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Abstract:

This paper, the first in a series of two, applies the entropy (or information) theory to describe the spatial variability
of synthetic data that can represent spatially correlated groundwater quality data. The application involves calculating
information measures such as transinformation, the information transfer index and the correlation coefficient. These
measures are calculated using discrete and analytical approaches. The discrete approach uses the contingency table and
the analytical approach uses the normal probability density function. The discrete and analytical approaches are found
to be in reasonable agreement. The analysis shows that transinformation is useful and comparable with correlation to
characterize the spatial variability of the synthetic data set, which is correlated with distance. Copyright  2004 John
Wiley & Sons, Ltd.
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INTRODUCTION

The entropy (or information) theory, developed by Shannon (1948), recently has been applied in many
different fields, such as ecology, biology, data mining and financial time-series analysis (e.g. Darbellay and
Wuertz, 2000; Rojdestvenski and Cottam, 2000; Sy, 2001; Ulanowicz, 2001). The entropy theory has also
been applied in hydrology and water resources for measuring the information content of random variables and
models, evaluating information transfer between hydrological processes, evaluating data acquisition systems,
and designing water quality monitoring networks. A comprehensive review of the application of entropy
theory in hydrology and water resources is given by Singh (1997).

Design of water quality monitoring networks is still a controversial issue, for there are difficulties in the
selection of temporal and spatial sampling frequencies, the variables to be monitored, the sampling duration
and the objectives of sampling (Harmancioglu et al., 1999). Many studies have applied the entropy theory
to assess and optimize the data collection network (e.g. water quality, rainfall, stream flow, elevation data,
landscape, etc.). Uslu and Tanriover (1979) analysed the entropy concept for the delineation of optimum
sampling intervals in data collection systems, both in space and time. Harmancioglu (1981) investigated the
transfer of information between observations of two stream gauging stations. Krastanovic and Singh (1992)
used the marginal entropy measure to draw contour maps of the rainfall network in Louisiana and evaluated
the network according to the entropy map. Yang and Burn (1994) described an analytical comparison between
the correlation and the joint entropy between gauging stations. Lee and Ellis (1997) compared kriging and
the maximum entropy estimator for spatial interpolation and their subsequent use in optimizing monitoring
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networks. Husain (1989) and Bueso et al. (1999) used the entropy theory to illustrate a framework for spatial
sampling of a monitoring network. Ozkul et al. (2000) presented a method using the entropy theory for
assessing water quality monitoring networks. The work was a follow up of earlier work by Harmancioglu and
Alpaslan (1992). Mogheir and Singh (2002) used the entropy theory to evaluate and assess a groundwater
monitoring network by means of marginal entropy contour maps.

Most of the research cited above used an analytical approach that presumed knowledge of the probability
distributions of the random variables under study. The problem of not knowing the probability distributions
can, however, be circumvented if a discrete approach is adopted. Furthermore, these investigations give little
indication as to how information changes with the distance when the data are spatially correlated or not
necessarily correlated. This paper sets out to use a discrete approach for calculating information measures,
and to use transinformation (T) and the information transfer index (ITI) to describe the spatial variability of
synthetic data that is spatially correlated and fits the normal distribution function. The transinformation model
(T model) is a relationship between mutual information measures, specifically T, and the distance between
wells. Thus, the objective is to investigate the possibility of developing the T model and compare it with
the commonly used correlation model (C model), where both models are obtained by discrete and analytical
approaches. Also explored is the capability of the T model for characterizing the spatial variability of synthetic
data. The method developed here was also used to analyse data that have low spatial correlation and do not
fit the normal distribution function (Mogheir et al., 2004).

SYNTHETIC DATA

The data used in this study were obtained using the COVRAN program (Zhou, 1996). The input data for the
program were: the mean, the variance, the type of distribution function, the size of generated data, random
number generator, the grid size and the type of correlation model. The exponential model was used for the
correlation function.

For this hypothetical case, the random field consisted of 10 ð 10 grid points, as shown in Figure 1. The grid
size was taken as 100 m in both orthogonal directions. Each point was assumed to represent an observation
well in the monitoring network. The generated data can represent any hydrogeological data, such as water
level or chemical concentration. Thirty grid points were selected to represent the observation wells for use in
the analyses. Table I shows the parameters used for generating the random data, using the COVRAN program
(Zhou, 1996).

