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Constraints set on key parameters of the nuclear matter equation of state (EoS) by the values of the tidal
deformability, inferred from GW170817, are examined by using a diverse set of relativistic and nonrelativistic
mean-field models. These models are consistent with bulk properties of finite nuclei as well as with the observed
lower bound on the maximum mass of neutron star ≈2M�. The tidal deformability shows a strong correlation
with specific linear combinations of the isoscalar and isovector nuclear matter parameters associated with the
EoS. Such correlations suggest that a precise value of the tidal deformability can put tight bounds on several EoS
parameters, in particular on the slope of the incompressibility and the curvature of the symmetry energy. The
tidal deformability obtained from the GW170817 and its UV, optical and infrared counterpart sets the radius of
a canonical 1.4M� neutron star to be 11.82 � R1.4 � 13.72 km.
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I. INTRODUCTION

The physics of dense matter relevant to neutron stars (NSs)
is poorly understood at present [1]. Neutron stars are made
of incredibly dense matter reaching densities up to few times
the nuclear saturation density (ρ0 ≈ 0.16 fm−3) in the core re-
gion. The NS structure depends predominantly on the nuclear
equation of state (EoS). Due to the lack of detailed knowledge
of the nuclear interactions at densities typical of the NS
interior, many theoretical models of the nuclear EoS have been
proposed. Matter at supranuclear densities, as encountered in
the NS interior, is difficult to access in terrestrial experiments.
Inputs from astrophysical observations are, therefore, crucial
in constraining the dense matter EoS. Currently, the most
stringent constraint comes from the observation of NSs with
≈2M� [2,3], which sets a lower limit for the maximum mass
to be predicted by an EoS.

Because NSs are massive and compact astrophysical ob-
jects, the coalescence of binary NS systems is one of the most
promising sources of gravitational waves (GWs) observable
by ground-based detectors [4–9]. The GW signals emitted
during a NS merger depends on the behavior of neutron star
matter at high densities [10,11]. Therefore, its detection opens
the possibility of constraining the nuclear matter parameters
characterizing the EoS. A significant signature carried by
GWs is the tidal deformability (polarizability) of the NS,
and it is well explored analytically [12–16]. In a coalescing
binary NS system, during the last stage of inspiral, each NS
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develops a mass quadrupole due to the extremely strong tidal
gravitational field induced by the other NS forming the binary.
The dimensionless tidal deformability � describes the degree
of deformation of a NS due to the tidal field of the companion
NS and is sensitive to the nature of the EoS.

In August, 2017, the Advanced LIGO and Advanced Virgo
gravitational-wave observatories detected for the first time
GWs emitted from a binary NS inspiral [17]. Remarkably,
this discovery opened a new window in the field of multi-
messenger astronomy and nuclear physics, which revealed
the potential to directly probe the physics of NSs and of
the synthesis of heavy elements in the rapid neutron-capture
process (r process) [18,19]. The analysis of GW170817 data
has allowed us to put an upper bound on the NSs combined
dimensionless tidal deformability with 90% confidence by
using spin magnitudes consistent with the observed neutron
star population. In the analysis, results for both a high-spin
and a low-spin prior have been obtained to the same level
of confidence. In our study we consider the constraints set
by the low-spin prior because they are consistent with the
masses of all known binary neutron star systems. This prior
predicts that the combined dimensionless tidal deformability
of the NS merger is �̃ � 800. In Ref. [20], a reanalysis of
the gravitational-wave observations of the binary neutron star
merger GW170817 was done by assuming the same EoS for
both stars and supplementing the gravitation-wave observa-
tion with information on the source location and distance
from electromagnetic observations. For the low-spin prior
these authors obtained the constraint �̃ � 1000. On the other
end, the investigation of the UV-optical-infrared counterpart
of GW170817 with kilonova models and complemented with
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numerical relativity results in Ref. [21] has set a lower bound
on �̃, i.e., �̃ > 400. It should, however, be mentioned that
this lower bound was obtained from 29 merger simulations
covering several masses such that q � 0.85 [22] and restricted
to three models of nuclear matter, one including also the �

hyperon. We show that these bounds on �̃ can be employed
to deduce the respective bounds on the tidal deformability of
a NS with mass 1.4M�.

