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Abstract 

High-tech miniaturization is a strategic area to empower new scientific challenges 

for which carbon nanotubes have been proposed as ideal candidates, with 

outstanding electronic, optical and mechanical properties. Carbon nanotubes and 

their heterojunctions are efficient components for the reinforcement of 

composites, for constructing nanodevices and for designing new materials with 

required electronic and mechanical properties. Since the stability and efficiency of 

carbon nanotubes based devices and carbon nanotubes reinforced composites are 

strongly dependent on the mechanical properties of the building blocks, i.e. 

individual carbon nanotubes and their heterojunctions, it is crucial to understand 

their deformation behaviour. The research on the evaluation of the mechanical 

properties of carbon nanotubes and their heterojunctions has been mainly driven 

theoretically, due to technical difficulties to operate with nanoscale objects. The 

scattering commonly observed in the results of analytical and numerical studies 

calls into question their reliability and affects their interpretation. 

This work focuses on the systematic study by numerical simulation of the elastic 

properties of the single-walled carbon nanotubes and their heterojunctions, 

grounded on a modelling approach in nanoscale continuum mechanics. A three-

dimensional finite element model is used in order to evaluate the tensile, bending 

and torsional rigidities, and subsequently the Young’s and shear moduli, and also 

the Poisson’s ratio of single-walled carbon nanotubes, for a wide range of nanotube 

lengths, chiral indices and diameters. Correlations between the tensile, bending 

and torsional rigidities and the nanotube diameter, allowing the easy evaluation of 

each rigidity, are established. This allows developing methodologies for evaluating 

the Young’s and shear moduli, and the Poisson’s ratio. The proposed models are 

validated, using numerical and experimental results accessible in the literature. 

The numerical simulation of the mechanical properties of carbon nanotubes with 

defects is an important task, providing data that can be compared with 

experimental results. In this context, a systematic study involving non-chiral and 

chiral single-walled carbon nanotubes, containing different percentage (up to 

10%) and types of vacancy defects is carried out over a wide range of diameters. 

The Young’s and shear moduli, and Poisson’s ratio of the single-walled carbon 
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nanotubes with vacancy defects are assessed using the methodologies suggested in 

this work. The evolution of the Young’s and shear moduli, and Poisson’s ratio with 

the percentage of the vacancy defects is analysed. 

Finally, a comprehensive numerical simulation study to evaluate the mechanical 

properties of carbon nanotubes heterojunctions is performed. The modelling of the 

mechanical response of armchair – armchair and zigzag – zigzag heterojunctions 

(of nanotubes with different diameters) allows clarifying the effect of the 

heterojunction geometry (diameters ratio and relative lengths of the constituent 

nanotubes) on their tensile, bending and torsional rigidities, and Young’s and shear 

moduli. Expressions for the easy evaluation of the heterojunctions rigidities from 

the knowledge of the rigidities of single-walled carbon nanotubes, which are their 

constituent key units, are established. This enables the evaluation of the Young’s 

and shear moduli of the heterojunction, assuming that its diameter is equal to the 

mean value of the single-walled carbon nanotubes that make up the 

heterojunction. 
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Resumo 

A miniaturização altamente tecnológica é uma área estratégica capaz de 

potencializar novos desafios científicos para os quais os nanotubos de carbono têm 

sido propostos como candidatos ideais, com excelentes propriedades electrónicas, 

ópticas e mecânicas. Os nanotubos de carbono e suas junções heterogéneas são 

componentes eficazes para o reforço de compósitos, para a elaboração de nano-

dispositivos e para a conceição de novos materiais com propriedades mecânicas e 

electrónicas solicitadas. Uma vez que a estabilidade e a eficiência de dispositivos à 

base de nanotubos de carbono e compósitos reforçados com nanotubos de carbono 

são fortemente dependentes das propriedades mecânicas dos blocos de 

construção, ou seja, dos nanotubos de carbono individuais e junções heterogéneas, 

é crucial compreender seu comportamento de deformação. A investigação sobre a 

avaliação das propriedades mecânicas dos nanotubos de carbono e suas junções 

heterogéneas tem sido principalmente impulsionada teoricamente, devido a 

dificuldades técnicas para operar com objectos em nanoescala. A dispersão 

geralmente observada nos resultados de estudos analíticos e numéricos levanta a 

questão da sua confiabilidade e afecta a sua interpretação. 

Este trabalho está focado no estudo sistemático por simulação numérica das 

propriedades elásticas dos nanotubos de carbono de parede única e das suas 

junções heterogéneas, e baseia-se numa abordagem de modelação de mecânica dos 

meios contínuos em nano-escala. Um modelo tridimensional de elementos finitos é 

utilizado para avaliar as rigidezes em tração, flexão e torção, e subsequentemente 

os módulos de Young e de corte, e também o coeficiente de Poisson de nanotubos 

de carbono de parede única, para uma ampla gama de comprimentos de 

nanotubos, índices quirais e diâmetros. Correlações entre as rigidezes em tração, 

flexão e torção e o diâmetro do nanotubo, as quais permitem a fácil avaliação de 

cada rigidez, são apresentadas. Isto possibilita o desenvolvimento de metodologias 

para avaliar os módulos de Young e de corte e o coeficiente de Poisson. Os modelos 

propostos são validados, utilizando resultados numéricos e experimentais 

acessíveis na literatura. 

A simulação numérica das propriedades mecânicas de nanotubos de carbono com 

defeitos é uma tarefa importante, facultando dados que podem ser comparados 
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com resultados experimentais. Neste contexto, é realizado um estudo sistemático 

de nanotubos de carbono não quirais e quirais de parede única, os quais contêm 

diferentes percentagens (até 10%) e tipos de lacunas, numa ampla gama de 

diâmetros. Os módulos de Young e de corte, e o coeficiente de Poisson dos 

nanotubos de carbono de parede única com defeitos de lacuna são avaliados com 

as metodologias sugeridas neste trabalho. A evolução dos módulos de Young e de 

cisalhamento e do coeficiente de Poisson com a percentagem das lacunas são 

analisadas. 

Finalmente, é realizado um estudo abrangente de simulação numérica para avaliar 

as propriedades mecânicas de junções heterogéneas de nanotubos de carbono. A 

modelação da resposta mecânica de junções heterogéneas de “armchair – 

armchair” e “zigzag – zigzag” (nanotubos com diferentes diâmetros) permite 

esclarecer o efeito da geometria da junção heterogénea (relação entre diâmetros e 

comprimentos relativos dos nanotubos constituintes) nas suas rigidezes em tração, 

flexão e torção e os módulos Young e de corte. Expressões para a avaliação fácil das 

rigidezes das junções heterogéneas a partir do conhecimento da rigidez dos 

nanotubos de carbono de parede única, que são suas unidades-chave constituintes, 

são apresentadas. Isto possibilita a avaliação dos módulos de Young e de corte da 

junção heterogénea, assumindo que seu diâmetro é igual ao valor médio dos 

nanotubos de carbono de parede única que compõem a junção heterogénea. 
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Résumé 

La miniaturisation hautement technologique est un domaine stratégique capable 

de potentialiser de nouveaux défis scientifiques pour lesquels les nanotubes de 

carbone ont été proposés comme candidats idéaux ayant d'excellentes propriétés 

électroniques, optiques et mécaniques. Les nanotubes de carbone et leurs 

jonctions hétérogènes sont des composants efficaces pour le renforcement des 

composites, pour l'élaboration de nano-dispositifs et pour la conception de 

nouveaux matériaux avec les propriétés mécaniques et électroniques demandées. 

Puisque la stabilité et l'efficacité des dispositifs sur la base des nanotubes de 

carbone et des composites renforcés par des nanotubes de carbone dépendent 

fortement des propriétés mécaniques des blocs de construction, c’est-à-dire, ils 

dépendent des nanotubes de carbone individuels et des jonctions hétérogènes. De 

ce fait, il est crucial de comprendre leur comportement de déformation. Les études 

sur l'évaluation des propriétés mécaniques des nanotubes de carbone et de leurs 

jonctions hétérogènes ont été menées principalement sur le plan théorique, ceci se 

doit aux difficultés techniques à opérer avec des objets à l'échelle nanométrique. 

La dispersion généralement observée dans les résultats des études analytiques et 

numériques soulève la question de sa fiabilité et affecte son interprétation. 

Ce travail est axé sur l'étude systématique par simulation numérique des 

propriétés élastiques des nanotubes de carbone à paroi unique et de leurs 

jonctions hétérogènes, et repose sur une approche de modélisation de la 

mécanique des milieux continus à l'échelle nanométrique. Un modèle 

tridimensionnel d'éléments finis est utilisé pour évaluer la rigidité à la traction, à la 

flexion et à la torsion, et ensuite les modules de Young et de cisaillement, ainsi que 

le coefficient de Poisson des nanotubes de carbone à paroi unique, pour une large 

gamme des longueurs de nanotubes, d’indices chiraux et de diamètres. Les 

corrélations entre les rigidités de traction, de flexion et de torsion et le diamètre du 

nanotube, qui permettent l'évaluation facile de chaque rigidité, sont présentées. 

Cela permet le développement de méthodologies pour évaluer les modules de 

Young et de cisaillement et le coefficient de Poisson. Les modèles proposés sont 

validés à l'aide de résultats numériques et expérimentaux disponibles dans la 

littérature. 
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La simulation numérique des propriétés mécaniques des nanotubes de carbone 

avec des défauts est une activité importante, fournissant des données qui peuvent 

être comparées aux résultats expérimentaux. Dans ce contexte, une étude 

systématique des nanotubes de carbone à simple paroi non chiraux et chiraux, qui 

contiennent des différents pourcentages (jusqu'à 10%) et  types de défauts 

lacunaires, est effectuée sur une large gamme de diamètres. Le module de Young et 

de cisaillement et le coefficient de Poisson des nanotubes de carbone à paroi 

unique avec des défauts lacunaires sont évalués en utilisant les méthodologies 

suggérées dans ce travail. L'évolution des modules de Young et de cisaillement et le 

coefficient de Poisson avec le pourcentage des lacunes sont analysés. 

Enfin, une étude de simulation numérique complète est réalisée pour évaluer les 

propriétés mécaniques des jonctions hétérogènes des nanotubes de carbone. La 

modélisation de la réponse mécanique des jonctions hétérogènes des “armchair – 

armchair” et “zigzag – zigzag” (les nanotubes de diamètres différents) permet de 

clarifier l'effet de la géométrie de la jonction hétérogène (la relation entre les 

diamètres et les longueurs relatives des nanotubes constitutifs) dans leurs rigidités 

à la traction, à la flexion et à la torsion, et aux modules de Young et de cisaillement. 

Des expressions pour l'évaluation facile des rigidités des jonctions hétérogènes 

basée sur la connaissance de la rigidité des nanotubes de carbone à paroi unique, 

qui sont ses unités constitutives clés, sont présentées. Cela permet d'évaluer le 

module de Young et de cisaillement de la jonction hétérogène, en supposant que 

son diamètre est égal à la valeur moyenne des nanotubes de carbone à paroi 

unique qui composent la jonction hétérogène. 
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Chapter 1 

Introduction 

This chapter regards the motivation for investigating the topics covered in the 

thesis. The objectives and achievements in the context of the evaluation of the 

elastic properties of the carbon nanotubes and their heterojunctions by numerical 

simulation are emphasized. In order to facilitate the readability and 

comprehension of the thesis, the outline of the text is also presented. 
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1.1. Motivation 

In the past decade, systematic research has been conducted for developing nano-

materials, such as carbon nanotubes (CNTs), which are unique nanostructures 

with extraordinary mechanical, optical, thermal and electrical properties (Saito et 

al., 1998; Wilson et al., 2002; Robertson, 2004). The recent success in growing of 

carbon nanotube inside boron nitride nanotube with a potential application as the 

smallest co-axial cable (Walker et al., 2017), opens the perspective to create a new 

generation of heterostructures, where CNTs are the most appropriate constituents. 

The high stiffness together with low density suggests that the CNTs are optimal 

structures to reinforce composites and building blocks for optical and electronic 

nanodevices (Neubauer et al., 2010; Lan et al., 2011; Zhang et al., 2014). From the 

point of view of construction of nanodevices, the CNT heterojunctions 

(heterostructures representing two connected nanotubes) are necessary 

constituents for circuits, amplifiers, switches and nanodiodes (Wei and Liu, 2008). 

In order to design composites reinforced with CNTs, nanosensors and CNT-based 

electronic and electromechanical devices, the understanding of the CNTs 

mechanical properties is indispensable, since the stability and efficiency of 

nanodevices are highly dependent on the mechanical properties of their 

components. The carbon nanotubes have been studied experimentally, but a great 

inconsistency in experimental results has been observed, owing to the 

experimental difficulties in the characterization of nanomaterials at the atomic 

scale. For this reason, modelling and computer simulation for predicting the 

mechanical properties of CNTs have received much attention. The theoretical 

approaches used can be grouped into three main categories: the atomistic 

approach (Jin and Yuan, 2003), the continuum modelling (CM) (Pantano et al., 

2004) and the nanoscale continuum modelling (NCM) (Li and Chou, 2003). The 

NCM approach, which consists of replacing the carbon-carbon (C-C) bonds by 

continuum elements (as a beam) was found the most suitable for effective 

computational simulation (see, for example, Tserpes and Papanikos, 2005; 

Ghadyani and Öchsner, 2015). 

If the experimental studies towards determining of the CNT mechanical properties 

are constrained by the insufficiency of appropriate direct measuring techniques at 
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the nanometer scale, the theoretical studies (analytical and numerical) have led to 

a variety of results due to different modelling approaches and formulations. 

The lack of systematic study for predicting the mechanical properties of single-

walled carbon nanotubes (SWCNTs) by numerical simulation motivates the 

current research work. In fact, parametric studies on the effect of the nanotube 

length, diameter, chirality and wall thickness on the SWCNT elastic properties are 

scarce. This kind of study can be particularly useful for understanding and 

modelling the mechanical behaviour of CNT reinforced materials and other 

complex CNT-based structures. 

Moreover, the systematic study will enable to improve the information concerning 

the influence of the presence and density of the vacancy defects on the SWCNT 

mechanical properties, which is also a relevant aspect concerning nanotube 

applications. 

Finally, the systematic characterization of the mechanical properties of SWCNTs, 

which are fundamental structural units for complex structures, such as carbon 

nanotubes heterojunctions (CNT HJs), leads to the development of additional 

analyses for the understanding of the mechanical behaviour of these structures, 

whose study is at an early stage. 

1.2. Objectives and achievements 

The thesis is focused on the characterisation of mechanical properties of single-

walled CNTs, and carbon nanotube heterojunctions by modelling their structure 

and mechanical behaviour. In this context, the systematic study by numerical 

simulation of the elastic properties of the single-walled CNT and their 

heterojunctions for a wide range of nanotube lengths, chiral indices and diameters 

is highlighted. It is intended resorting to nanoscale continuum modelling approach 

for modelling the structure of SWCNTs and SWCNT HJs and evaluating their 

mechanical properties. For this purpose, three-dimensional finite element models 

of SWCNTs and CNT HJs are intended to be obtained. These models are validated, 

using cases where numerical and experimental results are accessible in the 

literature. 

Comprehensive studies on the modelling and numerical simulation of the 

mechanical behaviour under tension, bending and torsion of single-walled carbon 

nanotubes, without and with vacancies, and their heterojunctions are performed, 
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and their elastic constants, particularly the Young’s and shear moduli, are 

obtained. The relationships between the rigidities and the nanotube diameter 

allow the easy evaluation of the Young’s modulus and shear modulus of SWCNTs, 

without resorting to numerical simulation. Also, the mechanical properties of the 

CNT HJs can be deduced from the knowledge of the mechanical properties of the 

SWCNTs, which are their constituent key units. 

Systematic studies to highlight the influence of the geometry of perfect and with 

vacancy defects SWCNTs (nanotube length, diameter, chirality, type and geometry 

of vacancy defect), as well cone-heterojunctions, i.e. HJs of nanotubes with a given 

chiral angle but different radii (configuration, type, diameters ratio and relative 

lengths of the constituent nanotubes), on their mechanical properties are carried 

out. It is intended that this systematic approach allows contributing to the 

optimization and the interpretation of the experimental procedures for describing 

the mechanical behaviour of CNTs and their heterojunctions and guiding their 

manufacturing processes. 

1.3. Outline of the thesis 

Following this introduction, the thesis consists of four chapters. 

Chapter 2 contains the literature review on the accomplishments in the evaluation 

of the elastic properties of perfect and imperfect (with defects) carbon nanotubes, 

and carbon nanotube heterojunctions by modelling their structure and mechanical 

behaviour, using analytical and numerical approaches. This Chapter contains one 

of the published papers mentioned in Table 1.1. 

Chapter 3 provides the formulation for the implementation of the NCM approach 

for modelling of the CNTs’ structures mechanical behaviour. The framework of 

finite element analysis is also presented in this chapter. 

Chapter 4 contains the innovative research within the framework of the thesis, 

concerning numerical simulation studies on the mechanical response of chiral and 

non-chiral SWCNTs, with and without vacancies, and SWCNT HJs, using NCM 

approach. This Chapter is essentially a collection of 5 the published papers 

mentioned in Table 1.1. 

Chapter 5 contains the conclusions and perspectives for the work to be undertaken 

in the future. 
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In the framework of the thesis, six papers have been published as shown in Table 

1.1: five in international journals indexed in the ISI – Web of Knowledge, and one in 

proceedings of international meeting also indexed in the ISI – Web of Knowledge. In 

this table is also specified the Chapter where the paper is included.  

Table 1.1. Most representative papers published within the scope of the thesis. 

Reference Chapter 

Sakharova et al., 2017a 

Sakharova NA, Antunes JM, Pereira AFG, 
Fernandes JV (2017) Developments in the 
evaluation of elastic properties of carbon 
nanotubes and their heterojunctions by 
numerical simulation. AIMS Materials 
Science, 4, 706 – 737 

Chapter 2, 
subchapter 2.2 

Sakharova et al., 2015 

Sakharova NA, Pereira AFG, Antunes JM, 
Brett CMA, Fernandes JV (2015) Mechanical 
characterization of single-walled carbon 
nanotubes: Numerical simulation study. 
Composites B, 75, 73–85 Chapter 4, 

subchapter 4.1 

Pereira et al., 2016 

Pereira AFG, Antunes JM, Fernandes JV, 
Sakharova NA (2016) Shear modulus and 
Poisson's ratio of single-walled carbon 
nanotubes: numerical evaluation. Physica 
Status Solidi B, 253, 366 – 376 

Sakharova et al., 2016a 

Sakharova NA, Pereira AFG, Antunes JM, 
Fernandes JV (2016) Numerical simulation 
study of the elastic properties of single-
walled carbon nanotubes containing vacancy 
defects. Composites B, 89, 155 – 168 

Chapter 4, 
subchapter 4.2 

Sakharova et al., 2016b 

Sakharova NA, Pereira AFG, Antunes JM, 
Fernandes JV (2016) Numerical simulation of 
the mechanical behaviour of single-walled 
carbon nanotubes heterojunctions. Journal of 
Nano Research, 38, 73 – 87 

Chapter 4, 
subchapter 4.3 

Sakharova et al., 2017b 

Sakharova NA, Antunes JM, Pereira AFG, 
Chaparro BM, Fernandes JV (2017) Elastic 
properties of carbon nanotubes and their 
heterojunctions. Proceedings (e-book) of XIV 
International Conference on Computational 
Plasticity. Fundamentals and Applications 
(COMPLAS 2017), Barcelona, Spain, 05-07 
September 2017, Ed. by E. Oñate, D.R.J. Owen, 
D. Peric and M. Chiumenti, p. 963-974 
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Chapter 2 

Overview on carbon nanotubes and their heterojunctions 

This chapter summarizes the knowledge regarding the basic concepts, structure, 

properties and applications of carbon nanotubes and their heterojunctions. It 

includes the paper by Sakharova et al. (2017a), in Subchapter 2.2, which is an 

overview of the literature on the achievements in the characterisation of 

mechanical properties of single-walled carbon nanotubes and their 

heterojunctions by analytical and computational approaches. 
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2.1. Carbon nanotubes and their heterojunctions: basic concepts, structure, 

properties and applications 

The experimental observation of multi-walled carbon nanotubes (MWCNTs) 

grown at the cathode, using arc-discharge evaporation method, was initially 

reported by Iijima (1991). Two years later, Iijima and Ichihashi (Iijima and 

Ichihashi, 1993) and Bethune and coworkers (Bethune et al., 1993) discovered 

experimentally single-walled carbon nanotubes (SWCNTs). This outcome was 

especially important, since the SWCNTs comprising a cylindrical shell with only 

one atom of thickness can be considered as fundamental structural units 

(Dresselhaus and Avouris, 2001). These structural units are the building blocks for 

MWCNTs (multiple coaxial SWCNTs), carbon nanotube heterojunctions (two 

connected SWCNTs), and other complex CNT-based structures (such as 2D and 3D 

networks). 

Originally, the interest of the research community by CNTs emerged due to their 

exotic electronic properties (Saito et al., 1998). Nowadays, this interest grows as 

other extraordinary properties are explored and perspectives are opened for the 

creation of new materials and structures with unique electronic, optical and 

mechanical properties for attractive practical applications. 

The structure of carbon nanotubes were explored by high resolution Transmission 

Electron Microscopy (TEM) and Scanning Tunneling Microscopy (STM) techniques 

(Olk and Heremans, 1994). These experimental studies provided a direct 

confirmation that the SWCNTs are seamless cylinders obtained from the 

honeycomb lattice representing a single atomic layer of crystalline graphite. 

Hexagonal carbon rings compose this hollow cylinder, while the end caps are of 

pentagonal rings (see Figure 2.1). The hexagonal pattern is repeated periodically 

resulting in the binding of each carbon atom to three neighbouring atoms with 

covalent bonds (Lau and Hui, 2002). A detailed description of the SWCNTs 

structure is given in the next subchapter 2.2. 

Figure 2.2 provides a summary of the geometric characteristics that describe the 

SWCNTs structure. The so-called Periodic Table of Carbon Nanotubes in this figure 

also indicates the electrical properties of each SWCNT that can be metallic, semi-

metallic or semiconducting, which influences the potential applications of the 

CNTs. 
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    armchair 

 

zigzag 

Figure 2.1. Structural models of armchair and zigzag SWCNTs, obtained by using 

Nanotube Modeler software. 

The exceptional carbon – carbon (C-C) bond strength combined with the well-

ordered structure of the SWCNTs provides the extraordinary properties of the 

carbon nanotubes, such as high thermal and electrical conductivity, high tensile 

strength and flexibility and low thermal expansion coefficient. There are numerous 

requests that take advantage of these unique properties of CNTs. Among their 

applications, the following can be highlighted: probe tips for high resolution STM; 

electron field emitters for low voltage cold cathode, lighting sources, electron 

microscope sources; energy and hydrogen storage; electronic circuits and 

interconnectors for nanoscale electronic devices; advanced reinforced composites; 

air and water filters (Saito, 1998; Wilson et al., 2002; Meyyappan, 2004; Reich et 

al., 2004). 

An important branch of the investigation concerns the intramolecular junctions of 

CNTs, which have properties that the isolated CNTs do not fulfil and perspectives 

of applications in nanodevices. According to Wei and Liu (2008), there are many 

types of intramolecular junctions of CNTs, such as junctions between two SWCNTs, 

Y-shaped junctions, T-shaped junctions, X-shaped junctions, multibranched 

junctions, ring-like junctions, etc. (see, Figure 2.3). 
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Figure 2.2. Table describing the Carbon Nanotubes characteristics (free download from 

http://quantumwise.com/documents/CNT_PeriodicTable.pdf) 

 

http://quantumwise.com/documents/CNT_PeriodicTable.pdf
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These junctions can act as functional constituents of circuits, such as rectifiers, 

switches, amplifiers, and can provide reliable connections between the individual 

CNTs in order to build stable architectures of CNT-based complex structures. A 

typical example of CNT intramolecular junction, so-called CNT heterojunction 

(HJs), can be represented as two SWCNTs of different radii or with different chiral 

angles that are connected by introducing an intermediate region with Stone–Wales 

defects (Melchor and Dobado, 2004). 

The CNT HJs are regarded as good candidates for nanodevices due their 

extraordinary properties, electrical (Frajian et al., 1999), optical (Fa et al., 2004), 

rectifying (Li et al., 2006) and electromechanical (Tombler et al., 2000). In fact, 

numerous devices have been fabricated based on CNT heterojunctions. The CNT 

heterojunctions are used in rectifiers (Lee et al., 2004; Li et al., 2007), diodes (Kong 

and Dai, 2001), quantum devices (Kong, et al., 2002), and photovoltaic devices 

(Lee, 2005). It is worth to notice that the electromechanical devices are fabricated 

taking into account that the deformation of CNT HJs can significantly influence 

their electrical properties (see, for example, Tombler et al., 2000; Sazonova et al., 

2004; Hall et al., 2007). 

   
(a) (b) (c) 

   

(d) (e) (f) 

Figure 2.3. Different types of intramolecular junctions of CNTs (Wei and Liu, 

2008): (a) Y-shaped junction, (b) T-shaped junction, (c) X-shaped junction, (d) 

ring-like junction, (e) multi-branched junction and (f) 3D network junction. 
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2.2. Evaluation of elastic properties of CNTs and their heterojunctions 

This subchapter contains the paper by Sakharova et al. (2017a), which gives a brief 

primer to the atomic structure and geometry of single-walled CNTs and their 

heterojunctions, and attempts to classify the accomplishments in predicting of the 

elastic properties of SWCNTs and CNT heterojunctions by analytical and 

computational approaches. 

In the beginning, the work of Sakharova et al. (2017a) gives an introduction to the 

atomic structure and geometry of single-walled CNTs and their heterojunctions. 

The evaluation of the mechanical properties of CNTs and their structures is one of 

the most promising fields for mechanics and material science. As it is well-

established, there are experimental and computational, approaches commonly 

used for the characterization of the elastic properties of CNTs. All experimental 

studies concerning CNTs show their unequalled mechanical properties, but a wide 

scattering of the results is still observed. The inconsistency in the experimental 

mechanical results reported in the literature owes to the complexity of the 

characterization of nanomaterials at the atomic scale, and to the presence of 

defects in the CNT’s structure. Due to these reasons, modelling and computer 

simulation for predicting the mechanical properties of CNTs have been developed. 

The paper covers theoretical approaches for modelling and characterizing the 

CNTs’ mechanical behaviour and discusses their applicability and efficacy for 

understanding the behaviour of CNTs. Also, the accomplishments in predicting of 

the elastic properties of SWCNTs, with and without vacancy defects, and CNT 

heterojunctions, using analytical and numerical approaches are systematized. The 

review of the results regarding elastic properties of the SWCNTs and their 

heterojunctions is specifically focused on the tensile, bending and torsional 

rigidities, Young’s and shear moduli and Poisson’s ratio. This paper already 

includes results of this thesis, which are shown later on. 

It is worth to highlight that among the several approaches discussed in this 

chapter, the nanoscale continuum modelling proves to be efficient for simulating 

the mechanical behaviour of CNTs, not requiring extensive computation, which 

justifies its use in the present work. 
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Abstract: High-tech miniaturization is a strategic area to empower new scientific challenges for 
which carbon nanotubes are ideal candidates with outstanding electronic, optical and mechanical 
properties. Carbon nanotubes and their heterojunctions are efficient components for reinforcement of 
composites, for constructing micro- and nanodevices, and for designing new materials with required 
electronic and mechanical properties. The carbon nanotubes have been studied experimentally, but a 
big inconsistency in experimental results has been observed, because of the technical difficulties to 
operate with nanoscale objects. For this reason, modelling and computer simulation for predicting 
their mechanical properties have received much attention. This review attempts to classify the 
accomplishments in predicting of the elastic properties of carbon nanotubes and their heterojunctions 
by analytical and computational approaches. The literature results concerning Young’s modulus, 
shear modulus and Poisson’s ratio of perfect and with defects single-walled and multi-walled carbon 
nanotubes and their heterojunction are analysed and systematized. 

Keywords: carbon nanotubes; heterojunctions; elastic properties; numerical simulation 

 

1. Introduction 

For more than two decades, systematic research has been conducted for developing 
nano-materials such as carbon nanotubes (CNTs) that are unique nanostructures with regard to their 
mechanical, optical, thermal and electrical properties [1], the latter of which can also be seen as a 



707 

AIMS Materials Science  Volume 4, Issue 3, 706-737. 

prototypical quantum nanowire, where quantum effects influence the electrical transport   
properties [2]. Carbon nanotubes are optimal structures to reinforce composites, building blocks for 
optical and electronic nanodevices [3,4,5], and efficient components for designing new materials 
with required electronic and mechanical properties [6]. From the point of view of construction of 
nanodevices, the CNT heterojunctions are necessary constituents for the circuits, amplifiers, switches 
and nanodiodes [7]. In order to design composites reinforced with CNTs, nanosensors and 
CNT-based electronic devices, the understanding of the CNTs’ mechanical properties is 
indispensable, since the stability and efficiency of nanodevices are highly dependent on the 
mechanical properties of their components. 

There are two approaches commonly used to assess the elastic properties of CNTs: experimental 
and computational. Experimental methods for measuring the elastic modulus of CNTs, based on in 
situ techniques of atomic force microscopy (AFM) and transmission electron microscopy (TEM) 
have been established [8–11]. All experimental studies show the unparalleled mechanical properties 
of CNTs. However, there is inconsistency in the experimental mechanical results reported in the 
literature, owing to the complexity of the characterization of nanomaterials at the atomic scale. In 
fact, the experimental studies still show a wide scattering of their results. The reason of the scattering 
can also be associated with defects in the CNT’s structure: it is almost impossible to produce carbon 
nanotubes with a perfect structure because of the manufacturing constraints. It should be noted, that 
the lack of perfection of the lattice of the CNTs, used in experimental studies, can influence the 
results [12,13]. Due to these reasons, modelling and computer simulation for predicting the 
mechanical properties of CNTs have been developed. 

A considerable part of the theoretical investigations has been devoted to the modelling and the 
evaluation of the elastic properties, mainly Young’s modulus, of perfect (without defects) 
single-walled carbon nanotubes (SWCNTs), as for example [14,15,16]. Less attention has been paid 
to understanding the mechanical behaviour of SWCNT with defects and nanotube heterojunctions. 
The building of adequate numerical models of the multi-walled carbon nanotubes (MWCNTs) has 
also received less analysis so far, in spite of their high level of commercialization. 

Two recent review articles have been published under the scope of the work on carbon 
nanotubes. One, conducted by Rafiee and Moghadam [17], concerns the modelling techniques and 
simulation of mechanical and thermal properties, buckling and vibrational behaviour of perfect 
SWCNTs. Moreover, Yengejeh et al. [18] have reviewed the advances in the modelling and 
numerical characterization of the mechanical properties, buckling and vibrational behaviour of 
imperfect (with defects) and structurally modified carbon nanotubes, including CNT heterojunctions. 

The present work is focused on the achievements in the characterisation of mechanical 
properties of perfect and imperfect (with defects) single-walled and multi-walled CNTs, as well as 
CNT heterojunctions (HJs) by modelling their structure and mechanical behaviour, using theoretical 
(analytical and numerical) approaches. 

Following this introduction, the review gives a brief introduction to the atomic structure of 
CNTs and their heterojunctions. Afterwards, the modelling techniques for characterization of the 
CNTs’ mechanical behaviour are described and the outcomes attained in the evaluation of the elastic 
properties (Young’s and shear moduli, Poisson’s ratio) of SWCNTs, MWCNTs and CNT 
heterojunctions, with and without vacancy defects, are presented and discussed. 
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2. Atomic Structure of CNTs and Their Heterojunctions 

A simple way to describe an ideal single-walled nanotube is as a rolled-up graphene sheet 
giving rise to a hollow cylinder, whose surface is composed of hexagonal carbon rings (see, for 
example [19,20]). The hexagonal pattern is repeated periodically, leading to binding of each carbon 
atom to three neighbouring atoms by covalent bonds. A schematic illustration of an unrolled 
hexagonal graphene sheet is shown in Figure 1. The symmetry of the atomic structure of a nanotube 
is characterized by the chirality, which is defined by the chiral vector ࢎ࡯: 

ࢎ࡯ ൌ ૚ࢇ݊ ൅ ૛ (1)ࢇ݉

where n and m are integers, and ࢇ૚ and ࢇ૛ are the unit vectors of the hexagonal lattice. 

 

Figure 1. Illustration of an unrolled graphene sheet with definition of the chiral vector. 

The length of the unit vector ࢇ is defined as ܽ ൌ √3ܽ஼ି஼ with the equilibrium carbon–carbon 
(C–C) covalent bond length ܽ஼ି஼ usually taken to be 0.1421 nm [2]. The nanotube circumference, 
Lc, and diameter, ܦ௡ are: 

௖ܮ ൌ |ࢎ࡯| ൌ ܽඥ݊ଶ ൅ ݊݉ ൅݉ଶ (2)

௡ܦ ൌ
௖ܮ
ߨ

(3)

The chiral angle, ߠ, is defined by the angle between the chiral vector ࢎ࡯ and the direction (n, 
0). The chiral angle, ߠ, is given by Dresselhaus et al. [19]: 

ߠ ൌ sinିଵ
√3݉

2√݊ଶ ൅ ݊݉ ൅݉ଶ
 (4)

Three main symmetry groups of single-walled carbon nanotubes (SWCNTs) exist. When 
݊ ൌ ݉, the structure (n, n) is called armchair configuration; when ݉ ൌ 0, the structure (n, 0) is 
named zigzag; when ݊ ് ݉, the structure (n, m) is chiral. These three major categories of carbon 
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nanotubes can also be defined based on the chiral angle ߠ, as can be deduced from Eq. (4). For the 
two limiting chiral angles of 0 and 30, the nanotubes are referred to as non-chiral, zigzag and 
armchair, respectively. For ߠ different from 0 and 30, the nanotubes are designated as chiral. 
Schematic representations of three types of SWCNTs are shown on the Figure 2. 

zigzag 

armchair 

chiral 

Figure 2. Three structural models of SWCNTs. Obtained by using Nanotube Modeler  
software. 