METHOD

The method developed in this study involves three steps.

1. Computation of information measures by two different approaches, discrete and analytical.

Table I. Input parameters (program COVRAN; Zhou, 1996) used for generating the
random data for the hypothetical monitoring network as represented in Figure 1

Input Parameter

Type of distribution function Normal
The mean 0
The variance 1
Sizes of generated data 200, 300, 400, 500
Correlation model Exponential
Correlation length 500
Grid size 100

Copyright  2004 John Wiley & Sons, Ltd. Hydrol. Process. 18, 2165–2179 (2004)
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Figure 1. Hypothetical monitoring network using 10 ð 10 grid point. The grid length is 100 m and each point (ž) represents an observation
well (30 wells were selected for use in the analysis)

2. Comparison of the two approaches by means of the transinformation model (T model) and the correlation
model (C model).

3. Applying the discrete and analytical approaches for characterizing the spatial variability.

These three steps were carried out using the randomly generated data (synthetic data). The C-model and the
information transfer index model (ITI model) were compared to ascertain the applicability of the T-model for
characterizing spatial variability.

Discrete approach—correlation model

The correlation coefficient rxy was calculated for each pair of wells (or points) as

rxy D covxy

SxSy
�1�

where covxy is the covariance between the random variables x and y, and Sx and Sy are the standard deviation
of variables x and y, respectively. The covxy could be obtained as

covxy D

n∑
iD1

�xi � x��yi � y�

n � 1
�2�

where x and y and are the means of variable x and y, respectively.

Discrete approach—transinformation model

To calculate the information measures, the joint or conditional probability is needed, and this can be
obtained using a contingency table. An example of a two-dimensional contingency table is given in Table II.

Copyright  2004 John Wiley & Sons, Ltd. Hydrol. Process. 18, 2165–2179 (2004)
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Table II. Two-dimensional contingency table (frequency)

x y Total

1 2 3 . . . u

1 f11 f12 f13 . . . f1u f1.

2 f21 f22 f23 . . . f2u f2.

3 f31 f32 f33 . . . f3u f3.

...
...

...
...

...
...

...
v fv1 fv2 fv3 . . . fvu fv.

Total f.1 f.2 f.3 . . . f.u fx or fy

To construct a contingency table, let the random variable x have a range of values consisting of v categories
(class intervals), whereas the random variable y is assumed to have u categories (class intervals). The cell
density or the joint frequency for �i, j� is denoted by fij, i D 1, 2, . . . , v; j D 1, 2, . . . , u, where the first
subscript refers to the row and the second subscript to the column. The marginal frequencies are denoted by fi.

and fj. for the row and the column values of the variables, respectively. The construction of two-dimensional
contingency tables is illustrated in Appendix A.

The entropy of a random variable is a measure of the information or uncertainty associated with it. The
measures of information are: the marginal entropy, conditional entropy, joint entropy and transinformation. For
a random variable x, the marginal entropy, H�x�, can be defined as the potential information of the variable.
For two random variables, x and y, the conditional entropy H�x/y� is a measure of the information content
of x that is not contained in the random variable y. The joint entropy H�x, y� is the total information content
contained in both x and y. The mutual entropy (information) between x and y, also called transinformation,
T�x, y�, is interpreted as the reduction in uncertainty in x, due to the knowledge of the random variable y.
It also can be defined as the information content of x that is contained in y. These information measures for
discrete variables can be expressed as (e.g. Lubbe, 1996; Singh, 1998)

H�x� D �
n∑

iD1

p�xi� ln p�xi� �3�

H�x, y� D �
n∑

iD1

m∑
jD1

p�xi, yj� ln p�xi, yj� �4�

H�x/y� D �
n∑

iD1

m∑
jD1

p�xi, yj� ln p�xi/yj� �5�

T�x, y� D �
n∑

iD1

m∑
jD1

p�xi, yj� ln
[

p�xi, yj�

p�xi�p�yj�

]
�6�

where x and y are two discrete variables with values xi, i D 1, 2, . . . , n; yj, j D 1, 2, . . . , m, defined in the
same probability space, each of which has a discrete probability of occurrence p�xi�, p�xi, yj� is the joint
probability of xi, yj and p�xi/yj� is the probability of xi conditional on yj. Note that H�x, y� D H�y, x�. The
transinformation T�x, y� also can be expressed as (e.g. Jessop, 1995)

