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“The most exciting phrase to hear in science, the one that heralds new

discoveries, is not ’Eureka!’ but ’That’s funny...’"
— Isaac Asimov
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Resumo

Ao longo dos anos tornou-se percetível a crescente influência da robótica no domínio

humano, com evidências que vão desde aplicações industriais, espaciais e medicinais, bem

como ferramenta de auxílio em ambientes adversos e em tarefas do quotidiano. Muitas

destas aplicações requerem a utilização de uma equipa de vários robôs móveis cooperantes -

Sistemas Cooperativos Multi-Robô (SCRC) - quer para tornar viável a execução de certas

tarefas, quer para melhorar o desempenho obtido com apenas um robô.

Apesar da capacidade de cooperação ser inata ao Homem, no domínio robótico apresenta

uma série de novos desafios: a comunicação, o sincronismo da informação obtida e a fusão

dessa mesma informação.

Quando a cooperação entre múltiplos robôs é aplicada num contexto de exploração os

desafios são acrescidos. É fundamental ter em consideração os custos e a utilidade dessa

mesma exploração.

Esta dissertação pretende apresentar uma solução à problemática supracitada. Para tal

foi desenvolvido um método capaz de atribuir a diferentes robôs comportamentos cooper-

ativos com a finalidade de explorar um ambiente, seguindo uma filosofia de “dividir para

conquistar”.

O CoopExp, pacote com o algoritmo de exploração, foi desenvolvido segundo uma metodolo-

gia distribuída com o intuito de aumentar a resistência a falhas individuais dos agentes de

exploração. Foi assim criado um método capaz de calcular os custos implicados, de forma

mais rápida e eficiente. Foi ainda estabelecida uma abordagem da utilidade de exploração,

baseada num compêndio de técnicas descritas na literatura.

O desenvolvimento deste tipo de programas era praticamente impossível sem serem re-

alizados testes ao seu funcionamento. Na inexistência de um simulador para este tipo de

operações foi desenvolvido o ARENA (cooperAtive multi Robot frontiEr exploratioN simu-

lAtor). Este é composto por um conjunto de novos pacotes especificamente desenvolvidos

para a identificação de fronteiras (aap_frontiers) e para a otimização da simulação, através
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de simplificações no processo de obtenção dos mapas (aap_mapping) e posterior combinação

dos mesmos, originando o mapa global (aap_map_merger).

Estas soluções foram validadas através de testes em simulação, recorrendo a unidades

móveis equipadas com um LRF (Laser Range Finder). Testes esses que demonstraram a

diminuição do tempo de exploração quando é aumentado o número de robôs, apresentando

um desempenho adequado tanto em termos de escalabilidade como de eficiência na explo-

ração. Foi ainda realizada, com sucesso, a exploração com uma equipa de robôs reais que

comunicam através de uma rede sem fios, de forma a validar o funcionamento prático deste

projeto.

Palavras-chave: cooperação; equipas de robôs; exploração; simulação; ROS;

mapa de custos
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Abstract

Over the years the growing influence of robotics in the human domain has been noticeable

from industrial to space and medical applications as well as a tool in adverse environments

and even in everyday tasks. Many of these applications require the use of a team of sev-

eral cooperating mobile robots - Cooperative Multi-Robot System (CMRS) - to make the

execution of certain tasks possible and to improve the performance achieved by only one

robot.

Although the cooperation capacity is innate to humans, the robotic domain features

a number of new challenges: communication, timing of the information obtained and the

merger of that information.

When cooperation among multiple robots is applied in an exploration context challenges

increase. It is essential to take the costs and utility of that exploration into account.

This dissertation aims to present a solution to the aforementioned problem. Therefore, a

method has been developed, capable of assigning to different robots a cooperative behavior

in order to explore an environment, following a philosophy of "divide and conquer".

The CoopExp, package with the operation algorithm, was developed according to a dis-

tributed approach in order to increase resistance to individual failures of the exploration

agents. Accordingly, a method that is able to calculate the costs involved in a faster and

more efficient way, was created. Furthermore, an approach to exploration utility was also

established, based on a compendium of techniques described in the literature.

The development of such programs would have practically been impossible without per-

forming tests on its functioning. In the absence of a simulator for this type of opera-

tion, the ARENA (cooperAtive multi Robot frontiEr exploratioN simulAtor) was devel-

oped. It consists of a set of new packages specifically designed for frontier identification

(aap_frontiers) and to optimize the simulation, through simplifications in the process of

achieving the maps (aap_mapping) and their subsequent combination, yielding the global

map (aap_map_merger).
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Such solutions were validated through simulation tests, using mobile units equipped with

a LRF (Laser Range Finder). These tests showed that exploration time decreases when the

number of robots is increased, presenting a proper performance in terms of scalability and

efficiency in exploration. Last but not least, a exploration with a real team of robots was

successfully carried out that was able to communicate through a wireless network in order

to validate the practical functioning of this project.

Keywords: cooperation; teams of robots; exploration; simulation; ROS; costmap
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1 Introduction

This chapter introduces the problem addressed, as well as the set out personal motiva-

tions, challenges of the work and a summary of the document.

The exploration of unknown environments with robots is a fundamental problem in mobile

robotics. There are several applications in different areas, such as planetary exploration [25]

[14], demining [4] [11], reconnaissance [26], cleaning [18], search and rescue [22], etc.

This dissertation aims to explore the potentialities of an Multi-Robot System (MRS) [1].

These are a subclass of an Multi-Agent System (MAS), which are distinguished in terms of

efficiency and robustness when applied in overly complex tasks for a single mobile robot.

These capabilities require a high degree of coordination and cooperation between all units

of an MRS and also an efficient communication method [24].

The capabilities cited above, are extremely important in exploration tasks, hence the

adoption of MRS to perform them. For example, a search and rescue operation [32] can

apply the inherent potentialities of robotics with an MRS. Assuming a fire scenario in a

shopping center with several exits, rooms, halls, etc, a team of robots (search team) would

be able to explore the site more quickly and efficiently, obtaining at the same time information

about risk areas and localization of victims. With this data the rescue team (police officers,

firefighters and paramedics) could also be equipped with the necessary information to rescue

victims through the safest route, avoiding the most critical areas of the fire. Thus allowing

the creation of a more effective plan to extinguish the fire and reducing the total damage.

The use of multiple robots significantly reduces the time required to explore the envi-

ronment and this reduction is proportional to the number of robots used [5]. To explore

an environment different methods can be used such as the Voronoi diagrams [38], Potential

information fields [35], Harmonic functions [9], the Frontiers based exploration method [39]

which is the one used in this dissertation, among others [3] [6] .

An exploration requires that the robots are provided with a method for Simultaneous

Localization and Mapping (SLAM) [21] allowing the construction of a map of the unknown

1



environment and its location in relation to that map. To build a map, the environment is

divided into cells and each cell represents an area of that environment. Therefore, through-

out the exploration new areas are discovered and the map is filled. From this point onwards

the necessary information is gathered for the frontier identification. A frontier represents

the boundary between known and unknown areas, and it is necessary to select and allocate

different frontiers to the available robots. Allocating tasks to available resources is an op-

timization problem, which is similar to what happens when assigning frontiers to robots,

making the exploration algorithm a solution for this optimization problem.

1.1 Motivation and Challenges

The purpose of this dissertation is to study multi-robot exploration techniques and to

implement a solution for the existing mobile robot fleet in the Institute of Systems and

Robotics (ISR) - University of Coimbra.

Building an metric map of the environment is both an objective and a challenge for this

work. It is motivating to know that it will be easy to add more sensors to the robots and

record more information throughout the exploration. For example, in search and rescue

operations, the robot could map different variables such as temperature, smoke density or

concentration of explosive and/or toxic substances, and detect the focus of the fire and the

presence of victims.

To ensure scalability and resilience of the robotic system in relation to individual faults or

limitations in wireless communication, there should be favored solutions based on distributed

decisions.

On the other hand, assigning the ability to cooperate to a group of robots is both a

challenge and a motivation. There can be many rules in an exploration to steer the robots.

One rule can have a negative influence on another, so it is necessary to weigh out the

influence of each in order to always get the best possible goal. This represents a challenge

since it is impossible to set a rule for every scenario. To work around this problem various

combinations of rules with different influences in multiple scenarios were tested. Due to the

high number of tests required for optimization of rules and influences, the use of a simulator

becomes indispensable.

The lack of a specific simulator for the operation was evident from the beginning and be-

came a new objective during the development of the exploration algorithm, thus a motivation

for to making it available online as open-source.
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1.2 Document Overview

This dissertation is divided into six chapters, each referring to a different stage of this

work. Chapter 1 is an introduction and contextualization to the problem and an outline

of both motivations and challenges. Chapter 2 is a compendium of the state of the art of

exploration with an MRS in general and a more specific research in frontier-based exploration.

Also, an overview of Robot Operating System (ROS) was done.

The package of the exploration simulator in ROS with all its auxiliary packages is pre-

sented in chapter 3. Chapter 4 has all the information about the exploration algorithm.

Experimentation and validation of the multi-robot exploration algorithm is presented in

chapter 5.

