose is estimated

by integrating odometry merged with data received from

an IMU.

If there is an a priori map the robot is localized using

AMCL.

Cobot

(2011)

[32]

Developed at Carnegie Mellon University

(CMU), the Collaborative Robots perform

autonomous tasks in populated o�ce envi-

ronments. From September 2011 to Jan-

uary 2013, a group of these robots have

traveled 130 Km during 182 hours.

This robot has an Hokuyo URG-04lx short

laser range �nder at the drive base, a Mi-

crosoft Kinect depth camera sensor and a

pan/tilt camera mounted on top.

Planar points and points

observed by the laser range

�nder sensor are matched

with expected features on a

previously obtained map.

These planar points are ob-

tained by using depth im-

age points from a depth

camera along with a �lter-

ing algorithm named Fast

Sampling Plane Filtering

(FSPF) described in [33].

It is used a vector map, which

represents the obstacles by a

set of line segments.

The procedure for obtaining

these maps is described in [32].
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Table 2.3: Global and local path planning of interaction mobile robots.

Robot Global Planning Local Planning/Collision Avoidance

Rhino

(1997)

[24]

Based on value iteration (described in the cor-

responding section of [24]).

µDWA algorithm [34] was implemented. It considers hard

constraints, which ensure the robot's safety and express

dynamic constraints, and soft constraints, which merge the

robot's desire of moving to its goal and its desire to avoid

obstacles that are in the way.Minerva

(1998)

[26]

The path planning considers the path length

and the information content (the amount of

information expected to be observed at di�er-

ent environment's locations).

Robox

(2001)

[27]

An optimum path is selected through several

nodes of the topological map, depending on

the current position and a target location.

Follows DWA's principle with some di�erences: the calcula-

tion of the trading o� speed, heading and clearance, used for

the objective function, is made in the actuator space (vr,vl);

time to collision is used as a clearance measure instead of dis-

tance to collision; ghost points should be avoided.

Jinny

(2004)

[29],[30]

First, the planner gets the robot position, the target location

and the obstacle set computed using the active map.

Next, it checks for error states such as blocked paths or target

goals occupied by obstacles.

Finally, the path is computed by moving in the direction of the

navigation function gradient, su�ering a smoothing process for

performance improvement.

PR2

(2010)

[31]

It uses an A* algorithm and plans directly in

the con�guration space.

It uses DWA's algorithm.

Cobot

(2011)

[32]

Using a topological map, the chosen path is

the shortest one, taking into account the initial

and �nal nodes along with distances between

nodes that are part of that path.

Obstacles are avoided by computing the open path lengths

which are available for the robot in di�erent angular direc-

tions.
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Chapter 3

Background Material

3.1 Dynamic Window Approach

Synchrodrive mobile robots have some constraints related to their dynamics that can make a certain

movement impossible to perform because they have limitations in velocities and accelerations given

by the fact that there are velocities that can't be reached in short time. This limited accelerations

imposed by the wheels's motors need to be considered by the robot so that the motion planning does

not waste time in unnecessary calculations and improve computing time which is really important

for a safe and e�cient navigation. These dynamics cause constraints that can approximate the

trajectory of synchrodrive robots by a sequence of circular arcs determined by the velocity vector

(vi,ωi), which represent instant translational and rotational velocities.

According to [35], DWA is a local path planning algorithm that prevents platforms from colliding

with obstacles, producing optimal local solutions, as it operates only in a small portion of the world

model to generate robot control. This can be an advantage considering the high rates of the sensor

information and the low computation complexity that is needed for this method. The algorithm

consists in two di�erent parts: (1) reducing the search space of the translational and rotational

velocities for values that are possible to perform considering the dynamics of the robot and the

actual velocity and (2) choose those the translational and rotational velocity that maximizes an

objective function that is going to be speci�ed later on.

3.1.1 Reducing the search space

The velocity search space needs to be reduced to those velocities which are possible to perform in

short time due to dynamic constraints and to velocities that do not cause any robot's collision to an

obstacle. This reduced part of the algorithm is done in three steps for discarding these velocities:

� Circular trajectories (Vs)

Velocities (vi,ωi) have to be determined for each n time interval between t0 and tn, considering

that the trajectory which is generated does not intersect any obstacle. For this approach,

only the �rst time interval is considered, assuming that the remaining n− 1 time intervals are

constant because the search is made after each time interval and the velocities for those n− 1

time intervals are constant if there is not any new command.

� Admissible Velocities (Va)

A velocity is considered admissible when the robot is able to stop before it hits the closest

obstacle. Considering v̇b and ω̇b the translational and rotational accelerations for breakage,
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respectively, and dist(v, ω) the distance to the closest obstacle in the robot's trajectory, the

set of admissible velocities Va, which allow the robot to stop before it collides with an obstacle,

is given by

Va = {(v, ω)|v ≤
√

2 · dist(v, ω) · v̇b ∧ ω ≤
√

2 · dist(v, ω) · ω̇b} (3.1)

� Dynamic window (Vd)

Considering the limited accelerations imposed by the wheels motors, the dynamic window

corresponds to those velocities that can be reached within the next time interval. So, the

velocities that are present in the dynamic window Vd are de�ned by

Vd = {(v, ω)|vε[va − v̇ · t, va + v̇ · t] ∧ ωε[ωa − ω̇ · t, ωa + ω̇ · t]}, (3.2)

where t is the time interval during which v̇ and ẇ will be applied and (va, ωa) is the actual

velocity.

From (3.2), it is noticed that the dynamic window is centered around the actual velocity and

its limits depend on the accelerations that the motors can execute in the next time interval.

All the velocities that stay outside of these limits are not considered for the obstacle avoidance.

� Resulting search space (Vr)

Combining all the previous restrictions, the following intersection represents the reduced two-

dimensional velocity search space that is going to be used for computing the objective function:

Vr = Vs ∩ Va ∩ Vd (3.3)

3.1.2 Maximizing the objective function

After determining the search space for the velocities, Vr corresponds to the maximum of the objective

function, incorporating the criteria (a) target heading, (b) clearance and (c) velocity. So, this

objective function is represented by

G(v, ω) = σ(α · heading(v, ω) + β · dist(v, ω)) + γ · velocity(v, ω)), (3.4)

where σ is a function responsible for smoothing, and α, β and γ are weight parameters.

The following items describe each function that is used for the calculation of this objective

function.

� Target heading

The function heading(v, ω) represents the alignment of the robot relatively to the goal direc-

tion. It is simply given by heading(v, ω) = 180 − θ, where θ corresponds to the target point

angle, relatively to the robot's heading direction.
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� Clearance

The function dist(v, ω) corresponds to the distance to the nearest obstacle intersecting with

the curvature that results from the selected velocity and if there is no obstacle intersecting

this curvature this function is represented by a high constant.

� Velocity

The function velocity(v, ω) is just the projection of the current robot's translational velocity.

� Smoothing

The function σ is used for smoothing the sum of the previous three components.

At the end, the maximum of the objective function is then chosen and the resulting velocity is

then applied to the robot, ensuring that the movement that will be executed corresponds to a safe

trajectory towards the target point of the robot.

3.2 Move_base

Using the robot's current pose, odometry information, an environment grid map, sensor's observa-

tion data and a speci�c goal, this algorithm is able to output the required trajectory to move the

robot from a point to another. Figure 3.1 represents a high-level view of move_base and how it

interacts with its inputs with the purpose of producing those velocity commands.

Figure 3.1: Move_base algorithm (adapted from http://wiki.ros.org/move_base).

