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RESUMO

Ao longo destes últimos anos, o campo da segurança rodoviária na indústria automóvel tem sido

foco de muita investigação e desenvolvimento. A evolução verificada neste campo fez com que as

principais empresas do ramo tenham começado a desenvolver as suas próprias soluções de segurança

de modo a obter veículos mais seguros. Um dos resultados desta investigação foi o aparecimento de

sistemas de assistência à condução autónoma e veículos de condução automatizada. Estes veículos

dependem de sensores precisos, montados no próprio veículo, para compreender os ambientes que

os rodeiam. Assim, apenas poderão ser obtidos veículos verdadeiramente autónomos quando estes

dependerem apenas da informação sensorial.

No entanto, é necessário aplicar pós-processamento aos dados oriundos dos sensores de modo a

que o veículo detete obstáculos e objetos enquanto navega. Entre outros, estes algoritmos permitem

a extração da localização, forma e orientação do objeto. A navegação em ambientes urbanos

continua a ser um problema sem soluções aceites de modo unânime, apesar das muitas propostas

apresentadas. Isto prende-se principalmente com o fato dos cenários de tráfego urbano apresentarem

complexidade superior a outros cenários. Os sensores existentes atualmente apresentam ainda

capacidades limitadas quando usados individualmente.

O pipeline da perceção é um módulo crítico para o bom funcionamento destes veículos. Em

particular, o seguimento de objetos num ambiente 3D dinâmico é uma das componentes chave

deste pipeline. Ao seguir um objeto, informação sobre a sua localização, forma, orientação e até

velocidade podem ser obtidas. Previsões sobre os estados futuros do objeto seguido também podem

ser utilizadas para que o veículo possa planear ações futuras.

Na presente dissertação é apresentada uma abordagem para o seguimento online de objetos, que
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recorre a informação de uma imagem 2D RGB obtida por uma câmara a cores e uma nuvem de

pontos 3D capturada por um sensor LiDAR, de modo a detetar e seguir um objeto em cada novo

scan. O objeto alvo está inicialmente definido. Foi considerado um sistema de navegação inercial

para a auto-localização do veículo. A integração de dados 2D e 3D pode provar-se benéfica para o

seguimento de objetos, como é demonstrado pela abordagem apresentada. São usados algoritmos

mean-shift nos espaços 2D e 3D em paralelo de modo a obter as novas localizações do objeto, e

filtros Bayesianos (filtros de Kalman) para fazer a fusão da informação e, de seguida, para o próprio

seguimento do objeto no espaço 3D. Este método calcula então estimativas para a localização,

orientação 2D e velocidade instantânea do objeto, bem como uma estimativa da próxima localização

do objeto.

O método desenvolvido foi sujeito a uma série de testes, estando os resultados qualitativos e

quantitativos obtidos apresentados no documento. Estes resultados mostram que o método é capaz

de estimar a localização, orientação e velocidade do objeto com boa precisão. Foi feita ainda uma

comparação com dois métodos de referência (baseline). Os testes utilizam informação ground truth

proveniente da base de dados KITTI para o propósito de avaliação. Tendo como base os testes

efetuados, é proposto um conjunto de métricas (benchmark) para facilitar a avaliação de métodos

de modelação da aparência de objetos. Este benchmark consiste em cinquenta sequências compostas

pela trajetória completa (e ininterrupta) do objeto em particular, sendo categorizadas com base em

quatro fatores desafiantes.

Palavras Chave

Seguimento de objetos em 3D, fusão sensorial, condução autónoma, mean-shift, filtros de

Kalman
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ABSTRACT

The field of vehicle safety in the automotive industry has been the focus of much research and

development in recent years. This evolution in the field has made it possible for major players in the

automotive business to start developing their own active safety solutions to achieve safer cars. One

of the outcomes of these efforts has been the development of autonomous driving assistance systems

and highly automated vehicles. These vehicles rely on accurate on-board sensor technologies to

perceive their surrounding environments. Truly autonomous vehicles will only be a reality when

they can reliably interpret the environment based on sensory data alone.

However, some post processing needs to be applied to the raw data given by the sensors, so that

the vehicle can perceive obstacles and objects as it navigates. Such algorithms allow, among other

things, the extraction of the location, shape and orientation of object. The navigation in urban

environments is still an open problem, despite the many approaches presented. This is mainly due

to the fact that urban traffic situations offer additional complexity. In addition, current on-board

sensors also have limited capabilities when used individually.

The perception pipeline is thus a critical module of these vehicles. In particular, object tracking

in a dynamic 3D environment is one of the key components of this pipeline. By tracking an object,

information about location, shape, orientation and even velocity of that object can be obtained. A

prediction of the future states of the tracked objects can also be obtained allowing for the planning

of future actions taken by the vehicle.

In the present thesis, an online object tracking approach has been developed that used information

from both 2D RGB images obtained from a colour camera and 3D point clouds captured from

a LiDAR sensor to detect and track an initially defined target object in every new scan. An
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inertial navigation system was also considered for vehicle self-localization. Integration of 2D and 3D

data can provide some benefits, as demonstrated by this approach. The tracker uses two parallel

mode-seeking (mean-shift) algorithms in the 2D and 3D domains to obtain new object locations

and Bayesian (Kalman) filters to fuse the output information and afterwards track the object in the

3D space. Our approach outputs the target object location, 2D orientation, and instant velocity

estimates, as well as a prediction about the next location of the object.

The tracker was subject to a series of tests. The quantitative and qualitative results obtained

are presented in the document. These results show that the proposed tracker is able to achieve

good accuracy for location, orientation and velocity estimates. A comparison with two baseline 3D

object trackers is also presented. The test cases used ground truth information from the KITTI

database for evaluation purpose. A benchmark based on the KITTI database is also proposed in

order to make the evaluation of object appearance modelling and tracking methods easier. This

benchmark features 50 sequences labelled with object tracking ground-truth, categorized according

to four different challenging factors.

Keywords

3D object tracking, sensor fusion, autonomous driving, mean-shift, Kalman filters
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“I would like to die on Mars. Just not on impact."

— Elon Musk
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1.1. MOTIVATION AND CONTEXT CHAPTER 1. INTRODUCTION

The present document acts as the author’s MSc thesis dissertation. The carried out work falls

within the domain of perception systems for intelligent vehicles, applied to the particular case of

single object tracking in 3D. In this chapter, the motivation behind the developed work is presented,

and the context explained by stating some studies and statistics that show the importance of the

perception pipeline in intelligent vehicles currently being developed. The problem at hand is then

defined. Additionally, an overview of the work’s key points and ideas is provided, along with the

flow of information in the proposed work. Afterwards, the objectives and main contributions are

presented, as well as the structure of the remainder of the document.

1.1 Motivation and Context

Injuries resulting from road transportation (or traffic) accidents claim an estimated 1.25 million

lives globally each year (being the leading cause of death from young people aged from 15 to 29)

[1, 2]. A recent report concerning just data from European countries states that roughly 85000

people have perished due to road traffic injuries in 2013 and, statistically speaking, for every person

that dies from a road accident at least 23 people suffer non-fatal injuries that require urgent hospital

care [3]. Furthermore, pedestrians, cyclists and motorcyclists compose near 40% of the total number

of deaths related to these road accidents. In turn, a statistical summary released by the United

States Department of Transportation projected that in 2015 the total numbers of vehicle traffic

fatalities grew in comparison to previous years by almost 8% [4].

Human errors remain the main reason behind road accidents, namely through distracted driving,

with all the factors typically involved: talking/texting on the phone, eating, reading, falling asleep,

tuning the radio or even just talking to someone inside the car [5, 6]. According to the same study,

the second and third most common causes of traffic accidents were speeding and drunk driving,

which highlights the drivers responsibility and ability to avoid these unfortunate events (backed

by the numbers in [7] as aforementioned, where 94% of accidents in the study were due to human

errors).

As a direct consequence of this reality, safety protocols and policies have been implemented over

the years, from building safer roads to enforcing the usage of a seatbelt. These safety systems can

be categorized in two groups: protective and preventive [8].

Protective safety systems include the most common safety measures implemented in the last

half century. Its aim is to disperse the kinetic energy in an accident in order to efficiently protect

both the driver and other possible occupants of the vehicles. These mechanisms include bumpers,

seat belts and air-bags.

On the other hand, preventive (or active) safety systems are meant to help drivers safely

guide the vehicle while avoiding, mitigating or possibly even preventing accidents along the way.

2



CHAPTER 1. INTRODUCTION 1.1. MOTIVATION AND CONTEXT

Some examples of these systems are Antilock Braking System (ABS) and Electronic Stability

Control (ESC). Through the monitoring and analysis of traffic scenarios surrounding the vehicle,

preventive safety systems can act as a support to the driver. An additional category called integrated

safety considers information that is perceived (preventive) to make better use of the protective

system (seat readjustment before crash, earlier deployment of air bags, etc.).

With the goal of reducing the aforementioned number of deaths and injuries from vehicle related

accidents, a lot of research has been put into preventive safety systems. One of the main ideas

behind this research is the change in the driver’s stance, from a direct actuator towards a spectator

role, i.e., a supervisor of the vehicle, only acting when needed [9]. A direct outcome of such efforts

has been the creation of intelligent vehicles, capable of perceiving the environment that surrounds

them and able to take appropriate decisions regarding the navigation task previously determined by

the driver, being therefore safer for both the occupants of the vehicle and other agents on the road

like other drivers and pedestrians.

In recent years, an increasing number of innovative technological approaches have been suggested

to improve the behaviour of intelligent vehicles (otherwise referred to as Autonomous Driver

Assistance System (ADAS)). Research in areas like computer vision and machine learning have

proved the potential of autonomous driving. Nonetheless, acceptance by both governmental laws

and public opinion remains divided, with several legal and policy situations being currently under

evaluation [10].

Since the decision making process involved in a typical ADASs must rely on its perception of the

surrounding traffic condition, nature and man-built structures and even road or weather conditions,

the perception pipeline becomes of the utmost importance. In order to achieve this situational

awareness, the intelligent vehicle in question (or ego vehicle) needs to know the location of objects

of interest on a known spatial reference system (either local or absolute/world). This goal can

be achieved by using on-board sensors relying on different technologies, such as vision (mono and

stereo cameras) and range sensors (Radio Detection And Ranging (RADAR), Sound Navigation

And Ranging (SONAR), Light Detection And Ranging (LiDAR)). In addition to these sensors, an

Inertial Navigation System (INS) can also be used to directly obtain the ego vehicle’s location.

Even with the successful autonomous driving tests reported on highways and urban scenarios

in recent years, there are still open issues regarding the reliable perception and navigation in

unconstrained environments mainly due to the limited capabilities of current sensors as well as the

image processing algorithms used for the purpose of scene understanding [11].

3



1.2. PROBLEM FORMULATION CHAPTER 1. INTRODUCTION

1.2 Problem Formulation

ADASs obey to the robotic paradigms in the sense that they integrate three robot primitives:

sense, plan and act [12]. The system has to gather the information (sense), evaluate it (plan) and

then act accordingly. The perception pipeline belongs to the “sense” primitive, enabling a vehicle to

comprehend the surrounding environment through its sensory input. Usually, perception modules

are composed of, among others, an initial object detection (and possibly segmentation) module, as

well as an object tracking module.

For the purpose of this thesis, we will just focus on the particular problem of 3D single object

tracking. To do so, sensor data is obtained from a 3D Light Amplification by Stimulated Emission of

Radiation (Laser) scanner and a stereo vision system for environment perception. In addition, an

INS (GPS/IMU) is used to know the ego vehicle’s location. For the current approach it is assumed

that the initial position and characteristics of the target object are known.

Usually, perception modules are also composed of, among others, an initial object detection

(and possibly segmentation) sub-module; however, for the current purpose it is assumed that the

initial position and characteristics of the target object are known.

The focus of the present thesis is therefore on the modelling and tracking of a generic object

in 3D, by fusion of sensor data (LiDAR and monocular camera) to enable better results when

comparing with single-sensor approaches. Using an INS allows for better velocity estimates for

object tracking. Through usage of Kalman Filter (KF) theory, the system can also predict the

object location in the 3D world coordinate system in the next time-step.

1.3 System Overview

A generic overview of the proposed 3D object tracker is shown in Figure 1.1. It is assumed

that the initial characteristics of the object represented in the form of a 3D Bounding Box (3D BB)

are known. A 3D BB is considered to describe the object’s location, width, height, length and pose.

As aforementioned, this information is normally obtained by object [13] or motion detectors [14].

The initial 3D BB is obtained in the 3D Point Cloud (PCD) from ground truth information.

Points inside the 3D BB are projected into the image simultaneously acquired from the 2D Red

Green Blue (RGB) and the convex hull of the projected points is calculated to define the object

in the 2D domain. For the following scans, the object is located in the current PCD and image

by applying a mode-seeking Mean-Shift (MS) algorithm in each domain. These locations are the

tracker’s initial estimates for the 3D location of the target object. Information obtained from both

the 3D and 2D domains is fused, and another Bayesian filter effectively tracks the object in the 3D

world space. The computed object 3D BB is used as the reference object information for the next

scan. The overview of the process can be seen in Figure 1.1.
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Figure 1.1: High-level overview of the proposed 3D object tracker. A more detailed diagram and extensive description

of the system behaviour can be found in Chapter 3.

1.4 Objectives

As stated before, the main goal of this thesis is to develop an object tracker capable of tracking

a single object in 3D as it moves around a scene, using information from several onboard sensor

technologies. The tracker will thus track and maintain updated information about the object in

both 3D and 2D spaces. The proposed approach should provide a stronger representation and

understanding of the ego vehicle surroundings by handling and fusing the information perceived by

each sensor. To summarize, the proposed objectives are:

• Provide a robust 2D/3D fusion-based 3D object tracking approach;

• Provide location, orientation (2D angle) and velocity estimations of the tracked object on a

3D coordinate space related to world coordinates (i.e. real world coordinates);

• Report both quantitative and qualitative evaluation of the proposed method;

• Create a benchmark for object appearance modelling evaluation;

1.5 Main Contributions

In this thesis, an object tracker that makes use of combined information obtained from a

3D-LiDAR and a 2D-RGB camera is proposed. The main contribution of this work is to provide

a robust 2D/3D fusion-based 3D object tracking approach. Since it is hard to properly evaluate

and compare most of the currently available approaches for object tracking in the literature (as

these are subject to different parameters and constraints and may come from different theoretical

5



1.6. OUTLINE CHAPTER 1. INTRODUCTION

backgrounds) another contribution of this thesis is the proposal of a benchmark to enable an easier

comparison and quantitative evaluation of different 3D object trackers in driving environments

(particularly those based on object appearance modelling).

1.6 Outline

The present document is organized in five chapters, beginning with the current introduction,

where the problem is contextualized and a solution is proposed to mitigate it.

In Chapter 2 modern sensors and object tracking state of the art are discussed, summarizing

some of the most important aspects of recent research and how they influenced the direction followed

by the work presented in this document.

Chapter 3 will then focus on the detailed description of the proposed approach, showing how it

handles incoming data from different sensors and how it fuses the sensory data to provide meaningful

information.

Afterwards, quantitative and qualitative experimental results of the proposed tracker are

presented in Chapter 4. The used dataset is also described, with some notes on how the information

was extracted and how it can be used to test the developed object tracker.

Chapter 5 is reserved for the presentation of conclusions drawn from the presented work, as well

as pointing towards future work that could be done to extend/improve the developed framework.
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Autonomous cars and ADASs need to be able to understand their surrounding environments,

as aforementioned. In this sense, the quality of the perception pipeline is critical for the correct

performance of these systems. This perception pipeline depends directly on the quality of perception

sensors and algorithms [15]. Object tracking stands as one of the main components of the perception

process.

In this chapter a discussion of current literature is provided, regarding sensing systems and

object tracker approaches. Taking into consideration the number of considered approaches and

studies, a table with the most salient aspects of each work will be provided.

2.1 Sensors

In order to detect and track on-road agents (such as vehicles, cyclists and pedestrians) a number

of different sensor technologies can be used. Typically it is necessary to measure object properties

such as position, orientation (or pose), distance to ego vehicle, speed and acceleration, among others.

Algorithms that process information provided by these sensors are of utmost importance for ADASs,

with the action pipeline being dependent of the output of the perception phase. The use of these

technologies recently showed that there is an enormous potential for saving lives, like in the case of

a Tesla vehicle owner claiming that the car alone prevented him from hitting a pedestrian during

the night in low visibility conditions [16]. However, this comes in contrast to news that another

vehicle by the same manufacturer was involved in a fatal death in Florida due to cameras not being

able to differentiate “the white side of [a] tractor trailer against a brightly lit sky.”, showing that

these systems are still not perfected [17].

2.1.1 Vision Sensors

As with the retinas in human eyes, colour cameras are able to capture the colour and resolution

of a scene with varying amounts of detail. Over the past decade, the improvement on vision-based

perception algorithms has been noticeable; detection and tracking of moving objects can thus be

obtained by equipping ADASs with on-board sensors such as monocular or stereo cameras.

Vision sensors can be categorized as passive sensors in the sense that collected information is

resultant from the reception of non-emitted signals, as there is no electromagnetic energy emission

but rather the measurement of light in the perceived environment (i.e. image capturing) [18].

Therefore, it is common practice for vision-based perception systems to install one or more cameras

in the vehicle, either inside (close to rear mirror) or outside.

With the on-going improvement of vision sensors, the associated costs of camera acquisition

have dropped, being one of the most interesting aspects of this approach; given the usually low Field

of View (FOV) of such cameras, the installation of multiple sensors can be used to obtain a full
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360◦ view of the vehicle surroundings and thus a more rich description of the latter (in comparison

to those obtained from active sensors).

(a) PointGrey Flea3 (b) PointGrey Bumblebee2

Figure 2.1: Examples of cameras in the market. The first is a monocular colour camera [19] while the second consists

on a stereo vision setup [20].

Stereo vision systems make use of the presence of multiple cameras in order to obtain relevant

range data and, in addition to the low cost, present low energy consumption whilst outputting

meaningful colour data and accurate depth information. It should be noted that the performance of

stereo vision approaches tends to deteriorate in regard to objects located far from the ego vehicle,

which results in losing losing fidelity proportionately with the distance to scene objects. In addition

to this downside, detection and tracking approaches based on monocular and stereo cameras are also

directly affected by changes in lighting and weather conditions (such as fog or snow) [21] or time of

the day. Some approaches try to solve these problems by utilizing specific sensors to deal with these

situations. For example, Sun et al. [22] showed that the usage of High Dynamic Range (HDR) or

low-light cameras made it possible to employ the same detection and recognition models to both

day and night time.

Stereo vision-based sensors tend to produce very dense point clouds (seeing as the basis for their

generation are rich images as opposed to active sensors); however these point clouds tend to be a

little noisy. Some problems with stereo matching algorithms (and thus with generated stereo vision

point clouds) are mainly due to sensor noise distorting images (particularly problematic in poorly

textured regions due to low Signal-to-Noise Ratio (SNR)), lack of correspondence between pixels of

half occluded regions in the two images (incorrect or no matching) and the fact that the constant

brightness assumption is not commonly satisfied in practice [23].