T�x, y� D H�x� � H�x/y� �7�

T�x, y� D H�x� C H�y� � H�x, y� �8�

Copyright  2004 John Wiley & Sons, Ltd. Hydrol. Process. 18, 2165–2179 (2004)
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T�y, x� D H�y� � H�y/x� �9�

T�y, x� D H�y� C H�x� � H�y, x� �10�

Note that T�x, y� D 0 if x and y are independent. Transinformation is an indicator of the capability of
information transmission. Although transinformation indicates the dependence of two variables, it is not a
good index of dependence because its upper bound varies from site to site (it varies from 0 to marginal
entropy H). Therefore, an information transfer index (ITI) is defined by normalizing transinformation, which
then indicates the standardized information transferred from one site to another

ITI D T�x, y�

H�x, y�
�11�

When specifying the unit of information measures, it is important to note that the logarithmic base used to
calculate the information theory parameters determines the units of these measurements. If a base 2 is used,
then the unit is a ‘bit’; for a logarithmic base 10 the unit is decibles, and it is nats (natural units) if the
logarithmic base is e (Caselton and Husain, 1980). However, some researchers, such as Harmancioglu and
Yevjevich (1987), have used napiers as the unit of the information theory parameters, with base e. Provided
that the logarithmic base is used consistently the choice of units is not critical. For convenience, the base e
and the unit ‘nats’ have been used here for computing all the numerical results.

For both transinformation and correlation models, the geometric distance �d� between two wells was
calculated as

d D
√

�A1 � A2�2 C �B1 � B2�2 �12�

where A1, B1 are the coordinates of well 1, A2, B2 are the coordinates of well 2 and d is the distance between
wells 1 and 2 (see Figure 1).

A program, INFOR, was used to compute the correlation coefficient of each pair of wells using Equation (1),
the joint frequency and joint probability contingency tables, the marginal entropy using Equation (3), the
joint entropy using Equation (4), the transinformation using Equation (6), the ITI using Equation (11) and the
distance between pairs of wells using Equation (12).

Smoothing the discrete models

The discrete T values may exhibit a scatter when plotted against the distance between wells. The literature
reports several smoothing methods, such as axis transformation (e.g. logarithm transformation), moving
average and exponentially weighted moving average (Berthouex and Brown, 1994). In this study, the moving
average method is used to smooth the T data using a 100 m distance interval, which is the distance between
wells in the hypothetical network used (see Figure 1). For distance 0, the transinformation T0 was assumed
as the average of the marginal entropies of the wells. The moving average method was applied to smooth the
lognormal T, ITI and correlation models.

Analytical approach—correlation model

The data used in this study were generated synthetically. They fit the normal probability distribution (with
mean 0 and variance 1) and were spatially correlated with distance. In the COVRAN program (Zhou, 1996), the
correlation coefficient was calculated using the exponential correlation

r�d� D e�d/� �13�

where d is the distance between wells (or points) and � is the correlation length (the inverse of the correlation
length is the correlation decay rate). Equation (13) represents the analytical correlation model (ACM).

Copyright  2004 John Wiley & Sons, Ltd. Hydrol. Process. 18, 2165–2179 (2004)
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Analytical approach—transinformation model

Marginal entropy, as a measure of information, was computed analytically using the expression
(Lubbe, 1996)

H�x� D ln�Sx� C 1Ð419 �14�

where Sx is the standard deviation for the random variable x.
Lubbe (1996) and Kapur and Kesavan (1992) estimated the values of T�x, y�, using the correlation

coefficient �rxy�, as
T�x, y� D �0Ð5 ln�1 � r2

xy� �15�

Equations (14) and (15) are applicable only if the mean of the data is 0 and the data fit the normal probability
distribution function. Derivation of Equations (14) and (15) is presented in Appendix B.

For the synthetic data, the correlation is represented by Equation (13) and therefore the analytical T model
can be computed as

T�d� D �0Ð5 lnb1 � �e�d/��2c �16�

where rxy is replaced in Equation (15) by e�d/�.

Fitting the discrete model with the analytical model

The coefficient of determination was used to quantify the goodness of fit between the analytical and the
discrete models. The coefficient of determination �R2� was computed as

R2 D 1Ð0 � SSreg

SStot
�17�

where SSreg is the sum of the squares of residuals between the discrete model and the analytical model, and
SStot is the sum of the squares of residuals between the discrete model and the horizontal line through the
mean.

