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The neutron-proton-electron matter under a strong magnetic field is studied in the context of the covariant
Vlasov approach. We use a Walecka-type hadronic model and the dispersion relations for the longitudinal and
transverse modes are obtained. The instability regions for longitudinal and transverse modes are also studied. The
crust-core transition of a magnetized neutron star is discussed.
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I. INTRODUCTION

Neutron stars are astrophysical objects with extreme prop-
erties and very high densities in their interior, which could be
as high as one order of magnitude larger than nuclear matter
at saturation densities, very intense surface magnetic fields,
which can reach 1015 G in the case of magnetars [1], and very
large isospin asymmetries. These properties transform neutron
stars into effective laboratories for understanding the strong
force. Objects such as soft γ -ray repeaters and anomalous
x-ray pulsars have been identified as magnetars carrying very
strong surface magnetic fields [2]. They have a slow rotation
period, ≈1–12 s, and this has been interpreted as a signature of
the existence of an amorphous and heterogeneous layer, with
a high electrical resistivity, close to the crust-core transition,
which causes the decay of the magnetic field [3].

The inner crust of neutron stars is characterized by sub-
saturation nuclear densities and it is formed by a lattice
of neutron-rich clusters imbedded in a neutron and electron
gas background. In fact, at subsaturation densities, nuclear
matter is characterized by a liquid-gas phase transition. As a
consequence of long-range Coulomb repulsion and short-range
nuclear attraction this transition originates the formation of
clusterized matter that, depending on the density, may have
exotic geometries, and which are known as nuclear pasta [4].
At the bottom of the inner crust, where these clusters occur,
the neutron star core sets in. Understanding how the magnetic
field may affect the localization of the core onset has been the
objective of recent works [5–7], where the crust-core transition
in the presence of strong magnetic fields was studied within
the calculation of the dynamical spinodal section [8]. From
the linearization of the Vlasov equation for the distribution
function of protons, neutrons, and electrons, the dispersion
relation for the propagation of longitudinal models along
the magnetic field was calculated. The spinodal section was
identified with the surface in phase space where the density
mode frequencies are zero. The main conclusions of those
works were that the magnetic field shifts the onset of the

outer core to larger densities, the crust-core transition is a
region of finite density thickness, the density location of this
transition region formed by alternating stable and unstable
layers was quite sensitive to the slope of the symmetry energy,
and temperatures of the order of ≈0.5–1 MeV might wash out
most of these effects.

One of the main objectives of the present work is to
obtain the dispersion relations for neutron-proton-electron
(npe) matter subjected to a strong external magnetic field
within the formalism of the covariant Wigner function, which
allows us to calculate the propagation of density modes in
an arbitrary direction with respect to direction of the magnetic
field. The dispersion relations will be applied to the calculation
of the transverse and longitudinal collective modes, both stable
and unstable. The unstable modes determine the dynamical
spinodal zones, which set boundaries for the inhomogeneous
region of the magnetar crust. This formalism is of particular
interest because it may be easily generalized in order to calcu-
late the electrical and thermal conductivity in the magnetized
matter, which is of fundamental importance for the study of
the cooling of magnetars.

II. FORMALISM

The Lagrangian density using natural units, i.e., taking
c = h̄ = 1, can be written as

L =
∑

j=p,n,e

Lj + Lσ + Lω + Lρ + Lωρ + LA, (1)

with

Lj = ψ̄ (j )
[
γ μiD(j )

μ − M∗
j

]
ψ (j ),

where the covariant derivative is defined as, iD
(j )
μ = i∂μ −

V (j )
μ , where j = (n, p, e), stands for the neutron, proton, and
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electron,

V (j )
μ =

⎧⎪⎨
⎪⎩

gvVμ + gρ

2
�bμ + e Aμ, j = p

gvVμ − gρ

2
�bμ, j = n

−e Aμ, j = e

, (2)

M∗
p = M∗

n = M∗ = M − gsφ(x), M∗
e = me and e =√

4π/137 is the electromagnetic coupling constant. For
the nuclear matter parameters, we will consider the NL3
parametrization, [9], and the FSU parametrization [10]. The
meson and photon contributions in Eq. (1) are given by

Lσ = 1
2

(
∂μφ∂μφ − m2

s φ
2 − 1

3κφ3 − 1
12λφ4

)
,

Lω = 1
2

(− 1
2�μν�

μν + m2
vVμV μ + 1

12ξg4
v (VμV μ)2

)
,

Lρ = 1
2

(− 1
2

�Bμν · �Bμν + m2
ρ
�bμ · �bμ

)
, (3)

Lωρ = �vg
2
vg

2
ρVμV μ�bν · �bν

LA = − 1
4FμνF

μν,

where �μν = ∂μVν − ∂νVμ, �Bμν = ∂μ
�bν − ∂ν

�bμ − �ρ (�bμ ×
�bν ), and Fμν = ∂μAν − ∂νAμ. The parameters κ , λ, and ξ are
self-interacting couplings and the ω-ρ coupling �v is included
to soften the density dependence of the symmetry energy above
saturation density. From the Euler-Lagrange equations, one
obtains the Dirac equation for the fermion fields:

iγ μD(j )
μ ψ (j ) = M�

j ψ (j ), (4)

and its conjugate equation:

ψ̄ (j )iD†(j )
μ γ μ = −M�

j ψ̄ (j ), (5)

where iD
†(j )
μ = i

←−
∂ μ + V (j )

μ . In this section, we will dis-
cuss how the Vlasov equation for a hadronic system in a
strong magnetized medium is obtained from general transport
equations. Our formalism is based on the covariant Wigner
function under strong magnetic fields. The transport equations
using Wigner functions have been developed in the context
of quantum electrodynamics [11,12], relativistic heavy ions
[13,14], and quantum chromodynamics [15]. The application
of the Wigner function for a relativistic electron gas in a strong
magnetic field was done in Refs. [16–19]. We will present
in this section only the main results related to the transport
theory in order to keep this paper minimally self-contained.
We will focus on the new technical details that appear when
using the covariant Wigner function for the description of npe
matter subjected to strong magnetic fields since, in the present
context and to our knowledge, this has not yet been done. It
will be shown that both the longitudinal and transverse modes,
which consist of small oscillations along and perpendicular to
the external magnetic field, can be obtained in a systematic
way by generalizing magnetized plasma physics techniques.
The present formalism is adequate for the study of collective
modes and opens the possibility to study thermal and electrical
conductivity in npe matter.