2.1.2 Range Sensors

As opposed to vision-based sensors, range sensors are considered active as they receive and

measure signals transmitted by them that are reflected by the surrounding objects and/or scene.

RADAR, SONAR and LiDAR sensors fall within this category; LiDAR systems transmit and receive

Ultraviolet (UV), Infrared (IR) and visible waves of the electromagnetic spectrum and, through

Time of Flight (ToF) theory, are received and interpreted as a function of time. Paired with the
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knowledge of the speed of light, the systems then calculate the distance travelled by the emitted

particles (forth and back).

In direct comparison with passive sensors, some active sensors like LiDAR are able to provide a

360◦ view of the area around the ego vehicle by using just one sensor. The output of these sensors

comes in the form of a dense point cloud (very dense for objects or parts of the surrounding scene

closer to ego vehicle, but sparser as distance to objects increases).

(a) BOSCH LRR3 (b) SICK LMS 210 (c) HOKUYO URG-04LX (d) Velodyne HDL-64E

Figure 2.2: Examples of range sensors in the market. The first sensor is based on RADAR technology [24], whilst

the rest are based on LiDAR technology [25–27].

Active sensors provide a viable option for real-time detection applications, countering some

of the vision-based problems (robustness under different weather conditions, for example) and

measuring object characteristics such as location with little computational power needed [21].

Among themselves, RADAR presents more reliability than others sensors for greater distances,

albeit the presence of less expensive LiDAR sensors in the market (but with lower range as well). In

addition, most LiDAR sensors are cheaper and are easier to apply than RADAR. The latter sensors

also retrieve less information than Laser based sensors and are more prone to misreadings, given the

fact that environments might be dynamic and/or noisy and that there might be road traffic as well.

3D Laser based technology has gained attention in the past few years, being the main contenders

in challenges such as Defense Advanced Research Projects Agency (DARPA) Urban Challenge. In

2007, most approaches were based on high-end LiDAR systems, such as the works presented by

Montemerlo et al. [28] or Kammel et al. [29], with the latter becoming the working basis for the

KITTI Vision Benchmark Suite [30].

Some of the disadvantages of LiDAR systems are that no colour data is directly obtained, and

reflective and foggy environments tend to distort the results. In addition, darker coloured objects

have lower reflection values since they absorb light, meaning the sensor could not get a return from

the emitted Laser. A LiDAR sensor tends to receive less information in these cases; studies such as

Petrovskaya et al. [31] show that looking at the absent data (no points being detected in a range

of vertical angles in a given direction) can represent space that is likely occupied by a black (or

darker) objects, since otherwise the emitted rays would have hit an obstacle or the ground.

Velodyne [32] has recently created a smaller 3D LiDAR sensor, the Velodyne HDL-64E. Details

about the sensor can be found in Chapter 4.1. This sensor has become an interesting option for
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obstacle detection and navigation in urban and highway areas, being used in setups such as KITTI

[30] and Google’s Self-Driving Car Project (in the latter, as their main sensor) [33].

2.1.3 Sensor Fusion

Taking into account the pros and cons of passive and active sensors, multiple sensor approaches

have been studied with the goal of yielding better results (hence safer ADASs) than using a single

sensor. Sensor fusion is achieved by combining data from several sensors to overcome the deficiencies

of individual usage. This can either be done to achieve simultaneous data capture for detection and

tracking purposes, with each sensor validating the results produced by the others, or having one

sensor detect and track while other sensors validate the results.

With prices for LiDAR systems getting lower, fusion of vision and LiDAR systems has been the

focus of recent research. Premebida et al. [34] initially used LiDAR data for detection and tracking

(to obtain a reliable object detection), but later in the process simultaneous accessed both LiDAR

and vision sensory data along with a probability model for object classification.

Zhao et al. [35] presented an approach which performed scene parsing and data fusion for a

3D LiDAR scanner and a monocular video camera. Although the focus of the approach was not

based on object tracking, one of the conclusion of the work was that fused results provided more

reliability than those provided by individual sensors.

2.1.4 Point Clouds

A common representation for the surrounding scene when captured through LiDAR based

sensors (or stereo vision setups after processing) is through a point cloud. A point cloud is thus a

set of points in a given 3D coordinate system which are intended to represent the external surfaces

(physical world surfaces) of surrounding objects. Some examples of points clouds obtained through

two different technologies can be seen in Figures 2.3 and 2.4.

Figure 2.3: Point clouds produced by stereo vision setup [36].
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Figure 2.4: Point clouds produced by Velodyne HDL-64E [27]. Colour is displayed for better representation as LiDAR

based sensors have no colour information directly available.

2.1.5 Summary (Sensors)

In this section a summary of sensor technologies is presented in Table 2.1. Here, a concise

comparison between the considered sensor types is done in the shape of a brief description of the

pros and cons of each sensor technology as a whole without looking into particular devices.

Type Energy Data Cost Advantages Disadvantages

LiDAR Laser Distance

(m)

Medium

/ High

• Dense high resolution 3D data in form

of PCD;

• Sensible to outdoor conditions (refrac-

tion of laser might occur);

• Very precise; • More costly than other sensors;

• Small beam-width; • Higher power consumption;

• Fast acquisition and processing rates; • Sensor made of moving parts;

• Reflectance information can be useful

for object recognition purposes;

• No colour information;

RADAR Radio

wave

Distance

(m)

Medium • Low sensibility to both outdoor condi-

tions and time of day;

• Still higher power consumption than

vision sensors;

• Precise; • Larger beam-width;

• Long range; • Lower resolution than LiDAR;

• Measurements done with less computa-

tional resources;

• Bigger sensor size than cameras;

• Good for environments with reflections;

Vision None Image

(px)

Low • Low cost with low installa-

tion/maintenance costs;

• Image quality highly dependant on out-

door conditions;

• Meaningful information in captured im-

age;

• Heavy computational power to process

images;

• Non-intrusive data acquisition; • Low performance on texture-less envi-

ronments (stereo vision);

Sensor

Fusion

Depends Depends Depends • Increases system reliability; • Algorithms to properly fuse informa-

tions;

on the on the on the • More diverse information captured; • Costs spread by several sensors;

sensors sensors sensors • Compensation of individual sensor

shortcoming;

Table 2.1: Summary of discussed sensor technologies.
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Additionally, a literature study conducted in [37] further details characteristics of individual

sensors used in ADASs and highlights the importance of combining different sensors in order to

achieve better results for several tasks, including object tracking.

2.2 Object Trackers

After having sensor data available, some processing needs to be applied in order to extract the

relevant information for tracking purposes. A very basic definition of object tracking would consist

on estimating the trajectory of a target object as it moves around a scene (in an image plane or 3D

space), inferring about its motion in a sequence of scans. Another definition (in the image domain)

was provided by Smeulders et. al [38] as “tracking (being) the analysis of video sequences for the

purpose of establishing the location of the target over a sequence of frames (time)”.

The tracker thus labels an object in different scans, being able to provide information such

as location, orientation, velocity and shape. As mentioned in Chapter 1, visual tracking is a

fundamental task in the perception pipeline of intelligent vehicles and ADASs and has therefore

been well studied in the last decades, especially in the image domain.

Even with the high number of proposed approaches to handle visual tracking, this topic still

remains a big challenge, with the majority of difficulties arising from changes in object motion,

perceived appearance, occlusion and movement of the capturing camera [39]. Given the high number

of challenging variables, most approaches tend to provide robust solutions to only a given subset of

problems.

There has been extensive research regarding object tracking in the image domain (with important

surveys provided in [38–43], who considered the usage of monocular cameras). With new and

improved stereo matching algorithms, along with the appearance of 3D sensing technologies as

discussed in the previous section, object tracking in 3D environments became a viable alternative.

Usually, object trackers are composed by three major modules: defining the representation of the

target object, searching for that target object in the scene and updating the correspondent object

model. In order to be able to update object information (namely its model representation) Yang et.

al [39] have proposed the categorization of object tracking approaches into 2 groups: generative and

discriminative approaches.

The first category consists of methods tuned to learn the appearance of an object (later this

appearance model will be used to search for the region that correspond to the next location of the

object). The second category focuses on methods otherwise designated as “tracking-by-detection”

(such as the approach considered in [11]) where the object identified in the first scan is described by

a set of features, the background by another set of distinguishing features, and a binary classifier is

used to separate them (updating the appearance model afterwards). Generative approaches are

considered class-independent and are suitable for usage with a wider range of object classes.
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One example of scene understanding was developed by Geiger et al. [11], where the proposed

method estimates the layout of urban intersections based on a stereo vision setup alone. They

required no previous knowledge, inferring needed information from several visual features describing

the static environment and objects motion. One conclusion of this method was that the particular

cases of occupancy grids, vehicle tracklets and 3D scene flow proved to be the most meaningful cues

for that purpose. Since visual information is also subject to some ambiguities, a probabilistic model

to describe the appearance of the proposed features was implemented, which in turn also helped

to improve the performance of state-of-the-art object detectors (in both detection and orientation

estimation).

With the focus of the present thesis being on 3D object tracking algorithms a more detailed

review of current correspondent literature will thus be presented in the next section.

2.2.1 3D / Fusion Trackers

Tracking theory in the current automotive research has been subject to numerous changes,

with new dynamic object tracking methods using LiDAR data becoming more common.

Detection and Tracking of Moving Objects (DATMO) (an expression originally coined by [44])

in dynamic environments has also been the subject of extensive research in a near past. Generative

object tracking methods attracted more attention for object tracking in 3D environments. The

considered object model is often updated online to adapt to appearance variation, as mentioned.

A comparative study on tracking modules (using LiDAR) was developed by Morton et al. [45].

The focus of this study was on object representation throughout the tracking process. As the

authors noted, only the case of pedestrian tracking was considered. The considered baseline method

was a centroid (or centre of gravity) representation for an object. This baseline was compared

against 3D appearance as the object representation. In addition, and to verify the effect filtering

had in object tracking (if any), the authors used either no filter or a Constant Velocity Kalman

Filter (CV KF). To associate new measurements to already existing tracklets, the authors relied on

the Hungarian method for centroid association and Iterative Closest Point (ICP) for 3D appearance

representation association, respectively. According to their results, the best object representation

from those considered in the study was the simplest (centroid) representation, as it provided the

lowest location errors when tracking the pedestrians. It was additionally seen that applying a KF

yielded better results than no filtering at all (the error in speed measurements was significantly

higher when no filtering was considered).

Held et. al [46] presented a method that combined LiDAR and data from images to obtain

better object velocity estimates, whether moving or stationary. In this approach, fusion was done

at an earlier stage since they combined a 3D PCD with the 2D image captured by the camera

(using bilinear interpolation for estimating the 3D location of each pixel) to build an upsampled
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coloured 3D PCD. For tracking purposes, a colour-augmented search algorithm was used for aligning

successive PCDs, effectively tracking the object. A direct outcome of their research was that using

an accumulated (and reconstructed) dense model of the object yields better velocity estimates,

since the location error is also lower. Two versions of the approach are provided, with one of them

suited for offline behavior modelling and the other one suited for real-time tracking (although less

accurate). Like in the approach proposed on this thesis, [46] assumes that initial information about

the object (such as position) is given. Contrary to Held’s early fusion proposal, a later fusion is

considered in our proposed approach, where the object is detected and localized in the raw 3D PCD

and in the 2D image separately (with some connected data) and later the 2D/3D object locations

are fused and tracked.

Based on a different idea, Dewan et al. [47] developed an approach for object detection and

tracking that required no information about the object model nor any other source of previous

information. Differently from common model-free approaches who rely on detecting dynamic objects

(i.e. based on perceived changes in the environment), distinct objects were segmented using motion

cues. In this sense, both static structures and dynamic objects can be recovered based on detected

motion alone. In order to estimate motion models, Random Sample Consensus (RANSAC) [48]

was used. A Bayesian method was proposed to segment multiple objects. One problem with this

approach however is that pedestrian detection and tracking is not possible due to lower number

of detected object points and the slower movement not suitable for motion cue based approaches.

The focus of the proposed approach in this thesis is however on single object tracking, and strongly

relies on the initial considered model for the object (namely, the 3D BB). Unlike the considered

study, the presented approach is a general object tracker capable of tracking pedestrians as well as

cyclists and other vehicles.

Another possible way to detect and track objects is through segmentation. Vatavu et al. [49]

designed an approach to estimate the position, speed, and geometry of objects from noisy stereo

depth data; in opposition to previous methods, the setup they considered does not consist of a

LiDAR sensor, rather relying on a stereo vision setup. They built a model for the (static) background

by combining information about ego vehicle locations (obtained from an INS) and a manipulated

representation of the 3D PCDs. The model consists of a 2.5D elevation grid (or Digital Elevation

Map (DEM)). Next, obstacles were segmented through the extraction of free-form delimiters of the

objects (represented by their position and geometry). Lastly, these delimiters were tracked using

particle filters. Since the delimiters are considered to have free-form, and thus subject to slight

changes between scans, KFs were also used to update the delimiters’ models.

In another attempt to solve the problem of generic object tracking, Ošep et al. [50] made use

of stereo depth scene information to generate generic object proposals in 3D for each scan, and

keep only those that can be tracked consistently over a sequence of scans. The considered 3D PCD
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was generated from the disparity map obtained from the stereo camera setup. To do so, a two-

stage segmentation method was suggested to extract aforementioned (multi-scale) object proposals

followed by multi-hypothesis tracking of these proposals. The two steps in the segmentation are a

coarse supervised segmentation (removing non-object regions corresponding to known background

categories) and a fine unsupervised multi-scale segmentation (extracting scale-stable proposals from

the remaining regions in the scene).

Another approach was proposed by Asvadi et al. [51], where generic moving objects are detected

and tracked based on their motion. The considered scene is obtained from a 3D LiDAR sensor

mounted on top of a vehicle that can either be stationary or moving. Data points corresponding to

the road are removed, and the remaining data is mapped into a static 2.5D grid map of the local

environment. Another motion 2.5D grid is obtained through comparison between the last generated

2.5D elevation map and the static grid map. A mechanism based on spatial properties was also

implemented that suppressed false detections due to small localization errors. In addition, and

taking into consideration the 2.5D motion grids, tracking of a given object could then be obtained

by fitting a 3D BB to segmented motions (detected motions were segmented into objects using

connected component morphology) and keeping track of that 3D BB using data association and

applying KF.

In Choi et. al [52] a tracker was proposed that took into consideration only LiDAR data.

Similarly to other works such as [51] ground removal was applied so that only on-ground points

were processed. A Region of Interest (ROI) was defined so that only objects inside that region

were considered candidates for tracking. The remaining information is then clustered into segments,

representing the different types of objects in the environment. Since the approach was suited for

multi-target tracking, the problem of interconnected dependency between geometric and dynamic

properties was solved by using a model based approach that used object geometry to eliminate

the ambiguity between shape and motion of the object (instead of typical approaches where it is

used for classification). Shape and motion properties for a tracked object were estimated from the

LiDAR data and interpreted as a 2D virtual scan paired with a Rao-Blackwellized particle filter

based on [53]. However, due to computational costs, the particle filter was later substituted by a

KF.

Miyasaka et. al [54] also relied on LiDAR information to estimate ego vehicle motion, build and

update a 3D local grid map and detect and track moving objects. To estimate ego-motion, an initial

estimation is provided by ICP along with motion parameters. These parameters are used as an

initial guess in the second step. The last available range scan is matched onto the local (denser) map

and map-matching provides the final parameters. Candidate moving object points are extracted as

either outlier in the ICP method, points in free-space in the occupancy grid map or points derived

from the unknown space. To divide the points into possible objects, a clustering algorithm was
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applied and dynamic points can be considered to produce candidate dynamic objects. Tracking is

then applied by matching and association algorithms, where an Extended Kalman Filter (EKF) was

used. An object tracked for more than a minimum threshold of frames was considered to be moving.

Competitions such as the DARPA Urban Challenge have contributed to the arrival of interesting

vehicles capable of navigating urban environments autonomously. To compete in the challenge,

teams underwent a series of tests, with one such test being the development of a good technical

paper describing how they would implement their approach. From an initial pool of 53 teams, only

11 would qualify for the Urban Challenge Final Event. Some of the best competitors work can be

seen in [28] and [55], whose setups are presented in the following figure.
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Figure 1: Junior, our entry in the DARPA Urban Challenge. Junior is equipped with five different
laser measurement systems, a multi-radar assembly, and a multi-signal inertial navigation system,
as shown in this figure.

RNDF. The RNDF contained geometric information on lanes, lanemarkings, stop signs, parking
lots, and special checkpoints. Teams were also provided with a high-resolution aerial image of
the area, enabling them to manually enhance the RNDF before the event. During the Urban Chal-
lenge event, vehicles were given multiple missions, definedas sequences of checkpoints. Multiple
robotic vehicles carried out missions in the same environment at the same time, possibly with
different speed limits. When encountering another vehicle,each robot had to obey traffic rules.
Maneuvers that were specifically required for the Urban Challenge included: passing parked or
slow-moving vehicles, precedence handling at intersections with multiple stop signs, merging into
fast-moving traffic, left turns across oncoming traffic, parking in a parking lot, and the execution
of U-turns in situations where a road is completely blocked.Vehicle speeds were generally limited
to 30mph, with lower speed limits in many places. DARPA admitted eleven vehicles to the final
event, of which the present vehicle was one.

“Junior,” the robot shown in Figure 1, is a modified 2006 Volkswagen Passat Wagon, equipped
with five laser rangefinders (manufactured by IBEO, Riegl, Sick, and Velodyne), an Applanix
GPS-aided inertial navigation system, five BOSCH radars, two Intel quad core computer systems,
and a custom drive-by-wire interface developed by Volkswagen’s Electronic Research Lab. The
vehicle has an obstacle detection range of up to 120 meters, and reaches a maximum velocity of
30mph, the maximum speed limit according to the Urban Challenge rules. Junior made its driving
decisions through a distributed software pipeline that integrates perception, planning, and control.
This software is the focus of the present article.

Urmson et al.: Autonomous Driving in Urban Environments: Boss and the Urban Challenge • 427

Figure 1. Boss, the autonomous Chevy Tahoe that won the 2007 DARPA Urban Challenge.

lane. For unstructured driving, such as entering/
exiting a parking lot, a planner with a four-
dimensional search space (position, orientation, di-
rection of travel) is used. Regardless of which plan-
ner is currently active, the result is a trajectory that,
when executed by the vehicle controller, will safely
drive toward a goal.

The perception subsystem (described in
Section 4) processes and fuses data from Boss’s
multiple sensors to provide a composite model of the
world to the rest of the system. The model consists
of three main parts: a static obstacle map, a list of
the moving vehicles in the world, and the location of
Boss relative to the road.

The mission planner (described in Section 5) com-
putes the cost of all possible routes to the next mission
checkpoint given knowledge of the road network.
The mission planner reasons about the optimal path
to a particular checkpoint much as a human would
plan a route from his or her current position to a desti-
nation, such as a grocery store or gas station. The mis-
sion planner compares routes based on knowledge
of road blockages, the maximum legal speed limit,
and the nominal time required to make one maneu-
ver versus another. For example, a route that allows
a higher overall speed but incorporates a U-turn may
actually be slower than a route with a lower overall
speed but that does not require a U-turn.