Studies of the correlations between nuclear matter param-
eters and the tidal deformability, based on a few selected
relativistic mean-field models, have shown that measurements
of the latter can constrain the high-density behavior of the
nuclear symmetry energy [23] as well as put bounds on
the value of neutron skin thickness [24]. These preliminary
studies need to be validated further by using a more diverse set
of models for the nuclear EoS. In earlier studies it was found
that correlations between the various properties of NS and
nuclear matter EoS parameters are significantly affected when
a more diverse set of models are employed [25,26]. Recently,
astrophysical observations of NSs, in particular, the maximum
mass, the radius of a canonical 1.4M� NS, and the tidal
deformability, have been used to constrain various parameters
of the EoS [27]. However, within their assumptions, they
found that the tidal deformability obtained from GW170817
is not very restrictive.

The present communication is an attempt, in view of the
recent observation GW170817, to further explore the depen-
dence of the tidal deformability on the various nuclear matter
parameters describing the EoS. We study the correlations of
the tidal deformability parameter with the several different nu-
clear matter parameters associated with a EoS by employing a
representative set of relativistic mean-field (RMF) models and
of Skyrme Hartree–Fock (SHF) models. The considered EoS
parameters are the nuclear matter incompressibility coeffi-
cient, the symmetry energy coefficient, and their derivatives at
the saturation density. We also study the model dependence of
the Love number k2, which plays a crucial role in determining
the value of tidal deformability.

This paper is organized as follows: In Sec. II, we briefly
outline the procedure for computing the tidal deformability
and also define the various nuclear matter parameters which
can be calculated for a given EoS. In Sec. III we present the
EoSs for our representative set of RMF and SHF models and
use them to calculate the tidal deformability and the Love
number over a wide range of NS masses. The main results
for the correlations of the tidal deformability, Love number,
and NS radius with different nuclear matter parameters are
discussed in Sec. IV. Finally, the conclusions are drawn in
Sec. V.

Conventions. We have taken the value of G = c = 1
throughout the manuscript.

II. FRAMEWORK

In this section, we outline the expressions required to
compute the tidal deformability for a given EoS. We also
define the various nuclear matter parameters that characterize
the EoS.

A. Tidal deformability

The tidal deformability parameter λ is defined as
[12,13,16,28]

Qij = −λEij , (1)

where Qij is the induced quadrupole moment of a star in a
binary due to the static external tidal field Eij of the compan-
ion star. The parameter λ can be expressed in terms of the
dimensionless quadrupole tidal Love number k2 as

λ = 2
3k2R

5, (2)

where R is the radius of the NS. The value of k2 is typically in
the range �0.05–0.15 [13,16,29] for NSs and depends on the
stellar structure. This quantity can be calculated by using the
following expression [13]:

k2 = 8C5

5
(1 − 2C)2[2 + 2C(yR − 1) − yR]

{
2C[6 − 3yR

+ 3C(5yR − 8)] + 4C3[13 − 11yR + C(3yR − 2)

+ 2C2(1 + yR )] + 3(1 − 2C)2[2 − yR + 2C(yR − 1)]

× ln(1 − 2C)

}−1

, (3)

where C (≡m/R) is the compactness parameter of the star of
mass m. The quantity yR [≡y(R)] can be obtained by solving
the following differential equation:

r
dy(r )

dr
+ y(r )2 + y(r )F (r ) + r2Q(r ) = 0, (4)

with

F (r ) = r − 4πr3[ε(r ) − p(r )]

r − 2m(r )
, (5)

Q(r ) =
4πr

[
5ε(r ) + 9p(r ) + ε(r )+p(r )

∂p(r )/∂ε(r ) − 6
4πr2

]
r − 2m(r )

− 4

[
m(r ) + 4πr3p(r )

r2[1 − 2m(r )/r]

]2

. (6)

In the previous equations, m(r ) is the mass enclosed within
the radius r , and ε(r ) and p(r ) are, respectively, the energy
density and pressure in terms of the radial coordinate r of
a star. These quantities are calculated within the nuclear
matter model chosen to describe the stellar EoS. For a given
EoS, Eq. (4) can be integrated together with the Tolman–
Oppenheimer–Volkoff equations [30] with the boundary con-
ditions y(0) = 2, p(0)=pc, and m(0)=0, where y(0), pc,
and m(0) are the dimensionless quantity, pressure, and mass
at the center of the NS, respectively. One can then define
the dimensionless tidal deformability: � = 2

3k2C
−5. The tidal

deformabilities of the NSs present in the binary neutron star
system can be combined to yield the weighted average as

�̃ = 16

13

(12q + 1)�1 + (12 + q )q4�2

(1 + q )5 , (7)

where �1 and �2 are the individual tidal deformabilities
corresponding to the two components in the NS binary with
masses m1 and m2, respectively [12,31] with q = m2/m1 < 1.
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B. Nuclear matter parameters