A. Covariant Wigner function

We define the Wigner covariant matrix operator [12] as:

Ŵ
(j )
4 (x, p) =

∫
d4y e−ip·y �

(j )
4 (x, y), (6)

where x and y are four-vectors, j = (n, p, e), and

�
(j )
4 (x, y)αβ ≡ ψ̄

(j )
β (x)e

y
2 ·D†(j )

e− y
2 ·D(j )

ψ (j )
α (x)

= ψ̄
(j )
β (x+)e−iy·∫ 1/2

−1/2 ds V (j ) (x+ys) ψ (j )
α (x−). (7)

In the latter equation, x± = x ± 1
2y, and the phase factor

contains a line integra, which is to be calculated along a straight
line path from x− to x+, since in this case the gauge invariance
of the Wigner function is guaranteed [11]. If one defines the
canonical, p̂μ, and kinetic, �̂μ, momentum operators as:

p̂μ = 1

2i
(
←−
∂ μ − ∂μ), �̂μ = 1

2i
(D†(j )

μ − D(j )
μ ) = p̂μ − V (j )

μ ,

then, from Eqs. (6), (7), the Wigner matrix can be rewritten as:

Ŵ
(j )
4 (x, p)αβ = (2π )4ψ̄

(j )
β (x)δ4[�̂(x) − p]ψ (j )

α (x).

From the Dirac equations, (4), (5), in a rather cumbersome
calculation [11,12], it is possible to derive the following
equation for Ŵ4(x, p):[

γ μ

(
�̂μ + ih̄

2
Dμ

)
− M�

(
x − ih̄

2
∂p

)]
Ŵ4(x, p) = 0,

(8)

where

Dμ = ∂xμ −
∫ 1/2

−1/2
ds Fμν (x + ih̄s∂p )∂ν

p, (9)

�̂μ = pμ + ih̄

∫ 1/2

−1/2
ds sFμν (x + ih̄s∂p )∂ν

p, (10)

and F (j )
μν = ∂xμV (j )

ν − ∂xνV (j )
μ . In Eq. (8)

M�

(
x − ih̄

2
∂p

)
=

∞∑
n=0

1

n!

(−ih̄

2

)n

�nM�(x),

with � = ∂x · ∂p, and �M�(x) = ( ∂
∂xμ

M�(x)) ∂
∂pμ

. Note that
∂xμ ≡ ∂μ. The first designation will be used if necessary to
distinguish from the four-gradient with respect to p.

In the latter equations, h̄ is explicitly shown, since our aim
is to consider approximations of O(h̄) in order to derive the
semiclassical Vlasov equation. From here on, we will omit the
particle index, (j ), whenever this does not cause confusion.
Notice that Eq. (8), when h̄ → 0, can be written as:

[p2 − M�(x)2]Ŵ4(x, p) = 0

or {
p02 − [ �p 2 + M�(x)2]

}
Ŵ4(x, p) = 0.

This result means that the Wigner operator is on the mass shell,
thus, the component of O(h̄0) of Ŵ4 can be written as:

Ŵ4(x, p) = Ŵ
(+)(0)
4 δ(p0 − Ep ) + Ŵ

(−)(0)
4 δ(p0 + Ep ), (11)
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where Ep =
√

�p 2 + M�(x)2. Here, we will discuss briefly
how the Vlasov equation may be obtained from the Wigner
operator. First [11], we expand the Wigner 4 × 4 matrix
operator in terms of the Clifford algebra:

Ŵ4(x, p) = 1
4

[
F (x, p)I + iγ 5P (x, p) + γ μFμ(x, p).

+ γ μγ 5�μ(x, p) + 1
2σμνSμν (x, p)

]
, (12)

where σμν = 1
2 (γ μγ ν − γ νγ μ). After substituting the Clif-

ford expansion of Ŵ4 in Eq. (8), we calculate the traces in
Dirac space by multiplying the resulting expression by each
one of the sixteen Clifford algebra elements. Thus, we obtain 16
complex equations [12]. Next, we consider the energy average
of the Wigner function, since the Vlasov equation is usually
written in terms of the Cartesian momentum vector, �p, instead
of the four-vector pμ. For convenience, we define Ŵ3(x, �p) as:

Ŵ3(x, �p) =
∫

dp0Ŵ4(x, p0, �p) γ 0. (13)

Of course, one obtains again 16 equations relating the compo-
nents of the Ŵ3 just defined. It is possible to show [12], after
a long and tedious calculation, that at O(h̄) one obtains the
following generalized Vlasov equation:

∂tf±±�v · ∇xf±+( �E±�v× �B) · ∇pf± ∓ M�

Ep

∇xM
� · ∇pf±

= 0, (14)

where �v = �p/Ep and

E (j )
i = F (j )

0i ∓ M�
j (x)

E
(j )
p

∇x,i M�
j (x), j = p, n,

E (e)
i = F (e)

0i , (15)

B(j )
i = εilm∂x,lV (j )

m , j = p, n, e,

i, l, m = 1, 2, 3 and

f±(x, �p) =
∫

dp0F0±(x, p) =
∫

dp0T r
[
γ 0Ŵ

(±)(0)
4

]
.

An important remark is in order: The Vlasov equation can be
derived in other approaches, for instance, in Refs. [20,21], this
equation has been obtained using a Hamiltonian formalism.
The main advantage of the Wigner approach is that one has
a systematic method for obtaining the particle equilibrium
distribution functions, which is of fundamental importance for
the description of systems in a magnetized medium.

B. Wigner equilibrium function in a magnetized medium

The equilibrium Wigner distribution function is defined as:

f
(0)(j )
± (x, �p) = 1

(2π )4

∫
dp0T r

[
ρ̂ γ 0Ŵ

(±)(0)
4

]
,

where the density matrix operator is given by:

ρ̂ = 1

Z
e−β(Ĥ−∑j μj N̂j ), (16)

where Z is the partition function, β = 1/T , and the trace
is to be evaluated simultaneously in the Dirac space and in

any convenient set of basis states, for example, the Johnson-
Lippmann [22]. Of course, f

(0)
± (x, �p) satisfies the Vlasov

equation by its construction. Substituting the explicit form of
the Wigner operator, Eq. (6), and the on-mass-shell constraint,
Eq. (11), one obtains:

f
(0)(j )
± (x, �p) =

∫
dp0

(2π )4
T r

[
ρ̂ γ 0

∫
d4ye−ip·y

× ψ̄
(j )
± (x+)e−iy·∫ 1/2

−1/2 ds V (j ) (x+ys) ψ
(j )
± (x−)

]
,

(17)

where ψ
(j )
± (x), j = (n, p, e), are the positive and negative

components of the fermionic Dirac fields associated to the
neutron, proton, and electron. From here on, we restrict our
calculations to the mean-field approximation. Therefore, only
the time component of the ω and ρ vector meson fields are
different from zero at equilibrium:

V (0)
μ = V0δμ0, b(0)

μ = b0δμ0. (18)

We choose the Landau gauge for the vector potential: A(0)
μ =

Bx2δμ3, thus the external strong magnetic field is �B = Bê3 and
∇ · �B = 0. The integral in the phase factor, Eq. (17), can be
easily evaluated resulting in V (0)(j )

μ , thus:

f
(0)(j )
± (x, �p)

=
∫

dp0

(2π )4

∫
d4yT r[ρ̂ γ 0e−i(p+V (0)(j ) )·yψ̄ (j )

± (x+) ψ
(j )
± (x−)].