The behavioral system (described in Section 6)
formulates a problem definition for the motion plan-

ner to solve based on the strategic information pro-
vided by the mission planner. The behavioral subsys-
tem makes tactical decisions to execute the mission
plan and handles error recovery when there are prob-
lems. The behavioral system is roughly divided into
three subcomponents: lane driving, intersection han-
dling, and goal selection. The roles of the first two sub-
components are self-explanatory. Goal selection is re-
sponsible for distributing execution tasks to the other
behavioral components or the motion layer and for
selecting actions to handle error recovery.

The software infrastructure and tools that enable
the other subsystems are described in Section 7. The
software infrastructure provides the foundation upon
which the algorithms are implemented. Additionally,
the infrastructure provides a toolbox of components
for online data logging, offline data log playback, and
visualization utilities that aid developers in building
and troubleshooting the system. A run-time execu-
tion framework is provided that wraps around algo-
rithms and provides interprocess communication, ac-
cess to configurable parameters, a common clock, and
a host of other utilities.

Testing and performance in the NQE and UCFE
are described in Sections 8 and 9. During the develop-
ment of Boss, the team put a significant emphasis on
evaluating performance and finding weaknesses to
ensure that the vehicle would be ready for the Urban
Challenge. During the qualifiers and final challenge,
Boss performed well, but made a few mistakes.

Journal of Field Robotics DOI 10.1002/rob

Figure 2.5: Autonomous vehicle examples from the DARPA Urban Challenge in 2007. The setup on the left is

Junior, presented in [28], and the setup on the right is Boss, the winner, presented in [55].

2.2.2 Summary (Object Trackers)

In the current section a brief comparison between the considered approaches is present in Table

2.2, specifying characteristics such as tracking approaches and objects representation and update.

Approach
3D Perception

Sensor

Ego-motion

Estimation

Tracking

Approach

Object

Representation

Object Search

Mechanism

Object Model

Update

[46] 3D LiDAR, Camera INS Generative Coloured PCD CV KF ICP, Accumulation

[47] 3D LiDAR DGPS/IMU Generative PCD Bayesian approach No Update

[49] Stereo Vision GNSS, INS Generative Object Delimiters Particle Filter KF

[50] Stereo Vision V-Odometry Generative Voxel KF and MHT Weighted ICP

[51] 3D LiDAR INS Generative Elevation Grid CV KF and Gating No Update

[52] 3D LiDAR - Discriminative Voxel KF and MHT KF

[54] Multi-Layer LiDAR ICP Generative Voxel EKF No Update

[56] 3D LiDAR, GIS Map INS Generative PCD CV KF No Update

Table 2.2: Summary on considered 3D object trackers.
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In the previous chapter an overview of the current object trackers literature was given, as well

as for sensor technologies. The presented studies highlighted the fact that 3D spatial data processing

has gained attention in fields such as computer vision and robotics, powered by the arrival of new

3D sensing alternatives and new capable stereo matching algorithms. The aforementioned 3D spatial

data comes in the shape of dense 3D PCDs.

In order for intelligent vehicles to understand their relevance and how exactly they characterize

the scene, developed perception systems need to interpret the surrounding environment as well as

perceive objects physical properties.

(a) Sample output point cloud. (b) Zoomed in point cloud.

(c) Sample output RGB image.

Figure 3.1: Input data from 3D and 2D sensors. Both PCD and RGB image correspond to the same scan in a given

sequence from the KITTI dataset. The RGB arrows represent the local (car) reference system.

From the presented sensors, 2D cameras have been widely used for the goal of scene representation;

one of its main advantages is that it provides a very rich and high resolution colour representation.

This in turn provides a very good complement to 3D LiDAR sensors, whose lack of colour information

is one of their main disadvantages.

The proposed framework has thus used both of these technologies, looking into combining highly

accurate 3D LiDAR PCDs with rich and dense 2D RGB corresponding camera images. This data

comes from the conjugation of two sensors: a Velodyne HDL-64E and a PointGrey Flea 2 colour
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camera. These sensors are mounted on the vehicle that provided the KITTI Dataset as explained in

Section 4.1. Additionally, an INS is also used to obtain the location of the ego vehicle. Figure 3.2

shows the considered reference system axes.

v

v v

height (h)

w
idth (w

)

length (l)

Figure 3.2: Object coordinate system in the 3D space [30].

3.1 Approach Formulation

The task of 3D single object tracking can be defined as the estimation of the trajectory of an

object as it moves around a scene (with the ego vehicle either static or moving), with an object

being identified as a 3D BB (with a given width, height and length).

As mentioned in Section 1.2 it is assumed that an initial 3D BB is known, i.e., that a previous

3D object detection or motion detection method has been applied in the reference 3D PCD and that

object characteristics such as location and orientation are provided for the initial reference scan.

3.1.1 Relevant Notation

Input data for the proposed framework will then consist of:

• 3DBB: 3D BB (initial is assumed to be known);

• Ii: RGB image obtained from camera in scan i;

• Li: 3D PCD from LiDAR in scan i;

• LGi : 3D PCD in scan i with ground points removed;

• Pi: Set of 3D points projected in 2D image plane in scan i;

• Ω: Convex-hull of points in P ;

With this information, the tracker will be able to estimate the trajectory of the object, represent-

ing this trajectory as Xi = {X1, · · · , XN} in the 3D world coordinate system. Each element of X

will hence be the {x y z} coordinates of the considered object centroid in a certain instant of time.

3.2 System Overview

In the following figure, a diagram representing the conceptual pipeline of the approach is shown.

It follows the same flow as the diagram presented in Figure 1.1 but presents a more detailed insight.
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3D KF-based Fusion 3D KF-based Tracking

2D to 3D Projection

Initialization in 3D-PCD

Automatic Initialization in 

Image Using Convex-hull

3D MS-based Object Detection and 

Localization in the PCD

2D MS-based Object Detection and 

Localization in the RGB Image

3D-BB

Ω

P

Cpcd

Crgb

C’rgb

C3D

Outputs the object’s:
- Trajectory 

- Velocity estimation

- Predicted location

- 3D-BB in PCD

- Orientation

- 2D convex-hull in Image

Figure 3.3: Major pipeline of the proposed approach. 2D and 3D information is fused and used for 3D tracking of

the objects.

The raw PCD in any given scan is of a form similar to the one present in Figure 3.1b. For the

purpose of object detection, recognition and tracking, it is not desired to take ground points into

consideration, as these can severely hinder the correct results provided by the proposed algorithms.

In the particular case of the presented object tracking approach, removal of ground points is a

particularly important process for the construction of the object model. Without this process, the

constructed object model would be degraded.

In this framework, the process of object tracking starts with a known 3DBB in L1. A new

PCD with no ground points LG1 is obtained. The remaining object points (points from LG1 inside

3DBB) are projected onto the image plane (I1) resulting in a set of projected points, P ∗. The

corresponding 2D convex-hull (Ω) is calculated. It is useful to have Ω since the convex-hull effectively

and accurately segments what are object pixels from non-object (or background) pixels.

Having this information, it is possible to initialize the tracking in both the 3D PCD and 2D

image plane. For tracking purposes a Mean-Shift (MS) based object localizer [57] is run for each

information domain (3D PCD and 2D image) in order to obtain the new object location. Each MS

has different characteristics: to localize an object in the 3D domain, a MS gradient estimation of

those points inside the 3D BB is considered; to localize the object in 2D, and adaptive color based

MS algorithm was applied. After obtaining the new 2D location of the object, its projection is

calculated back onto the 3D domain using bilinear interpolation.

In this approach, and in order to fuse data from two sources of information, a Constant

Acceleration Kalman Filter (CA KF) is considered (measurement fusion model as discussed in [58]).

After this process, another CA KF is used for the purpose of object tracking, as the newly detected

location and orientation are used to initialize the 3D BB in the next scanned PCD.
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3.3 3D Tracking

For the purpose of 3D object tracking, it is common to apply a ground estimation algorithm

to determine what points in the PCD belong to the road and not to objects in the scene. As

aforementioned, the construction of an object model without removal of ground points would result

in a degraded result, since the inclusion of road or sidewalk points would directly impact the centroid

estimation.

3.3.1 Ground Removal

A significant number of points in a typical LiDAR PCD are ground points. By selecting an

appropriate set of features that characterize these points, the corresponding Probability Density

Function (PDF) can be calculated. The notion of a given variable being close to a target value

can be captured by a PDF; the highest (or peak) value indicates the highest probability that the

variable is close to the target value. Hence, the peak value from the computed PDF will indicate

the ground points in the current scan.

To take advantage of this information, a Kernel Density Estimation (KDE) was also applied.

This estimator gauges the PDF of all angles that lie between the ground (XY plane) and the set of

lines passing through the origin point (projection of the LiDAR center of mass onto the ground)

and the end points (remaining points that belong to the PCD).

Considering Θ = {θ1, . . . , θN} 1D angles in the XZ plane for a given PCD (where θi =

arctan(zi/xi)) a univariate KDE estimated can be obtained from

f(θ) = 1
N

N∑
i=1

Kσ(θ − θi) (3.1)

In this expression, Kσ(·) is a Gaussian kernel function that has σ bandwidth, and N is the

total number of points in the PCD. For this model, the ground is assumed to be plane, and the

pitch angle of the ground plane is identified as the peak value θρ in the KDE. Having identified

the ground plane, all points whose z coordinate (height) fall under a given threshold dmin are thus

considered ground points. dmin is chosen as an arbitrarily low value designed to represent a safety

boundary for the process.

To smooth the process of determining the ground plane pitch angle in consecutive scans, an

additional CA KF was used for this estimation. This provides additional robustness and accuracy

to the ground removal process. Given the size of the PCD, outliers are also eliminated by limiting

the angle search area to a gate in the neighbourhood of the predicted value from the KF in the

previous step. If no measurements become available inside the provided gate, the predicted value

from the filter is used. The ground removal process is illustrated in Figure 3.4.
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Figure 3.4: Ground removal process. (a) Computation of the θi angle. (b) KDE of the set of 1D angles Θ with pitch

angle of the ground plane θρ. (c) End result, with detected ground points (red) and points above ground (blue). The

green ellipse shows an example of the ground points extraction for a car. The corresponding car in the image is shown

with a red ellipse.

3.3.2 Detection and Localization

After removing ground points, detection and tracking of the target object can be achieved. To

do so, a MS approach was considered. This iterative procedure, based on a KDE, shift point(s) in a

set by an amount equal to the average of the data points in their neighbourhood.

The MS procedure can be summarized as:

1. Computing the shift vector: Given the known object centroid (centre of the last known

3D BB) as χ, the shift vector between χ and the point set P ′ (points from the current scan

PCD inside previous time step 3D BB) is computed using

mk = χk − µ(P ′) (3.2)

where µ(.) indicates the “mean” function, and k is the iteration index.
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2. Translating the 3D BB: The 3D BB is translated using the shift vector

χk+1 = χk +mk (3.3)

with the shift vector always pointing toward the direction of the maximum increase in the

density.

3. Iterating steps 1. and 2. until convergence: The MS iteratively shifts the 3D BB until

the object is placed entirely within the 3D BB. A centroid movement |mk| less than 5 cm or

a maximum number of iterations equal to 5 are considered as the MS convergence. These

values were chosen after testing performance with different scenarios.

An example of the MS in action can be seen in the figure below: From the initial 3D BB (from

previous scan) and set P ′, a MS was employed to obtain the 3D BB that defines the object in the

current scan.

Figure 3.5: MS procedure in the PCD. The figure on the left represents a bird’s-eye view of the object (cyclist) and

the right figure shows the top view. In this example, the MS convergence (the centroid movement less than 5 cm)

was achieved in three iterations. The darker blue colour represents the initial 3D BB whilst the brighter blue colour

3D BBs show the most recent iterations (with brightest blue equalling the 3D BB when convergence was met).

As mentioned earlier in this chapter, current object position is represented by the centroid of

object points inside the 3D BB. This point model representation is feasible even with a low number

of detected object points, which happens in sparse 3D LiDAR PCDs, specially for objects located

further away from the LiDAR. The resulting centroid after convergence is denoted by Cpcd and

outputted to the projection module.

3.4 2D Tracking

To initialize the object tracking process in the 2D image, the object initially needs to be

detected. To do so, the 3D object points P after ground removal are projected onto the image plane.

In the same manner that a 3D BB was used to describe the 3D object, a 2D convex hull (Ω) was
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chosen to identify the 2D object in the image. Therefore, the convex hull Ω of the projected point

set P ∗ = {p∗1, · · · , p∗n} is then computed. Ω can be defined as the smallest 2D convex polygon that

encloses P ∗. By considering a 2D convex hull it is possible to more accurately segment the object

from the background in comparison with a traditional 2D bounding box. A surrounding area Ω†

is defined automatically by expanding Ω by a factor equal to
√

2 with respect to its centroid, so

that the number of pixels in (Ω† − Ω) (the region between Ω and Ω†) is approximately equal to the

number of pixels inside Ω.

3.4.1 Discriminant Colour Model

For tracking the object in the image domain a discriminant colour model of the object is

created and updated in every new scan. To do so, an RGB histogram of the object is calculated.

The considered pixels for the calculation lie within the Ω region and the (Ω† − Ω) region. Two

colour models are then calculated: one for Ω and one for (Ω† − Ω).

The next step is to calculate the Log-Likelihood Ratio (LLR) of the computed RGB histograms.

The LLR expresses how many times more likely the data are under one model than the other. In

our application, the LLR expresses how much more likely each histogram bin is under the Ω colour

model than the (Ω† − Ω) colour model. This is achieved by knowing that in the LLR positive bins

likely belong to Ω, with negative valued bins likely belonging to (Ω† − Ω). Bins that are shared by

both Ω and (Ω† − Ω) tend towards zero. The positive bins in the LLR are thus used to represent

the discriminant object colour model. The discriminant object colour model can be represented by

<(i) = max
{

log max{HΩ(i), ε}
max{HΩ†(i), ε}

, 0
}

(3.4)

In this representation, HΩ and HΩ† are the computed histograms from Ω and (Ω† − Ω) regions,

respectively, and ε is a small value that prevents either divisions by zero or log of zero operations.

The variable i ranges from 1 to the total number of histogram bins. The discriminant colour model

of the object (<) is normalized and used for object detection and localization in the next frame

using the MS procedure described in the next section.

3.4.2 Detection and Localization

With the location of the object in the previous scan known and described as the shape of

a convex hull (Ω), object detection in the current scan can be achieved using a MS based object

detection and localization from previous known information.

Initially, a confidence map (represented by f) of the Ω region in the previous frame is calculated.

The centroid of this region is obtained and MS process start in this point. The confidence map can

be achieved by replacing the colour value of each pixel in the Ω region by its corresponding bin
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value in the colour model <.

In each iteration the centre of Ω from the previous step is shifted to the centroid of f (the

current confidence map of the object). This centroid can be calculated by

Citer = 1
m

m∑
i=1

fi Ci (3.5)

In this notation, Ci = {ri, ci} denotes the pixel position (row and column) in Ω and m is the

total number of pixels inside the Ω region.

An empirical value of 4 was chosen as the threshold for MS iterations needed to achieve

convergence. If the method achieves centroid movement smaller than a pixel then it is also

considered to have achieved convergence. The computed 2D object centroid after convergence is

denoted by Crgb and outputted to the fusion module. An overview of the detection and tracking

process in 2D can be observed in Figure 3.6.

2D MS Localization 

in the RGB Image

The Discriminant Color Model and 

the Confident Map of the Object

Object and Background 

Convex-hulls

Figure 3.6: MS procedure in the 2D RGB image. The left figure represents both Ω (in blue) and Ω† (in red). The

middle represents the computed < and the correspondent confident map (f). Each non-empty bin in the < is shown

with a circle with a value correspondent to the area of its circle. Circle locations represent the correspondent colour in

the joint RGB histogram. The right figure shows the MS localization procedure, with the brighter blue Ω indicating that

it was computed in the most recent MS iteration. The final Ω centroid is shown as a yellow point.

3.4.3 Adaptive Updating of < Bins

As mentioned in Chapter 2, dense 2D RGB images are very informative. However, they are

sensitive to variations in illumination conditions. In order to adapt the object colour model with

illumination variations (surmounting changes in the object colour appearance during tracking), a

bank of 1D CA KFs model was applied.

The goal of these KFs is to estimate and predict < bin values for the next frames. A new

1D CA KF is initialized and associated for each newly observed colour bin. When the bin values

become zero or negative, the corresponding CA KFs are removed. Based on a series of tests where
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8× 8× 8 histograms (512 bins) were considered, the average number of utilized KFs in each frame

were about 70 (or 14% of the total number of bins).

Histogram KF The following is the considered CA KF formulation used for the updating

process of the object histogram. Each time a new colour is observed a CA KF is initialized. The

corresponding state vector is based on the value of that bin (between 0 and 1)

xk = [binvalue 0 0]T (3.6)

The state transition matrix A becomes

A =


1 dt

1
2d

2
t

0 1 dt

0 0 1

 (3.7)

H was set to

H =
(

1 0 0
)

(3.8)

The histogram CA KFs covariance matrices R, Q and P were set to

R = 0.5; (3.9)
Q =


5 0 0

0 5 0

0 0 5

 (3.10) P =


15 0 0

0 15 0

0 0 15

 (3.11)

Bin Updating For the first scan (and object detection) non empty histogram bins are found,

with a KF initialized for each. In the next scans, a search for non empty histogram bins is also

applied. If an empty bin in the previous scan has a value in the current scan, a KF is initialized for

that bin. If a non empty bin in the current scan was also not empty in the bin before, its value must

be updated through an iteration of the KF, with the current value in the bin used as a measurement.

A last case may happen when a previously non empty given bin no longer has a value, resulting in

the corresponding KF being deleted.

3.5 2D/3D Projection

The computed 2D location of the object in the RGB image (Crgb) is projected back to 3D

(C ′rgb). To do so, a method described by Held et. al [46] for PCD upsampling was used. In our

approach however, the method is used solely to project Crgb back to the 3D LiDAR space.

Having found the 2D centroid, the nearest projected points (inside the convex hull) in each

of the four quadrants are found (f1, f2, f3 and f4 for upper left, upper right, lower left and lower

right quadrants, respectively). Bilinear interpolation using these projected points is obtained by
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first linearly interpolating between the points on top (pt), then the points below (pb) and finally

interpolating between the previous two interpolated positions, obtaining the position of the image

pixel p (see Figure 3.7).

pt = f1 + f2
2

pt = f3 + f4
2

p = pt + pb
2

Figure 3.7: Bilinear interpolation diagram.

Fractions of the horizontal distances (s1 and s2) between p and each neighbouring pixel pair are

obtained from

s1 = pu − f1,u
f2,u − f1,u

s2 = pu − f3,u
f4,u − f3,u

with (u,v) being the pixel horizontal and vertical coordinates. Bilinear interpolation can then be

defined as

pt = f1 + s1(f2 − f1)

pb = f3 + s2(f4 − f3)

s3 = p− pb
pt − pb

pinterpolated = pb + s3(pt − pb)

The resulting pinterpolated is calculated in both pixel space and in 3D coordinates. pinterpolated is

close to p in pixel space and the corresponding 3D location is then considered to be the 3D location
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(C ′rgb) of the 2D computed centroid (Crgb).