The multi-walled carbon nanotubes are composed of multiple coaxial SWCNTs, which interact 
with each other by non-covalent interactions, the weak van der Waals forces which can be adequately 
modelled by using the Lennard–Jones potential. 

The CNT heterojunction can be represented as two CNTs that are connected by introducing an 
intermediate region with Stone–Wales defects [21], as illustrated in Figure 3 (Figure 3(a): heptagon 
defect; Figure 3(b): pentagon defect). Similarly to SWCNT structures, the geometrical parameters of 
heterojunctions (HJs) are the chirality, and diameter. There are two main heterojunction 
configurations [21]: (i) cone-heterojunctions (HJs of nanotubes with a given chiral angle but different 
radii) as armchair–armchair and zigzag–zigzag HJs, and (ii) radius-preserving heterojunctions (HJs 
preserving the radii, but with different chiral angles of the constituent nanotubes) as armchair–zigzag 
or chiral–armchair (or zigzag) HJs. Ghavamian et al. [22] also define heterojunctions of 
armchair–zigzag or chiral–armchair (or zigzag), with different radii, that designate as HJ with bent 
connection, in contrast to the cone-heterojunctions that they name as HJ with straight connection. 
According to the study of Yao et al. [23] most HJs (95%) are cone-heterojunctions type. The 
geometry of different type of heterojunctions is shown in Figure 4(a–c). 

The overall length of the heterojunction is defined as follows: 

ு௃ܮ ൌ ଵܮ ൅ ଶܮ ൅ ଷ (5)ܮ

where ܮଵ, ܮଶ are the lengths of the narrower and wider SWCNTs regions, respectively, and ܮଷ is 
the length of the connecting region (see, Figure 4(a)). 
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(a) 

 (b) 

Figure 3. Defects (in bold red) in the connecting region of the armchair–armchair (10, 
10)–(20, 20) heterojunction: (a) Heptagon defect; (b) Pentagon defect. HJ is obtained by 
using academic software CoNTub 1.0  [21]. 

When the heterojunction consists of two SWCNTs with different diameters (i.e., 
cone-heterojunction), the diameter of HJ can be characterised by the average of the narrower and 
wider diameters (see, for example [21]): 

ഥு௃ܦ ൌ
1
2
ሺܦ௡ଵ ൅ ௡ଶሻ (6)ܦ

And the aspect ratio of the cone-heterojunction is defined as [24]: 

ߟ ൌ
ଷܮ
ഥு௃ܦ

 (7)

According to Sakharova et al. [25], the length of the connecting region, ܮଷ, follows a quasi 
linear function with ሺܦ௡ଶ െ  .௡ଵሻ, for armchair–armchair and zigzag–zigzag cone-heterojunctionsܦ
The fitted straight line equation allows determining ܮଷ as follows: 

ଷܮ ൌ 2.9157ሺܦ௡ଶ െ ௡ଵሻ (8)ܦ

where ܦ௡ଵ  and ܦ௡ଶ  are diameters of the narrow and wider nanotubes, respectively. Similar 
relationship for the connecting region of cone-heterojunctions was proposed by Qin et al. 26, 
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basing on geometrical analysis: 

ଷܮ ൌ
√ଷ
ଶ
௡ଶܦሺߨ െ ௡ଵሻܦ ൌ 2.7207ሺܦ௡ଶ െ ௡ଵሻ (9)ܦ

 
(a) 

  

(b) (c) 

Figure 4. Geometry of (a) cone armchair–armchair (10, 10)–(15, 15) HJ; (b) 
radius-preserving armchair–zigzag (5, 5)–(10, 0) HJ and (c) armchair–zigzag (5, 5)–(15, 
0) HJ with bent connection. HJs structures obtained by using academic software CoNTub 
1.0  [21]. 

3. Modelling Techniques 

The theoretical approaches for the modelling and characterization of the CNTs’ mechanical 
behaviour can be grouped into three main categories: the atomistic approach, the continuum 
mechanics (CM) approach and the nanoscale continuum modelling (NCM) approach, also called 
molecular structural mechanics (MSM), as it was firstly introduced by Rafie and Moghadam [17], 
who discussed the applicability and efficiency of these three approaches toward understanding 
behaviour of carbon nanotubes. 

During the first years of theoretical studies on CNTs, solely atomistic modelling, which 
calculates the positions of atoms based on their interactive forces and boundary conditions (see, for 
example, [27]), has been used. Atomistic modelling, used solely during the first years of theoretical 
studies on CNTs. Atomistic modelling comprises the molecular dynamics (MD) [28–34] and ab 
initio approach [35]. MD is a numerical technique simulating the motions of a system of particles 
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based on Newton’s second law. The key to the MD simulation is to choose an appropriate potential 
energy model to describe the bonding and nonbonding interactions between carbon atoms in 
nanotube. These interactions are described by means of analytical or empirical potential functions. 
Lu [29] employed an empirical force-constant model, where the atomic interactions near the 
equilibrium structure were approximated by the sum of pairwise harmonic potentials between atoms. 
Jin and Yuan [30] in their MD simulation adopted force-constant approach, using force potentials to 
describe the interatomic atomic interactions. In the MD simulation studies of Liew et al. [31] and 
WenXing et al. [32], the interaction force between atoms was modelled using a second generation 
reactive empirical bond order (REBO) potential coupled with the Lennard–Jones potential.  
Yakobson et al. [28] used a many-body interatomic potential (Tersoff–Brenner potential) with a 
continuum shell model. Zhang et al., [33] compared two MD modelling approaches, using for this 
purpose the Tersoff–Brenner and modified Morse potentials. The approach of Cheng et al. [34] 
integrated classical MD simulation with Tersoff–Brenner potential and nanoscale continuum 
modelling. Wilmes and Pinho [36] proposed a new molecular dynamics finite element method 
(MDFEM), where the equilibrium equations of MD are embedded within computationally more 
favourable FE method. Also, tight-binding molecular dynamics (TBMD), another atomistic 
modelling method, which offers a compromise between ab initio methods and MD simulations with 
empirical potentials, was developed [37,38]. Molecular dynamics can be used in large systems and 
provide good predictions of CNTs’ mechanical properties under different loading conditions, but it is 
still restricted owing to its being very time consuming, especially when long or multi-walled CNTs 
are simulated. Generally, ab initio methods give more accurate results than MD, but they are highly 
expensive in terms of computational resources and are limited to be used for a small number of 
molecules or atoms. In recent years, the atomistic approaches, due to their big computation cost, have 
been gradually replaced by continuum approaches, which are at the moment the most indicated for 
effective computational simulation of large systems. 

The basic assumption of the continuum mechanics (CM) approach consists of the modelling of 
CNTs as a continuum structure, concerning the distribution of mass, stiffness, etc., i.e., the real 
discrete structure of the nanotubes is neglected and replaced by a continuum medium. Some authors 
have explored continuum shell modelling for studying the mechanical behaviour of CNTs [39–42]. 
However, the chirality of CNTs is not taken into account in the continuous shell approach, and so its 
effect on the mechanical behaviour of CNTs cannot be captured. To overcome this obstacle, Chang 
proposed an anisotropic shell model for SWCNTs [43] that can predict some anisotropic effects, 
related to chirality. Besides shell structures, other continuum structures, such as tubes and plates, are 
employed in CM approaches. In the models of Sears and Batra [44], and Gupta and Batra [45] the 
whole single-walled CNT’s structure was simulated as an equivalent continuum tube. Wang [46] 
employed the equivalent elastic plate model. Arash and Wang [47] show the advantages of the 
continuum theory applied to the modelling of shells and plates. However, whatever the type of the 
CM approach, the replacement of the whole CNT’s structure by a continuum element is not a 
completely satisfactory method to evaluate CNT’s mechanical properties, because it depends on 
additionally introduced material properties and it is restricted to certain mechanical behaviours of 
CNTs [17]. 

The nanoscale continuum modelling (or molecular structure mechanics: NCM/MSM) approach 
consists of replacing the carbon–carbon (C–C) bond with a continuum element. As a result, 
continuum mechanics theories can be used at the nanoscale, i.e., the connection between molecular 
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configuration and solid mechanics is considered. The NCM/MSM approach consists of considering 
different elements, such as rod, truss, spring and beam, well described in elasticity theory, to simulate 
C–C bonds (see, for example, [14,16,48–52]). The first nanoscale continuum model of CNTs was 
developed by Odegard et al. [48] and consisted of a continuum truss model. The disadvantage of the 
truss model is the impossibility of describing the CNTs’ mechanical behaviour under torsional load, 
because the out-of-plane torsion of the C–C bond cannot be taken into account. Various FE models 
where the C–C bonds are simulated using diverse kinds of elastic spring elements, such as linear, 
non-linear, rotational, torsional, have been recently reported [15,53–59]. Although the use of spring 
elements is an effective way for simulating the bond angle variations, the accuracy of the 
determination of the elastic properties depends on the choice of the potential function for the 
calculation of the force constants. 

Since Li and Chou [49] established a direct relationship between the structural mechanics 
parameters of the beam element and the molecular mechanics parameters, the NCM approach, 
employing the beam element for replacing the C–C bond, has been successfully used to simulate the 
mechanical behaviour of CNT, although with different formulations of the inter-atomic molecular 
potential energies and boundary conditions [14,16,51,52,60–67]. The FE models, which employed 
beam elements, developed by Tserpes and Papanikos [14], To [60], Papanikos et al. [61], Ávila and 
Lacerda [62], Sakharova et al. [16], and Ghadyani and Öchsner [67] differ from each other mainly 
due to the boundary conditions and the method for the Young’s modulus calculation. The recent 
three-dimensional (3D) FE model of Lu and Hu [65] used the same formulation for the potential 
energy of the covalent system, but considering an elliptical cross-section area of the equivalent beam. 
In the works of Chen et al. [51] and Eberhardt and Wallmersperger [52] the original Li and Chou [46] 
model was modified, mainly with respect to the bending rigidity of the beam element. For this 
purpose, rectangular beam elements with minor and major axes of bending rigidities were considered 
by Chen et al. [51], for representation of the covalent bonds. Eberhardt and Wallmersperger [52] 
proposed that the geometrical and material parameters defining the beams can be obtained with the 
help of a specific modified molecular structural mechanics approach which is consistent in terms of 
the involved energies. In another analytical approach developed by Shokrieh and Rafiee [63], the 
deformations of the beam elements were obtained using the Castiglinao’s theorem. In the works of 
Her and Liu [64], and Mohammadpour and Awang [61] the modified Morse potential function for the 
potential energy of the covalent system was applied for describing the non-linear behaviour of C–C 
bonds. In their recent work, Giannopoulos et al. [68], who employed linear bar elements to simulate 
interatomic interactions between carbon atoms, showed the efficiency of this model for the 
investigation of the stability of CNTs under compressive and radial loads. In contrast to 
abovementioned works, which used classical truss, spring, bar and beam elements to simulate C–C 
bond, Nasdala and Ernst [69] developed a special 4-node element for computing internal forces of 
the molecular system without necessity of the determination of material parameters. In a recent 
review, Rafiee and Moghadam [17] concluded that NCM is an efficient modelling approach for 
simulation of the CNT’s behaviour, which does not require intensive computation and can be applied 
to complex systems without limitation of length scales, when comparing with atomistic modelling. 

The knowledge of the bond length of CNTs is of fundamental importance for the modelling of 
their mechanical properties. Its value is generally considered to be equal to that of the graphene sheet, 
ܽ஼ି஼ = 0.1421 nm. Nevertheless other values have been considered: for example, Budyka [70] 
reported that rolling up the graphene sheet into armchair SWCNT leads to a slight elongation of the 
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C–C bond. The value of the wall thickness of CNTs is varied in the literature sources. Although a few 
theoretical reports have provided values for nanotube wall thickness, ݐ௡, that range from 0.064 [40] 
to 0.69 nm [48], the most widely used value is 0.34 nm (equal to the interlayer spacing of graphite). 
Most of the elastic properties results, obtained in the theoretical and numerical simulation studies, 
depend on the assumption of the value of CNT’s wall thickness. In recent times, an attempt to 
acquire a thickness free expression for the CNT’s stiffness has been undertaken by Ghadyani and 
Öchsner [71]. 

4. Elastic Properties of the Single-walled Carbon Nanotubes 

4.1. Rigidities of SWCNTs 

Numerical simulation studies related to nanotube rigidities are infrequent in the       
literature [16,61,72]. The linear relationships between the nanotube elastic rigidities and chiral 
indices, ݊, were firstly obtained by Papanikos et al. [61] for non-chiral SWCNTs. Later, in the works 
of Sakharova et al. [16] and Pereira et al. [72], single equations valid for armchair, zigzag and chiral 
SWCNTs, which allows correlating the tensile, ܣܧ, bending, ܫܧ, and torsional, ܬܩ, rigidities of the 
SWCNT with the nanotube diameter, ܦ௡, were proposed: 

ܣܧ ൌ ௡ܦሺߙ െ ଴ሻ (10)ܦ

ܫܧ ൌ ௡ܦሺߚ െ ଴ሻଷܦ (11)

ܬܩ ൌ ௡ܦሺߛ െ ଴ሻଷܦ (12)

The values of the fitting parameters ߚ ,ߙ,  and ܦ଴ obtained in the works [16,72], and those 
calculated based on the results of the work [61] are summarized in Table 1. 

Table 1. Fitting parameters   ,ߙ  ,ߚ  ߛ and ܦ଴. 

Parameter Value [16,72] Value [61] 

,ߙ ݊ܰ ∙ ݊݉ିଵ 1131.66 1128.15 

,ߚ ݊ܰ ∙ ݊݉ିଵ 143.48 142.54 

ܰ݊ ,ߛ ∙ ݊݉ିଵ 130.39 135.38 

,଴ܦ ݊݉/݊଴ 3.5 × 10−3 0 
 Includes armchair, zigzag and three families, ߠ ൌ 8.9°, 13.9°, 19.1°, of chiral SWCNTs. 
 Includes armchair and zigzag SWCNTs (these values were obtained by equations similar to (10–12), in 

which ݊ and ݊଴ replace ܦ௡ and ܦ଴, respectively). 

The relationships (10–12) and the values of the parameters ߚ ,ߙ,  and ܦ଴, in Table 1, allow 
easy evaluation of the Young’s modulus and the shear modulus as a function of the nanotube 
diameter [16,72]: 

ܧ ൌ
௡ܦሺߙ െ ଴ሻܦ

௡ට8ݐߨ
௡ܦሺߚ െ ଴ሻଶܦ

ߙ െ ௡ଶݐ
(13)
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ܩ ൌ
௡ܦሺߛ െ ଴ሻܦ

௡ݐߨ2 ൬
ߚ
൰ߙ

ට8
௡ܦሺߚ െ ଴ሻଶܦ

ߙ െ ௡ଶݐ
 

(14)

4.2. Young’s Modulus of SWCNTs 

The results available in the literature, concerning the evaluation of SWCNTs’ Young’s modulus 
by different modelling methods, are summarized in Table 2. This table also includes experimental 
results reported by Krishnan et al. [73], who used thermal vibrations to estimate the Young’s modulus, 
and the results of Yu et al. [74], who used the tensile test. The discrepancies observed between the 
Young’s modulus results are due to different assumptions for the value of the CNT’s wall thickness, 
 ,௡, (indicated in the Table 2), modelling approaches (MD, CM, NCM/MSM), potential functionsݐ
force fields constants, formulations for Young’s modulus determinations, etc. 

Reviewing the data available in the literature, concerning the prediction of the SWCNTs’ elastic 
moduli, it can be seen that there are some discrepancies not only in the Young’s modulus values, but 
also in the trend of their evolution with the nanotube diameter. This evolution can be separated into 
two tendencies, as shown in Figure 5: (i) the Young’s modulus decreases with increase of the 
nanotube diameter, and with further increase of the nanotube diameter, the Young’s modulus tends 
towards approximately a constant value [16,33,58,61,75] as shown in Figure 5(a); (ii) the Young’s 
modulus is almost constant over the whole range of nanotube diameters [15,30,32,51,52,62,65,67,68] 
as shown in Figure 5(b). In some cases the Young’s modulus slightly changes for small nanotube 
diameters [15,51,52,62,65,68]—see Figure 5(b). Concerning the effect of SWCNT’s chirality on the 
Young’s modulus, some authors reported similar values for non-chiral and chiral        
SWCNTs [16,61,75]. A small difference between the Young’s modulus for armchair and zigzag 
SWCNTs is reported by Zhang et al. 31, Chen et al. [51] and Eberhardt and Wallmersperger [52], 
and for the three SWCNTs’ chirality configurations by WengXing et al. [32], Avila and Lacerda 62, 
Lu and Hu 65, Ghadyani and Öchsner [67] and Giannopoulos et al. [68]. 

The evolution of the Young’s modulus with the wall thickness follows a quasi-linear trend with 
the inverse of the wall thickness, 1 ⁄௡ݐ  as it was reported by Tserpes and Papanikos 14 and Avila 
and Lacerda 62, for the case of (8, 8) armchair SWCNT with diameter ܦ௡ ൌ 1.085	݊݉, by 
Ghadyani and Öchsner [71] for the (10, 10) armchair SWCNT with diameter ܦ௡ ൌ 1.356	݊݉, and 
by Sakharova et al. [16] for nanotubes with diameter ܦ௡ ≳ 1.085	݊݉. In the latter case, for small 
nanotube diameters, ܦ௡ ≲ 1.085	݊݉, the deviation from the quasi-linear trend is pronounced for 
smaller values of 1 ⁄௡ݐ , particularly when the nanotube wall thickness approximates to half of its 
diameter, ݐ௡ ≳ 1 2⁄  .௡ܦ
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Table 2. Young’s modulus results of SWCNTs, available in the literature. 

Reference ݐ௡, nm Method Young’s modulus, ܧ, TPa 
A

to
m

is
tic

 m
od

el
lin

g [28] Yakobson et al., 1996 0.066 MD: Tersoff–Brenner potential 5.5 average value 

[29] Lu, 1997 0.34 MD: empirical force potential 0.97 average value 

[30] Jin and Yuan, 2003 0.34 MD: force-constant approach 1.236 average value 

[31] Liew et al., 2004 0.335 MD: REBO empirical potential 1.043 (10, 10) armchair 

[32] WenXing et al., 2004 0.34 MD: REBO empirical potential 0.929 average value 

[33] Zhang et al., 2005 0.335 MD: Tersoff–Brenner potential 1.08 converged value; zigzag 

[38] Cheng et al., 2009 0.34 MD: Tersoff–Brenner potential 1.2 converged value; armchair 

[37] Hernandez et al., 1998 0.34 TBMD 1.24 (10, 10) armchair 

[35] Zhou et al., 2000 0.074 TBMD 5.1 average value 

[35] Kudin et al., 2001 0.089 ab initio 3.859 average value 

C
M

 

[40] Pantano et al., 2004 0.075 FE continuum shell model 4.84 average value 

[41] Sears and Batra, 2004 0.134 Equivalent continuum tube 2.52 (16, 0) zigzag 

[44] Kalamkarov et al., 2006 0.129 Analytical shell model 1.44 – 

[45] Gupta and Batra, 2008 0.34 Equivalent continuum tube 0.964 av. value; non-chiral, chiral 

N
C

M
/M

SM
 

[48] Odegard et al., 2002 0.69 FE model: truss elements 0.49 – 

[53] Natsuki et al., 2004 0.34 Analytical 2D model: springs 0.61 average value 

[54] Meo and Rossi, 2006 0.34 FE model: non-linear springs and linear 

torsional springs 

0.926 (10, 10) armchair 

[55] Giannopoulos et al., 2008 0.34 3D FE model: linear springs 1.247 average value 

[58] Parvaneh and Shariati, 2011 0.34 FE model: linear and non-linear springs 1.170 (22, 0) zigzag 

[15] Rafiee and Heidarhaei, 2012 0.34 FE model: non-linear springs 1.325 converged value; non-chiral 

[59] Mahmoudinezhad et al., 2012 0.34 3D FE model: rotational springs 0.85 converged value; armchair 

[49] Li and Chou, 2003 0.34 3D FE model: linear beams 1.015 average value; non-chiral 
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N
C

M
/M

SM
 

[14] Tserpes and Papanikos, 2005 0.147 3D FE model: linear beams 2.377 (8, 8) armchair 

[60] To, 2006 0.34 3D FE model: linear beams 1.03 (17, 0) zigzag 

[61] Papanikos et al., 2008 0.34 3D FE model: linear beams 1.072 converged value; non-chiral 

[62] Ávila and Lacerda, 2008 0.34 3D FE model: linear beams 1.005 av. value; non-chiral, chiral 

[63] Shokrieh and Rafiee, 2010 0.33 Analytical model: beams 1.042 converged value; armchair 

[51] Cheng et al., 2010 – Analytical model: rectangular beams 1.083 (24, 24) armchair 

[66] Mohammadpour and Awang, 2011 0.147 FE model: nonlinear beams; Morse potential 2.037 (10, 10) armchair 

[64] Her and Liu, 2012 0.34 FE model: nonlinear beams; Morse potential 0.927 (10, 10) armchair 

[65] Lu and Hu, 2012 0.34 3D FE model: elliptical cross section beams 1.058 converged value; zigzag 

[68] Giannopoulos et al., 2013 0.34 3D FE model: linear bar elements 1.347 converged value 

[67] Ghadyani and Öchsner, 2015 0.34 3D FE model: linear beams 1.053 converged value; zigzag 

[52] Eberhardt and Wallmersperger, 2015 0.34 3D FE model: tetrahedrons formed by beams 0.803 converged value; non-chiral 

[16] Sakharova et al., 2015 0.34 3D FE model: linear beams 1.078 converged average value; 

non-chiral and chiral 

E
xp

er
im

en
ta

l [73] Krishnan et al., 1998 – TEM, thermal vibrations 1.3 

(−0.4/ 

+0.6) 

average value; ܦ௡ in the range of 

1.0 െ 1.5 ݊݉ 

[74] Yu et al., 2000 – AFM, tensile test 1.0 average value 
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(a) 

(b) 

Figure 5. Literature results for the Young’s modulus of SWCNTs. (a) and (b) show two 
different trends for the evolution of the Young’s modulus	ܧ, with respect to the nanotube 
diameter, ܦ௡. 

4.3. Shear Modulus and Poisson’s Ratio of SWCNTs 

The works dealing with the evaluation of the shear modulus are scarcer than the ones 
determining the Young’s modulus. It can be concluded from the available studies that there are two 
methods commonly used to evaluate the CNTs’ shear modulus. One of them consists of the direct 
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determination of the shear modulus, from numerical simulation results of the torsion        
tests [30,45,50,55,60,61,65,68,76] or using analytical models that describe the torsional     
response [53,77,78]. The other method to assess the CNTs’ shear modulus uses the results of the 
tensile test and resorts to the relationship between the Young’s modulus and the Poisson’s ratio, 
under isotropic conditions [30,50,75,79]. Only a few works compare results of the shear modulus, 
obtained by torsion and tensile tests [30,50,72]. A robust methodology for evaluating the shear 
modulus from results of tensile, bending and torsion tests was proposed by Pereira et al. [72]. 

Table 3 summarizes the numerical and analytical shear modulus results available in the 
literature. The only experimental result reported in the literature [8], to the best of our knowledge, 
was obtained by electrostatic torsion and is also shown in the Table 3. The discrepancies observed 
between the shear modulus values available in the literature are due to the same type of reasons 
above specified for the Young’s modulus results: different assumptions for the value of the CNT’s 
wall thickness, ݐ௡, (indicated in the Table 3), modelling approaches (MD, CM, NCM), potential 
functions, force fields constants and formulations for shear modulus determinations. Figure 6 shows 
the evolutions of the shear modulus value with the nanotube diameter, ܦ௡. In cases of Figure 6(a), 
the shear modulus decreases with increasing the nanotube diameter, and with further increase of the 
nanotube diameter, the shear modulus tends towards approximately a constant value [33,53,61,72]; in 
Figure 6(b) the shear modulus mainly increases with increasing the nanotube        
diameter [14,29,30,45,51,60,68,76,77]. 

Although several studies regarding the Poisson’s ratio of SWCNTs have been carried       
out [29,30,45,52,62,72,75,77,78,80], there is still no commonly accepted value. The most common 
values reported in the literature are in range 0.1–0.3 (see, for example, [30,52,53,72,75,77]), but 
values of 0.64 [81], 0.66 [62] and close to zero [63,80] are also reported. Most        
authors 29,30,53,62,75,77,78,80 used the definition of Poisson’s ratio for its evaluation. This 
requires the knowledge of the axial, ߝ∥, and normal ୄߝ strains in tension, as follows: 

ߥ ൌ െ
ୄߝ
∥ߝ

 (15)

Recently, a robust methodology to assess Poisson’s ratio from the results of the bending and 
torsion rigidities was recommended recently by Pereira et al. [65]. 

Figure 7 and Table 4 allow comparing the Poisson’s ratio results currently available in the 
literature. Table 4 contains the comprehensive information on the methodology and formulation used 
for assessing the Poisson’s ratio. Whenever possible, Table 4 also refers to whether or not it agree 
with the relationship ܩ ൌ ܧ ⁄ ሾ2ሺ1 ൅  ሻሿ, for isotropic conditions. Figure 7 and Table 4 show thatߥ
the Poisson’s ratio is very sensitive to different modelling approaches, analytical or numerical 
simulation methods, force fields constants used and formulation for Poisson’s ratio assessment. For 
example, Dominguez-Rodriguez et al. 80 attributed the difference between the values of the 
Poisson’s ratio obtained by the equivalent beam approach and density functional theory (DFT), to the 
input values of the force field constants (݇௥, ݇ఏ) in the numerical simulations. Nevertheless, the 
evaluation of the Poisson’s ratio from the results of the tensile and torsion elastic moduli (E and G), 
by using the relationship ܩ ൌ ܧ ⁄ ሾ2ሺ1 ൅  ሻሿ, allows obtaining values similar to those determinedߥ
by Eq. (15). Figure 7 also allows comparing the evolution of the Poisson’s ratio value with the 
nanotube diameter, ܦ௡, reported in the literature. 
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Table 3. Shear modulus results of SWCNTs, available in the literature. 

Reference ݐ௡, nm Method Test Shear modulus, ܩ, TPa 
M

D
 

[29] Lu, 1997 0.34 empirical force potential tensile 0.455 av. value; non-chiral, chiral 

[30] Jin and Yuan, 2003 0.34 force-constant approach torsion 0.492 average value; armchair 

tensile 0.491 

energy approach torsion 0.547 

tensile 0.536 

C
M

 

[45] Gupta and Batra, 2008 0.34 Equivalent continuum tube torsional 

vibrations 

0.403 av. value; non-chiral, chiral 

N
C

M
/M

SM
 [53] Natsuki et al., 2004 0.34 Analytical 2D model: springs torsion 0.300 average value; non-chiral

[49] Li and Chou, 2003 0.34 3D FE model: linear beams torsion 0.480 average value; non-chiral

[75] Shen and Li, 2004 – Analytical model torsion 0.439 converged value; non-chiral

[77] Xiao et al., 2005 0.34 Analytical model torsion 0.470 converged value; non-chiral

[14] Tserpes and Papanikos, 2005 0.147 3D FE model: linear beams torsion 2.377 (8, 8) armchair

[78] Wu et al., 2006 0.268 Analytical model torsion 0.418 converged value; non-chiral

[60] To, 2006 0.34 3D FE model: linear beams torsion 0.475 (17, 0) zigzag

[55] Giannopoulos et al., 2008 0.34 3D FE model: linear springs torsion 0.325 average value

[61] Papanikos et al., 2008 0.34 3D FE model: linear beams torsion 0.509 converged value; non-chiral

[51] Cheng et al., 2010 – Analytical model: rectangular beams torsion 0.427 (24, 24) armchair

[65] Lu and Hu, 2012 0.34 3D FE model: elliptical cross section 
beams

torsion 0.469 (18, 18) armchair

[68] Giannopoulos et al., 2013 0.34 3D FE model: linear bars torsion 0.327 converged value

[50] Ghavamian et al., 2013  0.34 3D FE model: linear beams tensile 0.378 (10, 10) armchair 

torsion 0.500 

[72] Pereira et al., 2016 0.34 3D FE model: linear beams tensile + 

bending + 

torsion 

0.484 converged value; non-chiral, chiral 

E
xp

 

[9] Hall et al., 2006 – SEM electrostatic 
torsion 

0.410 unidentified type 
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(a) 

 
(b) 

Figure 6. Literature results for the shear modulus of SWCNTs; (a) and (b) show two 
different trends for the evolution of the shear modulus ܩ, with respect to the nanotube 
diameter, ܦ௡.
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Table 4. Poisson’s ratio of SWCNTs, available in the literature. 

Reference Method Test Formulation Poisson’s ratio,  ߥ

A
to

m
is

ti
c 

ap
pr

oa
ch

 

[27] Lu, 1997 MD: empirical force potential tensile ߥ ൌ െୄߝ ⁄∥ߝ   0.278** average value; non-chiral, chiral 

[28] Jin and Yuan, 2003 MD tensile ߥ ൌ െୄߝ ⁄∥ߝ   0.259* average value; armchair 

[73] Domínguez-Rodríguez et 

al., 2014 

ab initio (DFT) tensile ߥ ൌ െୄߝ ⁄∥ߝ   0.185 average value; armchair 

C
M

 

[42] Gupta and Batra, 2008 Equivalent continuum tube axial + 

torsional 

vibrations 

normal mode 

vibration 

0.140–0.249* non-chiral, chiral 

N
C

M
/M

SM
 

[48] Natsuki et al., 2004 Analytical 2D model: springs tensile ߥ ൌ െୄߝ ⁄∥ߝ   0.27** non-chiral 

[68] Shen and Li, 2004 Analytical model tensile ߥ ൌ െୄߝ ⁄∥ߝ   0.16** converged value; non-chiral 

[70] Xiao et al., 2005 Analytical model tensile ߥ ൌ െୄߝ ⁄∥ߝ   0.2* converged value; non-chiral 

[71] Wu et al., 2006 Analytical model tensile ߥ ൌ െୄߝ ⁄∥ߝ   0.273* converged value; non-chiral 

[56] Papanikos et al., 2008 3D FE model: linear beams bending + 

torsion 

ߥ ൌ ሺߚ∗ ⁄∗ߛ ሻ െ 1 0.056** armchair 

0.049** zigzag 

[57] Ávila and Lacerda, 2008 3D FE model: linear beams tensile ߥ ൌ െୄߝ ⁄∥ߝ   0.15–0.29 average value; non-chiral, chiral 

[73] Domínguez-Rodríguez et 

al., 2014 

3D FE model: linear beams tensile ߥ ൌ െୄߝ ⁄∥ߝ   0.061 average value; armchair 

[52] Eberhardt and 

Wallmersperger, 2015 

3D FE model: tetrahedrons formed 

by beams 

tensile ߥ ൌ െୄߝ ⁄∥ߝ   0.274 average value; non-chiral 

[72] Pereira et al., 2016 3D FE model: linear beams bending + 

torsion 

ߥ ൌ ሺܫܧ ⁄ܬܩ ሻ െ 1  

ߥ ൌ ሺߚ ⁄ߛ ሻ െ 1   

(see Eqs. 10–12) 

0.10* converged value; non-chiral, 

chiral 

ܫܧ :relate the bending and torsion rigidities, respectively, with the chiral index, ݊ by cubic equations ∗ߛ	and	∗ߚ ൌ ሺ݊∗ߚ െ ݊଴ሻଷ and ܬܩ ൌ ሺ݊∗ߛ െ ݊଴ሻଷ. 

ܩ value satisfies the relationship ߥ * ൌ ܧ ሾ2ሺ1 ൅ ⁄ሻሿߥ . 

ܩ value does not satisfy the relationship ߥ ** ൌ ܧ ሾ2ሺ1 ൅ ⁄ሻሿߥ . 
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Figure 7. Literature results for the evolution of the Poisson’s ratio, , with respect to the 
nanotube diameter, ܦ௡. 

4.4. Elastic Properties of SWCNTs with Vacancy Defects 

The defects of the CNT’s structure, such as single and multiple vacancies, show suitable effects 
for numerous applications of nanotubes. CNT’s vacancy defects act as interfacial bonding places in 
reinforced nanocomposites, as storage of hydrogen and help the transition from one diameter to 
another in nanotube heterojunctions. The defects in CNTs are mainly due to their chemical  
synthesis [82] and to their chemical treatment in the purification process [83], or when the CNTs are 
subjected to irradiation [84]. 