(19)

For the calculation of the equilibrium function, one has to insert
the Dirac field operator in the Fock space in the last expression
and to perform the integrals indicated in Eq. (19). A similar
calculation has been done in Ref. [16] for a magnetized electron
gas and can be promptly generalized for the present situation
resulting in the following expression:

f
(0)(j )
± ( �p) =

∞∑
n=0

[Ln(2w2) − Ln−1(2w2)]

× (−1)n e−w2

1 + exp[β(En ∓ μ̃(j ) )]
, j = p, e, (20)

where w2 = p2
⊥

eB
= p2

1+p2
2

eB
, Ln(x) are the Laguerre polyno-

mials, μ̃(e) = μe, and μ̃(p) = μp − V (0)(p)
0 are the effective

chemical potential of the electron and proton, respectively,

En =
√

p2
3 + M�

j
2 + 2eBn where n is the Landau level label,

and we have defined L−1(x) = 0. Since in this work we are
only interested in systems at zero temperature, T = 0, one can
rewrite the last equation as:

f (0)(j )( �p) =
∞∑

n=0

[Ln(2w2) − Ln−1(2w2)]

× (−1)n e−w2
θ (μ̃(j ) − En), (21)

where the Heaviside function θ (x) was used. The limit T → 0
rules out the negative energy part of the distribution function,
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hence we will omit from here on the redundant plus signal
in the symbol f

(0)(j )
+ . The electron or proton equilibrium

densities can be readily calculated from their corresponding
distribution functions. For example, the electron density reads
from Eq. (21):

ρ (0)
e = 2

(2π )3

∫
d3p f (0)(e)( �p)

= 2

(2π )3

∫ ∞

−∞
dp‖

∫ ∞

0
dp⊥p⊥

∫ 2π

0
d� f (0)(e)(�x, �p, t )

= eB

π2

∞∑
n=0

∫ ∞

0
dp‖

∫ ∞

0
dw w[Ln(2w2) − Ln−1(2w2)]

× e−w2
(−1)nθ (μe − En). (22)

The last expression can be easily calculated in cylindrical
coordinates, since the integral in w can be found in tables of
integrals [23], and the integral in p‖ = p3 is calculated using
the Heaviside function. Therefore:

ρ (0)
e = eB

2π2

nmax∑
n=0

gn p
(e)
F (n), (23)

with nmax = [μ2
e−m2

e

2eB
] where [. . .] stands for the floor function,

which gives the greatest integer that is less than or equal
to x. gn is a degeneracy factor, which is 1 for n = 0 and
2 for n � 0, and p

(e)
F (n) = √

μ2
e − m2

e − 2eBn. The density
of electrons just obtained coincides with the usual one [24].
The neutron distribution function is also the standard one:
f (0)(n)( �p) = θ (p(n) 2

F − �p 2). Notice that the normalization
factor of the distribution functions are determined according
to the definition of the currents as given in the next section.

C. Dispersion relations

The four-current is given by:

J (j )
μ (x) = 2

(2π )3

∫
d3p

p0
pμ[f (j )

+ (x, �p) − f
(j )
− (x, �p)], (24)

where j = (n, p, e) and p0 = Ej =
√

�p 2 + M� 2
j . It follows

from the Vlasov equation, Eq. (14), the following four-current
conservation law: ∂μJ

(j )
μ (x) = 0.

The dispersion relations will be obtained considering a
small perturbation from equilibrium of the distribution func-
tions, where the equilibrium four-current is given by:

J (0)(j )
μ = 2

(2π )3

∫
d3p

p0
pμ[f (0)(j )

+ ( �p) − f
(0)(j )
− ( �p)].

Next, we consider only the zero-temperature case, T = 0.
Hence, we can write:

f (j )(�x, �p, t ) = f (0)(j )( �p) + δf (j ) . (25)

The small perturbation of the distribution functions, f (0)(j ),
around their equilibrium values, will generate perturbations
on the fields:

φ = φ(0) + δφ, Vμ = V (0)
μ + δVμ, bμ = b(0)

μ + δbμ,

Aμ = A(0)
μ + δAμ, (26)

and cause a corresponding perturbation of the equilibrium four-
current,

J (j )
μ (x) = J (0)(j )

μ + δJ (j )
μ , (27)

with

δJ (j )
μ = 2

(2π )3

∫
d3p

E
(0)
j

pμ δf (j ), (28)

where we have used the notation E
(0)
j =

√
�p 2 + M

�(0)
j

2
, j =

(n, p, e), with M�(0)
p = M�(0)

n = M − gsφ
(0), and M�(0)

e = me.
The scalar density is given by the expression:

ρ (j )
s = 2

(2π )3

∫
d3p

Ej

M�
j f

(j )(x, �p). (29)

The small perturbation of the proton and neutron scalar
densities have to be calculated with care [25], since M�

j =
M − gsφ(x) is position dependent, resulting in the following
expression:

ρ (j )
s = ρ (0)(j )

s + δρs, (30)

with

ρ (0)(j )
s = 2

(2π )3

∫
d3p

E
(0)
j

M�
j

(0)
f (0)(j )( �p), (31)

and δρ
(j )
s = δρ̃

(j )
s + gs dρ

(0)(j )
s δφ, with:

δρ̃ (j )
s = 2

(2π )3

∫
d3p

E
(0)
j

M�
j

(0)
δf (j ), (32)

and

dρ (0)(j )
s = − 2

(2π )3

∫
d3p

�p2

E
(0)
j

3 f (0)(j ). (33)

After substituting Eq. (25) in the Vlasov equation, Eq. (14)
retaining only terms of the first order in δf (j ), one obtains:

∂t δf
(j ) + �v · ∇xδf

(j ) + �v × (∇x × �V (0)(j ) ) · ∇pδf (j )

+
[

�v × ∇x × ( �V (0)(j ) + δ �V (j ) ) + gs

M�
j

(0)

E
(0)
j

∇xδφ

− ∂t δ �V (j ) − ∇xδV (j )
0

]
· ∇pf (0)(j ) = 0, (34)

where �v = �p/E
(0)
j , j = p, e (for the electrons gs = 0). The last

equation can be further simplified noting that the equilibrium
distribution function, Eq. (21), is a function of p‖ and p⊥
only, hence, it is useful to employ cylindrical coordinates
(p⊥,�, p‖) to rewrite Eq. (34) as:

∂tδf
(j ) + �v · ∇xδf

(j ) − QjB

E
(0)
j

∂

∂�
δf (j )

+
[

�v × (∇x × δ �V (j ) ) + gs

M�
j

(0)

E
(0)
j

∇xδφ

− ∂t δ �V (j ) − ∇xδV (j )
0

]
· ∇pf (0)(j ) = 0. (35)
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In the latter equation, Qj is the electric charge of the j
particle. Note also that this equation is also valid for the
neutron, if one takes Qn = 0. Next, we obtain the dispersion

relations, starting from the Fourier transform of the small
deviation from equilibrium of the fields and of the distribution
functions:

⎧⎪⎨
⎪⎩

δf (j )(�x, �p, t )

δφ(�x, t )

δV (j )
μ (�x, t )

⎫⎪⎬
⎪⎭ =

∫
d3q dω

⎧⎪⎨
⎪⎩

δf (j )(�q, ω, �p)

δφ(�q, ω)

δV (j )
μ (�q, ω)

⎫⎪⎬
⎪⎭ei(ωt−�q·�x ), (36)

and after substituting the last equation in the Vlasov equation, Eq. (35), one obtains for δf (j )(�q, ω, �p) :

i(ω − �v · �q ) δf (j ) − QjB

E
(0)
j

∂

∂�
δf (j ) = i

[
(ω − �v · �q ) δ �V (j ) −

(
δV (j )

0 − �v · δ �V (j ) − gs

M�
j

(0)

E
(0)
j

δφ

)
�q
]

· ∇pf (0)(j ) = 0. (37)

Here, we note that the last equation has an explicit dependence
on the angle �. In order to get rid of this angular dependence,
we will use some techniques, which are well known in
magnetized plasma physics [26,27]. We will adopt the same
frame of reference used in Ref. [27] where:

�B = B�e3, ê3 ≡ e‖
�q = q⊥�e1 + q‖�e3 = (q⊥, 0, q‖)

�p = p⊥�e⊥ + p‖�e3 = (p⊥ cos �, p‖ sin �, p‖). (38)
The angular dependence of δf (j )(�q, ω, �p) = δf (j )(�q, ω, p⊥,
�, p‖) can be separated by using the Oberman-Ron [26]
transform:

δf (j )(�q, ω, �p)

= eib sin �

∞∑
m=−∞

e−im�Jm(b)δf (j )
m (�q, ω, p‖, p⊥), (39)

and its inverse transform:

δf (j )
m (�q, ω, p‖, p⊥)

= 1

2πJm(b)

∫ 2π

0
d�e−ib sin �eim�δf (j )(�q, ω, �p), (40)

where Jm(b) is a Bessel function and b is and arbitrary real
constant. We substitute the Oberman-Ron transform, Eq. (39),
in the Vlasov equation, Eq. (37), with b = − q⊥p⊥

Qj B
, j = (p, e),

and integrate in � the resulting expression multiplied by the
factor exp[−i(b sin � − m�)]. After some straightforward but
tedious calculation, we finally obtain, using Eq. (40), the
following expression:

δf (j )(�q, ω, �p) = eib sin �

∞∑
m=−∞

e−im�

{
m

b
Jm(b)

[
ωD

(j )
⊥ − q‖

E
(0)
j

(p‖D
(j )
⊥ − p⊥D

(j )
‖ )

]
δV (j )

x

+ iJ ′
m(b)

[
ωD

(j )
⊥ − q‖

E
(0)
j

(p‖D
(j )
⊥ − p⊥D

(j )
‖ )

]
δV (j )

y + Jm(b)

[
ωD

(j )
‖ − q⊥

E
(0)
j

(p⊥D
(j )
‖ − p‖D

(j )
⊥ )

m

b

]
δV (j )

z

− Jm(b)
[
q⊥D

(j )
⊥

m

b
+ q‖D

(j )
‖
][

δV (j )
0 − gsM

�(0)
j

E
(0)
j

δφ

]}[
ω − p‖q‖

E
(0)
j

+ QjBm

E
(0)
j

]−1

, (41)

where the prime of the Bessel function means its derivative
with respect to b, and

D
(j )
⊥ = ∂

∂p⊥
f (0)(j ), D

(j )
‖ = ∂

∂p‖
f (0)(j ). (42)

The above expression is the key for the calculation of the
dispersion relations in the presence of a strong external mag-
netic field. The Fourier transform of the small deviations from
equilibrium of the current is given by:

δJ (j )
μ (�x, t ) =

∫
d3q dω δJ (j )

μ (�q, ω)ei(ωt−�q·�x ). (43)

From Eq. (28) it follows that:

δJ (j )
μ (�q, ω) = 2

(2π )3

∫
d3p

E
(0)
j

pμ δf (j )(�q, ω, �p), (44)

and the current conservation results in the relation:

∂μJ (j )
μ = 0 ⇒ ωδJ

(j )
0 + �q · δ �J (j ) = 0. (45)

The continuity equation also can be used to derive the important
relation:

∂μδV (j )
μ = 0 ⇒ ωδV (j )

0 + �q · δ �V (j ) = 0. (46)
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D. Dispersion relations for longitudinal and transverse density modes

The dispersion relation for density perturbations follows from taking μ = 0 in Eq. (44):

δρ (j ) ≡ δJ
(j )
0 (�q, ω) = 2

(2π )3

∫
d3p δf (j )(�q, ω, �p) = 2

(2π )3

∫ ∞

0
dp⊥p⊥

∫ ∞

−∞
dp‖

∫ 2π

0
d� δf (j )(�q, ω, �p). (47)

Then, substituting Eq. (41) in the last expression and performing the integration in �, one obtains:

δρ (j )(�q, ω)

= Sj

[
m

b
J 2

m(b)

(
ωD

(j )
⊥ − q‖

E
(0)
j

(p‖D
(j )
⊥ − p⊥D

(j )
‖ )

)]
δV (j )

x + Sj

[
iJm(b)J ′

m(b)

(
ωD

(j )
⊥ − q‖

E
(0)
j

(p‖D
(j )
⊥ − p⊥D

(j )
‖ )

)]
δV (j )

y

+ Sj

[
J 2

m(b)

(
ωD

(j )
‖ − q⊥

E
(0)
j

(p⊥D
(j )
‖ − p‖D

(j )
⊥ )

m

b

)]
δV (j )

z − Sj

[
J 2

m(b)
(
q⊥D

(j )
⊥

m

b
+ q‖D

(j )
‖
)]

δV (j )
0

+ Sj

[
J 2

m(b)

E
(0)
j

(
q⊥D

(j )
⊥

m

b
+ q‖D

(j )
‖
)]

gsM
�
j

(0)
δφ, (48)

where we have defined, as in Ref. [27], the function:

Sj [X] =
∞∑

m=−∞

1

2π2

∫ ∞

−∞
dp‖

∫ ∞

0

dp⊥ p⊥[X]

ω − p‖q‖
E

(0)
j

+ Qj Bm

E
(0)
j

, (49)

where X is an arbitrary function of p‖ and p⊥. The next
step in order to obtain the dispersion relations is to substitute
the mesonic deviations from equilibrium in the last equation
by using the equations of motion. An additional equation
involving the scalar density is necessary to determine the
dispersion relation. From Eq. (32), it follows analogously to
the particle density fluctuations that:

δρ̃ (j )
s = 2

(2π )3

∫
d3p

M�
j

(0)

E
(0)
j

δf (j )(�q, ω, �p). (50)

Following the same reasoning used in the derivation of Eq. (48),
one obtains an analogous expression for the scalar density in
terms of the meson fields and the generalized Lindhard func-
tion. In fact, the expression for δρ̃

(j )
s can be read from Eq. (48)

by including M�
j

(0)/E
(0)
j in the integrands. In the Appendix,

we show, using the equations of motion for the meson and
electromagnetic fields, that one can write the deviations from
the equilibrium of these fields in terms of the deviations of
the corresponding densities. Therefore, substituting these field
deviations in Eq. (48), one obtains the dispersion relations.