One example of the bilinear interpolation process can be seen in Figure 3.8 for a tracked van.

Figure 3.8: Bilinear interpolation process. The black dot represents Crgb, with the four quadrants represented in red,

green, blue and yellow points. The dot in magenta is the calculated interpolation point (in 2D), with the corresponding

3D coordinates obtained from the previous formulation.

3.6 Fusion and Tracking

After converting the object 2D location in the RGB image into the 3D space, two different 3D

centroids are available. To fuse both centroids, a CA KF was applied. After the fusion, another CA

KF was used to filter and track the resulting fused 3D centroid along time. A visual representation

of the data flow (centroid wise) is presented in Figure 3.9, taking into consideration the two centroids

outputted from previous modules. On the following section both fusion and tracking KFs are

explained.
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Figure 3.9: Overview of the tracking system. The fusion and Kalman tracking modules are based on CA KFs.

3.6.1 2D/3D Fusion for Improved Localization

To integrate information from two different sensors (after some processing) a KF based fusion

was considered. Based on the measurement fusion model from Gao et. al [58], a KF is applied to

integrate the centroid from the 2D tracking module C ′rgb with the computed 3D object location in

the PCD Cpcd. An assumption of identical sample rates between sensors was made. The sensors are

also assumed as independent of each other. To define the fusion model, object dynamics is first

represented as

xk+1 = Fkxk + Γkvk

where xk is the state vector at time k and vk the state noise such that E[vk] = 0 and E[vkvTl ] = Qkδkl.

The corresponding measurements are

zmk = Hm
k xk + wmk ,m = 1, 2

with zmk being the measurement from sensor m at time k and measurement noises wmk being zero

mean, white noise with covariances Rmk and mutually independent.

The measurement fusion is done at state vector level as an augmented observation vector,

combining z1
k and z2

k into the augmented observation vector

zk = [(z1
k)T (z2

k)T ]T

Assuming that Hk = [(H1
k)T (H2

k)T ]T and wk = [(w1
k)T (w2

k)T ]T a new measurement equation can
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be obtained as

zk = Hkxk + wk

Finally, and since statistical independence was assumed, the merged measurement noise wk is

defined as

Rk =

R1
k 0

0 R2
k


The estimate of the state vector is obtained by conventional Kalman filtering.

The considered dynamics of the object and the fused measurement model of the object localizers

(both in 3D and 2D in the presented approach), as well as the used notation and variable meaning,

are described below.

Fusion CA KF The following is the formulation considered for the CA KF used for fusing

information (centroids provided by 3D MS and re projected 2D MS). The state vector composed as

xk = [xproj2Dk yproj2Dk zproj2Dk x3Dk y3Dk z3Dk ]T (3.12)

The state transition matrix A becomes

A =



1 dt
1
2d

2
t 0 0 0 0 0 0

0 1 dt 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 dt
1
2d

2
t 0 0 0

0 0 0 0 1 dt 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 dt
1
2d

2
t

0 0 0 0 0 0 0 1 dt

0 0 0 0 0 0 0 0 1



(3.13)

H was set to

H =



1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0

1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0


(3.14)
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Fusion CA KF covariance matrices R, Q and P were set to

R =



5 0 0 0 0 0

0 5 0 0 0 0

0 0 5 0 0 0

0 0 0 5 0 0

0 0 0 0 5 0

0 0 0 0 0 5


(3.15)

Q = P =



1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1


(3.16)

In order to obtain a better initial prediction and to maintain the internal coherence of the system,

a linear least squares method is used to estimate the initial state based on the initial observation.

Doing so is equivalent to solve a system of linear equation in the shape of Ax = B for x with left

matrix division (in this case, solve Hxk = xkinitial for xk).

The dynamics of the object and the fused measurement model are then given by Equations

(3.17) and (3.18) respectively.

xf = AF · xf−1 (3.17)

zf = HF · xf (3.18)

For fusion purposes, the augmented measurement vector zf is then given by

zt =
[
(Cpcd)T (C ′rgb)T

]T
(3.19)

The end result of this integration is a fused 3D centroid (noted as C3D). By having an approach

based on a KF, it is possible to give a higher weight to a method that performed better in the recent

past iterations, thus providing a more accurate estimate than applying each method individually.

3.6.2 3D Object Tracking

For the purpose of tracking the final object estimation, another CA KF was used. This

assumption is useful to model target motion when it is believed to be smooth in both position and

velocity changes. For the purpose of object tracking in urban scenarios, 3D objects (read pedestrians,

cyclists or vehicles) are subject to changes in instant velocity during a sequence of scans.
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Object Tracking CA KF The following is the formulation considered for the CA KF used

for object tracking. In this case, object representation is defined in a state vector composed as

xk = [xk yk zk ẋk ẏk żk ẍk ÿk z̈k]T (3.20)

Since object representation is done as a point model, the centroid of the object is located in the

{x y z} coordinates. {ẋk ẏk żk} and {ẍk ÿk z̈k} represent object velocity and acceleration in each

coordinate, respectively.

The state transition matrix A becomes

A =



1 dt
1
2d

2
t 0 0 0 0 0 0

0 1 dt 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 dt
1
2d

2
t 0 0 0

0 0 0 0 1 dt 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 dt
1
2d

2
t

0 0 0 0 0 0 0 1 dt

0 0 0 0 0 0 0 0 1



(3.21)

with dt being the sampling rate. In the case of Velodyne LiDAR this sampling rate is 10 Hz (ten

scans every second). The PointGrey camera has been calibrated to acquire images at the same rate.

H was set to

H =


1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0

 (3.22)
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And covariance matrices R, Q and P were set to

R =


1 0 0

0 1 0

0 0 1

 (3.23)

Q = P =



3 0 0 0 0 0 0 0 0

0 3 0 0 0 0 0 0 0

0 0 3 0 0 0 0 0 0

0 0 0 3 0 0 0 0 0

0 0 0 0 3 0 0 0 0

0 0 0 0 0 3 0 0 0

0 0 0 0 0 0 3 0 0

0 0 0 0 0 0 0 3 0

0 0 0 0 0 0 0 0 3


(3.24)

Equations (3.25) and (3.26) represent the discrete time process model and the measurement

model of the system, respectively

xt = AT · xt−1 (3.25)

zt = HT · xt (3.26)

To eliminate outliers and increase robustness of the process, the search area is limited to a gate

in the vicinity of the predicted KF location (available from xt = AT × xt−1). If no measurement is

available inside the gate area, the predicted value given by the KF is used.

The result of the proposed algorithm is the estimated trajectory of an object in the 3D world

coordinate system, its current estimated velocity (obtained directly from the tracking Kalman filter),

and the predicted location of the object in the next time step. The object orientation is achieved

by subtracting the current estimated location from its previous location. The object region in the

image is obtained by computing the 2D convex-hull of the projected object points (the points inside

the 3D-BB) into the image.
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This chapter outlines the considered dataset for testing purposes, as well as the experimental

results obtained during the development of this thesis. In the previous chapter a detailed description

of the proposed approach was made, highlighting the behaviour of each system module and its

outputs. The results obtained from running this approach on selected test cases (from the KITTI

dataset) are presented in this chapter. Section 4.1 details the KITTI dataset and how data acquisition

was performed and presents the considered test sequences. Section 4.2 explains the evaluations

metrics used to obtain the practical results of the implementation. Section 4.3 presents two baseline

methods that the proposed method was tested against. Finally, Section 4.4 presents the resulting

data obtained by applying each of the considered methods and makes a critical analysis of the

results.

4.1 Dataset

The developed approach was tested on sequences extracted from the KITTI Dataset [30]. This

dataset was obtained by driving around the mid-size city of Karlsruhe, in both rural areas and

on highways. The information present in the dataset was obtained using a Velodyne 3D LiDAR

and a high-precision INS (GPS/IMU). The Velodyne HDL-64E [27] rotates at 10 Frames Per

Second (FPS) counter-clockwise with vertical resolution of 64 layers, angular resolution of 0.09◦

and 2cm distance accuracy. Both the horizontal and vertical fields of view are 360◦ and 26.8◦,

respectively, and the maximum range is 120m. The Velodyne point cloud is compensated for the

vehicle ego-motion. The inertial navigation system is a OXTS RT3003 and GPS navigation system

[59], with a frame rate of 100Hz and a resolution of 0.02m/0.1◦. The color cameras are PointGrey

Flea 2 global shutter cameras [19] with a maximum resolution of 1384 × 1032 and a maximum

capture rate of 15 FPS.

When spinning at 10 Hz, Velodyne’s HDL-64E model produces about 2.5 million distance

estimations per second. Sensor coverage is dependant on the mounting position, which directly

influences the size of the blind area around the vehicle, the fixed angular resolution, and the

reflectance of the measured targets. It should also be noted that the HDL-64E rolling shutter causes

a deformation in the resulting data as noted by [60]; when travelling straight at 10 m/s (i.e. 36

km/h) and operating at 10 Hz, the reference system moves 1 m between the start and the end of

the scan, producing even larger errors when other objects move as well.

4.1.1 Synchronization

With every sensor mounted on the vehicle having different acquisition rates, it was necessary

to have the information coming from the different sensors synchronized. In [30] it is explained that
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Figure 4.1: Recording platform for the KITTI Dataset. The base platform is a Volkswagen Passat B6, which has

been modified with actuators for the pedals (acceleration and brake) and the steering wheel. The data is recorded using

an eight core i7 computer equipped with a RAID system, running Ubuntu Linux and a real-time database [30].

timestamps of the Velodyne 3D Laser scanner were used in order to set it as the reference and

thus consider each LiDAR spin as a frame. The cameras were also triggered when the LiDAR is

facing forward. For INS synchronization a collection of information with the closest time stamp to

the LiDAR time stamp was done (worst-case time difference of 5 ms between data from the two

sensors).

4.1.2 Dataset Sequences

In the KITTI Dataset objects are identified by a tracklet. This is mainly due to the fact that

the dataset is more focused towards the evaluation of data association approaches. To evaluate

the considered approach (as well as two generative baseline approaches described in literature for

comparison) tracklet information alone is not useful on its own. Hence, and instead of using the plain

tracklets provided, the tracks of a selected number of objects were considered (for as much frames

in the sequence without full occlusions as possible). For the purpose of evaluation 20 annotated

sequences were selected to evaluate the performance of the mentioned approaches. The general

specifications of each sequence as well as the challenging factors they face are reported in Table 4.1.

In this table, information for each sequence is described based on a number of characteristics.

These include existing number of frames, object type (C for car, Y for cyclist and P for pedestrian),

object and ego vehicle status (M for moving and S for stopped) and the scene conditions (either being

characterized as either roads on urban (U) or alleys/avenues in downtown (D) areas). Information

about the initial 2D BB width and height (in pixels) and 3D BB width, height and length (in

meters) is also present. Regarding the challenging factors of each sequence, four major categories

were chosen: objects undergo occlusion (OCC), object pose varies (POS), the distance between

ego vehicle and target object varies (DIS) and the relative velocity between ego vehicle and target
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ID
Num.

Frames

Object

Type

Object

Status

Ego

Status

Scene

Condition

2D BB

Width

2D BB

Height

3D BB

Height

3D BB

Width

3D BB

Length
OCC POS DIS RVL

1 154 C M M U 178 208 1.73 0.82 1.78 * * *

2 154 Y M M U 154 127 2.00 1.82 4.43 * *

3 144 P S M U 16 42 1.72 0.73 0.55 *

4 51 C M M U 52 34 1.57 1.65 4.10 * *

5 31 C S M U 52 34 1.45 1.60 4.22 *

6 24 C M M U 30 32 3.43 2.81 7.02 *

7 63 P M M U 16 30 1.63 0.40 0.83 *

8 99 Y M M D 39 39 1.81 0.59 1.89 * * *

9 41 P M M D 25 42 1.53 0.61 0.73 *

10 323 Y S M U 25 38 1.72 0.78 1.70 *

11 188 C M M U 30 21 1.44 1.74 4.23 * * *

12 41 P M S D 70 105 1.63 0.66 0.89 *

13 132 P M S D 43 72 1.89 0.84 1.05 * *

14 112 P M S D 33 66 1.84 0.78 1.03 * *

15 45 P M S D 196 224 1.64 0.55 0.94 *

16 264 C M M U 28 24 1.40 1.54 3.36 * *

17 71 P M M D 89 124 1.61 0.91 0.91 *

18 125 P M M D 36 62 1.64 0.88 0.49 * *

19 45 P M M D 29 58 1.67 0.70 0.94 * *

20 188 P M M D 31 67 1.76 0.76 1.01 * *

Table 4.1: Detailed information and challenging factors for each sequence.

object is also subject to changes (RVL).

The first frame of each selected sequence can be seen in Figure 4.2. The initial 2D BB (obtained

from the projection of the initial 3D BB onto the image) is also present to identify the target object.

Figure 4.2: Initial frames from the selected sequences. In a left-right, top-bottom manner, this figure represents the

initial frame from each of the 20 sequences presented in Table 4.1. The displayed 2D BB in red is the projection of the

initial ground truth 3D BB onto the image.
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4.2 Evaluation

In order to evaluate the presented method and the baseline methods some metrics were defined.

They contemplate the error distance between the calculated and ground-truth centroids (in 3D and

2D), as well as the difference in pose (2D angle since only yaw rotation is considered) and instant

velocity estimations. Additionally, and since all methods output objects 3D BBs, an overlap success

metric is also presented.

4.2.1 Quantitative Evaluation Metrics

Localization Estimation Evaluation In the 3D case, the average centroid location error

was computed for three methods: 3D-KF, 3D-MS and the proposed method (3D-Fusion). To

evaluate the centroid location error in 2D, the resulting 3D BBs of the 3D tracking methods were

projected into the image in order to compute and compare the corresponding 2D BBs. This metric

is computed as the Euclidean distance between the calculated 3D (or 2D) centroids from the 3D (or

2D) ground truth. The average centroid location errors in 3D and 2D are given by Equation (4.1)

and Equation (4.2), respectively

E3D = 1
N

N∑
i=1

√
(xi − xgi )2 + (yi − ygi )2 + (zi − zgi )2 (4.1)

E2D = 1
N

N∑
i=1

√
(ri − rgi )2 + (ci − cgi )2 (4.2)

In this representation, {ri ci} refer to the 2D computed centroid and {rgi c
g
i } denotes the 2D

ground truth centroid. {xi yi zi} indicates the 3D centroid of the detected 3D BB. Similarly,

{xgi y
g
i z

g
i } represents the 3D centroid obtained from ground truth. N is the total number of

frames/scans in the given sequence.

Orientation Estimation Evaluation The ground truth orientation of the object is given

only by the yaw angle (The yaw angle describes the direction of the object, given by rotation around

Y-axis in camera coordinates in the KITTI dataset [30]). The orientation error can be computed by

Eϕ = 1
N

N∑
i=1

∣∣∣∣∣arctan |
−→ϕ ×−→ϕ g

−→ϕ · −→ϕ g
|
∣∣∣∣∣ (4.3)

−→ϕ g is the ground-truth orientation of the object as seen in Figure 4.3.

Ego

g

Target

Figure 4.3: Pose error representation.
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Velocity Estimation Evaluation To estimate the instant velocity error, a simple subtraction

between the current velocity estimated as the norm of the three velocity components and the ground

truth velocity in the same frame is calculated (either on km/h or m/s). The average absolute error

can be thus represented by

Eϑ = 1
N

N∑
i=1
| ϑ− ϑg| (4.4)

Overlap Success Evaluation The overlap success rate (also referred to as the intersection-

over-union metric) in 3D can be defined as the volume between the computed 3D BB and the

ground truth 3D BB. A visual representation can be found in Figure 4.4.

To calculate the intersection between two 3D BBs, the overlapping area between the top-down

2D projection of the 3D BBs is obtained (overlapA). Afterwards, and given that each 3D BB base

might be at different heights, the difference between the height of the obtained 3D BB (fob) and

the ground truth 3D BB (fgt) is calculated. The considered height is then ĥ = h − |fob − fgt|.

The intersection volume is obtained by having Intervol = overlapA × ĥ. The union volume can be

calculated based on the total and intersection volumes as Unionvol = (2× 3D BBvol)− Isectvol.

Figure 4.4: Bounding boxes overlap calculation.

The overlap percentage in a given frame can be given by

O3D = Intervol
Unionvol

× 100 (4.5)

In order for an object tracker to be considered correct, the overlap ratio O3D must exceed a standard

threshold of 25% [61–63]. The average of the overlap ratio along the sequence can be used as a

metric for the tracking performance of each approach.

4.3 Baseline Methods

For evaluation purposes two generative 3D object tracking methods were implemented as

baselines for the evaluation purpose. These baseline methods take LiDAR PCDs as the input

and, like in the proposed approach, the ground points are removed. The initial position of the

object 3D BB is again also known and its size assumed constant. Additionally, the point model

representation was also considered.
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4.3.1 Baseline KF 3D Object Tracker (3D-KF)

A 3D CA KF with a gating Data Association (DA) method is used for tracking of the

object centroid in the consecutive PCDs. Like in the proposed approach, the state of the filter is

xk = [xk yk zk ẋk ẏk żk ẍk ÿk z̈k]T . The discrete time process model and the measurement model of

the system are given by Equations (3.25) and (3.26), respectively. To further eliminate outliers and

provide more reliable information, the search area is limited to a gate (defined as twice the area

of the projection of the object 3D BB onto the ground) near the the predicted KF location from

the previous-step from xt = At × xt−1). If no measurement is available inside the gate area, the

predicted KF value is used.

4.3.2 Baseline MS 3D Object Tracker (3D-MS)

In turn, the baseline 3D MS approach works by iterative repetition of the procedures described

in the cycle present in Section 3.4.2. For the baseline MS method a maximum of 3 iterations was

chosen to be the threshold.

In both cases, the object orientation is achieved by subtracting the estimated current and the

previous location of the object (resulting in a vector pointing towards the direction of movement),

with the velocity estimation being obtained by subtraction of the current and previous centroid

over the time step.

4.4 Results

In the previous sections, the KITTI dataset was described, and information about the selected

sequences was detailed in Table 4.1 and Figure 4.2. The evaluations metrics used for the evaluation

of the proposed methods were also described. In the present section, the evaluation results are

presented in Table 4.2 for the proposed fusion, baseline KF and baseline MS approaches, respectively.

In these tables, for each sequence (S#), the errors are discriminated as distance to object ground

truth location in 3D (E3D) in meters and 2D (E2D) in pixels, difference to ground truth pose (Eϕ) in

radians and to velocity (Eϑ) in km/h. The average 3D BB overlap success (Ō3D) in percentage and

data processing rate or runtime per frame (Rtime) in FPS are also displayed. These 20 sequences

are composed by a total of 2295 scans.

In the table, for the baseline KF method, a dashed row (—) means that in addition to losing track

of the target object, no points from the PCD were detected inside the gating area and thus numerical

calculations inside the tracker failed. In these cases, no error data is considered. Consequently, such

sequences for the baseline KF method will not be represented in the figures.