The energy per nucleon at a given density ρ = ρn + ρp

with ρn and ρp being the neutron and proton densities, respec-
tively, and asymmetry δ = (ρn − ρp )/ρ, can be decomposed,
to a good approximation, into the EoS for symmetric nuclear
matter e(ρ, 0), and the density-dependent symmetry energy
coefficient S(ρ):

e(ρ, δ) � e(ρ, 0) + S(ρ)δ2. (8)

Expanding the isoscalar contribution to third order and the
isovector to second order, we obtain for the isoscalar part
e(ρ, 0):

e(ρ, 0) = e(ρ0) + K0

2
x2 + Q0

6
x3 + O(x4), (9)

and for the isovector part S(ρ):

S(ρ) = J0 + L0x + Ksym,0

2
x2 + O(x3), (10)

where x = ρ−ρ0

3ρ0
and J0 = S(ρ0) is the symmetry energy at

the saturation density. The incompressibility K0, the skewness
coefficient Q0, the symmetry energy slope L0, and its curva-
ture Ksym,0 evaluated at saturation density are defined in, e.g.,
Ref. [32]. The slope of the incompressibility, M0, at saturation
density is defined as [25]

M0 = 12K0 + Q0. (11)

In Sec. IV we consider the correlations of the tidal deforma-
bility of NSs with the various nuclear matter parameters of the
EoS: K0, Q0, M0, J0, L0, Ksym,0.

III. EQUATION OF STATE AND TIDAL DEFORMABILITY

In the present section we introduce a set of relativistic and
nonrelativistic nuclear models that are constrained by the bulk
properties of finite nuclei and the observed lower bound on the
NS maximum mass. For these models we show how the tidal
deformability and Love number behave over a wide range of
NS masses.

A. Nuclear matter equation of state

The correlations of the properties of neutron stars with the
various nuclear matter parameters of the EoS are studied by
using a set of eighteen relativistic and twenty-four nonrela-
tivistic nuclear models. These models have been employed
for the study of finite nuclei and NS properties. Our set of
models are based on RMF and SHF frameworks. The RMF
models employed are BSR2, BSR3, BSR6 [33,34], FSU2
[35], GM1 [36], NL3 [37], NL3σρ4, NL3σρ6 [38], NL3ωρ02
[39], NL3ωρ03 [40], TM1 [41], TM1-2 [42] DD2 [43], DDHδ
[44], DDHδMod [45], DDME1 [46], DDME2 [47], and TW
[48]. The SHF models considered are the SKa, SKb [49],
SkI2, SkI3, SkI4, SkI5 [50], SkI6 [51], Sly2, Sly9 [52],
Sly230a [53], Sly4 [54], SkMP [55], SKOp [56], KDE0V1
[57], SK255, SK272 [58], Rs [59], BSk20, BSk21 [60],
BSk22, BSk23, BSk24, BSk25, and BSk26 [61]. The values
of the nuclear matter properties, such as K0, Q0, M0, J0, L0,
and Ksym,0 vary over a wide range for our representative set

FIG. 1. Plots for (a) pressure p as a function of energy density
and (b) dp/dε as a function of the baryonic number density for beta-
equilibrated NS matter obtained by using a representative set of RMF
(black dashed lines) and SHF models (red lines). The circles in the
right panel correspond to the central densities and the slopes dp/dε

at the maximum NS mass for each of the EoS. The BSk20 and BSk26
EoSs are marginally acausal at the NS maximum masses ≈2.2M�
[26,62].

of EoSs as can be seen from the supplementary material of
Ref. [62]. As the mass of the stars in the GW170817 binary
is 1.6M� or smaller, we only consider nucleonic degrees of
freedom. However, a NS with a mass of 1.6M� could have
non-nucleonic degrees of freedom [33,63].

The EoSs considered for all the models are consistent with
the observational constraint provided by the existence of 2M�
NSs [26,62]. Moreover, the considered SHF models do not
become acausal for masses below 2M�. We have taken a
unified inner-crust core EoS for all the models [26] and the
EoS of Baym–Pethick–Sutherland [64] is used for the outer
crust.

In Fig. 1, we plot for NS matter the variation of pressure p
with the energy density ε in the left panel and the variation of
dp/dε with the baryon number density in the right panel for
our representative set of models. The black circles denote the
central density corresponding to the NS maximum mass for
each EoS. The dashed line indicates the causality limit (i.e.,
dp/dε = 1). The values of dp/dε for SHF models are larger
at higher densities (ρ � ρ0) than those for the RMF models.
The maximum mass NS configurations of all models studied
are within the causality limit except for BSk20 and BSk26
EoSs, which are marginally acausal.

