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A simple model for viscous regularization of elasto-plastic
constitutive laws with softening
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SUMMARY

An overlay-type rheological model is presented, which is used to introduce viscosity in inviscid elasto-
plastic material laws with softening, in order to reduce the mesh-dependency of Finite Element solutions.
This model is intended to be an alternative to the well-known visco-plastic formulations of Perzyna and
Duvaut–Lions. A time integration algorithm for the visco-elastic model component is presented, being
demonstrated in the paper, that it is unconditionally stable and oscillation-free. The algorithm is tested
in a problem with slip driven softening (von Mises material) and in a problem with decohesion driven
softening (Cam-Clay model). Figures showing the capability of the algorithm to regularize the solution
are presented. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION AND OVERVIEW

Constitutive laws with softening—as, for example, the Cam-Clay elasto-plastic model—lead to
mesh-dependent results, when used with �nite element discretizations. From a physical point
of view, this mesh dependency is a consequence of the fact that the �nite element description
of the continuum is not perfect, but allows for stress discontinuities at the element boundaries.
As a consequence of this, the deformation concentrates in a band of �nite elements, whose
width and direction depend on the used mesh.
The more usual ways to regularize the solution, i.e. to avoid or, at least, to reduce the

mesh dependency, are [1]:

1. the use of a rotation sensitive material law, as the Cosserat continua;
2. the non-local concept, in which the hardening parameters have a non-local de�nition,
leading to gradient plasticity theories;

3. the introduction of viscosity in the material law.
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Figure 1. Rheological model on which the formulations of Perzyna and Duvaut–Lions are based.

The �rst possibility furnishes good results for grain boundary sliding plasticity. However,
for decohesion driven softening, the results are poor. Besides, for its use, it is necessary to
program a �nite element procedure, which includes the additional degrees of freedom (the
rotations).
The second possibility—gradient plasticity—is highly versatile and works equally well for

both slip and decohesion softening [1]. Its main disadvantage is the introduction of an addi-
tional variable, which must be discretized at the global level.
The third possibility—the rate-dependent behaviour induced by the viscosity—is based on

the fact that localization causes high deformation rates, which are reduced and distributed
in the �nite element mesh by means of the viscosity. Its main disadvantage is the necessity
of adding an arti�cial feature—the viscosity—to the material behaviour, when it does not
display rate dependence. Its main advantage is that it does not need any additional global
discretizations, since it requires only supplementary operations at the local level (constitutive
law), whose implementation in common non-linear �nite element packages is very simple.
Furthermore, it works equally well, both for decohesion and slip driven softening.
For the inclusion of viscosity in the elasto-plastic constitutive law the models of

Perzyna and Duvaut–Lions [2–5] have been used. More recently Wang et al. [5] have
introduced a model, in which the viscosity is implemented by means of a rate-dependent
yield surface.
The model proposed in the present contribution is intended to be an alternative to the

formulations of Perzyna and Duvaut–Lions, which are based on the same one-dimensional
model, cf. Figure 1 [6]. The major drawback of the model of Perzyna is the fact that it
may not converge to the inviscid solution, when the viscosity goes to zero, in non-smooth
multi-surface plasticity [4]. The Duvaut–Lions model has the limitation that it must be used
in conjunction with an integration algorithm for the inviscid elasto-plastic rate equations, in
which the initial stress is used only to compute the trial stress, since it may be outside the
yield surface. Usually a backward Euler interpolation is used. Furthermore, an evolution rule
must be postulated for the yield surface, in case of hardening=softening plasticity [4]. The
model proposed in this work was designed to avoid these limitations, i.e. to be compatible
with any integration schema for the inviscid rate equations and to automatically converge to
the inviscid solution, when the viscosity goes to zero.
The model presented here combines a Maxwell-type visco-elastic behaviour with a generic

elasto-plastic rheological model. The procedure is then implemented on the example of an
elasto-plastic von Mises constitutive law with (slip driven) softening and also with a Cam-
Clay elasto-plastic model. The latter rheological model follows a volumetric hardening scheme,
which automatically includes decohesion driven softening.
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In the described examples, the elasto-plastic part of the material response is computed via
a backward Euler algorithm (radial return), while for the visco-elastic part an unconditionally
stable and oscillation-free mid-point indirect interpolation scheme is used.
After description of the analytical and numerical tools used, results from the �nite element

simulation of the process of formation of shear bands in material specimens, using both
elasto-plastic constitutive laws on di�erent FE-meshes, are presented and discussed.