41



4.4.
R

ESU
LT

S
C

H
A

PT
ER

4.
EX

PER
IM

EN
TA

L
R

ESU
LT

S

S# E3D E2D Eϕ Eϑ Ō3D Rtime E3D E2D Eϕ Eϑ Ō3D Rtime E3D E2D Eϕ Eϑ Ō3D Rtime

1 0.304 9.663 0.412 0.561 61.040 4.857 0.210 9.186 0.287 5.118 68.208 11.647 — — — — — —

2 1.979 11.762 0.413 1.555 29.831 5.650 1.845 19.196 0.443 5.940 30.556 12.183 16.794 465.322 0.799 28.774 1.432 12.346

3 0.233 6.414 1.467 0.434 40.310 5.193 0.155 7.221 1.885 0.091 52.023 6.271 0.182 29.133 1.696 0.902 91.832 6.610

4 1.002 758.314 1.281 3.291 34.849 2.408 0.910 1340.386 2.079 3.161 33.276 6.060 13.063 1549.315 1.365 16.968 7.522 5.964

5 0.784 11.190 1.333 2.090 25.418 3.742 0.771 19.650 1.721 -2.477 25.098 6.384 11.754 316.650 1.427 3.041 4.887 6.394

6 1.715 29.824 0.109 24.895 37.620 4.065 2.239 25.029 2.837 3.366 32.808 6.913 8.900 164.293 2.090 53.390 29.794 6.511

7 0.311 4.784 0.147 0.700 40.977 5.632 0.249 4.580 1.583 -0.002 46.584 7.552 0.500 11.811 1.439 5.394 56.609 7.689

8 0.626 10.918 0.190 19.934 41.914 4.457 0.528 12.840 0.452 23.549 45.937 6.451 — — — — — —

9 0.227 10.764 0.485 1.421 49.123 4.231 0.340 19.309 0.317 0.773 32.324 6.561 0.274 12.194 0.219 5.765 82.287 6.175

10 0.596 21.767 1.483 -0.571 25.427 5.135 0.571 22.888 1.639 -2.591 26.498 6.907 9.531 242.133 1.648 0.451 1.214 6.837

11 1.891 15.824 0.837 21.273 19.037 7.622 19.293 315.599 1.777 19.996 1.283 13.404 27.349 459.618 1.683 32.227 0.731 12.910

12 0.407 13.727 0.222 1.377 39.937 3.853 0.186 15.129 2.502 1.390 58.118 6.426 0.632 46.630 2.536 5.914 52.303 6.838

13 0.227 12.201 0.220 0.395 58.834 4.092 0.233 17.468 2.289 1.943 59.366 8.114 1.290 52.518 2.317 7.575 19.287 13.229

14 0.234 9.532 0.175 0.284 58.225 6.398 0.181 9.486 2.396 1.504 65.096 12.777 2.956 182.408 2.341 6.933 5.216 7.516

15 0.184 12.702 0.215 2.112 55.894 3.255 0.104 8.964 1.098 1.745 71.949 6.330 — — — — — —

16 1.483 14.441 0.230 0.811 27.938 3.403 1.368 8.101 0.054 3.543 30.713 6.614 — — — — — —

17 0.233 17.806 0.200 0.565 57.456 3.436 0.161 13.633 0.167 0.646 67.605 6.110 2.229 254.426 0.646 5.896 14.849 6.297

18 0.204 12.005 0.240 0.802 55.966 4.976 0.189 10.834 0.223 1.243 58.793 8.148 — — — — — —

19 0.140 4.822 0.123 1.575 69.513 4.345 0.103 4.515 0.183 0.707 75.319 5.787 2.424 24.296 0.425 5.964 3.548 5.422

20 0.179 24.363 0.151 0.279 64.255 3.386 0.159 17.848 0.332 1.021 67.532 10.641 0.819 46.243 0.347 5.713 50.177 5.744

Table 4.2: Error results for the proposed approach (left), baseline MS (middle) and baseline KF (right).
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As stated in Equation (4.2) the 2D location error is based on an Euclidean distance. While low

on average, the proposed method presents a higher error value in sequence 4. This is due to the

fact the 2D estimated and ground truth centroids are obtained by projecting the estimated and

ground truth 3D BB onto the image and then obtaining the centroid of the corresponding 2D BBs.

However, in sequence 4, the target object moves close to the ego vehicle in the opposite direction,

and the projection of the 3D BBs is not correctly done, leading to the calculated 2D centroids not

correctly representing the output of the tracker.

The proposed method processes incoming data at an average rate of 4.5 FPS, and thus is not

suited for real-time applications (data acquisition is done at a rate of 10 FPS). This data was

obtained by running the approach on a Windows 10, 64-bit, 2.3 GHz Intel® Core™ i7 3610QM

processor laptop with 6GB of RAM in Matlab R2015b (in a simulation environment). However,

both baseline methods also perform data processing, on average, below the 10 FPS threshold to

belong to real-time processing applications (8.06 FPS for the baseline MS and 7.77 FPS for the

baseline KF when it does not fail). A dedicated implementation in a language such as C++ could

potentially accelerate the process up to a point where the framework became usable in real-time

systems.

The critical module of the proposed approach in terms of computational power is the one

responsible for the 2D tracking, because it has to keep track of the object colour histograms,

initializing, updating or removing them for each occupied cell KF, recalculating the confidence map

for each frame. In addition, and instead of the 2D MS tracking module for the image domain, well

known computer vision based object trackers such as SCM [64] and ASLA [65] were considered.

These approaches have also been used in benchmarks such as the Visual Tracker Benchmark [66].

However, SCM and ASLA alone run at about 1 and 6.5 FPS, respectively; 3D LiDAR based solution

generally have superior performance over approaches in the computer vision field since both the

ego vehicle and target object(s) are often moving. These size and pose changes, also reflected on

the captured RGB images, can mislead purely visual object tracker approaches. By mapping the

3D object points onto the image, colour information about the object is kept and a robust 2D

object tracker was implemented. In addition, some of the computation time is also due to utilizing

non-optimized built-in Matlab functions such as inpolygon that require more computation time.

In Figures 4.5 to 4.8 a graphical comparison of each result for each sequence is done. Figure 4.9

represents the percentage of scans for which the proposed method was considered to be successful

according to the overlap success metric given in Equation (4.5).
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Figure 4.5: Location error comparison plot (in meters). The proposed fusion approach produces in most cases a

smaller location error than the baseline methods (with few exceptions for the baseline MS).

The proposed approach is able to provide relatively low average location errors for all sequence,

with the highest (average) location error of 1.979m for sequence 2 (in which the target object is a

van). In this same sequence, the lowest average error was obtained by the baseline MS at 1.845m,

with the highest average error being 16.794m provided by the baseline KF.

In addition to the cases identified by a “—” in Table 4.2, the baseline KF provided the worst

results all around, with the exception being sequence 9 where the average location error was lower

than the one provided by the baseline MS (as well as the average overlap success for that sequence);

however, the difference is not significant. One of the reasons as to why this might happen can be

related to the gating area; having a fixed size gate (either small or big) does not suit all cases. By

being too small, the associated KF might not have enough target object points to detect, and thus

the predictions would tend to suffer from a “drag” effect, lagging behind the tracked object until it

effectively loses track of the object. On the other hand, a gate too big might produce a different

effect, since the centroid is calculated as the average of all the detected points inside the gating area.

In turn, the proposed approach applies a MS algorithm to keep track of object points, and

further corrects the estimated location based on this observation. Errors based on the proposed

approach and the baseline MS tend to be low and close to each other due to this, with some

exceptions such as presented in sequence 11. In this case, some challenges were verified: the target

object, initially stopped at a stop light and partially occluded, starts moving and turning; the planar

ground assumption made for the ground removal function is not well suited for the slanted road

present in this sequence. However, due to the use of the applied CA KF the proposed approach is

able to track the car, even though with a higher than the average associated location error (with

the average overlap success percentage falling below the defined threshold for all cases).
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Figure 4.6 represents the average pose errors for each method, with the proposed approach

yielding the lowest errors. The associated CA KF makes the proposed approach more robust as it

tends to rely less on the direct observation from the 3D MS module when the object points count is

lower and thus avoiding sudden pose changes in between consecutive scans. Stopped vehicles and

pedestrians offer the greatest challenges when estimating their orientation.
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Figure 4.6: Pose error comparison plot (in radians). The proposed fusion approach handles pose variation better

than the baseline methods.

Figure 4.7 shows the average velocity errors. Both instant velocity values, v and vg, were obtained

by having the spatial shift between two consecutive ground truth 3D centroids over the elapsed time

step. Since a point model object representation was considered, changes in the perceived object

pose influence the measured instant velocity estimation even with the application of the CA KF.
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Figure 4.7: Velocity error comparison plots (in km/h). The plot represents the difference between the measured and

ground-truth as an absolute difference. The proposed fusion approach yields a better instant velocity estimation when

compared to the baseline methods.

Figure 4.8 shows the average 3D BB overlap ratios for each method. For this particular metric,

the MS baseline method obtained an overall average better than the other cases; however, just as

demonstrated by the average localization error, in sequence 11 the MS baseline tracker loses the

object.
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Figure 4.8: 3D BB overlap comparison plot (in percentage). An approach yielding an average overlap ratio greater

or equal to 25% is considered as successfully tracking an object.

In Figure 4.9 the 3D BB precision plot is present. Based on the information present in Figure

4.8, the precision plot specifies the percentage of scans for which the method provides an overlap

percentage O3D greater than the defined threshold by cumulatively summing each time that it

happens. In doing so, the method was able to achieve a ratio of O3D > 25% for 77.69% of the scans.
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Figure 4.9: 3D BB overlap precision plot.

4.4.1 Qualitative Evaluation

In the current section some examples of the proposed approach in action are presented. In a

given scan in a sequence, each figure (composed by top and bottom sub-figures) represents the 2D

and 3D tracking modules, respectively.
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Figure 4.10: Sequence 1, tracking modules in scans 40 (left) & 130 (right).

In sequence 1 the cyclist is visible in all scans, is never occluded and undergoes a change in

terms of lighting conditions. From the 3D tracker point of view, this sequence represents a simple

scenario that does not offer much of a challenge.

Figure 4.11: Sequence 1, tracking modules in scans 34 (left) & 80 (right).

Sequence 2 represents a moving van as the target object. The tracked van is initially estimated

to be moving at a speed lower than its actual speed, seeing as the associated tracking CA KF takes

some time to adjust and provide good velocity estimations. In addition, the van also undergoes

lighting changes and is severely occluded by a parked van. Both in 3D and 2D the proposed method

is able to keep tracking the object, even with a low number of object points detected. In the bottom

right sub-figure a white dot can be seen, representing the CA KF estimation for the object centroid

in the next scan.
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Figure 4.12: Sequence 15, tracking modules in scans 30 (left) & 57 (right).

In sequence 15, the target object is a walking pedestrian that undergoes nearly full occlusion

due to a pedestrian closer to the ego vehicle walking in the opposite direction. Such a scenario is

frequent in downtown and rural areas. In this particular example, the proposed tracker can be seen

making use of the prediction for the next frame to balance out the low number of detected object

points, both maintaining the correct pose as well as not jumping to the nearby pedestrians.

4.5 Benchmark

The 20 considered sequences for testing were selected amongst a group of 50 sequences extracted

from the KITTI dataset. These total 50 sequences compose the 3D Object Tracking in Driving

Environments (or 3D-OTD) proposed benchmark. Most of the existing object tracking benchmark

tools available are based on monocular or stereo cameras approaches or focused on data association

problems. Hence, the created benchmark is aimed at 3D object appearance modelling.

As mentioned in Section 4.1.2, instead of using object tracklets the full track of each object was

extracted. Since information in the dataset is given as tracklets, the selection of the sequences had

to be based on objects who were never fully occluded, i.e., from the first to the last frame of an

extracted sequence, the respective target object will never go under full occlusion. In addition, if

a given scenario in the dataset features several candidate target objects, then a sequence will be

extracted for each object. Based on these considerations, 50 sequences were extracted to create the

benchmark. The general specification of these sequences and the considered challenging factors are

as defined and described as in Section 4.1.2. As a starting point, the two baseline methods here

presented were also considered the baseline evaluators in the benchmark.

The full benchmark, with the total 50 sequences, can be observed in Appendix C as a workshop

paper. This paper has been accepted in IEEE Intelligent Transportation Systems Conference (ITSC)

2016, in the Int. Workshop on Advanced Perception, Machine Learning and Datasets workshop.
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With the increasing effort being put in developing robust ADASs, autonomous driving has

proved to be a successful concept with a lot of direct benefits, from safety (pedestrian detection

and emergency braking) and Quality of Life (parking assistance) to energy savings. Big automotive

companies are making efforts to make driverless cars available to the public in a near future. An

ADAS system can be composed of several modules, from perception systems to actuators. By

moving from research and experimental environments to the real world, perception modules must

become more robust and able to deal with data acquisition, modelling and scene interpretation.

Object tracking is one of the critical components of these perception modules, responsible by the

task of following each target object in the environment. Future predictions of the target object

trajectory are very useful since the ego vehicle can understand what is most likely to happen in the

next time step and plan to act accordingly.

Thus, the main goal of this thesis was to develop a fusion based 3D object tracker. The fusion

of information from different sensor technologies aimed to maximize the benefits of the dense

information present in the RGB image as well as the inherent spatial information provided by the

LiDAR sensor. This resulted in the two main contributions of this thesis:

• A robust, online, 2D/3D fusion based approach was developed. It takes both sequential 2D

RGB images and 3D PCDs as inputs as well as the location of the ego vehicle, given by an

INS. An assumption was made to consider that an initial 3D BB of the target object is known

known and outputted by a previous object detection and/or segmentation module. From this

data two independent and parallel MS algorithms are applied to each considered data space

(2D image and 3D PCD) to detect and track the target object. Following this step, a robust

CA KF is applied to fuse information from both 2D and 3D tracking modules, and a final

CA KF is considered for 3D tracking purposes.

• To test the developed work, a series of experiments were designed with different types of

target objects, scene conditions and associated challenging factors (inherent or relative to the

surrounding scene) to create a benchmark. The benchmark can be used to evaluate 3D object

trackers, even if the base assumptions or theoretical backgrounds are different. Based on this

benchmark, a subset of 20 sequence were selected. An analysis of the obtained results of

testing the proposed approach with these sequences was provided, demonstrating the viability

of the proposed object tracker.
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5.1 Future Work

The proposed approach is able to achieve satisfying results in its current state. However, and

as aforementioned, the execution times are not high enough to process incoming data in real-time.

One direction of future work could be the improvement of the existing code as well as the study of

different methodologies or functions that could further reduce computation times. Taking advantage

of the fact that the 3D and 2D trackers run independently and in parallel, exploration of parallel

computing architectures could also be considered.

In the current method, the point model was used for object representation. Even though the

applied KFs were able to apply trajectory correction when the information was sparse, different

object representation models could also be considered. One such hypothesis could be to apply

3D reconstruction of the shape of the target object. In consecutive frames, since target object

location and orientation are known in real world coordinates in each scan, reconstruction of the

object shape can be obtained by aligning the detected object points (or the current 3D BB) with

reference information (e.g. last scan’s 3D BB). Initial attempts at this reconstructions were made,

with promising results obtained as observable in Figure 5.1. However, due to time constraints and

the lack of robustness of the reconstruction module (in some cases, the module failed to correctly

reconstruct the shape due to wrong rotation values in the alignment process), it was not included in

the final framework.

Figure 5.1: Object shape reconstruction result. The sub-figure on the left represents the detected object points in

the first scan from sequence 2 (940 total). The middle sub-figure shows the detect object points for scan 80 in the

same sequence without object reconstruction. Without reconstruction, the direct readings from the LiDAR provide

only 49 points in the entire PCD. By registration and accumulation of all the detected object points from previous

frames without any further processing, the accumulated model of the object can be used when less points are detected to

overcome occlusion problems. This is highlighted in the right sub-figure; for the same scan as the middle sub-figure

(scan 80), the accumulated object model has much more information present (38163 points) and can be used in its

stead.
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APPENDIX

A

KALMAN FILTER THEORY

Although more than 50 years old, KF and its variants such as EKF still remain popular

choices in information processing and fusion. Presented by R. E. Kalman in 1960 [67], the algorithm

described a recursive approach to the problem of discrete-data linear filtering. The KF is a set of

mathematical equations used to recursively estimate the state of a given process, typically derived

by vector algebra as a minimum mean square error estimator. Furthermore, the filter supports

estimation of past, present and future states even when the system model is unknown.

As highlighted on the previous chapter, most object tracking approaches are based on some sort

of Bayesian tracking theory. The main idea when using these filters is to set up a discrete time

model with a state vector to describe a given object with the goal of estimating the state x ∈ <n

of the process based on a measurement z ∈ <m. The object motion model can be seen as a linear

stochastic difference equation

xk = Axk−1 +Buk−1 + wk−1

and a measurement model in the shape of

zk = Hxk + vk

with k representing the current time step. Time between consecutive time steps can be variable

but in most cases is consistent, since observations (or measurements) are made in specific and

well-behaved time intervals.
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The n× n A matrix (state transition matrix) corresponds to the relationship between the state

at time steps k − 1 and k (assumed constant), applying the effect of system parameters at k − 1

on the system at time k. The n × l matrix B (optional) relates the control input u ∈ <l to the

state x. The random variables w and v contain the process noise and measurement noise terms

(respectively) for the parameters in the state vector. These variables are assumed independent of

each other, as being white noise and having a normal probability distribution. In this approach,

they are also considered constant (zero-mean Gaussians). The m × n H matrix (transformation

matrix) relates the current state to the measurement zk. Even though H can change with each time

step, it is also assumed constant.

To estimate a process, KF uses feedback control. First, it estimates the process state and then

obtains feedback in the form of noisy measurements. The equations for the KF can be categorized

as either being time update or measurement update equations. Time update equations project

the current state forward in time as to acquire the a priori estimates for the next time step.

Measurement update equations goal is to provide the new measurement to the existing a priori

estimate to get a better estimate (also called the a posteriori estimate). In this sense, the first set of

equations can be considered the predictor equations, with the other being the corrector equations.

Time Update
PREDICT

Measurement Update
CORRECT

Initial estimates for 

x^ and Pk-1k-1

Figure A.1: Kalman filter overview. The prediction projects the current state forward; the correction fits the projected

estimate to the measurement taken at that time.