In recent years, numerical studies regarding the effect of the defects on the CNT’s mechanical 
properties have been carried out. For example, Scarpa et al. [85], Parvaneh and Shariati [58], 
Parvaneh et al. [86], Rahmandoust and Öchsner [87], Ghavamian et al. [88], Ghavamian and  
Öchsner [89,90], Poelma et al. [91], Sakharova et al. [92,93], Wong [94], Rafiee and Pourazizi [95], 
Zhang et al. [96] and Rafiee and Mahdavi [97] performed the simulations of the elastic behaviour of 
SWCNTs with vacancy defects; these defects consist in the absence of carbon atoms and their bonds. 
Other authors have reconstructed the C–C bonds near the atoms removed to form new bonds, as for 
example, Sharma et al. [98], Saxena and Lal [99] and Yuan and Liew [100]. 

The influence of vacancy defects on the Young’s modulus has been extensively studied. The 
studies of Scarpa et al. [85], Parvaneh and Shariati [58], Parvaneh et al. [86], Rafiee and    
Pourazizi [95], Zhang et al. [96], Rafiee and Mahdavi [97], Sharma et al. [98], and Saxena and   
Lal [99] relate to a few specific types of nanotubes and vacancies, and also to relatively small 
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percentages of defects (less than 2.5% or in terms of the number of vacancies, up to 6). 
Wong [94] considered a high number of the vacancies with several configurations, reaching a 

defect composed of twelve single vacancies together. Yuan and Liew [100] studied two types of 
vacancies (single and double ones) with percentages up to 8.0%. The studies of        
Sakharova et al. [92,93] have contributed to the understanding of the influence of the large amount 
(up to 10%) of different types of vacancies (single, double, triple and four single vacancies together) 
on the elastic properties of non-chiral and chiral SWCNTs, over a wide range of diameters. 

The reduction of the Young’s modulus observed in nanotubes with defects is a common result of 
the conducted studies. Several authors reported an approximately linear trend of the decreasing of 
Young’s modulus with increasing of the number of vacancies (see, for example [87,88,92,96,97]. The 
literature results regarding the Young’s modulus of defective SWCNTs are shown in the Table 5. 

Also other SWCNTs’ mechanical properties are deteriorated in presence of the vacancy defects. 
The studies of Ghavamian and Öchsner [89,90] showed that the presence of 0.5 and 1.0% of vacancy 
defects in the armchair and zigzag single-walled and multi-walled CNTs leads to a significant 
decrease of the CNT’s critical buckling load [89] and natural frequencies [90]. Poelma et al. [91] 
found that the position of the single vacancy defect significantly influences the critical buckling load 
of the SWCNTs at low temperatures. The study of Wong [94] showed a drop of the ultimate tensile 
strength and the tensile failure strain when the number of vacancies increases in the armchair and 
zigzag SWCNTs, especially when the vacancies are situated along the cross-section of the nanotube. 
Saxena and Lal [99], and Sharma et al. [98] found, that the presence of vacancy defects reduces the 
tensile and compressive strengths, and failure strain of the nanotube. Zhang et al. [96] showed that 
the presence of double vacancy defect can deteriorate the radial mechanical properties of SWCNTs, 
reducing the collapse pressure. 

For studying the fracture behaviour, some authors [12,13,101] have chosen to rebuild the C–C 
bonds around the atoms removed. Among their findings, a substantial reduction of the nanotube 
strength [13,101] and failure stresses and strains [12] should be pointed out. 

5. Modelling and Elastic Properties of Multi-walled Carbon Nanotubes 

In recent years, the research interest has also been focused on multi-walled carbon nanotubes 
(MWCNTs), i.e., structures formed by two or more concentric SWCNTs, because of their outstanding 
mechanical properties which can be advantageous for the improvement of structural composites and 
due to their high level of commercialization 102. MWCNTs are comprised of 2 to 50 coaxial 
SWCNTs with an interlayer spacing generally considered similar to the interlayer spacing of graphene, 
0.34 nm. The most common values experimentally determined for the interlayer distance are close to 
this value. For example, Kharissova and Kharisov 103 and Kiang et al. 104 reported values in the 
ranges of 0.32–0.35 nm and 0.342–0.375 nm, respectively. The diameter of MWCNTs can attain    
30 nm in contrast to 0.7–2.0 nm for typical SWCNTs. 

In spite of numerous numerical simulation studies performed towards the evaluation of the 
mechanical properties of carbon nanotubes, the modelling and numerical characterization of 
MWCNTs have received less research attention compared to SWCNTs. The essential difference 
between the simulation of SWCNTs and MWCNTs is to consider, in the simulation of the latter, the 
non-covalent weak van der Waals force. This requires significant modelling and computing efforts. 
The first simulations taking into account the van der Waals force were performed by Li and Chou [105], 
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introducing a nonlinear truss rod model in their study on the elastic behaviour of multi-walled carbon 
nanotubes with up to 4 layers under tension and torsion. This model comprises the complex mesh of 
the truss rods in addition to the beam element mesh for the simulation of each SWCNT composing the 
MWCNT. The studies that followed this work seek to simplify the MWCNT modelling technique. To 
this end, Kalmakarov et al. [41] recommended a massless non-linear spring element for the van der 
Waals force simulation. Also, several MWCNT’s models with up to 5 layers using spring elements to 
describe the van der Waals interactions were successfully developed by Rahmandoust and Öchsner [79] 
and Ghavamian et al. [50,88]. Rahmandoust and Öchsner [79] concluded that the modelling of the van 
der Waals interactions between atoms of neighbour layers (SWCNTs) of the MWCNTs is not 
necessary in the case of uniaxial tensile test, because the MWCNT’s models, whether or not taking into 
account the van der Waals force, showed similar Young’s modulus results. In case of torsion test, a 
difference in the shear modulus values of about 9.0% is observed between results obtained with and 
without the van der Waals interactions. In their finite element model of double-walled carbon 
nanotubes, Fan et al. [106] proposed an interlayer pressure to model the van der Waals interaction. The 
mentioned models help to save the computing effort and show reasonable agreement with the results in 
the literature. Besides springs, other elements were tested to model the van der Waals force; for 
example, beam elements were used by Nahas and Abd-Rabou [107] to simulate not only the covalent 
C–C bonds but also the van der Waals force between layers, in double- and triple-walled CNTs. 
Recently, Sakharova et al. [108] have employed a simplified finite element model of MWCNTs 
without taking into account the van der Waals forces, but with boundary conditions allowing the 
simultaneous deformation of all the SWCNTs that constitute the respective MWCNT. With the help of 
this model, a systematic evaluation of the Young’s modulus of non-chiral MWCNTs with up to 10 
layers was carried out [108], from tensile and bending tests. The Young’s modulus values obtained in 
their work [108] were in good agreement with the results available in the literature, where the van der 
Waals interactions were taken into account. The elastic moduli results for MWCNTs available in the 
literature are presented in the Table 6. In most cases, the Young’s modulus and the shear modulus were 
calculated from the numerical results of the conventional tensile [41,50,88,105,106,107] and   
torsion [41,50,105,106] tests, using the respective definitions from the classical theory of elasticity. 
Sakharova et al. [107] evaluated the MWCNTs’ Young’s modulus from the values of the tensile and 
bending rigidities. With regard to the boundary conditions, the simulation of the MWCNT’s tensile test, 
in the works [41,50,105,106], was achieved by subjecting all nodes at one end to the same axial force, 
while all nodes at the other end were fixed. In the simulation of torsion tests, Kalmakarov et al. [41] 
and Fan et al. [106] applied a torsional moment to all end nodes of multi-walled nanotube, when in the 
study of Li and Chou [105] only the outer layer of MWCNT was subjected to torsion.      
Ghavamian et al. [50,88], in tensile and torsion tests, Nahas and Abd-Rabou [107], in tensile tests, and 
Sakharova et al. [108], in tensile and bending tests, applied displacements, instead of forces or 
moments, to all nodes at one end of the MWCNT, leaving the other end fixed. Figure 8 compares the 
evolutions of the Young’s modulus and shear modulus with the number of layers, N, constituting the 
MWCNTs. 
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Table 5. Results available in the literature on the reduction of the elastic moduli of SWCNTs due to vacancy defects. 

Reference Method 
Numb./ 

percentage 
vac. 

C–C bond 
reconstruction

Vac. 
configuration SWCNT 

Ered 

(%) 

Gred 

(%) 
Comments 

[100] Yuan and Liew, 

2009 

ab initio (DFT) 2.5% yes single 
double 

armchair (5, 5) 18.0 – Young’s modulus decreases with 
different rates with respect to the 
number of vacancy defects 

8.0% 31.0
2.2% armchair (10, 10) 21.0
8.5% 36.0

[94] Wong, 2010 MD: 
Tersoff–Brenner 
(TB) potential 

8 no single 
double 

12 vac. cluster

zigzag (8, 0) 12.0 – Approximately linear reduction of 

Young’s modulus; vacancy location 

along the axial direction. 
16 armchair (10, 10) 8.0

[58] Parvaneh and 

Shariati, 2011 

NCM: linear and 
non-linear 
springs 

1.0% yes single double 
triple 

armchair (7, 7) 6.6 – The vacancy configuration does not 

influence the results. 1.25% zigzag (12, 0) 8.2

[99] Saxena and Lal, 

2012 

MD: COMPASS 
potential 

1 no single armchair (6, 6),
(10, 10) 

0.9 – Non-linear reduction of Young’s 

modulus 4 5.09

[88] Ghavamian et 

al., 2012 

NCM: linear 
beams 

0.5% no single armchair (10, 10) 3.8 – Linear reduction of Young’s 

modulus: Ered = 7.69 Vac%. 1.0% zigzag (14, 0) 7.7 

[98] Sharma et al., 

2014  

MD: COMPASS 
potential 

1 yes single armchair (4, 4) 6.0 8.0 Non-linear reduction of elastic 

moduli. 4 17.0 40.0

[95] Rafiee and 
Pourazizi, 2014

NCM: linear 
beams 

1.0% no single armchair (5, 5), (7, 7) 6.0 – Reduction of Young’s modulus does 

not depend on the SWCNTs. 2.0% zigzag (0, 9), (0,12) 12.0

[97] Rafiee and 

Mahdavi, 2016 

MD: TB 
potential 

6 no single armchair 3.44 – Approximately linear reduction of 

Young’s modulus. zigzag 10.05

MD: REBO 
potential 

6 armchair 3.75

zigzag 10.21

[92] Sakharova et al., 
2016 

NCM: linear 
beams 

5% no single double 
triple 

4 vac. cluster

non-chiral and chiral
௡ܦ ൌ  0.414 ൊ
2.713	݊݉ 

36.0 44.0 Linear reduction of both moduli up to 
5% of vacancy defects: 

Ered = 7.12 Vac%; Gred = 8.85 Vac%. 10% 43.0 33.0
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Table 6. Results available in literature for the elastic moduli of MWCNTs, determined using NCM approaches. 

Reference ݐ௡, nm 
Interlayer 
spacing, 
݀௜௡௧, nm 

Approach for 
the van der 

Waals 
interactions 

between layers

MWCNT 
Max. 

number of 
layers 

Young’s 
modulus, TPa 

Shear modulus, 
TPa 

[105] Li and Chou, 2003 0.34 0.339 truss rods armchair (3, 3) (8, 8) (13, 13) (18, 18) 4 1.05–1.10 0.33–0.48 

0.352 zigzag (5, 0) (14, 0) (23, 0) (32, 0) 1.05–1.12 0.33–0.36 

[41] Kalamkarov et al., 2006 0.68 0.339 springs armchair (5, 5) (10, 10) (15, 15) (20, 20) 4 1.00–1.45 0.44–0.47 

0.352 zigzag (5, 0) (14, 0) (23, 0) (32, 0) 0.96–1.50 0.44–0.47 
[106] Fan et al., 2009 0.34 0.352 springs: 

interlayer 
pressure 

zigzag (5, 0) (14, 0) (23, 0) 3 1.006–1.011 0.43–0.34 

zigzag (18, 0) (27, 0) (36, 0) 1.040–1.019 0.36–0.33 

[107] Nahas and Abd-Rabou, 
2010 

0.346 – beams armchair 3 0.98–1.02 – 
zigzag 0.876–0.937

[88] Ghavamian et al., 2012 0.34 0.339 springs armchair (10, 10) (15, 15) (20, 20) (25, 25)
(30, 30) 

5 1.040–1.044 – 

0.352 zigzag (14, 0) (23, 0) (32, 0) (41, 0) (50, 0) 1.030–1.035

[50] Ghavamian et al., 2013 0.34 0.339 springs armchair (10, 10) (15, 15) (20, 20) (25, 25)
(30, 30) 

5 – 0.50 

0.352 zigzag (14, 0) (23, 0) (32, 0) (41, 0) (50, 0)

[108] Sakharova et al., 2017 0.34 0.339 – armchair

(10, 10) (15, 15) (20, 20) (25, 25) (30, 30) 
(35, 35) (40, 40) (45, 45) (50, 50) (55, 55) 

10 1.061–1.054 – 

0.352 zigzag

(14, 0) (23, 0) (32, 0) (41, 0) (50, 0) (59, 0) 
(68, 0) (77, 0) (86, 0) (95, 0) 

1.069–1.012 
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Some authors [105,106,107] pointed out that Young’s modulus of MWCNTs is slightly higher 
than that of SWCNTs. The Young’s modulus values for MWCNTs, which are very close to the values 
obtained for SWCNTs constituting the MWCNT, were also reported [88,108]. A substantial increase 
of the Young’s modulus with the number of layers was reported by Kalmakarov et al. [41]. Shear 
modulus trends similar to the trend for the Young’s modulus of MWCNTs were described in the works 
of Kalmakarov et al. [41] and Ghavamian et al. [50]. Li and Chou [105] and Fan et al. [106] reported 
values of the MWCNTs’ shear modulus slightly lower than those of SWCNTs. 

 
(a) 

 

(b) 

Figure 8. Literature results for elastic moduli of MWCNTs: (a) Young’s modulus and (b) 
shear modulus with respect to the number of layers, N, constituting the MWCNT. 
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6. Modelling and Mechanical Behaviour of CNT HJs 

From the point of view of the construction of nanodevices, the CNT junctions are necessary 
constituents for circuits, amplifiers, switches, rectifiers, molecular storages, field-effect transistors and 
nanodiodes. A comprehensive review on synthesis, properties and realistic applications of CNT 
junctions was published by Wei and Liu [6]. CNT HJs have attracted special research interest, because 
of their singular electrical and optical properties, and potentially attractive applications as nanodiodes 
and filters [109,110]. Despite the progress achieved in recent years in this research field, many 
challenges still remain. One of them is to understand the deformation behaviour of CNT 
heterojunctions, since the stability and efficiency of the nanodevices is highly dependent on the 
mechanical properties of their components. 

Molecular dynamics and nanoscale continuum approaches combined with finite element 
modelling have become the most prevalent methods to simulate the mechanical behaviour of CNT 
heterojunctions. A few studies were performed using the MD approach [24,26,111]. Lee and Su [111] 
investigated the temperature effect on the mechanical properties, yield stress and Young’s modulus, of 
(6, 0)–(8, 0) SWCNT HJs under tension and compression, by using an MD simulation approach, 
employing a REBO potential to describe the carbon–carbon (C–C) interaction. Also employing a 
REBO potential, Li et al. [24] investigated the tensile strength and failure modes of single-walled and 
double-walled CNT HJs at different temperatures and strain rates. 

Qin et al. [26] performed an MD simulation study, using second-generation Tersoff–Brenner 
potential, in order to evaluate Young’s modulus and failure stress of single-walled and double-walled 
CNT HJs. Kang et al. [112], also using MD simulation with Tersoff–Brenner potential coupled with 
NCM approach, studied the buckling behaviour of (7, 7)–(9, 9) HJs under compression.     
Kinoshita et al. [113] used ab initio density functional theory calculations in order to assess the 
Young’s modulus and stress–strain relationship for (8, 0)–(6, 0)–(8, 0) SWCNT HJs structures. An 
MD simulation, employing second-generation Tersoff–Brenner potential, was used by Xi et al. [114] 
in order to study the mechanical behaviour of complex HJs structures consisting of four ሺ݊, ݊ሻ 
armchair and five ሺ2݊, 0ሻ zigzag SWCNTs. 

The studies using the NCM approach were devoted to the characterization of the        
buckling [115,116], tensile [22,25,116,117,118,119] and shear [22,25,116,120] behaviour of HJs, and 
the evaluation of their Poisson’s ratio [110]. Sakharova et al. [22], analysing the mechanical behaviour 
of the armchair–armchair and zigzag–zigzag HJs, pointed out the occurrence of redundant bending 
deformation during the tensile test, making it difficult to analyse this test. Scarpa et al. [110] also 
reported this aspect when calculating the Poisson’s ratio from the tensile test of (5, 5)–(10, 10) HJs. 

Regarding the evaluation of the HJs elastic properties such as rigidities, Young’s and shear 
moduli, some of the authors reported their decrease when compared with the elastic properties of the 
constituent SWCNTs [22,25,116,117,119]. The literature results on the studies of the heterojunction 
elastic properties are resumed in Table 7. The aforementioned investigations must be understood as the 
beginning of broader necessary studies on the mechanical properties of the carbon nanotube 
heterojunctions. 
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Table 7. Results for the elastic moduli of CNT HJs available in literature. 

Reference Method Type of HJs 

Young’s 
modulus, 
 TPa ,ܧ

Shear 
modulus, 
 TPa ,ܩ

Comments 

[26] Qin et al., 2008 MD: 
Tersoff-Brenner 
potential 

armchair–armchair (5, 5)–(7, 7),
(5, 5)–(8, 8), …(5, 5)–(10, 10)

0.775 – Young’s modulus of HJ about 20% higher than 
for the narrower (5, 5) or (9, 0) SWCNT; 
 value increases with increasing the HJ average ܧ
diameter. 

zigzag–zigzag (9, 0)–(10, 0),
(9, 0)–(11, 0), …(9, 0)–(14, 0)

0.795 –

double-walled, triple-walled and 
four-walled armchair composed by 
(5, 5), (10, 10), (15, 15), ...(25, 25)

0.773 – Young’s modulus decreases with the number of 
SWCNTs constituting an N-walled CNT 
heterojunction.

[110] Scarpa et al., 2011 NCM: linear beams armchair–armchair (5, 5)–(10, 10) 1.010 – Bending deformation of HJ in tension were taken 
into account.zigzag–zigzag (9, 0)–(14, 0) 0.945 

[113] Kinoshita et al., 
2013 

ab initio (DFT) 
with AIREBO 
potential 

zigzag–zigzag–zigzag
(8, 0)–(6, 0)–(8, 0) 

0.995 – The Young’s modulus for a HJ structure is lower 
at about 10.23% than for the narrower (6, 0) 
SWCNT and at about 4.25% than for the wider 
(8, 0) SWCNT.

[117] Hemmatian et al., 
2014 

NCM: linear beams armchair–armchair (5, 5)–(10, 10),
(10, 10)–(15, 15), …(25, 25)–(30, 30) 

1.109 0.344 Elastic moduli are lower than those for 
constituent SWCNTs; ܧ and ܩ increase with 
increasing the HJ average diameter, ܦഥு௃, and 
decrease with increasing of overall length	ܮு௃. 

[116] 
 
[119] 

Ghavamian and 
Ochsner, 2015; 
Yengejeh et al., 
2015 

NCM: linear beams armchair–armchair composed by a 
variety of SWCNTs in a range of (3, 3) 
to (18, 18)

0.927 0.180 Elastic moduli are lower than those for 
constituent SWCNTs. 

zigzag–zigzag composed by a variety 
of SWCNTs in a range of (6, 0) to  
(19, 0)

0.939 0.270

[22] 
 
[116] 

Ghavamian et al., 
2015; 
Ghavamian and 
Ochsner, 2015

NCM: linear beams armchair–zigzag with bent connection 0.177 0.179 The Young’s modulus of HJs decreases 
drastically; the shear modulus is close to that of 
the constituent SWCNTs. chiral–armchair (zigzag) with bent 

connection 
0.160 0.220

[25] Sakharova et al., 
2016 

NCM: linear beams armchair–armchair (5, 5)–(10, 10), 
(10, 10)–(15, 15), (15, 15)–(20, 20) 
zigzag–zigzag (5, 0)–(10, 0), 
(10, 0)–(15, 0), (15, 0)–(20, 0) 

Bending (EI) and torsional (GJ) rigidities increase with increasing the HJ 
average diameter. EI rigidities are comparable with those for narrower 
SWCNTs. GJ rigidities are higher than for narrower SWCNTs, and lower than 
for wider SWCNTs. 

 Average values. 
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7. Conclusions 

This review shows that a great investment has been made lately in the development of the 
modelling of mechanical properties of carbon nanotubes. These include the elastic moduli and the 
Poisson ratio of single and multi-walled carbon nanotubes and their heterojunctions, without and 
with vacancy defects. In spite of great developments has been made in predicting the mechanical 
properties of CNTs by numerical simulation, the theoretical studies (analytical and numerical) have 
led to some variety of results due to different modelling approaches and formulations. The resulting 
scattering in the values of the elastic constants raises questions on the reliability of the data obtained 
and can affect its interpretation. Among the several approaches, the nanoscale continuum modelling 
(NCM/MSM) proves to be efficient for simulating the nanotubes behaviour without requiring 
extensive computation. 
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Chapter 3 

Finite element modelling and analysis of CNTs’ structures 

This chapter provides an outline of the methodology of finite element (FE) 

modelling of the SWCNTs and SWCNT HJs, under the nanoscale continuum 

modelling (NCM) approach, as used in this work and in the papers by Sakharova et 

al. (2015, 2016a, 2016b) and Pereira et al. (2016), published within the scope of 

the thesis. In order to dispense the reading of the respective sections in the 

aforementioned papers (collected in Chapter 4), the description of the material 

and geometric properties of the SWCNTs and SWCNTs HJs, as well the details of 

the modelling method for the characterization of their mechanical behaviour are 

gathered together in the current chapter. 
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3.1. Finite element modelling of carbon nanotube structures 

The NCM approach that replaces the carbon-carbon bonds of carbon nanotube by 

equivalent beam elements allows modelling the SWCNTs and SWCNT HJs 

structures. The FE method uses the coordinates of the carbon atoms for generating 

the nodes and their suitable connection creates the beam elements. The 

relationships between the inter-atomic potential energies of the molecular CNT 

structure and strain energies of the equivalent continuum structure, consisting of 

beam elements undergoing axial, bending and torsional deformations, are the basis 

for the application of continuum mechanics to the analysis of the mechanical 

behaviour of SWCNTs and SWCNT HJs (Li and Chou, 2003). The meshes of the 

SWCNTs and SWCNT HJs structures used in the FE analyses were built using the 

CoNTub 1.0 software (Melchor and Dobado, 2004). This software generates ASCII 

files, describing atom positions and their connectivity that will be used as input 

data in available commercial and in-house FE codes. The in-house application, 

called InterfaceNanotubes, was developed to convert the ASCII files, acquired from 

the CoNTub 1.0 software, into the format compatible with the ABAQUS® 

commercial FE code. Examples of finite element meshes constructed in this way, 

for SWCNT and SWCNT HJ, are shown in Figure 3.1 and Figure 3.2, respectively. 

Various SWCNT structures, as non-chiral (zigzag, 𝜃 =  0°, and armchair, 𝜃 =  30°) 

and families of chiral (𝜃 = 8.9°; 13.9°; 19.1° among others) SWCNTs in a wide 

range of nanotube lengths, chiral indices and diameters, were chosen for the 

present systematic study. The range selected for chiral and non-chiral structures 

represents the SWCNTs typically found in literature, either for FE analysis and 

experimental characterization. The SWCNT length of 20 nm was chosen as 

modelling length for numerical simulation, so that the mechanical behaviour could 

be independent of the length. The armchair – armchair and zigzag – zigzag 

heterojunction were constructed in such a way that the lengths of the constituent 

nanotubes are almost equal to each other and their value is about two orders of 

magnitude of the length of the junction region. 

The geometrical characteristics of SWCNTs and SWCNT HJs used in the FE analyses 

are summarized in the works of Sakharova et al. (2015, 2016a, 2016b, 2017b) and 

Pereira et al. (2016). 
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(a) 

 

(b) 

 

(c) 

Figure 3.1. Finite element meshes for (a) (10,10) armchair, (b) (15,0) zigzag and 

(c) (15,3) chiral SWCNTs, obtained by using academic software CoNTub 1.0 

(Melchor and Dobado, 2004). 

 

 

(a) 

 

(b) 

Figure 3.2. Finite element meshes for (a) (10, 10) – (15, 15) armchair – armchair 

and (b) (15, 0) – (20, 0) zigzag – zigzag SWCNT HJ, obtained by using academic 

software CoNTub 1.0 (Melchor and Dobado, 2004). 
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The knowledge of the bond length of CNTs is of fundamental importance for the 

modelling of their mechanical properties. Its value is generally considered to be 

equal to that of the graphene sheet, 𝑎𝐶−𝐶  = 0.1421 nm. The value of the wall 

thickness of CNTs is varied in the literature sources. Although theoretical reports 

have provided values for nanotube wall thickness, 𝑡𝑛, ranging from 0.064 (Pantano 

et al., 2004) to 0.69 nm (Odegard et al., 2002), the most widely used value is 0.34 

nm (equal to the interlayer spacing of graphite). Most of the elastic properties 

results, obtained in the theoretical and numerical simulation studies, depend on 

the assumed value for the CNT’s wall thickness. The value of the wall thickness 

𝑡𝑛 = 0.34 𝑛𝑚 was considered in the current study. 

3.2. Molecular interactions and equivalent properties of beam elements 

As was originally proposed by Odegard et al. (2002), and then developed by Li and 

Chou (2003), the elastic moduli of the beam elements are determined by 

establishing the link between inter-atomic potential energies of the molecular 

structure and strain energies of the equivalent continuum structure, comprising of 

frame members (beams) undergoing axial, bending and torsional deformations. 

Thus, the FE simulation under the NCM approach uses the analogy between the 

bond length, 𝑎𝐶−𝐶 , and the element length, 𝑙, assuming this element with a circular 

cross-section area (see, Figure 3.3). 

According to molecular dynamics, the total inter-atomic potential energy of a 

molecular system is expressed as the sum of energy terms due to bonded and non-

bonded interactions (Rappe et al., 1992): 

 𝑈𝑡𝑜𝑡 = ∑ 𝑈𝑟 + ∑ 𝑈𝜃 + ∑ 𝑈𝜙 + ∑ 𝑈𝜔 + ∑ 𝑈𝑣𝑑𝑤 (3.1) 

where 𝑈𝑟, 𝑈𝜃, 𝑈𝜙, 𝑈𝜔 are energies associated with bond stretching, bond bending, 

dihedral angle torsion, out-of plane torsion, respectively, and 𝑈𝑣𝑑𝑤 is the energy 

associated with non-bonded van der Waals interaction. In covalent systems such as 

carbon nanotubes, non-bonded interactions are negligible in comparison with 

bonded ones (Tserpes and Papanikos, 2005) and the main contribution to the total 

potential energy comes from the first four terms of Eq. (3.1), as outlined in Figure 

3.4. 
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Consequently, under the assumption of small deformation, the energies associated 

with bond stretching, bending and torsion (by merging dihedral angle torsion and 

out-of-plane torsion into a single equivalent term) can be estimated by the 

functions (Gelin, 1994): 

𝑈𝑟 =
1

2
𝑘𝑟(Δ𝑟)2 

𝑈𝜃 =
1

2
𝑘𝜃(Δ𝜃)2 

𝑈𝜏 = 𝑈𝜙 + 𝑈𝜔 =
1

2
𝑘𝜏(Δ𝜙)2 

(3.2) 

where 𝑘𝑟 , 𝑘𝜃  and 𝑘𝜏 are the bond stretching, bond bending and torsional resistance 

force constants, respectively, and Δ𝑟, Δ𝜃 and Δ𝜙 are the bond stretching increment, 

bond angle bending variation and angle variation of twist bond, respectively. 

The elastic properties of the beam elements can be determined by establishing the 

equivalence of the energies associated with the bond interactions, through Eq. 

(3.2), and the energies associated with elastic deformation of the beams. 

Classical mechanics gives the following expression for the strain energy, 𝑈𝐴, of a 

beam with length, 𝑙, and cross-section area,𝐴𝑏, under a pure axial force, 𝑁: 

𝑈𝐴 =
1

2
∫

𝑁2

𝐸𝑏𝐴𝑏

𝐿

0

𝑑𝑙 =
1

2

𝑁2𝑙

𝐸𝑏𝐴𝑏
=

1

2

𝐸𝑏𝐴𝑏

𝑙
(Δ𝑙)2 (3.3) 

where Δ𝑙 is the axial stretching displacement and 𝐸𝑏 is the Young’s modulus of the 

beam. 

The strain energy, 𝑈𝑀, of a beam under a pure bending moment, 𝑀, according to 

classical mechanics, is expressed as: 

𝑈𝑀 =
1

2
∫

𝑀2

𝐸𝑏𝐼𝑏

𝐿

0

𝑑𝑙 =
1

2

𝐸𝑏𝐼𝑏

𝑙
(2𝜏)2 (3.4) 

where 𝜏 is the rotational angle at the ends of the beam and 𝐼𝑏 is the moment of 

inertia of the beam. 
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The strain energy, 𝑈𝑇, of a beam under a pure torsion moment, 𝑇, is expressed: 

𝑈𝑇 =
1

2
∫

𝑇2

𝐺𝑏𝐽𝑏

𝐿

0

𝑑𝑙 =
1

2

𝐺𝑏𝐽𝑏

𝑙
(Δ𝛽)2 (3.5) 

where Δ𝛽 is the relative rotation between the ends of the beam and 𝐽𝑏 the polar 

moment of inertia. 

The parameters 𝑈𝑟 and 𝑈𝐴 are stretching energies in molecular and structural 

systems, respectively, 𝑈𝜃 and 𝑈𝑀 represent the bending energies, while 𝑈𝜏 and 𝑈𝑇 

are the torsional energies. Comparing Eqs. (3.2) with Eqs. (3.3) – (3.5), and 

assuming the equivalence of Δ𝑙 to Δ𝑟, as well the equivalence of the rotational 

angle, 2𝜏, to the total variation of the bond angle, ∆𝜃, and Δ𝛽 to Δ𝜙, direct 

relationships can be established between the structural mechanics parameters, 

𝐸𝑏𝐴𝑏, 𝐸𝑏𝐼𝑏, 𝐺𝑏𝐽𝑏 and the force field constants, 𝑘𝑟, 𝑘𝜃, 𝑘𝜏 (Li and Chou, 2003): 

𝐸𝑏𝐴𝑏

𝑙
= 𝑘𝑟 

𝐸𝑏𝐼𝑏

𝑙
= 𝑘𝜃 

𝐺𝑏𝐽𝑏

𝑙
= 𝑘𝜏 

(3.6) 

Equations (3.6) are the basis for the application of continuum mechanics to the 

analysis of the mechanical behaviour of CNT structures. The input geometrical and 

material parameters of the beam element, for the numerical simulations, are 

summarized in Table 3.1. 

3.3. FE analysis of CNTs’ structures 

The FE simulation is performed using the commercial FE code ABAQUS®. The 

tensile, bending and torsional rigidities of SWCNTs and SWCNT HJs are evaluated 

from conventional mechanical numerical tests. The boundary and loading 

conditions are shown in Figure 3.5 for SWCNTs and in Figure 3.6 for SWCNT HJs. 

The values of the tensile, 𝐸𝐴, bending, 𝐸𝐼, and torsional, 𝐺𝐽, rigidities were 

obtained from the respective numerical simulation tests results as described in the 

following for the case of SWCNTs. 
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Table 3.1. Input parameters for FE simulations of CNT structures: geometrical and 

material properties of beam element. 

Parameter Value Formulation 

Force constant, 𝑘𝑟 

(Cornell et al., 1995) 
6.52×10-7 [N nm-1] 

– 

Force constant, 𝑘𝜃 

(Cornell et al., 1995) 
8.76×10-10 [Nnmrad-2] 

– 

Force constant, 𝑘𝜏 

(Cornell et al., 1995; Jorgensen 

and Severance, 1990) 

2.7810-10 [Nnmrad-2] 

– 

C-C bond/beam length (𝑙 = 𝑎𝐶−𝐶) 0.1421 [nm] – 

Beam diameter (d) 0.147 [nm] 𝑑 = 4√𝑘𝜃 𝑘𝑟⁄   

Cross-sectional area, 𝐴𝑏 0.01688 [nm2] 𝐴𝑏 = 𝜋𝑑2 4⁄   

Moment of inertia,  𝐼𝑏 2.26910-5 [nm4] 𝐼𝑏 = 𝜋𝑑4 64⁄  

Polar moment of inertia, 𝐽𝑏 4.53710-5[nm4] 𝐽𝑏 = 𝜋𝑑4 32⁄  

Young’s modulus, 𝐸𝑏 5488 [GPa] 𝐸𝑏 = 𝑘𝑟
2𝑙 4𝜋𝑘𝜃⁄  

Shear modulus, 𝐺𝑏 870.7 [GPa] 𝐺𝑏 = 𝑘𝑟
2𝑘𝜏𝑙 8𝜋𝑘𝜃

2⁄  

Tensile rigidity,  𝐸𝑏𝐴𝑏 92.65 [nN] 𝐸𝑏𝐴𝑏 = 𝑘𝑟𝑙 

Bending rigidity,  𝐸𝑏𝐼𝑏 0.1245 [nNnm2] 𝐸𝑏𝐼𝑏 = 𝑘𝜃𝑙 

Torsional rigidity, 𝐺𝑏𝐽𝑏 0.0395 [nNnm2] 𝐺𝑏𝐽𝑏 = 𝑘𝜏𝑙 
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Figure 3.3. Modelling of CNT structure, replacing the C-C bonds by beam elements. 