2. THE MODEL

2.1. Outline

In classical displacement based �nite element programs the elasto-plastic constitutive law is
usually implemented in a routine, in which, for a given strain increment, the stress incre-
ment and the material sti�ness are computed. When a complex material behaviour is to be
modelled, it is therefore convenient to use a material model of the overlay type, as the one
represented in Figure 2, in the one-dimensional case. This model is composed of an elasto-
plastic element (E0, �c) and a Maxwell visco-elastic element (E, �). In its generalization to
the three-dimensional case, the strain tensor is the same in both elements. Therefore, for given
strains, stresses and sti�ness can be computed separately for each element and added. The
elasto-plastic elements used, as examples, in the present paper are, as referred, the von Mises
and the Cam-Clay models.

2.2. The visco-elastic Maxwell model

The Maxwell model consists of a serial assembly of an elastic element (spring) of sti�ness
E and a viscous element (dashpot), whose coe�cient of viscosity is �. The constitutive law
of the model reads

�̇ =
�
�
+
�̇
E

(1)

where � is the stress in the Maxwell model component and the dot denotes, as usually, the
time derivative. In order to have the advantages of an indirect approximation of the inelastic
strain, in what concerns stability and accuracy of the time integration, the constitutive law
must be used in integral form [7], which is obtained by solving the di�erential equation (1),
yielding

�=e−(E=�)t
(∫

E�̇e(E=�)t dt + C
)

(2)

�t

E

E0

�

�c

�t

Figure 2. Proposed overlay model.
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The integration constant C may be eliminated by considering an initial stress �0 at the time
t0, yielding

�(t)=�0e−(E=�)(t−t0) +
∫ t

t0
E�̇e−(E=�)(t−�) d� (3)

An incremental form of this expression is obtained by considering the substitutions{
�= t0 + s

t= t0 + �t
⇒ �=�0e−��t +

∫ �t

0
E�̇e−�(�t−s) ds (4)

where �=E=� represents the relaxation modulus and 06s6�t is the time variable in the
time step �t.
The fundamental di�erence between the models represented in Figures 1 and 2 is that in

the �rst case (Figure 1) the viscosity a�ects only the plastic part of the deformation, while
in the second case (Figure 2) the viscosity a�ects the total deformation. In what concerns the
use of the Duvaut–Lions model and the proposed model, in the context of displacement-based
�nite element formulations (strain driven constitutive law), other important di�erences are:

Duvaut–Lions model Proposed model

Requires an elasto-plastic
integration procedure, in
which the initial stress does
not play a role, since it may
be outside the yield surface.
Usually, an Euler backward
interpolation is used.

Any integration scheme may be used
in the elasto-plastic component of the
model, since the elasto-plastic and the
visco-elastic problems are completely in-
dependent at the local level. The same
holds, obviously, for the visco-elastic
component. In the present work di�er-
ent integration schemes are used for both
components.

In the case of hardening
or softening an evolution
scheme for the hardening
parameters must be postu-
lated [4].

Nothing new must be postulated in what
concerns the elasto-plastic law, since
nothing is modi�ed, in relation to the in-
viscid case.

Only one new parameter
must be given: the �uidity
parameter.

Three new parameters are necessary, if
the visco-elastic model is linear and
isotropic: an Young modulus, a Poisson’s
coe�cient and a viscosity parameter. In
the described examples an almost purely
viscous model is considered, since very
high values of the Young modulus are
used.

Copyright ? 2004 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2004; 20:547–568



VISCOUS REGULARIZATION OF ELASTO-PLASTIC MATERIAL LAWS 551

2.2.1. Time integration algorithm. The time integration of the constitutive equation of the
Maxwell model is performed using an indirect approximation of the strain. The algorithm
considers visco-elastic linearity in the time step (constant values of E and �), is implicit and
uses a mid-point linear strain interpolation in the time step. This algorithm belongs to the
family of the relaxation methods de�ned by Argyris et al. [7] and follows a pattern, which
is similar to the one described by Barros et al. for the Kelvin-Voigt chain [8].
Denoting by �a and �b the strains at the beginning and at the end of the time step �t,

respectively, the strain interpolation function takes the form

�(s)= �a +
�b − �a
�t

s ⇒ �̇=
�b − �a
�t

=
��
�t

(5)

Substituting this expression in (4), the incremental stress–strain relation is obtained