COMPARISON OF DISCRETE AND ANALYTICAL APPROACHES

Correlation model (C model)

The discrete C model (DCM) was obtained by calculating the correlation between pairs of wells using
Equation (1) and the distance between wells using Equation (12) (see Figure 1 and the description of synthetic
data). The moving average method was used to smooth the discrete C model results �DCMMA�. The analytical
correlation model (ACM) was obtained by using Equation (13) and a distance interval equal to 100 m.
Figure 2 shows the discrete C model, the analytical C model and the smoothed discrete C model, given by
the moving average method �DCMMA�. As expected, the analytical C model and the DCMMA showed a good
fit �R2 D 0Ð94�.

Transinformation model (T model)

The discrete T model (DTM) was determined by calculating the discrete T values of pairs of wells using
Equation (6), and the distance between wells was computed using Equation (12). The discrete T model was
smoothed by the moving average method �DTMMA�. Based on the correlation model (Equation 13), the
analytical T model was determined using Equation (16) and a distance interval equal to 100 m. The DTM,
DTMMA and analytical T model (ATM) are plotted in Figure 3. This figure shows that the analytical T model
fits to the DTMMA �R2 D 0Ð92�. However, the analytical T model does not fit perfectly to the DTMMA (there
is approximately 0Ð1 nats difference).
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Figure 2. Correlation model applied to the synthetic data using the discrete and the analytical approaches. In the figure: DCMMA D smoothed
discrete correlation model by moving average method; ACM D analytical correlation model; DCM D discrete correlation model
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Figure 3. Transinformation model applied to the synthetic data using the discrete and analytical approaches. In the figure: DTM D discrete
transinformation model; ATM D analytical transinformation model; DTMMA D smoothed discrete transinformation model by moving aver-

age method

Sensitivity analysis of the discrete T model. The discrete T model was obtained taking 200 as the size of
generated data and 8 as the number of class intervals. As Figure 3 shows, there is a difference between the
analytical T model and DTMMA. For that reason a sensitivity analysis was performed for the discrete T model
to investigate the factors that influence the difference between these models. The factors included the size of
generated data and the number of class intervals.

Size of generated data. Different sizes of generated data were used to construct the discrete T model (200,
300, 400 and 500). The number of class intervals was the same for all the different sizes of generated data
(the number of class intervals was 9). As shown in Figure 4, the larger the size of the generated data the less
the difference there was between the DTMMA and analytical T model, as expected. This indicates that the
discrete T model is sensitive to the size of the data available for analysis, as in the case of actual groundwater
data where the data are limited in time or are incomplete.
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Figure 4. Discrete T-model for different sizes of generated data (200, 300, 400 and 500) compared with the analytical T model. In the figure:
ATM D analytical transinformation model; DTMMA D smoothed discrete transinformation model by moving average method
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Figure 5. Discrete T-model for different class intervals (4, 6, 9 and 11) compared with the analytical T model. In the figure:
ATM D analytical transinformation model; DTMMA D smoothed discrete transinformation model by moving average method; NCI D number

of class intervals

Number of class intervals (NCI). In order to evaluate the importance of the class interval, the size of the
generated data used was 400 and four class intervals were analysed: 4, 6, 9 and 11. As shown in Figure 5,
the discrete T model is influenced by the number of class intervals (NCI); when the class interval decreases
the DTMMA comes closer to the analytical T model. For this specific synthetic data example, the difference
between the analytical T model and DTMMA is smaller if the NCI is between 6 and 9.

CHARACTERIZATION OF SPATIAL VARIABILITY

In the literature, the C model has been used to characterize the spatial variability (linear dependency) of
many types of data in different fields (e.g. Cressie, 1990). It is noted that the synthetic data are correlated
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by distance, which means that the smaller the distance the higher the correlation, as represented in Figure 2.
The T model also can be used to represent the spatial variability of the synthetic data, as shown in Figure 3,
which shows that there is a relationship between transinformation and distance. The closely spaced wells
have a higher value for T than the ones that are further apart. The T values become essentially constant as
the distance increases. That may be because there is still mutual information that can be transferred, even
for a long distance. Figures 2 and 3 show that both T and C models can be used to represent the spatial
dependency; however, there are some differences between the two models. There is a sharp decrease in the
T model, which is not found in the correlation model. Also, the C model appears to have a higher scatter, in
this case.