1. Longitudinal mode

The longitudinal mode corresponds to small perturbations
parallel to the magnetic field and the dispersion relations are
obtained by taking q⊥ = 0, q‖ = q, b = 0 and δVx = δVy = 0
in Eq. (48). From the conservation law, Eq. (46), ∂μV (j )

μ = 0,
for the longitudinal modes we find:

ωδV (j )
0 = �q · δ �V (j ) = qδV (j )

z . (51)

The last result allows us to write δV (j )
z in terms of δV (j )

0 , hence
δρ (j )(q, ω) in Eq. (48) reduces to:

δρ (j )(�q, ω) = −q

(
1 − ω2

q2

)
Sj

[
J 2

m(0)D(j )
‖
]
δV (j )

0

+ qSj

[
J 2

m(0)

E
(0)
j

D
(j )
‖

]
gsM

�
j

(0)
δφ. (52)

In a completely analogous way, one obtains for the scalar
density:

δρ̃ (j )
s (q, ω) = −q

(
1 − ω2

q2

)
Sj

[
J 2

m(0)

E
(0)
j

D
(j )
‖

]
M�

j
(0)

δV (j )
0

+ qSj

⎡
⎣J 2

m(0)

E
(0)
j

2 D
(j )
‖

⎤
⎦gsM

�
j

(0)2
δφ. (53)

From Eqs. (49), (52), (53), and the equations relating the
perturbations of the mesonic fields with the corresponding
perturbations of the currents given in the Appendix, Eqs. (A1),
one obtains the dispersion relations. We have a set of five
equations involving the number densities, δρ (p), δρ (n), δρ (e),
and the scalar densities δρ̃

(p)
s , δρ̃ (n)

s , resulting in the following
matrix:

⎛
⎜⎜⎜⎝

a11 a12 a13 a14 a15

a21 a22 0 a24 a25

a31 0 a33 0 0
a41 a42 a43 a44 a45

a51 a52 0 a54 a55

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

δρ (p)

δρ (n)

δρ (e)

δρ̃
(p)
s

δρ̃ (n)
s

⎞
⎟⎟⎟⎟⎟⎠ = 0. (54)

The eigenmodes ω of the system are the solutions that cor-
respond to the roots of the determinant of the latter matrix.
In the Appendix, a more detailed discussion and the explicit
expressions for the elements of the dispersion matrix are given.
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FIG. 1. Dynamical spinodals for the NL3 (top) and the FSU (bottom) parametrization, for several values of the magnetic field and for a
moment transfer k = 75 MeV. The black curve corresponds to the B = 0 results.

2. Transverse mode

The transverse mode corresponds to perturbations on the
plane perpendicular to the direction of the external magnetic
field. The dispersion relations are obtained by taking q⊥ = q,
q‖ = 0, and δVy = δVz = 0 in Eq. (48).

Proceeding as in the longitudinal mode, one obtains:

δρ (j )(q, ω) = −q

(
1 − ω2

q2

)
Sj

[
J 2

m(b)D(j )
⊥

m

b

]
δV (j )

0

+ qSj

[
J 2

m(b)

E
(0)
j

m

b
D

(j )
⊥

]
gsM

�(0)
δφ (55)

and

δρ̃ (j )
s (q, ω) = −q

(
1 − ω2

q2

)
Sj

[
J 2

m(b)

E
(0)
j

D
(j )
⊥

m

b

]
M�

j
(0)

δV (j )
0

+ qSj

⎡
⎣J 2

m(b)

E
(0)
j

2

m

b
D

(j )
⊥

⎤
⎦gsM

�
j

(0)2
δφ. (56)

The dispersion relations for the transverse mode have the
same matrix structure of Eq. (54), and the appropriate matrix
elements for this case are discussed in detail in the Appendix.

III. RESULTS

In the present section, we discuss the effects of strong
magnetic fields on the structure of the inner crust of mag-
netars by analyzing the dynamical spinodals for NL3 and
FSU parametrizations. We consider the propagation of both
longitudinal and transverse modes, and define the spinodal
as the locus of the zero-frequency solutions of the dispersion
relation obtained for each type. The two parametrizations NL3

and FSU will be considered because they represent two very
distinct types of models: they have, respectively, a hard and
a soft symmetry energy. We will also calculate the maximum
growth rates in the interior of the spinodal surface and the
corresponding wavelengths. All calculations are carried out at
zero temperature, and without taking in account the anomalous
magnetic moments (AMM) of nucleons. We will mostly
consider magnetic field intensities between B = 2 × 1016 G
and B = 5 × 1017 G, although we will also show some results
for B ≈ 5 × 1018 G. The most intense fields detected on
the surface of a magnetar are not larger than 2 × 1015 G,
however, toroidal fields more intense than 1017 G in stable
configurations were obtained in Refs. [28,29], and, therefore,
one may expect stronger fields in the interior of the stars.

A. Longitudinal modes and associated spinodals

In Fig. 1, we show the dynamical spinodal sections in
the (ρn, ρp ) space for magnetic field intensities B = 2 ×
1016 G, B = 5 × 1016 G, B = 1017 G, and B = 5 × 1017 G,
obtained with the NL3 (top panels) and FSU (bottom panels)
parametrizations. The black lines represent the spinodal sec-
tion at zero magnetic field. The calculations were performed
with k = 75 MeV, which is a value of the transferred momen-
tum that gives a spinodal section very close to the envelope
of the spinodal sections. Essentially, the size of the spinodal
section does not change much for 70 < k < 100 MeV. In
the figure, we also include the EoS of β-equilibrium matter
represented by the blue dashed line. This will allow us to
estimate the crust-core transition density from the crossing of
the β-equilibrium EoS of stellar matter with the dynamical
spinodal.

The spinodal sections have been obtained numerically by
solving the dispersion relation for ω = 0. This was performed
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FIG. 2. Dynamical spinodals for the NL3 (top) and the FSU (bottom) parametrizations, for different moment transfer k and for magnetic
field B = 1017 G. The black curve corresponds to the B = 0 results.

by looking for the solutions at a fixed proton fraction and, for
each solution, a point was obtained. The solutions form a large
connected region for the lower proton and neutron densities,
plus extra disconnected domains that do not occur at B = 0.
The spinodal sections appear made of points, which, however,
define close regions. The pointlike appearance of the sections
is due to a numerical limitation. A higher resolution in (ρn, ρp )
would complete the gaps. Similar results have been obtained
in Ref. [5].