 

 

Figure 3.4. Equivalence between bond interactions in carbon nanotube and beam 

elements. 
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The tensile rigidity, 𝐸𝐴, of SWCNT structures is determined as: 

𝐸𝐴 =
𝐹𝑎𝐿

𝑢𝑎
 (3.7) 

where 𝐹𝑎 is the axial tensile force applied at one end of nanotube or heterojunction, 

leaving the other end fixed, 𝐿 (𝐿𝐻𝐽 in case of SWCNT HJ) is the nanotube length and 

𝑢𝑎 is the axial displacement taken from the FE analysis. 

Similarly, the bending rigidity of the SWCNT structures, 𝐸𝐼, is represented as: 

𝐸𝐼 =
𝐹𝑡𝐿3

3𝑢𝑡
 (3.8) 

where 𝐹𝑡  is the transverse force applied at one end of the nanotube or 

heterojunction, leaving the other fixed, 𝑢𝑡 is the transverse displacement, taken 

from the FE analysis. 

Finally, the torsional rigidity of the SWCNT structures, 𝐺𝐽, is determined as: 

𝐺𝐽 =
𝑇𝐿

𝜑
 (3.9) 

where 𝑇 is torsional moment applied at one end of the nanotube or heterojunction, 

leaving the other fixed and 𝜑 is the twist angle, taken from the FE analysis. 

In case of torsion, the nodes under loading, at the end of the nanotube (or 

heterojunction), are prevented from moving in the radial direction. 

In the case of SWCNT HJs, two loading conditions, which consist of fixing the 

narrower and the wider side of the HJ structure, were considered.  
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(a) 

 
(b) 

 
(c) 

Figure 3.5. Loading and boundary conditions for (20, 20) armchair SWCNT: (a) 

tension; (b) bending; (c) torsion. 
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(a) 

 

(b) 

 

(c) 

Figure 3.6. Loading and boundary conditions for armchair – armchair (10, 10) – 

(15, 15) HJ: (a) tension; (b) bending; (c) torsion. 
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Chapter 4 

Mechanical behaviour of CNTs’ structures 

This chapter is a collection of five papers (Sakharova et al., 2015, 2016a, 2016b, 

2017b; Pereira et al., 2016), concerning numerical simulation studies on the 

mechanical response of SWCNTs, with and without vacancies, and SWCNT HJs, 

using NCM approach. 

In the subchapter 4.1. Elastic properties of the perfect SWCNTs’ structures, the 

results related to the systematic evaluation of the elastic constants of the SWCNTs 

without defects are discussed. Afterwards, the evaluation of the elastic properties 

of SWCNTs containing vacancy defects is carried out in the subchapter 4.2. Elastic 

properties of the SWCNTs’ structures containing vacancy defects. Finally, the 

subchapter 4.3. Modelling and mechanical behaviour of SWCNT HJs, is focused 

on a comprehensive numerical simulation study to evaluate the mechanical 

properties of SWCNT HJs. 
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4.1. Elastic properties of the perfect SWCNTs’ structures 

This subchapter consists of two complementary papers by Sakharova et al. (2015) 

and Pereira et al. (2016). The first paper, by Sakharova et al. (2015), deals with the 

evaluation of the tensile and bending rigidities, and subsequently, the Young’s 

modulus of SWCNTs in a wide range of nanotube lengths, diameters, chiral angles 

and chiral indices. The second paper, by Pereira et al. (2016), is focused on the 

evaluation of the torsional properties, torsional rigidity and shear modulus of the 

same families of the SWCNTs studied in the first paper. A study on the Poisson’s 

ratio evaluation is also carried out in this paper, using the results of the elastic 

tensile and shear moduli. 

In summary, this subchapter analyses and discusses the results of systematic 

studies, regarding the influence of geometrical parameters of nanotubes on their 

elastic properties. 
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The mechanical behaviour of non-chiral and chiral single-walled carbon nanotubes under tensile and
bending loading conditions is investigated. For this purpose, three-dimensional finite element modelling
is used in order to evaluate the tensile and bending rigidities and, subsequently, the Young's moduli. It is
shown that the evolution of rigidity, tensile and bending, as a function of diameter can be described by a
unique function for non-chiral and chiral single-walled nanotubes, i.e. regardless of the index or angles of
chirality. A comprehensive study of the influence of the nanotube wall thickness and diameter on the
Young's modulus values is also carried out. It is established that the evolution of the Young's modulus as
a function of the inverse of the wall thickness follows a quasi-linear trend for nanotubes with diameters
larger than 1.085 nm. The current numerical simulation results are compared with data reported in the
literature. This work provides a benchmark in relation to ascertaining the mechanical properties of chiral
and non-chiral single-walled carbon nanotubes by nanoscale continuum models.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Carbon nanotubes (CNTs) are nanostructures attracting research
interest due to their extraordinary mechanical, optical, thermal and
electrical properties [1]. The CNTs outstanding physical properties
such as strength and lightness enable applications in numerous
different fields: chemistry, physics, engineering, materials science.
From the point of view of structural application, the high stiffness
together with low density indicates use of the CNTs as nanoscale
fibres for reinforcement of nanocomposite structures (see, for
example, [2e4]). This type of application of carbon nanotubes has
required the investigation of their mechanical properties, including
their deformation behaviour under different loading conditions.

There are two approaches commonly used to study the me-
chanical properties and deformation behaviour of CNTs: experi-
mental and computational. For single-walled and multi-walled
CNTs, methods for measuring Young's modulus based on in situ
atomic force microscopy (AFM) and transmission electron micro-
scopy (TEM) techniques have been established [5,6]. Although
. Sakharova).
various experimental studies have been carried out to evaluate the
mechanical properties of CNTs, there is inconsistency in the
experimental results reported in the literature, owing to the
complexity of the characterization of nanomaterials at the atomic
scale. The common point in the experimental studies is the evi-
dence of the unparallelled mechanical properties of CNTs. Con-
cerning the accuracy of the values of the CNTmechanical properties
that are determined, experimental studies still show a wide scatter
of their values. From this point of view, computer simulation for
predicting the mechanical properties of CNTs has been considered
as a powerful tool, due to the experimental difficulties.

The theoretical approaches for the modelling and character-
ization of the CNTs behaviour can be divided into three main cat-
egories: the atomistic approach, the continuum approach and the
nanoscale continuum approach. A comprehensive critical review
concerning the modelling of the mechanical behaviour of carbon
nanotubes has been undertaken by Rafiee and Moghadam [7].
Hereinafter, a brief assessment of main modelling methodologies is
carried out.

Atomistic modelling, used solely during the first years of theo-
retical studies on CNTs, calculates the positions of atoms based on
their interactive forces and boundary conditions (see, for example
[8]). Atomistic modelling comprises an ab initio approach [9] and
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http://crossmark.crossref.org/dialog/?doi=10.1016/j.compositesb.2015.01.014&domain=pdf
www.sciencedirect.com/science/journal/13598368
www.elsevier.com/locate/compositesb
http://dx.doi.org/10.1016/j.compositesb.2015.01.014
http://dx.doi.org/10.1016/j.compositesb.2015.01.014
http://dx.doi.org/10.1016/j.compositesb.2015.01.014


Fig. 1. Schematic illustration of an unrolled hexagonal graphene sheet with definition
of chiral vector.

N.A. Sakharova et al. / Composites Part B 75 (2015) 73e8574
molecular dynamics (MD) [10e14]. After this, other atomistic
modelling methods, such as tight-binding molecular dynamics
(TBMD) [15,16] were developed.

Generally, ab initiomethods givemore accurate results thanMD,
but they are computationally expensive and only possible to use for
a small number of molecules or atoms. Molecular dynamics can be
used in large systems and provide good predictions of CNT me-
chanical properties under different loading conditions, but it is still
limited owing to its being very time consuming, especially when
long or multi-walled CNTs are simulated. In recent years, the
atomistic approaches, due to their big computation cost, have been
gradually replaced by continuum approaches, which are at the
moment the most indicated for effective computational simulation
of large systems.

The basic assumption of the continuum mechanics-based
approach consists of the modelling of CNTs as a continuum struc-
ture, concerning the distribution of mass, stiffness, etc., i.e. the real
discrete structure of the nanotubes is neglected and replaced by a
continuum medium. Some authors have explored continuum shell
modelling for studying the mechanical behaviour of CNTs [17e20].
However, the atomic characteristics of carbon nanotubes, such as
chirality, are not taken into account in the continuous shell
approach, and so their effects on the mechanical behaviour of CNTs
cannot be captured. To overcome this obstacle, Chang proposed an
anisotropic shell model for SWCNTs [21] that can predict some
anisotropic effects related to chirality. Besides shell structures,
other continuum structures, such as tubes and plates, are employed
in continuum approaches. In the models of Sears and Batra [22],
and Gupta and Batra [23] the whole single-walled CNT structure
was simulated as an equivalent continuum tube. Wang [24]
employed the equivalent elastic plate model. Arash and Wang
[25] show the advantages of the continuum theory applied to the
modelling of shells and plates. However, whatever the type of the
continuummodelling approach, the replacement of the whole CNT
structure by a continuum element is not a completely satisfactory
method to evaluate CNT properties.

The nanoscale continuummodelling (NCM) consists of replacing
the carbonecarbon (CeC) bond by a continuum element. As a
result, continuummechanics theories can be used at the nanoscale,
i.e. a linkage between molecular configuration and solid mechanics
is recognized. NCM is frequently accomplished by finite element
modelling. The main approach in NCM consists of considering
different elements, such as rod, truss, spring and beam, well
described in elasticity theory, to simulate CeC bonds (see, for
example, [26e29]). The first NCMmodel of CNTs was developed by
Odegard et al. [26] and consisted of a continuum truss model. The
disadvantage of the truss model is the impossibility of describing
the CNT mechanical behaviour under torsional load, because the
out-of-plane torsion of the CeC bond cannot be taken into account.

Various FEM models where the CeC bonds are simulated using
diverse kinds of elastic spring element, such as linear, non-linear,
rotational, torsional, have been recently reported [30e37].
Although the use of spring elements is an effective way for simu-
lation of the bond angle variations, the accuracy of the Young's
modulus results depends on the choice of the potential function for
the calculation of the force constants.

Since Li and Chou [27] linked the interatomic potential energies
to the strain energies of an equivalent beam element and estab-
lished a direct relationship between sectional stiffness parameters
and the force field constants, equivalent beam approaches have
been successfully used to simulate the mechanical behaviour of
CNT, although with different formulations of the inter-atomic
molecular potential energies and boundary conditions
[28,38e43]. The FE models, which employed beam elements in a
three-dimensional (3D) space, developed by Tserpes and Papanikos
[26], Papanikos et al. [38] and Avila and Lacerda [39] differ from
each other mainly due to the boundary conditions and the method
for the Young's modulus calculation. The recent 3D FE model of Lu
and Hu [42] used the same formulation for potential energy of
covalent system, but considering an elliptical cross-section area of
equivalent beam. In another analytical approach developed by
Shokrieh and Rafiee [40], the deformations of beam elements were
obtained using Castigliano's theorem. In the works of Her [41] and
Mohammadpour [43] themodifiedMorse potential function for the
potential energy of the covalent system used to describe non-linear
behaviour of CeC bonds was applied. It can be concluded from
these studies that nanoscale continuum modelling (NCM) is an
adequate modelling technique for predicting CNT mechanical
properties and shows results in close agreement with those ob-
tained from MD modelling.

In the present study, the equivalent beam approach is used in
order to evaluate the tensile and bending rigidities and, subse-
quently, Young's modulus of various single-walled carbon nano-
tubes (SWCNT) structures, as non-chiral (zigzag, q ¼ 0�, and
armchair, q¼ 30�) and families of chiral (q¼ 8.9�;13.9�;19.1� among
others) SWCNTs for a wide range of chiral indices, nanotube
length and diameter. A comprehensive study of the influence
of the nanotube wall thickness and diameter on the Young's
modulus results was carried out. Moreover, the present work pro-
vides a benchmark in relation to ascertaining the mechanical
properties of chiral and non-chiral SWCNTs by nanoscale contin-
uum models.

2. Materials and methods

2.1. Atomic structure of SWCNTs

A simple way to describe an SWCNT is as a rolled-up graphene
sheet giving rise to a hollow cylinder, the surface of which is
composed of hexagonal carbon rings (see, for example [44,45]). The
hexagonal pattern is repeated periodically, leading to binding of
each carbon atom to three neighbouring atoms by covalent bonds.
A schematic illustration of an unrolled hexagonal graphene sheet is
shown in Fig. 1. The symmetry of the atomic structure of SWCNTs is
characterized by the chirality, which is defined by the chiral
vector Ch:
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Ch ¼ na1 þma2 (1)
where (n,m) is a pair of the lattice translation indices a1 and a2, the
unit vectors of the hexagonal lattice, n and m are integers.

The length of the unit vector a is defined as a ¼
ffiffiffi
3

p
aC�C with the

equilibrium carbonecarbon (CeC) covalent bond length aCeC usu-
ally taken to be 0.1421 nm. The nanotube circumference, Lc, and
diameter, Dn are defined as:

Lc ¼ jChj ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ nmþm2

p
(2)

Dn ¼ Lc
p

(3)

The chiral angle, q, is the angle between the chiral vector Ch and
the direction (n, 0). The chiral angle, q, is given by Ref. [44]:

q ¼ sin�1
ffiffiffi
3

p
m

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ nmþm2

p (4)

Three main symmetry groups of SWCNTs exist. When n¼m, the
structure (n, n) is called the armchair configuration; when m¼ 0,
the structure (n, 0) is called zigzag; when n s m, the structure (n,
m) is called chiral. These three major categories of SWCNTs can also
be defined based on the chiral angle, q. For the two limiting chiral
angles of 0� and 30�, the nanotubes are referred to as armchair and
zigzag, respectively. For q different from 0� and 30�, the nanotubes
are designated as chiral [46].
2.2. FE modelling of SWCNTs

The displacement of individual carbon atoms in CNT under
external forces is constrained by the covalent bonds. Therefore, the
overall deformation of the CNT is the result of the interactions
between bonds. Since the CeC bonds can be considered as load-
carrying elements, and the carbon atoms as joints of connecting
elements, it is possible to simulate CNTs as space-frame structures
[27,28] and analyze their mechanical behaviour using classical
structural mechanics methods.

In the present work, the 3D FEmodel, which is able to assess the
mechanical properties of SWCNTs, proposed in Ref. [28], was
adopted. Thus, characterization of the rigidities of SWCNTs is per-
formed based on the equivalent continuum modelling (ECM)
approach, where the equivalent beam elements replace the CeC
bonds. This approach is based on the premise that the mechanical
behaviour of CNTs and elastic beams is identical.

The FE meshes of the carbon nanotube structures used in the
finite element analyses were constructed using the academic
software CoNTub 1.0 [47], which permits building the CNT struc-
tures. This code generates ASCII files, describing atom positions,
which can be entered as input in available commercial and in-
house FEA codes, in order to perform the simulation of mechani-
cal tests. To convert the ASCII files, obtained using the CoNTub 1.0
program, into the format usable by the commercial FEA code
ABAQUS®, the in-house application designated InterfaceNanotubes
was developed. The FE model uses the coordinates of the carbon
atoms for generating the nodes and then the suitable connection of
the nodes creates the beam elements. The FE simulation uses the
analogy between the bond length, aCeC, and the element length L
and between the nanotube wall thickness and the element thick-
ness. Assuming the beam element has a circular cross-section area,
the wall thickness corresponds to the element diameter.

In the present work, chiral and non-chiral SWCNTs were simu-
lated over a wide range of chiral indices, nanotube lengths and
diameters. The FE model takes into account the chirality of the
SWCNTs, and so is able to consider their anisotropic behaviour due
to chirality. The geometrical characteristics of SWCNTs used for the
FE analyses are summarized in Table 1, where the number of nodes
and elements of the finite element meshes of the SWCNTs is also
indicated for a nanotube with a length of 20 nm. The choice of
SWCNT geometrical characteristics was made taking into account
real nanotube sizes: for example, the (4, 2) chiral nanotube is the
smallest diameter nanotube ever synthesized [48].

Knowledge of the exact dimensions of CNTs at the equilibrium
state is still a challenge for research. Unlike the CeC bond length
aCeC, for which the experimentally observed value of 0.1421 nm is
accepted as the exact value, thewall thickness of CNT, t, is not clearly
specified in the literature. Since in the present study the SWCNTs are
modelled as space-frame structures, the wall thickness, t, should be
identified in a continuum sense. Although a few theoretical reports
have provided values for nanotube wall thickness that range from
0.064 [18] to 0.69 nm [26], the most widely used value of 0.34 nm
(equal to the interlayer spacing of graphite) is adopted for the
SWCNT wall thickness, t, in order to enable comparison of the cur-
rent results with those available in the literature. Nevertheless,
taking in account the ambiguity of the value of CNTwall thickness in
the literature, a parametric study of the effect of the wall thickness
value on the calculation of SWCNT Young'smoduluswas performed.
2.3. FE analysis of SWCNTs

2.3.1. Structural mechanics of SWCNTs
As was originally proposed by Odegard et al. [26], and then

developed by Li and Chou [27], the elastic moduli of the beam el-
ements are determined by establishing the link between inter-
atomic potential energies of the molecular structure and strain
energies of the equivalent continuum structure comprising of
frame members (beams) undergoing axial and bending de-
formations. From a molecular point of view, the CNTs can be
envisaged as largemolecules composed of carbon atoms. The force-
field is expressed in the form of the total potential energy, which is
uniquely defined by the relative positions of the nuclei composing
the molecule. According to molecular dynamics, the total empirical
inter-atomic potential energy of a molecular system is expressed as
a sum of the individual energy terms due to bonded and non-
bonded interactions [49]:

Utot ¼
X

Ur þ
X

Uq þ
X

Uf þ
X

Uu þ
X

Uvdw (5)

where Ur, Uq, Uf, Uu are energies associated with bond stretching,
bending (bond angle variation), dihedral angle torsion, out-of plane
torsion, respectively, and Uvdw is the energy associated with non-
bonded van der Waals interaction.

Generally, in covalent system, non-bonded interactions are
negligible in comparison with bonded ones, and the main contri-
bution to the total potential energy is from the first four terms of Eq.
(5). The contributions of dihedral angle torsion and out-of plane
torsion to total inter-atomic potential energy are insignificant,
compared with contributions of other bonded interactions, and the
main contribution to the inter-atomic potential energy is due to
bond stretching. Consequently, under the assumption of small
deformation, the total inter-atomic potential energy can be
approximated by Ref. [50]:

Ur ¼ 1
2
krðDrÞ2 (6)

Uq ¼ 1
2
kqðDqÞ2 (7)



Table 1
Geometrical characteristics of SWCNTs studied and number of nodes and elements of the finite element meshes used (nanotube length 20 nm).

SWCNT type (n, m) Dn, nm q� Number of nodes Number of
elements

Non-chiral Armchiar (3, 3) 0.407 30 972 1448
(5, 5) 0.678 1620 2414
(6, 6) 0.814 1944 2897
(8, 8) 1.085 2592 3863
(9, 9) 1.221 2916 4346
(10, 10) 1.356 3240 4829
(12, 12) 1.628 3888 5795
(15, 15) 2.034 4860 7244
(20, 20) 2.713 6840 9659

Zigzag (3, 0) 0.235 0 558 830
(5, 0) 0.392 930 1384
(10, 0) 0.783 1860 2769
(12, 0) 0.940 2232 3323
(15, 0) 1.175 2790 4154
(18, 0) 1.409 3348 4985
(20, 0) 1.566 3720 5539
(24, 0) 1.879 4464 6647

Chiral Family q 8.9 (5, 1) 0.436 8.9 1044 1554
(10, 2) 0.872 2088 3109
(15, 3) 1.308 3132 4664
(20, 4) 1.744 4176 6219
(25, 5) 2.180 5220 7774
(30, 6) 2.616 6264 9329

Family q 13.9 (6, 2) 0.565 13.9 1352 2013
(9, 3) 0.847 2028 3020
(12, 4) 1.129 2740 4027
(15, 5) 1.412 3380 5034
(18, 6) 1.694 4056 6041
(21, 7) 1.976 4732 7048
(24, 8) 2.259 5408 8055
(27, 9) 2.541 6084 9062

Family q 19.1 (4, 2) 0.414 19.1 992 1477
(6, 3) 0.622 1488 2216
(8, 4) 0.829 1984 2955
(10, 5) 1.036 2840 3694
(12, 6) 1.243 2976 4433
(14, 7) 1.450 3472 5172
(16, 8) 1.657 3968 5911
(18, 9) 1.865 4464 6650
(20, 10) 2.072 4960 7389
(22, 11) 2.279 5456 8128
(24, 12) 2.486 5952 8867

n þ m 12 (7, 5) 0.818 24.5 1960 2920
(11, 1) 0.903 4.3 2167 3222

18 (16, 2) 1.338 5.8 3208 4777
(14, 4) 1.282 12.2 3072 4575
(13, 5) 1.260 15.6 3020 4498
(11, 7) 1.231 22.7 2950 4395
(10, 8) 1.223 26.3 2932 4369

24 (22, 2) 1.806 4.3 4328 6445
(19, 5) 1.717 11.4 4116 6130
(17, 7) 1.674 16.5 4012 5976
(15, 9) 1.644 21.8 3942 5873
(14, 10) 1.635 24.5 3920 5841
(13, 11) 1.629 27.2 3906 5821

N.A. Sakharova et al. / Composites Part B 75 (2015) 73e8576
where kr, kq, are the bond stretching and bond bending force con-
stants, respectively, and Dr and Dq are the respective bond
stretching and bond angle variation increments.

The interatomic potential energy of the molecular structure
comprises bond stretching and angle variation. Thus, the structural
member for substituting the CeC bond has to be able to capture
both axial and bending deformations. The beam is identified by the
cross sectional area, elastic modulus, moment of inertia and length.

Relationships between the sectional stiffness parameters in
structural mechanics and force field constants in molecular dy-
namics are required for the determination of the elastic modulus of
beam elements. Thus, the elastic moduli can be determined by
establishing the equivalence between the energies associated with
the interatomic interactions (through Eqs. (6) and (7)) and with the
deformation of the structural elements (i.e. beams) of the space-
frame structure.

Classical mechanics gives the following expression for the strain
energy of a uniform beam of length, l, and cross-section area, Ab,
under a pure axial force, N:

UA ¼ 1
2

ZL
0

N2

EbAb
dl ¼ 1

2
N2 l
EbAb

¼ 1
2
EbAb

l
ðDlÞ2 (8)

where Dl is the axial stretching deformation, and Eb is the Young's
modulus of the beam.



Table 2
Input parameters for FE simulations of SWCNTs.

Parameter Value Formulation

CeC bond/beam length (l¼ aCeC) 0.1421 nm e

Diameter (d) 0.147 nm d ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffi
kq=kr

p
Cross section area, Ab 0.01688 nm2 Ab ¼ pd2=4
Moment of inertia, Ib 2.269 � 10�5 nm4 Ib ¼ pd4=64
Young's modulus, Eb 5488 GPa Eb ¼ k2r l=4pkq
Rigidity, EbAb 92.65 nN EbAb ¼ krl
Rigidity, EbIb 0.1245 nN nm2 EbIb ¼ kql
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The strain energy of a uniform beam, with moment of inertia, Ib,
under a pure bendingmoment,M, according to classical mechanics,
is expressed as:

UM ¼ 1
2

ZL
0

M2

EbIb
dl ¼ 1

2
EbIb
l

ð2aÞ2 (9)

where a is the rotational angle at the ends of the beam.
The parameters Ur and UA are stretching energies in molecular

and structural systems, respectively, and Uq and UM represent the
corresponding bending energies. Comparing Eqs. (6) and (7) with
Eqs. (8) and (9), and assuming the equivalences of the rotational
angle, 2a, with the total variation of the bond angle, Dq, and of Dl
with Dr, direct relationships can be established between the
structural mechanics parameters, EbAb, EbIb, and the force field
constants, kr, kq, [27]:

EbAb

l
¼ kr ; (10)

EbIb
l

¼ kq; (11)

where l is the bond length generally considered equal to 0.1421 nm.
Consequently, Eqs. (10) and (11) establish the basis for application
of continuum mechanics to the analysis of the mechanical behav-
iour of CNTs. In order to determine the rigidities of beam elements,
the relationships between the sectional stiffness parameters and
force-field constants need to be clarified. In the approach of Li and
Chou [27], a solid circular cross-sectional area of the beams with
diameter d is assumed and so the geometrical parameters Ab and Ib
are as follows:

Ab ¼ pd2

4
(12)

Ib ¼ pd4

64
(13)

Assuming these settings, Eqs. (10) and (11) become,
respectively:

d ¼ 4

ffiffiffiffiffi
kq
kr

s
(14)

Eb ¼ k2r l
4pkq

(15)

Eqs. (14) and (15) allow determining the necessary input pa-
rameters for the beam elements. In this study, the bond stretching
and bond bending force constants used [51] are:

kr ¼ 6:52� 10�7 N=nm

kq ¼ 8:76� 10�10 N nm rad�2

Then, substituting these values in Eqs. (14) and (15) and setting
l¼ aCeC¼ 0.1421 nm, the input parameters for the FE model are
obtained. The geometrical and material parameters and values
necessary for the finite element simulation of SWCNTs are sum-
marized in Table 2.
2.3.2. Loading conditions
Numerical simulation of conventional mechanical tension and

bending tests was carried out in order to study the effect of
nanotube length and diameter on their mechanical properties,
focussing on the tensile and bending rigidities. The FE analysis was
performed using the commercial FE code ABAQUS®.

In order to simulate the mechanical behaviour of SWCNT in
tension, an axial force, Fx, is applied at one nanotube end, leaving
the other end fixed. The tensile rigidity of the nanotube, EA, is
determined as:

EA ¼ FxL
ux

(16)

where L is the nanotube length and ux is an axial displacement
taken from the FE analysis.

Likewise, for simulating bending, a transverse force, Fy, is
applied at one extremity of the nanotube, leaving the other fixed.
The bending rigidity of the nanotube, EI, is determined as:

EI ¼ FyL3

3uy
(17)

where uy is a transverse displacement taken from the FE
analysis.

2.3.3. Evaluation of the Young's modulus of SWCNTs
The nanotube rigidities, EA and EI, are required for the evalua-

tion of the SWCNT Young's modulus, E. Considering a hollow cy-
lindrical profile for the equivalent beam, i.e. a geometry similar to
the CNT, the cross-sectional area of the equivalent hollow cylinder
and moment of inertia can be written as:

A ¼ p

4

h
ðDþ tÞ2 � ðD� tÞ2

i
¼ pDt (18)

I ¼ p

64

h
ðDþ tÞ4 � ðD� tÞ4

i
(19)

where D and t are the mean diameter and the thickness of the
equivalent hollow cylinder, respectively.

Assuming t¼ tn (where tn is the nanotube wall thickness), the
expression for D can be derived from Eqs. (18) and (19):

EI
EA

¼ 1
8

�
D2 þ t2n

�
0

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8
�
EI
EA

�
� t2n

s
(20)

Thus, the Young's modulus of the SWCNT can be calculated us-
ing the following expression, taking into account the rigidities in
tension and bending:
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E ¼ EA
A

¼ EAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� �s (21)
Fig. 2. Evolution of the tensile, EA, and bending, EI, rigidities with nanotube length, L,
for (a) armchair (10, 10), (b) zigzag (10, 0) and (c) chiral (10, 2) SWCNTs.
ptn 8 EI
EA � t2n

3. Results and discussion

3.1. Rigidities of SWCNTs

3.1.1. Effect of the SWCNT's length on the tensile and bending
rigidities

The common length of carbon nanotubes currently produced is
in the order of 1 mm, their diameter being in the range 0.5e3 nm.
Consequently, the modelling of CNT with their real length leads to
high computing costs. As is known from previous studies [38], the
modelling of real nanotube length is not crucial because of its
length-independent mechanical behaviour, with the exception of
very small lengths. A study for estimating the minimum length
abovewhich the values of the tensile and bending rigidities become
stable was performed in order to make a selection of the minimum
modelling length of the CNTs.

Examples of the evolution of tensile, EA, and bending, EI, rigid-
ities with nanotube length are shown in Fig. 2, for the cases of
armchair (10, 10), zigzag (10, 0) and chiral of the family q¼ 8.9�

SWCNTs. The tensile, EA, and bending, EI, rigidities stabilize from a
certain value of the nanotube length, which is always less than
20 nm, whatever the SWCNT type, chiral or non-chiral, the chiral
angle and nanotube diameter. The tensile and bending rigidities are
almost constant, with increasing EA and decreasing EI for small
nanotube lengths. A similar evolution of the tensile and bending
rigidities was observed for non-chiral SWCNTs by Papanikos et al.
[38], who justify the evolution of the rigidities observed for small
nanotube lengths by the small ratio between the nanotube length
and its diameter.

Taking into account the fact that the CNTs currently synthesized
have relatively high length to diameter ratio, numerical simulation
of the mechanical behaviour of nanotubes with a small length to
diameter ratio is not needed. For this reason, in the following,
20 nm was chosen as modelling length for numerical simulation.

3.1.2. Effect of the chiral indices and chiral angles on the rigidities of
SWCNTs

The stabilized values of both the tensile and bending rigidities
(i.e. determined for L ¼ 20 nm) were used for evaluation of the
effect of the SWCNT chiral indices, n and m, and chiral angle, q, on
their mechanical properties. The evolutions of the tensile, EA, and
bending, EI, rigidities as a function of the chiral indices, n, for
armchair and zigzag nanotubes, and as a function of the sum of
chiral indices, (n þm), for chiral nanotubes, are shown in Fig 3. The
evolutions of the tensile and bending rigidities, for armchair, zigzag
and chiral SWCNTs, are related to the chiral indices as follows: the
tensile rigidity, EA, increases quasi-linearly with the chiral indices
and the bending rigidity, EI, increases with the chiral indices ac-
cording to a cubic power expression. The EA evolutions can be
separated for armchair, zigzag and chiral SWCNTs. The same is true
for EI evolutions. In order to analyze the evolution of tensile and
bending rigidities with chiral angle, q, SWCNTs with the same sum
of chiral indices (nþm) were considered. Fig. 4 shows that the
values of both rigidities, EA and EI, for the three families (n þ m)
studied, decrease from the rigidity values obtained for zigzag
SWCNTs (q ¼ 0�), with a rate that becomes smaller as q increases.

In order to clarify the trends shown in Fig. 3, the values of the
rigidities as a function of the SWCNT diameter, Dn, are plotted in
Fig. 5. It can be seen that the evolution of the tensile rigidity, EA, can
be unified for all SWCNTs studied, and the same is true for the
bending rigidity, EI. The quasi-linear trend for the case of tensile
rigidity, EA, and close to a cubic power trend for the case of bending
rigidity, EI, can be expressed as follows:

EA ¼ aðDn � D0Þ (22)

EI ¼ bðDn � D0Þ3 (23)

These equations are of the same type as those previously pro-
posed for non-chiral SWCNTs [38], but replacing the chiral index, n



Fig. 5. Evolution of the tensile, EA, and bending, EI, rigidities as a function of the
nanotube diameter, Dn for armchair, zigzag and three families q ¼ 8.9, 13.9, 19.1�.

Fig. 3. Evolution of the tensile, EA, and bending, EI, rigidities of SWCNTs for armchair
and zigzag, as a function of the chiral indices, n; and as a function of the sum of chiral
indices, (nþm), for three families q ¼ 8.9, 13.9, 19.1�.
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by the SWCNT diameter, Dn. In this study [38], the evolutions of EA
as a function of n can be separated for armchair and zigzag nano-
tubes; the same is valid for EI evolutions. The fitting parameters a, b
and D0 obtained in the current work, and those calculated based on
the results of previous works ([38] and [52]) are given in Table 3.
Fig. 6 (a) and (b) shows the values of EA and EI as a function of
(Dn�D0) and (Dn�D0)3, respectively; the fitting lines from Eqs (22)
and (23) are also shown.

Eqs. (22) and (23) allow unifying the behaviour of the SWCNTs
regarding the evolution of rigidity with nanotube diameter and
permit accurate determination of the rigidity values for chiral and
non-chiral SWCNTs. The mean difference between the values of EA,
obtained from Eq. (22), and the values obtained directly from FE
analysis, is 0.65% for armchair, 0.56% for zigzag and 0.25% for chiral
SWCNTs. The mean differences between the values of EI estimated
by Eq. (23) and those obtained from FE analysis are 1.29% for
armchair, 2.54% for zigzag and 0.66% for chiral SWCNTs. It is
therefore possible to conclude that Eqs. (22) and (23) allow
Fig. 4. Evolution of the tensile, EA, and bending, EI, rigidities as a function of the chiral
angle, q for three families of SWCNTs with (nþm) ¼ 12, 18, 24.
calculation, with sufficient accuracy, of the values of the tensile
rigidity, EA, and bending rigidity, EI, whatever the type of SWCNT
configuration in the range of nanotube diameters studied in the
current work. Also, Eqs (22) and (23) permit fast assessment of the
Young's modulus of any type of SWCNT, as shown in the next
section.
3.2. Young's modulus of single-walled nanotubes

Eqs. (22) and (23) for the tensile and bending rigidities enable
writing Eq. (21) as follows:

E ¼ EA
A

¼ aðDn � D0Þ
ptn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 bðDn�D0Þ2

a
� t2n

q (24)

This equation allows determination of the Young's modulus of
any type of SWCNT, knowing the parameters of Table 3 and the wall
thickness, tn.
3.2.1. Effect of the wall thickness on the calculation of the Young's
modulus

Eqs. (21) and (24) show that the choice of the value of the wall
thickness of the nanotubes has a direct impact on the calculation of
the SWCNT Young's modulus. The scatter of the wall thickness
value from 0.066 to 0.69 nm reported in the literature demon-
strates the need to study the effect of the value considered on the
Young's modulus, in order to discuss the FE results of the Young's
modulus and enable comparison with the results reported in the
literature.
Table 3
Fitting parameters a, b and D0.

