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Abstract:

This paper, the second in the series, uses the entropy theory to describe the spatial variability of groundwater quality
data sets. The application of the entropy theory is illustrated using the chloride observations obtained from a network
of groundwater quality monitoring wells in the Gaza Strip, Palestine. The application involves calculating information
measures, such as transinformation, the information transfer index and the correlation coefficient. These measures are
calculated using a discrete approach, in which contingency tables are used. An exponential decay fitting approach was
applied to the discrete models. The analysis shows that transinformation, as a function of distance, can be represented
by the exponential decay curve. It also indicates that, for the data used in this study, the transinformation model is
superior to the correlation model for characterizing the spatial variability. Copyright  2004 John Wiley & Sons, Ltd.

KEY WORDS correlation; entropy; information; spatial variability; Gaza Strip; Palestine

INTRODUCTION

Entropy theory (information theory) came to be viewed as a statistical concept at the beginning of the twentieth
century. About 50 years later, it found its way into engineering and mathematics, notably through the work
of Shannon in communication engineering. Shannon (1948) used entropy as a measure of uncertainty in the
mind of someone receiving a message that contains noise. Later, in 1957, Jaynes made use of Shannon’s
entropy metric to formulate the maximum entropy principle that formed a basis for estimation and inference
problems (Golan et al., 1997). In 1972 Amorocho and Esplidora were the first to apply the entropy concept
to hydrological modelling (Singh, 1997). Since then, there has been a great variety of entropy applications
in hydrology and water resources management (e.g. Rajagopal et al., 1987; Singh and Rajagopal, 1987;
Singh, 1998; Harmancioglu et al., 1999). Entropy theory can be used in modelling and decision-making in
environmental and water resources, especially in developing countries (Singh, 2000).

Entropy theory also has been applied to assess and evaluate monitoring networks with respect to:
water quality (Harmancioglu et al., 1994, Ozkul et al., 2000), rainfall (Krastanovic and Singh, 1992) and
groundwater (Bueso et al., 1999; Mogheir and Singh, 2002). Most of these applications involve applying
entropy theory to the evaluation, assessment and design of monitoring networks, and they used an analytical
approach with a presumed knowledge of the probability distributions of the random variables involved. In the
first paper of this series, Mogheir et al. (2004) adopted discrete and analytical approaches using a synthetic
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data set, where the data were spatially correlated and fitted the normal distribution function. Under these
conditions, it was found that there was a reasonable agreement between discrete and analytical approaches
for developing the transinformation model (T model), and it was shown that the T model also could be used
instead of the correlation model (C model) to characterize the spatial variability.

In this paper, a different set of data is used. The set of data includes groundwater quality from the Gaza Strip
monitoring network (chloride data). For these data, the spatial correlation is low and the normal distribution
function does not fit. The objective of this paper is to:

1. use a discrete approach (contingency table) for calculating information measures, such as transinformation
(T), information transfer index (ITI) and correlation coefficients.

2. apply an exponential decay fitting approach to the discrete T model and C model;
3. use the T model and C model to describe the spatial variability of the Gaza Strip data set.

GAZA STRIP GROUNDWATER QUALITY DATA

The set of data used in the analysis is part of groundwater quality data from the Gaza Strip, Palestine. The
data were selected from the groundwater quality data monitored in the middle part of the Gaza Strip. This part
of the Gaza Strip is the area with the most serious problems of seawater intrusion. More than 150 wells are
used to monitor the groundwater quality in this area. In this study, 26 monitoring wells that monitor chloride
were selected. Each well has 52 chloride data measured between 1972 and 1997. Chloride is measured twice
per year: in winter and summer. The winter cycle is considered to be taken in April and May whereas the
summer cycle is in October and November. The locations of these 26 wells in the middle part of the Gaza
Strip are shown in Figure 1. The chloride time-series of the 26 wells are presented in Table I. In the table,
x is the mean and Sx is the standard deviation of the chloride data. The spatial variation of the mean of the
chloride time-series in each well is presented in Figure 2. The contour lines were drawn using the kriging
technique, which is an option in the Surfer-7 mapping program (Golden Software, 1999). Additionally, the
chloride time-series of some of these wells are plotted in Figure 3. The groundwater data in the Gaza Strip
(quality and water level) were summarized and presented by the Palestinian Water Authority (PWA, 2000).
These data were also used in the modelling of the Gaza Strip aquifer by Metcalf and Eddy (2000).