The structure of the spinodal section obtained for the
strongest field considered, B = 5 × 1017, clearly shows the
effect of the Landau quantization, as already shown in Ref. [5]:
there are instability regions that extend to much larger densities
than the B = 0 spinodal section, while there are also stable
regions that at B = 0 would be unstable. This is due to the
fact that the energy density becomes softer just after the
opening of a new Landau level, and harder when the Landau
level is most filled. For weaker fields, the same structure is
found, but at a much smaller scale, due to the increase of the
number of Landau levels; see for B = 1017, B = 5 × 1016, and
B = 2 × 1016. The spinodal section tends to the B = 0 one, as
the magnetic field intensity is reduced. The results obtained
with the present approach coincide with the ones obtained
without the AMM in Ref. [5]. The present approach, however,
will allow us to define the propagation of modes in an arbitrary
direction with respect to the magnetic field direction. In the next
section, we will discuss transverse modes.

Figure 1 allows a comparison of the spinodals obtained for
two models with a very different behavior of the symmetry
energy: the symmetry energy slope at saturation is 118 MeV
for NL3, and 60 MeV for FSU. As discussed in previous
works [5,6,30], in the low proton density, the NL3 spinodal
extends to larger neutron densities than FSU. On the other

hand, at low neutron densities, the contrary occurs for FSU.
These behaviors reflect the symmetry energy properties of both
models: the larger NL3 slope at saturation density implies a
smaller symmetry energy than FSU at densities below ρ ≈
0.1 fm−3, and this energetically favors asymmetric matter in
NL3 with respect to FSU in that range of densities. Above
ρ ≈ 0.1 fm−3, it is FSU that favors more asymmetric matter,
and this explains the behavior of the spinodals for low neutron
densities, when many Landau levels are occupied by protons.
For low proton densities, only the first Landau level is being
occupied, and the spinodal extends to larger neutron densities
for NL3 with a large symmetry energy slope [5,30,31].

In Fig. 2, we analyze the effect of the wave number on the
extension of the spinodal. As discussed in Refs. [8,32], the
extension of the spinodal increases when the wave number
increases from zero to a value of the order of ≈70–100 MeV,
due to the effect of the Coulomb field. We see that, for all
the values of the transferred momentum, k, the disconnected
regions are present, and have a similar extension, i.e., the upper
limits of the disconnected region seem to be k independent.
This can be understood if one associates the isolated regions
of instability to the onset of a new Landau level, which gives
a particular extra stability as discussed in Ref. [31].

For very long wavelengths, the electrons and protons have
to stick together in order to minimize the free energy, and this
reduces a lot the unstable region. If B = 0, and for a model
with a large slope L, an unstable region at k ≈ 0 still survives
in the presence of electrons, however, this is not anymore
true for a model with a soft symmetry energy such as FSU,
for which there is no unstable region. At finite B, the effect
of the Landau levels is important, and regions of instability
arise in a large region of the phase space, even for small
wave numbers. However, taking into account the discussion

025805-8



STABILITY OF THE NEUTRON-PROTON-ELECTRON … PHYSICAL REVIEW C 98, 025805 (2018)

0
1
2
3
4

|ω
|(M
eV
)

B=0
B=2×1016G
B=5×1016G

5

10

λ/
2(
fm
)

1.5
2
2.5
3
3.5

δρ
n/δ
ρ p

0 0.02 0.04 0.06 0.08 0.1

ρ(fm-3)

0
0.02
0.04
0.06
0.08

δρ
e/δ
ρ p

FSU
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density, and the electron-proton density fluctuation ratio (bottom) versus density for different magnetic-field intensities and matter with yp =
0.035 for FSU (left), and with yp = 0.02 for NL3 (right). The black curve corresponds to the B = 0 results.

of Ref. [7], it is expected that most of these effects are washed
out for temperatures of the order of ≈0.5–1 MeV. At large
wave numbers, k > 100 MeV, the spinodal region reduces due
to the finite range of the nuclear force, as discussed in Ref. [8].

We will complete our discussion on the instabilities that
arise due to the excitation of longitudinal modes, by calculating
the largest growth rates for each density in the unstable region.
The corresponding modes are the ones that most probably drive
the system into a nonhomogeneous configuration. We consider
that half the wavelength associated to these modes defines the
average size of the clusters that are formed [33,34], as discussed
in Refs. [5,6].

In Fig. 3, the largest growth rates (top panels), the corre-
sponding half wavelength (second panels), the ratio δρn/δρp

between the neutron and proton density fluctuations (third

panels), and the ratio δρe/δρp between the electron and proton
density fluctuations (bottom panels) are shown for two val-
ues of magnetic fields B = 2 × 1016 G (red) and 5 × 1016 G
(green), and for the NL3 and FSU models. For each one,
the calculation is done respectively at yp = 0.02 (NL3), and
yp = 0.035 (FSU), which are the average proton fractions
obtained in a Thomas-Fermi calculation of the pasta phases
close to the crust-core transition [35]. In all figures, the B = 0
results are plotted by a black curve. The results presented
are equivalent to the ones given in Fig. 4 of Ref. [6] for the
NL3ωρ model, excluding the AMM contribution. As discussed
there, the plots present two well-defined density regions: a
low-density region where the different quantities fluctuate
around the B = 0 results, the deviations being larger for the
larger fields, and a region at higher density, with no instabilities
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corresponds to the B = 0 results.
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at B = 0, but that, at B > 0, present regions of instability
intercalated with stable regions. As expected from the spinodal
regions plotted in Fig. 1, the second region extends to larger
neutron densities for FSU, while the first region is smaller for
the NL3 model. Otherwise, as discussed in Ref. [6], in the
second region, the clusters become smaller, and more proton
rich, as the density increases. In the bottom panel of Fig. 3, the
ratio δρe/δρp indicates how independent are the proton and
electron fluctuations. For all the densities shown, it is clear
that electron fluctuations are much smaller than the proton
ones, and the system is far from a scenario where electrons
have to fluctuate in phase with protons to lower the Coulomb
energy, and which occurs for small wave numbers.

B. Transverse modes

In the previous section, only longitudinal modes have been
considered. In the presence of strong magnetic fields, the
motion of charged particles is favored along the magnetic field
direction, and, therefore, it is expected that this is reflected
on the spinodal region obtained from transverse modes. In
Fig. 4, we plot the solutions of the dispersion relations for ω =
0, for both longitudinal and transverse modes. We consider
three different strengths of the external magnetic field: B =
2.2 × 1016 G, B = 4.4 × 1017 G, and B = 4.4 × 1018 G. The
transferred momentum k has been fixed at 100 MeV. The
present comparison is undertaken only for the NL3 model
(only values with ρn � 0.1 fm−3 are shown). For FSU we
obtain similar results. Some conclusions are in order: for the
most intense field considered, the spinodal connected to the
longitudinal modes has two well-defined regions connected to
the filling of the two Landau levels. As seen before, the spinodal
extends to quite large neutron densities. A completely different
effect is observed for the spinodal connected to the transverse
modes. In this case, the very strong field B = 4.4 × 1018

G gives rise to a reduction of the spinodal at large neutron
densities and isospin asymmetries. The magnetic field hinders
the propagation of perturbations in a direction perpendicular to
the magnetic field. However, for a magnetic field one order of
magnitude smaller, this effect is washed out, and the transverse
mode spinodal almost coincides with the B = 0 spinodal. For
this field intensity, the longitudinal mode spinodal is still far
from the B = 0 limit.