Figure 6 shows the smoothed discrete ITI model by the moving average method �DITIMMA�, or the
normalized smoothed discrete T model. This figure shows that at around 500 m distance (the correlation
length) the ITI reaches an essentially constant minimum value. Figure 6 also indicates that the ITI model
could further provide a representation of the spatial variability of the synthetic data. This conclusion is also
pointed out in Mogheir et al. (2004).

CONCLUSIONS

Synthetic data were used to compare the transinformation model (T model) and correlation model (C model).
The models were also used to compare discrete and analytical approaches. The results of synthetic data
analyses demonstrate that the class interval and the size of the data influence the T model results. It is also
found that both C and T models using the discrete approach can be used to characterize the spatial variability
by means of exponential curves. Both analytical models fit the discrete models data well (R2 is quite high).

The analyses indicated that the presumed method can be applied successfully if the data are spatially
correlated and fit the normal distribution function with 0 mean. Mogheir et al. (2004) used different sets
of data from the Gaza Strip (groundwater quality data) to demonstrate the applicability of these procedures
to real data. The main concern of these two articles is the characterization of the spatial structure of the
groundwater quality variables by means of the transinformation model, which is a preliminary step for using
the entropy theory in assessing and redesigning the spatial locations of monitoring wells.
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APPENDIX A

Two-dimensional contingency table

To illustrate the construction of a two-dimensional contingency table for field data, two wells (H-9 and H-8)
were selected from the Gaza Strip groundwater quality monitoring network. The time-series of the chloride
data of the two wells are presented in Table AI. For fuller description of the Gaza Strip data see Mogheir
et al. (2004). The construction involved the following steps.

1. The time-series of a given water quality constituent observed at H-39 and H-8 was drawn in the same
figure, as shown for chloride in Figure A1.

2. Each data set was subdivided into class intervals.
3. To fill the first table (frequency table), the rows or the columns were kept constant and the shared data of

the other well were counted, as shown in Table AII.
4. The joint probability table was constructed by dividing each count by the total number of the recorded data

of one well, as shown in Table AIII.

APPENDIX B

Analytical computation of marginal entropy and transinformation

Marginal entropy (Equation 14). The marginal entropy has been computed analytically by Lubbe (1996)
for the normal distribution. A random variable x has a normal or Gaussian distribution if the probability

Table AI. Chloride data for well H-39 and H-8

Date H-39
(Cl mg/l)

H-8
(Cl mg/l)

Date H-39
(Cl mg/l)

H-8
(Cl mg/l)

Date H-39
(Cl mg/l)

H-8
(Cl mg/l)

01-05-1972 644 427 20-03-1980 721 532 27-01-1990 868 700
28-10-1972 679 413 16-09-1980 749 546 26-07-1990 854 707
26-04-1973 721 483 15-03-1981 756 518 22-01-1991 840 770
23-10-1973 805 497 11-09-1981 861 525 21-07-1991 845 784
21-04-1974 693 483 10-03-1982 840 602 17-01-1992 819 770
18-10-1974 805 497 06-09-1982 861 630 15-07-1992 826 784
16-04-1975 693 504 05-03-1983 959 630 11-01-1993 819 805
13-10-1975 679 518 01-09-1983 882 644 10-07-1993 819 805
10-04-1976 721 511 28-02-1984 854 651 06-01-1994 819 784
07-10-1976 805 553 26-08-1984 868 658 05-07-1994 819 784
05-04-1977 658 630 22-02-1985 854 665 01-01-1995 819 777
02-10-1977 756 497 21-08-1985 868 644 30-06-1995 763 791
31-03-1978 735 504 17-02-1986 833 651 27-12-1995 714 777
27-09-1978 756 497 16-08-1986 868 658 24-06-1996 767 829
26-03-1979 735 504 12-02-1987 770 721 21-12-1996 739 921
22-09-1979 728 525 11-08-1987 868 658 19-06-1997 752 822