All findings are finally presented in the last chapter, chapter 6, as well as the prospects

for a future work.
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2 Exploration with Multi-Robot Systems

This chapter presents some of the exploration methods used in robotics, with a deeper

focus on analysis in frontier-based exploration. An overview, of the most important concepts

of ROS related to this project was done.

2.1 The Exploration Strategy

As indicated in chapter 1, there are different methods to guide an exploration with

robots such as Voronoi diagrams, Potential information fields [35], Harmonic functions [9]

or Frontier-based exploration. Within the range of the analyzed methods, Frontier-based

exploration and Voronoi diagrams were the most relevant for this project.

Regarding exploration using the mobile robots, frontiers are inevitably mentioned [19].

The frontier is the boundary of the knowledge of the environment, and so a goal in any

exploration. More specifically, when a map (occupancy grid) is used as the basic space

representation model of the environment, a frontier cell is defined by Yamauchi et al. [39]

as is in definition 2.1.

Definition 2.1. Frontier Cell: Assuming the existence of a map, frontiers cells are the

unknown cells, bordering contiguous to one or more free explored cells [39].

After the identification of all frontier cells, costs and utilities for each cell border are

equated. Then each robot choses its goal taking into account these costs and utilities. The

exploration proceeds while at least one frontier cell exists. This strategy is called frontier-

based exploration.

A Voronoi diagram can also be applied to a robotic exploration [38] since it is a tool

to divide an environment into regions, based on the position of each of the robots that are

exploring (definition 2.2). It is guaranteed that each point contained in these regions is closer

to the robot that originated the region than to any other.

5



Definition 2.2. Voronoi diagram: The partitioning of a plane with n points into convex

polygons such that each polygon contains exactly one generating point and every point in a

given polygon is closer to its generating point than to any other [37].

After the regions are determined a frontier cell is assigned to each robot, but in this case

instead of analyzing the entire map to calculate costs and utilities, it analyzes only the region

of the map assigned to this robot. This method is more efficient for larger maps, however

the selected goal is not always the most suitable, since the complete map is not considered.

This was the reason for the choice of a Frontier-based exploration with a global approach.

2.1.1 Cooperation Strategies

Another issue raised with regarding to explorations with a MRS is the cooperation be-

tween robots [33]. This cooperation can be implemented in many different ways and has

been the topic of much interest (e.g. [13], [12] and [27]). Cooperation is known for increas-

ing efficiency of the exploration, to coordinate, avoid conflicts and redundancies.

To begin, a key aspect of cooperation is the exchange of map information between robots

[20]. This technique enables teams of robots to efficiently explore environments from different

unknown locations, since it allows robots to have an overall knowledge of the environment

[34].

In a decentralized approach, by being able to see each other [30] or by sharing their

position robots, are able to determine the usefulness of exploring the remaining parts of the

environment. Thus allowing for a more intelligent decision when in the position of choosing

a new direction of exploration.

Other approaches take into account the possibilities of a robot collaboration where robots

work together in order to clear blocked paths or any other task, therefore raising the question

of when and with whom to collaborate [2]. Team of robots may have to permanently maintain

an ad-hoc network structure with each other in order to communicate due to constrains

imposed by wireless networking, vital in any cooperative exploration [1]. These restrictions

will limit the movement possibilities of robots and may imply that some robots keep their

position stationary, without making any direct contribution to the exploration.
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2.2 Related Work

In 1998 Yamauchi et al. [39] developed a technique to coordinate a team of robots with

the aim of building a map through frontier analysis. A frontier cell was not sufficient to

generate a target, which led to the need for a region of frontiers cells, forming a sufficiently

wide area allowing the safe passage of the robot. Only the cells belonging to a region of

frontiers cells were considered as possible targets. The frontier cell belonging to a region of

frontier cells that is closest to the robot is defined as the next target to explore. This method

is known as Near Frontier Exploration (NFE).

(a) evidence grid. (b) frontier segments. (c) frontier regions.

Figure 2.1: Detection of frontier cells and regions [39].

In figure 2.1a there is a graphical representation of the exploration map, where the

thin gray dots represent unknown cells, the thick black dots the obstacles and the white

cells represent free cells. After analyzing this map, the algorithm generates a grid with

the frontier cells (Figure 2.1b) which subsequently form frontier regions and its respective

centroid (Figure 2.1c). This is a cooperative and decentralized approach that assumes the

existence of a line of communication that allows for the robots to share the created maps

among themselves. All robots work desynchronized making the system robust to individual

failures. However, this method turns out to generate redundancies since the same area was

repeatedly assigned to two different robots, which makes it less efficient.

7



Later in 2005, Burgard et al. [5] developed a technique which used the balance between

the cost of achieving a frontier cell and its utility of exploration. The cost of achieving a cell

is calculated using a path planning algorithm, taking known obstacles into consideration.

However, if there are obstacles between robots this can be associated with a very high cost in

spite of the target cell being near the robot. The utility of exploring a frontier cell increases

with the number of nearby frontier cells and decreases with the proximity of other robots.

This last factor introduces a repulsive behavior on robots. Thus, in each iteration, the cost

of getting to a frontier cell and its utility are values calculated in order to predict the optimal

exploration goal, which allows to minimize exploration time.

(a) (b)

Figure 2.2: Typical costmaps obtained for two different robot positions [5]. The black
rectangle indicates the target points in the unknown area with minimum cost.

Through the analysis of figure 2.2 it is possible to observe the exploration goal (black

rectangle), which is entirely generated based on the cost of reaching that goal. This often

results in two robots scaled to the same point. When considering the utility of a frontier

cell, each robot tends to have a different goal, since the utility of a frontier cell decreases

with the proximity of other robots. Despite the clear improvement in the effectiveness of the

exploration, this method is computationally prohibitive when applied in larger environments.

In 2008, Rocha et al. [31] resorted to a local approach rather than the global approach

of Burgard et al. This method is computationally less demanding, which facilitates the

application to mobile robots with lower processing capabilities. However, this approach will

generate local minima problems since it only analyzes an area near the robot. The robot

can reach a position where, in its neighborhood, all cells are explored or inaccessible without

having fully explored the whole environment. To solve this problem the algorithm keeps a

register of previously explored points. In the absence of frontiers in the neighborhood, the

algorithm will analyze previously explored points, starting with the closest (shortest path

algorithm), in order to find the remaining frontiers in the map. Finally, the exploration
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is assumed to be completed when a frontier is not found, after analyzing all points in its

register.

Figure 2.3: Hill climbing exploration of a typical office environment by a single mobile robot
equipped with a ring of 16 sonars [31]. On the left, it is shown the topological map (blue),
the selected path to recover exploration (red), and the far selected exploration view (green).
On the right, it is shown the occupancy grid map immediately before the local minima
occurrence (local search radius in pink).

In figure 2.3 could be seen the trajectory of the robot throughout the exploration. As

previously mentioned, strategically points are saved along the exploration and when the

robots is inside the purple area, reaching a local minima, it needs to go back to the starting

point to retrieve the exploration.

Andre et al. [2], addresses the issue of the meeting of robots to exchange information,

which brings a huge advantage with concerning to map merging. It is easy to imagine

how merging the maps is a very demanding task for any computer, more even for a basic

processing unit like a laptop. Given that a map for each robot is required, and each of

these maps adds an iteration of the map merger, the computational requirement will grow

in proportion to the number of robots. So, a higher number of robots would result in

the need for a more powerful computer to perform the robot control, run the exploration

algorithm and establish the merging of the maps. Without the combination of maps, robots

are already operating at their limit of processing capabilities, making the control of the robot

and the exploration algorithm impossible without compromising its update frequency and

thus maintaining a smooth process. By adding the task of combining maps, a burden that

makes it impossible for the robots to have a fluid and stable exploration is imposed. To work

around this problem and restrict map merging, Andre et al. decided to make a combination

of the maps only when two robots meet. At this point both robots merge their maps and
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replace them by the combined one. This assumes that the communication network allows

sharing the position of all robots at each instant and an interruption is aroused when the

distance between two robots falls below a preset limit.

Colares et al. [7], developed a similar aproach to the method of costs and utilities. In

this work, an information map is built based on some assumptions, namely in the proximity

of frontiers cells, in the uncertainty of explored cells around the frontiers cell, in the cost of

reaching a frontier cell and the proximity of others robots. All of them add a cooperation

factor and increase exploration efficiency. This method also implements the combination

of maps when robots meet, just as the method from Andre et al. Initially there is no

information on the position of the other team members, i.e. each robot believes that it is

exploring alone and only with the course of the exploration, when two robots meet, does

cooperative exploration begin. After the meeting of two robots and until they meet again

the last known position is assumed to be constant.

2.2.1 Comparison of Approaches

After reviewing the works mentioned in the last section, it has been decided to consider

the strengths of each and to combine all of these points in a new exploration algorithm if

possible. Those strengths were summarized in table 2.1 in order to help visualizing differences

between each method.

Table 2.1: Comparative table of the differences between the methods of Yamauchi, Burgard,
Rocha, André and Colares.