3.2.1 Global Planner

Using a global costmap based on the occupancy grid map built dynamically as the map changes,

along with the robot's current pose and a speci�c goal, the global planner creates a high-level plan

for reaching that target location.

It assumes a circular robot and uses Dijkstra's algorithm, planning directly in the con�guration

space. In this case, dynamics and kinematics are not considered or, in other words, it just outputs

two-dimensional points of the trajectory.
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3.2.2 Local Planner

Taking into account the path created by the global planner, a local path is computed, which considers

dynamics and kinematics of the robot.

Based on DWA's technique, the local planner uses a local costmap, built using the sensor's data,

to produce the velocity commands necessary for a safe and robust navigation.

3.3 Hybrid Motion Planner

Developed at the ISR in University of Coimbra, HMP is a method integrated in a framework named

CollabNav. This framework was primarily developed to be applied to a brain-actuated robotic

wheelchair and it was designed to ensure a robust navigation in constrained environments, taking

into account the needs of a single user. As this platform was designed to help severe motor-impaired

users, this method needs to ensure safe navigation using smooth trajectories and avoiding collisions

at all costs. The focus will be on the planner although there are other modules, in particular,

perception, Human-Machine Interface and Collaborative Controller that together allow the system's

navigation taking into account user's commands.

Figure 3.2: Hybrid Motion Planner (adapted from [1]).

Figure 3.2 represents the way all the modules that compose HMP are related. As the name

indicates, HMP is a hybrid planner, so it combines the advantages of global approaches with local

approaches and it can be divided in two separated planners: (a) a global planner which is a modi-

�cation of the A* algorithm, expanded to a 3D-path planner for position (x, y) and orientation θ,

using an interpolation module, along with a smoothing algorithm based on elastic bands [36]; (b) a

local planner, to solve undetected situations that are not solved by the global planner, where two

DWA are applied to di�erent control points of the platform.

For this planning, three di�erent types of costmaps are needed: (a) a 2D global costmap, used for

keeping the robot away from obstacles, which is a low resolution map obtained from the a priori map,

therefore including the static obstacles of the indoor environment, and it also includes the obstacles

detected by the laserscanner in a speci�ed radius; (b) low resolution costmap, which includes all the
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obstacles detected by the laserscanner and it is used for most Double-Dynamic Window Approach

(D-DWA) proceedings; (c) high resolution map, which is used for verifying collisions of the robot

footprint in particular trajectories given by the D-DWA local plan and the 3D-global path planner.

These costmaps are mentioned in the following sections that describe the main parts of the planner.

3.3.1 3D Global Path Planner

As this is the �rst part of HMP, the path go through a very fast super�cial approach although the

resulting path is unlikely to be performed, considering the geometry of most robots.

The result of A* applied to the in�ated 2D global costmap is a geometric path composed by a

sequence of points sj = [xj , yj ], so it does not consider orientation which is required for an e�cient

navigation. Using an interpolation module it is possible to determine the orientation for each point

in the resulting geometric path by computing θj = arctan
yj−yj−1

xj−xj−1
. After the interpolation, each

point is represented by sj = [xj , yj , θj ], so the 2D global path is transformed to a 3D global path.

Additionally, invalid poses are corrected to valid ones in situations where the robot's footprint

collides with obstacles present in the high resolution costmap or in locations like doorways or narrow

passages.

In �gure 3.3 is represented a global path computed for a speci�c trajectory where a robot needs

to pass through a doorway and move to a goal situated in the middle of the corridor. The path

corresponds to the black line and it is only computed at the �rst iteration, so if there are any

obstacle not noticed by the robot, this path would be impossible to execute. This kind of situations

are solved by the next parts of HMP.

Figure 3.3: Global path planner result visualized in Rviz.

3.3.2 Smoothing

The obtained global plan probably presents rough variations in the orientation after the validation

process so it is applied an algorithm for smoothing based on elastic bands [36] to avoid these

variations.

All the global plan points are considered as objects with massm and subsequent points, j+1 and
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j, are connected by a 1-DOF (Degree of Freedom)spring with equilibrium length d0j = |sj+1 − sj |0

and elastic constant Ke. With the exception of the initial and �nal plan points, each point will be

subjected to a force Flj , such that:

Flj = Ke

(
−
(
dj−1 − d0j−1

)sj − sj−1

dj−1
+
(
dj − d0j

)sj+1 − sj
dj

)
, (3.5)

where dj = |sj+1 − sj |.
For a smooth turning and to avoid sudden variations in orientation, it is considered a torque τj

applied at the spring's center, given by:

τj = KT (−(θj − θj−1) + (θj+1 − θj)), (3.6)

where θj is the orientation of the plan point sj and KT is the torque constant.

The e�ect of τj is applied on two points: sj and sj+1, taking the form of two forces, perpendicular

to the vector sj+1 − sj , and given by:

Fb1j+1 =
τj
1
2dj

; Fb2j =
τj−1
1
2dj−1

. (3.7)

Figure 3.4 represents the applied torque and the e�ect of these forces at the platform.

Figure 3.4: Representation of the applied torque τj and the resulting forces Fb1j+1 and Fb2j . [1]

Finally, each point j is going to be subjected to a force Fj given by:

Fj = Flj + (Fb2j − Fb1j−1) · n̂, (3.8)

where n̂ is the perpendicular versor of sj+1 − sj .
As any force, Fj generates an acceleration to the respective point of the path plan that is equal

to aj =
Fj

m and this acceleration causes a position's displacement of j, which is computed by the

Leapfrog integration.

As in the 3D global path planner, at the end of the smoothing for each trajectory point, inter-

polation and validation modules are applied to guarantee that any point of the footprint does not

collide with an obstacle in the high resolution costmap.

Figure 3.5 shows the smoothing process applied during the performance of the trajectory. The

blue line corresponds the computed trajectory for the center of the robot which is translated to

a trajectory for the front's center point of the platform, represented by the red line, and also a
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trajectory for the back of the robot, represented by the black line. It can be noticed that the

smoothing trajectory changes at almost every iteration, adapting to the robot's surrounding and

getting smoother and smoother along the path.

3.3.3 Double Dynamic Window Approach

Based on the 3D plan originated previously, two 2D plans are determined for a point at the robot's

center of mass and for a middle point located at the front of the robot. This approach guarantees

the position and orientation needed for avoiding obstacles, considering that the robot does not have

a circular geometry. Figure 3.6 shows how the algorithm is implemented.

Figure 3.6: Double Dynamic Window Approach (adapted from [1]).

In each control cycle, the DWA module computes the velocity dynamic windows [v, ω] for the

next center and front plan points, taking into account the current velocity and the imposed accel-

eration and velocity limits. Two trajectory sets are determined for the resulting velocity dynamic

windows and it is checked if there is any point of the trajectory that collides with any obstacle

present in the high resolution map, so that point can be discarded.

A cost is computed for each trajectory, adding the value of the low resolution local costmap for

each point of the corresponding trajectory. The desired trajectory is the one that has the lower

weighted cost or, in other words, the one that minimizes K1
2 Costc + K2

2 Costf , where Costc and

Costf are the trajectory costs for the center and front points, respectively.

Figure 3.7 represents several plans generated by the D-DWA algorithm. The red line corresponds

to the trajectory dictated by the DWA applied at the platform center and the black one to the

trajectory given by the DWA applied at the front. The sum of those two trajectories multiplied

by a constant results in the trajectory represented by the pink line. As expected, the plan changes

during the performance of the trajectory as this is a local path planning algorithm, and it is just

used for avoiding unforeseen obstacles and to adapt to unexpected situations.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.5: Smoothing e�ect at the trajectory visualized in rviz.
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(a) (b)

(c) (d)

(e)

Figure 3.7: D-DWA e�ect at the trajectory visualized in Rviz.