METHOD

The method used in this study follows that presented in Mogheir et al. (2004). A contingency table is used
for the discrete approach. The discrete models’ results were smoothed using the moving average method. For
convenience, the base e and the unit nats were used for computing numerical results.

This study differs from Mogheir et al. (2004) mainly in the analytical approach. As the Gaza Strip data,
which were used in this study, do not follow the Gaussian distribution function, and their spatial correlations
are low, an exponential decay curve is fitted to the discrete models and to the smoothed discrete models
(exponential decay fitting approach).

Harmancioglu et al. (1999) investigated the fitting of a semi-exponential curve to the discrete T model.
The analysis of the synthetics data (Mogheir et al., 2004) and the shape of the discrete T model, smoothed
by the moving average method, of the chloride data set signified that the exponential decay curve could be
the best representation of the discrete T model, and could be presented as (e.g. Motulsky, 1999)

T�d� D G e��Kd� C Q �1�

where the exponential decay curve starts with T0 D G C Q at distance �d� D 0; and the curve decays to reach
Q value with a constant rate K. The units of G and Q are expressed in the same way as the T unit (nats),

Copyright  2004 John Wiley & Sons, Ltd. Hydrol. Process. 18, 2579–2590 (2004)
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Figure 2. Chloride contour map for the middle part of the Gaza Strip. The average of chloride data (mg/L) was used in drawing the contour
map

whereas K is expressed in the inverse unit used by d (1/m). Note that Equation (1) was also used to represent
the analytical lognormal T, ITI and correlation models.

The fitting of the exponential decay curve to the discrete models was performed using the least-square
fitting procedure with the GRAPHPAD PRISM statistical software (Motulsky, 1999). The coefficient of
determination was used to quantify the goodness of fit between the exponential decay curve and discrete
models. The coefficient of determination �R2� was computed as (e.g. Motulsky, 1999)

R2 D 1Ð0 � SSreg

SStot
�2�

where SSreg is the sum of the squares of the residuals between the discrete model and the best-fit exponential
decay curve, and SStot is the sum of the squares of the residuals between the discrete model and the horizontal
line through the mean.

As in Mogheir et al. (2004), the T model and C model were compared to characterize the spatial variability
of the Gaza Strip data set.

COMPARISON OF DISCRETE AND EXPONETIAL DECAY FITTING APPROACHES

Correlation model (C model)

The discrete C model is obtained by computing the correlation values using the discrete approach and
the distance between wells. The discrete C-Model data is smoothed by using the moving average method
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Figure 3. Chloride time-series of 12 monitoring wells (H-10, H-11, H-20, H-28, H-35, H-45, H-48, H-50, H-41, H-61, H-15 and H-4)
for the period winter 1972 to summer 1997, used in the analyses. In the graph x is the mean of the chloride time-series and Sx is the

standard deviation

�DCMMA�. The exponential decay fitting approach is applied to the discrete C model and DCMMA. A summary
of the best-fit equations of the exponential decay curve to the discrete T, lognormal T, ITI, correlation models
and R2 values for each model is presented in Table II.

The discrete C model (DCM), the C model smoothed by the moving average method �DCMMA� and the
exponential decay of the discrete C model �DCMED� are plotted in Figure 4. This figure and Table II show
that DCMED does not fit the discrete C model well, as R2 D 0Ð07, which is very low. The coefficient R2 is
increased by applying the exponential decay fitting approach to the DCMMA�R2 D 0Ð22�. Nevertheless, for
both the DCMMA and discrete C models the coefficient R2 is quite small. Therefore, the exponential decay
curve, which was selected to present the discrete C model, does not infer the spatial variability of the chloride
data adequately.