Method
Constant
share of
the map

Occasional
share of
the map

Cost of
reaching
a cell

Frontiers
proximity

Robots
proximity

Proximity
of uncertain

cells

Global
aproach

Local
aproach

Yamauchi yes no yes no no no yes no
Burgard yes no yes yes yes no yes no
Rocha yes no yes yes yes no no yes
André no yes yes yes yes no yes no
Colares no yes yes yes yes yes yes no

After analyzing the importance of each characteristic it was concluded that the explo-

ration algorithm developed under this project should be able to:

1. Share local maps and positions of robots steadily. The constant sharing avoids situa-

tions that generate redundancies.

2. Recognize that one cell, despite being geographically closer, may involve due to obsta-

cles a greater route distance communication to be explored than another cell that is
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farther away geographically but has no obstacles ahead.

3. Take into account the utility of a frontier cell depending on the proximity of other

frontier cells, thus giving priority to a frontier cell surrounded by multiple frontier cells

than to an isolated frontier cell.

4. Penalizing the usefulness of a frontier cell boundary for a robot, in accordance with

the distance of the other robots regarding that frontier cell. This feature reduces the

likelihood of two robots being assigned to the same frontier cell.

5. Analyze all map cells (global approach). With full knowledge of the map, the algorithm

will be able to generate goals more effectively.

2.3 Robot Operating System

All work is done in ROS Indigo Igloo1 LTS, released in 2014 and targeted at the Ubuntu

14.04 LTS Trusty Tahr2, matching the operating system used. ROS is not a traditional

operating system as the name suggests, but in fact a communication structure that operates

on a layer above the operating system of the machine, with its modular architecture composed

mainly of packages and topics [28].

The software in ROS is organized in packages, which might contain nodes, an independent

library, a dataset, configuration files, a third-party piece of software among others. More

specifically, a node is a process that performs computation, which can be combined into

a graph and communicate with one another using streaming topics. Each node can be

defined within a namespace to facilitate the graph organization of the software. Topics are

named buses over which nodes exchange messages. Usually a node publishes a message in a

topic with a publisher, while another node, that has a subscriber to that topic, receives the

message. But multiple nodes can publish in the same publisher and subscribe to multiple

subscribers [29]. In figure 2.4 some of the concepts cited can be visualized.

1Available in http://wiki.ros.org/indigo
2Available in http://releases.ubuntu.com/14.04/
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Figure 2.4: Example of a ROS rqt-graph. In this figure rectangles containing an ellipse define
nodes, single rectangles are topics and a wider rectangle containing a package and/or a topic
represents a namespace.

2.3.1 Useful ROS Packages for Multi-Robot Explorations

RViz

RViz [16] is a 3D visualizer for the ROS framework created by Dave Hershberger, David

Gossow and Josh Faust. This package generates an Graphical User Interface (GUI) for some

topics of ROS. For example, in an exploration, RViz allow the developer to visualize the

robot and the occupancy grid, during a simulation or a real experience (see figure 2.5), just

by reading the topics already launched by the software, such as the /map, /odom, etc.

Figure 2.5: An example of a multi-robot simulation using the package RViz as a GUI. On
the left its located the control panel and on te right the 3D representation of the subscribed
data.
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Stage

Stage is a mobile robot simulator for ROS, which is able to reproduce environments,

robots and sensors [36]. Stage resorts to a .png image to create a virtual environment,

which can be visualized in figure 2.6. For each launched robot, a /odom and /scan topic is

generated and updated according to the configured frequency, thus allowing the operation

of mapping nodes.

Figure 2.6: Stage GUI of a two robots (blue dots) simulation. The dark square are obstacles
in the enviroment and the green area represents the LRF field of view.

GMapping

GMapping [15] was developed by Giorgio Grisetti, Cyrill Stachniss and Wolfram Bur-

gard. This package launches a node that subscribes to the /scan topic and gradually builds

a map of the environment, making at the same time corrections in the odometry topic

(/odom) through the recognition of features of the environment. This method uses a Rao-

Blackwellized particle filter which is known for its effectiveness to solve SLAM problems.

In figure 2.7 the map of the University of Freiburg, generated with the application of

gmapping package can be visualized.
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Figure 2.7: Example of a map generated with gmapping - map of the Freiburg Campus [15].

Move_Base

Developed by Eitan Marder-Eppstein [10], move_base is a package that establishing

a goal in the environment, will attempt to reach it with a mobile base. The move_base

node links together a global and local planner to accomplish its global navigation task.

By subscribing to /map, /odom and /scan topics, move_base is able to gather enough

information to generate, wherever necessary, a trajectory towards a received goal through

the topic /move_base_simple/goal (note that topics in ROS can be remapped whenever

required by the developer). Launching a node per robot can be easily controlled by the

individual motion of multiple robots.

In figure 2.8 A high-level view of the move_base node can be seen.

Figure 2.8: A high-level view of the move_base node [10]. The blue vary based on the robot
platform, the gray are optional but are provided for all systems, and the white nodes are
required but also provided for all systems.
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2.4 Pioneer 3-DX Robot

The Pioneer 3-DX (figure 2.9) is one of world’s most popular mobile research robot, being

the one used in this project.

Figure 2.9: Example of a Pioneer 3-DX equiped with an Hokuyo LRF.

One of its major advantages, with regard to the exploration, is the fact that it has a

relatively small radius, 0.455 meters, allowing an ease of movement in many different envi-

ronments. The differential driving capability allows the Pioneer to turn on itself recovering

its path, when under more adverse conditions, such as a hallway with no way out. To map

the environment more accurately, the Pioneer was equipped with a high precision LRF,

Hokuyo URG-04LX, with a range of 4 meters. In addition to the mentioned capabilities, the

mobile robot can carry up to 3 batteries, achieving a capacity range of up to 10 hours.

All these features coupled with the fact of being compatible with ROS using the ROSARIA

framework makes this robot more suitable for indoor explorations, such as in the present

work. Pioneer 3-DX is controlled through an RS-232 serial port which is connected to a lap-

top with the ROSARIA framework installed, which can be easily carried due to the maximum

extra payload of 8 kg.
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2.5 Summary

In this chapter a description of the state of the art in exploration with a MRS was made.

It started with an extremely relevant reference regarding the operating strategies and

some basic concepts of cooperation between robots were addressed. Then it proceeded with

a review of published studies that supported this dissertation and their comparative analysis

was done.

Lastly, a reference to the software and hardware that support this dissertation was made.
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3 ARENA - The Simulator

3.1 The Need for a Simulator

A robotics simulator is an essential tool for the development of several robotic applica-

tions. Without a simulator the developer must test his own algorithms with real robots,

which often implies considerable investments in robots1 and significant time loss in experi-

ment preparation.

As mentioned in chapter 1, a specific simulator for robotic explorations in ROS was

not found, hence the necessity to develop a new one. Building a simulator for robotic

exploration was possible due to the existence of more generic simulators, as in this case

the Stage (see subsection 2.3.1). A new package was then constructed, with Stage in its

core, combined with other nodes. The result can be named as a simulator for frontier

explorations, or more specifically in this work as cooperAtive multi Robot frontiEr exploratioN

simulAtor (ARENA).

The simulator is completely open-source and can be found online on the ARENA2 wiki-ros

page since September 2016.

3.2 An Overview of ARENA

The ARENA claims to provide the minimum resources necessary to test and simulate a

frontier-base exploration algorithm, such as:

1. Simulation of an environment.

2. Simulation of multiple robots.

3. Simulation of sensors for each robot.

1Market value of one Pioneer 3DX robot is over three thousand euros without the LRF
2http://wiki.ros.org/arena
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4. Map merging.

5. Generation of a map for each robot.

6. Frontiers identification.

7. Path planning for each robot.

8. GUI to visualize the simulations.

Feature 1, 2 and 3 are provided by Stage, feature 7 by move_base (see section 2.3.1)

and 8 by RViz (see section 2.3.1). The remaining features, 4, 5 and 6, were implemented by

the ARENA auxiliary packages. Namely the aap_map_merger, the aap_mapping and the

aap_frontiers which were developed solely for ARENA from the ground up.

ARENA publishes in a handful of topics. For instance, each robot has in its own names-

pace, a /frontiers topic, which contains a binary map of the environment and the localization

of frontier cells, a /odom topic, which allows to track the movement of the robot among other

topics. There are also important topics subscribed, such as the /goal and the /markcell top-

ics. When a goal is received, speed commands are generated in order to guide the robot to

that location. If this goal can not be reached a message will be sent through the /markcell

topic to be known as unreachable.

In sum, it is intended that any developer can read the frontier maps, as well as the

location of the robots and with these data the developer will be capable of generating the

objectives for the exploration. Once having a new objective, by simply publishing it in the

/goal topic, the robot will be guided autonomously to that location, thereby exploring the

environment.

3.3 Stage, RViz and Move_Base Configurations

Among the multiple packages used in ARENA, the only ones that were not originally

developed for this simulator are the Stage, the RViz and the move_base.

The Stage and the move_base, as mentioned in the chapter 2, need to be configured in

advance. For this purpose and in order to get better results with the Stage, it is important

to define several parameters including the robot model to be simulated (by default the model

Pioneer 3-DX is launched), the map size, the .png image that defines the virtual environment

and the initial position of all the robots. On the other hand, regarding the move_base the

most important settings refers to the radius of the robot, the minimum conservative distance

18



between the latter and the obstacles as well as the speed and acceleration, in terms of its

maximum and minimum.