3.4 Floyd-Warshall Algorithm

Floyd-Warshall Algorithm (described in [37]) is a global planning approach used to compute the

shortest path from a speci�c location to another. Having a graph, for instance, from a topological

map, composed by nodes numbered from 1 to n and arcs with a given distance, it is possible to use

this algorithm for computing the shortest path from a node i to the node j.

Considering dijk(i, j, k from 1 to n) as the distance of the shortest path from node i to j, passing

through the node k, and dij0 as the distance between the nodes which are directly connected, a

matrix with dimension n ∗ n is initialized containing all the elements assigned to in�nity, except

for those elements corresponding to nodes which are directly connected, that are equal to dij0 and

the matrix diagonal elements, that are equal to 0. For other values of dijk, there are two di�erent

situations: (a) if the shortest path from i to j, does not pass through k, dijk = dijk−1; (b) if the
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shortest path from i to j, passes through k, dijk = dikk−1 + dkjk−1, because this path is composed

by two secondary paths, one that goes from i to k and another one that goes from k to j. Finally,

for determining the shortest path between two di�erent nodes, it is necessary to �nd the minimum

value between dij0 and dijk = min(dijk−1, dikk−1 + dkjk−1). The Algorithm ?? presents the Floyd-

Warshall algorithm written in pseudo-code.

Algorithm 1: Floyd-Warshall Algorithm

1 for x← 1 to n do

2 for y ← 1 to n do

3 dist(x, y)←∞

4 foreach node z do

5 dist(z, z)← 0

6 foreach path (u, v) do

7 dist(u, v)← w(u, v) . w(u, v) is the weight of the path (u, v) or, in other words, the

distance between node u and v

8 for k ← 1 to n do

9 for i← 1 to n do

10 for j ← 1 to n do

11 if dist(i, j) > dist(i, k) + dist(k, j) then

12 dist(i, j)← dist(i, k) + dist(k, j)

13 return dist

After computing the algorithm presented above, each element of the matrix dist(i, j) contains

the distance between the node i and j.
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Chapter 4

Interbot Platform

Described in [38], Interbot is a prototype platform which has been developed in ISR for the project

"AMS-HMI12 - Assisted Mobility Supported by Shared-Control and Advanced Human-Machine

Interfaces" 1. Its main purpose is to guide, interact with people and perform some tasks while

navigating autonomously in populated o�ce environments. This chapter presents the setup where

all the work was implemented as well as the hardware and software that compose the system.

4.1 System Overview

Figure 4.1 represents the system's components. It is composed by a base (Figure 4.1a) containing

all the low-level components, including the wheels, the motor's driver and the battery, for instance,

and by a attached structure (Figure 4.1b) composed by metal bars and acrylic boards to sustain all

the high-level components.

(a)

(b)

Figure 4.1: Interbot platform: (1) a 8 cells lithium battery; (2) a Battery Management System

(BMS); (3) Two 24V DC permanent magnet motors, coupled to gearboxes with 29:1 and encoders;

(4) Roboteq MDC2230 Dual channel motor controller; (5) Raspberry-Pi 2 with a touch display; (6)

24V DC to 12V DC converter; (7) 12V DC to 5V DC converter; (8) Laptop; (9) Microsoft Kinect

for Xbox One; (10)Hokuyo UTM-30lX.

1https://sites.google.com/site/amshmi12/, at 5 September, 2016
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CHAPTER 4. INTERBOT PLATFORM

Interbot is a di�erential robot with two motorized wheels connected to encoders used for odom-

etry purposes, and a caster wheel to ensure the platform stability. A Roboteq motor driver is used

to convert the speed commands from a Raspberry Pi into high voltage and high current output for

driving two 24V DC permanent magnet wheel motors. It also converts pulses from the encoder to

readable messages for the raspberry so they can be transmitted to the system's high-level part, the

laptop, using a TCP/IP communication protocol. Each motor is connected to a gearbox with factor

29:1 (one complete wheel revolution corresponds to 29 complete motor revolutions). A BMS is used

to manage the 8 cell lithium battery, responsible for powering the system, and to transmit messages

to the Raspberry Pi, so that battery status information can be displayed to the user. Finally, the

laptop is also connected to an Hokuyo UTM-30lX and a Microsoft Xbox Kinect and transforms the

collected data into messages that can be used by ROS.

Due to the DC/DC converters, 24V, 12V and 5V are the available output voltages that can be

used to power any device that can be connected to the platform. The 24V output is used to power

the laptop and Roboteq. The 12V output powers the Microsoft Kinect and the Hokuyo laser range

�nder. Finally, Raspberry Pi is powered by the 5V output. Using other converters, it is possible to

get any other output voltages and expand the outputs to use additional devices.

4.2 System Architecture

(a) Hardware Architecture

(b) Software Architecture

Figure 4.2: System Architecture.

As it can be seen in �gure 4.2a, Interbot system is composed by a low-level part related to the

power and mechanical components, which sends odometry information to the high-level part, that

in charge of processing all the information and sending the speed commands to the low-level part.

Raspberry Pi separates the low-level from the high-level architecture in a way that it receives pulse
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messages from Roboteq, using a Universal Serial Bus (USB) connection, converts these messages

to odometry information and then transmits it through a TCP/IP connection to the laptop. In

the opposite direction, the laptop sends speed commands using the TCP/IP connection to the

Raspberry Pi and then it transmits them to the motor's driver.

4.2.1 Hardware description

Each part of the hardware that composes Interbot is described below.

4.2.1.1 BMS

The BMS controls the 8-cell lithium battery, protecting it from operating outside admissible values

and providing its status.

4.2.1.2 Roboteq's MDC2230 Motor Controller

It is a motor driver which has the purpose of converting speed command from a microcomputer

into voltage and current outputs to separately control the right and left DC wheel motors. It also

features a high-performance 32-bit microcomputer and quadrature encoder inputs to read pulses

and transmit them to the Raspberry, using USB communication, so that they can be converted into

odometry information.

4.2.1.3 Raspberry Pi

Raspberry Pi is a microcomputer that runs Linux used in may applications. In this case, it is in

charge of being the interpreter between the low and the high-level parts of Interbot. Its inputs are

the Roboteq controller, the BMS and touch display plus a keyboard used for user's interface. As

mentioned above, Raspberry receives pulses data from Roboteq, converts it into odometry data and

sends it to the laptop, using a TCP/IP communication protocol. It also receives speed commands for

each motor from the laptop through the same TCP/IP communication and sends them to Roboteq

using a USB connection. Additionally it reads messages from the BMS so that information about

the battery status can be displayed to the user.

4.2.1.4 Hokuyo laser range �nder

For the purpose of this work, the navigation rely on this Hokuyo UTM-30lX laser range �nder which

has a 30m and 270° scanning range. It generates scan messages of the involving environment and

they are used as input data by the laptop software related to mapping and localization.

4.2.1.5 Kinect

This is a 3D depth camera developed by Microsoft and Prime Sense in order to allow user to interact

with videogames using body movements without requiring any physical control although it can also

be used to robotics and computer vision purposes. One of its advantages is the price, which is

signi�cantly low, relatively to other 3D sensors and laser range �nders. On the other hand, its

range is not so large (0.6m to 5m) and it has a poor �eld of view, which can be dangerous if it is
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desired a safe navigation. It has one RGB camera, one infrared camera and an infrared projector

and using these 3 devices it is capable of generating depth images that can be used for 3D map

building and navigation. This device is not used for the purpose of this work, although it can be

used for future work.