B. Dependence of tidal deformability on equation of state

One of the main focuses of the present work is to study
the sensitivity of the tidal deformability to the properties of
nuclear matter at saturation density. To facilitate our dis-
cussions in the next section, in Fig. 2 the dimensionless
tidal deformability � (left) and tidal Love number k2 (right)
obtained for our set of EoSs are plotted as a function of the
NS mass. The values of k2 show a noticeable spread across the
various models. For instance, at 1.4M�, the values of k2 are in
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FIG. 2. (a) Tidal deformability � and (b) Love number k2 as
a function of NS mass (m) for a representative set of relativistic
and nonrelativistic models. The SHF model, SkI5, displays markedly
different behavior for � as well as for k2.

the range of 0.07 to 0.11. For the smaller masses the spread in
k2 is larger for the SHF models, but for the larger masses RMF
models give, on average, larger values of k2. One can also see
from Fig. 1 of Ref. [62] that the RMF models predict larger
radii; in particular for large NS masses. Consequently, the
parameter � tends to be larger for the RMF models than for
the SHF models. In the following, we examine the dependence
of � on both k2 and R in detail.

In Fig. 3 we plot the tidal deformabilities in the phase space
of �1 and �2 associated, respectively, with the high-mass
m1 and low-mass m2 components of the binary, for all the
considered RMF and SHF models. The curves corresponding
to every EoS are obtained by varying the high mass (m1)
independently in the range 1.365 < m/M� < 1.60 obtained

FIG. 3. Tidal deformability parameters for the case of high-mass
(�1) and low-mass (�2) components of the observed GW170817.
The 90% (dot-dot-dashed) and 50% (dotted) confidence lines are
taken from Ref. [17] and correspond to the low-spin priors.

for GW170817 whereas the low mass (m2) is determined by
keeping the chirp mass M = (m1m2)3/5(m1 + m2)−1/5 fixed
at the observed value 1.188M� [17]. The dot-dot-dashed and
the dotted lines represent, respectively, the 90% and 50% con-
fidence limits obtained from the GW170817 for the low-spin
priors. One can note that the 90% confidence limit suggests
that SkI5 and the family of models NL3X and TM1X are
ruled out except for NL3ωρ03. For SkI5, the values of M0

and L0 are 2745 and 129 MeV, respectively. For the NL3X
family, the value of M0 is larger than 3400 MeV and L0 is
in the range of 55–70 MeV except for the base model NL3.
Whereas, for TM1X family, the value of M0 ≈ 3100 MeV and
L0 ≈ 110 MeV. This indicates that a very high value of M0

and/or L0 may not be favored by GW170817.

IV. RESULTS AND DISCUSSIONS

In the present section, we study the correlations of the tidal
deformability �, the Love number k2, and the radius of NSs R
with various nuclear matter parameters. As already mentioned
in Sec. I, we consider the constraints from the properties of the
binary neutron star that satisfy the low-spin prior [17]. In our
analysis, the correlation between a pair of quantities is quan-
tified in terms of Pearson’s correlation coefficient, denoted R
[65]. The magnitude of R is at most unity, indicating that the
pair of quantities is completely correlated to each other. For
|R| < 0.5, the correlations are usually said to be weak.

We calculate the values of the coefficients for the cor-
relation of �, k2, and R with the nuclear matter saturation
parameters K0, Q0, M0, J0, L0, Ksym,0 and with several linear
combinations of two parameters; in particular with K0 + αL0,
M0 + βL0, and M0 + ηKsym,0. The values of α, β, and η
are obtained so that, for each NS mass, they yield optimum
correlations. Our correlation systematics is determined for NS
masses in the range of 1.2M�–1.6M� since, for analysis of
the low-spin prior, these masses are close to those involved
in the GW170817 event. The results for the values of the R
obtained for the correlation of �, k2, and R with individual
nuclear matter parameters are presented in Table I. Table II
contains the results obtained by using the linear combinations
of the nuclear matter parameters. Figure 4 is the pictorial
representation of the results presented in Tables I and II.
Only the cases with the correlation coefficients R > 0.5 are
displayed. We see from Table I that, for most of the cases,
individual EoS parameters seem to be weakly or moderately
correlated with the �, k2, and R. Exceptionally, the � and
R are strongly correlated with the individual nuclear matter
parameters L0 and M0 for the NS masses 1.2M� and 1.6M�,
respectively. Let us point out that the correlation between the
radius of low-mass NSs and the neutron skin of 208Pb, which is
itself correlated with L0, was first discussed in Refs. [39,66].
It is seen from Table II that � and R are strongly correlated
with M0 + βL0 and M0 + ηKsym,0 over the wide range of NS
masses considered: R is of the order of 0.9. The Love number
k2 is strongly correlated with M0 + ηKsym,0. The values of
α, β, and η decrease monotonically with the NS mass. This
indicates that the density dependence of symmetry energy
is less important in determining the values of � and R at
higher NS masses. The mass dependence of α, β, and η is
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TABLE I. The Pearson correlation coefficients R obtained for
the correlations between various NS and nuclear matter properties.
The values of tidal deformability �, radius R and the Love number k2