After prediction, computation of the Kalman gain is done and afterwards a new process

measurement is obtained. An a posteriori estimate for the state is generated by taking into account

the obtained measurement and afterwards an a posteriori estimate for the error covariance is

obtained as well. The recursive nature of the KF lies on the fact that after each prediction and

correction, the whole process is repeated with the previous a posteriori estimates as new a priori

estimates. In the presented notation, R is the measurement error covariance, Q is the process noise

covariance and P a priori covariance matrix.
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Time update (prediction) equations Measurement update (correction) equations

Projection of the current state Computation of Kalman gain

x̂−k = Ax̂k−1 (A.1) K̂k = P−k H
T (HP−k H

T +R)−1 (A.2)

Projection of error covariance Updating estimate with measurement

P−k = APk−1A
T +Q (A.3) x̂k = x̂−k +Kz(zk −Hx̂−k ) (A.4)

Updating error covariance

Pk = (I −KkH)P−k (A.5)

Table A.1: Discrete KF filter time and measurement update equations. From initial estimates x̂k−1 and Pk−1 a

prediction is made, which is then corrected and fed back to the prediction equations in a recursive fashion (as seen in

Figure A.1).
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Abstract—Object tracking is one of the key components of
the perception system of autonomous cars and ADASs. Using
tracking, an ego-vehicle can make a prediction about the location
of surrounding objects in the next time epoch and plan for next
actions. Object tracking algorithms typically relay on sensory
data either from RGB cameras or LIDAR. In fact, integration
of 2D-RGB image from camera and 3D-LIDAR data can pro-
vide some distinct benefits. This paper proposes a 3D object
tracking algorithm using a 3D-LIDAR, a RGB camera, and INS
(GPS/IMU) data. The proposed method analyzes sequential 2D-
RGB, 3D point-cloud, and the ego-vehicle’s localization data and
outputs the trajectory of the tracked object, an estimation of
its current velocity, and its predicted location in the 3D world
coordinate system in the next time-step. Tracking starts with a
known initial 3D bounding box for the object. Two parallel mean-
shift algorithms are applied for object detection and localization
in the 2D image and 3D point-cloud, followed by a robust
2D/3D Kalman filter based fusion and tracking. Reported results,
from quantitative and qualitative experiments using the KITTI
database, demonstrate the applicability and efficiency of the
proposed approach in driving environments.

I. INTRODUCTION AND MOTIVATION

Visual object tracking is one of the rapidly evolving re-
search fields in the computer vision community and became
a key-feature of perception system of autonomous cars and
advanced driver assistance systems (ADASs). The goal of
object tracking is to estimate the trajectory of an object in a
sequence of images given a known initial position [1]. Object
tracking algorithms in image sequences have been studied
comprehensively in the last few decades [1], [2], [3]. These
methods mainly differ in the way they model the motion or
appearance of the object. Considering the intended application
each approach has strengths and weaknesses. However, most
of these methods work only on monocular image sequences.

3D spatial data processing has recently gained much atten-
tion in computer vision and robotics. Recently, with the arrival
of modern stereo matching algorithms and new 3D sensing
technologies, providing an accurate and dense 3D point-cloud
(PCD), perception systems of intelligent/autonomous vehicles
became able to interpret surrounding environment in 3D and
perceive objects physical properties. Stereo vision and 3D
LIDAR are the first options to acquire 3D spatial information
in the IV/ITS industries. The major limitations of stereo
vision approaches are their poor performance in texture-less
environments and their dependency on the calibration quality.
The main disadvantages with LIDARs are the costly price and
the moving parts of the sensor. In comparison with stereo
cameras, LIDAR sensors have higher precision but do not
acquire color data [4].

Fig. 1. The results of the proposed object tracking method for a given frame
from the KITTI dataset. The bottom figure shows the result in the 3D-PCD,
where the 3D Bounding Box (3D-BB) of the tracked object (here a cyclist)
is shown in blue, object trajectory is represented with a yellow-curve, object
points in 3D-BB are shown in yellow, and the current estimated velocity of the
object is denoted with a text-box (27.3 km/h). The ego-vehicle trajectory, given
by an INS system, is represented by a magenta-curve. The current position
of the ego-vehicle and the tracked object are represented with red-green-blue
vectors. Parts of the 3D-LIDAR PCD that are in the field of view of the camera
are shown in white and red, where red denotes the detected ground points and
white indicates the on-ground obstacle points. LIDAR points outside the image
field are shown in blue. The top figure represent the tracking result in the 2D-
RGB image for the current frame, where the detected object region and its
surrounding area are shown in blue and red, respectively. Please refer to the
PDF version for a high-resolution color representation of the figure.

2D cameras have been the most common sensor used for
perceiving the environment. The high-spatial-resolution color
data provided by 2D cameras can be used as a complement of
3D-LIDARs. The combined use of 3D-LIDAR with 2D-RGB
camera, has attracted a lot of attention recently, to name a few,
in applications such as object detection [5], road detection [6],
scene parsing [7] and dense depth mapping [8].

This paper proposes an on-board 3D object tracking sys-
tem benefiting from ‘highly accurate 3D-LIDAR PCDs’ and
‘dense 2D-RGB camera images’ with application in ADASs
and autonomous driving (see Fig. 1). Specifically, the main
contributions of this paper are as follows:

– A robust 2D/3D fusion-based 3D object tracking.

– A new ground plane estimation method.
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In addition, the proposed method provides a velocity esti-
mation of the object, using the ego-vehicle localization data
given by an INS (GPS/IMU). This enables the ego-vehicle to
predict the object location in the 3D world coordinate system
in the next time-step. The proposed method can be used in
a wide range of applications from object behavior model-
ing to collision avoidance and planning systems. Extensive
quantitative and qualitative experiments with different criteria
were performed to evaluate the performance of the proposed
approach.

The rest of the paper is organized as follows: Section II
reviews the related work in object tracking for autonomous
vehicles applications using 3D-LIDARs or stereo systems.
Section III describes the proposed adaptive fused 3D object
tracker. Experimental results are presented in Section IV, and
Section V brings some concluding remarks.

II. RELATED WORK

Object tracking algorithms can be divided into two cat-
egories [2]: Tracking-by-detection methods (or discrimina-
tive methods) and generative methods. Tracking-by-detection
methods such as [9] detect an object in every time instant using
a pre-trained detector (e.g., DPM [10]) and link-up the detected
positions over time to have the object track. The requirement
of having all object categories being previously trained limits
the application of this approach. Recently, generative object
tracking methods attracted more attention for object tracking
in driving environments. These approaches usually learn the
appearance of an object. The object model is often updated
online to adapt to appearance variation. Due to their class-
independent generic nature, these approaches can be used
for a wide range of object classes. Next, we will present a
brief survey on generative 3D object tracking algorithms based
on 3D sensing technologies (stereo vision and 3D LIDAR)
including when they are fused with other sensors.

Held et al. [11] combined a 3D-PCD with a 2D camera
image to construct an up-sampled colored 3D-PCD. They used
a color-augmented search algorithm to align the colored PCDs
from successive time frames. They utilized 3D shape and color
data to perform joint 3D reconstruction and tracking of an
object. They showed that the accumulated dense model of the
object leads to a better object velocity estimate. In contrast
with their early fusion of a 3D-PCD with a 2D-RGB data,
we used a later fusion. In our approach, the object is detected
and localized in the 2D-RGB image and 3D-PCD data spaces
(with some interconnected data flow), and the 2D/3D object
locations are then fused and tracked.

Some approaches try to use segmentation for object detec-
tion and tracking. Ošep et al. [12] used the PCD generated
from a disparity map (obtained from a stereo camera pair) to
find and track generic objects. They suggested a two-stage seg-
mentation approach for extracting multi-scale object proposal,
followed by multi-hypothesis tracking at the level of object
proposals. Their two-stage segmentation method consists of a
coarse supervised segmentation to removes non-object regions
(e.g., road and buildings) and a fine unsupervised multi-scale
segmentation to extract object proposals. Vatavu et al. [13]
built a Digital Elevation Map (DEM) from PCD obtained from
a stereo vision system. They segmented on-ground obstacles

by extracting the object delimiters. The object delimiters are
represented by their positions and geometries, and then tracked
using particle filters.

Other approaches detect and track objects based on their
motion. Asvadi et al. [14] used 3D-LIDAR data to find and
track generic moving objects based on their motion. In their
approach, a static 2.5D grid map of the local environment
surrounding the ego-vehicle is built and maintained. The 2.5D
motion grid is achieved by comparing the last generated
2.5D grid with the static grid map. They fitted 3D-BB object
models to 2.5D motion grids, followed by tracking of 3D-BBs
using Kalman Filters (KFs). Dewan et al. [15] detect motions
between consecutive scans by sequentially using RANSAC and
proposed a Bayesian approach to segment and track multiple
objects in 3D-LIDAR data.

In contrast to the segmentation-based tracking and motion-
based tracking methods, we assume that the initial position
of the object is given (similar to [11]), and hence the focus
is on the robust appearance-based modeling and tracking of
a generic object. In particular, this paper proposes a general
fusion framework for integrating data from a 3D-LIDAR and
a RGB camera for object tracking.

III. ADAPTIVE FUSED 3D OBJECT TRACKER

A. Problem Formulation and System Overview

In this paper, and considering sensory inputs from a color
camera, a Velodyne LIDAR and an Inertial Navigation System
(INS) mounted on-board an ego-vehicle, the 3D single-object
tracking is defined as: Given a set of input data, RGB image Ii,
3D-LIDAR PCD Li, and an ego-vehicle pose Ei and given an
object’s 3D Bounding Box (3D-BB) initial position in the first
PCD, estimate the trajectory of the object, X= {X1, · · · ,XN}, in
the 3D world coordinate system as the ego-vehicle and object
move around a scene.

The conceptual model of the proposed adaptive fused 3D
object tracker is shown in Fig 2. Typically object tracking is
one of the components of the perception pipeline, that should
also include an object segmentation or detection module. In
this paper, we assume that an initial 3D-BB is given by a
3D object detection [16] or a 3D motion detection method
[17]. Object tracking starts with the known 3D-BB in L1.
Next, the ground plane is estimated, and ground points are
eliminated from the points inside the 3D-BB. The remaining
object points P are projected into the image plane and the 2D
convex-hull (Ω) of the projected point set P∗ is computed.
The convex-hull Ω accurately segments object pixels from the
rest of the image. The pairs of object points inside the 3D-BB
and its corresponding Ω are used for the initialization of the
tracking in the PCD and in the RGB image. In the next time-
step, two Mean-Shift (MS) [18] based object localizers are run
individually to estimate the 2D and 3D object locations in the
RGB image and PCD, respectively. An adaptive color-based
MS localizer is used to identify and localize the object in the
RGB image, while the object localization in PCD is performed
using the MS gradient estimation of the object points in the
3D-BB. The 2D location of the object in the RGB image is
projected back to 3D. Kalman Filters (KFs) [19] with Constant
Acceleration (CA) model are used for the fusion and tracking
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- Orientation

- 2D convex-hull in Image

Fig. 2. The diagram of the major pipeline of the proposed 2D/3D fusion-based 3D object tracking algorithm. For details, please refer to the text.

of detected object locations in the 2D-RGB image and 3D-
PCD. The predicted object’s location and orientation are used
for the initialization of the 3D-BB in the next PCD.

B. 3D Object Detection and Localization in the PCD

Incoming PCD first need to be processed to remove the
ground points. This step is essential to remove object points
inside the 3D-BB that correspond to ground points, avoiding
degrading the quality of the object model.

1) Removing the Ground Points: Ground points typically
constitute a large portion of a 3D-LIDAR’s PCD. Therefore, if
an appropriate feature is selected and the corresponding PDF
is computed, the peak-value in the PDF indicates the ground
points. Leveraging this fact, a Kernel Density Estimation
(KDE) is used to estimate the PDF of the angles between the
X-Y plane and the set of lines that pass through the center of
the ego-vehicle (the origin-point) and every point belonging
to the PCD (end-points). Let Θ = {θ1, · · · ,θN} denotes the
set of 1-dimensional angle values (measured in X-Z plane)
for a certain PCD, where θi = arctan(zi / xi). Given this, the
univariate KDE estimate is obtained using (1).

f (θ) =
1
N

N

∑
i=1

Kσ (θ −θi) (1)

where Kσ (.) is a Gaussian kernel function with bandwidth σ ,
and N is the number of points in the PCD. The planar ground
assumption is adopted, and the pitch angle of the ground plane
is identified as the peak value θρ in the KDE. The points under
a height dmin from the estimated ground plane are considered
as ground points and removed, where dmin is a small value
indicating a safe boundary for the ground removal process.
The remaining points in the PCD represent obstacles’ points
(see Fig. 3).

In order to increase the robustness and accuracy of the
ground removal process, a KF with Constant Acceleration
(CA) model is used for the estimation of the ground plane’s
pitch angle in consecutive PCDs. To eliminate outliers, the
angle search area is limited to a gate in the vicinity of the

Fig. 3. The ground removal process. (a) Computation of the angle value θi
for a point i in the PCD. (b) The Kernel Density Estimation (KDE) of the
set Θ. The detected pitch angle of the ground plane is denoted by θρ . (c)
The ground removal result where red denotes the detected ground points and
blue indicates the obstacle points. The green ellipse shows an example of the
ground points extraction for a car. The green ellipse in the right shows the car
in the top view. For a better illustration, the corresponding car in the image is
shown with a red ellipse. Please refer to the PDF version for a high-resolution
color representation of the figure.

predicted KF value from the previous-step. If no measurements
are available inside the gate area, the predicted KF value is
used.

2) MS-based Detection and Localization in the PCD: The
object detection and localization in the PCD is performed using
MS procedure, as follow:

1) Computing the shift-vector: Given the center of the
3D-BB as χ , the shift-vector between χ and the point
set P′ inside the 3D-BB is computed using,

mk = χk−µ(P′) (2)
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Fig. 4. The MS procedure in the PCD. The left figure represents a bird’s-
eye view and the right figure shows the top view. The MS convergence (the
centroid movement less than 5 cm) is achieved in three iterations. The brighter
blue color of the 3D-BB shows the more recent iteration.

where µ(.) indicates the ‘mean’ function, and k is the
iteration index.

2) Translating 3D-BB: The 3D-BB is translated using the
shift-vector,

χk+1 = χk +mk (3)

The shift-vector always points toward the direction of
the maximum increase in the density.

3) Iterating steps 1 and 2 until convergence: The MS
iteratively shifts the 3D-BB until the object is placed
entirely within the 3D-BB. A centroid movement |mk|
less than 5 cm or a maximum number of iterations
equal to 5 are considered as the MS convergence.

The MS process in PCD is shown in Fig. 4. The object
position is represented by the centroid of object points (so-
called ‘point model’) inside the 3D-BB. The ‘point model’ is
feasible even with a few number of object points which is the
case in sparse 3D-LIDAR’s PCD, specially for far objects. The
centroid after convergence is denoted by Cpcd and outputted
to the fusion module.

C. 2D Object Detection and Localization in the RGB Image

The object points P (after ground removal) are projected
onto the image plane and the corresponding 2D convex-hull
(Ω) of the projected point set P∗ = {p∗1, · · · , p∗n} is computed.
The 2D convex-hull can be defined as the smallest 2D convex
polygon that encloses P∗. The 2D convex-hull more accurately
segments the object from the background in comparison with
the traditional 2D Bounding Box (2D-BB). A surrounding
area Ω† is computed automatically by expanding Ω by a
factor equal to

√
2 with respect to its centroid, so that the

number of pixels in Ω†−Ω (the region between Ω and Ω†) is
approximately equal to the number of pixels within the Ω.

1) Discriminant Color Model of the Object: Two joint
RGB histograms are calculated from the pixels within Ω

and Ω†−Ω regions. The Log-Likelihood Ratio (LLR) of the
computed RGB histograms expresses how much more likely
each bin is under Ω color model than Ω†−Ω color model. In
the computed LLR, positive bins are more likely belonging to
Ω, bins with negative values are more likely part of Ω†−Ω,
and bins shared by both Ω and Ω†−Ω tend towards zero.
Therefore, the positive part of the LLR is used to represent
the discriminant object color model,

ℜ(i) = max
{

log
max{HΩ(i),ε}
max{H

Ω†(i),ε}
, 0
}

(4)

2D MS Localization 

in the RGB Image

The Discriminant Color Model and 

the Confident Map of the Object

Object and Background 

Convex-hulls

Fig. 5. The MS procedure in the RGB image. The left figure represents Ω

and Ω† in blue and red, respectively. The computed ℜ and the confident map
(f) are shown in the middle. Each non-empty bin in the ℜ is shown with
a circle. A bin-value is represented as the area of the circle. Each circle’s
location represents a color in the joint RGB histogram (the same as its face
color). The right figure shows the MS localization procedure. The brighter
blue Ω indicates that it is computed in the more recent MS iteration. The final
Ω centroid is shown by a yellow point.

where HΩ and H
Ω† are the computed histograms from Ω

and Ω† −Ω regions, respectively, and ε is a small value
that prevents dividing by zero or taking the log of zero. The
variable i ranges from 1 to the number of histogram bins. The
discriminant color model of the object (ℜ) is normalized and
used for the object detection and localization in the next frame
using the MS procedure.

2) MS-based Detection and Localization in the RGB Image:
MS-based object detection and localization for the next frame
starts at the centroid of the confident map (f) of the Ω region
in the current frame. This confidence map is computed by
replacing the color value of each pixel in Ω region by its
corresponding bin value in ℜ. In each iteration, the center of
Ω, from the previous step, is shifted to the centroid of f (the
current confidence map of the object) computed by Equation
5.

Cnew =
1
m

m

∑
i=1

fi Ci (5)

where Ci = {ri,ci} denotes pixel positions in Ω, and m is the
total number of pixels in Ω. The maximum number of MS
iterations needed to achieve convergence is limited to 4 unless
the centroid movement is smaller than a pixel (see Fig. 5). The
computed 2D object centroid after convergence is denoted by
Crgb and outputted to the fusion module.

3) Adaptive Updating of ℜ Bins: The dense 2D-RGB
images obtained from cameras are very informative but they
are sensitive to light and illumination conditions. To adapt the
object color model with illumination variations and to over-
come changes in the object color appearance during tracking,
a bank of 1D-KFs with a CA model is applied. KFs estimate
and predict ℜ bin values for next frames. A new 1D-KF
is initialized and associated for each newly observed color
bin, and when the bin values become zero or negative the
corresponding KFs are removed. We conducted an experiment
with 8× 8× 8 histogram (512 bins) and observed that the
average number of utilized KFs in each frame were 70 (about
14% of bins).
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D. KF-based 2D/3D Fusion and Tracking

A 3D CA-KF is applied for the integration of the computed
object centroids from 2D-RGB image and 3D-LIDAR PCD,
followed by another 3D CA-KF for the robust tracking of the
fused 3D location of the object over time.

1) 2D/3D Fusion for Improved Localization: The com-
puted 2D location of the object in the RGB image (Crgb) is
projected back to 3D (C′rgb) using a method described in [11].
Although this method was originally used for up-sampling a
PCD, we employ it for projecting the computed object centroid
in the 2D-RGB image back to the 3D-LIDAR space. The
PCD is projected to the RGB image and the nearest projected
points in each of the 4 quadrants (upper left, upper right, lower
left, and lower right) surrounding Crgb are found. The bilinear
interpolation on the corresponding 4 points in the PCD (before
the projection to the RGB image) is computed to estimate C′rgb.