4.2.1.6 Laptop

It receives odometry information from Raspberry, joystick commands, laserscan data from Hokuyo

laser range �nder and image data from Kinect and processes this information to use it mainly for

navigation. This is where all the software resides and its objective is to send velocity commands to

Raspberry and to be an user's interface as well.

4.2.2 Software description

As it can be seen in �gure 4.2b, the system's software relative to navigation which is present in the

high-level architecture can be divided into two main modules. It was used open-source software for

ROS, available in the ROS community along with software developed at ISR.

These next subsections specify the software that was used for this work.

4.2.2.1 Mapping and Localization

Using odometry information and laser scan data from Raspberry and Hokuyo, respectively, it was

possible for the robot to localize itself with an a priori map using the AMCL algorithm or to build

a map and localize itself in real-time using the Hector SLAM or Gmapping algorithms. These

methods are open-source, free to be used, and they are provided online.

4.2.2.2 Path-Planning

Using the current pose, a map of the involving environment and laser scan information, path-

planning algorithms output speed commands that are going to be provided to the Raspberry, so

that they are transmitted to the motor's driver to move the robot. The used methods for path

planning were move_base, which is an algorithm provided online and Hybrid Motion Planner,

which was developed at ISR and it is not online available yet.
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Interbot: Software Modules

This chapter will resume the way the navigation system is integrated in Interbot. ROS was the robot

middleware used for the majority of the software implementations, mainly because it supports C++

programming and there is an active online community which provides frequently updated open-

source software for the most of robotic applications, supported by useful documentation. In [39],

it is presented a ROS technical overview which de�nes important concepts, such as package, node,

topic, message, subscriber and publisher. Basically, a package contains one or several nodes which

can be de�ned as publishers, subscribers or both. A publisher node publishes topics containing

messages of a particular type and a subscriber node subscribes topics from publishers, processing

the obtained information.

Figure 5.1 shows a general overview of the implemented framework; modules will be speci�ed in

subsequent sections. In section 5.5 the di�erent software architectures are summarized.

Figure 5.1: General overview of the implemented framework.

5.1 Physical Layer

Figure 5.2 represents the Physical Layer module. This module is the one responsible for linking

the software and hardware, being in charge of receiving sensor data and delivering commands for

Interbot actuation. This hardware-software link is guaranteed recurring to drivers which connect
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the system's main hardware devices, e.g. Interbot micro-controllers and Hokuyo laser range �nder,

to the software modules that process the received information and generate velocity commands to

move the robot. The robchair_driver was developed for the ISR intelligent wheelchair Robchair

([39],[1]) and, although it was made for a di�erent platform, this driver was used here because the

low-level system part is not much di�erent. One of its main purposes is to receive odometry data

from the Raspberry Pi and publish the transform of the base_link frame relatively to the odometry

frame in order to de�ne the relative position of the robot from a start point. It also receives

the /cmd_vel topic containing the speed command message and sends it to the low-level part of

Interbot. The hokuyo_node is a driver provided by the ROS community to be used exclusively

along with an Hokuyo laser range �nder and its purpose is to publish a /scan topic containing scan

messages based on obtained laserscanner data.

Figure 5.2: Physical layer drivers, including the subscribed and published topics.

5.2 User Interface

As the main purpose of Interbot is to interact with humans, it has to seem friendly and present to

the user a simple and intuitive display interface. Using this interface, the user only has to inform

the robot about its initial position and orientation (Initial Pose) using Rviz, a tool provided by

ROS for visualizing the available topics, and a target point of the metric map where the robot is

suppose to go (goal). Along with this information, the user is able to setup the path planner module

(con�guration parameters), con�guring, for instance, the maximum and minimum linear speed, the

goal tolerance and a weighting value related to the minimum distance among the robot and its

surrounding environment.

5.3 Perception Module

To navigate from a point to another, the robot has to perceive its surroundings and a way to localize

itself in the environment where it is inserted. For that, a perception module is needed in order to

estimate some variables about the robot's base frame and this environment. Figure 5.3 presents a

scheme of the perception module, including its input and output modules: the Physical layer, which

provides odometry and laser scans; the User Interface, which gives the robot's initial pose; a priori

maps of the environment, including metric and topological maps; the Path Planner, which needs

costmaps and the robot's pose estimation.
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Depending on the algorithms and sensors that are going to be used, the perception module can

be divided into two operating modes: 1) if it is used a simple localization method, for instance,

AMCL, the inputs are going to generate the robot's pose estimation; 2) if it is used a SLAM method,

e.g. Hector SLAM or Gmapping, the inputs are going to generate the robot's pose estimation as

well as an updated map of the environment, relatively to the initial a priori map. It is noted

that costmaps are generated recurring to: the a priori maps if the localization method is used;

the updated map if the SLAM method is used. These pose estimation and generated costmaps are

the outputs of this perception module and are used by the Path Planner module. The following

subsections describe these perception methods.

Figure 5.3: Perception module representation.

5.3.1 SLAM

Using sensor information, the SLAM module is capable of producing and updating a map and the

robot's pose estimation relatively to an initial point. Depending on the used SLAM method, the

needed information for generating the outputs is going to be di�erent. Hector SLAM needs laser

scans, an initial pose and an a priori map, while Gmapping inputs are the laser scans and odometry.

Each one of these methods are provided by the ROS community and are speci�ed below.

5.3.1.1 Hector_SLAM node

In this work, it was used a modi�ed version of the Hector SLAM package available online.

isr_hector_mapping is a node developed in [40] and it was altered for being able to receive an a

priori map of the environment, in this particular case from the ground �oor of ISR. Using this initial

gridmap, an initial pose given by the user and laser scans from the topic /scan, it is generated an

updated map of the environment (/map) as well as the robot's pose estimation (/slam_out_pose).

Figure 5.4a represents the input and output topics of this node.

5.3.1.2 Gmapping node

Figure 5.4b represents the Gmapping node. slam_gmapping belongs to the gmapping package

provided by the ROS community and it is used by most of the mobile robotics applications due

to its precise pose estimation. Using the the odometry, provided by the Interbot low-level part,

translated into a transform of the base frame (base_link) relatively to the robot's initial point

(given by the �xed odom frame), and the laser readings given by the /scan topic, slam_gmapping

outputs the /map topic and the transform from the map to the odom frame.
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(a) Hector mapping node.
(b) Gmapping node.

Figure 5.4: Published and subscribed topics of the SLAM nodes used in this work.

5.3.2 Localization

The Localization module is an alternative for the SLAM methods. The di�erence from those

methods is that the provided a priori map is not updated and only the robot's pose estimation is

generated. The used AMCL package was the one provided at the o�cial ROS wiki page. As it

was mentioned, using an a priori metric map of the environment, the topic containing the initial

pose (/initial_pose), the laser scan provided by the /scan topic and the base_link transform about

the robot's initial point (odom frame), the amcl node outputs the estimated robot's localization

(/amcl_pose). The topics that are published and subscribed by the amcl node are represented in

Figure 5.5.

Figure 5.5: Published and subscribed topics of AMCL node.