are evaluated for the NS masses 1.2M�–1.6M�. The nuclear matter
incompressibility K0, skewness Q0, slope of incompressibility M0,
symmetry energy J0, slope of symmetry energy L0, and curvature
parameters Ksym,0 at saturation density.

K0 Q0 M0 J0 L0 Ksym,0

�1.2 0.68 0.46 0.68 0.58 0.81 0.76
�1.3 0.69 0.51 0.72 0.56 0.76 0.74
�1.4 0.70 0.57 0.76 0.53 0.71 0.71
�1.5 0.71 0.62 0.80 0.50 0.65 0.68
�1.6 0.71 0.66 0.82 0.46 0.59 0.64

R1.2 0.65 0.48 0.67 0.65 0.82 0.70
R1.3 0.66 0.51 0.70 0.62 0.79 0.70
R1.4 0.67 0.54 0.72 0.59 0.75 0.69
R1.5 0.68 0.57 0.75 0.56 0.72 0.68
R1.6 0.68 0.60 0.77 0.53 0.68 0.66

k2,1.2 0.57 0.34 0.54 −0.03 0.44 0.79
k2,1.3 0.62 0.47 0.65 0.02 0.43 0.76
k2,1.4 0.64 0.55 0.72 0.05 0.39 0.72
k2,1.5 0.65 0.63 0.77 0.08 0.36 0.66
k2,1.6 0.58 0.59 0.71 0.06 0.26 0.57

discussed in some detail in the appendix where, in particular,
an exponential dependence of these parameters on the NS
mass is proposed. As an example, in Fig. 5 we plot M0 + βL0

TABLE II. Values of coefficients R obtained for the correlations
of �, R, and k2 with various linear combinations of EoS parameters.
The calculations are performed for the NS masses 1.2M�–1.6M�.

K0 + αL0 M0 + βL0 M0 + ηKsym,0

R α R β R η

�1.2 0.88 1.16 0.94 21.22 0.92 6.34
�1.3 0.86 0.93 0.93 17.05 0.94 5.55
�1.4 0.83 0.74 0.92 13.68 0.95 4.83
�1.5 0.80 0.59 0.92 10.91 0.95 4.18
�1.6 0.77 0.45 0.91 8.54 0.95 3.62

R1.2 0.88 1.33 0.94 21.75 0.88 5.64
R1.3 0.86 1.14 0.93 19.07 0.90 5.33
R1.4 0.84 0.98 0.93 16.62 0.91 5.00
R1.5 0.82 0.84 0.92 14.38 0.92 4.65
R1.6 0.80 0.71 0.91 12.32 0.93 4.31

k2,1.2 0.62 0.40 0.64 11.18 0.88 9.15
k2,1.3 0.64 0.25 0.70 7.22 0.91 6.83
k2,1.4 0.65 0.16 0.75 4.81 0.92 5.31
k2,1.5 0.66 0.10 0.79 3.34 0.93 4.20
k2,1.6 0.65 0.04 0.81 2.14 0.93 3.52

and M0 + ηKsym,0 as a function of k2 and � for a 1.4 M�
NS. Since �1.4 is not very well correlated individually with
M0, L0, and Ksym,0, its strong correlation with M0 + βL0

and M0 + ηKsym,0 is of particular importance. The values of
the correlation coefficients given in the figure are obtained
with the entire set of RMF and SHF models as presented in

FIG. 4. Correlation coefficients R for (a)–(c) the tidal deformability �, (d)–(f) the radius R, and (g)–(i) the Love number k2 with different
individual nuclear matter parameters as well as with some selected linear combinations of them obtained for the NS masses 1.2M� (top),
1.4M� (middle), and 1.6M� (bottom). Results are plotted only for the cases with R > 0.5 (see Tables I and II for details).
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FIG. 5. (a), (b) M0 + βL0 and (c), (d) M0 + ηKsym,0 versus tidal
Love number k2,1.4 (top panels) and dimensionless tidal deformabil-
ity �1.4 (bottom panels) for a 1.4M� NS, using a set of RMF and
SHF models.