Table II. Fitting discrete models with the exponential decay curve applied to the Gaza
Strip data

Model type Fitting equation R2

Discrete C model r�d� D 0Ð43 e��0Ð0033 d� C 0Ð53 0Ð07
Discrete T model T�d� D 0Ð29 e��0Ð0087 d� C 0Ð90 0Ð33
Lognormal discrete T model T�d� D 0Ð90 e��0Ð0102 d� C 0Ð59 0Ð43
Discrete ITI model ITI�d� D 0Ð39 e��0Ð0359 d� C 0Ð61 0Ð57
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Figure 4. Correlation models for the groundwater quality monitoring network in the middle part of Gaza Strip (chloride)

Transinformation model (T model)

The discrete T model was obtained in the same way, by computing the T values using the discrete approach
and the distance between wells. The discrete T model data were smoothed using the moving average method
�DTMMA�. The exponential decay fitting approach is applied to the discrete T model and DTMMA. For the
discrete T model, the R2 coefficient is 0Ð33, which is smaller than that for DTMMA�R2 D 0Ð71�. This indicates
that the exponential decay curve fits the DTMMA much better than does the discrete T model. The discrete T
model, the DTMMA and exponential decay of the discrete T model �DTMED� are plotted in Figure 5.

T-model using logarithmic chloride data

As the normal distribution did not fit the chloride data well, the lognormal distribution was assumed.
The chloride logarithmic data from the Gaza Strip monitoring wells are used to compare the discrete and
exponential decay fitting approaches in obtaining the T values. The logarithmically transformed chloride data
are used to check the fitting of the normal function by constructing the histogram and plotting the probability
diagram. The chi-square test was used to assess the adjustment of the lognormal distribution to the empirical
data.

After fitting the lognormal function of the chloride data from the Gaza monitoring wells, the lognormal
discrete T model (lognormal DTM) is obtained by computing the T values of the logarithm of the chloride
data, using the discrete approach and the distance between wells. The lognormal discrete T model is smoothed
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Figure 5. Transinformation models for the groundwater quality monitoring wells in the middle part of Gaza Strip (chloride)
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using the moving average method (lognormal DTMMA). The exponential decay fitting approach is applied
to the lognormal discrete T model and to the lognormal DTMMA. Figure 6 illustrates the lognormal discrete
T model, the lognormal DTMMA and the exponential decay of the lognormal discrete T model (lognormal
DTMED). From Figure 6, it can be seen that, for the lognormal DTMMA, R2 is 0Ð68 which is greater than the
R2 value obtained by the lognormal discrete T model �R2 D 0Ð43�. As for all the T models, the exponential
decay curve fits better to the DTMMA than that to the discrete T model. The lognormal DTMED is compared
with the DTMED. As shown in Figure 6, the minimum value of the transinformation in the lognormal DTMED

is 0Ð3 nats less than that found in the DTMED. Additionally, the initial value of the transinformation in the
lognormal DTMED is 0Ð3 nats greater than that in the DTMED. This indicates that the T model is sensitive to
the type of distribution of the data, whether its normal or lognormal.

CHARACTERIZATION OF SPATIAL VARIABILITY

When comparing the correlation model (C model) and the transinformation model (T model), to characterize
the spatial variability of the chloride data, Figure 4 shows that the discrete C model is highly scattered and the
exponential decay curve does not fit to the discrete C model well. This is also found where R2 D 0Ð07 and 0Ð22
for the discrete C model and DCMMA, respectively. On the other hand, Figure 5 shows that the exponential
decay curve fits to the DTMMA better than it does to the discrete T model, as R2 D 0Ð33 and 0Ð71 for the
discrete T model and DTMMA, respectively. Furthermore, the R2 values are greater if the logarithmically
transformed chloride data are used.

As the ITI and correlation models have the same range from 0 to 1, they are compared in Figure 7, which
demonstrates that there is less scatter in the discrete ITI model, which is smoothed by the moving average
method �DITIMMA�, than there is in the DCMMA. The R2 value for DITIMMA is 0Ð79, which is greater than
that for the DCMMA�R2 D 0Ð22�. These values suggest that the exponential decay curve is representing the
ITI model much better than it represents the C model. As a result, it can be inferred from Figures 5–7 that
the T model and ITI model represent the dependency between wells better than the discrete C model.