5.3.3 Costmaps building

The last piece of the perception module corresponds to the costmaps building. Using laser scans and

the updated gridmap from the SLAM module or the one based on the a priori map, costmaps of the

environment are generated by in�ating the occupied cells to the size of the robot, and are further

used by the path planner module. There are built three types of costmaps: a 2D global costmap

where each cell has a resolution of 5cm x 5cm, including all the static obstacles from the global

map and the obstacles detected by the laser scanner in a radius of 3 meters; two local costmaps

with di�erent cell resolutions (3cm x 3cm and 1cm x 1cm) and dimension 3m x 3m, which include

all the obstacles detected by the laser scanner. This module is exclusive for the path planner HMP,

which is going to be speci�ed below.
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5.4 Path Planner module

This section is related to the Path Planner module represented in Figure 5.1. Here, are presented the

path planner methods integrated in Interbot for navigation in the ROS point-of-view, which were

already described in Chapter 3. Taking a higher view of this module, its inputs are the current pose,

a variable representing the robot's surroundings (a map or a costmap), con�guration parameters for

the trajectory that is going to be generated and a target location representing the point where the

robot is supposed to drive. Using these inputs, a speed command is generated and is transmitted to

the physical layer by the mean of the topic /cmd_vel. In addiction to the path planner methods,

move_base and HMP, which are speci�ed below, it was developed a higher-level global planning

algorithm to improve the performance of the �nal planned path.

5.4.1 Move_base node

Move_base is a ROS package available online and it is one of the most used path planners in ROS

environments because it is simple to use and it has a good performance in many platforms. Figure

5.6 shows the topics that are subscribed and published by the move_base node.

Figure 5.6: Published and subscribed topics of move_base node.

As it can be seen, in this case, the topic /map is subscribed, instead of the costmaps that are

built in the perception module, because the global and local costmaps are built by the node itself,

using this /map topic and laser scans from the /scan topic. Using the global costmap, the initial

pose and a target location given by the /goal topic, a global path planner based in Dijskstra method

computes the global optimal path. This global path is a reference to the local path planner, which

using a local costmap that is built recurring to the /scan topic, generates a velocity command

message that is going to be transmitted to the node robchair_driver by the mean of the topic

/cmd_vel. Several con�guration parameters can be de�ned for modifying the behavior of the local

path planner and in�uence the decision of the generated trajectory. Those which have a greater

e�ect on the trajectory must be the maximum and minimum value for the linear and rotational

speeds (in meters and radians, respectively), the acceleration limit (in meters/sec2), distance and

rotational goal tolerances (in meters per second and radians per second, respectively), the step size

to take between points of the trajectory (in meters) and weight values to in�uence the distance from

the global path and from the obstacles.
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5.4.2 Hybrid Motion Planner node

The hybrid_motion_planner node is based on the HMP approach, already described in section

3.3. Subscribing the 2D global costmap, the initial pose and the /goal topic, the A* approach is

applied and it is obtained a 2D path with no orientation. An interpolation module determines the

orientation for each 2D point of the 2D path and transforms it into a 3D point. A smoothing process

is applied to avoid sharp variations of the orientation on each subsequent point of the trajectory.

Then, two dynamic velocity windows are computed, one for a point at the center of the platform

and another at the front. The velocities obtained inside those two dynamic windows generate

trajectories for each one of the points, which are simulated to check if the robot's footprint collides

with any obstacle present in the subscribed high resolution local costmap. If exists a collision at any

point of the trajectory, it is automatically rejected. A cost is assigned to each trajectory, adding

the value of the subscribed low resolution local costmap of each trajectory's point. The chosen

trajectory is the one that have the lower cost and the corresponding velocity command is send to

the physical layer using the /cmd_vel topic. Con�guration parameters, for instance, the maximum

and minimum linear and rotational speeds, and the distance and orientation tolerance for the target

goal, are subscribed as well by the hybrid_motion_planner node. Figure 5.7 represents the inputs

and outputs of this node.

Figure 5.7: Published and subscribed topics of HMP node.

5.4.3 HMP_improvement Algorithm

Some of the HMP planned paths have problems if the platform needs to execute long distance

routes, so one of the solutions was to publish intermediate goals along the path, depending on the

start pose and the target location. Basically, each intermediate goal corresponds to positions where

the robot has to perform 90° rotations without causing localization problems. For this, the robot

needs to perform in-place rotations, instead of executing round turns. These speci�c situations are

presented in Section XYZ. For this purpose, an algorithm based on Floyd-Warshall method was

implemented, so that for each planned path it was computed a set of intermediate goals taking into

account the initial pose, the target location and the shortest path between these two points. Each

intermediate goal is represented by a node (corridor corners or doorways, for instance) and it is

connected to one or more nodes using arcs with a de�ned distance.

Although there are other algorithms that can compute a shortest path, quicker, e�ciently and

using less computational resources, like Dijkstra's algorithm, for instance, this last one �nds the
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optimal route from one node to all the other nodes, while the Floyd-Warshall Algorithm �nds

the optimal route for all node pairings. This can be an advantage, because there is no need for

computing another shortest path every time the user sets a new target location, so it is more e�cient

for a long-term usage. Algorithm 2 is an adaptation of Algorithm 1, where the output corresponds

to a matrix P with dimension N , where each element P (i, j) contains the �rst intermediate node

of the shortest path.

The matrix P is the one which will be used to set the intermediate goals in Algorithm 3. The

HMP_improvement node is based on Algorithm 3 and it asks the user for choosing the location where

he wants for the robot to drive, and several intermediate goals are automatically set, depending

on the chosen �nal goal. For this, the matrix P indicates which nodes the robot needs to pass

for reaching its main goal, and those nodes that correspond to corridors corners are marked as

intermediate goals. After selecting the intermediate goals, the robot starts the navigation, tries

to drive to the �rst intermediate goal, and after reaching it, the next intermediate goal is sent to

the hybrid_motion_planner node by sending the topic /goal. After reaching its �nal goal, the

algorithm is ready to ask the user for a new one. Figure 5.8 represents the node graph used for the

purpose of this work and that is integrated in HMP_improvement algorithm.

Algorithm 2: �oyd_algorithm(int P[N][N],D[N][N])

Input: A pointer to matrix P[N][N] and a matrix D[N][N] containing distances between all

nodes

Output: Matrix P containing the �rst intermediate nodes of the shortest path

1 for i← 1 to N do

2 for j ← 1 to N do

3 P [i− 1][j − 1]← j

4 for j ← 1 to N do

5 for i← 1 to N do

6 for k ← 1 to N do

7 if i 6= j and k 6= j then

8 if D[i− 1][k − 1] > (D[i− 1][j − 1] +D[j − 1][k − 1]) then

9 D[i− 1][k − 1]← (D[i− 1][j − 1] +D[j − 1][k − 1])

10 P [i− 1][k − 1]← P [i− 1][j − 1]

11 return P
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Algorithm 3: HMP_improvement(�oat node[2][N ])

Input: a matrix node[2][N ] containing the position (x, y) of all the N nodes of the

topological map

1 D[i][j]← matrix with distances between each node i and node j

2 P ← �oyd_algorithm (D)

3 new_goal← 1

4 while 1 do

5 pose_x=current_position_x

6 pose_y=current_position_y

7 if new_goal == 1 then

8 goal_index← 1

9 node_f ←choose_destination()

10 node_i← closest node to the initial position

11 SP [0]← node_i

12 for i← 1 to N do

13 if P [node_i− 1][node_f − 1] == node_f then

14 break

15 node_i← P [node_i− 1][node_f − 1]

16 SP [i]← node_i

17 SP [i]← node_f . SP contains all the intermediate goals from node_i to node_f

18 node_∗ ← poses (x,y,θ) of the important nodes (corridor corners and node_f)

goal_number ← total number of goals

19 if aux 6= goal_index then

20 aux← goal_index

21 goal.pose.position.x← node_ ∗ [0]

22 goal.pose.position.y ← node_ ∗ [1]

23 goal.pose.orientation← node_ ∗ [2]

24 publish(goal)

25 dist← distance between the current pose and the goal pose

26 if dist < xy_tolerance then

27 dif ← angular di�erence between the current pose and the goal pose

28 if dif < yaw_tolerance then

29 destination_check ← 1 . The robot has reached a goal.