Taking into account the three mentioned packages, the RViz is the only one that can be

configured in real-time allowing visualization of the process of exploration with more detail.

This way the user can decide at any time, if he intends or not to benefit from its capabilities.

In order to make the beginning of an experiment (simulation) that resorts to the use of

the Stage, the RViz and the move_base quick and easy, the ARENA has a set of default

settings that can be modified which allow to obtain more optimized results, when at a specific

simulation.

3.4 Map Merging with Matching Maps

A map merging node allows the combination of the knowledge obtained by all the robots

in a global map. Having access to this map, the robots are now aware of areas which have

not necessarily been explored by them.

In 2014, Gonçalo Martins developed in his M.Sc. dissertation project project the package

mrgs_slam in order to simplify the process of map merging [23]. The package has three

different operating modes, which can be seen in figure 3.1. In distributed mode each of the

robots collects and combines all the information data; In centralized mode there are robots

with only mapping functions while another robot combines and shares all the data; Finally,

in the mixed mode is combined the two previous modes.

(a) Fully distributed
mode, in wich every
robot gathers and fuses
data.

(b) Centralized mode,
where mapping robots
gather data and central
robots fuse it.

(c) Mixed mode, which
can employ up to three
classes of robots.

Figure 3.1: Modes of operation present in mrgs_slam [23].

The mrgs_slam package aligns the maps before combining them, making it possible to

find a relationship between the maps and consequently the position of the robot relatively
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to each other. Despite the inherent advantages in the use of this technique, this is compu-

tationally too demanding, since it relies on complex computer vision algorithms. To bridge

this problem, and taking into account that the main objective is to test the exploration

algorithm, the combination of maps can be simplified when used in simulation. Ensuring

the same size for all the maps used in the simulator, whether local or global, the maps fit

each other and given the definition 3.1. With this principle the aap_map_merger 3 package

is created.

Definition 3.1. The area of a map in the simulation represented by the cell(i,j) corresponds

to the same area of cell(i,j) in any other map.

Table 3.1: Maps notations.

Notation Meaning
cell(i, j) area corresponding to column i and row j of any map

global_p_cell(i, j) occupancy probability of cell(i, j) of the global map
p_celln(i, j) occupancy probability of cell(i, j) of the robot n
f_celln(i, j) frontiers map value of cell(i, j) of the robot n

In an occupancy grid (i.e. a map), a probability of occupation is assigned for each cell (see

table for notations), between 0 and 1, 0 ≤ p_cell(i, j) ≤ 1, being 0 the minimum probability

of occupation and 1 the maximum. If the probability is assigned to -1 it means that this is

an unknown cell. These notions are important to understand algorithm 3.1.

Although the simulator needs to work at a frequency equal or higher than 5 Hz, this

node can and should also be able to function at a different frequency, preferably equal or

higher than 0.5 Hz, without affecting the quality of the exploration, thus decreasing processor

usage. Taking this into account, 10 Hz are recommended for the simulator frequency and

0.5 Hz for the map merging node. This means that twenty maps per robot will be published

between each map merger iteration. From those maps only the most recent of each robot

will be saved and merged individually into the global map according to algorithm 3.1, into

the global map. So, a simulation with n robots implies n iterations of that algorithm to

generate the complete global map (see figure 3.2).

For a better understanding of this algorithm should be considered a reading of robot_n

map, which will generate a new global map update iteration. The procedure for making this

update is based on the verification cell to cell for each value of the global occupancy map

(lines 2,3 and 4 - algorithm 3.1).
3http://wiki.ros.org/arena/aap_map_merger
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As shown in lines 4 and 6, the value of each cell of the global map may be assigned based

on one of the following hypothesis: either by the first robot responsible for mapping (meaning

that the value of the global map was unknown) or by the nearest robot, respectively.

To do that, the aap_map_merger node is able to read all the maps through /map topic

inside each robot namespace, and it also receives all robots locations through /odom_beacon

topic, where all robots share their pose and each robot individually stores the most recent

pose of all the others, in order to use properly the function in line 6.

Algorithm 3.1: Update function of Global Map
1 Function updateGlobalMap(n):

/* This function receives the robot number, n. Then sweeps each
cell of the global map and compares them individually with the
corresponding cell of the local map of that robot. The best
cells of the two (global and local) are saved in the global map
*/

2 for i = 0 to ncols− 1 do /* run all the columns */
3 for j = 0 to nrows− 1 do /* run all the rows */
4 if global_p_cell(i, j) = −1 then /* if the cell is unknown */
5 global_p_cell(i, j) = p_celln(i, j) ; /* copies the value of the

local map */
6 else if n = closestRobot(i, j) then /* if it is the closest robot,

function closestRobot(i,j) returns the number of the closest
robot to that cell(i,j) */

7 global_p_cell(i, j) = p_celln(i, j) ; /* copies the value of the
local map */

8 return
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(a) Local robot_0 map.

(b) Local robot_1 map.

(c) Global map.

Figure 3.2: Map merging scenario in the beginning of a multi-robot map operation. The
aap_map_merger node reads from each robot /map topic (a) and (b) and combines them
into the global map (c).

3.5 Localization

When mapping a real environment the robot’s sensors have a high sensitivity to errors,

generating faulty maps. To overcome this situation it may be necessary to resort to the

application of SLAM, which allows to obtain a map as close as possible to reality while

being able to establish the location of the robot ate the same time.

In a simulation the exact location of the robot can be provided, making the application

of any method for SLAM unnecessary. So, although gmapping (or any other package that

performs SLAM) will be indispensable in real tests, in a simulation it will only introduce an

unwanted extra computational load. Thus, arises the need to create a mapping node to take

advantage of the robot localization provided by the simulator, namely the aap_mapping4

package. The node created by aap_mapping, subscribes four important topics, /scan, /odom,

/global_map and /odom_beacon (topic where each robot publishes its own position).

With the LRF readings and with the current position of the robot the aap_mapping node

has all the data needed to map. The readings are transformed into points in the map and

the probability of occupation is updated following the method of log odds. It is incremented

whenever the distance obtained is less than the laser range and decremented when it is equal

4http://wiki.ros.org/arena/aap_mapping
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to the range. Between each point obtained, and taking into account the position of the laser,

empty points are generated, being the distance among them equal to the resolution of the

occupancy grid, lowering the probability of occupation.

Analyzing the sequence of images presented in figure 3.3, the map growth with a difference

of 1 second between images can be observed through the application of the method previously

explained.

(a) (b)

(c) (d)

Figure 3.3: Progressive growth of a map using the aap_mapping package.

In a cooperative exploration it becomes indispensable that the mapping node is able

to combine its own map with the global map, using the same method created for the

aap_map_merger. If only a map replacement was made the latest updates of the map

would be lost, hence the need for /global_map and /odom_beacon topics, to enable the

node to apply a similar version to the algorithm 3.1. In this case the occupancy probability

of a cell, in a local map, is only kept if the robot is the closest to that cell, otherwise it will

be replaced by the global map probability.
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3.6 Frontier Generation Node

The definition of frontier cell (see definition 2.1) is fairly constant in literature, and so

is the method for frontier cells identification. A package was created for the application of

this method, aap_frontiers5, with the additional purpose of generating a binarized version

of the map, in which the present cells may have one of the following values:

unknown cell: f_celln(i, j) = −1, which means that p_celln(i, j) = −1;

free cell: f_celln(i, j) = 0, which means that 0 ≥ p_celln(i, j) > 0.5;

occupied cell: f_celln(i, j) = 1, which means that 0.5 ≥ p_celln(i, j) ≥ 1;

frontier cell: f_celln(i, j) = 2;

inaccessible cell: f_celln(i, j) = 3.

It was understood that an binarized map with identified frontier cells (see figure 3.4b)

identified was more beneficial than a vector containing only the frontiers indexes, since in

explorations both the map and the frontiers are necessary.

Thus, it is possible to transmit the desired information (ROS occupancy grid) through

/frontiers topic using a binarized map, contrary to what occurs when resorting to the use

of the vector.

To increase process efficiency, the algorithm 3.2 generates a binary version of the map

(e.g. line 10 to 13), while identifying the frontiers(e.g. line 10 to 13). Each occupied cell

in the normal map (not binarized) will generate a region in the binarized map centered

on it (e.g. algorithm 3.2 line 13), with a radius slightly higher than the robot radius (e.g.

algorithm 3.4 - line 2), where all cells will be marked as occupied. Thus, all free cells can be

considered as passable, making this a very useful feature for the calculation of cost maps.

Keeping in mind one of the main objectives, the identification of frontier cells, the al-

gorithm 3.2 resorts to the algorithm 3.3 in order to identify if an unknown cell is in fact a

frontier (revise the definition 2.1).

5http://wiki.ros.org/arena/aap_frontiers
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In figure 3.4 the result of one iteration of algorithm 3.2 can be visualized.

(a) Robot local map. (b) Robot frontier map

Figure 3.4: An example of a frontier map generated from a local map of a robot. The
occupied cells are represented in black on the map (a) and purple on the map (b).The
frontier cells are highlighted in yellow.

On the left image:

unknown cell: grey, p_celln(i, j) = −1;

free cell: white, 0 ≥ p_celln(i, j) > 0.5;

occupied cell: black, 0.5 ≥ p_celln(i, j) ≥ 1.