� = �0e−��t +
1− e−��t
��t

E��

⇒��=� − �0 =−�0(1− e−��t) + 1− e−��t
��t

E�� (6)

A three-dimensional generalization of Equation (6) is easily performed, if a constant Poisson’s
coe�cient � is used. De�ning the matrix

]=




1− � � � 0 0 0

� 1− � � 0 0 0

� � 1− � 0 0 0

0 0 0 1− 2� 0 0

0 0 0 0 1− 2� 0

0 0 0 0 0 1− 2�




1
(1 + �)(1− 2�) (7)

the tensorial three-dimensional equivalent of �� takes the form

��=−(1− e−��t)�0 + 1− e−��t
��t

E]�U (8)

� and U are vectors containing the elements of the stress and strain tensors, respectively. The
visco-elastic material sti�ness is then

d��
d�U =E

1− e−��t
��t

] (9)

2.2.2. Stability analysis. In localization analysis it is important to use numerically stable
time integration algorithms, since softening causes sudden deformations (localization in time)
concentrated in narrow zones (space localization), which lead to larger deformation increments,
even when small time steps are used.
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Figure 3. Rheological model used in the analysis of the numerical stability.

As it is not easy to include plasticity in the stability analysis of time-integration algorithms
for visco-elasticity, which use an indirect approximation of the inelastic strain, the stability
analysis of the time integration algorithm for the visco-elastic model component is performed
considering the Maxwell element in conjunction with elastic behaviour. In this sense, the
model presented in Figure 3 is used to investigate the stability and oscillation properties of
the algorithm described in the previous section 2.2.1.
The stability of time integration algorithms is usually investigated by analyzing the decay

properties of the numerical approximation to the homogeneous part of the di�erential equation
which describes the problem. In the case of the model presented in Figure 3, its constitutive
law may be described by the expression

�̇=(�̇ − E0�̇) 1E + (� − E0�)1� ⇒ �+
�
E
�̇=E0�+ �

E + E0
E

�̇ (10)

which is obtained by adding the rate of deformation of the elements E and �. � represents
the total strain.
Following the argumentation presented by Argyris et al. [7], in a relaxation approach, as

the one considered here, it su�ces to analyse the local stability in a creep problem. Although
the extension of this conclusion to softening plasticity is not straightforward, the creep of the
model under constant stress is considered here.
Under these conditions, it is easy to verify that the homogeneous solution may be described

by the strain in the spring E. In fact, the di�erential equation, which relates the stress with
the strain in that spring, �s, may be obtained from Equation (10), taking the form



�=

1
E0
(� − E�s)

�̇=
1
E0
(�̇ − E�̇s)

⇒ E�s + �
E + E0
E0

�̇s=
�
E0
�̇ (11)

It is obvious that this equation becomes homogeneous, if the stress � is constant.
In order to get an analytical description of the numerical approximation to the homoge-

neous part of the solution, a relation between the approximated variable—the strain �—and
�s is needed. This relation may be obtained in the same way as Equation (10), being given
by

�̇= �̇s +
E
�
�s (12)
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This equation may be integrated using the same technique as previously for Equation (4),
yielding in incremental form

�s= �s0e−��t +
∫ �t

0
�̇e−�(�t−s) ds (13)

where �s0 represents the value of �s for s=0 and �=E=�.
From Equations (5) and (11) the strain rate is obtained


�̇=

�b − �a
�t

�=
1
E0
� − E

E0
�s

⇒ �̇=− E
E0
�sb − �sa
�t

(14)

representing �sa and �sb the values of �s at the beginning and at the end of the time step,
respectively. Substituting this equation in (13) and integrating, we get (�s= �sb and �s0 = �sa)

�sb= �sae−��t +
E
E0
�sa − �sb
�t

1
�
(1− e−��t) (15)

Rearranging, we get

�sb=A�sa with A=
e−��t + E

E0
1−e−��t

��t

1 + E
E0
1−e−��t

��t

(16)

For a given starting value �s1, the value of �s after n time steps, �sn, is then given by

�sn=An�s1 (17)

A represents the ampli�cation function. If −16|A|61, the truncation errors are not ampli�ed
and the algorithm is numerically stable. Furthermore, if A¿0, the algorithm does not oscillate.
It is easy to see that both of these conditions are satis�ed for any value of �t. This means
that the algorithm is unconditionally stable and oscillation free.
In order to verify these conclusions, the analytical solution of Equation (10) for constant