30 if destination_check == 1 and goal_index == (goal_number − 1) then

31 . The robot has reached its �nal goal.

32 new_goal← 1

33 destination_check ← 0

34 if destination_check == 1 then

35 . The robot has reached an intermediate goal.

36 destination_check ← 0

37 goal_index+ +
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Figure 5.8: Node diagram for the nodes composing the graph used by the HMP_improvement algo-

rithm, representing the position (x, y) of each node and those nodes that can be used as intermediate

goals.
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5.5 Interbot Integrations

This last section explains the way the perception and path planner modules were integrated in

Interbot. Di�erent software architectures were tested for this integration, each one of them using

one method of the perception module along with one method of the path planner module. The

result is four architectures which combine a perception method, such as Hector SLAM or AMCL,

with a path planner method, in particular move_base or HMP. Each one of these architectures was

properly tested and all the experimental cases and test scenarios with di�erent setups are going to

be documented at Chapter 6. The next subsections describe these four architectures, indicating the

used nodes and which topics they publish and subscribe.

5.5.1 Architecture 1

The �rst architecture uses isr_hector_mapping as the perception method and move_base as the

path planner method. Figure 5.9 represents the used software architecture.

Figure 5.9: Architecture 1 : isr_hector_mapping node along with move_base node.

5.5.2 Architecture 2

Figure 5.10 represents the second software architecture, which uses the perception node isr_hector_mapping

along with the path planner node hybrid_motion_planner.

Figure 5.10: Architecture 2 : isr_hector_mapping node along with hybrid_motion_planner node.
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5.5.3 Architecture 3

The third software architecture is represented in Figure 5.11 and it uses the amcl node and the

move_base node.

Figure 5.11: Architecture 3 : amcl node along with move_base node.

5.5.4 Architecture 4

The last architecture uses AMCL for the robot's localization and HMP for the path planning. It is

represented in Figure 5.13

Figure 5.12: Architecture 4 : amcl node along with hybrid_motion_planner node.

5.5.5 Architecture 5

This architecture adds the HMP_improvement node to the path planning module of Architecture 2.

Figure 5.13: Architecture 5 : isr_hector_mapping along with HMP_improvement and

hybrid_motion_planner nodes.

5.5.6 Discussion

Table 5.1 resumes the implemented architectures, presenting which nodes were used for each method.

This can be useful to understand the terminology that is going to be used in the next chapter.
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Table 5.1: ROS nodes used in each architecture.

Arch. Laser driver Perception Path Planner Robot driver

1 hokuyo_node isr_hector_mapping move_base robchair_driver

2 hokuyo_node isr_hector_mapping

+ Costmaps building

hybrid_motion_planner robchair_driver

3 hokuyo_node map_server + amcl move_base robchair_driver

4 hokuyo_node map_server + amcl

+ Costmaps building

hybrid_motion_planner robchair_driver

5 hokuyo_node isr_hector_mapping

+ Costmaps building

HMP_improvement +

hybrid_motion_planner

robchair_driver

Gmapping was a good method to be used in a new software architecture because it is a SLAM

method used in many implementations. For the purpose of this work this could be a good choice

for being part of the perception module because the estimated odometry could be used for comple-

menting the scan-matching process, which can be a signi�cant advantage comparatively to other

SLAM methods, in particular Hector SLAM, which relay its SLAM method on the laser scans alone.

Unfortunately, the ROS package which is available online does not provide a way to integrate an a

priori map of the environment, as opposed to Hector SLAM. The slam_gmapping node uses a grid

representation of the map and estimates probability distributions over maps and robot's trajectories

so its internal state is di�cult to save and to be used in the future. Of course that this is a disad-

vantage for this kind of systems because they need to use long-term navigation and, for each new

usage, the map had to be built from the beginning. In conclusion, and after some thoughts into this

matter, the slam_gmapping node was discarded, although there were developed some experiments

with it to test its accuracy.
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Experimental Results

This chapter is dedicated to the documentation of the experimental results carried out by the

Interbot platform. Using di�erent architectures presented in Table 5.1, three test scenarios were

executed in order to evaluate the navigation system performance, in particular the Path Planning

module. For this, the robot was deployed on the ground �oor of ISR in order to navigate through a

set of goals in a o�ce like environment. The tests were performed during nighttime in order to avoid

populated corridors, which could compromise the navigation process, so people and other dynamic

obstacles were not considered for the purpose of this work.

Table 6.1 contains the con�guration parameters set for the architectures that used move_base as

the path planning node. Some of these parameters are still the default values de�ned by move_base

package creators, such as the rotational goal tolerance, the step size between trajectory points

and the weight values for obstacle and global path distance. The other values were suited to the

platform capacities and to the path type that was required. Table 6.2 presents the parameters for

the hybrid_motion_planner node.

Table 6.1: Con�guration Parameters used by the move_base node

Maximum

Speed

Minimum

Speed

Acceleration

Limit

(m/s2)

Goal

Tolerances

Step size

between

trajectory

points (m)

Weight value

for distance

Linear

(m/s)

Rotational

(rad/s)

Linear

(m/s)

Rotational

(rad/s)

Linear

(m)

Rotational

(rad)

Obstacles Global

Path

0.25 0.5 0.05 -0.5 0.8 0.5 0.05 0.025 0.6 0.01

Table 6.2: Con�guration Parameters used by the hybrid_motion_planner node

Maximum

Speed

Minimum

Speed

Goal

Tolerances

Linear

(m/s)

Rotational

(rad/s)

Linear

(m/s)

Rotational

(rad/s)

Linear

(m)

Rotational

(rad)

0.25 1 0 -1 0.5 0.05

6.1 Evaluation Metrics

For evaluating each test and to support the drawn conclusions about the robot's behaviour during

the navigation, several metrics were obtained. The following metrics are the most appropriated to

resume the platform performance along the path. For each test, a table containing all these metrics
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is presented and it is used to decide which architecture better �ts the navigation in indoor o�ce

environments.

� Duration: time, in seconds, to perform the de�ned trajectory;

� Success: classi�cation of the test success: YES, if the test was concluded with success; NO,

if the test was not concluded;

� Collisions: number of obstacle collisions along the path;

� Localization Losses: number of times that the robot lost his own localization;

� Minimum Clearance: minimum, maximum and mean of the minimum obstacle clearance

detected by the laser range �nder along the path. Each iteration, the minimum clearance

corresponds to the closest obstacle point to the robot, which detected by the laser.

� Mean Linear Speed: the mean of the linear speed measured along the path.

6.2 Test Scenario 1

For the �rst test scenario, the robot had the simple task of navigating from a start point to a target

goal, wait for �ve seconds and then return to the start point again. To perform this navigation,

it was de�ned a set of intermediate goals of strategic corridor zones for simplifying the navigation.

This goals correspond to points where the robot need to do 90° rotations, for instance, in corridor

corners and to enter or to leave rooms. Figure 6.1 shows the experimental setup for this �rst test,

where the main and intermediate goals are properly represented.

Figure 6.1: Experimental setup 1.