On the right image:

unknown cell: grey, f_celln(i, j) = −1;

free cell: white, f_celln(i, j) = −0;

occupied cell: black, f_celln(i, j) = 1;

frontier cell: yellow, f_celln(i, j) = 2.

Algorithm 3.2: Update Frontiers Map
1 Function updateFrontiersMap():

/* This function identifies the frontiers and generates a binarized
version of a local map */

2 for i = 0 to ncols− 1 do /* run all the columns */
3 for j = 0 to nrows− 1 do /* run all the rows */
4 if f_celln(i, j) 6= 3 then /* if it is not an inaccessible cell */
5 if p_celln(i, j) = −1 then /* if it is an unknown cell */
6 if isFrontier(i, j) = true then /* if it is a frontier cell */
7 f_celln(i, j) = 2 ; /* marks as a frontier cell */
8 else /* if it is not a frontier */
9 f_celln(i, j) = −1 ; /* marks as an unknown cell */

10 else if 0 ≤ p_celln(i, j) < 0.5 then /* if it is more probably a
free cell */

11 f_celln(i, j) = 0 ; /* marks as a free cell */

12 else /* if it is more probably an occupied cell */
13 inflameObstacles(i, j)

14 return

25



Algorithm 3.3: Frontier identification algorithm
1 Function isFrontier(i,j):

/* This function receives the index of an unknown cell and finds out
if the cell is a frontier cell */

2 if i− 1 ≤ 0 then imin = 0 else imin = i− 1; /* starting column */
3 if i+ 1 ≥ ncols− 1 then imax = ncols− 1 else imax = i+ 1; /* end column */
4 if j − 1 ≤ 0 then jmin = 0 else jmin = j − 1; /* starting row */
5 if j + 1 ≥ nrows− 1 then jmax = nrows− 1 else jmax = j + 1; /* end row */

6 for i = imin to imax do /* runs 3 columns */
7 for j = jmin to jmax do /* runs 3 rows */
8 if 0 ≤ p_celln(i, j) ≤ 0.5 then /* if it is a free cell */
9 return true ; /* is a frontier */

10 return false ; /* is not a frontier */

Algorithm 3.4: Inflame Obstacles
1 Function inflameObstacles(i,j):

/* This function receives the index of an occupied cell and marks it
as occupied as well as all cells within x cells from it */

2 x = ceil(robot_radius/resolution) ; /* number of cells, rounded up */

3 if i− x ≤ 0 then imin = 0 else imin = i− x; /* starting column */
4 if i+ x ≥ ncols− 1 then imax = ncols− 1 else imax = i+ x; /* end column */
5 if j − x ≤ 0 then jmin = 0 else jmin = j − x; /* starting row */
6 if j + x ≥ nrows− 1 then jmax = nrows− 1 else jmax = j + x; /* end row */

7 for i = imin to imax do /* runs the columns */
8 for j = jmin to jmax do /* runs the rows */
9 if 0 ≤ p_celln(i, j) ≤ 0.5 then /* if it is a free cell */

10 f_celln(i, j) = 1 ; /* marks as an occupied cell */
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3.7 Summary

The need for a simulator to test the created exploration algorithm (see chapter 4) proved

to be essential in the course of this work. ARENA emerged of this need since there is no

specific simulator for frontier-based explorations.This aims to answer all the needs of an

exploration algorithm facilitating the development and experimentation of it, which made

its availability as open-source software imperative.

In the next chapter a description of the frontier-based exploration algorithm will be

made.
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4 CoopExp - Exploration Algorithm

This chapter presents the exploration algorithm which was developed to be compatible

with ARENA and also to overcome the restrictions imposed by the ISR robot fleet and by

network conditions.

As mentioned in chapter 1 it was decided to create a new algorithm that would bring

together the strengths of all the analyzed algorithms. For that purpose the CoopExp package

was developed from the ground up.

The CoopExp package must be launched multiple times in order to have a node per robot

just as other packages of this project. Once launched, the nodes will generate the objectives

of the exploration. These will take into account the position of other robots and the areas

already explored by them, making the exploration of the environment as efficient as possible.

This node requires the following topics:

1. /frontiers, that contains the location of the frontiers and the binarized map of the

environment (updated periodically with the global map);

2. /odom_beacon, which has all the robot’s current position.

With the information provided by these topics the cost and utility for each frontier cell

are calculated and exploration goals are generated based on the final value, which combine

both (see table 4.1). This process can be divided into three stages: the calculation of the

cost, the calculation of utilities and the generation of goals.

Table 4.1: Cell values notation for the costmap value c, utility value u and final exploration
value v.

Notation Meaning
c_celln(i, j) cost value of cell(i, j) of the robot n
u_celln(i, j) utility value of cell(i, j) of the robot n
v_celln(i, j) final value exploration value of cell(i, j) of the robot n
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4.1 The Costmap Generation

The algorithm responsible for the calculation of the costmap is based on the Burgard et

al. [5] algorithm. To determine the cost of reaching the current frontier cells an optimal path

from the current position of the robot to all frontier cells was computed. This operation is

based on a deterministic variant of the value iteration, which is a popular dynamic program-

ming algorithm [17]. In this approach, the cost of reaching a cell(i, j) is proportional to its

occupancy value p_celln(i, j). The minimum cost is computed using the following two steps:

Initialization:

All the cells contained in the robot footprint are initialized with 0, all others with ∞;

Update loop:

c_celln(i, j) = min
{
c_celln(i+ ∆i, j + ∆j) +

√
∆i2 + ∆j2 · p_celln(i+ ∆i, j + ∆j)

}
∆i,∆j ∈ {−1, 0, 1} and p_celln(i+ ∆i, j+ ∆j) ∈ [0, p_cellmax]

The update loop is repeated until convergence, performing a sweep of all cells in the

costmap always in the same order. This process is very demanding even for small grids.

Tests to support this statement in chapter 5 are shown.

The method mentioned above is computationally very demanding and in a simulation

the computational load will increase proportionally to the number of robots resulting in an

unfeasable implementation of this algorithm.

Due to this problem an evolution of the algorithm was developed that could fill the

costmap more efficiently, thus making it possible to handle the computational load resulting

from the simulation of multiple robots. Taking advantage of the binarized map of the topic

/frontiers, the contribution of the occupation probability in the update loop was removed,

and instead of being initialized at infinity it is initialized at -1 (meaning unknown cost).

30



Initialization:

All the cells contained in the robot footprint are initialized with 0 (minimum cost), all

others with −1 (unknown cost);

Update loop:

if f_celln(i, j) = 1⇒ c_celln(i, j) = −2

else c_celln(i, j) = min
{
c_celln(i+ ∆i, j + ∆j) +

√
∆i2 + ∆j2

}
with

with ∆i,∆j ∈ {−1, 0, 1}, c_celln(i+ ∆i, j + ∆j) ≥ 0 and f_celln(i+ ∆i, j + ∆j) 6= 1

A new version of the costmap has to be obtained before the generation of a new goal,

because when the robot changes its position the costmap gets outdated. So, for each version

of the costmap the algorithm 4.1 has to be applied to perform the initialization step that

sets out a neutral cost in the area under the robot (e.g. line 4 and 5).

Algorithm 4.1: Costmap Initialization Function.
1 Function initCostmap():

/* This function sweeps all the grid cells of the costmap and
initializes them with the right value */

2 for i = 0 to ncols− 1 do /* runs all the columns */
3 for j = 0 to nrows− 1 do /* runs all the rows */

4 if the robot footprint contains cell(i,j) then /* cell(i,j) is the
physical space occupied by one cell in the map */

5 c_celln(i, j) = 0 ; /* 0 is the minimum cost */
6 else
7 c_celln(i, j) = −1 ; /* -1 represents an unknown value */

8 return

Despite the changes mentioned above the significant gain in efficiency results from the

optimization of the cell sweep, when applying the second step (update loop) of this new

method until its convergence. Algorithm 4.2 has been designed in order to make that spiral

sweep beginning in the robot location (e.g. line 7 to 10 and line 14 and 16).
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After a first spiral sweep on an empty map only filled with free or unknown cells, a full

costmap is obtained regardless of the location of the robot and unlike the original algorithm,

which means that all the cells in it have a positive cost value. When generating a costmap

from a map with obstacles, unknown cost cells could be maintained, which implies that a

new sweep has to be performed (e.g. line 30). However, the ratio of cells with positive cost

is much higher in a spiral sweep than in a common sweep.