� (creep problem) is compared with the approximated solution obtained using the time in-
tegration de�ned by Equation (6). The integration of Equation (10) furnishes the solution
(�̇=0)

�=
�
E0
+ Ce−�t with �=

1
�

EE0
E + E0

(18)

where C is a constant, which may be eliminated by considering the initial strain �=�=(E+E0)
for t=0. With this condition Equation (18) yields

�(t)=
�
E0

(
1− E

E + E0
e−�t

)
(19)

This creep function may also be computed by means of the algorithm presented in Sec-
tion 2.2.1. Using Equation (6), the relation between the stress increment �� and the strain
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Figure 4. Exact versus approximate solutions for several time increments.

increment �� is

��=E0��− �0m(1− e−��t) + 1− e−��t
��t

E�� (20)

where �0m represents the stress in the Maxwell element. As � is constant, we have

��=0 ⇒ ��=
(1− e−��t)�0m
E0 + 1−e−��t

��t E
(21)

After computation of �� the value of �0m is updated using Equation (6)

�m=�0me−��t +
1− e−��t
��t

E�� → �0m=�m (22)

In Figure 4 the results obtained using the analytical solution (19) and the numerical approach
with three di�erent values of �t are presented. In this example the following values of the
involved quantities were used: E=E0 = 100, �=0:1 and �=10. The initial value of �0m is
�0m=E=(E + E0)�.
The results con�rm that, even for very large time steps, the algorithm is stable and free of

oscillations. Furthermore, it can be veri�ed that the degree of accuracy is very high.
In order to test the stability properties of the time integration algorithm in presence of plas-

ticity, the creep behaviour of the complete model (Figure 2) was computed. The constitutive
equations of the one-dimensional elasto-plastic model are

F = � − �c=0
�̇p = �̇

�c = �c0

(
1 + �

∫
d�p
)

⇒ �̇c=�c0��̇
p =�c0��̇

�̇ = E0(�̇− �̇p)=E0(�̇− �̇)

(23)

where �c0 and � are the initial yield stress and the hardening parameter, respectively. The
rate equations are then integrated by backward Euler interpolation, yielding for the plastic
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multiplier ��n+1 = �̇n+1�t the value{
�n+1 = �n + E0��− E0��n+1
�cn+1 = �cn + �c0���n+1

(24)

�n+1 − �cn+1 =0 ⇒ ��n+1 =
�n − �cn + E0��
E0 + ��c0

(25)

The stress in the elasto-plastic element and the yielding stress, after the strain increment ��
may then be computed by means of Equations (24). By adding the stresses in both elements
(visco-elastic and elasto-plastic), the total stress increment caused by given strain and time
increments �� and �t, respectively, may be computed, cf. Equations (22), (24) and (25)

��=−E0(�n − �cn)
E0 + ��c0

+
E0��c0
E0 + ��c0

��− �0m(1− e−��t) + 1− e−��t
��t

E0�� (26)

As the global stress is constant, the strain increment after creep during the time �t is given
by

��=0 ⇒ ��=
E0(�n−�cn)
E0+��c0

+ �0m(1− e−��t)
E0��c0
E0+��c0

+ 1−e−��t

��t E0
(27)

The stress in the Maxwell element is updated using Equation (22).
In Figure 5 the results of computations considering hardening, perfect plasticity, softening

and no plasticity are depicted. Although the performance, in the softening case, is not as good
as in the other cases, it is still acceptable, even with the large time increment considered (it
is larger than the relaxation time of the Maxwell element). Nevertheless, and in opposition to
the non-softening case, the performance in the global problem deteriorates, as a consequence
of the strain concentration which results from localization.
However, the high stability of the visco-elastic time integration algorithm has a strong

stabilizing e�ect on the global problem, which is re�ected in the fact that, with viscosity,
much higher time steps are possible, than with the inviscid elasto-plastic material law, as
referred later.

2.3. Elasto-plastic element

The integration scheme for the elasto-plastic component of the constitutive law does not
need to be the same as for the visco-elastic Maxwell element. In the examples included
in this report the backward linear Euler interpolation was chosen, since it leads to a simple
implementation and to a relatively stable algorithm (in the hardening case it is unconditionally
stable). Furthermore, as in the inviscid reference solutions an algorithm must be used, in
which the initial stress does not play a role, this option facilitates the comparison between the
results, since the inviscid solution is computed using the same interpolation scheme, both in
the reference and proposed solutions. This interpolation scheme leads to a radial return of the
deviatoric component of the stress tensor, when shapes of revolution around the hydrostatic
axis are used for the yield and plastic potential functions. This is the case when those functions
are expressed in terms of the two �rst invariants of the stress tensor.
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Figure 5. Numerical test of the used time-integration algorithm for visco-elasticity with plasticity. Rhe-
ological parameters: E=E0 = 100, �=0:01, �c0 = 8 (initial yield stress), �=1:75 (hardening case) and

�=−1:75 (softening case). Time step: �t=166:7. Creep stress: �=10.