Parameter Current studya Papanikos et al. [38] b Chang&Gao [52] b

a (nN nm�1) 1131.66 1128.15 1141.3
b (nN nm�1) 143.48 142.54 e

D0 (nm) 2.8$10�7 0 e

a Includes armchair, zigzag and all types of chiral SWCNT studied.
b Includes armchair and zigzag SWCNT.



Fig. 6. Evolution of: (a) the tensile, EA, rigidity as a function of (Dn�D0) and (b)
bending, EI, rigidity as a function of (Dn� D0)3. The results are represented by symbols
and fitting trends by lines.
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First, SWCNTs with different diameters were studied. Fig. 7
shows the Young's modulus determined by Eq. (24) as a function
of the inverse of the nanotube wall thickness (for the range of tn
values 0.06e0.69 nm), for the cases of the diameters of armchair
SWCNTs shown in Table 1. The evolution of the Young's modulus as
a function of the inverse of the wall thickness follows a quasi-linear
trend over the whole range of thicknesses, for nanotubes with
diameter Dna1:085 nm. Such a linear trend was also reported by
Tserpes and Papanikos [28] and Avila and Lacerda [39], although
Fig. 7. Evolution of armchair SWCNTs Young's modulus with the inverse of the wall
thickness for different nanotube diameters, according to Eq. (24).
only in one case of SWCNTs (8, 8) (diameter Dn¼ 1.085 nm). It is
worth to notice that quasi-linear trends obtained here for different
SWCNT diameters are nearly independent of Dn. This means that
the SWCNTs Young's modulus behaviour as a function of nanotube
diameter can be described by a single quasi-linear trend, for
Dna1:085 nm.

For the case of small nanotube diameters, Dn(1:085 nm, the
deviation from the quasi-linear trend is pronounced for smaller
values of 1/tn, particularly when the nanotube wall thickness ap-
proximates to half of its diameter. The smaller the SWCNT diameter,
the bigger is the deviation from the quasi-linear trend. For these
cases, the SWCNT behaves as a solid cylinder, instead of a hollow
tube, which influences the Young's modulus results. As long as the
SWCNTwall thickness is equal to a half or less than its diameter, the
Young's modulus becomes a quasi-linear function of the nanotube
wall thickness. This is an interesting result, so far not reported in
the literature to our knowledge, which allows unifying the elastic
behaviour of CNTs, whatever their diameter or chirality.

Data from three main distinct modelling approaches eatomistic
modelling, continuum modelling (CM) and nanoscale continuum
mechanics modelling (NCM) e were chosen for comparison pur-
poses. Seven studies, representing the atomistic approach, were
considered: the ab initio approach of Kudin [9], the MD approaches
of Yakobson [10], Zhang et al. [12], Cheng et al. [13] and Liew et al.
[14], the TBMD models of Hernandez et al. [15] and Zhou [16]. Four
cases of studies concerning the continuum mechanics approach
reported in Refs. [18,20,22,23] were also considered. The remaining
results were selected from the models developed employing the
NCM approach: the equivalent truss model of Odegard et al. [26],
six models, employing diverse kinds of spring elements: Meo and
Rossi [30], Giannopoulos et al. [31], Mahmoudinezhad et al. [34],
Natsuki et al. [35], Rafiee and Hendarhaei [36] and Parvaneh and
Shariati [37], and seven models using beam elements: Papanikos
et al. [38], Avila and Lacerda [39], Shokrieh and Rafiee [40], Her and
Liu [41], Lu and Hu [42], Mohhamadpour and Awang [43].

Table 4 summarizes the results of the Young's modulus from the
literature and the current results obtained from Eq. (24). The
Young's modulus values were obtained for nanotube wall thick-
nesses, tn, between 0.066 and 0.69 nm and are in the range
0.613e5.516 TPa. In order to facilitate comparison, the results given
in Table 4 are plotted in Fig. 8. Fig. 8 shows that, for different wall
thicknesses, the Young's modulus values obtained from Eq. (24)
follow the trend of the Young's modulus reported in the litera-
ture, for a considerable number of approaches.

The current Young's modulus results are in particularly good
agreement with those obtained in the studies basing on molecular
dynamic modelling methods. The largest difference of 12.22%,
observed with the TBMD model reported by Hernandez et al. [15],
can be due to the fact that, in their work, the strain energy was
calculated without taking the chiral angle into account. The dif-
ference of 6.90% in relation to the MD model of Liew et al. [14] can
be due to the fact that empirical potentials were used by them.
Empirical potentials are frequently not transferable to configura-
tions different from those for which they were obtained. The
smallest difference of 0.29% is found for the Young's modulus
calculation performed with the MD model by Yakobson et al. [10],
where non-linear behaviour of CNTs was considered, allowing
correct identification of the strain energies.

Less good agreement is foundwhen the Young's modulus results
from the current study are compared with results from the CM
models. The biggest difference (49.14%) is found with the Young's
modulus results predicted by the analytical shell model of Kalam-
karov et al. [20]. Comparisonwith themodel reported by Gupta and
Batra [23] shows a difference of 13.44%; this difference can be due
to the fact that, in their work, the Young's modulus was evaluated



Table 4
Effect of the nanotube wall thickness on the Young's modulus results: comparison between the current results (Eq. (24)) and those reported in the literature.

Reference tn, nm Method E, TPa E, TPa (10, 10);
Dn ¼ 1.356 nm

Yakobson et al. [10] 0.066 Atomistic
modelling

MD 5.5 Average value 5.425
Zhou et al. [16] 0.074 TB model 5.1 Average value 4.840
Kudin et al. [9] 0.089 ab initio 3.859 Average value 4.027
Zhang et al. [12] 0.335 MD; Tersoff-Brenner potential 1.08 Converged value for zigzag SWCNTs 1.101
Liew et al. [14] 0.335 MD: empirical potentials 1.043 (10, 10) SWCNT 1.101
Hernandez et al. [15] 0.34 TBMD 1.24 (10, 10) SWCNT 1.086
Cheng et al. [13] 0.34 MD coupled with NCM 1.2 Converged value for armchair SWCNTs 1.086
Pantano et al. [18] 0.075 CM FE continuum shell model 4.84 Average value 4.776
Kalamkarov et al. [20] 0.129 Analytical model: cylindrical network

shell
1.44 e 2.785

Sears and Batra [22] 0.134 Equivalent continuum tube 2.52 (16, 0) SWCNT 2.682
Gupta and Batra [23] 0.34 Equivalent continuum tube 0.964 Average value for non-chiral and chiral

SWCNTs
1.086

Odegard et al. [26] 0.69 NCM Equivalent continuum modelling: truss
elements

0.49 e 0.601

Meo and Rossi [30] 0.34 FE model: non-linear springs and linear
torsional spring elements

0.926 (10, 10) SWCNT 1.086

Giannopoulos et al. [31] 0.34 3D FE model: linear spring elements 1.247 Average value 1.086
Mahmoudinezhad et al. [34] 0.34 3D FE model: rotational spring

elements
0.85 Converged value for armchair SWCNTs 1.086

Natsuki et al. [35] 0.34 Analytical 2D model: spring elements 0.61 Average value 1.086
Rafiee and Heidarhaei [36] 0.34 FE model: non-linear spring elements 1.325 Converged value for non-chiral

SWCNTs
1.086

Parvaneh and Shariati [37] 0.34 Structural mechanics model: springs
and non-linear connectors

1.170 (22, 0) SWCNT 1.086

Tserpes and Papanikos [28] 0.147 3D FE model: linear elastic beam
elements

2.377 (8, 8) SWCNT 2.447

Papanikos et al. [38] 0.34 3D FE model: linear elastic beam
elements

1.072 Converged average value 1.086

Avila and Lacerda [39] 0.34 3D FE model: elastic beam elements;
RVE concept

1.005 Average value 1.086

Shokrieh and Rafiee [40] 0.33 Analytical model: beam elements 1.042 Converged value for armchair SWCNTS 1.117
Her and Liu [41] 0.34 FE model: nonlinear beam elements;

Morse potential
0.927 (10, 10) SWCNT 1.086

Lu and Hu [42] 0.34 3D FE model: beam elements of
elliptical-like cross section area; non-
linear potential

1.058 Converged value for zigzag SWCNTs 1.086

Mohammadpour and
Awang [43]

0.147 FE model: nonlinear beam elements;
Morse potential

2.037 (10, 10) SWCNT 2.447

Current work 0.34 3D FE model: linear elastic beam
elements

1.078 Converged average value 1.086
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by using free vibration simulations. Only the shell continuum
model implemented in the work of Pantano et al. [18], shows a
small difference (0.33%).

The nanoscale continuum models, employing string elements
for CeC bond simulation, showa considerable scatter of the Young's
modulus results, due to the values of the spring constants and the
spring type selection. Differences with the current Young's
modulus calculations are 12.92% (for the Giannopoulos et al. model
[31] with linear spring elements) and 44.79% (for the analytical 2D
model of Natsuki et al. [35]). The use of the 2D model by Natsuki
et al. can explain the highest difference obtained. The model of
Parvaneh and Shariati [37] provides the smallest difference of
6.24%.

The Young's modulus values evaluated in the current study
show a 19.02% difference with the results of the truss model of
Odegard et al. [26]. The models using the equivalent beam
approach provided the smallest differences in relation to the cur-
rent results. The difference of 9.04% observed with respect to the
model of Avila and Lacerda [39] can be due to the representative
volume element (RVE) concept applied in their work. The use of the
RVE implies the numerical simulation of small length SWCNTs,
which can affect the Young's modulus calculations. The highest
difference observed with the ECM approach is of about 17%, re-
ported in Refs. [41,43], where a modified Morse potential function
was applied to the potential energy representation.
In order to simplify comparison with the literature, Table 5
shows the same cases as Table 4, but in the form of the product
Etn, which is called the averaging Young's modulus. The product Etn
evaluatedwith the present model is in a good agreement withmost
of the averaging Young's moduli found in the references chosen. A
few discrepancies between the Young's modulus results available in
the literature and the results of the current evaluation are due to
different modelling approaches (MD, CM, NCM), potential func-
tions, force fields constants, formulations for Young's modulus
determinations, etc.

Finally, a comparison between the experimental results re-
ported in the literature and those of the present study is shown in
Table 6. The Young's modulus evaluated is in satisfactory agreement
with the experimental results reported by Krishnan et al. [53], who
used thermal vibrations of SWCNT to estimate the Young's
modulus, and the results of Yu et al. [54] who used a direct tensile
loading test of SWCNT.

3.2.2. Effect of chiral indices and diameter on the Young's modulus
of SWCNTs

Finally, a study concerning the influence of the chiral indices on
the SWCNT Young's modulus was carried out. The Young's modulus
was calculated with Eq. (21). The evolution of the Young's modulus,
E, with chiral indices, for non-chiral and three families of chiral
SWCNTs studied, is shown in Fig. 9 (a). The Young's modulus of the



Fig. 8. Comparative study of the evolution of the Young's modulus of SWCNTs with the inverse of the wall thickness.
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SWCNTs with small chiral indices n,n þ m� 10 decreases with
increasing n, for non-chiral, and nþm, for chiral nanotubes; af-
terwards the Young's modulus tends to stabilize at the value of
about 1.1 TPa. In Fig. 9 (b), the results obtained for armchair and
Table 5
Comparative study of the averaging Young's modulus multiplied by the
thickness, Etn.

Reference Etn, TPa nm

Current work 0.369
Kudin et al. [9] 0.343
Yakobson et al. [10] 0.363
Zhang et al. [12] 0.362
Cheng et al. [13] 0.408
Liew et al. [14] 0.349
Hernandez et al. [15] 0.422
Zhou et al. [16] 0.377
Pantano et al. [18] 0.363
Kalamkarov et al. [20] 0.186
Sears and Batra [22] 0.338
Gupta and Batra [23] 0.328
Odegard et al. [26] 0.342
Meo and Rossi [30] 0.315
Giannopoulos et al. [31] 0.424
Mahmoudinezhad et al. [34] 0.289
Natsuki et al. [35] 0.207
Rafiee and Heidarhaei [36] 0.451
Parvaneh and Shariati [37] 0.399
Tserpes and Papanikos [28] 0.349
Papanikos et al. [38] 0.365
Avila and Lacerda [39] 0.342
Shokrieh and Rafiee [40] 0.344
Her and Liu [41] 0.315
Lu and Hu [42] 0.360
Mohammadpour and Awang [43] 0.299
Literature average 0.345
zigzag SWCNTs are compared with results available in the litera-
ture. For this purpose, literature Young's modulus results obtained
for wall thickness tn¼ 0.34 nm [38,41] and tn¼ 0.66 nm [33] were
chosen; also the work of Shen and Li [55] was considered, where
the Young's modulus was deduced independently of the wall
thickness. Fig. 9 (b) shows that the evolution of the Young's
modulus reported by Papanikos et al. [38] is similar to that in the
current work. The work of Her and Liu [41], where the equivalent
beam approach was used, gives values of the Young's modulus for
non-chiral SWCNTs, which are independent of the chiral indices in
the range of 10 � n � 34. The decrease of the Young's modulus
with increase of n, for small chiral indices, n¼ 3,4,5,6, was observed
by Ranjbartoreh and Wang [33]. Shen and Li [55] observed a
decrease of the Young's modulus of armchair SWCNTs, even for
n> 10, in a MD simulation study.

In order to clarify the trends shown in Fig. 9 (a), the Young's
modulus results were represented as a function of the nanotube
diameter in Fig. 10 (a). For all SWCNT configurations studied, the
evolution of the Young's modulus can be described by the same
trend: the Young's modulus decreases with increase of the nano-
tube diameter up to about Dn¼ 1 nm, then, with further increase in
Table 6
Comparison between Young's modulus of SWCNTs estimated by the present method
and experimental results in the available literature.

Reference E, TPa

Krishnan et al. [53] 1.3(�0.4/þ0.6) Average value of
SWCNTs with diameter
in the range of 1.0e1.5 nm

Yu et al. [54] 1.0 Average value for SWCNTs
Current work 1.078 Stabilized value for SWCNTs

(see Figs. 9 (a) and 10 (a))



Fig. 10. (a) Evolution of the calculated Young's modulus of the SWCNTs with the
nanotube diameter; (b) and (c) comparison of the calculated Young's modulus results
with those reported in the literature.

Fig. 9. (a) Evolution of the calculated Young's modulus of non-chiral and three families
of chiral SWCNTs as a function of n (for armchair and zigzag nanotubes) and nþm (for
chiral nanotubes); (b) comparison of the calculated Young's modulus results for
armchair and zigzag nanotubes with those reported in the literature.
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the nanotube diameter, the Young's modulus tends towards
approximately the same value whatever the type of nanotube.

The results available in the literature, for a nanotube wall
thickness of tn¼ 0.34 nm were selected for comparison. Fig. 10 (b)
plots the current Young's modulus results together with those from
the literature, showing comparable trends of the Young's modulus
evolution, i.e. the Young's modulus decreases for small SWCNT
diameters and then becomes almost constant with increasing
SWCNT diameter. Good agreement is observed with the results of
the work of Papanikos et al. [38], where the modelling approach is
similar to that of the current study. The same trendwas reported by
Zhang et al. [12] for armchair and zigzag nanotubes using MD
simulation, inwhich the Young's modulus value tends to 1.0 TPa for
armchair and 0.7 TPa for zigzag SWCNTs for diameters
Dn> 1.500 nm. The results obtained in the molecular dynamic
study of Shen and Li [55], and in the non-linear spring element
model of Parvaneh and Shariati [37] show that the Young's modulus
tends to 0.5 TPa for large nanotube diameters Dn � 3:000 nm.

Fig. 10 (c) also presents the current Young's modulus results
plotted together with literature results. The literature results show
a Young's modulus evolution that is almost constant over thewhole
range of nanotube diameters [56], although in same cases the
Young's modulus increases slightly for small nanotube diameters
[36,39,42].
Concerning the effect of SWCNT chirality on the Young's
modulus, some authors reported similar values for armchair and
zigzag SWCNTs [36,42,55]. In our study, and in agreement with
results from the literature [38,56], the difference between the
Young's modulus of armchair, zigzag and chiral SWCNTs, is also
insignificant (see Figs. 9 and 10). A small difference between the
Young's modulus for armchair and zigzag SWCNTs is reported by
Zhang et al. [12], and for the three SWCNTs configurations by Avila
and Lacerda [39] and Lu and Hu [42].
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4. Conclusions

An equivalent beam approach has been used in order to carry
out a systematic evaluation of the tensile and bending rigidities,
and subsequently, Young's modulus of various SWCNT structures,
namely non-chiral and families of chiral single-walled nanotubes
over a wide range of chiral indices, nanotube lengths and di-
ameters. The main conclusions of this comprehensive study are as
follows:

▪ The evolution of the tensile rigidity, EA, as a function of the
diameter, Dn, can be unified, for the SWCNTs studied; the same
can be done for the bending rigidity, EI. Also, taking into
consideration a given value of the wall thickness, the Young's
modulus is about the same, whatever the chirality of the
nanotube.

▪ An equation to correlate the tensile and bending rigidities of
non-chiral and chiral SWCNTs with the nanotube diameter has
been proposed. The accuracy of this relationship was tested
using results available in the literature. A single equation is valid
for armchair, zigzag and chiral SWCNTs, which allows easy
evaluation of the Young's modulus.

▪ The Young's modulus values are proportional to the inverse of
the wall thickness, for SWCNT diameters Dna1:085 nm. For the
case of small SWCNT diameters, deviation from this quasi-linear
trend is observed, when the nanotube wall thickness is greater
than a half of the nanotube diameter, tna1=2Dn. The quasi-
linear trend of the Young's modulus as a function of the in-
verse of the wall thickness is in good agreement with the results
of Young's modulus published by other authors.
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The mechanical behaviour of non-chiral and chiral single-
walled carbon nanotubes under torsional loading is studied. For
this purpose, three-dimensional finite element modelling is
used in order to evaluate the torsional rigidity and shear
modulus. It is shown that the evolution of torsional rigidity as a
function of nanotube diameter can be described by a unique
function for non-chiral and chiral single-walled nanotubes. A

comprehensive study to evaluate the Poisson’s ratio of single-
walled carbon nanotubes is also carried out. Two robust
methodologies, one for evaluating the shear modulus from
results of tensile, bending and torsion tests, and the other to
assess Poisson’s ratio from results of bending and torsion tests,
are recommended.

� 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction Carbon nanotubes (CNTs) are nano-
structures with great potential to be used in the production
of a new generation of materials and structures with
extraordinary mechanical, optical, thermal and electrical
properties [1]. The high stiffness together with low density
suggests that the carbon nanotubes are optimal structures to
reinforce composites and building blocks for optical and
electronic nanodevices [2, 3]. In order to model and design
composites reinforced with CNTs, nanosensors and CNT-
based electronic devices, the understanding of the carbon
nanotubes mechanical properties is indispensable.

There are two approaches commonly used to assess the
elastic properties of CNTs: experimental and computational.
Experimental methods for measuring the elastic modulus
of CNTs, based on in situ techniques of atomic force
microscopy (AFM) and transmission electron microscopy
(TEM) have been established [4–7]. The common point in
the experimental studies is the evidence of unequalled
mechanical properties of the individual CNTs. In the
remaining, the experimental results reported in the
literature, especially concerning their shear modulus,

are limited and inconsistent owing the complexity of
characterization of nanomaterials at the atomic scale. Due
to the experimental difficulties, modelling and computer
simulation for predicting the mechanical properties of CNTs
have been intensively developed.

There are three main groups of methodologies for the
modelling of the CNTs mechanical behaviour: the atomistic
approach, the continuum mechanics approach and the
nanoscale continuum mechanics approach [8]. Atomistic
modelling comprises an ab initio approach, molecular
dynamics (MD) and tight-binding molecular dynamics
(TBMD) (see, for example, [9–11]). In recent years, the
atomistic modelling, due to its big computation cost, has
been gradually replaced by the continuum mechanics
modelling (CM). In this case, the most elementary
assumption consists of the replacing of the real discrete
CNT structure by a continuum medium (see, for exam-
ple [12]). The representation of the entire CNT structure as a
continuum element is not adequate enough to model carbon
nanotube mechanical behaviour. In the nanoscale contin-
uummodelling (NCM), only the carbon–carbon (C–C) bond
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is replaced by a continuum element whose behaviour is
described in the elasticity theory (see, [13-16]). The NCM
approach is an adequate modelling technique for describing
the mechanical behaviour of the CNTs, as it allows
overcoming the disadvantages of theMD and CMmodelling
approaches, i.e. leads to accurate results without computa-
tional complexity and additional costs. Therefore, the NCM
approach, employing the beam element for replacing the
C–C bond, has been successfully used for simulation of
the mechanical behaviour of CNTs [17–19], after Li and
Chou [13] established a direct relationship between the
structural mechanics parameters of the beam element and
the molecular mechanics parameters.

Most of the numerical simulation studies towards the
evaluation of the CNTs mechanical properties concern with
the determination of their rigidity and Young’s modulus by
means of tensile and bending tests (see, for example
[11, 20–23]). It has been recently concluded [24] that
regardless of chirality, the evolution of the tensile rigidity as
a function of the carbon nanotube diameter can be unified by
a single equation; the same was concluded for the bending
rigidity. Furthermore, given a certain value of the wall
thickness, the Young’s modulus is about the same, whatever
the chirality of the nanotube. The works dealing with the
CNTs shear modulus are scarcer and are not systematised so
far. What can be concluded from these studies is that there
are two methods commonly used to evaluate the CNTs shear
modulus, G. One method consists on the direct determi-
nation of the shear modulus from the numerical results of the
torsion tests [12, 14, 15, 17, 19, 25–27] or from analytical
models for describing the torsional response [16, 28, 29].
The other method to assess the CNTs shear modulus,G, uses
the results of the tensile test and resorts to the relationship
between Young’s modulus, E, and Poisson’s ratio, v, for
isotropic materials (G¼E/2 (1þ v)) [25, 27, 30, 31]. Only a
few works compare results of the shear modulus obtained by
torsion and tensile tests [25, 27].

Although several studies regarding the Poisson’s ratio
have been carried out [10, 12, 18, 25, 28, 29, 31], there is no
commonly accepted value of v. The most common values
reported in the literature are in range of 0.1–0.3 (see, for
example [16, 25, 28, 31]), but values of 0.64 [32], 0.66 [18]
and close to zero [17, 33] are also reported.

In the current study, the equivalent beam approach is
used in a comprehensive study to assess the torsional
rigidity, shear modulus and Poisson ratio of various single-
walled carbon nanotubes (SWCNT) structures, as non-chiral
(zigzag, u¼ 08 and armchair, u¼ 308) and families of chiral
(u¼ 8.98, 13.98 and 19.18 among others) SWCNTs for a
wide range of nanotube lengths, chiral indices and
diameters.

2 Materials and methods
2.1 Geometric definition of SWCNTs The atomic

structure of SWCNTs is described in terms of the tube chirality,
which is defined by the chiral vector Ch and the chiral angle, u,
between the chiral vector Ch and the direction (n,0) [34]

Ch ¼ na1 þ ma2 ð1Þ

u ¼ sin�1
ffiffiffi
3

p
m=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ nmþ m2

p� �
; ð2Þ

where (n,m) is a pair of the lattice indices a1 and a2, the unit
vectors of the graphene lattice; n and m are integers. The
length of the unit vector a is defined as a ¼ ffiffiffi

3
p

aC�C with the
equilibrium carbon–carbon (C–C) covalent bond length
aC–C usually taken to be 0.1421 nm.

Basing on the chiral vector or the chiral angle,
fundamental configurations of SWCNTs are defined:
armchair nanotubes (n¼m, u¼ 308), zigzag nanotubes
(m¼ 0, u¼ 08) and chiral nanotubes (n 6¼m, 08< u< 308).

2.2 Finite element (FE) modelling of SWCNTs
A three-dimensional (3D) finite element model (FEM) under
nanoscale continuous modelling (NCM) approach, as
proposed by Tserpes and Papanikos [14] was adopted. This
approach is based on the concept of Li and Chou [13], who
have modelled the deformation of CNTs using classical
structuralmechanics, i.e. the CNTs lattice can be simulated as
a geometrical space-frame structure. In the approach by
Tserpes and Papanikos [14], the C–C bonds are replaced by
equivalent beam elements, i.e. the analogy between the bond
length, aC–C, and the element length is used. The beam
element has a circular cross-section area, which diameter is
sometimes considered equal to the SWCNT wall thickness,
although other values are also considered for the wall
thickness. In fact, most of the times, the SWCNT wall
thickness value used is 0.34 nm (equal to the interlayer
spacing of graphite).

The finite element meshes of the carbon nanotube
structures used in the FE analyses were constructed using
the academic software CoNTub 1.0 [35]. To convert the
ASCII files generated by this code, which describe the atom
positions, into the format usable by the commercial FE
code ABAQUS1, the in-house application designated
InterfaceNanotubes was developed. The FE model uses
the coordinates of the carbon atoms for generating the nodes
and then the connections of the nodes create the beam
elements.

This model takes into account the chirality of the
SWCNTs, and so is able to consider their anisotropic
behaviour due to chirality. The geometrical characteristics
of SWCNTs used for the FE analysis are shown in Table 1,
where the number of nodes and elements of the finite
element meshes of the SWCNTs is also indicated for a
nanotube with a length of 20 nm.

2.3 FE analysis of SWCNTs
2.3.1 Structural mechanics of SWCNTs The elas-

tic moduli of the beam elements are determined by
establishing the link between inter-atomic potential energies
of the molecular structure and strain energies of the
equivalent continuum structure comprising of beams,
undergoing axial, bending and torsional deformations [13].
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Table 1 Geometrical characteristics of SWCNTs studied and number of nodes and elements of the finite element meshes used.

SWCNT type (n,m) Dn, nm u8 number of nodesa number of elementsa

non-chiral
armchiar (3, 3) 0.407 30 972 1448

(5, 5) 0.678 1620 2414
(6, 6) 0.814 1944 2897
(9, 9) 1.221 2916 4346
(10, 10) 1.356 3240 4829
(12, 12) 1.628 3888 5795
(15, 15) 2.034 4860 7244
(20, 20) 2.713 6840 9659

zigzag (5, 0) 0.392 0 930 1384
(6, 0) 0.470 1115 1160
(10, 0) 0.783 1860 2769
(12, 0) 0.940 2232 3323
(15, 0) 1.175 2790 4154
(18, 0) 1.409 3348 4985
(20, 0) 1.566 3720 5539
(24, 0) 1.879 4464 6647

chiral
family u 8.9 (5, 1) 0.436 8.9 1044 1554

(10, 2) 0.872 2088 3109
(15, 3) 1.308 3132 4664
(20, 4) 1.744 4176 6219
(25, 5) 2.180 5220 7774
(30, 6) 2.616 6264 9329

family u 13.9 (6, 2) 0.565 13.9 1352 2013
(9, 3) 0.847 2028 3020
(12, 4) 1.129 2740 4027
(15, 5) 1.412 3380 5034
(18, 6) 1.694 4056 6041
(21, 7) 1.976 4732 7048
(24, 8) 2.259 5408 8055
(27, 9) 2.541 6084 9062

family u 19.1 (4, 2) 0.414 19.1 992 1477
(6, 3) 0.622 1488 2216
(8, 4) 0.829 1984 2955
(10, 5) 1.036 2840 3694
(12, 6) 1.243 2976 4433
(14, 7) 1.450 3472 5172
(16, 8) 1.657 3968 5911
(18, 9) 1.865 4464 6650
(20, 10) 2.072 4960 7389
(22, 11) 2.279 5456 8128
(24, 12) 2.486 5952 8867

nþm
12 (7, 5) 0.818 24.5 1960 2920

(11, 1) 0.903 4.3 2167 3222
18 (16, 2) 1.338 5.8 3208 4777

(14, 4) 1.282 12.2 3072 4575
(13, 5) 1.260 15.6 3020 4498
(11, 7) 1.231 22.7 2950 4395
(10, 8) 1.223 26.3 2932 4369

24 (22, 2) 1.806 4.3 4328 6445
(19, 5) 1.717 11.4 4116 6130
(17, 7) 1.674 16.5 4012 5976
(15, 9) 1.644 21.8 3942 5873
(14, 10) 1.635 24.5 3920 5841
(13, 11) 1.629 27.2 3906 5821

aFor nanotube length 20 nm.
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Direct relationships between the structural mechanics
parameters, i.e. tensile, EbAb, bending, EbIb, and torsional,
GbJb rigidities, and the bond force field constants, kr, ku
and kt, were stablished [13]

EbAb

l
¼ kr; ð3Þ

EbIb
l

¼ ku; ð4Þ

GbJb
l

¼ kt; ð5Þ

where l is the beam length equal to 0.1421 nm; Eb and Gb

are the beam Young’s and shear moduli, respectively; Ab

is the beam cross-sectional area, Ib and Jb are the beam
moment of inertia and polar moment of inertia, respec-
tively, and kr, ku and kt, are the bond stretching, bond
bending and torsional resistance force constants, respec-
tively. Equations (3)–(5) provide the input for simulation
of the CNTs as space-frame structures. The values of force
constants [36, 37] and input data for the FE model are
shown in Table 2.

2.3.2 Loading conditions Numerical simulation of
conventional torsion tests was carried out in order to study
the effect of nanotube diameter and chirality on its
mechanical properties. For simulation torsion, a tangential
force, Fw, is applied at one extremity of the nanotube,
leaving the other fixed. The nodes of the nanotube end
under loading are restricted from moving in the radial
direction. The torsional rigidity of the nanotube, GJ, is
determined as

GJ ¼ FwRL=w; ð6Þ

where R is the nanotube radius and w is the twist angle, taken
from the FE analysis.

3 Results and discussion
3.1 Rigidities of SWCNTs: Effect of the length,

chiral indices and chiral angles on the rigidities of
SWCNTs Examples of the evolution of torsional rigidity,
GJ, with nanotube length are shown in Fig. 1, for the cases
of armchair (10, 10) and (20, 20), zigzag (10, 0) and (20, 0)
and chiral (10, 2) and (24, 12) SWCNTs. In these examples,
as in all cases of Table 1, the values of the rigidity are quite
stable with the nanotube length. Papanikos et al. [17] also
reported stable values for zigzag (20, 0) and armchair (20,
20) carbon nanotubes, with lengths greater than 50 nm.

Therefore, the length of 20 nm was chosen for the
numerical simulation of the torsion test of CNTs. In order to
analyse the influence of the chiral angle, u, on the rigidity,
GJ, SWCNTs with the same value of the sum of the chiral
indices (nþm) were considered, as shown in the examples of
Fig. 2 for the families (nþm)¼ 6, 12, 18 and 24. Whatever
the case, the torsional rigidity decreases from zigzag
SWCNTs (u¼ 08) to armchair (u¼ 308), with a rate that
becomes smaller as u increases. The higher the value of
(nþm), the greater the rigidity and the respective decrease
rate.

The evolutions of the torsional rigidity,GJ, as a function
of the sum of chiral indices, (nþm) are shown in Fig 3, for
non-chiral and three families of chiral SWCNTs of Table 1.
The GJ evolutions are relatively close, but not coincident.
The GJ rigidities increase with the sum of the chiral indices
according to a cubic power expression, which parameters
depend on the case.

Figure 4 shows the evolutions of the GJ rigidities as a
function of the SWCNT diameter, Dn, for the same cases as
in Fig. 3. The evolutions in Fig. 4 can be described by a
single cubic power function for all SWCNTs studied, i.e.
regardless of the index and the angle of chirality.

Table 2 Input parameters for FE simulations of SWCNTs: Material and geometric properties of beam element.

parameter value formulation

force constant, kr [36] 6.52� 10�7 N nm�1
–

force constant, ku [36] 8.76� 10�10 N � nm � rad�2
–

force constant, kt [36, 37] 2.78� 10�10 N � nm � rad�2
–

C–C bond/beam length, l¼ aC–C 0.1421 nm –

diameter, d 0.147 nm d ¼ 4
ffiffiffiffiffiffiffiffiffiffiffi
ku=kr

p
cross section area, Ab 0.01688 nm2

Ab ¼ pd2=4
moment of inertia, Ib 2.269� 10�5 nm4

Ib ¼ pd4=64
polar moment of inertia, Jb 4.537� 10�5 nm4

Jb ¼ pd4=32
Young’s modulus, Eb 5488GPa Eb ¼ k2r l=4pku
shear modulus, Gb 870.7GPa Gb ¼ k2r ktl=8pk

2
u

rigidity, EbAb 92.65 nN EbAb ¼ krl
rigidity, EbIb 0.1245 nN � nm2 EbIb ¼ kul
rigidity, GbJb 0.0395 nN � nm2 GbJb ¼ ktl
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This makes such representation more suitable for further
analyses than when the torsional rigidity is plotted as a
function of (nþm), identically to previously observed for
the tensile and bending rigidities [24]. In Fig. 5, the values
of GJ are plotted as a function of (Dn –D0)

3. The fitting
equation can be expressed as follows:

GJ ¼ g Dn � D0ð Þ3: ð7Þ

Thevaluesof thefittingparameters are:g¼ 130.39 nN/nm
and D0¼ 3.5� 10�3 nm. This equation is of the same type as
those previously proposed for non-chiral SWCNTs [15], but
replacing the chiral index, n, by the SWCNT diameter, Dn.
Furthermore, a cubic equation relating the bending rigidity to
the diameter of the nanotube has been successfully tested [24].