As it can be seen, the robot starts at point START, navigates to point GOAL passing through

intermediate goals IG1, IG2, IG3 and IG4, then returns to point START again using the reverse

trajectory, i.e., passing through IG4, IG3, IG2 and IG1. This trajectory has an approximated length

of 71 meters. During this navigation, Interbot has to pass four times through two di�erent doorways
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and it needs to perform eight in-place 90° rotations. Those goals correspond to zones that require a

most challenging path planning process and they are represented by green zones in Figure 6.1 and

by pictures in Figure 6.2.

(a) START

(b) IG1 (c) IG2

(d) IG3 (e) IG4
(f) GOAL

Figure 6.2: Goal locations representation.

This test scenario was performed by Architectures 1, 2, 3 and 4, while the laser range �nder

sensor was �xed to the platform at 32.5 cm from the ground level as it is showed in Figure 6.3. The

tests results are speci�ed in the following subsections.

Figure 6.3: Laser range �nder positioning for the tests of Scenario 1.
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6.2.1 Architecture 1

The metrics presented at Table 6.3 show the results of the experimental tests performed by the

platform using Architecture 1. The trajectory de�ned on the Test Scenario 1 were performed using

this Architecture, achieving a success rate of 70% for a total of 10 tests. Considering only concluded

tests, these were performed with an average time of 6 minutes and eight seconds, with an average

of 1.57 collisions per test and 1 localization lost per test. The best obtained results are for test

number 6, which had a duration of 5 minutes and 18 seconds. This test was the only one without

collisions. The trajectory followed by test number 6 is represented in Figure 6.4.

Table 6.3: Metrics obtained using Architecture 1 for Scenario 1.

Test

#

Duration

(mm:ss)
Success

Collisions

(#)

Localization

Losses (#)

Minimum

Clearance (cm)

Mean linear

speed (m/s)

min max mean

1 06:20 YES 1 2 19 186.1 72.66 0.1881

2 06:22 YES 1 1 29.5 190.3 73.92 0.1902

3 03:20 NO 1 0 26.7 189.5 74.82 0.1776

4 05:57 YES 1 1 29.8 192.7 65.78 0.1918

5 05:43 NO 2 0 21.2 183.2 56.89 0.1715

6 05:18 YES 0 0 28.4 187.4 67.28 0.2097

7 06:22 YES 4 2 27.6 174 64.8 0.1759

8 07:01 YES 3 1 23.5 179.8 67.34 0.1623

9 05:38 YES 1 0 30.40 176.9 62.92 0.1901

10 03:11 NO 1 1 14.2 171.4 63.93 0.1517

The reason for the high number of collisions may be due to the fact that the trajectory planned

by the move_base node drives the robot too close from obstacles. This trajectory planning can be

an advantage if the robot needs to pass through an environment full of obstacles close to each other,

but in this case, where there is enough space for the robot to drive, having a path planner that

cause such a number of collisions its clearly not a acceptable option. Although the test number 6

(Figure 6.4) does not have any collision, it is a good example where the trajectory is planned too

close to walls.

Figure 6.4: Obtained trajectory for test number 6 of Scenario 1 using Architecture 1.
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6.2.2 Architecture 2

The obtained results for the navigation using Architecture 2 are showed in Table 6.4. Using this

architecture, in a set of 15 tests, it was achieved a success rate of 73.33%. During this tests, not

a single collision was recorded and an average of 0.67 localization losses . The average time to

accomplish the whole trajectory was 8 minutes and 55 seconds. The test with the best performance

was the test number 8, which concluded the trajectory in 7 minutes and 13 seconds and it was one

of the few that had 0 localization losses along the path. Figure 6.5 represents the path followed by

the robot in this speci�c test. Considering that, for the �rst 10 tests using Architecture 2, there

were better results in terms of number of collisions, comparing to the Architecture 1, 5 more tests

were performed, in order to con�rm the tendency of not having any collisions using HMP method.

Table 6.4: Metrics obtained using Architecture 2 for Scenario 1.

Test

#

Duration

(mm:ss)
Success

Collisions

(#)

Localization

Losses (#)

Minimum

Clearance (cm)

Mean linear

speed (m/s)

min max mean

1 09:51 YES 0 1 33.1 193.4 86.26 0.0972

2 09:10 NO 0 2 15.1 182.1 69.61 0.1447

3 09:39 YES 0 2 34.2 193 84.42 0.1223

4 12:16 YES 0 2 36.1 191.8 90.24 0.0656

5 07:54 YES 0 0 32.9 192.7 81.98 0.1217

6 04:10 NO 0 1 39.2 175.9 79.94 0.1

7 08:37 YES 0 1 34.6 187.5 83.32 0.1118

8 07:13 YES 0 0 32.4 196 85.53 0.1396

9 09:28 NO 0 2 10.5 181.2 74.85 0.1263

10 02:27 NO 0 1 31.9 181.8 101.67 0.0535

11 08:24 YES 0 0 16.2 192.3 85.11 0.1120

12 08:54 YES 0 3 27.6 194.1 80.21 0.1036

13 09:09 YES 0 1 34.4 197.2 77.94 0.1095

14 07:49 YES 0 0 22.6 197.1 85.94 0.1275

15 08:22 YES 0 0 22.7 190.2 90.04 0.1107

The previous values show that the trajectories were more carefully planned comparing to the

ones obtained using Architecture 1. This can be concluded by comparing the columns corresponding

to the mean linear speed, for Table 6.3 and Table 6.4, where the speed values are signi�cantly lower

using Architecture 2. This results in an increased test duration, which can be a disadvantage if the

robot is supposed to guide between to locations separated by a long distance, but considering short

distances, the fact that the robot drive with low speed can be an advantage for indoor populated

environments, where can be many dynamic obstacles. On the other hand, observing the column

containing the mean of the Minimum Obstacle Clearance along with Figure 6.5, it can be seen

that the trajectory is planned farther from the walls, which can be another advantage because the

probability of colliding with a wall is lower, comparing with Architecture 1, for instance.
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Figure 6.5: Obtained trajectory for test number 8 of Scenario 1 using Architecture 2.

6.2.3 Architecture 3 and 4

It was a good idea to use the amcl_node instead of isr_hector_mapping because the odometry

obtained from the encoders granted an additional degree for improving the perception module.

Unfortunately, after some tests of particular situations such as sharp turns and door passages, the

short-term localization failed, i.e., this perception module required some time and several measures

for performing a good localization. This can be a disadvantage for this type of applications, because

there can be planned some trajectories with many subsequent rotations, where the robot need to

almost instantaneously adapt to the environment changes. If the robot's localization fails, the

planned path cannot be executed and it is not possible to navigate. Also, if there is an angular

displacement between the a priori map and the laser readings, the environment costmaps are

wrongly built and the path planner may think that it is not possible for the robot to drive through

a clear zone, such as doorways or other narrow passages. Figure 6.6 represents one situation where

the localization fails and there can be noticed that there is an angular displacement between the

laser readings and the map provided to the robot. For this reason, from now on, Architecture 3 and

4 are completely discarded and are not considered for the purpose of this work.

Figure 6.6: Rviz representation of a situation where the localization using AMCL fails.

6.2.4 Conclusions

Considering that Architecture 3 and 4 were discarded, the choice of the best method to be used in

this navigation system relies on the remaining two architectures. Architecture 1 had the advantage
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of performing the de�ned trajectory faster than Architecture 2, a fact that can be con�rmed by

comparing the duration and mean linear speed columns of Table 6.3 and Table 6.4: the duration

values are lower and the mean linear speed values are higher when using Architecture 1. In terms

of number of collisions the Architecture 2 is obviously advantageous because there was not any

collision during the several tests performance, unlike the Architecture 1 which had a total of 15

collisions. As it was mentioned before, this collision problem can happen due to the fact that the

resulting trajectories from the Architecture 1 are planned too close to the obstacles, which do not

happen when using the Architecture 2. The metrics related to the minimum obstacle clearance, in

particular, the mean of the minimum obstacle clearance, can prove this fact because the values are

lower in Table 6.3 comparing with the values present in Table 6.4.