3. EXAMPLES

3.1. Computation of reference solutions

As referred in Section 1, the visco-plastic constitutive laws of Perzyna and Duvaut–Lions are
the most used models to introduce viscosity in inviscid elasto-plastic material laws. The second
one is used here to compute reference solutions for comparison with the results furnished by
the presented overlay model.
The constitutive law of the Duvaut–Lions model may be described by the expression [3]

U̇vp=
1
�
D−1(� − ��) (28)

where � represents the relaxation time (in the one-dimensional model, cf. Figure 1, this quan-
tity is given by �= �=E), D the elastic material sti�ness, � the stress tensor and �� the inviscid
stress. In presence of hardening=softening, an evolution equation for the hardening parameter
must be postulated. In the present contribution, the following law is used [4]

q̇=−1
�
(q− �q) (29)

where q represents the actual value of the hardening parameter and �q the inviscid solution,
i.e. the value this parameter would take after relaxation.
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The time integration of Equations (28) and (29) may be performed in closed form [4],
yielding the following expression for the stress at the end of the time increment �t

�n+1 = �ne−��t + ��n+1(1− e−��t) + 1− e−��t
��t

D�U (30)

given the strain increment �U and the inviscid elasto-plastic solution ��n+1. �=1=� represents
the relaxation modulus. This equation is valid only in the case of a linear relation between the
stress and the elastic strain, represented by the constant elastic material sti�ness D. However,
in the second of the presented examples—the Cam-Clay material model, cf. Section 3.3—the
elastic sti�ness is not constant. Therefore, Equation (30) has been used in the modi�ed version
represented by the expression

�n+1 = �ne−��t + ��n+1(1− e−��t) + 1− e−��t
��t

(�trn+1 − �n) (31)

where D�U is substituted by �trn+1−�n. �trn+1 represents the trial stress introduced by the strain
increment �U. There is, however, a more accurate solution, obtained by the integration of
Equation (28) in the special case of the Cam-Clay model, which, for the case of constant
shear modulus G, takes the form [9]

�n+1 = �ne−��t + ��n+1(1− e−��t) + �n 1
��v − k��t (e

−��v
k − e−��t)��v

�′
n+1 = �′

ne
−��t + ��′

n+1(1− e−��t) + 2G 1− e−��t
��t

�U′
(32)

respectively for the mean stress � and for the deviatoric stress tensor �′. k is a rheological
parameter (cf. Section 3.3). The results obtained using Equation (31) or (32) are, however,
practically the same. In both cases, as a consequence of the non-linear elastic behaviour, the
relaxation modulus � is prescribed and not the viscosity � (�=E=� in the one-dimensional
case).
By integration of Equation (29), the hardening parameter at the end of the time increment

�t is given by [4]

qn+1 = qne−��t + (1− e−��t) �qn+1 (33)

where �qn+1 is computed by integration of the inviscid rate equations.
The material sti�ness may be obtained by derivation of Equation (31) or (32), yielding in

the case of Equation (31)

Dvep =
@�n+1
@�U =(1− e−��t)@ ��n+1

@�U +
1− e−��t
��t

@�trn+1
@�U

= (1− e−��t)Dep + 1− e−��t
��t

D (34)

where Dep = @ ��n+1=@�U represents the inviscid elasto-plastic material sti�ness. In the �rst of
the examples described in the present communication—the von Mises material—an algorithmic

Copyright ? 2004 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2004; 20:547–568



558 V. DIAS DA SILVA

material sti�ness has been computed, while in the second one—the Cam-Clay model—the
classical expression for associative plasticity is used

Dep =D− DaaTD
aTDa+ A

(35)

where a de�nes the direction of the plastic �ow (normal to the yield surface) and A re�ects the
in�uence of the hardening rule. An algorithmic version of Dep did not bring advantages in this
case, since it had to be computed numerically, as a consequence of the non-linear character
of the inviscid rate equations, which leads to an iterative computation of the elasto-plastic
stresses and hardening parameter, as referred in Section 3.3.