Figure 1 Evolution of the torsional rigidity, GJ, with nanotube
length, L, for: (a) armchair (10, 10), zigzag (10, 0) and chiral (10, 2)
SWCNTs; (b) armchair (20,20), zigzag (20,0) and chiral (24,12)
SWCNTs.

Figure 2 Evolution of the torsional rigidity, GJ, as a function of
the chiral angle, u for four families of SWCNTs with (nþm)¼ 6,
12, 18 and 24.

Figure 3 Evolution of the torsional rigidity,GJ, as a function of the
sum of chiral indices, (nþm), for non-chiral and chiral SWCNTs.

Figure 4 Evolution of the torsional rigidity, GJ, as a function of
the nanotube diameter,Dn for armchair, zigzag and chiral SWCNT
families u¼ 8.9, 13.9, 19.18 and nþm¼ 12, 18 and 24.
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It remains to note that the cubic function expressed by the
above equation can be understood on the base of the quasi-
cubic relationship between the polarmoment of inertia and the
nanotube diameter (see Eq. (9) in the following section).

A careful analysis of the results allows understanding
that Eq. (7) does not accurately describe the evolution of
torsional rigidity of all nanotubes, for low values of Dn. In
fact, Fig. 6 shows that the ratio GJ/(Dn –D0)

3 is stable in
all range of nanotube diameters Dn, for the chiral family
with u¼ 13.98, but slightly increases for zigzag (u¼ 08) and
chiral family with u¼ 8.98 and clearly decreases for the
chiral family with u¼ 19.18 and armchair (u¼ 308) nano-
tubes, when Dn becomes smaller than 1.0 nm. This means
that, for small nanotube diameters, the ratio GJ/(Dn –D0)

3

tends to decreases when the chiral angle, u, increases from
08 (zigzag) to 308 (armchair).

3.2 Shear modulus of SWCNTs The shear mod-
ulus, G, of SWCNT, which considered as a hollow cylinder,

can be evaluated from the torsional rigidity value,GJ, by the
following equation:

G ¼ GJ=J; ð8Þ

where J is the polar moment of inertia, which can be written
as

J ¼ p

32
Dþ tð Þ4 � D� tð Þ4

h i

¼ pD3t
4

1þ t
D

� �2
� �

;
ð9Þ

where D is the mean diameter and t is the thickness of the
hollow cylinder, respectively.

A robust methodology for determining the elastic
moduli of SWCNT involves using of the rigidities under
different mechanical tests [24]. This allows the appropriate
assessment of the mean diameter of SWCNT, D. In fact, the
knowledge of the tensile and bending nanotube rigidities,
EA and EI, respectively, allows determining D, taking into
account the cross-sectional area, A, and the moment of
inertia, I, of the hollow cylinder:

A ¼ p

4
Dþ tð Þ2 � D� tð Þ2

h i
¼ pDt; ð10Þ

I ¼ p

64
Dþ tð Þ4 � D� tð Þ4

h i
¼ pD3t

8
1þ t

D

� �2
� �

;

ð11Þ

and assuming t¼ tn (where tn is the nanotube wall
thickness), the SWCNT mean diameter D can be expressed
as following [17]:

EI=EA ¼ 1
8

D2 þ t2n
� � ) D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 EI=EAð Þ � t2n

q
: ð12Þ

Replacing D in the Eq. (9), the shear modulus can be
calculated, at a given thickness, tn, by the following
expression, from the knowledge of the rigidities in tension,
bending and torsion

G ¼ GJ

2ptn EI
EA

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 EI

EA

� �� t2n

q : ð13Þ

Moreover, based on the knowledge of the parameters g
and D0, of Eq. (7) for torsional rigidity, as well as of the
parameters, a and b of the same type of equations for tensile
and bending rigidities [24]

EA ¼ a Dn � D0ð Þ; ð14Þ

EI ¼ b Dn � D0ð Þ3: ð15Þ

Figure 5 Evolution of the torsional rigidity, GJ as a function of
(Dn�D0)

3. The results are represented by symbols and fitting
trends by lines.

Figure 6 Evolution of the ratio GJ/(Dn�D0)
3 with the nanotube

diameter, Dn.
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Equation (13) for shearmodulus can bewritten as follows:

G ¼ g Dn � D0ð Þ
2ptn

b
a

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 b Dn�D0ð Þ2

a
� t2n

q : ð16Þ

The values of the fitting parameters a, b, g and D0 are
shown in Table 3.

Equations (13) and (16) show that the value of the
SWCNTs wall thickness influences the shear modulus.
The wall thickness value reported in the literature is in the
range from 0.066 to 0.69 nm, and therefore the study of its
influence on the shear modulus value is essential in order to
allow a correct comparison with results from other sources.
Figure 7 shows the shear modulus calculated from Eq. (16)
as a function of the inverse of the nanotube wall thickness
(the range of tn values is 0.06 to 0.69 nm), for armchair
SWCNTs of Table 1. The evolution of the shear modulus as
a function of the inverse wall thickness follows a quasi-
linear trend in the whole range of thicknesses, for nanotubes
with diameterDn01:085 nm. The deviation from the quasi-
linear trend for small nanotube diameters, Dn91:085 nm is
noticeable for high values of tn: when tn approaches the
value of Dn/2.

In the following, the shear modulus was calculated with
Eq. (13),using thevaluesof the torsional rigidity,GJ, obtained
from the current numerical simulation of the torsion tests, and

valuesof the tensile,EA, andbending,EI, rigidities taken from
a previous study [24]. Figure 8 compares the evolutions of the
shear modulus with the nanotube diameter, Dn, for the non-
chiral and the u¼ 19.18 chiral family, with results from the
literature. For this purpose, shearmodulus results obtained for
the same value of wall thickness as used in the current study
(tn¼ 0.34 nm) were considered [10, 12, 14–17, 25, 28].
Previous shear modulus results, obtained with tn variable in
the range 0.20–0.34 nm depending on the nanotube diame-
ter [26] and deduced independently of thewall thickness [31],
were also considered.

Figure 8(a) compares the current results of the shear
modulus with others from the literature, for which the shear
modulus initially also decreases with the diameter, and then
its value becomes almost stable for high values of the
nanotube diameter. In the current study, the shear modulus
tends to a stable value equal to about 0.48 TPa, for nanotube
diameters Dn� 1 nm. Good agreement is observed with
the results of Papanikos et al. [17], where the modelling
approach is similar to that of the current study. The shear
modulus obtained with analytical models by Shen and Li
[31] and Natsuki et al. [16] tends to 0.16 TPa for large
nanotube diameters, Dn� 3 nm.

Table 3 Fitting parameters a, b, g and D0.

parameter valuea

a [24] 1131.66 nN � nm�1

b [24] 143.48 nN � nm�1

g (current study) 130.39 nN � nm�1

D0 (current study) 3.5� 10�3 nm

aIncludes armchair, zigzag and all types of chiral SWCNT studied.

Figure 7 Evolution of the shear modulus with the inverse of the
wall thickness for different nanotube diameters, according to
Eq. (16).

Figure 8 Comparison of the current shear modulus results (black
symbols and those obtained by Eq. (16)) with those reported in the
literature. Current values of G assumes tn¼ 0.34 nm.
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Figure 8(b) also shows the current shear modulus results
versus the nanotube diameter, together with others from the
literature. In this case, the literature results show a shear
modulus evolution that is almost constant over the whole
range of nanotube diameters [10, 12, 25, 26], or initially
slightly increases with the diameter [14, 15, 28]. The current
shear modulus results are particularly in good agreement
with those obtained, for nanotube diametersDn� 1 nm, with
the molecular dynamic approach by Jin and Yuan [25], and
also with the results of Tserpes and Papanikos [14], To [26]
and Xiao et al. [28], who used NCM approach. Less
agreement occurs between the current results and those by
Gupta and Batra [12], using the CM approach, and by
Giannopoulos et al. [15], who employed NCM approach
involving linear spring elements.

Concerning the effect of chirality on the shear modulus
results, some authors reported small differences between
the shear modulus for armchair and zigzag SWCNTs [15];
these small differences includes also chiral nanotubes
configurations, in case of the work by Tserpes and
Papanikos [14]. In our study, and in agreement with other
results from the literature [10, 12, 16, 17, 28, 29, 31], the
difference between the shear modulus values of armchair,
zigzag and chiral SWCNTs, is irrelevant (Fig. 8).

Finally, Table 4 shows the shear modulus results from
the literature, including those shown in Fig. 8, and the
current results. The value of the shear modulus evaluated
with the present model is close to most of the values of the
shear modulus published by other authors. The current
shear modulus evaluated is in satisfactory agreement with
the experimental results reported by Hall et al. [7]. In
general, a good accordance was also observed concerning
not only the NCM approach [13, 14, 17, 19, 26, 28, 29, 31]
(as in current study) but also the MD modelling [10, 25].
Less good agreement is found with authors who use
specific approaches as Giannopoulos et al. [15] and Natsuki
et al. [16], who use linear spring elements within the NCM
approach and analytical 2D modelling, respectively. Also,
in case of Ghavamian et al. [27], significant discrepancy
was found, probably due to the particular formulation
for shear modulus determination in torsion. Finally, the
insufficient agreement with the Gupta and Batra [12] is
certainly related to the replacement of the whole CNT
structure by a continuum element which is not a completely
satisfactory method to evaluate CNT properties.

3.3 Poisson’s ratio of SWCNTs Imposing the
isotropic material condition, the Poisson’s ratio can be
calculated as follows:

n ¼ E
2G

� 1: ð17Þ

Taking in account that J¼ 2I, this equation can be
rewritten as follows:

n ¼ EI
GJ

� 1; ð18Þ
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which formulation permits determining the Poisson’s ratio
for a given SWCNT, from the knowledge of its bending, EI,
and torsion, GJ, rigidities, respectively.

Moreover, Eqs. (7) and (15) allow defining a unique
equation for the Poisson’s ratio, independent of the
nanotube type and diameter

n ¼ b

g
� 1: ð19Þ

Figure 9 shows the evolution of the Poisson’s ratio, v,
with nanotube diameter, Dn, for non-chiral (armchair and
zigzag) and the u¼ 19.18 family of chiral SWCNTs; the
values of the Poisson’s ratio were obtained by Eq. (18),
using the torsional rigidity values, GJ, of the current study
and the bending rigidity values, EI, obtained in our previous
study [24]. This figure also shows the Poisson’s ratio
calculated with Eq. (19), which is independent of Dn. For
three types of nanotubes, the Poisson’s ratio tends towards
approximately the value of about 0.10, for high Dn values,
which was also obtained by Eq. (19). In case of zigzag
nanotubes, the values of the Poisson’s ratio are close to the
value obtained by Eq. (19), in all range ofDn values. But, for
the cases of the chiral with u¼ 19.18 and armchair families,
the value of the Poisson’s ratio increases whenDn decreases
below 1.5 nm. This means that for values of the nanotube
diameters such that Dn< 1.5 nm, the Poisson’s ratio
strongly depends on the chiral angle and increases from
zigzag nanotubes (u¼ 08) to armchair nanotubes (u¼ 308).
This is in agreement with the results of Fig. 6, which shows
that the value of the torsion rigidity does not follow a linear
correlation with (Dn –D0)

3 (see also Fig. 5), for very low
values of the nanotube diameter, Dn.

It is worth to notice that the evaluation of the Poisson’s
ratio from the results of bending and torsion rigidities

(Eqs. (18) and (19)) constitutes a robust methodology, given
the relatively high degree of accuracy of these quantities.
In the contrast, most authors [10, 16, 18, 25, 28, 29, 31, 33]
use the definition of Poisson’s ratio in tension, for its
evaluation. This requires the knowledge of the axial, e||, and
normal e? strains, as follows:

n ¼ � e?
ek

: ð20Þ

Figure 10 and Table 5 allow comparing the current
Poisson’s ratio results with those from the literature.

Table 5 contains the comprehensive information on the
methodology and formulation for assessing the Poisson’s
ratio used in the previous works, selected for the
comparative study. Table 5 also shows, whenever it is
possible, whether or not they agree with the relationship
G¼E/2(1þ v), for isotropic material.

As shown in Fig. 10, the current results show trends of
the Poisson’s ratio evolution of the SWCNTs comparable to
those of the works of Xiao et al. [28] and Shen and Li [31],
i.e. its value initially decreases with the diameter, and then
becomes almost constant for high values of the diameter.
Values of the Poisson’s ratio independent of the nanotube
diameter were reported by Dominguez-Rodriguez et al. [33]
and Papanikos et al. [17]. Finally, the values of Poisson’s
ratio continuously decreasing with increasing of the
nanotube diameter were reported by Tserpes and Papani-
kos [14]. The dissimilarities of the Poisson’s ratio values
in Fig. 10 and Table 5 are due to different modelling
approaches, employing analytical or numerical simulation
methods, to the force fields constants selected and to
different formulations for Poisson’s ratio assessment. For
example, Dominguez-Rodriguez et al. [33] attributed the
difference between the values of the Poisson’s ratio obtained

Figure 9 Evolution of the calculated Poisson’s ratio of the
SWCNTs with the nanotube diameter.

Figure 10 Comparison of the Poisson’s ratio results with those
reported in the literature. In case of the results by Tserpes and
Papanikos [14], the Poisson’s ratio was determined from their
values of E and G, using Eq. (17).
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by the equivalent beam approach and density functional
theory (DFT), to the input values of the force field constants
(kr, ku) in the numerical simulations. Nevertheless, the
evaluation of the Poisson’s ratio by imposing the isotropic
material condition allows reliable values.

4 Conclusions An equivalent beam approach has
been used in order to carry out a systematic evaluation of
the torsional rigidity, shear modulus and Poisson’s ratio of
various SWCNT structures, namely non-chiral and chiral
families of single-walled nanotubes over a wide range of
chiral indices, nanotube lengths and diameters.

The main conclusions of this comprehensive study are
as follows:

(i) A single equation valid for armchair, zigzag and chiral
SWCNTs allows correlating the torsional rigidity with
the nanotube diameter.

(ii) A robust methodology for calculation of the shear
modulus is suggested. This makes use of values of the
parameters that describe the evolutions of the tensile,
bending and torsional rigidities with the nanotube
diameter.

(iii) For a given value of the wall thickness, the shear
modulus is about the same, whatever the SWCNT
chirality. For the thickness value commonly used
(tn¼ 0.34 nm), the value of the shear modulus is
G¼ 0.484GPa. This value was compared with those
previously reported in literature.

(iv) The average value of Poisson’s ratio converges for v
close to 0.10 for large diameters, whatever the nanotube,
chiral or non-chiral. This value was calculated assuming
isotropy, and resorting to data from torsion and bending
tests.

(v) The evaluation of the torsional rigidity as a function of
the nanotube diameter and respective shear modulus, as
suggested in the current work, as well as the evaluation
of tension and bending rigidities and Young’s modulus,
earlier proposed by the authors [24], allow easily
characterise the mechanical behaviour of SWCNTs,
whatever the chirality and diameter. This can be useful,
particularly for understanding and modelling the
mechanical behaviour of CNT reinforced materials.
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4.2. Elastic properties of the SWCNTs’ structures containing vacancy defects 

This subchapter contains the paper by Sakharova et al. (2016a), which deals with 

the evaluation of the tensile, bending and torsional rigidities, and subsequently, the 

Young’s and shear moduli and the Poisson’s ratio of SWCNTs containing vacancy 

defects. It analyses and discusses the results of a systematic study, regarding the 

influence of the type and percentage of vacancy defects on the mechanical 

response of the SWCNTs in a wide range of nanotube diameters, chiral angles and 

chiral indices. 
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a b s t r a c t

The mechanical behaviour of non-chiral and chiral single-walled carbon nanotubes containing different
percentage (up to 10%) and types of vacancy defects is studied under tensile, bending and torsional
loading. A three-dimensional finite element model is used in order to evaluate the corresponding ri-
gidities and, subsequently, Young's and shear moduli and Poisson's ratio. The three rigidities decrease
with the increase of the percentage of vacancies. Also, the Young's and shear moduli and the Poisson's
ratio of single-walled carbon nanotubes are sensitive to the presence of vacancy defects in nanotube:
elastic moduli decrease and the Poisson's ratio increases with increasing of the percentage of vacancies.
The moduli of single-walled carbon nanotubes with 10.0% of vacancy defects, when compared with the
values obtained for perfect nanotubes, are of about 43% for the Young's modulus and of about 33% for the
shear modulus. On the contrary, the Poisson's ratio increases of about 4 times, compared with that
obtained for the perfect nanotube.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Carbon nanotubes (CNTs) have attracted great research inter-
est, because of their unparalleled mechanical, optical and thermal
properties [1]. In spite of various experimental studies which
have been carried out to evaluate the mechanical properties of
CNTs, there is a scattering in the experimental results reported in
the literature. Such inconsistency is due to complexity of the
characterization of nanomaterials at the atomic scale. Another
reason of the result's scattering can be associated with the exis-
tence of defects in the CNT structure: it is almost impossible to
produce carbon nanotubes with a perfect structure because of the
manufacturing constraints. It should be noted that the perfection
of the lattice of the CNTs, used in experimental studies, has a
significant influence on the results. Thus, the numerical simula-
tion of the mechanical properties of carbon nanotubes with de-
fects is an important task, providing data that can be compared
with experimental results. The defects of CNT structure, such as
single and multiple vacancies, show suitable effects for numerous
. Sakharova).
applications of nanotubes, for example concerning the strength of
nanocomposites when CNT vacancy defects act as interfacial
bonding places, the storage of hydrogen and the transition of
nanotubes from one diameter to another in carbon nanotube
heterojunctions. The defects in the CNTs can appear mainly due
to the chemical synthesis [2], the chemical treatment in the pu-
rification process [3], or when the CNTs are subjected to irradi-
ation [4].

There are three main classes of theoretical approaches for the
modelling of the CNTs mechanical behaviour: atomistic, continuum
and nanoscale continuum approaches [5]. The atomistic ap-
proaches (for example, ab initio [6] and classical molecular dy-
namics (MD) [7,8]) have big computation costs. In consequence,
they have been progressively replaced by the continuum
mechanics-based approach (CM) where the real atomic CNT
structure is replaced by a continuum medium (see, for example
[9,10]). Such replacement of the whole CNT structure allows
effective simulation, greatly reducing the computational effort, but
does not provide sufficient accuracy in the evaluation of the CNT
mechanical properties. Finally, the nanoscale continuummodelling
(NCM) approach, where the carbonecarbon (CeC) bond is replaced
by a continuum element (as truss, spring and beam) has led to
accurate results, overcoming the disadvantages of the MD and CM
approaches (see, for example [11e14]). Since Li and Chou [13] have

mailto:nataliya.sakharova@dem.uc.pt
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compositesb.2015.11.029&domain=pdf
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linked the interatomic potential energies to the strain energies of
an equivalent beam element and established a direct relationship
between sectional stiffness parameters and the force field con-
stants, the NCM approach using beam elements has been success-
fully used to simulate the mechanical behaviour of CNT [14e17].

In recent years, numerical studies regarding the effect of the
defects on the CNT mechanical properties have been carried out.
For example, concerning the elastic behaviour, Scarpa et al. [18],
Parvaneh and Shariati [19], Parvaneh et al. [20], Rahmandoust and
Ochsner [21], Ghavamian et al. [22], Ghavamian and Ochsner
[23,24] and Poelma et al. [25] simulate the vacancy defects by
removing the carbon atoms without reconstruction of the CeC
bonds. The studies of Scarpa et al. [18], Parvaneh and Shariati [19]
and Parvaneh et al. [20] relate to a few specific types of nano-
tubes and vacancies, and also relatively small percentages of de-
fects (less than 2.5%). Reduction of the Young's modulus was
observed in nanotubes with defects, although it is insignificant in
some cases. The studies of Rahmandoust and Ochsner [21], Gha-
vamian et al. [22] and Ghavamian and Ochsner [23,24] showed that
the presence of 0.5 and 1.0% of the vacancy defects in the armchair
and zigzag single-walled and multi-walled CNTs leads to the sig-
nificant decrease of the CNT Young's modulus [21,22], natural fre-
quency [23] and critical buckling load [24] with an approximately
linear trend. Poelma et al. [25] found that the position of the single
vacancy defect significantly influences the critical buckling load of
the single-walled carbon nanotubes at the low temperatures. For
studying the fracture behaviour, some authors [26,27] have chosen
to rebuild the CeC bonds around the removed atoms. Among their
findings, it should be pointed a substantial reducing of the
Table 1
Geometrical characteristics of SWCNTs studied and number of nodes and elements
of the finite element meshes used (nanotube length 20 nm).

SWCNT type (n, m) Dn, nm q� Number of
nodes

Number of
elements

Non-chiral Armchair (5, 5) 0.678 30 1620 2414
(10, 10) 1.356 3240 4829
(15, 15) 2.034 4860 7244
(20, 20) 2.713 7640 11,420

Zigzag (5, 0) 0.392 0 930 1384
(10, 0) 0.783 1860 2769
(15, 0) 1.175 2790 4154
(20, 0) 1.566 3720 5539
(35, 0) 2.740 7420 11,095

Chiral Family q ¼ 8.9� (5, 1) 0.436 8.9 1044 1554
(10, 2) 0.872 2088 3109
(15, 3) 1.308 3132 4664
(20, 4) 1.744 4176 6219
(25, 5) 2.180 5220 7774
(30, 6) 2.616 6264 9329

Family q ¼ 13.9� (6, 2) 0.565 13.9 1352 2013
(9, 3) 0.847 2028 3020
(12, 4) 1.129 2740 4027
(15, 5) 1.412 3380 5034
(18, 6) 1.694 4056 6041
(21, 7) 1.976 4732 7048
(24, 8) 2.259 5408 8055
(27, 9) 2.541 6084 9062

Family q ¼ 19.1� (4, 2) 0.414 19.1 992 1477
(6, 3) 0.622 1488 2216
(8, 4) 0.829 1984 2955
(10, 5) 1.036 2840 3694
(12, 6) 1.243 2976 4433
(14, 7) 1.450 3472 5172
(16, 8) 1.657 3968 5911
(18, 9) 1.865 4464 6650
(20, 10) 2.072 4960 7389
(22, 11) 2.279 5456 8128
(24, 12) 2.486 6504 9720
nanotube strength. In summary, with regard to parameters such as
rigidity, elastic modulus and Poisson's ratio, only the influence of
vacancy defects on the elastic modulus has received main analysis
so far, although limited to a few types of single-walled carbon
nanotubes.

This study aims to contribute towards the study of the me-
chanical behaviour of single-walled carbon nanotubes (SWCNTs)
containing different percentage and type of vacancy defects, using
the NCM approach implemented with beam elements. Three
dimensional finite element method was used in order to evaluate
the tensile, bending and torsional rigidities, and subsequently,
Young's and shear moduli and Poisson's ratio of various SWCNTs, as
non-chiral (zigzag, q¼ 0�, and armchair, q¼ 30�) and three families
of chiral (q ¼ 8.9�; 13.9�; 19.1�) SWCNTs, for a wide range of chiral
indices and diameters. The current systematic study allows
improving the information concerning the influence of the pres-
ence and density of the vacancy defects on the SWCNTs mechanical
properties, in order to better understanding the scattering gener-
ally observed in experimental results.
2. Materials and methods

2.1. Atomic structure of SWCNTs

The symmetry of the atomic structure of SWCNTs is character-
ized by the chirality, which is defined by the chiral vector Ch [28]:
Fig. 1. FE meshes of SWCNTs: (a) armchair (10, 10), (b) zigzag (15, 0) and (c) chiral (15,
3).



Fig. 2. Examples of configurations of double (a), triple (b) and four vacancies together (c) used in the analysis. The axis of the nanotube is horizontal.
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Table 2
Input parameters for FE simulations of SWCNT: material and geometric properties of the beam element.

Parameter Value Formulation

Force constant, kr [35] 6.52 � 10�7 N nm�1 e

Force constant, kq [35] 8.76 � 10�10 N nm rad�2 e

Force constant, kt [35,36] 2.78 � 10�10 N nm rad�2 e

CeC bond/beam length (l ¼ aC�C) 0.1421 nm e

Diameter (d) 0.147 nm d ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffi
kq=kr

p
Cross section area, Ab 0.01688 nm2 Ab ¼ pd2/4
Moment of inertia, Ib 2.269 � 10�5 nm4 Ib ¼ pd4/64
Polar moment of inertia, Jb 4.537 � 10�5 nm4 Jb ¼ pd4/32
Young's modulus, Eb 5488 GPa Eb ¼ k2r l=4pkq
Shear modulus, Gb 870.7 GPa Gb ¼ k2r ktl=8pk

2
q

Rigidity, EbAb 92.65 nN EbAb ¼ krl
Rigidity, EbIb 0.1245 nN nm2 EbIb ¼ kql
Rigidity, GbJb 0.0395 nN nm2 GbJb ¼ ktl

N.A. Sakharova et al. / Composites Part B 89 (2016) 155e168158
Ch ¼ na1 þma2 (1)

where (n,m) is a pair of the lattice translation indices a1 and a2, the
unit vectors of the hexagonal lattice, n and m are integers.

The values of n andm allow defining the chiral angle, q, between
the chiral vector, Ch, and the direction (n, 0) [28]:

q ¼ sin�1
ffiffiffi
3

p
m

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ nmþm2

p (2)

The length of the unit vector a is defined as a ¼
ffiffiffi
3

p
aC�C with the

equilibrium carbonecarbon (CeC) covalent bond length aC�C usu-
ally taken to be 0.1421 nm. The nanotube diameter, Dn, is defined
as:

Dn ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ nmþm2

p
p

(3)

Three main configurations of SWCNTs are defined, basing on the
chiral vector or the chiral angle: armchair nanotubes (n ¼ m,
q ¼ 30�), zigzag nanotubes (m ¼ 0, q ¼ 0�) and chiral nanotubes
(n s m, 0� < q < 30�).
Table 3
The number of nodes and elements of the meshes of the SWCNTs containing different v

Vacancy type 0.5% 1.0% 2.

Nodes Elem. Nodes Elem. No

Armchair (20, 20): Dn ¼ 2.713 nm, L ¼ 23.36 nm, 7640 nodes, 11,420 elements
Single 7602 11,306 7562 11,189 74
Double 11,325 11,225
Triple 11,328 11,238
Four together 11,330 11,244
Mixed 11,326 11,234
Zigzag (35,0): Dn ¼ 2.740 nm, L ¼ 22.38 nm, 7420 nodes, 11,095 elements
Single 7383 10,984 7346 10,873 72
Double 11,000 10,910
Triple 11,006 10,920
Four together 11,009 10,928
Mixed 10,998 10,905
Chiral q 19.1� (24, 12): Dn ¼ 2.486 nm, L ¼ 21.74 nm, 6504 nodes, 9720 elements
Single 6471 9621 6439 9525 63
Double 9637 9557
Triple 9643 9568
Four together 9645 9573
Mixed 9638 9557

a The SWCNT mesh with 7690 nodes, 11,900 elements, L ¼ 24.34 nm.
b The SWCNT meshes cannot contain solely single vacancies, due to their high percen
2.2. Configurations of SWCNTs and FE modelling

In this work a three-dimensional (3D) finite element (FE) model
under NCM approach was adopted. The adopted 3D FE model is
able to assess the mechanical properties of SWCNTs, by establishing
equivalences between the bond length, aC�C, and the equivalent
beam length, l, and between the nanotube wall thickness, tn, and
the beam element diameter [13,15].

The FE meshes of the carbon nanotube structures were con-
structed using the academic software CoNTub 1.0 [29], which has
been widely used for this purpose (see, for example Refs. [30e34]).
This code generates ASCII files, describing atom positions and their
connectivity, which can be entered as input data in available
commercial and in-house FE codes. To convert the ASCII files, ob-
tained from the CoNTub 1.0 program, into the format usable by the
commercial FE code ABAQUS®, the in-house application designated
by InterfaceNanotubes was developed [30]. The geometrical char-
acteristics of the SWCNTs used for the present FE analyses are
summarized in Table 1, where the number of nodes and elements of
the SWCNTs FEmeshes is also presented, for the length of nanotube
considered, L ¼ 20 nm. This length corresponds to the minimum
recommended value from which the mechanical properties are
independent of the SWCNT length [30].
acancy configurations.

0% 5.0% 10.0%a

des Elem. Nodes Elem. Nodes Elem.

86 10,958 7259 10,277 7164 9555b

11,035 10,460 9910
11,060 10,529 10,042
11,073 10,560 10,101
11,029 10,460 9845

72 10,651 7049 9979 6678 8882b

10,725 10,165 9239
10,749 10,229 9364
10,762 10,252 9471
10,721 10,167 9208

74 9330 6179 8745 5854 7862
9395 8907 8095
9416 8960 8203
9427 8989 8258
9392 8894 8059

tage (10%); some quantity of double and triple vacancies is also present.
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Examples of FE meshes for three types of SWCNTs are shown
in Fig. 1. The vacancy defects considered in the current study have
the following types of configuration, as shown in Fig. 2: single va-
cancies (one atom is missing), double vacancies (two neighbouring
atoms are missing e Fig. 2(a)), triple vacancies (three neighbouring
atoms are missing e Fig. 2(b)) and four vacancies together (four
neighbouring atoms are missing e Fig. 2(c)). By removing the car-
bons atoms from the nanotube, the bond interactions (i.e. beams in
the FE model) corresponding to the missing atoms are removed
[18,19,21,22]. Atoms in the percentage of 0.0, 0.1, 0.5,1.0, 2.0, 5.0 and
10.0% were removed from the SWCNTs shown in Table 1. The de-
fects were regularly distributed around the centre and along the
length of the nanotubes, with the exception of the ends of the
nanotube.
2.3. FE analysis of SWCNTs

Li and Chou [13] proposed direct relationships between the
structural mechanics parameters, i.e. tensile, EbAb, bending, EbIb,
and torsional GbJb, rigidities, and the force field constants, kr, kq, and
kt:
Fig. 3. Effect of the vacancy configuration on the tensile, bending and torsional rigid
EbAb

l
¼ kr; (4)

EbIb
l

¼ kq; (5)

GbJb
l

¼ kt; (6)

where l is the beam length equal to 0.1421 nm; Eb and Gb are the
beam Young's and shear moduli, respectively; Ab is the beam cross-
sectional area, Ib and Jb are the beam moment of inertia and polar
moment of inertia, respectively, and kr, kq, and kt are the bond
stretching, bond bending and torsional resistance force constants,
respectively. Eqs. (4)e(6) establish the basis for the application of
continuum mechanics to the analysis of the mechanical behaviour
of CNTs, and provide the input data for numerical simulation. The
input data and the values of force constants [35,36] for the FE
model are given in Table 2.
ities of (a) armchair (20, 20), (b) zigzag (35, 0) and (c) chiral (24, 12) SWCNTs.



N.A. Sakharova et al. / Composites Part B 89 (2016) 155e168160
3. Results and discussion

3.1. Rigidities of SWCNTs with vacancy defects

The tensile, bending and torsional rigidities of SWCNTs were
evaluated from conventional mechanical numerical tests as
described in the following.

The tensile rigidity, EA, of SWCNT is determined as:

EA ¼ FxL
ux

; (7)

where Fx, is the tensile axial force applied at one nanotube end,
leaving the other end fixed, L is the nanotube length and ux is the
axial displacement taken from the FE analysis.

Similarly, the bending rigidity of the nanotube, EI, is represented
as:
Fig. 4. Effect of the vacancy percentage on the tensile, bending and torsional rigidities of (a)
vacancy types.
EI ¼ FyL3

3uy
; (8)

where Fy is the transverse force applied at one end of the nanotube,
leaving the other fixed, uy is the transverse displacement, taken
from the FE analysis.

Finally, the torsional rigidity of the nanotube, GJ, is determined
as:

GJ ¼ F4RL
4

; (9)

where F4 is the tangential force applied at one end of the nanotube,
leaving the other fixed, R is the nanotube radius and 4 is the twist
angle, taken from the FE analysis. In case of torsion, the nodes
under loading, at the end of the nanotube, are prevented from
moving in the radial direction.
armchair (20, 20), (b) zigzag (35, 0) and (c) chiral (24, 12) SWCNTs, containing different
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Firstly, a study was carried out in order to understand the role of
the configuration type of the vacancy defects on the tensile,
bending and torsional rigidities of SWCNTs. In this regard, atoms in
proportions equal to 0.5, 1.0, 2.0, 5.0, 10.0% were removed from the
meshes of armchair (20, 20), zigzag (35, 0) and chiral (24, 12)
SWCNTs, in such way that each mesh contains only one type of
defects: (i) single vacancies; (ii) double vacancies; (iii) triple va-
cancies; (iv) four vacancies together. For comparison, the same
meshes, containing assortment of all types of defects (mixed de-
fects), were considered for each percentage of the defects studied.
The number of nodes (atoms) and elements (beams) of the FE
meshes of (20, 20), (35, 0) and (24, 12) nanotubes, with different
defect configurations, are shown in Table 3. The vacancy configu-
ration alters the number of beam elements, i.e. vacancy defects of
the different type have dissimilar number of the elements, for the
same number of the missing atoms (nodes). The number of ele-
ments increases with the size of the vacancy defect, for a given
percentage of removed atoms.