IV. CONCLUSIONS

In the present work, we have applied the covariant formula-
tion of the Vlasov equation presented in Ref. [12] to hadronic
matter described within a relativistic mean-field approach.
Within this formalism, we have calculated the normal modes
of a relativistic plasma, having in mind the study of magnetized
nuclear matter as found inside magnetars. The dispersion
relations for both longitudinal and transverse density fluctu-
ations were determined for nuclear matter described within a
relativistic mean-field nuclear model with constant coupling
constants.

In order to study the influence of the magnetic field on
the extension of the crust of a magnetized star, we have
calculated the unstable modes for two different nuclear models,

which were chosen for their different density dependence of
the symmetry energy. The spinodal section, the locus of the
zero-frequency modes, was determined for the longitudinal
and transverse density modes. We have also studied the growth
rates of the unstable modes inside the spinodal sections,
obtained by the largest growth rates, e.g., the modes that
most probably determine the evolution of the system into
a nonhomogeneous phase, and discussed the effect of the
magnetic field on the size of the crust and on the size and proton
content of the clusters formed in the inner crust of the star.

We have recovered previous results obtained for the lon-
gitudinal mode spinodals and corresponding unstable modes
obtained with a generating function method. In particular, the
effect of the magnetic field on the crust-core transition inside
a neutron star was discussed. As already discussed before, it
was shown that this transition occurs at larger densities, more
strikingly if the slope of the symmetry energy is large, and
that the transition region has a finite density width and is
characterized by alternating stable and unstable regions.

However, within the formalism developed in the present
study, we were able to study the propagation of modes not
necessarily aligned with the magnetic field, and this was not
possible in the approach of Ref. [5]. As an example, we
have discussed the spinodal region that originates from the
excitation of transverse modes. For magnetic fields of the order
of B ≈ 5 × 1018 G, it was shown that the spinodal section
is much smaller than the B = 0 section in the low proton
density range. We found, however, that this effect is already
washed out for a field one order of magnitude smaller, and that
for B < 5 × 1017 G, the transverse mode spinodal essentially
coincides with the B = 0 section.

Within the formalism developed, we aim at studying trans-
port coefficients, e.g., heat and electrical conductivities and
viscosity coefficients, of magnetized nuclear matter inside
neutron stars. This are important quantities to determine the
magnetic field evolution [36], the cooling of the star, or to un-
derstand the gravitational driven r-mode instabilities [37,38].
Another problem of interest for neutron stars is the study of the
effect of the magnetic field on the nonhomogeneous matter that
constitutes the inner crust, in particular, its effect on the shape
of the clusters and orientation of the pasta phases. Although
the dynamical spinodal includes the effect of surface tension
(finite range of the force) and the Coulomb field, it does not
take into account adequately the geometry, which is essential
in this frustration problem of interplay between the Coulomb
force and the surface tension. However, in the extended crust,
we are dealing with quite dense matter, and it was seen that the
wavelengths associated with the most unstable mode decrease
outside the B = 0 spinodal region. This may indicate that there
will form thin tubes or deformed bubbles. In other systems that
present pastalike phases, such as the surfactant liquid crystals,
it has been shown that a magnetic field may induce orientational
phase transitions [39].
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APPENDIX A: EQUATIONS OF MOTION FOR THE MESON AND ELECTROMAGNETIC FIELDS

The equations of motion for the mesons and electromagnetic fields follow from using the Euler-Lagrangian equations (3):

∂2
t φ − ∇2φ + m2

s φ + κ

2
φ2 + λ

6
φ3 = gs

∑
j=p,n

ρ (j )
s

∂2
t Vμ − ∇2Vμ + m2

vVμ + ξ

6
VνV

νVμ + 2�vbνb
νVμ = gv

∑
j=p,n

J (j )
μ

∂2
t bμ − ∇2bμ + m2

ρbμ + 2�vVνV
νbμ = gρ

2

∑
j=p,n

τjJ
(j )
μ

∂2
t Aμ − ∇2Aμ = e

(
J (p)

μ − J (e)
μ

) =
∑

j=p,e

QjJ
(j )
μ .

Now, we consider small deviations from the equilibrium in the fields, as given in Eq. (26), and perform a Fourier transform,
obtaining:

[−ω2 + �q 2 + m̃2
s

]
δφ(�q, ω) = gs

∑
j=p,n

2M
�(0)
j

(2π )3

∫
d3p

E
(0)
j

δf (j ),

[
−ω2 + �q 2 + m2

v + ξ

6
V

(0)
0

2 + 2�vb
(0)
0

2
]
δVμ + ξ

3
V

(0)
0

2
δV0 δμ0 + 4�vV

(0)
0 b

(0)
0 δb0 δμ0 = gv

∑
j=p,n

2

(2π )3

∫
d3p

E
(0)
j

pμδf (j ),

[−ω2 + �q 2 + m2
ρ + 2�vV

(0)
0

2]
δbμ + 4�vV

(0)
0 b

(0)
0 δV0 δμ0 = gρ

2

∑
j=p,n

τj

2

(2π )3

∫
d3p

E
(0)
j

pμδf (j ),

[−ω2 + �q 2]δAμ =
∑

j=p,e

Qj

2

(2π )3

∫
d3p

E
(0)
j

pμδf (j ), (A1)

where τj = ±1 is the isospin projection for protons and neutrons, respectively, and the effective scalar mass is given by:

m̃2
s = m2

s + κφ(0) + λ

2
φ(0)2 − g2

s

∑
j=p,n

dρ (0)(j )
s . (A2)

APPENDIX B: DISPERSION RELATION MATRIX ELEMENTS FOR LONGITUDINAL MODES

For the calculation of the dispersion relations for the longitudinal modes, Eqs. (52), (53), we first obtain Sj , by taking the
derivative of the equilibrium distribution function, Eq. (21),

D
(j )
‖ = ∂

∂p‖
f (0)(j ) =

∞∑
n=0

[Ln(2w2) − Ln−1(2w2)](−1)n e−w2{− δ
[
p‖ − p

(j )
F (n)

]+ δ
[
p‖ + p

(j )
F (n)

]}
,

with p
(j )
F (n) =

√
μ̃j − M

�(0)
j

2 − 2eBn. From Eq. (49), the latter equation, and using the property of the Bessel function, Jm(b =
0) = δm0, we find:

Sj

⎡
⎣J 2

m(0)

E
(0)
j

k
D

(j )
‖

⎤
⎦ = 1

q

1

2π2

nmax∑
n=0

eB

∫ ∞

0
du

e−u

E
(0)k+1
jn

(−1)n+1(Ln(2u) − Ln−1(2u))