07-02-1988 854 721
05-08-1988 819 707
01-02-1989 840 784
31-07-1989 819 707

Copyright  2004 John Wiley & Sons, Ltd. Hydrol. Process. 18, 2165–2179 (2004)
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Figure A1. Chloride time-series for a two-well combination (H-8 and H-39). The wells are selected from groundwater quality monitoring
network in the middle part of Gaza Strip and used in Mogheir et al. (2004)

Table AII. Absolute frequency contingency table for H-8 and H-39 combinations

410 < Cl
< 495

495 < Cl
< 580

580 < Cl
< 665

665 < Cl
< 750

750 < Cl
< 835

835 < Cl
< 920

Marginal H-39

640 < Cl < 695 3 1 2 2 0 0 8
695 < Cl < 750 2 6 1 1 1 0 11
750 < Cl < 805 1 0 0 4 6 1 12
805 < Cl < 860 0 0 1 4 1 0 6
860 < Cl < 915 0 1 3 10 0 0 14
915 < Cl < 970 0 1 0 0 0 0 1
Marginal H-8 6 9 7 21 8 1 52

Table AIII. Joint probability (contingency) table for H-8 and H-39 combinations

410 < Cl
< 495

495 < Cl
< 580

580 < Cl
< 665

665 < Cl
< 750

750 < Cl
< 835

835 < Cl
< 920

Marginal H-39

640 < Cl < 695 0Ð058 0Ð019 0Ð038 0Ð038 0Ð000 0Ð000 0Ð154
695 < Cl < 750 0Ð038 0Ð115 0Ð019 0Ð019 0Ð019 0Ð000 0Ð212
750 < Cl < 805 0Ð019 0Ð000 0Ð000 0Ð077 0Ð115 0Ð019 0Ð231
805 < Cl < 860 0Ð000 0Ð000 0Ð019 0Ð077 0Ð019 0Ð000 0Ð115
860 < Cl < 915 0Ð000 0Ð019 0Ð058 0Ð192 0Ð000 0Ð000 0Ð269
915 < Cl < 970 0Ð000 0Ð019 0Ð000 0Ð000 0Ð000 0Ð000 0Ð019
Marginal H-8 0Ð115 0Ð173 0Ð135 0Ð404 0Ð154 0Ð019 1Ð000

distribution p�x� for �1 < x < C1 is given by

p�x� D 1

�x

p
2�

exp

[
� �x � �x�

2

2�2
x

]
�B1�

where �x and �x are the normal distribution parameters (mean and variance).
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The mean of variable x is defined by

�x D
C1∫

�1
xp�x�dx �B2�

The variance, which is a measure of the variation of the values of x around its mean, is defined by

�x D
C1∫

�1
�x � �x�

2p�x�dx �B3�

For the continuous variable x with probability density function p�x�, the marginal entropy is equal to

H�x� D �
C1∫

�1
p�x� ln p�x�dx �B4�

The marginal entropy of x, H�x�, is maximum if and only if

p�x� D 1

�x

p
2�

exp

(
� x2

2�2
x

)
�B5�

Equation (B5) is obtained by substituting �x D 0 in Equation (B1). Therefore, the following marginal entropy
derivation is valid only for the normalized data where �x D 0 and �x is the standard deviation of variable x,
and is constant.

Substitution of Equation (B5) in Equation (B4) yields

H�x� D �
C1∫

�1

[
1

�x

p
2�

exp

(
� x2

2�2
x

)
ln

1

�x

p
2�

exp

(
� x2

2�2
x

)]
dx �B6�

D �
C1∫

�1

1

�x

p
2�

exp

(
� x2

2�2
x

) [
ln 1 � ln��x

p
2�� � x2

2�2
x

]
dx

D
C1∫

�1

ln��x

p
2��

�x

p
2�

exp

(
� x2

2�2
x

)
dx C

C1∫
�1

x2

2�2
x

1

�x

p
2�

exp

(
� x2

2�2
x

)
dx

D ln��x

p
2��

C1∫
�1

1

�x

p
2�

exp

(
� x2

2�2
x

)
dx C ln e

2�2
x

C1∫
�1

x2

[
1

�x

p
2�

exp

(
� x2

2�2
x

)]
dx �B7�

Substitution of Equation (B3) in Equation (B7) yields

H�x� D ln��x

p
2�� C ln e

2�2
x

�2
x �B8�

Then, Equation (B8) can be written as

H�x� D ln��x

p
2�� C 1

2
ln e D ln �x C ln

p
2�e �B9�
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Therefore, the marginal entropy can be obtained as