The results concerning the effect of the type of vacancy
configuration on the tensile, bending and torsional rigidities of
armchair (20, 20), zigzag (35, 0) and chiral (24, 12) nanotubes are
shown in Fig. 3. The type of vacancy configuration does not cause
significant influence on the values of the three rigidities, with
exception of the zigzag (35, 0), with 5.0 and 10.0% of vacancies, and
the chiral (24, 12), with 10.0% of vacancies, for which the EA and EI
rigidities are somewhat sensitive to vacancy configuration: these
rigidities are higher for nanotubes structures with multiple va-
cancies (double, triple and four vacancies together) than for
Fig. 5. Evolution of the tensile, EA, bending, EI, and torsional, GJ, rigidities with the percent
SWCNTs.
nanotubes with single vacancies and the mixed cases. This result is
certainly related to the number of elements that are relatively high
for the cases of multiple vacancies when compared with single or
mixed vacancies cases, particularly when the percentage of va-
cancies is high (5.0 and 10.0%).

Fig. 4 shows examples of the evolutions of the tensile, EA,
bending, EI, and torsional, GJ, rigidities as a function of the per-
centage of the vacancies, for the case of (20, 20), (35, 0) and (24, 12)
nanotubes, with different vacancy configurations. The tensile ri-
gidity, EA, decreases with increasing of the percentage of vacancies
in SWCNT, similarly for all types of defects. The same is true for the
EI and GJ rigidities.

Parvaneh and Shariati [19], using the NCM approach and
implementing spring elements and non-linear connectors, studied
the effect of the presence of the isolated single, double and triple
vacancies in armchair (7, 7) and zigzag (12, 0) SWCNTs on their
Young's modulus. For this purpose, one vacancy of each configu-
ration was introduced in the nanotubes with different aspect ratio,
i.e. the ratio between the SWCNT length and diameter. For nano-
tubes with low aspect ratio, the results showed that the Young's
modulus values of the defective SWCNTs are slightly influenced by
vacancy type. For the cases of nanotubes with high aspect ratio,
similar to those in the current study, this influence is insignificant.
In both cases, the percentage of defects is very low (less than 2.5%).

Taking into account the results from Figs. 3 and 4, i.e. in
generally the type of vacancy configuration does not significantly
affect the value of rigidities, a study was carried out for the SWCNTs
with different percentage (0.0, 0.5, 1.0, 2.0, 5.0 and 10.0%) of the
age of vacancies in SWCNTs for armchair (a), zigzag (b) and chiral family q ¼ 19.1� (c)
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vacancy defects, including simultaneously single vacancies, double
vacancies, triple vacancies and four vacancies together. Fig. 5 shows
the evolutions of the tensile, EA, bending, EI and torsional, GJ ri-
gidities of non-chiral and chiral SWCNTs with the percentage of the
vacancies. The three rigidities decrease with increasing amount of
the vacancies in the SWCNT. The values of the tensile, EA, bending,
EI, and torsional, GJ, rigidities as a function of the SWCNT diameter,
Dn, are plotted in Fig. 6(a)e(c) for SWCNTs with different percent-
age of the vacancy defects. The values of the rigidities, EA, EI and GJ
decrease with increasing of the percentage of vacancies in the
SWCNT, for a given value of the nanotube diameter. The evolutions
of the tensile rigidity, EA, can be unified for each content of the
vacancy defects, whatever the chirality. This is also true for the
evolutions of the bending rigidity, EI, and for the evolutions of the
torsional rigidity, GJ. The results concerning the evolutions of the
rigidities with nanotube diameter, Dn, can be fitted by a quasi-linear
trend for the case of tensile rigidity, EA, and close to a cubic power
trend for the cases of bending, EI, and torsional, GJ, rigidities, as
shown in Fig. 7(a)e(c). These dependencies can be simply
described, correspondingly:

EA ¼ ap
�
Dn � Dp

0EA

�
(10)
Fig. 6. Evolution of the nanotube rigidities as a function of the nanotube diameter, Dn, for pe
vacancies: (a) the tensile rigidity, EA; (b) bending rigidity, EI, and (c) torsional rigidity, GJ.
EI ¼ bp
�
Dn � Dp

0EI

�3 (11)

GJ ¼ gp
�
Dn � Dp

0GJ

�3
(12)

where the fitting parameters ap and D0EA
p , bp and D0EI

p , and gp and
D0GJ
p concern the cases of tensile, bending and torsional rigidities,

respectively, for a given percentage, p, of vacancy defects, whatever
the chirality of the SWCNTs. The parameters of Eqs. (10)e(12) were
previously obtained by the authors [30] for the case of perfect
(without defects) SWCNTs. The full list of the fitting parameters is
given in Table 4, where D0

p is an average value of the parameters
D0EA
p , D0EI

p , D0GJ
p for three types of the mechanical test at each per-

centage of defects, p; the values of these parameters are close to
zero whatever the type of test and the percentage of vacancy de-
fects. Fig. 8 shows that the evolution of the parameters a, b and g
with the percentage of vacancy defects follows a nearly linear
trend. The mean difference between the values of EA, EI and GJ ri-
gidities calculated with Eqs. (10)e(12), and the values obtained
directly from FE analysis is presented in Table 5.
rfect non-chiral and chiral SWCNTs and for SWCNTs containing different percentage of



Fig. 7. Evolution of the rigidities for perfect and defect non-chiral and chiral SWCNTs: (a) tensile rigidity, EA, as a function of (Dn � D0); (b) bending rigidity, EI, and (c) torsional
rigidity, GJ, as a function of (Dn � D0)3.

Table 4
Fitting parameters a, b, g and D0.

Parametera % Vacancies

0.0 0.1 0.5 1.0 2.0 5.0 10.0

a (nN nm�1) 1131.66 1116.94 1095.39 1051.67 961.12 784.04 522.34
b (nN nm�1) 143.48 141.01 139.75 137.32 126.02 105.11 71.36
g (nN nm�1) 130.39 127.97 126.83 123.69 111.00 86.00 49.70
D0 (nm) 3.5$10�3 4.0$10�4 0.010 0.025 0.010 0.016 1.0$10�3

a The values of parameters include armchair, zigzag and all types of chiral SWCNT studied.

Fig. 8. Evolution of the fitting parameters, a, b and g with the percentage of the
vacancies.
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3.2. Elastic moduli of SWCNTs with vacancy defects

Using the nanotube rigidities, EA, EI, and GJ, the nanotube
Young's, E, and shear, G, moduli can be assessed. Considering a
hollow cylindrical profile for the CNT, the cross-sectional area, A, of
the equivalent hollow cylinder and the moments of inertia, I and J,
can be written:

A ¼ p

4

h
ðDþ tÞ2 � ðD� tÞ2

i
¼ pDt (13)

I ¼ p

64

h
ðDþ tÞ4 � ðD� tÞ4

i
(14)

J ¼ p

32

h
ðDþ tÞ4 � ðD� tÞ4

i
(15)



Table 5
The mean difference between the rigidities values calculated with Eqs. (10)e(12),
and the values obtained from FE analysis.

Vac. percent. 0.0% 0.1% 0.5% 1.0% 2.0% 5.0% 10.0%

Rigidities Mean difference, %

EA (nN) 0.39 0.87 0.95 1.48 2.03 2.53 3.66
EI (nN nm2) 2.82 3.64 3.78 1.36 4.72 6.52 6.68
GJ (nN nm2) 1.25 1.56 3.13 1.48 3.35 6.92 7.87

Fig. 9. Evolution of the Young's modulus (a) and shear modulus (b) as a fun
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where D and t are the mean diameter and thickness of the equiv-
alent hollow cylinder, respectively.

Assuming t ¼ tn (where tn is the nanotube wall thickness), the
expression for D can be derived from Eqs. (13) and (14):

EI
EA

¼ 1
8

�
D2 þ t2n

�
0 D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8
�
EI
EA

�
� t2n

s
(16)

Thus, using Eqs. (13)e(16), the elastic moduli of the nanotube
can be calculated using the following expressions, taking into ac-
count the rigidities in tension, bending and torsion:
ction of the nanotube diameter, Dn for perfect and with defect SWCNTs.



Table 6
The stabilized values of Young's modulus and shear modulus of defective SWCNTs
for different percentage of vacancies.

Vac. percent. 0.0% 0.1% 0.5% 1.0% 2.0% 5.0% 10.0%

E, TPa 1.083 1.079 1.054 1.000 0.902 0.719 0.470
G, TPa 0.492 0.490 0.478 0.446 0.386 0.286 0.164

Fig. 10. Young's and shear moduli (a) and their reduction (b) as a function of the
percentage of vacancy defects.
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E ¼ EA
A

¼ EA

ptn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8
�

EI
EA

�
� t2n

s (17)

G ¼ GJ
J
¼ GJ

2ptn

�
EI
EA

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8
�

EI
EA

�
� t2n

s (18)

Eqs. (10)e(12) for EA, EI and GJ rigidities enable writing Eqs. (17)
and (18) for Young's and shear moduli as follows:

E ¼ EA
A

¼ aðDn � D0Þ
ptn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 bðDn�D0Þ2

a � t2n

q (19)

G ¼ GJ
J
¼ gðDn � D0Þ

2ptn

�
b
a

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 bðDn�D0Þ2

a
� t2n

q (20)

These equations allows determining Young's modulus and shear
modulus of any percentage of vacancy defects in the SWCNTs,
knowing the parameters of Table 3 and the wall thickness, tn (the
most widely used value is tn ¼ 0.34 nm, which is equal to the
interlayer spacing of graphite).

Fig. 9 shows the results of the Young's and shear moduli as a
function of the nanotube diameter, Dn, for the various percentages
of defects in the SWCNTs. The elastic moduli results obtained for
perfect SWCNTs are in good agreement with the results available in
the literature, as previously discussed [30]. In the case of defective
nanotubes, the Young's modulus value decreases with increasing
the nanotube diameter, and tends to stabilize for high values of the
nanotube diameter. The same trend is observed for the shear
modulus. The stabilized values of Young's modulus (Fig. 9(a)) and
shear modulus (Fig. 9(b)) are shown in Table 6. These values
decrease with increasing of the content of the vacancies in the
SWCNT, as can be easily seen in Fig. 10(a). The moduli of SWCNTs
with 10.0% of vacancy defects are about 43% the Young's modulus
and of about 33% the shearmodulus of perfect single-walled carbon
nanotubes.

Fig. 10(b) shows the reduction of the moduli as a function of the
percentage of vacancies. A quasi-linear trend of the decrease of
both Young's and shear moduli with the increase of the vacancy
defects is observed up to 5.0% of defects, as shown in the figure.
Similar equation (Ereduction ¼ �7.69$Vacancy) was reported by
Ghavamian et al. [22] for the reduction of the Young's modulus of
armchair (10, 10) and zigzag (14, 0) SWCNTs making use of results
from perfect nanotubes and with 0.5 and 1.0% of single vacancy
defects, which is close to that in Fig. 10(b).

The results regarding to the Young's modulus of the defective
nanotubes have been object of some analysis in the literature.
Fig. 11 allows easy comparison of the present results with those
from the works of Parvaneh and Shariati [19] and Ghavamian et al.
[22], who studied the Young's modulus of the defective nanotubes
up to about 1.5% and 1.0% of vacancy defects, respectively. The re-
sults in this figure, concerning armchair and zigzag nanotubes, are
separated into two groups: (i) small nanotube diameters (less than
1 nm) showing higher Young's modulus and (ii) higher nanotube
diameters, for which the Young's modulus value is almost stabilized
(see Fig. 9(a)). Current results and those of Parvaneh and Shariati
[19] and Ghavamian et al. [22] display consistency, showing similar
values and trends in each group.
3.3. Poisson's ratio of SWCNTs with vacancy defects

The Poisson's ratio can be calculated, taking into account the
isotropic material condition (E ¼ G/2(1þ n)) and the fact that J ¼ 2I,
as follows:

n ¼ E
2G

� 1 ¼ EI
GJ

� 1 (21)

Furthermore, Eqs. (19) and (20) allow defining a unique equa-
tion for the Poisson's ratio, independent of the nanotube type and
diameter:

n ¼ b

g
� 1 (22)

Fig. 12 shows the evolution of the Poisson's ratio, n, with
nanotube diameter, Dn, for non-chiral (armchair e Fig. 12(a) and
zigzag e Fig. 12(b)) and the q ¼ 19.1� family of chiral SWCNTs
(Fig. 12(c)); the values of the Poisson's ratio were obtained by Eq.



Fig. 11. Comparative study with literature results on the evolution of the Young's modulus with the percentage of vacancy defects.

Fig. 12. Evolution of the calculated Poisson's ratio as a function of the nanotube diameter for armchair (a), zigzag (b) and q ¼ 19.1� chiral (c) SWCNTs with different percentage of
vacancies.



Fig. 13. The Poisson's ratio as a function of the percentage of vacancy defects.
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(21). The Poisson's ratio values calculated with Eq. (22), which does
not depend on Dn, are also shown in this figure (dashed lines).
Regardless of the type of nanotube, the Poisson's ratio tends to-
wards approximately the values of about 0.100, 0.101, 0.102, 0.118,
0.168, 0.256 and 0.430, for SWCNTswith 0.0, 0.1, 0.5,1.0, 2.0, 5.0 and
10.0% of vacancies, respectively, as obtained by Eq. (22).

Fig. 13 shows the evolution of the stabilized values of the
Poisson's ratio with the content of the vacancy defects. The Pois-
son's ratio increases with the increase of the percentage of va-
cancies, for all types of SWCNTs studied. Significant increase of n,
of about 4 times when compared with the value for perfect
SWCNT, is observed for the case of the SWCNTs with 10.0% of
vacancy defects.

4. Conclusions

The tensile, bending and torsional rigidities, as well as the
Young's and shear moduli, and Poisson's ratio of non-chiral and
chiral SWCNTs containing vacancy defects were predicted using
finite element analysis within nanoscale continuum modelling
approach. The main conclusions can be drawn as follows:

� The tensile, bending and torsional rigidities of non-chiral and
chiral SWCNTs are not significantly influenced by the type of
vacancy configuration (single, double, triple or four vacancies
together);

� The tensile, bending and torsional rigidities of non-chiral and
chiral SWCNTs are sensitive to the presence of vacancy: the
three rigidities decrease with the increase of the percentage of
vacancies;

� Equations describing the relationship between each of the three
rigidities and the nanotube diameter have been obtained for
SWCNTs with various percentages of vacancy defects; these
relationships allow the easy evaluation of the Young's and shear
moduli, and Poisson's ratio, of SWCNT with vacancy defects;

� The Young's and shear moduli of SWCNTs decrease with
increasing percentage of vacancies in nanotubes; the Poisson's
ratio of SWCNTs increases with increasing percentage of va-
cancies in the nanotubes.

Acknowledgements

This research work is sponsored by national funds from the
Portuguese Foundation for Science and Technology (FCT) via the
projects PTDC/EMEeTME/122472/2010 and PEst-C/EME/UI0285/
2013 as well as by FEDER funds “Programa Operacional da Regi~ao
Centro” via the project CENTRO-07-0224-FEDER-002001
(MT4MOBI). All supports are gratefully acknowledged.

References

[1] Robertson J. Realistic applications of CNTs. Mater Today 2004;7(10):46e52.
[2] Gao RP, Wang ZL, Bai ZG, de Heer WA, Dai LM, Gao M. Nanomechanics of

individual carbon nanotubes from pyrolytically grown arrays. Phys Rev Lett
2000;85(3):622e5.

[3] Andrews R, Jacques D, Qian D, Dickey EC. Purification and structural annealing
of multiwalled carbon nanotubes at graphitization temperatures. Carbon
2001;39(11):1681e7.

[4] Terrones M, Banhart F, Grobert N, Charlier JC, Terrones H, Ajayan PM. Mo-
lecular junctions by joining single-walled carbon nanotubes. Phys Rev Lett
2002;89(7):075505.

[5] Rafiee R, Moghadam RM. On the modelling of carbon nanotubes: a critical
review. Compos Part B 2014;56:435e49.

[6] Kudin KN, Scuseria GE, Yakobson BI. C2F, BN and C nanoshell elasticity from ab
initio computations. Phys Rev B 2001;64(23):235406.

[7] Chen X, Cao GX. A structural mechanics study of single-walled carbon nano-
tubes generalized from atomistic simulation. Nanotechnology 2006;17(4):
1004e15.

[8] Zhang HW, Wang JB, Guo X. Predicting the elastic properties of single-walled
carbon nanotubes. J Mech Phys Solids 2005;53(9):1929e50.

[9] Pantano A, Parks DM, Boyce MC. Mechanics of deformation of single- and
multi-wall carbon nanotubes. J Mech Phys Solids 2004;52(4):789e821.

[10] Kalamkarov AL, Georgiades AV, Rokkam SK, Veedu VP, Ghasemi-Nejhad NM.
Analytical and numerical techniques to predict carbon nanotubes properties.
Int J Solids Struct 2006;43(22e23):6832e54.

[11] Odegard GM, Gates TS, Nicholson LM, Wise KE. Equivalent continuum
modelling of nano-structured materials. Compos Sci Technol 2002;62(14):
1869e80.

[12] Giannopoulos GI, Kakavas PA, Anifantis NK. Evaluation of the effective me-
chanical properties of single-walled carbon nanotubes using a spring based
finite element approach. Comput Mater Sci 2008;41(4):561e9.

[13] Li C, Chou TW. A structural mechanics approach for the analysis of carbon
nanotubes. Int J Solids Struct 2003;40(10):2487e99.

[14] Hu N, Nunoya K, Pan D, Okabe T, Fukunaga H. Prediction of buckling char-
acteristics of carbon nanotubes. Int J Solids Struct 2007;44(20):6535e50.

[15] Tserpes KI, Papanikos P. Finite element modeling of single-walled carbon
nanotubes. Compos Part B 2005;36(5):468e77.

[16] Ghavamian A, Rahmandoust M, €Ochsner A. On the determination of the shear
modulus of carbon nanotubes. Compos Part B 2013;44(1):52e9.

[17] Mohammadpour E, Awang M. Predicting the nonlinear tensile behavior of
carbon nanotubes using finite element simulation. Appl Phys A 2011;104(2):
609e14.

[18] Scarpa F, Adhikari S, Wang CY. Mechanical properties of non-reconstructed
defective single-wall carbon nanotubes. J Phys D Appl Phys 2009;42:142002.

[19] Parvaneh V, Shariati M. Effect of defects and loading on prediction of Young's
modulus of SWCNTs. Acta Mech 2011;216(1e4):281e9.

[20] Parvaneh V, Shariati M, Torabi H. Bending buckling behavior of perfect and
defective single-walled carbon nanotubes via a structural mechanics model.
Acta Mech 2012;223(11):2369e78.

[21] Rahmandoust M, Ochsner A. Influence of structural imperfections and doping
on the mechanical properties of single-walled carbon nanotubes. J Nano Res
2009;6:185e96.

[22] Ghavamian A, Rahmandoust M, Ochsner A. A numerical evaluation of the
influence of defects on the elastic modulus of single and multi-walled carbon
nanotubes. Comp Mater Sci 2012;62:110e6.

[23] Ghavamian A, Ochsner A. Numerical modeling of eigenmodes and eigen-
frequencies of single- and multi-walled carbon nanotubes under the influence
of atomic defects. Comp Mater Sci 2013;72:42e8.

[24] Ghavamian A, Ochsner A. Numerical investigation on the influence of defects
on the buckling behavior of single-and multi-walled carbon nanotubes.
Physica E 2012;2012(46):241e9.

[25] Poelma RH, Sadeghian H, Koh S, Zhang GQ. Effects of single vacancy defect
position on the stability of carbon nanotubes. Microelectron Reliab
2012;52(7):1279e84.

[26] Xiao S, Hou W. Fracture of vacancy-defected carbon nanotubes and their
embedded nanocomposites. Phys Rev B 2006;73(11):115406.

[27] Hou W, Xiao S. Mechanical behaviors of carbon nanotubes with randomly
located vacancy defects. J Nanosci Nanotechnol 2007;7(12):4478e85.

[28] Dresselhaus MS, Dresselhaus G, Saito R. Physics of carbon nanotubes. Carbon
1995;33(7):883e91.

[29] Melchor S, Dobado JA. CoNTub: an algorithm for connecting two arbitrary
carbon nanotubes. J Chem Inf Comput Sci 2004;44(5):1639e46.

[30] Sakharova NA, Pereira AFG, Antunes JM, Brett CMA, Fernandes JV. Mechanical
characterization of single-walled carbon nanotubes: numerical simulation
study. Compos Part B 2015;75:73e85.

[31] Arora G, Sandler SI. Molecular sieving using single wall carbon nanotubes.
Nano Lett 2007;7(3):565e9.

http://refhub.elsevier.com/S1359-8368(15)00710-6/sref1
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref1
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref2
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref2
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref2
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref2
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref3
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref3
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref3
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref3
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref4
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref4
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref4
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref5
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref5
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref5
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref6
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref6
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref7
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref7
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref7
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref7
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref8
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref8
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref8
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref9
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref9
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref9
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref10
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref10
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref10
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref10
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref10
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref11
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref11
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref11
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref11
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref12
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref12
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref12
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref12
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref13
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref13
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref13
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref14
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref14
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref14
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref15
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref15
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref15
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref16
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref16
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref16
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref16
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref17
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref17
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref17
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref17
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref18
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref18
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref19
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref19
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref19
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref19
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref20
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref20
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref20
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref20
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref21
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref21
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref21
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref21
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref22
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref22
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref22
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref22
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref23
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref23
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref23
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref23
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref24
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref24
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref24
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref24
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref25
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref25
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref25
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref25
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref26
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref26
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref27
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref27
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref27
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref28
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref28
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref28
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref29
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref29
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref29
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref30
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref30
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref30
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref30
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref31
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref31
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref31


N.A. Sakharova et al. / Composites Part B 89 (2016) 155e168168
[32] Yengejeh SI, Kazemi SA, Ochsner A. Influence of combined loading on the
structural stability of carbon nanotubes. Mater Chem Phys 2015;158:96e106.

[33] Yengejeh SI, Oechsner A. On the stiffness of carbon nanotubes with spiral
distortion. J Nano Res 2014;29:85e92.

[34] Contreras ML, �Avila D, Alvarez J, Rozas R. Computational algorithms for fast-
building 3D carbon nanotube models with defects. J Mol Graph Model
2012;38:389e95.
[35] Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, et al.
A second generation force-field for the simulation of proteins, nucleic acids
and organic molecules. J Am Chem Soc 1995;117(19):5179e97.

[36] Jorgensen WL, Severance DL. Aromatic aromatic interactions e free energy
profiles for the benzene dimer in water chloroform and liquid benzene. J Am
Chem Soc 1990;112:4768e74.

http://refhub.elsevier.com/S1359-8368(15)00710-6/sref32
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref32
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref32
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref33
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref33
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref33
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref34
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref34
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref34
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref34
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref34
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref35
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref35
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref35
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref35
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref36
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref36
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref36
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref36
http://refhub.elsevier.com/S1359-8368(15)00710-6/sref36


Mechanical behaviour of CNTs’ structures 

 

 
111 

4.3. Modelling and mechanical behaviour of SWCNT HJs 

This subchapter consists of two complementary papers by Sakharova et al. (2016b, 

2017b). The first paper, by Sakharova et al. (2016b), is focused on the analysis of 

the geometry of the connection region of armchair – armchair and zigzag – zigzag 

heterojunctions (HJs between nanotubes with different radii), and on the study of 

their tensile, bending and torsional rigidities. In the second paper, by Sakharova et 

al. (2017b), the study of the mechanical response of armchair – armchair and 

zigzag – zigzag SWCNT HJs is deepened and outcomes regarding the Young’s and 

shear moduli are analysed. 

In summary, this subchapter analyses and discusses results regarding the HJ 

geometry (diameters ratio and relative lengths of the constituent nanotubes) and 

the loading conditions on their tensile, bending and torsional rigidities, and 

Young’s and shear moduli. 
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Abstract. The study of the mechanical behaviour of single-walled carbon nanotube heterojunctions 
has been carried out, implementing nanoscale continuum approach. A three-dimensional finite 
element model is used in order to evaluate the elastic behaviour of cone heterojunctions. It is shown 
that the bending rigidity of heterojunctions is sensitive to bending conditions. The torsional rigidity 
does not depend on torsion conditions. Both rigidities of the heterojunction are compared with those 
of the thinner and thicker constituent nanotubes. 

Introduction 

In recent years, the research interest focused on carbon nanotube junctions has increased 
significantly, because of their singular properties and numerous potential applications in 
nanodevices for health, electronics and biotechnology needs. From the point of view of the 
construction of nanodevices, the carbon nanotube (CNT) junctions are necessary constituents for 
circuits, amplifiers, switches, rectifiers, molecular storages, field-effect transistors and nanodiodes. 
The current state of research regarding the synthesis, properties and realistic application of CNT 
junctions is included in the comprehensive review of Wei and Liu [1]. CNT heterojunctions (CNT 
HJs), i.e. structures composed by two interconnecting carbon nanotubes, have attracted special 
research interest because of their singular electrical and optical properties, and attractive potential 
application as nanodiodes and filters [2, 3]. 

In spite of developments achieved in recent years in this research field, many challenges still 
remain. One of them is to understand the deformation behaviour of CNT heterojunctions, since the 
stability and efficiency of nanodevices is highly dependent on the mechanical properties of their 
components. Because of the challenge of measuring the mechanical properties of nano-dimensional 
objects, the studies aimed at describing the mechanical properties of CNT heterojunctions have 
been carried out mainly by mechanical modelling and numerical simulation (see for example [3, 5-
7]), similarly to the case of isolated single-walled (SWCNT) and multi-walled (MWCNT) carbon 
nanotubes. There are three groups of modelling approaches for the simulation of the mechanical 
behaviour of isolated SWCNT and MWCNT: the atomistic approach (ab initio, molecular dynamics 
(MD)) [8], the continuum modelling (CM) approach [9] and the nanoscale continuum modelling 
approach (NCM) [10, 11]. Molecular dynamics and nanoscale continuum approaches combined 
with finite element modelling (FEM) have become the most prevalent methods to simulate the 
mechanical behaviour of CNT heterojunctions. A few studies to assess the mechanical properties of 
CNT HJs were also performed recurring to MD approach [6, 12, 13]. Lee et al. [6] investigated the 
temperature effect on the mechanical properties, yield stress and Young’s modulus, of (6, 0)-(8, 0) 
SWCNT HJs under tension and compression, by using MD simulation approach, employing 
reactive empirical bond order (REBO) potential to describe the carbon-carbon (C-C) interaction. 
Also employing REBO potential, Li et al. [12] investigated the tensile strength and failure modes of 
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single-walled and double-walled CNT HJs at different temperatures and strain rates. Qin et al. [13] 
performed MD simulation study, using second-generation Tersoff–Brenner potential, in order to 
evaluate Young’s modulus and failure stress of single-walled and double-walled CNT HJs. The 
studies using the NCM approach were mainly devoted to the characterization of the buckling [4], 
shear [7, 14] and tensile [14, 15] behaviours of HJs, and the evaluation of their Poisson ratio [3]. 
The aforementioned investigations must be understood as the beginning of broader necessary 
studies on the mechanical properties of the CNT HJs. 

The present study aims to contribute towards the characterisation of the mechanical behaviour of 
armchair – armchair and zigzag – zigzag SWCNT heterojunctions, using the NCM approach. The 
three dimensional (3D) finite element (FE) method was used in order to evaluate the bending and 
torsional rigidities of SWCNT HJs. 

Geometric definition of SWCNT HJs 

As is well-known, the fundamental configurations of CNTs can be defined by the chiral vector, 
Ch, or the chiral angle, θ, between the chiral vector Ch and the direction (n, 0) [16]: 

�� = n�� +m�	,                                                                                                                          (1) 

θ = sin
� √��

�√��������
,                                                                                                                   (2) 

where (n,m) is a pair of the lattice translation indices a1 and a2, the unit vectors of the graphene 
hexagonal lattice; n and m are integers. The length of the unit vector a is defined as a = √3a�
� 
with the equilibrium carbon-carbon (C-C) covalent bond length aC-C = 0.1421 nm. 

 
These fundamental configurations of CNTs are: zigzag (m = 0, θ = 0°), armchair (n = m, θ = 

30°), and chiral (n≠m, 0° <θ < 30°) nanotubes. 
The SWCNT diameter can be calculated as follows: 

D� =
�√��������

�
.                                                                                                                          (3) 

While the isolated SWCNTs can be viewed as a rolled graphene sheet with specified width 
L�� = πD�, the heterojunction of two SWCNTs can be represented as a rolled graphene sheet with 
specific geometry, where two CNTs are connected by the introducing of a Stone–Wales defect 
(pentagon and heptagon defect) as illustrated in Fig. 1 [17] Similarly to SWCNT structures, the 
geometrical parameters of HJs are the chirality length and diameter. There are two main 
heterojunction configurations: (i) cone-heterojunctions (HJs of nanotubes with a given chiral angle 
but different radii) and (ii) radius-preserving heterojunctions (HJs preserving the radii, but with 
different chiral angles of the constituent nanotubes) [17]. According to the study of Yao et al. [18], 
most HJs (<95%) are cone-heterojunctions type. 

The geometry of armchair – armchair cone-heterojunctions is shown in the Fig. 2. The axes of 
the two constituent nanotubes of the HJ are nearly parallel, and the axis of the thicker SWCNT is 
defined as the axis of the heterojunction [7, 19]. The overall length of the heterojunction is defined 
as follows: 

L ! = L� + L� + L�,                                                                                                                       (4) 

where L1, L2 and L3 are the lengths of the thinner and thicker SWCNTs and the junction region, 
respectively. 
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As the heterojunction consists of two SWCNTs with different diameters, the diameter of HJ can 
be characterised by the average of both diameters: 

D" ! �
�

�
#D�� � D��$.                                                                                                                      (5) 

And the aspect ratio of the heterojunction is defined as [12]: 

η � &'
(")*

.                                                                                                                                          (6) 

 

 

(a) 

 
 
 
 
 
 
 
 
 
 

(b) 

Figure 1 (a, b): Defects in the connecting region of armchair – armchair (10, 10) – (15, 15) 
heterojunction: (a) Heptagon defect; (b) Pentagon defect 

 

Figure 2: Geometry of armchair – armchair (5, 5) – (10, 10) HJ 
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Numerical simulation and analysis 

Configurations and FE modelling of SWCNT HJs. The NCM approach, where the equivalent 
beam elements replace the carbon-carbon bonds of CNT, was used for the modelling of SWCNT 
HJs. The finite element model uses the coordinates of the carbon atoms to generate the nodes and 
then their suitable connection to create the beam elements. The links established between the inter-
atomic potential energies of the molecular structure and strain energies of the equivalent continuum 
structure, consisting of beams undergoing axial, bending and torsional deformations, are the basis 
for the application of continuum mechanics to the analysis of the mechanical behaviour of CNT HJs 
[10]. The FE simulation uses the analogy between the bond length, aC-C, and the element length L 
and between the nanotube wall thickness and the element thickness (see, Fig. 3). Assuming the 
beam element has a circular cross-section area, the wall thickness corresponds to the element 
diameter. 

 

Figure 3: Modelling of HJ, replacing C-C bonds by beam elements 

The meshes of the CNT HJs structures, to be used in the FE analyses, were constructed using the 
CoNTub 1.0 software [17]. This code generates ASCII files, describing atom positions, which can 
be entered as input in available commercial and in-house FE codes, in order to perform the 
simulation of mechanical tests. To convert the ASCII files, obtained from the CoNTub 1.0 program, 
into the format usable by the commercial FEA code ABAQUS®, previously developed in-house 
application designated InterfaceNanotubes [20] was used. Examples of finite element meshes for 
armchair – armchair and zigzag – zigzag SWCNT HJs are shown in Fig. 4. 

The geometrical characteristics of SWCNT HJs used in the present FE analyses are summarized 
in Table 1. The HJs were constructed such that the length of the constituent nanotubes are equal to 
each other and their value is about one (case 1), two (case 2) and three (case 3) orders of magnitude 
of the length of the junction region. 