Algorithm 4.2: Costmap Update Function.
1 Function updateCostmap(i, j):

/* i and j define the starting point for the algorithm */

2 iterations = max[nrows, ncols];
3 direction = [counterclockwise, clockwise];
4 side = [bottom, right, top, left];
5 squareside = 1;
6 incomplete = false;

7 for n = 0 to iterations do
8 foreach direction do
9 foreach side do

10 for s = 0 to squareside do

11 if i >= 0 and i < ncols and j ≥ 0 and j < nrows) then
12 c_celln(i, j) = minCost(i, j) ;
13 if c_celln(i, j) = −1 then
14 incomplete = true ;

15 if counterclockwise then
16 if bottom then i+ +;
17 else if right then j + +;
18 else if top then i−−;
19 else if left then j −−;
20 else if clockwise then
21 if bottom then j + +;
22 else if right then i+ +;
23 else if top then j −−;
24 else if left then i−−;

25 i−−,j −− ; /* goes to the starting point of the next iteration */
26 squareside+ = 2; /* with the square side increased */

27 if incomplete = true then
28 [i, j] = findNextStartingPoint();
29 if i 6= −1 then
30 updateCostmap(i, j);

31 return
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Algorithm 4.3: Find Next Starting Point.
1 Function findNextStartingPoint():

/* This function sweeps all the grid cells of the costmap in search
of an costmap cell with the value of -1 and that is surrounded by
a cell with a cost bigger than zero */

2 minV alue =∞;
3 valid = false;

4 for i = 0 to ncols− 1 do /* runs all the columns */
5 for j = 0 to nrows− 1 do /* runs all the rows */

6 if c_celln(i, j) = −1 then

7 costtemp = minCost(i, j);

8 if 0 ≤ costtemp < minV alue then
9 minV alue = costtemp ;

10 startPointi = i ;
11 startPointj = j ;
12 valid = true;

13 if not valid then
14 return −1,0 ;

15 return startPointi,startPointj ;

Whenever at least one cell with an unknown cost remains in the costmap, the algorithm

4.2 is able to detect it (e.g. algorithm 4.2 line 14) and resorts to algorithm 4.3 (e.g. algorithm

4.2 line 28) to identify a point in the unknown area so that the algorithm 4.2 starts a new

spiral sweep centered on it (e.g. algorithm 4.2 line 30). This way it is much more effective.

Once algorithm 4.2 starts in an unknown cost cell it is able to calculate more values for the

remaining unknown costmap cells.

When sweeping the costmap, the c_celln(i, j) is given by the application of algorithm 4.4

(e.g. algorithm 4.2 line 12). This algorithm analyses a set of cells composed by that cell(i, j)

and the eight cells that surround it, then the minimum cost is selected (e.g. algorithm 4.4

line 17), according to the second step of the costmap generation.
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Algorithm 4.4: Minimum Cost Function.
1 Function minCost(i, j):

/* This function will return the minimum cost of the set of cells
composed by the cell(i,j) and the eight cells that surround it */

2 if f_celln(i, j) = 1 then /* cell is occupied */
3 return −2 ; /* -2 represents an infinity value due to an occupied

cell */

4 minV alue =∞;
5 icenter = i;
6 jcenter = j;

7 if i− 1 ≤ 0 then imin = 0 else imin = i− 1; /* starting column */
8 if i+ 1 ≥ ncols− 1 then imax = ncols− 1 else imax = i+ 1; /* end column */
9 if j − 1 ≤ 0 then jmin = 0 else jmin = j − 1; /* starting row */

10 if j + 1 ≥ nrows− 1 then jmax = nrows− 1 else jmax = j + 1; /* end row */

11 for i = imin to imax do /* runs 3 columns */
12 for j = jmin to jmax do /* runs 3 rows */

13 if f_celln(i, j) 6= 1 then /* is not occupied */
14 disttemp = sqrt(((icenter− i)∗ resolution)2 +((jcenter− j)∗ resolution)2));
15 costtemp = c_celln(i, j) + disttemp;
16 if 0 ≤ costtemp < minV alue then /* new minimum */
17 minV alue = costtemp ; /* saves the new minimum */

18 if minV alue =∞ then /* in this case the minimum value keeps
unchanged so the cost of reaching that cell is still infinity */

19 return −1 ;

/* if the algorithm reaches this point then the minValue has to be
valid */

20 return minV alue
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In figure 4.1b the costmap generated based on the map of figure 4.1a can be seen. The

cost is set in shades of gray for an easy analysis, where white means a zero cost and black a

maximum cost.

(a) Environment. (b) Costmap.

Figure 4.1: An example of a costmap (b) generated based on map (a) by the spiral sweeping
algorithm. The costmap values are identified in shades of gray, the higher the shade the
higher the cost.

4.1.1 Classification of Costmap Algorithms

In order to obtain the classification of an algorithm according to the rating of the Big

O Notation [8] , the worst case scenario has to be considered. In terms of the calculation

of costs, the worst case scenario is the existence of a u-turn (forced reversal) since for each

required inversion there is a 1 unit increase in the complexity of the map.

Figure 4.2: An illustration of a map with 8 u-turns (forced reversal).

Figure 4.2 allows to obtain a better understanding of this concept. The map shown
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has a complexity (complexity c) which is proportional to the number of inversions (u-turns)

required to reach the point B starting from A, this being the worst case scenario.

Therefore,

c = 1 + u, (4.1)

being u, the number of u-turns in the map. Once understood this concept can be trans-

posed to the classification of the algorithms.

Assuming a square map of n cells with complexity c, the classification algorithms would

be:

Standard sweeping: O(cn1.5), quadric algorithm

Spiral sweeping: O(2cn), linear algorithm

Taking into account a map with 400 by 400 cells (n = 160000) and c = 9, the numbers

of iterations needed to complete the costmap in the worst situation are:

Standard sweeping: 9 ∗ 1600001.5 = 576000000 iterations

Spiral sweeping: 9 ∗ 2 ∗ 160000 = 2880000 iterations
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Figure 4.3: A graphical comparison between the two Big O classifications, O(cn1.5) and
O(2cn). The graph shows the growth of the number of iterations in function of n, for a
complexity c = 9.

Thus, through the analysis of the above results it can be concluded that to calculate

the full costmap 200 fewer iterations in a spiral sweeping are required, when compared to a

standard sweeping. This difference is increasingly noticeable the larger the n, as can be seen

in the graph of figure 4.3.
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4.2 The Utility of a Frontier Cell

In this work the utility is calculated only for the frontier cells before generating any

goal for the exploration, which demonstrates a lower computational effort compared to the

costmap generation which needs to examine all map cells1. The utility is defined by two

parameters, namely:

1. Number of nearby frontiers, that contains the location of the frontiers and the

binarized map of the environment (updated periodically with the global map);

2. Minimum distance to other robots, which has all the robot’s current position.

Which then are combined into the following equation:

u_celln(i, j) = α ∗ numberOfNearbyFrontiers(i, j)+

β ∗minDistOtherRobots(i, j) (4.2)

The gains α and β allow to adjust easily the weight of each parameter.

For a better understanding of this issue the following concepts, number of nearby frontiers

and minimum distance to other robots, will be described in the following sections as algorithm

4.5 and 4.6, respectively.

4.2.1 Proximity of Frontier cells

The concept of utility of a frontier cell takes into account the relative proximity of that

cell with frontier cells in its neighborhood. So, the larger the number of frontier cells in the

vicinity of the cell to study, the greater its utility. To better understand this concept it is

useful to proceed to the analysis of the figure below (Figure 4.4).

From the frontier cells region, highlighted as yellow in figure 4.4 the utility of only four

cells, represented by the letters A, B, C and D will be considered. In this situation, when

the robot reaches each cell it will explore the nearby frontiers within the range of the LRF.

By defining an analysis radius around a particular cell it will be possible to calculate the

number of frontier cells present. Those cells will be explored while the robot moves to the

central cell. This value, calculated for each frontier cell on the map, represents one of the

parameters of the utility of a cell.

1The number of frontier cells is in average less than ten percent of the number of all cells
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Figure 4.4: Frontier cells line (yellow) in a wide area. Points A, B, C and D are frontier cells.
The distance from any of the points to the robot and also from A to D is equal to LRFrange.

It is desired to have a analysis area defined by a circular shape with a perimeter equal

to the LRFrange, so the analysis radius is:

Rmeters = 0.5 ∗ LRFrange. (4.3)

Being LRFrange equal to the distance from A to D, it can be concluded that the number

of frontier cells reached from the positions A and D (edges of the frontier cell region) are

lower compared to the positions B and C. Therefore, its utility is reduced.

For the sake of simplicity, to obtain the number of frontier cells a radius in cells is used

rather a radius in meters, thus:

Rcells = ceil

(
0.5 ∗ LRFrange

mapresolution

)
(4.4)

However, this analysis radius can create a problem whenever it becomes necessary to

decide which frontier cell to explore within a hall (see figure 4.5).

Whenever a hall has a width equal or inferior to half the range of the LRF, the utility

of any frontier cell present will not be differentiated. Through the analysis of figure 4.5 it is

possible to infer that the number of frontier cells in the neighborhood of is points A, B, or C

is the same, since the neighborhood radius is defined as being half the sensor range (range

4m, 2m half). Since the longest distance between two cells, A and C, is smaller than this

radius (1.5m), it could be concluded that the number of frontier cells in the neighborhood

of any of these points is the same.
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Figure 4.5: Frontier cells line (yellow) in an hall. Points A, B, and C are frontier cells. The
distance from any of the points to the robot is equal to LRFrange.

To solve this problem a radius which takes into account the minimum width is set thus

allowing an easy and safe passage of the robot through the halls of the map. So,

Dmin = 2 ∗ diameterrobot. (4.5)

If there are more narrow hallways than this distance (Dmin), the algorithm may show

abnormal behaviors.