Sec. III A. To check the model dependence of the correlations,
we determined the correlation coefficients for the sets of RMF
and SHF models separately. The results are given in Table III
and indicate that the model dependence is only marginal.

The result for the correlations among k2, �, and various
nuclear matter properties as depicted in Fig. 5 may be under-
stood as follows: In Ref. [62], it was shown that the NS radius
R is strongly correlated with a linear combination of M0 and
L0 over a wide range of NS masses. This was attributed to the
dependence of the pressure on M0 and L0 and to the empirical
relationship of the star radius with the pressure at several
reference densities, e.g., Rp(ρ)−1/4 = const. for ρ ≈ 1.5 ρ0

and NS masses, 1M�–1.4M�, irrespective of the model [67].
The solid lines in Fig. 5 are obtained using linear regres-

sion. These linear regressions yield

M0

MeV
+ 13.68

L0

MeV
= (2.09 ± 0.14)�1.4

+ (2383.12 ± 96.42), (12)

M0

MeV
+ 4.83

Ksym,0

MeV
= (2.11 ± 0.11)�1.4

+ (1278.13 ± 77.76). (13)

TABLE III. Values for the correlations coefficients for �1.4 and
k2,1.4 with M0 + βL0 and M0 + ηKsym,0 obtained separately for the
RMF and SHF models. The values of the correlation coefficients
corresponding to all the models (ALL) are also listed.

M0 + βL0 M0 + ηKsym,0

RMF SHF ALL RMF SHF ALL

�1.4 0.92 0.90 0.92 0.88 0.97 0.95
k2,1.4 0.72 0.68 0.75 0.89 0.91 0.92

FIG. 6. Tidal deformability �1.4 verses weighted average �̃ as
defined in Eq. (7) for all RMF and SHF models. The solid line
represents the best fit. The arrows pointing right and up indicate the
lower bounds on �̃ and �1.4, respectively. The upper bounds on �̃

and �1.4 are denoted by left and down arrows, respectively.

We need to know the value of �1.4 in order to exploit the
correlations, as presented in Fig. 5, to estimate the values of
nuclear matter properties at the saturation density.

The GW170817 event provides the upper bound on �̃ as
defined by Eq. (7). For the low-spin prior we have to consider
masses such that q = m2/m1 > 0.7. We have calculated the
�̃ using neutron star masses m = 1.4M�, 1.17M�, 1.6M�,
which correspond to the canonical mass and the lower and
upper mass limits covered by the analysis of the low-spin
prior. The neutron star binary companion mass is determined
from the chirp mass M = 1.188M�: m = 1.17M�, 1.6M�
are, respectively, m2 and m1 corresponding to q = 0.7; for
the canonical mass we get q = 0.95 with m1 = 1.40M� and
m2 = 1.33M�. Figure 6 shows the variation of �1.4 as a
function of �̃ for all RMF and SHF models. The correlation
between these two quantities is very strong, which enables us
to express �1.4 in terms of �̃ because �1.4 = 0.859�̃. Similar
studies were performed for the NS with mass m = 1.17M�
and 1.6M� and we obtained �1.17 = 2.452�̃ and �1.6 =
0.379�̃ with an equally strong correlation. These relations
should be compared with the prediction from the expression
proposed in Ref. [20]:

�1 = 13

16
�̃

q2(1 + q )4

12q2 − 11q + 12
, (14)

obtained by replacing

�2 = q−6�1 (15)

in Eq. (7) for �̃. Equation (15) was obtained by assuming that
the radii of the stars with masses 1.17M� < m < 1.6M� are
the same. Using expression (14), we get relations between
�i and �̃ for mi = 1.17M�, 1.4M�, 1.6M� that coincide
with ours within the first two digits. We have checked that,
in most cases, for our set of models the difference between
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FIG. 7. Plots of incompressibility slope parameter M0 versus
tidal deformability �1.4 at fixed values of symmetry energy slope
parameter L0 (solid lines) obtained using Eq. (12). The choices for
the values of L0 are discussed in the text. The dot-dot-dashed lines
represent the bounds obtained in Fig. 6.

the radii of stars with a mass in that interval is not larger
than ≈0.2 km.