⎛
⎜⎝ p

(j )
F (n)(

ω
q

)2 − (p
(j )
F (n)

E
(0)
jn

)2

⎞
⎟⎠, (B1)
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where E
(0)
jn =

√
M

�(0)
j + p

(j )
F

2
(n) + eBu. The explicit matrix elements of Eq. (54) are

a11 = 1 + FppL(0)
p , a12 = FpnL(0)

p , a13 = BAL(0)
p , a14 = M�(0)BsL

(1)
p , a15 = M�(0)BsL

(1)
p

a21 = FnpL(0)
n , a22 = 1 + FnnL(0)

n , a23 = 0, a24 = M�(0)BsL
(1)
n , a25 = M�(0)BsL

(1)
n

a31 = BAL(0)
e , a32 = 0, a33 = 1 − BAL(0)

e , a34 = 0, a35 = 0 a41 = FppM�(0)L(1)
p , a42 = FpnM�(0)L(1)

p ,

a43 = BAM�(0)L(1)
p , a44 = 1 + BsF

ppM�(0)2
L(2)

p , a45 = BsF
ppM�(0)2

L(2)
p

a51 = FnpM�(0)L(1)
p , a52 = FnnM�(0)L(1)

n , a53 = 0, a54 = BsM
�(0)2

L(2)
n , a55 = 1 + BsM

�(0)2
L(2)

n ,

where

F ij = −
(

Bv + τiτjBρ + QiQj

e2
BA

)

and

Bv = 1

2π2

g2
v

ω2 − ω2
v

(
1 − ω2

q2

)

Bρ = 1

2π2

(gρ/2)2

ω2 − ω2
ρ

(
1 − ω2

q2

)

Bs = 1

2π2

g2
s

ω2 − ω2
s

, BA = − e2

2π2

1

q2

with ω2
s = m̃2

s + �q 2, ω2
v = m2

v + �q 2, and ω2
ρ = m2

ρ + �q 2. The generalized Lindhard functions for the proton and electron are
defined as:

L(k)
j = eB

nmax∑
n=0

∫ ∞

0
du[Ln(2u) − Ln−1(2u)]

e−u

E
(0)k+1
jn

(−1)n+1

⎛
⎜⎝ p

(j )
F (n)(

ω
q

)2 − (p
(j )
F (n)

E
(0)
jn

)2

⎞
⎟⎠.

Notice that we have defined the generalized Lindhard function, L(k)
j , such that the present Vlasov magnetized dispersion relation

and the corresponding nonmagnetized Vlasov dispersion relation of Ref. [25] differs only in what concerns this function. Hence,
the limit B = 0 is easily obtained.

APPENDIX C: DISPERSION RELATION MATRIX ELEMENTS FOR TRANSVERSE MODES

An equation similar to Eq. (B1) provides the necessary solutions for the various Sj functions. However, an important
complication arises in the context of the transverse modes, in that the argument of the Bessel functions is not zero. This means
one needs to compute the contribution of the Bessel functions and perform the integrals:

Sj

⎡
⎣J 2

m(b)

E
(0)
j

k

m

b
D

(j )
⊥

⎤
⎦ = 1

2π2

∞∑
m=−∞

∫ ∞

−∞
dp‖

∫ ∞

0
dp⊥p⊥

m

b

J 2
m(b)

E
�(0)k
j

D
(j )
⊥

ω + Qj Bm

E
�(0)k
j

. (C1)

Next, we obtain Sj by taking the derivative of the equilibrium distribution function, Eq. (21),

D
(j )
⊥ = ∂

∂p⊥
f (0)(j ) =

∞∑
n=0

[Ln(2w2) + Ln−1(2w2)](−1)n+1 e−w2 2p⊥
eB

θ
(
p

(j )
F (n) − p‖

)
, (C2)

and substituting the latter result in Eq. (C1). After some simple manipulations, by separating negative and positive (as well as
zero) values of m, and using properties of the Bessel functions in order to reduce the integrals to more usual forms, one obtains:

Sj

⎡
⎣J 2

m(b)

E
(0)
j

k

m

b
D

(j )
⊥

⎤
⎦ = 1

2π2

1

q

nmax∑
n=0

∫ p
(j )
F (n)

0
dp‖8(eB )

∫ ∞

0
dp⊥p⊥[Ln(2w2) + Ln−1(2w2)](−1)n+1 e−w2

× 1

E
�(0)
j

k+1

∞∑
m=0

(
1 − δm0

2

)
m2 Jm(b)2

ω2 − (Qj Bm)2

E
�(0)
j

2

≡ 1

q

1

2π2
L

(k)
j . (C3)

025805-12



STABILITY OF THE NEUTRON-PROTON-ELECTRON … PHYSICAL REVIEW C 98, 025805 (2018)

These equations simplify considerably in some particular cases of interest. For instance, to determine the spinodal boundary, we
impose ω = 0. Below, we show the results for L

(k)
j in this particular case:

L
(k)
j = 8

eB

∫ ∞

0
dp⊥p⊥

(−1)ne−w2

E
�(0)
j

k−1

nmax∑
n=0

∫ p
(j )
F (n)

0
dp‖[Ln(2u) + Ln−1(2u)]

∞∑
m=0

(
1 − δm0

2

)
J 2

m(b).

The latter equation can be simplified further by using the following Bessel function property [23]:
∞∑

m=0

(
1 − δm0

2

)
J 2

m(b) = 1

2
. (C4)

The special cases involved in the calculation of the dispersion relations are the following:

L
(0)
j = 2

eB

nmax∑
n=0

∫ ∞

0
dp⊥p⊥[Ln(2w2) + Ln−1(2w2)](−1)ne−w2

×
⎡
⎣p

(j )
F (n)

√
M

�(0)
j

2 + p2
⊥ + p

(j )
F (n)

2 + +(M�(0)
j

2 + p2
⊥
)

ln
p

(j )
F (n) +

√
M

�(0)
j

2 + p2
⊥ + p

(j )
F (n)

2

√
M

�(0)
j

2 + p2
⊥

⎤
⎦

L
(1)
j = 4

eB

nmax∑
n=0

∫ ∞

0
dp⊥p⊥[Ln(2w2) + Ln−1(2w2)](−1)ne−w2

p
(j )
F (n)

L
(2)
j = 4

eB

nmax∑
n=0

∫ ∞

0
dp⊥p⊥[Ln(2w2) + Ln−1(2w2)](−1)ne−w2

ln
p

(j )
F (n) +

√
M

�(0)
j

2 + p2
⊥ + p

(j )
F (n)

2

√
M

�(0)
j

2 + p2
⊥

.

We have chosen the notation Lk
j to mirror the generalized Lindhard functions, given in Appendix B, and, in fact, substituting

the equations above for those functions, one ends with a matrix for the transverse modes that is identical to the one obtained for
the longitudinal modes, (54).
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