3.2. Von Mises material

In order to test the regularization capabilities of the proposed procedure in a material which
displays slip-driven softening, the most simple material law for ductile materials—the von
Mises material—was implemented in a FE-code for non-linear analysis [10].
The yielding function of the von Mises material may be de�ned by the expression

F =
√
3�− �c=0 with �=

√
J ′
2 and J ′

2 =
1
2 �

′
ij�

′
ij=

1
2�ij�ij − 1

6 I
2
1 (36)

where �c is the hardening parameter, �ij and �′
ij are the elements of the stress tensor and

stress deviation tensor, respectively, and I1 is the �rst invariant of the stress tensor.
The �ow rule is associative. The hardening rule is de�ned by the expression

�c=�c0

(
1 + �

∫
d�p
)

with d�p =

√
1
2
d�pijd�

p
ij (37)

where �c0 is the initial value of the hardening parameter �c (yield stress) and d�
p
ij are the

components of the incremental plastic strain tensor. A negative value of the parameter � leads
to softening.
The numerical integration of the rate equations, performed via backward linear interpolation,

follows the scheme

��= �̇n+1�t and ��c= �̇cn+1�t (38)

where the index ‘n+1’ denotes the end of the loading step. This means that all the parameters
included in the rate equations take the (unknown) values corresponding to the new stress state.
The development of the expressions corresponding to the numerical integration of the rate

equations, performed via backward linear interpolation (Equation (38)), following a standard
pattern, is not presented here. The resulting expressions allow the computation of the new
stress and the corresponding material sti�ness, given the starting stress tensor �n and the
strain-increment tensor �U, which follows the steps:

• identi�cation of the plastic deformation
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• computation of the new stresses and hardening parameter using the expressions obtained
via backward linear interpolation

�n+1 = (�n + K��v)i +
1
�tr

(
�cn +

√
3
2
�c0���n+1

)
�′
tr (39)

�cn+1 = �cn +

√
3
2
�c0���n+1 with ��n+1 =

√
3�tr − �cn

�c0�
√
3
2 + 3G

(40)

where K and G represent the bulk and shear moduli, respectively, �tr is the square root
of the second invariant of the deviatoric trial stress �′

tr and i=[1 1 1 0 0 0]T . �n and �cn
are the mean and yielding stresses, respectively, at the beginning of the loading step.

• computation of the algorithmic elasto-plastic material sti�ness for the new stress tensor,
using the derivative of Equation (39)

@�n+1
@�U =KB+

[
�cn

(
1−

√
3�c0�√

3�c0�+ 6G

)(
1
�tr
I − 1

2�3tr
�′
tr�′T

tr

)
+

3�c0�√
3�c0�+ 6G

I

]
2GC

(41)

where I is the sixth-rank identity matrix, while B and C are de�ned as

B=




1 1 1 0 0 0

1 1 1 0 0 0

1 1 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0




C=




2
3 − 1

3 − 1
3 0 0 0

− 1
3

2
3 − 1

3 0 0 0

− 1
3 − 1

3
2
3 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1




(42)

As a numerical application to the von Mises material, the process of formation of a shear
band in a specimen of this material is simulated. The specimen has the dimensions 300 ×
100 × 10 mm3 with a non prismatic shape for stress concentration (Figure 6). Pentahedric
elements with two integration points are used. A displacement of 0:04167 mm=s is imposed
in the upper face.
For the elasto-plastic law an yielding stress of 235 MPa, an Young modulus of 206 GPa

and a Poisson’s coe�cient of 0.3 are used. The used hardening parameter � has the value
�=−6:0. With this value of � a pronounced softening behaviour is obtained. As a consequence
of this, the global sti�ness matrix becomes singular, even for small loading increments and,
therefore, a very large number of loading steps is necessary, although the used algorithms
are unconditionally stable in case of hardening plasticity: if a positive value of � is used
(hardening plasticity), the algorithm remains numerically stable, even when the loading is
applied in only one step. The introduction of viscosity allows for much larger loading steps,
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Figure 6. Shear bands in a von Mises specimen using two di�erent meshes: computation with low
viscosity using the Duvaut–Lions model (�=150 s−1).