Thus, the radius of the cells should be:

Rcells = ceil

(
0.5 ∗Dmin

mapresolution

)
= ceil

(
diameterrobot
mapresolution

)
= ceil

(
2 ∗ radiusrobot
mapresolution

)
(4.6)

Concluding, and taking into account the aforementioned parameter, the frontier cells

with greater utility are cells B and C of figure 4.4 and B of figure 4.5.

The algorithm 4.5 listed above, represents the method used to calculate the number of

frontier cells ( e.g. line 10 and 11) in the neighborhood of a particular frontier cell ( e.g. line

2 to 9).

4.2.2 Minimum Distance to Other Robots

A cooperative exploration could lead to the simultaneous mapping of the same area or the

areas already explored in situations where robots are in close proximity, which significantly

reduces the efficiency of the exploration. To overcome this situation, adding a repulsion

factor between the robots that would determine an increase of the utility of the frontier cells

become necessary.
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Algorithm 4.5: Number of nearby frontiers.
1 Function numberOfNearbyFrontiers(i,j):

/* This function receives the index of a frontier cell and counts
the number of frontiers within x cells from it */

2 x = ceil(2 ∗ robot_radius/resolution) ; /* number of cells, rounded up */

3 counter = 0;

4 if i− x ≤ 0 then imin = 0 else imin = i− x; /* starting column */
5 if i+ x ≥ ncols− 1 then imax = ncols− 1 else imax = i+ x; /* end column */
6 if j − x ≤ 0 then jmin = 0 else jmin = j − x; /* starting row */
7 if j + x ≥ nrows− 1 then jmax = nrows− 1 else jmax = j + x; /* end row */

8 for i = imin to imax do /* runs the columns */
9 for j = jmin to jmax do /* runs the rows */

10 if f_celln(i, j) = 2 then /* if it is a frontier cell */
11 counter + + ; /* increments the counter */

12 return counter

Each robot assigns a value, corresponding to this incrementation, to all frontier cells of

the local map, resorting to algorithm 4.6. The higher the minimum distance (e.g line 7)

between a particular frontier cell and other robots, the higher their usefulness.

Algorithm 4.6: Minimum distance to other robots.
1 Function minDistOtherRobots(i,j):

/* This function receives the index of a frontier cell and returns
the distance of the closest robot to that cell excluding the
robots which is using this algorithm */

2 mindistance =∞ ;

3 for k = 0 to numberOfRobots− 1 do /* runs one time for each robot */
4 if k 6= robotnumber then /* is not the distance for the robot which

is using this algorithm */
5 distance = sqrt((x_robotk − x_cell(i, j))2 + (y_roboti − y_cell(i, j))2) ;
6 if distance < mindistance then /* new minimum distance */
7 mindistance = distance ; /* saves the new minimum */

8 return mindistance

In order to achieve a better understanding of this theme figure 4.6 in which the influence

of this parameter is noticeable should be examined.

When it is necessary to choose which of the frontier cells, A or B, is more useful to

be explored by robotleft, it is important to consider different factors to achieve the best

exploration goal. If only the cost of the robot movement was considered, the selected cell

would certainly be frontier cell B, since the distance from robotleft to A is 2,5 m and while B
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Figure 4.6: An example of a proximity case between two robots. The frontier cells are in
yellow and in purple are the obstacles. Two frontier cells (A and B) are highlighted in red
in order to demonstrate which cell would be chosen for exploration.

is only 1m away. However, when taking into account the value of the minimum distance to

other robots, in this case the distance of the cells A and B in relation to robotright, the choice

of cell to explore would fall on the frontier cell A. Thus, although the B cell is the closest

to robotleft it is also closer to robotright, which makes their exploration less effective. The

difference of 1.5 meter in the cost of robotleft achieving A in relation to B is compensated

by the higher distance of robotright to A, this being the frontier cell selected.

4.3 Goal Generation

Having specified the costs and utilities of all frontier cells, the exploration node will

select the frontier with the highest value as the next objective of exploration. This values

are obtained from the following equation:

value_celln(i, j) = u_cellm(i, j)− c_celln(i, j) (4.7)

Throughout the application of this equation the index of the cell with the maximum

value, obtained so far, is kept. Thus, when all frontier cells have an assigned value the index

of the absolute maximum is known. A simple conversion to geographic coordinates is applied

to the index, and these are later introduced in the topic /goal. This goal will be received

in the robot’s move_base node, steering it if possible to that cell. Whenever move_base

is unable to identify a safe path to the desired position, the algorithm marks this cell as

inaccessible, depreciating its value in future iterations.
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When all the frontier cells were explored or marked as inaccessible, the exploration is

taken as completed.

4.4 Summary

In this chapter the CoopExp, exploration algorithm was presented.

This package can be divided into three areas: the generation of the cost map; the gener-

ation of utility for the frontiers; and the generation of exploration goals. It is worth pointing

out that this package is available online at wiki-ros web page, as referred to in the beginning

of the chapter.

In the next chapter an exposition of the validation tests of ARENA and CoopExp will be

done.
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5 Validation and Results

In order to evaluate and validate the performance of the system, multi-robot exploration

tests were performed both in multiple simulated environments and in a real-world scenario.

With the purpose of illustrating each system’s performance, two distinct stages took

place: one to test ARENA performance and scalabity (section 5.1) and another to validate

the CoopExp application (section 5.2).

5.1 ARENA Performance

To test the performance of ARENA became necessary the use of multiple robots, to a

maximum of 16 robots. As expected, when simulations are performed with 16 robots, the

use of a computer with greater processing capacity, namely a Lenovo with an Intel i7 Quad-

Core processor became necessary. However, even with the help of computers equipped for

the purpose, it was impossible to perform such simulations (16 robots) in real time. To work

around this situation, the simulator clock speed was decreased to a 0.1 factor, where every

second corresponds to 0.1 seconds of simulated time required for the simulation.

On the other hand with 8 robots the computer is capable of performing the simulation

in real time.

After this conclusion it was decided to perform the test with 16 robots only as a proof of

concept, since the reduction of the clock speed required in this experiment would reduce the

Central Processing Unit (CPU) load, which is the variable used to evaluate the performance

of the simulator. In figure 5.1 the environment and map and of this simulation can be viewed.

The remaining tests were done in real time with a maximum of 8 robots, in which the

CPU load has been analyzed and summarized in the graph present in figure 5.2 in accordance

with the number of robots. In this graph it is easy to acknowledge the growing burden of

adding robots to the simulation.
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(a) Simulated environment showing the path
of the robots (in blue).

(b) Frontier map of the simulation after 10
seconds.

Figure 5.1: An example of a simulation with 16 robots using ARENA.
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Figure 5.2: A graphical illustration of a CPU load in function of the number of robots in a
Quad-Core computer.

Tests were also carried out in a Dual-Core computer (graph of figure 5.3) to verify its

viability on computers with less processing load. As expected, the simulation capability was

limited to 4 robots in real time and 8 robots with reduced clock speed. These results show

that the scalability of the simulator is real, but it is very limited by the processing capacity

of the machine that runs the simulator.
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Figure 5.3: A graphical illustration of a CPU load in function of the number of robots in a
Dual-Core computer.

5.2 CoopExp Experimentation

5.2.1 Gains Calibration

While developing the exploration algorithm, the ability to adapt to different situations

was assigned resorting to the implementation of gains (α and β).

In the equation 4.2 from the chapter 4, the alpha and beta, allow changing the influence

of utility parameters in exploration, namely:

• Number of nearby frontiers;

• Minimum distance to other robots.

Default gains allocated to the algorithm have been achieved through an initial calibration,

which is described in this chapter in order to facilitate future calibrations.

During the calibration several simulations were performed using equal conditions: virtual

environment (figure 5.4) of 20 by 20 meters and a resolution of 5 centimeters; two robots

with a radius of 0.2 meters.

This environment was selected taking into account two objectives: increase the number

of situations in which frontier cells have the same cost despite being in different areas; to

allow the geometric distance between a robot and a frontier cell to have approximately the

same value of the cost of reaching it, due to lack of closed areas.
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Figure 5.4: Grid map for gains calibration.

Alpha Calibration

Before calibrating the gain alpha it is important to get aware of its influence in the

calculation of utility (equation 4.2 - Chapter 4). Remembering the latter equation and

admitting β = 0, the utility value is increment by one unit for each frontier cell in the

vicinity of the cell(i, j).

Given that the map boundaries are typically continuous and slightly curved, it can be

assumed that the average number of returned frontiers cells is equal to doubling the radius

in cells in the neighborhood analyzed by the algorithm 4.5.

nfrontiers = 2 ∗ ceil
(

2 ∗ radiusrobot
mapresolution

)
= 2 ∗ ceil

(
2 ∗ 0.2

0.05

)
== 2 ∗ ceil

(
0.4

0.05

)
= 16 (5.1)

However, an increase of 16 units in the utility of a frontier cell is exaggerated, since this

value only wants to differentiate frontier cells close to each other. Thus, it was selected as

the starting point α = 0.1 to obtain an enhancement equal to 1.6 in a normal situation,

which is an acceptable value. As for the calibration, variations of the starting point alpha

were made with intervals of ±0.025 to it. For each variation ten explorations were performed

and the medium time for each had a variation according to the graph in figure 5.5.