In the following, we want to constraint M0 and Ksym,0. We
consider the limits imposed on �1.4. This choice is justified
because, according to the analysis done in Refs. [20,68], the
limits obtained for �̃ are q dependent and, in particular,
in Ref. [20] if the double neutron star or galactic neutron
star distributions are considered, the maximum �̃ value is
obtained, respectively, for q > 0.9 (q > 0.8). For the lower
limit, the results of Refs. [21,22] were determined for q >
0.85. A lower bound of �1.4 > 344 is set by the UV, optical
and infrared counterpart of GW170817 that imposes �̃ > 400
[21,22]. Similarly, the gravitational-wave observations set an
upper bound �1.4 < 687 or �1.4 < 859, respectively, from the
bounds �̃ < 800 [17] and �̃ < 1000 [20]. In what follows, we
use these bounds on �1.4 together with Eqs. (12) and (13) to
constrain the nuclear matter properties.

In Fig. 7, the slope of the incompressibility coefficient at
the saturation density M0 is plotted as a function of �1.4 for
fixed values of L0 using Eq. (12). The limiting values of L0

employed in the plot correspond to L0 = 51 ± 11 MeV [69].
This limit on L0 in conjunction with the bounds on �1.4,
as discussed above, constrain M0 as listed in Table IV. As
referred to before, the lower bound on �̃ set by Ref. [21]
has several associated uncertainties and, therefore, the lower
bounds obtained for M0 and Ksym,0 suffer from these un-
certainties. Notice, however, that independently of the lower
value of �̃ we always have M0 > 1500 (1800) MeV according
to the constraints imposed in L0 in Ref. [69] ([70]). In the
same table we also present the values of M0 obtained for
L0 = 58.7 ± 28.1 MeV [70]. These values of L0 take into
account terrestrial, theoretical, and observational constraints.
Our values of M0 have a reasonable overlap with the values

TABLE IV. The empirical values of M0 and Ksym,0 derived for
different limits on �1.4 and L0. The bounds on �1.4 > 344 and
<687(859) obtained from Fig. 6 are considered. The ranges of L0 =
40–62 MeV and L0 = 30–86 MeV are taken from Refs. [69,70].

L0 �1.4 M0 Ksym,0

(MeV) (MeV) (MeV)

40–62 344–687 2254–3272 −113– −52
344–859 2254–3631 −112– −52

30–86 344–687 1926–3409 −141–16
344–859 1926–3768 −140–16

M0 = (1800–2400) MeV obtained empirically in Ref. [71].
The value of M0 in Ref. [71] was determined by using
a Skyrme-like energy density functional by imposing the
constraint on the incompressibility slope parameter at the
crossing density (≈0.1 fm−3) determined from energies of
the isoscalar giant monopole resonance in the 132Sn and 208Pb
nuclei [72,73].

The above analysis is dependent of the star mass used to
calculate the tidal deformability. However, it is important to
note that the contribution of M0 to the linear combination
M0 + βL0 is maximum for the larger star masses, so large star
masses that satisfy the q constraints should be chosen. Taking
�1.6 (q = 0.7) to constraint M0, the upper limits would have
been ≈5%–10% lower.

We next consider the range of acceptable values for M0 just
determined, together with the bounds on �1.4 and Eq. (13),
to set also constraints on Ksym,0. The results are presented
in Table IV: the ranges −113 < Ksym,0 < −52 MeV are
obtained for the constraints on the symmetry energy slope
from Ref. [69] and −141 < Ksym,0 < 16 MeV imposing the
constraints from Ref. [70]. The symmetry energy curvature
is a quantity that is still not constrained experimentally. In
Ref. [74], the authors have obtained from the universality
of the correlation structure between the different symmetry
energy elements and from some well-known nuclear matter
properties the range Ksym,0 = −111.8 ± 71.3 MeV. Our
bounds discussed above are in a quite good agreement with
these values.

Figure 8 displays the tidal Love number k2,1.4 (top panel)
and the dimensionless tidal deformability �1.4 (bottom panel)
as a function of NS radius R1.4. It is evident from Eq. (2)
that the tidal deformability depends mainly on the NS radius
and the Love number k2. �1.4 is expected to be strongly
correlated with R1.4 provided either k2 is model independent
or it is correlated with R1.4. We observe from Fig. 2 that
the value of k2 is sensitive to the model used, which might
influence the correlation between �1.4 and R1.4. However,
k2,1.4 is moderately correlated with R1.4 (top panel) which
ensures the persistence of the strong correlation (R = 0.98)
between �1.4 and R1.4 (bottom panel). The solid line in the
bottom panel represent the fitted curve with equation �1.4 =
9.11 × 10−5( R1.4

km )6.13. This equation can be rewritten in a form
similar to the relation obtained in Ref. [20], which expresses
the tidal deformability in terms of the compactness parameter
of the star, β = Gm/(Rc2),