In the above analysis, the dependency is described by an exponential decay model, which is relevant to
the T model because the T value is maximized at a distance equal to zero. The maximum T value equals the
average of the marginal entropies of the 26 wells. There is a sharp drop in the T value when the distance
is around 500 m. With a further increase in the distance, T becomes essentially constant. Therefore, what is
significant for the spatial assessment and redesign of monitoring wells is selecting the distance at which T has
a minimum steady value. The prescribed 500 m value may be adopted as the recommended distance between
wells. This distance can be utilized in the assessment stage under the following conditions.
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Figure 6. Lognormal T models applied to the chloride data. The lognormal probability distribution was used in the analyses
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1. If the distances between wells are less than the recommended distance, then there is available transinfor-
mation (redundant information) between wells.

2. If the distances between the existing wells are greater than the recommended distance, then the transfor-
mation between wells is less than the minimum transinformation value (not enough information).

3. The adequate information that can be available between wells is found only where the distances between
wells equal the recommended distance and the transinformation is minimum.

These arguments afford efficient criteria to assess and redesign the existing wells according to that
recommended distance and minimum redundant information between wells. Consequently, the number of
wells can be extended or reduced.

It is also useful for redesigning groundwater quality monitoring networks, and developing an analytical
equation to relate T and distance. This equation can form an exponential decay curve, as in the synthetic data
(Mogheir et al., 2004) and the chloride data example, or any other type of curve. The monitoring network
redesign procedure also might need to look at the variations of the value of T and the shape of the T model
by changing the number of wells and the size of the time-series used for constructing the T model.

CONCLUSIONS

This article has presented a comparison between the discrete and exponential decay fitting approaches, using
a groundwater quality data set from the Gaza Strip (chloride data). The following conclusions can be drawn.

1. The exponential decay fitting approach shows that the exponential decay curve does not fit to the discrete
correlation model well.

2. The exponential decay curve fits to the discrete T model, the lognormal discrete T model and the discrete
ITI model much better than does to the discrete correlation model.

3. The characteristics of the exponential decay of the lognormal discrete T model, such as the minimum T
and initial T, differ from those of the exponential decay of the discrete T model.

4. The discrete T and ITI models are superior to the discrete correlation model for characterizing the spatial
variability by means of an exponential decay model.

The exponential decay T model can be used to evaluate a groundwater monitoring network. Furthermore,
the T model can be used to redesign the monitoring network by either increasing or decreasing the number
of wells. The assessment and redesigning of a groundwater quality monitoring network, using the sensitivity

Copyright  2004 John Wiley & Sons, Ltd. Hydrol. Process. 18, 2579–2590 (2004)



SPATIAL VARIABILITY OF GROUNDWATER QUALITY II 2589

of the T model to the number of monitoring wells and the size of time-series, are part of an ongoing study
by the first author.
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APPENDIX

List of symbols and abbreviations

Symbols.
G the value of transinformation where distance equals 0 deducted from Q (NATS)
K the transinformation decay rate (1/m)
ITI(d) information transfer index as a function of distance (NATS)
Q the end value of transinformation at which the distance is maximum (NATS)
R2 coefficient of determination
r�d� correlation as a function of distance.
SSreg sum of the squares of the residuals between the discrete model and the best fit curve (analytical model)
SStot sum of squares of the residuals between the discrete model and the horizontal line through the mean
Sx sample standard deviation of variable x
T�d� transinformation as a function of distance (NATS)
x sample mean of variable x

Abbreviations.
C model correlation model
DCM discrete correlation model
DCMED exponential decay of the discrete C model
DCMMA smoothed discrete correlation model by the moving average method
DITIM discrete ITI model
DITIMED exponential decay of the discrete ITI model
DITIMMA smoothed discrete ITI model by moving average method.
DTM discrete transinformation model
DTMED exponential decay of transinformation model
DTMMA smoothed discrete transinformation model by the moving average method
ITI model information transfer index model
Lognormal DTMED exponential decay of lognormal discrete transinformation model
Lognormal DTM lognormal discrete transinformation model
Lognormal DTMMA smoothed lognormal discrete transinformation model by the moving average method
T model transinformation model
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