According to these reasons, and considering that it is most important to have a collision free

than a faster trajectory, for avoiding platform and environment damages, the chosen architecture

to be integrated in the navigation system must be the Architecture 2. So, for the following tests

scenarios it was only used Architecture 2.

6.3 Test Scenario 2

In this case, the experimental setup of Scenario 1 was repeated, with the di�erence of the laser range

�nder position. The strategy was to low the positioning of the laser to a height such that it was able

to detect even more features and objects as garbage cans. So, the laser was placed as it is showed

by Figure 6.7a, at 19 cm high, using a woodblock with dimensions 10cmx6cmx9cm designed for

this purpose. As it can be seen in Figure 6.7b, at this high, the laser is able to detect objects such

as garbage cans which can assign additional features for the environment, improving the robot's

localization. The same trajectory was de�ned for the robot navigation, represented in Figure 6.1.

To cause the desired e�ect on the navigation, a new map of the environment was required, in order

to add those new features, so it was generated a new gridmap for being used as a priori map along

with this new design.

(a)
(b)

Figure 6.7: Laser range �nder positioning for the tests of Scenario 2.
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Using this improvement with System Architecture 2 augmented signi�cantly the performance

of the navigation because there was not any localization loss during the tests for the Scenario 2.

Table 6.5 represents the obtained metrics for this scenario and it can be seen that all the 5 tests

were concluded with success, without any collision or localization loss. Each test had an average

time of 7 minutes and 38 seconds.

Table 6.5: Metrics obtained using Architecture 2 for Scenario 2.

Test

#

Duration

(mm:ss)
Success

Collisions

(#)

Localization

Losses (#)

Minimum

Clearance (cm)

Mean linear

speed (m/s)

min max mean

1 08:10 YES 0 0 25.7 193.3 81.45 0.1053

2 06:49 YES 0 0 24.3 196.7 79.26 0.144

3 07:30 YES 0 0 23.2 197 83.49 0.1304

4 08:22 YES 0 0 37 197.7 83.68 0.1123

5 07:20 YES 0 0 26.8 196.9 82.01 0.1352

This new laser positioning brought another advantage to the SLAM process used by Architecture

2. Due to the fact that the slam node isr_hector_mapping relies only on the information obtained

from the laser, if the space that surrounds the robot is featureless, for instance, a long corridor with

straight walls, the localization presents several failures because, in this cases, hector slam does not

have a way to know that the robot is moving. A possible solution for this problem is to use the

garbage cans of ISR corridors, which can add features to the environment so that the robot can

obtain a good localization. Using the Scenario 1, the robot was not able to detect such objects, but

in Scenario 2, as it was explained and showed in Figure 6.7b, the garbage cans were detected and

could now be used for the localization process. Figure 6.8a shows the case where the laser is too

high to detect the garbage cans (Scenario 1), while Figure 6.8b shows the same corridor, but with

the detected garbage cans using Scenario 2 where the laser was lower.

(a) Localization without garbage cans (b) Localization with garbage cans

Figure 6.8: Rviz representation of a featureless corridor where the robot has localization problems.

In conclusion, when the laser was lower, the robot presented signi�cant improvements in terms
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of localization, which resulted in a better navigation for speci�c locations, such as corridors with

few features, and for trajectories that include several rotations, on which hector slam requires a

map with more features so that the robot does not get lost its own localization.

6.4 Test Scenario 3

Having a system capable of performing a reliable navigation, it was time to deploy the robot in a

controlled environment and test for how long it was able to navigate without supervision. Using

Architecture 5 and modifying the HMP_improvement, so that it was automatically given a random

new goal for the robot everytime it reached a destination, a test was made to check if it was possible

to leave Interbot unattended at the ground �oor of ISR, navigating through several goals. Although

the test had a duration of approximately one hour, the metrics were only obtained for 25 minutes

and 40 seconds, because ROS automatically stopped recording data due to the computer limited

memory capacity. Table 6.6 indicates the metrics obtained for that time and, as it can be seen,

there were no collisions nor localization losses.

Table 6.6: Metrics obtained using Architecture 2 for Scenario 3.

Test

#

Duration

(mm:ss)
Success

Collisions

(#)

Localization

Losses (#)

Minimum

Clearance (cm)

Mean linear

speed (m/s)

min max mean

1 25:40 YES 0 0 65.2 189.2 87.7 0.1563

Interbot reached its �nal destination after one hour, during which it reached 17 goals and have

navigated approximately 505 meters. Figure 6.9 shows the driven path, and the goals that were

accomplished are represented by the respective node number. Figure 5.8 helps to understand each

node localization at the ground �oor of ISR, were the test were conducted.

Figure 6.9: Path driven by Interbot during the test scenario 3. The distance between each node is

showed above the arrows.

There are some factors that are need to be taken into account, such as limits on the computer

memory capacity and on the lithium batteries that power the whole system. For being able to

travel for several hours and long distances, Interbot needs to have the ability of charging itself or

to inform the user that it needs to be charged. Furthermore, in this speci�c test, the robot did not

have any navigation problem because the environment where the test were performed were static

and there were not any dynamic obstacles. Although this was not the purpose of this work, if there

were people or other dynamic obstacles the navigation would not be such perfect.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

This work was focused on building the best framework to be applied to Interbot's navigation system

in order to make it possible to perform long-term navigations in indoor populated o�ce like environ-

ments. Interbot has never been used before for navigation purposes, so the challenge of developing

a ROS based framework for accomplishing this objective was completed, as it was concluded in

Chapter 6, although there were some problems with localization and path planning methods, which

limited the situations where this navigation system could be tested. The purpose of this work was to

develop an architecture to be applied at Interbot, taking into account static environments. So, for

the path planning method, the HMP was chosen instead of move_base because, for the �rst case,

the path was planned farther from obstacles than for the second case. This can be an advantage

if there are not people or dynamic obstacles obstructing the path, but in populated environments,

planning a path in the middle of the corridor is not such a good idea. On the other hand, a trajectory

planned too close from walls can cause collisions with a higher probability, which is a disadvantage

as well.

For accomplishing this main goal, several sub-goals were concluded were:

� Studied di�erent methods for localization, mapping and path planning;

� Adapted the HMP framework integrated in Collabnav node [1] into Interbot;

� Integrated several architecture systems for navigation;

� Implemented an integrated navigation architecture, in ROS environment, composed by the

selected methods;

� Tested the implemented navigation architecture, to con�rm that a long-term navigation is

possible to accomplish using Interbot.

At the end of this work, Interbot has now an integrated navigation system that has a large

improvement margin and that can be used at several applications in indoor o�ce environments.
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7.2. FUTURE WORK

7.2 Future work

Starting with the SLAM method, which has some problems in terms of localization that need to be

solved, thus the path planning can be more e�cient and cause fewer failures. Obviously, people and

dynamic obstacles must be included in the robot's surroundings, so path planning strategies to safely

avoid these types of obstacles, need to be studied. The social component for this type of systems

need to be studied as well, so that Interbot can know how to behave in situations were people are

involved. Perform a thorough set of tests to the HMP method, so that it can be published in the

ROS community. Finally, a better user interface can be developed in order to make the Interbot

more appealing and intuitive from the user point of view.
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