which is of crucial importance in this kind of problems, since very re�ned meshes must be
used, in order to capture the formation of shear bands. In the examples presented here, loading
steps of 1 s (0:04167 mm) were used.
For these reasons, the regularization capabilities of the proposed method are investigated

by comparing a less regularized solution with a more regularized one. The less regularized
solution is computed using both the Duvaut–Lions (Figure 6) and the overlay model (Figure
7). In order to have an almost purely viscous behaviour in the Maxwell element of the overlay
model, an Young modulus of 20 600 GPa was considered in this element. For the Poisson’s
coe�cient of the visco-elastic model the same value as in the elasto-plastic law (�=0:3) is
used. The less regularized solutions display the mesh sensitivity presented in Figures 6 and
7, which is characterized by di�erent directions of the shear bands in the two meshes.
Figure 8 shows the results obtained when the viscosity is introduced by means of the

Duvaut–Lions model with a value of �=15s−1 for the relaxation modulus. It can be observed
that the results obtained are more similar, with shear bands with the same directions in both
meshes.
Practically the same results are obtained when the overlay model is used to introduce

viscosity (Figure 9) in the constitutive law, as can be seen by comparing Figures 8 and 9. In
both the Duvaut–Lions and the overlay models the used value for the viscosity is about 2.3
times the minimum value to force the �nal shear band in mesh 2 to take the same direction
as in mesh 1.
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Figure 7. Shear bands in a von Mises specimen using two di�erent meshes: computation with low
viscosity using the overlay model (�=15 000 s−1).

Since no inertial forces are taken in account, it is obvious that other values of � would lead
to the same results, provided that values of the time t are considered, such that �t remains
constant.

3.3. Cam-Clay material

The Cam-Clay model displays decohesion driven softening, when the isotropic compressive
stress takes a smaller value than the so-called critical stress. In the present contribution
only e�ective stresses are considered. Although it is usual in Soil Mechanics to consider
the compressive stresses as positive, here they are considered as negative, since this consti-
tutive law has been implemented in a Finite Element program system which use this sign
convention [10].
In Figure 10 the volumetric elasto-plastic material behaviour is presented. The rheologi-

cal parameter � de�nes the behaviour in a normal consolidation process, which in a semi-
logarithmic referential may be represented as a straight line. The parameter k de�nes the
unload-reload behaviour and allows for the identi�cation of the plastic deformation compo-
nent.
Considering a load increment of the isotropic compressive stress P0, from P01 to P02,

the corresponding increments of volumetric elastic and plastic deformation ��ev and ��
p
v are
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Figure 8. Shear bands in a von Mises specimen using two di�erent meshes
and the Duvaut–Lions model (�=15 s−1).

given by

��ev=−k ln
(
P02
P01

)
and ��pv =−(�− k) ln

(
P02
P01

)
(43)

In the Cam-Clay elasto-plastic model P0 is the hardening parameter playing the role of a
cohesion parameter. The yield locus has the shape of an ellipsoid of revolution around the
hydrostatic axis. The relation between the transversal and longitudinal axis is de�ned by the
parameter M . The plastic potential is associative.
The shear modulus G or the Poisson’s coe�cient � complete the set of parameters necessary

for the description of the elasto-plastic material behaviour of the Cam-Clay model.
As a consequence of the non-linear character of the elastic deformation, �ow rule and

hardening rule and of the use of a backward algorithm, the numerical integration of the rate
equations leads to a non-linear system of three equations, which is solved by means of a
Newton–Raphson iterative procedure [9].
In the present work, material parameters taken from Reference [11] have been used: �=

0:042, k=0:015, M =0:882, P0 = 138 kPa and �=0:3. With this value of P0 and a lateral
pressure p=15kPa, a pronounced softening behaviour is obtained, as indicated in Figure 11.
In this Figure, the visco-elasto-plastic stress–strain relation, obtained with the values of the
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Figure 9. Shear bands in a von Mises specimen using two di�erent meshes
and the overlay model (�=1500 s−1).

 

∆� p 

�v P01

k

1

1

�

P02

ln (P0)

v

∆� ev

Figure 10. Elastic and plastic parts of a volumetric strain increment.

con�nement pressure, relaxation modulus � and strain rate used in the example of regulariza-
tion described in this section, are also presented.
In the case of the overlay model, an almost purely viscous behaviour in the visco-elastic

model is achieved by considering a high value for the Young modulus E=50 × 106 kPa,
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Figure 11. One-dimensional stress-strain relation of the used Cam-Clay model, with a con�nement
pressure of 15 MPa and a deformation rate of 0:125 s−1.