A KF-based fusion (the measurement fusion model [20]) is
applied to integrate C′rgb with the computed 3D object location
in the PCD (Cpcd) and estimate the fused 3D centroid C3D.
The main idea is to give a higher weight to a method that
performs better, thus providing a more accurate estimate than
each method individually. The dynamics of the object and the
fused measurement model of the object localizers in the 3D-
PCD and the 2D-RGB image are given by Equations (6) and
(7) respectively.

xt = AF · xt−1 +wt (6)

zt = HF · xt + vt (7)

where wt and vt represent the process and measurement noise,
respectively, AF is the fusion state transition matrix, and HF is
the fusion transformation matrix. The augmented measurement
vector zt is given by,

zt =
[
(Cpcd)

T (C′rgb)
T ]T (8)

2) 3D Object Tracking: A 3D CA-KF is used for the
robust tracking of the fused centroid C3D. Let the state of
the filter be x = [x, ẋ, ẍ,y, ẏ, ÿ,z, ż, z̈]T , where ẋ, ẏ, ż and ẍ, ÿ, z̈
define the velocity and acceleration corresponding to the x,y,z
location, respectively. The discrete time process model and the
measurement model of the system are given by Equations (9)
and (10), respectively.

xt = AT · xt−1 +wt (9)

zt = HT · xt + vt (10)

where AT and HT are the state transition matrix and the
transformation matrix for object tracking, respectively. To
eliminate outliers and increase the robustness of the process,
the search area is limited to a gate in the vicinity of the
predicted KF location (accessible from: xt = AT × xt−1). If no
measurement is available inside the gate area, the predicted
value given by the KF is used.

The result of the proposed algorithm is the estimated
trajectory of an object in the 3D world coordinate system,
its current estimated velocity, and the predicted location of
the object in the next time-step. The object orientation is
achieved by subtracting the current estimated location from its
previous location. The object region in the image is obtained
by computing the 2D convex-hull of the projected object points
(the points inside the 3D-BB) into the image.

IV. EXPERIMENTS AND ANALYSIS

A. Experimental Setup

1) Dataset - Object Tracking Evaluation: The KITTI
dataset [21] was captured using RGB color cameras, a Velo-
dyne 3D-LIDAR and a high-precision GPS/IMU inertial nav-
igation system. The Velodyne HDL-64E spins at 10 frames
per second and consists of 64 layers. The maximum recording
range is 120 m. Front facing cameras have the resolution of
1.4-Megapixel and are synchronized with the LIDAR. The
inertial navigation system has a 100 Hz sampling rate and
a resolution of 0.02 m / 0.1◦.

For the evaluation purpose, we extracted a variety of
challenging object sequences from the ‘Object Tracking Eval-
uation’ set of the KITTI Vision Benchmark Suite. We con-
ducted experiments on the extracted sequences. The 8 most
representative sequences are reported in this paper. The details
of each sequence and the challenging factors are summarized
in Table I. When there are multiple entries, the order is related
to the temporal occurrence, and each entry is denoted by its
first letter. For example in the case of distance to the object (in
the 3D-LIDAR’s challenging factors columns), the entry N-M-
F express that the object was first near to the ego-vehicle, next
went to the middle range and after went far.

2) Implementation Details: The presented approach was
implemented in MATLAB, and the experiments were carried
out using a quad core 3.4 GHz processor with 8 GB RAM
under MATLAB R2015a. The parameter values used in the
implementation of the proposed method are reported in Table
II. The first two parameters η and η ′ are the maximum number
of MS iterations in the PCD and RGB image, respectively.
The next two (δ` and δ`′) are also related to the termination
conditions of the MS. A displacement in the MS less than 5
cm (δ`) in the PCD and less than 1 pixel (δ`′) in the image
are considered to guarantee convergence. The value dmin is a
threshold in centimeters for the ground removal process. Points
with heights lower than dmin from the estimated ground plane
are considered as part of the ground and removed. The last
parameter b = 8 is the selected number of histogram bins
for each color channel. With these parameters the proposed
algorithm un-optimized implementation runs at about 4 f ps.

3) Description of the Evaluated Methods: The proposed
method was evaluated against five object tracking methods.
The selected methods operate on the image or PCD or on the
fusion of both of them. Two of them are publicly available
MS variants that take a RGB image as the input: (1) The
original MS (MS) [22] and (2) MS with Corrected Background
Weighted Histogram (CBWH) [23]. MS uses a color histogram
regularized by a kernel to describe the appearance of an
object. CBWH uses a color histogram with new weights to
pixels in the target candidate region to reduce background’s
interference in object localization. Two PCD-based methods
were implemented for evaluation: (3) The first one is the
base-line KF-based object tracking method that uses the ‘point
model’ and 3D CA-KF with a Gating DA (3D-KF). (4) The
second method is actually the first part of the proposed method,
which is the MS-based object detection and localization in 3D-
PCD (3D-MS). (5) A color-based 3D object tracker (3D-MS-
KF) is also implemented that uses the colored PCD obtained
by combining PCD and RGB data. It uses a color-based MS
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TABLE I. DETAILED INFORMATION ABOUT EACH SEQUENCE.

Seq.
name

general specifications RGB camera’s challenging factors 3D-LIDAR’s challenging factors
No. of
frames

Scene
condition

Ego-vehicle
situation

Obj.
type Occlusion Illumination

variations
Obj. pose
variations

Change in the
obj. size

No. of obj.
points

Distance
to the obj.

Velocity
variations

(1) 154 urban moving cyclist no yes yes yes high N-M no
(2) 154 urban moving car partial yes yes yes high-low M-F yes
(3) 373 urban S-M car no yes no yes high-low N-M-F yes
(4) 41 urban stopped cyclist partial no no no high near no
(5) 149 downtown stopped pedestrian partial no no yes high near no
(6) 45 downtown stopped pedestrian F-P yes no yes high-low near no
(7) 71 downtown S-M pedestrian P-F yes no yes low-high near no
(8) 188 downtown M-S pedestrian no yes yes yes low-high M-N yes

TABLE II. MAIN PARAMETER VALUES USED IN THE PROPOSED
ALGORITHM.

η η ′ δ` δ`′ dmin b
5 4 5 1 20 8

localization for the object detection and localization in the
colored PCD, and a CA-KF for the object tracking.

B. Quantitative Evaluation

To assess the proposed method’s performance, the center
location errors in 2D and 3D, as well as the orientation in 3D
are used.

1) Localization Estimation Evaluation: In the 3D case, the
average center location error were computed for four methods:
3D-KF, 3D-MS, 3D-MS-KF and the proposed method (3D-
Fusion). For the 2D case, all methods were considered for the
evaluation (the resulting 3D-BBs of the 3D tracking methods
were projected into the image to compute and compare the
2D-BBs). This metric is computed as the Euclidean distance of
the center of the computed 2D-BB or 3D-BB from the 2D/3D
ground-truth (the ground-truth is extracted from the KITTI
dataset). The average center location errors in 2D and 3D are
given by Equations (11) and (12), respectively.

E2D =
1
N

N

∑
i=1

√
(ri− rg

i )
2 +(ci− cg

i )
2 (11)

E3D =
1
N

N

∑
i=1

√
(xi− xg

i )
2 +(yi− yg

i )
2 +(zi− zg

i )
2 (12)

where ri,ci shows the detected object location (the center of
the 2D-BB) in the image and rg

i ,c
g
i denotes the center of

the ground-truth 2D-BB, xi,yi,zi indicates the center of the
detected 3D-BB in the PCD, xg

i ,y
g
i ,z

g
i is the center of the

ground-truth 3D-BB, and N is the total number of frames/scans.

Table III represents the results in terms of E2D and E3D,
where a dash entry (-) represents a failure of the correspondent
algorithm to track the selected object. The 3D-MS provides
the smallest error when it does not fails, however, it is prone
to errors, mostly because it starts diverging to the nearest
object or obstacle in cluttered environments (e.g., a group of
pedestrians). It can be seen that the proposed method is the
only one with stable results (without failures), while keeping
the center location error low. The MS and CBWH methods
(that work only on images) are very fragile because essentially
they are not designed to overcome most challenging factors in
driving environments as evidenced in Table I.

2) Orientation Estimation Evaluation: The orientation
evaluation was only performed for the 3D approaches (3D-
KF, 3D-MS, 3D-MS-KF, and 3D-Fusion). The ground-truth
orientation of the object is given only in Yaw angle (Yaw angle
describes the heading of the object, and in the KITTI dataset it
is given by rotation around Y-axis in camera coordinates. For
more information please refer to [21]). The orientation error
can be computed by,

Eϕ =
1
N

N

∑
i=1

∣∣∣∣arctan |
−→
ϕ ×−→ϕ g

−→
ϕ ·−→ϕ g

|
∣∣∣∣ (13)

where −→ϕ g is the ground-truth orientation of the object (see
Table IV).

C. Qualitative Evaluation

Sample results of the application of the proposed algorithm
on the selected sequences are shown in Fig. 6, and the most
challenging factors are discussed here. The proposed method
successfully tracks the objects throughout the considered se-
quences.

1) Occlusion: The objects in sequences (2), (5), (6) and
(7) undergo partial or full occlusions. In sequence (2) the
tracked car goes under severe occlusion caused by a red parked
van, and in sequences (5) and (6) the tracked pedestrians are
occluded by other moving pedestrians. In sequence (7) the
pedestrian was partially occluded by bushes for a number of
frames.

2) Illumination Change: In sequences (1), (2), (3), (6), (7)
and (8), the tracked objects go through illumination changes,
mainly due to moving from shadow to sunlight areas or vice-
versa.

3) Velocity Change: In sequences (2), (3) and (8), the
object of interest moves with variable velocity throughout the
sequence. For example in sequence (3) the red car accelerates
and then stops in a crossroad and a crosswalk. In the remaining
sequences the object moves with a fairly constant speed.

4) Pose/Size Changes: In sequences (2), (3) and (8), large
variations in the object size occur, mainly because the distance
to the ego-vehicle is also changing. In addition, the object
pose varies in almost all sequences. For example in the second
sequence, the car size and orientation with respect to the ego-
vehicle changes constantly.

V. CONCLUDING REMARKS AND FUTURE WORK

In this paper, we developed an on-board object tracking
system using data from 3D-LIDAR and RGB camera with
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TABLE III. THE AVERAGE CENTER LOCATION ERRORS IN 2D (PIXELS) AND 3D (METERS).

Seq. no. The average center location errors (3D) The average center location errors (2D)
3D-Fus. 3D-KF 3D-MS 3D-MS-KF 3D-Fus. 3D-KF 3D-MS 3D-MS-KF MS CBWH

(1) 0.306 - 0.215 0.250 9.237 - 8.439 11.749 263.680 298.199
(2) 1.983 17.693 1.844 - 12.095 407.186 15.190 - 208.392 306.135
(3) 1.672 - 1.540 1.622 3.975 - 7.270 8.617 16.351 37.508
(4) 0.395 - - - 5.799 - - - 217.836 333.193
(5) 0.229 2.903 0.187 1.442 12.443 157.052 12.119 53.626 279.050 128.952
(6) 0.191 - 0.114 0.153 13.645 - 10.257 15.890 420.643 418.760
(7) 0.264 2.301 0.198 0.181 19.581 186.937 16.356 14.585 118.836 192.681
(8) 0.174 0.820 0.153 0.207 22.843 51.262 17.172 25.837 225.073 162.179

TABLE IV. ORIENTATION ESTIMATION EVALUATION (IN RADIAN)

Methods
Seq. no. 3D-Fus. 3D-KF 3D-MS 3D-MS-KF

(1) 0.411 - 0.393 0.393
(2) 0.416 1.255 0.427 -
(3) 0.118 - 0.135 0.145
(4) 0.108 - - -
(5) 0.208 0.569 0.136 0.242
(6) 0.203 - 0.149 0.163
(7) 0.260 0.921 0.155 0.168
(8) 0.155 0.297 0.148 0.159

application in automotive driver assistance systems (ADASs)
and autonomous driving. A fusion scheme was proposed to
maximize the benefits of using dense 2D-RGB images and
sparse 3D-PCDs as inputs. The ego-vehicle localization data,
given by an INS (GPS/IMU), was applied to achieve a velocity
estimate of the object. KFs with Constant Acceleration (CA)
models were used to keep track of object changes in location
and color appearance. The proposed method can be used in a
wide range of applications from object behavior modeling to
collision avoidance and planning for future actions. A set of
assorted experiments, and corresponding result analysis, aimed
at evaluating the performance of the proposed approach were
performed.

A planar ground assumption was adopted by the proposed
method, with only a pitch angle (which is the rotation around
the X-axis, uphill/downhill ground cases). This assumption
works fine with most of the cases available in the KITTI
dataset. In addition to the pitch angle θ , the Y values of the
PCD could also be considered in the KDE estimation process
to take into account the rolling angle of the ground.
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Frame #28/154 Frame #73/154 Frame #9/154 Frame #84/154

Frame #6/373 Frame #87/373 Frame #6/41 Frame #35/41

Frame #38/170 Frame #55/170 Frame #26/63 Frame #30/63

Frame #2/71 Frame #20/71 Frame #221/387 Frame #291/387

Fig. 6. Sample screenshots of the object tracking results obtained for sequences 1 to 8 as listed in Table I and its corresponding representation in the 3D space.
Each of the right/left halves of each row represents one sequence (with two images and two corresponding PCDs for each sequence). The tracking results in
the 2D-RGB image are shown by blue and red polygons, where they denote the detected object region and its surrounding area, respectively. In the 3D-PCD,
the object trajectory is represented with a yellow-curve, the 3D-BB of the tracked object is shown in blue, and the 3D-BB of the ground-truth data is shown in
red. The object points in 3D-BB are represented in yellow and the current velocity estimation of the object is denoted with a text-box over the 3D-BB of the
object. The detected ground points are shown in red. Please refer to the PDF version for a high-resolution color representation of the figure.
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3D Object Tracking in Driving Environment:
a short review and a benchmark dataset

Pedro Girão, Alireza Asvadi, Paulo Peixoto, and Urbano Nunes

Abstract— Research in autonomous driving has matured sig-
nificantly with major automotive companies making important
efforts to have their autonomous or highly automated cars
available in the near future. As driverless cars move from
laboratories to complex real-world environments, the perception
capabilities of these systems to acquire, model and interpret
the 3D spatial information must become more powerful. Object
tracking is one of the challenging problems of autonomous driv-
ing in 3D dynamic environments. Although different approaches
are proposed for object tracking with demonstrated success
in driving environments, it is very difficult to evaluate and
compare them because they are defined with various constraints
and boundary conditions. The appearance modeling for object
tracking in the driving environments, using a multimodal
perception system of autonomous cars and advanced driver
assistance systems (ADASs), and the evaluation of such object
trackers are the research focus of this paper. A benchmark
dataset, called 3D Object Tracking in Driving Environments
(3D-OTD), is also proposed to facilitate the assessment of object
appearance modeling in object tracking methods.

I. INTRODUCTION

Object tracking is an essential component in the perception
pipeline of autonomous cars and ADASs. Using tracking,
an ego-vehicle can make a prediction about its surrounding
objects locations and behaviors, and based-on that make
proper decisions and plan next actions.

There is an extensive research literature on object tracking
in image sequences [1–6]. These surveys are mainly focused
on 2D object tracking algorithms, which work with images
from monocular cameras. 3D spatial data processing has
gained much attention in computer vision and robotics in
the last few years. Recently, with the arrival of modern
stereo matching algorithms and new 3D sensing technolo-
gies, providing an accurate and dense 3D point-cloud (PCD),
perception systems of intelligent/autonomous vehicles be-
came able to interpret surrounding environment in 3D and
perceive objects physical properties. Generally, autonomous
vehicles [7–9] are equipped with a number of on-board
sensors e.g., mono and stereo cameras, thermal, night vision,
LIDAR, Radar, Inertial Navigation System (INS), Global
Positioning System (GPS), and Inertial Measurement Unit
(IMU), to have a multimodal robust observation of the scene.
Such a sensor setup makes autonomous cars capable with a
more robust sensory perception in comparison with a single
monocular observation. This paper reviews different object
tracking techniques and approaches that have been developed
for autonomous driving with a focus on using stereo vision

Institute of Systems and Robotics (ISR), Department of Electrical
and Computer Engineering (DEEC), University of Coimbra, Portugal
pedro.girao@student.uc.pt

and 3D LIDAR, which are the first options to acquire 3D
spatial information in the IV/ITS industries, including when
they are fused with other sensors. The major limitations
of stereo vision approaches are their poor performance
in texture-less environments and their dependency on the
calibration quality. The main disadvantages with LIDARs
are the costly price and the moving parts of the sensor. In
comparison with stereo cameras, LIDAR sensors are robust
against illumination changes and have higher precision but do
not acquire color data [10]. 2D cameras have been the most
common sensor used for perceiving the environment. The
high-spatial-resolution color data provided by 2D cameras
can be used as a complement of 3D-LIDARs.

This paper gives a brief survey of the 3D object tracking
methods, focusing on algorithms actually designed and used
for ADASs and autonomous driving. In this work, a bench-
mark dataset is constructed out of the ‘KITTI Object Tracking
Evaluation’, and the sequence attributes and challenging
factors are extracted. Two baseline object trackers were
implemented. Experiments with various evaluation criteria
were performed for the performance analysis. The evaluation
scripts, source codes for the baseline object trackers and the
ground-truth data corresponding to this work are available
online1.

The remainder of this paper is organized as follows, in the
next section, a brief overview of object tracking algorithms
for autonomous driving using 3D sensors is presented, Sec-
tion III is devoted to describe the benchmark dataset and its
characteristics. Section IV presents the baseline 3D object
trackers, while Section V focuses on the selected metrics and
evaluation methodology. Evaluation results are detailed in
Section VI, and finally Section VII brings some concluding
remarks.

II. OVERVIEW OF 3D OBJECT TRACKING METHODS FOR
AUTONOMOUS DRIVING

This section gives an overview 3D object tracking methods
for purposes of autonomous driving and relevant concepts.
Fig. 1 presents a taxonomy of 3D object tracking methods
in driving environments in terms of approaches for object
representation and the main tracking components. The details
are discussed in the following subsections.

A. Object Tracking Approaches

Object tracking algorithms can be divided into two cate-
gories based-on representation scheme for the object [2]:

1http://a-asvadi.ir/3d-object-tracking-in-driving-environments/
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Fig. 1: Taxonomy of object tracking using 3D sensors for autonomous driving.

1) Tracking-by-detection (or Discriminative) Approaches:
Discriminative object trackers localize the object using a
pre-trained detector (e.g., DPM [22]) that learns a decision
boundary between the appearance of the target object and
other objects and obstacles, and next link-up the detected
positions over time. Many approaches [23–28] have been
proposed for discriminative object tracking, with most of
them focused on the data association problem. An overview
of such approaches is given in the ‘KITTI Object Tracking
Evaluation Benchmark’2 [9]. In MOT15 [29] and MOT163

[30] another review of multi-object tracking methods, and
their evaluation is given. However, the requirement of having
all object categories being known and previously trained
limits the application of discriminative approaches. More-
over, most of these approaches are only based-on monocular
cameras.

2) Model-free (or Generative) Approaches: In order to
have a reliable perception system for autonomous cars in
real-world driving scenarios a generic object tracker [14],
[19], [31–33] is also required. A generic tracker should be
able to track all kinds of objects, even if their existence is not
previously predicted or trained. Generative methods build a
model to describe the appearance of an object and then looks
for the next occurrence of the object by searching for the
region most similar to the model. To handle the appearance
variations of the target object, the object model is often
updated online.