� = aβ−6,
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FIG. 8. (a) Variation of tidal Love number k2,1.4 and (b) dimen-
sionless tidal deformability �1.4 with radius R1.4 obtained from RMF
(black squares) and SHF (red circles) models. The solid lines in
the top and bottom panels are the best-fit linear and curve lines, re-
spectively. The horizontal dot-dot-dashed lines represent the bounds
obtained in Fig. 6.

having the exponent 6.13 instead of 6. We verified that the
exponent is mass dependent although close to 6: taking m =
1.17 M� and m = 1.60 M� the exponent is, respectively, 5.84
and 6.58. In our analysis we use a set of models different from
that used in Ref. [20] and, besides, we have only considered
unified inner crust-core EoS, while in Ref. [20] all the EoSs
have a common crust EoS. These two aspects could explain
some of the differences. Using the derived bounds on �1.4,
the value of R1.4 is found to be in the range 11.82–13.22
(11.82–13.72) km for �1.4 in the range of 344–687 (344–
859). These ranges for R1.4 lie almost within the bounds of
8–14 km and 10.5–13.3 km as estimated from GW170817 in
Refs. [20,68]. Furthermore, our predictions are in harmony
with R1.4 = 11.5–13.6 km [75] as constrained by the slope
of the symmetry energy which was extracted by using the
terrestrial laboratory data on the isospin diffusion in heavy-ion
reactions at intermediate energies.

V. CONCLUSIONS

The recent observation of GW170817 has provided an
upper bound on tidal deformability parameter. Complement-
ing the gravitational wave observation with the detection of
the UV, optical and infrared counterpart of GW170817, a
lower bound on the tidal deformability parameter is suggested
[21]. We used a diverse set of relativistic and nonrelativistic
mean-field models to look for correlations of � with several
nuclear matter parameters characterizing the EoS, such as
the nuclear matter incompressibility and symmetry energy
coefficients, and their density derivatives. All the models
selected are consistent with the bulk properties of finite nuclei
as well as with the observation of NSs with mass of ≈2M�.
Nevertheless, across these models, the values of � and of the

various nuclear matter parameters associated with different
EoSs vary over a wide range.

The tidal deformability is found to be weakly or only
moderately correlated with the individual nuclear matter pa-
rameters of the EoS. The stronger correlation of � is found
only for specific choices of the linear combinations of the
isoscalar and isovector EoS parameters. The parameter � is
strongly correlated with the linear combination of the slopes
of incompressibility and symmetry energy coefficients, i.e.,
M0 + βL0. Furthermore, the parameter � and the Love num-
ber k2 both are strongly correlated with the linear combination
of M0 + ηKsym,0.

We show that the bound on weighted average of tidal de-
formability for a system of binary neutron stars, obtained from
complementary analysis [17,20,21] of GW170817, yields the
tidal deformability for NSs with mass 1.4M� in the range
of 344 < �1.4 < 859. With the aid of the correlations of
�1.4 with linear combinations of nuclear matter parameters as
considered together with the bounds on �1.4 and the empirical
ranges of L0 obtained in Refs. [69,70], we have constrained
the values of M0 and Ksym,0 to lie in the intervals 2254 <
M0 < 3631 MeV and −112 < Ksym,0 < −52 MeV or 1926 <
M0 < 3768 MeV and −140 < Ksym,0 < 16 MeV, depending
on the constraints set on L0. The strong correlation of tidal
deformability with the NS radius for a 1.4M� NS yields R1.4

in the range 11.82–13.72 km. The precise measurement of
tidal deformability will provide an alternative and accurate
estimate for M0, Ksym,0, and R1.4.
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APPENDIX: MASS DEPENDENCE OF α, β, AND η

The coefficients α, β, and η are obtained in such a way
that they optimize the correlations of �, for a given NS
mass, with the linear combinations K0 + αL0, M0 + βL0,
and M0 + ηKsym,0. The value of these coefficients are given
in Table II for a few selected NS masses. In Fig. 9, we plot
the mass dependence of α, β, and η. These coefficients can
be easily fit to the exponential decay like function which
can be expressed as α = −0.13 + 14.87 exp(−m/0.49),
β = −1.90 + 265.02 exp(−m/0.49), and η = −1.4 +
29.81 exp(−m/0.89), where the NS mass m is in units
of solar mass.
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