By analyzing the graph it is easily observable that the exploration time is minimal when

α = 0.125, which is the default value assigned to the gain alpha.

Beta Calibration

Contrary to the alpha, the beta gain aims at distinguishing any cell regardless of its

position, thus being chosen as the starting point for beta calibration 1.0.

The beta calibration was performed in a variation range of ±0.1 and the average ex-
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Figure 5.5: A graphical illustration of the results obtained in each set of the alpha calibration.

ploration times varied according to the graph in figure 5.6, again for each gain value 10

experiments were conducted.
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Figure 5.6: A graphical illustration of the results obtained in each set of the beta calibration.

Through the analysis of the graphic it can be concluded that the exploration time is

minimal when beta is equal to 0.8 (default value).

5.2.2 Efficiency in Simulated Environments

To test the efficiency of the exploration algorithm experiments with multiple robots were

performed. Ten sets of experiments with up to 8 robots in 4 different environments, namely

the ones in figure 5.7.

From the relationship between the average exploration time of each set of experiments

and the number of robots used, the graph of figure 5.8 was created. By doubling the number
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(a) Grid. (b) Office floor. (c) Big room. (d) Triple u-turn.

Figure 5.7: Different environments for simulation with multiple robots.

of robots used, the time of exploration should have been halved. However, some of these

maps have certain specificities that do not allow to assert this statement.

When dealing with a map that presents a division with one access zone an increase in

the exploration time is expected since to explore this area the robot has to enter and exit

through the same location, opposed to what would occur if the map had multiple zones of

access. This increase in the exploration time should be mitigated when the robot number

is equal to or higher than the number of divisions on the map [40]. That fact could be

visualized in the graph line (figure 5.8) corresponding to environment of figure 5.7b.

2 3 4 5 6 7 8
25

50

75

100

125

150

175

number of robots

av
er
ag
e
ex
pl
or
at
io
n
ti
m
e
(s
) grid

office floor
big room
triple u-turn

Figure 5.8: A graphical illustration of multiple experiences performed in four different sim-
ulated environments using ARENA.

The efficiency of individual exploration was calculated with reference to the exploration

time with two robots. For example, after exploring a map with two robots in 120 seconds,

it was concluded that to have an efficiency of 1.0 (expected) the exploration should be

accomplished with 4 robots in 60 seconds and 8 robots 30 in seconds.

If the exploration is performed with 4 robots, but within a period of 90 seconds, the
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efficiency will be lowered to 0.(6) = 60/90. On the other hand, there is an increase in

efficiency if the exploration time is reduced, for example in 45 seconds the efficiency is

1.(3) = 60/45.

In environment a) an c), the exploration time did not decreases constantly with the

growth of the number of robots, as expected. However, this reduction does not reflect an

efficiency of 1.0, but is slightly lower, between 0.6 and 0.9, due to the inevitable mapping of

some areas.

On environment d), the exploration times demonstrated the lowest efficiencies in all

scenarios. The efficiency of 0.35 for 8 robots was the lowest recorded. The team becomes

less efficient with the addition of more agents, since this environment has little diversity of

paths to be taken by the multiple robots, benefiting simultaneously mapping situations.

The environment b) shows interesting results since exploration times are stagnated in

four of the set of tests. Nevertheless the results have the highest efficiencies in the tests with

4 robots (almost 1.0 of efficiency) and 8 robots (0.82 of efficiency). In this environment the

robots are faced with multiple divisions with a single access, which leads to a remapping

of the area and consequent reduction in exploration efficiency, since the robot has to enter

and exit through the same place. When the robot number is increased to a value higher

than the number of divisions, the robot team can perform a simultaneous exploration of

all the different areas, without having to leave those divisions, leading to the end of the

exploration and thus avoiding remapping on the way back, therefore increasing the efficiency

of the exploration

It can be concluded, based on the results achieved in the simulation, the application

feasibility of this algorithm.

5.2.3 Real-World Validation

The final validation of this work was performed in the very end in a real world multi-robot

exploration. In order to do that many real-world issues were taken into account: batteries

must be charged, wireless networks configured, several computers had to be prepared, etc.

After the environment visible in figure 5.9 was set, the tests were started and instantly

the biggest handicaps of any real exploration were identified, namely the mapping of the

environment and the wireless network. Due to maps errors many trials were made and on

behalf of the wireless network lag, both the exploration and map merger frequency were

reduced. After these modification the exploration was complete successfully in 30 seconds
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Figure 5.9: A small experience set up for real world validation in ISR.

with 2 robots, although with a significant number of mapping errors as expected.

The same result was then achieved in a few less seconds in simulations with the same

conditions. In figure 5.10a and 5.10b the resultant maps of the real and simulated experiment

can be seen, respectively.

(a) Real environment. (b) Simulated environment.

Figure 5.10: An illustration of the frontiers map resulting of both the real an simulated
explorations.

5.3 Summary

This chapter describes the testing stage of ARENA and CoopExp packages in order to

validate their applicability.

The performance of the ARENA package was tested, and demonstrated in a simula-

tion capacity of 16 robots.This result is extremely important in terms of the computational

requirement of exploration algorithms.
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Tests were also carried out for CoopExp efficiency using a variable number of robot

teams in different virtual environments. As a final validation of the package a test in a real

environment was performed.

In the next chapter a brief analysis about the accomplished work as well as an exploration

of possible future works will be done.
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6 Conclusion

Any dividable system can benefit from the capacities of cooperation, space division,

reliability and robustness of a team of robots. It is logical that all this will have its costs.

Increased complexity, agents maintenance and very strict network conditions have been some

of the factors that prevent the use of the existing potential of a MRS.

This dissertation addresses the issue of cooperation in a MRS in the context of exploration

of territories. As the word suggests, cooperation implies an action: to work together or

collaborate to achieve the same goal, which is the intended purpose. Each robot must

cooperate with other team mates, being assured that each of these will have a satisfactory

and consistent level of knowledge in order to achieve the objective of the proposed mission.

The above frame of reference oversees the application of this system in various applica-

tions, for example in the fields of robotics, army, government and private security, among

others.

At the beginning of this project the testing and implementation of a method capable

of performing a cooperative exploration was proposed and, as a result, a ROS package

compatible with the Pioneer 3-DX, was developed. Although several methods can be found

in the literature, none has been explicitly developed with this premise. This fact prompted

the development of a new operating algorithm, the CoopExp.

The CoopExp was built to work in a decentralized way. This characteristic provides a

resistance to both failures of individual robots as well as in the communication network

without affecting the functioning of the system.

This package offers several potentialities. It has the capacity of both calculating the

cost of reaching a cell using the spiral sweep and the global value of a new exploration goal

with the exchange of information between robots. Furthermore, it is able to answer the

question regarding the exploration process, that is, where the robot should move within the

environment, taking into account the full knowledge of the MRS.

Given the need to test the exploration algorithm, adding a new objective, the creation
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of ARENA, became necessary.

In order to allow a larger scale simulation three packages were created: the aap_mapmerger,

aap_mapping and aap_frontier. Without these the maximum number of 16 robots in a sim-

ulation would never have been achieved. The features of the different packages are the

combination maps optimized for the simulation which respectively map the use of a perfect

location and identify frontiers.

This work was concluded with a set of experiments that displayed what was intended:

namely, a drastic reduction of the exploration time as a result of cooperation in teams with

different sizes.

The results were very encouraging and are a motivation to continue research and progress

in this area.

The final contributions of this thesis were the CoopExp and ARENA packages.

CoopExp - exploration algorithm that include:

• a new vision on utility of frontier cells;

• an improved costmap generation algorithm based on a spiral sweep of the map.

ARENA - the simulator with:

• a merger package optimized for simulation;

• a mapping package optimized for simulation;

• a frontier identification package.

6.1 Future Work

Whenever a new project emerges, all the effort and dedication go into its development

with the aim of achieving the best possible results. However, there are always different

aspects to be developed, considering an improvement in its functionality and possible future

applications.

Therefore, the aim of this section is to refer and discuss some of these improvements.

In CoopExp package it would be interesting to implement an approach to take advantage

of different features and characteristics of a team of robots. When new parameters are added
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to calculate the utility it would be possible to distinguish the environmental areas that would

benefit from the different functionalities of each robot. For example, it would be beneficial to

have one or more robots equipped with a long-range sonar capable of mapping larger areas

in the team, or even a robot with a robotic arm capable of diverting path obstacles.

With regard to the ARENA, obtaining the global map is performed through the complete

analysis of local maps, which entails an increase in the number of cells to analyze. This

number could be reduced if only a partial area of the local map defined by the maximum

displacement of the robot between two iterations of the combination of maps was considered.

On the other hand, in order to facilitate the analysis of frontier cells, they could be grouped

into regions, thus reducing the number of calculations necessary for obtaining the exploration

utilities.That is, the process of analyzing a map with thousands of frontier cells would be

faster and more efficient if the cells were combined into a few dozen regions.

The simulation tests show that the most noticeable handicap was the path planning

package, the move_base, which occasionally does not obtain a new path and consequently

makes the robot stand still. Given that to generate a trajectory requires a cost map, a

new trajectory planning package using the algorithm developed in this dissertation could be

developed.
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