B. Object Tracking Components

Object tracking algorithms are composed of three main
components: object representation, search mechanism, and
model update. The object appearance model can be depend
solely on the target object (generative approaches) or can be
built by considering its discriminative power with respect to
the appearance of other objects or obstacles (discriminative
approaches). A search mechanism is needed to localize
object in the next sensor input (frame/scan) using their
appearance models. It is essential to update the target object

2http://www.cvlibs.net/datasets/kitti/eval tracking.php
3https://motchallenge.net/

model to compensate changes caused by observing objects
in different view points, scene conditions, etc.

There are many approaches for object tracking using
monocular cameras or 2D-LIDARs [35], [36]. Recently, most
of them have been revisited based-on stereo vision and
3D-LIDARs. These 3D sensors enables the 3D appearance
modeling of the objects of interest. The simplest repre-
sentation of a target object is by the centroid of object
points, so-called the ‘point model’. The point model is
feasible even with a few number of object points, however,
a richer appearance modeling can be exploited to improve
tracking performance. Other approaches were proposed for
the appearance modeling of the objects, like 2D rectangular
shape [12], 2.5D box [13], 2.5D grid [14], 3D voxel grid [15],
[16], octree data structure-based representation [17], [18],
object delimiter representation [19], and 3D reconstruction of
the shape of the target object [20], [21]. The main advantage
of the later one is a higher robustness against occlusion (See
Fig. 2).

Some approaches [12], [14–17] detect and track generic
objects based-on their motion. This group of methods are
the most widely used and are closely related to the De-
tection and Tracking of Moving Object (DATMO) [37]
approaches. These methods are unable to detect stationary
objects which potentially can move. Moving object detection
can be achieved by detecting changes that occur between two
or three consecutive observations (which can be interpreted
as ‘frame differencing’). Generally, such methods can be used
for detecting generic moving objects. However, Petrovskaya
and Thrun [12] narrow it to vehicle tracking by fitting a 2D
rectangular object model to detected motions.

Moving object detection can also be achieved by building
a consistent static model of the scene, called the background
model, and then finding deviations from the model for each
incoming frame [14], [17]. This process can be referenced
as ‘background modeling and subtraction’. The background
model is usually a short-term map of the surrounding envi-
ronment of the ego-vehicle. Generally, the static background
model is built by combining the ego-vehicle localization data
and a representation of 3D sensor inputs such as: PCD [12],
2.5D elevation grid [14], [19], 3D voxel grid [15], [16] or
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Fig. 2: Some approaches for the appearance modeling of a target object. (a) represents a scan of a vehicle which is split up
by an occlusion from top view [11] , (b) the centroid (the point model) representation of the target object, (c) 2D rectangular
[12] or 2.5D box [13] shape based representations, (d) 2.5D grid [14], 3D voxel grid [15], [16] or octree data structure-based
representation [17], [18], (e) object delimiter-based representation [19], and (f) 3D reconstruction of the shape of the target
object [20], [21].

TABLE I: Some of the recent 3D object tracking methods for autonomous driving applications.

Ref. 3D Perception Sensor Ego-motion
Estimation

Tracking
Approach

Object
Representation

Object Search
Mechanism

Object Model
update

[19] Stereo Vision GNSS, INS Generative Object Delimiters Particle Filter KF
[15] Multi-Layer LIDAR ICP Generative Voxel EKF No Update
[11] 3D-LIDAR, GIS Map INS Generative PCD CV-KF No Update
[31] Stereo Vision V-Odometry Generative Voxel KF and MHT Weighted ICP
[21] 3D-LIDAR - Generative PCD CV-KF ICP, Accumulation
[20] 3D LIDAR, Camera INS Generative Colored PCD CV-KF ICP, Accumulation
[34] 3D-LIDAR DGPS/IMU Generative PCD Bayesian approach No Update
[16] Stereo Vision V-Odometry Generative Voxel KF No Update
[17] 3D-LIDAR INS, ICP Discriminative Octree KF and GNN No Update
[12] 3D-LIDAR INS Discriminative 2D Rectangle Particle Filter CV-KF
[14] 3D LIDAR INS Generative Elevation Grid CV-KF and Gating No Update

octree data structure-based representation [17], [18]. Ego-
motion estimation usually is achieved using Visual Odometry
[16], INS (GPS/IMU) [14], [19], variants of Iterative Closest
Point (ICP) scan matching algorithm [15] or a combination of
them [17]. Moosmann and Stiller [21] used a local convexity
based segmentation method for object hypotheses detection.
A combination of KF and ICP is used for tracking moving
objects and a classification method for managing tracks.
Their method includes the 3D reconstruction of the shape
of moving objects. Hosseinyalamdary et al. [11] used prior
Geospatial Information System (GIS) map to reject outliers.
They tracked moving objects in a scene using Constant
Velocity (CV) KFs and used ICP for pose estimation. Dewan
et al. [34] detect motions between consecutive scans using
RANSAC and use a Bayesian approach to segment and track
multiple objects in 3D-LIDAR data. However, they admitted
themselves that their approach does not work well with
pedestrians.

The majority of these approaches have only been devel-
oped for detection and tracking of moving objects. However,
in real-world applications, static objects should be taken
into account. Segmentation-based approaches are proposed
to partition the PCD into perceptually meaningful regions
that can be used for object detection. Ošep et al. [31] used
the PCD generated from a disparity map (obtained from a
stereo camera pair) to find and track generic objects. They
suggested a two-stage segmentation approach for multi-scale

object proposal generation, followed by Multi Hypothesis
Tracking (MHT) at the level of object proposals. Vatavu et
al. [19] built a Digital Elevation Map (DEM) from PCD
obtained from a stereo vision system. They segmented on-
ground obstacles by extracting free-form object delimiters.
The object delimiters are represented by their positions and
geometries, and then tracked using particle filters. KFs are
used for adapting object delimiter models.

In another approach, Held et al. [20] combined a PCD
with a 2D camera image to construct an up-sampled colored
PCD. They used a color-augmented search algorithm to align
the colored PCDs from successive time frames. Assuming a
known initial position of the object, they utilized 3D shape,
color data and motion cues in a probabilistic framework to
perform joint 3D reconstruction and tracking. They showed
that the accumulated dense model of the object leads to
a better object velocity estimate. A summary of the most
representative tracking approaches is provided in Table I.

III. DATASET AND EXPERIMENTAL SETUP

Previous attempts to propose object tracking benchmarks
for automotive applications were mostly based on monoc-
ular cameras [29], [30], or were just focused on the data
association problem [23]. In this paper a new framework to
evaluate the performance of the appearance modeling of a
target object using 3D sensors, based on the ‘KITTI Object
Tracking Evaluation’ dataset is proposed.
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Fig. 3: From left to right and top to bottom shows initial frames of 50 sequences for performance evaluation, as listed in
Table. The projected 3D Bounding Box of the target object to 2D is shown by a red rectangle. Please refer to the PDF
version for a high-resolution color representation of the figure.

A. KITTI - Object Tracking Evaluation

The KITTI dataset [9] was captured using gray scale and
RGB color cameras, a Velodyne 3D-LIDAR and a high-
precision GPS/IMU inertial navigation system. The Velodyne
HDL-64E spins at 10 frames per second with 26.8 degree
vertical field of view (+2◦/−24.8◦ up and down), consists
of 64 equally spaced angular subdivisions (approximately
0.4◦) and angular resolution of 0.09 degree. The maximum
recording range is 120 m. Front facing cameras with a
resolution of 1.4-Megapixel are also used, with their images
synchronized with the LIDAR data. The inertial navigation
system is an OXTS RT3003 inertial and GPS system with
100 Hz sampling rate and a resolution of 0.02 m / 0.1◦.

B. 3D-OTD Benchmark Dataset

In the original KITTI dataset, objects are annotated with
their tracklets, and generally the dataset is more focused on
the evaluation of data association problem in discriminative
approaches. Our goal is to provide a tool for the assessment
of object appearance modeling in both the discriminative and
generative methods. Therefore, instead of tracklets, full track
of each object is extracted. A benchmark dataset with 50
annotated sequences is constructed out of the ‘KITTI Object
Tracking Evaluation’ to facilitate the performance evaluation.
In the constructed benchmark dataset, each sequence denotes

a trajectory of only one target object (i.e., if one scenario in-
cludes two target objects, it is considered as two sequences).
The initial frames of sequences are shown in Fig. 3, and
the general specifications of each sequence and the most
challenging factors are extracted and reported in Table II.
The table contains the description of the scene, sequence, and
objects including the number of frames for each sequence,
object type: car ‘C’, pedestrian ‘P’ and cyclist ‘Y ’, object
and Ego-vehicle situations: moving ‘M’ or stationary ‘S’,
scene condition: roads in urban environment ‘U’ or alleys
and avenues in downtown ‘D’. The object width (Im-W)
and height (Im-H) in the first frame (in pixels), and width
(PCD-W), height (PCD-H), and length (PCD-L) in the first
PCD (in meters) of each sequence are also reported. Each
of the sequences are categorized according to the following
challenges: occlusion (OCC), object pose (POS) and distance
(DIS) variations to Ego-vehicle, and changes in the relative
velocity (RVL) of the object to the Ego-vehicle.

IV. BASELINE 3D OBJECT TRACKING ALGORITHMS

As a starting point for the benchmark, two generative 3D-
LIDAR-based methods were implemented as baselines for
the evaluation purpose. The baseline methods take LIDAR
PCDs as the input and the ground points are removed. The
initial position of the Object’s 3D Bounding Box (3D-OBB)
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TABLE II: Detailed information and challenging factors for each sequence.

ID No.
Frames Obj. Obj.

Status
Ego.

Status
Scene
Cond. Im-W Im-H PCD-H PCD-W PCD-L OCC POS DIS RVL

1 154 C M M U 178 208 1.73 0.82 1.78 * * *
2 154 Y M M U 154 127 2.00 1.82 4.43 * *
3 101 C S M U 93 42 2.19 1.89 5.53 * *
4 18 C S M U 77 52 1.52 1.55 3.57 *
5 58 C S M U 19 17 1.54 1.66 4.14 *
6 144 P S M U 16 42 1.72 0.73 0.55 *
7 78 C M M U 54 21 1.48 1.59 3.46 * * *
8 78 C M M U 193 77 3.01 2.59 11.84 * *
9 122 C M M U 100 302 1.59 1.65 3.55 *

10 314 C M M U 152 87 1.64 1.67 3.63 * * *
11 297 C M M U 36 36 1.62 1.62 4.50 *
12 101 Y M M U 8 26 1.64 0.33 1.57 *
13 42 Y M M U 15 36 1.64 0.33 1.57 * *
14 136 C M M U 95 34 1.47 1.35 3.51 * * * *
15 38 C S M U 98 34 1.45 1.63 4.20 *
16 51 C M M U 52 34 1.57 1.65 4.10 * *
17 42 C M M U 22 19 1.85 1.67 4.09 *
18 31 C S M U 52 34 1.45 1.60 4.22 *
19 24 C M M U 30 32 3.43 2.81 7.02 *
20 390 C M M U 18 13 1.25 1.59 3.55 *
21 36 C S M U 28 32 2.71 1.89 5.77 *
22 65 C S M U 76 28 1.72 1.73 4.71 *
23 56 C M M U 152 57 3.52 2.89 10.81 * * *
24 474 C M M U 274 97 3.52 2.89 10.81 * * * *
25 63 P M M U 16 30 1.63 0.40 0.83 *
26 99 Y M M D 39 39 1.81 0.59 1.89 * * *
27 41 P M M D 25 42 1.53 0.61 0.73 *
28 323 Y S M U 25 38 1.72 0.78 1.70 *
29 188 C M M U 30 21 1.44 1.74 4.23 * * *
30 51 C M M U 126 37 1.50 1.54 4.09 * * * *
31 41 P M S D 70 105 1.63 0.66 0.89 *
32 131 P M S D 46 65 1.76 0.90 1.11 * * *
33 132 P M S D 43 72 1.89 0.84 1.05 * *
34 140 P M S D 33 63 1.83 0.73 1.16 * *
35 141 P M S D 27 58 1.70 0.65 1.10 * *
36 112 P M S D 33 66 1.84 0.78 1.03 * *
37 31 Y M S D 35 47 1.84 0.50 1.60 * *
38 112 P M S D 20 54 1.67 0.44 0.75 * *
39 145 P M S D 19 53 1.95 0.62 0.74 * *
40 54 P M S D 101 160 1.71 0.48 0.93 *
41 45 P M S D 196 224 1.64 0.55 0.94 *
42 264 C M M U 28 24 1.40 1.54 3.36 * *
43 71 P M M D 89 124 1.61 0.91 0.91 *
44 125 P M M D 36 62 1.64 0.88 0.49 * *
45 146 V S M D 45 56 2.56 2.05 5.86 *
46 156 P M M D 25 48 1.88 0.95 0.94 *
47 45 P M M D 29 58 1.67 0.70 0.94 * *
48 188 P M M D 31 67 1.76 0.76 1.01 * *
49 359 P M M D 28 51 1.80 0.90 0.94 * *
50 360 P M M D 26 49 1.72 0.84 0.85 * *

is known, the size of the 3D-BB is assumed fixed during
the tracking, and the ‘point model’ is used for the object
representation.

A. Baseline KF 3D Object Tracker (3D-KF)
A 3D Constant Acceleration (CA) KF with a Gating Data

Association (DA) is used for the robust tracking of the
object centroid in the consecutive PCDs. Let the state of the
filter be x =

[
x, ẋ, ẍ,y, ẏ, ÿ,z, ż, z̈

]T , where ẋ, ẏ, ż and ẍ, ÿ, z̈ are
velocity and acceleration in x,y,z location, respectively. The
discrete time process model and the measurement model of
the system are given by Equations (1) and (2), respectively.

xt = A · xt−1 +wt (1)

zt = H · xt + vt (2)

where wt and vt represent the process and measurement
noise, respectively, and A is the state transition matrix which
applies the effect of each state parameter at time t−1 on the
state at time t, and H is the transformation matrix that maps
the state vector parameters into the measurement domain. To
eliminate outliers and increase the robustness of the process,
the search area is limited to a gate in the vicinity of the
predicted KF location from the previous-step (accessible
from: xt = AT ×xt−1). If no measurement is available inside
the gate area, the predicted KF value is used. Experiments
with different gate sizes (1× 3D-OBB, 1.5× 3D-OBB and
2×3D-OBB) were performed to conclude that the gate size
of 1×3D-OBB provides a better result. The object orientation
is achieved by subtraction of the current estimated location
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Fig. 4: The precision plot of 3D overlap rate and orientation error based-on OCC, POS, DIS and RVL challenges.

and the kalman prediction for the next time-step.

B. Baseline MS 3D Object Tracker (3D-MS)

In the 3D-MS approach, the Mean Shift (MS) iterative
procedure is used to locate the object, as follows:

1) Compute the shift-vector: Given the center of the 3D-
BB as χ , the shift-vector between χ and the point set
P inside the 3D-BB is computed using,

mk = χk−µ(P) (3)

where µ(.) indicates the ‘mean’ function, and k is the
iteration index.

2) Translate 3D-BB: The 3D-BB is translated using the
shift-vector,

χk+1 = χk +mk (4)

The shift-vector always points toward the direction of
the maximum increase in the density.

3) Iterate steps 1 and 2 until convergence: The MS
iteratively shifts the 3D-BB until the object is placed
entirely within the 3D-BB. MS is considered converged
when the centroid movement |mk|< 0.5m or the max-
imum number of iterations is met.

We conducted an experiment with different maximum num-
ber of iterations (3, 5 and 10) and observed that a maximum
of 3 iterations provides a better result. The object orientation
is achieved by subtracting the current estimated location and
the previous location of the object.

V. QUANTITATIVE EVALUATION METHODOLOGY

Different metrics have been proposed for the evaluation
of object tracking methods [5], [6], [38]. For the quantita-
tive evaluation, two assessment criteria are used: 1)- The
precision plot of overlap success, and 2)- The precision

plot of orientation success. The overlap rate (score or the
intersection-over-union metric) in 3D is given by,

O3D =
volume(3D-BB∩3D-BBg)

volume(3D-BB∪3D-BBg)
(5)

where 3D-BBg is the ground-truth 3D bounding boxes avail-
able in the KITTI dataset. The overlap rate ranges from 0
to 1. To be correct (to be considered a success), the overlap
ratio O3D must exceed 0.25, which is a standard threshold.
The percentage of frames with successful occurrence is used
as a metric to measure tracking performance.

The ground-truth for the orientation of the object in
the KITTI dataset is given by the Yaw angle (Yaw angle
describes the heading of the object, and corresponds to
the rotation around Z-axis) The orientation error can be
computed by,

Eθ = |
−→
θ −
−→
θ

g| (6)

where
−→
θ g is the ground-truth orientation of the object. The

precision plot of orientation is given by the percentage of
frames with Eθ less than certain threshold of about 10
degrees.

VI. EVALUATION RESULTS AND ANALYSIS OF METRIC
BEHAVIORS

The metrics for the two baseline trackers (3D-MS and
3D-KF) are computed based-on OCC, POS, DIS and RVL
challenges and plotted in Fig. 4. The 3D-KF achieves higher
success rate because the 3D-MS tracker may diverge to a
denser nearby object (a local minima) instead of tracking
the target object. Interestingly, 3D-KF performs much better
in the RVL challenge because of a more accurate estimation
of the object dynamics. However, the 3D-MS tracker has
a higher precision in orientation estimation. The average
computation time of baseline trackers is about 15 fps. The
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Fig. 5: The precision plot of location error.

experiment was carried out using a quad core 3.4 GHz
processor with 8 GB RAM under MATLAB R2015a.

A. A Comparison of Base-line Trackers with the State-of-
the-art Computer Vision based Object Trackers

3D-LIDAR sensors are opening their way for high-level
perception tasks in computer vision, like object tracking,
object recognition, and scene understanding. We found it
interesting to compare our baseline trackers (3D-MS and 3D-
KF) with two high-ranking state-of-the-art computer vision
based object trackers (SCM [39], and ASLA [40]) in the
Object Tracking Benchmark4 [6]. SCM and ASLA run at
about 1 fps and 6.5 fps, respectively. The precision plot is
given by the percentage of success occurrence (localization
error less than 20 pixels [6]), and is presented in Fig. 5.

We found that our baseline trackers, benefiting from highly
reliable 3D-LIDAR data, have superior performance over the
state-of-the-art approaches in Computer Vision field. This is
because, in autonomous driving scenarios, ego-vehicle and
objects are often moving. Therefore, object size and pose
undergo severe changes (in the RGB image), which can
easily mislead visual object trackers.

VII. CONCLUSION AND FUTURE DIRECTIONS

In this work, we presented a brief survey for 3D ob-
ject tracking in driving environments. A benchmark dataset
based-on ‘KITTI Object Tracking Evaluation’, a quantitative
evaluation methodology, and two baseline trackers are pro-
vided for performance assessment.

We encourage other authors to evaluate their 3D object
tracking methods using the proposed evaluation benchmark
(3D-OTD), and make their results available in order to
facilitate the quantitative comparison of future approaches.
An extension of the dataset and codes to include more
sequences and trackers remains an area for future work.
Fusion of reliable 3D-LIDAR data with mature visual object

4http://www.visual-tracking.net

tracker in the computer vision field could be a promising
direction for future work.
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