H�x� D ln �x C 1Ð419 �B10� � Equation�14�

Transinformation (Equation 15)

Equation (B9) can be written as

H�x� D 1

2
ln �2

x C 1

2
ln�2�e� �B11�

For variable y the marginal entropy is

H�y� D 1

2
ln �2

y C 1

2
ln�2�e� �B12�

where �y is the standard deviation of variable y.
The joint probability densities p�x, y� for variable x and y, where �1 < x < C1, �1 < y < C1 and

considering two-dimensional Gaussian distribution with mean for both x and y equal to 0, could be expressed
as (Kapur and Kesavan, 1992)

p�x, y� D 1

2�jCj
1
2

exp
{

�1

2
[ x y ]C�1

[
x
y

]}
�B13�

where

C D
[

�2
x �xy�x�y

�yx�x�y �2
y

]
�B14�

�xy is the correlation coefficient between variable x and y and can be calculated as

�xy D �xy

�x�y
�B15�

where �xy is the covariance between the variable x and y.
For the continuous variable x and y with joint probability density p�x, y�, the joint entropy is equal to

H�x, y� D �
C1∫

�1

C1∫
�1

p�x, y� ln p�x, y�dxdy �B16�

By substituting Equations (B13) and (B14) in Equation (B16) we obtain

H�x, y� D ln�2�e� C 1

2
ln jCj �B17�

For computing the transinformation T�x, y� for two random variables, x and y, the following expression can
be used (e.g. Jessop, 1995)

T�x, y� D H�x� C H�y� � H�x, y� �B18�

Using Equations (B11), (B12) and (B17) in Equation (B18) we obtain

T�x, y� D 1

2
ln �2

x C 1

2
ln�2�e� C 1

2
ln �2

y C 1

2
ln�2�e� � ln�2�e� � 1

2
ln jCj �B19�
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Then Equation (B19) can be simplified as

T�x, y� D 1

2
ln��2

x �2
y � � 1

2
ln jCj �B20�

D 1

2
ln��2

x �2
y � � 1

2
ln

(
�2

x �2
y

∣∣∣∣ 1 �xy

�yx 1

∣∣∣∣
)

D 1

2
ln��2

x �2
y � � 1

2
ln��2

x �2
y � � 1

2
ln

∣∣∣∣ 1 �xy

�yx 1

∣∣∣∣
Therefore, T�x, y� can be obtained as

T�x, y� D �1

2
ln�1 � �2

xy� �B21�

Using the sample correlation coefficient rxy in Equation (B21), we obtain

T�x, y� D �1

2
ln�1 � r2

xy� �B22� D Equation�15�

APPENDIX C

List of symbols and abbreviations

Symbols.
C covariance matrix
jCj covariance determinant
covxy sample covariance between x and y
d distance between wells (m)
fi. marginal frequency
fij joint frequency
H�x� marginal entropy of x (nats)
H�x, y� joint entropy of x and y (nats)
H�x/y� conditional entropy of x given y (nats)
ITI(x, y) information transfer index between x and y
p�x� probability distribution of x
p�xi� probability of occurrence
p�x, y� joint probability distribution of x and y
p�x/y� conditional probability distribution of x given y
R2 coefficient of determination
r�d� correlation as a function of distance (analytical correlation model, ACM)
rxy sample correlation coefficient between x and y
SSreg sum of the squares of the residuals between the discrete model and the best-fit curve (analytical

model)
SStot sum of squares of the residuals between the discrete model and the horizontal line through the mean
Sx and Sy sample standard deviation of variable x and y respectively
T�x, y� transinformation between x and y (nats)
x and y discrete variables
x and y sample mean of variable x and y respectively
�x population mean of variable x
�x population standard deviation of variable x
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�2
x population variance of variable x

�xy population covariance between x and y
�xy population correlation coefficient between x and y
� correlation length (m)

Abbreviations.
ACM analytical correlation model
ATM analytical transinformation model
C-model correlation model
DCM discrete correlation model
DITIM discrete ITI model
DTM discrete transinformation model
ITI-model information transfer index model
DCMMA smoothed discrete correlation model by moving average method
DITIMMA smoothed discrete ITI model by moving average method
DTMMA smoothed discrete transinformation model by moving average method
T-model transinformation model
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