Figure 12. Specimen geometry and FE-meshes used.

which represents about 104 times the value of E0, when the �rst plastic deformation occurs.
For the Poisson’s coe�cient of the visco-elastic model the same value as in the elasto-plastic
law (�=0:3) is used.
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Figure 13. Shear bands obtained with the overlay model and �=17× 106 s−1.

In order to test the regularization capabilities of both models in this elasto-plastic model,
the process of formation of shear bands in a material specimen is simulated.
As a purely elasto-plastic computation would require too many loading steps, as a conse-

quence of severe time step limitations due to numerical instabilities, the regularization test is
performed by comparing a less regularized solution with a more regularized one.
The specimen geometry is presented in Figure 12. In order to localize the deformation, the

specimen is not completely prismatic, but has a varying width, which attains its maximum at
middle height, with 76 mm (instead of 75 mm, cf. Figure 12). Pentahedric volume elements
with two integration points were used. However, the computation is plain strain, since the
displacements in the z-direction are blocked. The lateral pressure p is totally applied at �rst,
while the imposed displacement d is applied at the rate of 37:5 mm=s. This corresponds to the
same strain rate as in the one-dimensional example (Figure 11). Loading steps of 3× 10−3 s
(0:1125 mm) were used.
A total lagrangian formulation has been used. The material law is considered as a relation

between the Green strain and the Piola-Kirchho� stress. The imposed pressure p corresponds
to a Cauchy stress, i.e. it is de�ned in the deformed con�guration of the specimen.
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Figure 14. Shear bands obtained with the Duvaut–Lions model and �=200 s−1.

The computation is quasi-static, since no inertial forces are considered. This means that the
same results would be obtained with other loading rates, provided that the relaxation modulus
varies in such a way, that ��t remains constant.
As the less regularized results did not display a relevant dependency on the mesh size

(although a �ne mesh must be used to allow the shear bands to form), but depend strongly
on the mesh orientation, the two meshes presented in Figure 12, with the same size and
di�erent orientation have been used.
In Figure 13 the deformation pattern obtained using the overlay model and a value of

�=17 × 106 s−1 in both meshes is presented. It is observed that the shear bands are quite
di�erent in the two meshes. It was not possible to go further in the computation, since
numerical instability made the results meaningless. The shaded areas represent the elements,
in which plastic deformation took place in the considered increment.
In Figure 14 the results obtained by using the Duvaut–Lions model in both meshes, with a

relaxations modulus �=200s−1 are presented. This value was selected by gradually increasing
the viscosity (i.e. decreasing �), until a similar deformation pattern in both meshes has been
obtained. It was, however, not possible to obtain the same pattern at the same time (cf. Figure
14). A complete regularization could, therefore, not be achieved.
In Figure 15 the results furnished by the overlay model with more viscosity (�=1:7 ×

106 s−1) are presented. Again, this value of the relaxations modulus was selected by gradually
increasing the viscosity.
Also in this case, a complete regularization could not be achieved, since the shear bands

do not form at the same time in both meshes, although the di�erence is smaller than in the
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Figure 15. Shear bands obtained with the overlay model and �=1:7× 106 s−1.

case of the Duvaut–Lions model. Also, the quality of the regularization is a little better than
with the Duvaut–Lions model.

4. CONCLUDING REMARKS

The presented examples show that the proposed methodology strongly reduces the dependence
of the solution on the mesh alignment, being able to change the direction of the shear bands,
so that the same pattern is obtained with both meshes. Furthermore the regularizing capabilities
of the proposed model are, at least, as good as the ones displayed by the Duvaut–Lions model,
as shown by means of the examples described in Section 3.
The introduction of viscosity allows also a substantial reduction of the computing time,

since much larger loading steps may be used. Numerical experiments, without viscosity, have
shown that the maximum step size to get a solution in the second example (Cam-Clay) was
about 40 times smaller than the used to obtain the solutions presented in Figures 13 and 15.
The presented model has, as compared with the well-known models of Perzyna and Duvaut–

Lions, the advantage of being compatible with any integration schema for the inviscid rate
equations and to automatically converge to the inviscid solution, when the viscosity goes to
zero. Furthermore, its implementation in existing �nite element packages for elasto-plasticity
requires only the introduction of the constitutive law for the three-dimensional Maxwell model,
which can generally be done at the local level. Its capability of regularizing �nite element
solutions of softening elasto-plasticity has been demonstrated.
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In the FE-computations a lagrangian formulation was used, being assumed that the
used constitutive laws represent the relation between Piola-Kirchho� stresses and Green
strains.
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