Molecular interactions and equivalent properties of beam elements. According to molecular 
dynamics, the total inter-atomic potential energy of a molecular system is expressed as the sum of 
energy terms due to bonded and non-bonded interactions [19]: 

U,-, = ∑U� + ∑U/ + ∑U0 + ∑U1 + ∑U234,                                                                              (7) 

where Ur, Uθ, Uϕ, Uω are energies associated with bond stretching, bond bending, dihedral angle 
torsion, out-of plane torsion, respectively, and Uvdw is the energy associated with non-bonded van 
der Waals interactions. In covalent systems such as carbon nanotubes, non-bonded interactions are 
negligible in comparison with bonded ones [11] and the main contribution to the total potential 
energy is from the first four terms of Eq. 7 as outlined in Fig. 5. 
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(a) 

 
(b) 

Figure 4: FE meshes HJs: (a) armchair – armchair (10, 10) – (15, 15) HJ;                                   
(b) zigzag – zigzag (15, 0) – (20, 0) HJ 

Table 1: Geometrical characteristics of HJs under study 

HJ (n1, m1) – (n2, m2) D" !, nm η case L1, nm L2, nm L3, nm 

ar
m

ch
ai

r 

(5, 5) – (10, 10) 1.018 1.940 
1 9.97 10.01 1.97 
2 100.01 99.95 1.97 
3 1000.00 999.96 1.97 

(10, 10) – (15, 15) 1.696 1.166 
1 10.04 9.94 1.98 
2 100.06 100.00 1.98 
3 1000.00 1000.02 1.98 

(15, 15) – (20, 20) 2.375 0.833 
1 9.98 10.00 1.98 
2 100.00 100.01 1.98 
3 1000.06 1000.02 1.98 

zi
gz

ag
 

(5, 0) – (10, 0) 0.588 1.950 
1 10.00 10.06 1.15 
2 99.92 99.96 1.15 
3 1000.01 1000.06 1.15 

(10, 0) – (15, 0) 0.979 1.177 
1 10.03 10.02 1.15 
2 100.14 100.12 1.15 
3 998.73 1000.26 1.15 

(15, 0) – (20, 0) 1.371 0.843 
1 9.93 10.11 1.16 
2 100.03 100.00 1.16 
3 999.96 999.92 1.16 

Consequently, under the assumption of small deformation, the energies associated with bond 
stretching, bending and torsion can be approximated by the functions [22]: 

U� �
�

�
k�#Δr$�, 

U/ �
�

�
k/#Δθ$�,                                                                                                                             (8) 

U8 � U0 � U1 �
�

�
k8#Δϕ$�, 

where kr, kθ and kτ are the bond stretching, bond bending and torsional resistance force constants, 
respectively, and ∆r, ∆θ and ∆ϕ are the bond stretching increment, bond angle bending variation 
and angle variation of twist bond, respectively. 

(10, 10) 

(15, 15) 

(15, 0) 

(20, 0) 
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The elastic properties of the beam elements can be determined.by establishing the equivalence of 
the energies associated with the bond interactions, through Eq. 8, and the energies associated with 
elastic deformation of the beams. 

 

Figure 5: Equivalence between bond interactions in carbon nanotube and beam elements 

Classical mechanics gives the following expression for the strain energy, UA, of a beam with 
length, l, and cross-section area, A, under a pure axial force, N: 

U: =
�

�
;

<�

=>:>

&

?
dl =

�

�

<�B

=>:>
=
�

�

=>:>
B
#Δl$�,                                                                                       (9) 

where ∆l is the axial stretching displacement and Eb is the Young’s modulus of the beam. 
The strain energy, UM, of a beam under a pure bending moment, M, according to classical 

mechanics, is expressed as: 

UC =
�

�
;

C�

=>D>

&

?
dl =

�

�

=>D>
B
#2α$�,                                                                                                   (10) 

where α is the rotational angle at the ends of the beam and Ib is the moment of inertia of the beam. 
The strain energy, UT, of a beam under a pure torsion moment, T, is expressed: 

UG =
�

�
;

G�

H>!>

&

?
dl =

�

�

H>!>
B
#Δβ$�,                                                                                                   (11) 

where ∆β is the relative rotation between the ends of the beam and J the polar moment of inertia. 
The parameters Ur and UA are stretching energies in molecular and structural systems, 

respectively, Uθ and UM represent the bending energies, while Uτ and UT are the torsional energies. 
Comparing Eqs. 8 with Eqs. 9-11, and assuming the equivalence of ∆l to ∆r, as well the equivalence 
of the rotational angle, 2α, to the total variation of the bond angle, ∆θ, and ∆β to ∆ϕ, direct 
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relationships can be established between the structural mechanics parameters, EbAb, EbIb, GbJb and 
the force field constants, kr, kθ, kτ [10]: 

=>:>
B
= k�  

=>D>
B
= k/                                                                                                                                      (12) 

H>!>
B
= k8. 

Eqs. 12 are the basis for the application of continuum mechanics to the analysis of the 
mechanical behaviour of CNT HJs, and provide the input for simulation. The values of force 
constants [23, 24] and input data for the FE model are given in Table 2. 

Table 2: Input parameters for FE simulations of SWCNT HJs: mechanical and geometric 
properties of beam element 

Parameter Value Formulation 

Force constant, kr [23] 6.52×10
-7

 N nm
-1

 – 

Force constant, kθ [23] 8.76×10
-10

 N⋅nm⋅rad
-2

 – 

Force constant, kτ [23, 24] 2.78×10-10 N⋅nm⋅rad-2 – 

Beam length (l = aC-C) 0.1421 nm – 

Diameter (d) 0.147 nm d � 4Kk/ k�⁄  

Cross section area, Ab 0.01688 nm
2
 AN = πd� 4⁄  

Moment of inertia, Ib 2.269×10
-5

 nm
4
 IN � πdP 64⁄  

Polar moment of inertia, Jb 4.537×10-5
⋅nm4 JN � πdP 32⁄  

Young’s modulus, Eb 5488 GPa EN � k��l 4πk/⁄  

Shear modulus, Gb 870.7 GPa GN = k�
�k8l 8πk/

�⁄  

Tensile rigidity, EbAb 92.65 nN ENAN = k�l 

Bending rigidity, EbIb 0.1245 nN⋅nm
2
 ENIN � k/l 

Torsional rigidity, GbJb 0.0395 nN⋅nm2 GNJN � k8l 

Loading conditions. Numerical simulations of conventional tensile, bending and torsion tests were 
carried out in order to study the effect of the average HJ diameter and the chirality of the constituent 
nanotubes on the heterojunction mechanical properties. The boundary and loading conditions are 
shown in Fig. 6. 

In tension, the axial displacement is determined as: 

	uX �
YZ&)*
=:

,                                                                                                                                   (13) 

where Fz is an axial force applied at one nanotube’s end, leaving the other end fixed, EA is the 
tensile rigidity of HJ and LHJ is the heterojunction length. 
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Similarly, in bending, the transverse displacement is determined as: 

	u[ =
Y\&)*

'

�=D
,                                                                                                                                  (14) 

where Fy is the transverse force applied at one end of the nanotube, leaving the other fixed, EI is the 
bending rigidity of the HJ. 

Finally, the twist angle of the loaded end in torsion is determined as: 

φ =
G&)*
H!

,                                                                                                                                      (15) 

where T is torsional moment applied at one end of the nanotube, leaving the other fixed, GJ is the 
torsional rigidity. The nodes under loading, at the end of the nanotube, are prevented from moving 
in the radial direction. 

 
(a) 

 
 
 
 
 
 
 
 
 

(b) 
 
 
 
 
 
 
 

(c) 

Figure 6 (a, b, c): Loading and boundary conditions for armchair – armchair (10, 10) – (15, 15) 
HJ: (a) tension; (b) bending; (c) torsion 

Two loading conditions were considered in tension, bending and torsion, which consist of fixing 
the thinner and the thicker side of the nanotube of HJ structure. 

Results and discussion 

Geometry of the connecting region of HJs. Firstly, a study was carried out in order to describe the 
geometry of the connecting region of heterojunctions. The geometrical analysis showed that the 
angle α, between the axis of the nanotubes, which constitute the HJs, and the centre line of the 
junction as shown in Fig. 7, is equal to 12.7°, whatever the diameters of nanotubes that constitute 
the armchair-armchair and zigzag-zigzag cone heterojunctions. 
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Figure 7: Geometry of the connecting 
region of SWCNT HJ 

The length of the connecting region, L3, can be represented by a linear function of (Dn2 – Dn1) for 
armchair – armchair and zigzag – zigzag SWCNT HJs in the range of the HJ average diameters 
studied, as it is shown in Fig. 8. The fitted straight line equation allows determining L3 as follows: 

L� � 2.9157#D�� c D��$,                                                                                                           (16) 

where Dn1 and Dn2 are diameters of the thinner and thicker nanotube, respectively. In the literature, a 
similar relationship for the connecting HJ region was proposed, basing on the geometrical analysis 
[13]: 

	L� � √'
�
π#D�� c D��$ � 2.7207#D�� c D��$.                                                                             (17) 

 

Figure 8: Length of the HJ connecting region, L3, as a function of (Dn2 – Dn1) 

Rigidities of SWCNT HJs. The heterojunction rigidities were assessed through numerical tests of 
tension, bending and torsion. The analysis of the mechanical behaviour of the HJs in tension 
showed that significant lateral displacements occur, introducing bending in HJs, as shown in the 
example of Fig. 9.Therefore, this test condition deviates from the pure tension and is not suitable for 
determining the rigidity of the heterojunction in tension. 
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Figure 9: SWCNT HJ under tensile loading 

Bending, EI, and torsional, GJ, rigidities of the SWCNT HJs can be obtained from Eqs. 14 and 
15, respectively, as follows: 

EI �
Y\&)*

'

�e\
,                                                                                                                                   (18) 

GJ �
G&)*

f
.                                                                                                                                     (19) 

As is known from previous studies, the mechanical behaviour of single-walled nanotubes is 
length-independent for nanotube lengths much smaller than 20 nm, the value used in a previous 
study [20]. It is now appropriate to investigate the influence of the overall length of heterojunctions 
on their rigidities. Fig. 10 shows the bending (Fig. 10a) and torsional (Fig. 10b) rigidities as a 
function of the overall HJ length for armchair – armchair HJs. EI and GJ are nearly insensitive to 
overall HJ length; just for (15, 15) – (20, 20) HJ the EI value is slightly lower for the length of 
about 20 nm (case 1) than for lengths of about 200 and 2000 nm (cases 2 and 3). Hereinafter, the 
results concerning the mechanical behaviour of SWCNT HJs are presented for the length of 200 nm 
(cases 2 – see Table 1). 

  
(a) (b) 

Figure 10 (a, b): Evolution of the rigidities of armchair – armchair SWCNT HJs as a function of the 
total length of the heterojunction: (a) bending rigidity; (b) torsional rigidity 

The influence of the loading conditions on EI and GJ rigidities of HJs was investigated. Fig. 11 
shows the bending (Fig. 11a) and torsional (Fig. 11b) rigidities results for armchair – armchair HJs 
for two loading cases: when the transversal force or torsion moment is applied on the thicker 
nanotube and the thinner one. EI rigidity is sensitive to the loading condition, i.e. if the transversal 
force is applied on the thinner or thicker SWCNT. When the force is applied on the thinner 
nanotube, the EI value is higher, when compared with the case of the application of the force on the 
thicker nanotube. GJ rigidity does not depend on which thinner or thicker nanotube torsional 
moment is applied. 
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(a) (b) 

Figure 11 (a, b): Rigidities of armchair – armchair SWCNT HJs for the two loading conditions:           
(a) bending rigidity; (b) torsional rigidity 

Fig 12 compares the rigidities (EI – Fig. 12a; GJ – Fig. 12b) of the armchair-armchair and 
zigzag-zigzag SWCNT HJs. The bending and torsional rigidities for armchair-armchair HJs are 
higher than those for zigzag-zigzag HJs. Both, EI and GJ rigidities increase with increasing the 
heterojunction diameter. This result is in agreement with those, previously obtained for single-
walled nanotubes [20], i.e. EI and GJ rigidities of isolated SWCNTs increase when nanotube 
diameter increases. In order to clarify the results shown in Fig. 12, the rigidities for armchair-
armchair and zigzag-zigzag HJs were plotted in Fig. 13 as a function of the heterojunction aspect 
ratio, η.  

  
(a) (b) 

Figure 12 (a, b): Rigidities of armchair – armchair HJs and zigzag – zigzag HJs: (a) bending 
rigidity; (b) torsional rigidity 
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(a) (b) 

Figure 13 (a, b): Evolution of the rigidities with the heterojunction aspect ratio for armchair – 
armchair and zigzag – zigzag HJs: (a) bending rigidity; (b) and torsional rigidity 

Both rigidities for armchair-armchair and zigzag-zigzag HJs increase with the increasing of the 
HJ aspect ratio. The difference between the EI values for armchair – armchair HJs and zigzag – 
zigzag HJs is more significant when the force is applied on the thinner nanotube. On the contrary, 
the evolution of the torsional rigidity with the aspect ratio, η is not sensitive to the loading 
condition: the GJ evolutions do not change when the torsional moment is applied on the thicker or 
thinner nanotube. 

Finally, the comparison of the bending rigidity, EI, and torsional rigidity, GJ, of the SWCNT HJs 
with those of the constituent nanotubes is shown in Figs. 14 and 15. The rigidity results for 
SWCNTs, obtained in the previous study [20], were used. The values of EI rigidity, for both cases 
of armchair – armchair and zigzag – zigzag HJs, are close to those obtained for the thinner 
constituent nanotubes, and are lower when compared with the rigidity values of the thicker 
constituent nanotubes. The values of GJ rigidity are higher than those obtained for the thinner 
constituent nanotubes and lower than for the case of thicker constituent nanotubes. 

  
(a) (b) 

Figure 14 (a, b): Comparison of the bending rigidity of HJs with those of the constituent nanotubes: 
(a) armchair – armchair HJs; (b) zigzag – zigzag HJs 
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(a) (b) 

Figure 15 (a, b): Comparison of the torsional rigidity of HJs with those of the constituent nanotubes: 
(a) armchair – armchair HJs; (b) zigzag – zigzag HJs 

Conclusions 

The elastic behaviour of cone SWCNT heterojunctions, focusing on their bending and torsional 
rigidities, was studied using three-dimensional finite element method within the framework of 
nanoscale continuum modelling. The main conclusions that can be drawn are as follows: 

An expression that allows assessing the length of the junction region of HJs as a function of the 
diameters of the constituent nanotubes was obtained. It was deduced for armchair and zigzag cone 
HJs in the range of the HJ diameters studied; 

For the cases studied, with identical length of the constituent nanotubes, bending, EI, and 
torsional, GJ, rigidities of HJs are not sensitive to overall HJ length except in the case of HJs with 
high diameters and length values of about one order of magnitude of the junction region length. EI 
rigidity depends on the load application condition: on the thicker or thinner end of the nanotube. GJ 
rigidity does not depend on the torsional moment application condition; 

Both bending and torsional rigidities of HJs, increase with increasing heterojunction diameter. EI 
rigidities of heterojunctions are comparable with those obtained for thinner constituent SWCNTs. 
GJ rigidities of heterojunctions are higher than those obtained for thinner constituent SWCNTs, and 
lower than those obtained for thicker constituent SWCNTs. 
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Abstract. Comprehensive studies on the modelling and numerical simulation of the 
mechanical behaviour under tension, bending and torsion of single-walled carbon nanotubes 
and their heterojunctions are performed. It is proposed to deduce the mechanical properties of 
the carbon nanotubes heterojunctions from the knowledge of the mechanical properties of the 
single-walled carbon nanotubes, which are their constituent key units. 
 
1 INTRODUCTION 

Systematic research has been conducted for studying nano-materials such as carbon 
nanotubes (CNTs) that are efficient components for designing new materials with required 
electronic and mechanical properties [1] and building blocks for optical and electronic 
nanodevices [2]. The CNT heterojunctions (two connected CNTs) are necessary constituents 
for such nanodevices as circuits, amplifiers, switches and nanodiodes [3]. The understanding 
of the CNTs’ mechanical properties is indispensable in order to design composites reinforced 
with CNTs and CNT-based devices, since their stability and efficiency are dependent on the 
mechanical properties of the constituents, i.e. CNTs and CNT heterojuctions. 

The elastic properties of CNTs can be assessed using experimental techniques (atomic 
force microscopy (AFM) and transmission electron microscopy (TEM) [4]) and 
computational approach. There are three main groups of methodologies for the modelling of 
CNTs mechanical behaviour: the atomistic approach, the continuum mechanics approach and 
the nanoscale continuum mechanics approach. In case of the nanoscale continuum modelling 
approach (NCM) each carbon-carbon (C-C) bond is replaced by a solid element, e.g. a beam 
element, whose behaviour is described by elasticity theory (see, [5, 6]). 

A considerable part of the theoretical investigations has been devoted to the predicting of 
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the Young’s modulus of single-walled carbon nanotubes (SWCNTs) [5, 6]. Less attention has 
been paid to understanding the mechanical behaviour of nanotube heterojunctions. 

The present work is focused on the characterisation of mechanical properties of SWCNTs 
in a wide range of chiral indices, diameters as well as SWCNT cone-heterojunctions by 
modelling their structure and mechanical behaviour, using nanoscale continuum approach [5]. 

2 ATOMIC STRUCTURE OF CNTS AND THEIR HETEROJUNCTIONS 
An ideal single-walled nanotube can be seen as a rolled-up graphene sheet, whose surface 

is composed by the repeated periodically hexagonal [2]. The symmetry of the atomic structure 
of a nanotube is characterized by the chirality, which is defined by the chiral vector :  

 (1) 

where n and m are integers, and  and  are the unit vectors of the hexagonal lattice. 
The length of the unit vectors is defined as  with the equilibrium carbon-carbon 

(C-C) covalent bond length  usually taken to be 0.1421 nm [2]. The nanotube 
circumference, Lc, and diameter,  are: 

 (2) 

(3) 

The chiral angle,  is defined by the angle between the chiral vector  and the direction 
(n, 0) [2] and it is given by: 

 (4) 

Three major categories of carbon nanotubes can be defined based on the chiral angle : 
zigzag ( ), armchair ( ) and chiral (  SWCNTs. Three main 
symmetry groups can be also defined based on the chiral indices. In this case for armchair 
structure , for zigzag structure , and for chiral structure . 

The CNT heterojunction can be represented as two CNTs that are connected by 
introducing an intermediate region with Stone–Wales defects [7]. Similarly to SWCNT 
structures, the geometrical parameters of heterojunctions (HJs) are the chirality, and diameter. 
There are two main heterojunction configurations [7]: (i) cone-heterojunctions (HJs of 
nanotubes with a given chiral angle but different radii) as armchair – armchair and zigzag – 
zigzag HJs, and (ii) radius-preserving heterojunctions (HJs preserving the radii, but with 
different chiral angles of the constituent nanotubes) as armchair – zigzag or chiral – armchair 
(or zigzag) HJs. According to the study of Yao et al. [8] most HJs ( 95%) are cone-
heterojunctions type. 

The overall length of the heterojunction is defined as follows: 
 (5) 

where ,  are the lengths of the narrower and wider SWCNTs regions, respectively, and  
is the length of the connecting region (see, Fig. 1). 
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Figure 1: Geometry of cone armchair – armchair (10, 10) – (15, 15) HJ, obtained by using academic software 

CoNTub 1.0  [7] 

When the heterojunction consists of two SWCNTs with different diameters (i.e. cone-
heterojunction), the diameter of HJ can be characterised by the average of the narrower and 
wider diameters (see for example: [7]): 

 (6) 

And the aspect ratio of the cone-heterojunction is defined as [9]: 

 (7) 

The length of the connecting region, , can be deduced basing on geometrical analysis 
[9]: 

 (8) 

where  and  are diameters of the narrow and wider nanotubes, respectively. 
Other relationship for the connecting region, which follows a linear function with 

, for armchair – armchair and zigzag – zigzag cone-heterojunctions was previously 
proposed [10]: 

 (9) 

3 NUMERICAL SIMULATION AND ANALYSIS 

3.1 Finite element modelling of CNTs’ structures 
The NCM approach that replaces the carbon-carbon bonds of CNT by equivalent beam 

elements is used for modelling SWCNTs and SWCNT HJs. The finite element (FE) method 
uses the coordinates of the carbon atoms for generating the nodes and their suitable 
connection creates the beam elements. The relationships between the inter-atomic potential 
energies of the molecular CNT structure and strain energies of the equivalent continuum 
structure, consisting of beam elements undergoing axial, bending and torsional deformations, 
are the basis for the application of continuum mechanics to the analysis of the mechanical 
behaviour of SWCNTs and SWCNT HJs [5]. 

The meshes of the SWCNTs and SWCNT HJs structures to be used in the FE analyses, 
were built using the CoNTub 1.0 software 7 . This code generates ASCII files, describing 
atom positions and their connectivity that enter as input data in available commercial and in-
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house FE codes. A previously developed in-house application, designated InterfaceNanotubes 
6 , was used to convert the ASCII files, acquired from the CoNTub 1.0 software, into the 

format compatible with the ABAQUS® commercial FE code. The geometrical characteristics 
of the SWCNTs used in the current FE analyses are summarized in Table 1. The nanotube 
length used in the numerical simulations was 30 times bigger than the outer diameter, so that 
the mechanical behaviour can be independent of the length [11]. 

Table 1: Geometrical characteristics of SWCNTs under study. 

SWCNT 
type  , nm SWCNT 

type  , nm

ar
m

ch
ai

r 

(5, 5) 0.678 

30 

zi
gz

ag
 

(14, 0) 1.096 

0 

(10, 10) 1.356 (23,0) 1.802 
(15, 15) 2.034 (32,0) 2.507 
(20, 20) 2.713 (41,0) 3.212 
(25, 25) 3.390 (50,0) 3.916 
(30, 30) 4.068 (59,0) 4.618 
(35, 35) 4.746 (77,0) 5.323 
(40, 40) 5.424 (68,0) 6.027 
(45, 45) 6.101 (86,0) 6.732 
(50, 50) 6.780 (95,0) 7.436 (55, 55) 7.457 

 
The geometrical characteristics of SWCNT HJs used in the present FE analyses are 

summarized in Table 2. The HJs were constructed such that the lengths of the constituent 
nanotubes are almost equal to each other and their value is about two orders of magnitude of 
the length of the junction region. 

Numerical simulations of conventional tensile, bending and torsion tests were carried out 
in order to study the mechanical properties of the SWCNTs and SWCNT HJ. In the latter 
case, two loading conditions, which consist of fixing the narrower and the wider side of the 
HJ structure, were considered. 

3.2 Molecular interactions and equivalent properties of beam elements 
The NCM approach uses the direct relationships between the structural mechanics 

parameters, i.e. tensile, , bending, , and , torsional rigidities, and the bond force 
field constants, , , and  as follows [5 : 

 (10) 

(11) 

(12) 

where  is the beam length equal to 0.1421 nm;  and  are the beam Young’s and shear 
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moduli, respectively;  is the beam cross-sectional area;  and  are the beam moment of 
inertia and polar moment of inertia, respectively; and , , and , are the bond stretching, 
bond bending and torsional resistance force constants, respectively. 

Table 2: Geometrical characteristics of SWCNT HJs under study. 

HJ (n1, m1) – (n2, m2) , nm  L1, nm L2, nm L3, nm 

ar
m

ch
ai

r (5, 5) – (10, 10) 1.018 1.940 100.01 99.95 1.97 

(10, 10) – (15, 15) 1.696 1.166 100.06 100.00 1.98 

(15, 15) – (20, 20) 2.375 0.833 100.00 100.01 1.98 

zi
gz

ag
 (5, 0) – (10, 0) 0.588 1.950 99.92 99.96 1.15 

(10, 0) – (15, 0) 0.979 1.177 100.14 100.12 1.15 

(15, 0) – (20, 0) 1.371 0.843 100.03 100.00 1.16 
 
Equations 10 – 12 are the base for the application of continuum mechanics to the analysis 

of the mechanical behaviour of SWCNTs and SWCNT HJs. The input material and 
geometrical parameters of the beam element (see refs. [36, 37] from [12]) for the numerical 
simulations was previously summarised by the authors (see, for example [6, 10 – 12]). 

4 ELASTIC PROPERTIES OF THE SINGLE-WALLED CARBON NANOTUBES 

4.1 Rigidities of SWCNTs 

The values of the tensile, , bending, , and torsional, , rigidities were obtained 
from the respective numerical simulation tests results as described in the following. The 
tensile rigidity, , of SWCNT is determined as: 

 (13) 

where , is the tensile axial force applied at one nanotube end, leaving the other end fixed,  
is the nanotube length and  is the axial displacement taken from the FE analysis. 

Similarly, the bending rigidity of the nanotube, , is represented as: 

 (14) 

where  is the transverse force applied at one end of the nanotube, leaving the other fixed,  
is the transverse displacement, taken from the FE analysis. Finally, the torsional rigidity of the 
nanotube, , is determined as: 

 (15) 
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where  is torsional moment applied at one end of the nanotube, leaving the other fixed and  
is the twist angle, taken from the FE analysis. In case of torsion, the nodes under loading, at 
the end of the nanotube, are prevented from moving in the radial direction. 

The evolutions of the tensile, , bending, , and torsional, , rigidities with the 
nanotube diameter, , were studied for the SWCNTs presented in Table 1. These evolutions 
are shown in Fig. 2. In previous studies [6, 12], the evolutions of the rigidities with nanotube 
diameter, , were represented by a linear function for the case of the tensile rigidity, , and 
by a cubic power function for the cases of bending, , and torsional, , rigidities, for 
armchair, zigzag and chiral SWCNTs, with diameters up to 2.713 nm. The fitting equations 
were expressed as follows, regardless of the nanotube chirality: 

(16) 

(17) 

(18) 

The values of the fitting parameters [6, 12] were: , 
,  and . 

Figure 3 shows that the current results, up to nanotube diameters equal to 7.457 nm, also 
follows the trends described by Eqs. 16 – 18. The values of the fitting parameters calculated 
based on the results of the Fig. 3 are: ,  and 

, which are close to those above mentioned. Given that the value of  is 
negligible when compared with , it was discarded in the fitting of the equations (i.e.  was 
considered equal to zero). 

a) 

b) 

c) 

Figure 2: Evolution of: (a) the tensile, , (b) bending, , and (c) torsional, , rigidities as a function of the 
nanotube diameter, , for armchair and zigzag SWCNTs. 
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a) 

b) 

c) 

Figure 3: Evolution of: (a) the tensile, , rigidity as a function of  and (b) bending, , and (c) 
torsional, , rigidities, as a function of  for armchair and zigzag SWCNTs. 

The linear dependence of Eq. 16 can be understood on the base of the linear relationship 
between cross-sectional area and the nanotube diameter: 

(19) 

where  is the value wall thickness, which in the current study is , equal to the 
interlayer spacing of graphite. In a similar way, the cubic dependences of Eqs. 17 – 18 can be 
understood based on the quasi-cubic relationships between the moment of inertia or the polar 
moment of inertia and the nanotube diameter (neglecting the value of  in the following 
equations): 

(20) 

(21) 

4.2 Young’s and shear moduli of SWCNTs  

The Young’s modulus of the SWCNT is calculated, taking into account the tensile, , 
and bending, , rigidities, using the following expression [6]: 
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(22) 

The shear modulus of the SWCNT is calculated, taking into account the tensile, , 
bending, , and torsional, , rigidities by following equation [12]: 

(23) 

The relationships 16 – 18 and the knowledge of the values of the parameters , ,  allow 
the easy evaluation of the Young’s and the shear moduli as a function of the nanotube 
diameter, without resorting to the numerical tests (  was neglected in these equations): 

(24) 

(25) 

In the Fig. 4 (a, b) the values of the Young’s modulus and shear modulus calculated by 
Eqs. 22 and 23, are plotted as a function of the nanotube diameter, . The evolutions of the 
Young’s modulus and shear modulus, obtained by Eqs. 24 and 25, are also shown in Fig. 4. 
The Young’s modulus of SWCNTs decreases with increase of the nanotube diameter, and 
with further increase of the nanotube diameter, the Young’s modulus tends to an 
approximately constant value as it is shown in the Fig. 4a. The same trend is observed for the 
evolution of the shear modulus with  (see, Fig. 4b). These trends in the evolution of the 
Young’s and shear moduli with nanotube diameter extend up to diameters of about 7.5 nm, 
the trends already described for SWCNTs with diameters up to about 2.7 nm [6, 12]. Eqs. 24 
and 25 allow obtaining acurate evolutions of the Young’s and shear moduli, respectively, 
without resorting to the numerical simulation. 

a) b) 
Figure 4: Evolution of: (a) Young’s modulus, , and (b) shear modulus, , of SWCNTs as a function of the 

nanotube diameter, . 
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5 ELASTIC PROPERTIES OF THE SINGLE-WALLED CARBON NANOTUBES 
HETEROJUNCTIONS 

5.1 Rigidities of SWCNT HJs 
The analysis of the mechanical behaviour of the armchair – armchair and zigzag – zigzag 

HJs, pointed out the occurrence of redundant bending deformation during the tensile test, 
making it difficult to analyse this test [10]. Therefore, we analyse the mechanical behaviour 
under bending and torsion. 

The bending rigidity, , is obtained from the respective numerical simulation tests 
results as follows: 

 (26) 

where  is the heterojunction length,  is the transverse force applied at one end of the 
nanotube, leaving the other fixed,  is the transverse displacement, taken from the FE 
analysis. The torsional rigidity, , is determined by: 

 (27) 

where  is torsional moment applied at one end of the nanotube, leaving the other fixed and  
is the twist angle, taken from the FE analysis. The nodes under loading, at the end of the 
nanotube, are prevented from moving in the radial direction. 

The  and  rigidities for armchair-armchair and zigzag-zigzag HJs were plotted 
in Fig. 5 as a function of the heterojunction aspect ratio,  (see Fig. 1). Both 
rigidities,  and  for armchair-armchair and zigzag-zigzag HJs increase with the 
increasing of the . The bending and torsional rigidities for armchair-armchair HJs are higher 
than those for zigzag-zigzag HJs. The difference between the  values for armchair – 
armchair HJs and zigzag – zigzag HJs is more significant when the force is applied to the 
narrower nanotube. On the contrary, the evolution of the torsional rigidity with the aspect 
ratio,  is not sensitive to the loading condition: the  values are at about the same 
whether the torsional moment is applied to the wider or narrower nanotube. 

The bending, , and torsional, , rigidities of the HJ structures can be calculated 
knowing the rigidities of the constituent SWCNTs.  In fact, using Eq. 26 (or more suitably the 
equation of beam deflection) and Eq. 27, it is possible to obtain both rigidities for the HJs 
structures, considering that the respective transverse displacement (bending test) or the twist 
angle (torsion test) are equal to the sums of the corresponding transverse displacements or 
twist angles of each SWCNT constituent of the HJs: 

(28) 
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(29) 

where  is the overall length of HJ;  and  are the bending rigidities of the 
constituent SWCNTs and  and  are their torsional rigidities;  and  are the 
lengths of the constituent SWCNTs; the letters a and f refer to the nanotubes to which the 
force is applied and is fixed, respectively. 

a) b) 
Figure 5: Evolution of: (a)  rigidity and (b)  rigidity with the heterojunction aspect ratio, , for 

armchair – armchair and zigzag – zigzag HJs. 

Figure 6 compares the values of the rigidities (  – Fig. 6a;  – Fig. 6b) obtained 
from FE analysis (Eqs. 26 and 27) and those calculated with help of Eqs. 28 and 29. The 
results of the Fig. 6 evidence the accuracy of the proposed analytical solutions for evaluation 
of the bending and torsional rigidities of armchair – armchair and zigzag – zigzag 
heterojunctions. The mean difference between the values of rigidities, evaluated by Eqs. 28 
and 29 and those obtained from FE analysis, is 1.22% for the  rigidity and 1.74% for 
the  rigidity. 

a) b) 
Figure 6: Comparison of: (a) bending,  and (b) torsional,  rigidities obtained from FE analysis and 

evaluated by Eqs. 28 and 29, for armchair – armchair and zigzag – zigzag HJs. 

972



N.A. Sakharova, J.M. Antunes, A.F.G. Pereira, B.M. Chaparro and J.V. Fernandes 

5.2 Young’s and shear moduli of SWCNT HJs 
The bending and torsional rigidities obtained from FE analysis were used for the 

evaluation of the heterojunction Young’s, , and shear, , moduli equivalent to a SWCNT 
with diameter given by , respectively: 

(30) 

(31) 

where  is the value of the nanotube wall thickness. 
The Young’s modulus and shear modulus of armchair-armchair and zigzag-zigzag 

SWCNT HJs were plotted as a function of the heterojunction aspect ratio,  (Fig. 7). Both, 
Young’s modulus and shear modulus decrease with increasing of the HJ aspect ratio. Also, 
the Young’s modulus of HJs is sensitive to the loading condition: the value of  is higher 
when the force is applied on the narrower nanotube. The difference between the  values of 
armchair – armchair HJs and zigzag – zigzag HJs is less significant when the force is applied 
on the narrower nanotube. On the contrary, shear modulus of HJs is insensitive to the loading 
condition: the value of  does not change when the torsional moment is applied on the 
wider or narrower nanotube. The difference observed between shear modulus of armchair HJs 
and zigzag HJ is relatively small. 

a) b) 
Figure 7: Evolution of the Young’s modulus (a) and shear modulus (b) with the heterojunction aspect ratio for 

armchair – armchair and zigzag – zigzag HJs. 

6 CONCLUSIONS 
- Equations 16 – 18 establishing relationships between each of three rigidities and the 

nanotube diameter allowing the easy evaluation of the Young’s modulus and shear 
modulus of SWCNTs by using Equations 24 and 25, without resorting to numerical 
simulation; 

- Equations 28 and 29 allow the easy evaluation of the bending and torsion rigidities of 
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HJs structures, from the respective rigidities of the constituents SWCNT. These 
allows the accurate evaluation of the Young’s and shear moduli of the SWCNTs, 
equivalent to the HJs structures. 
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Chapter 5 

Conclusions and future perspectives 

This chapter contains the main conclusions of this thesis and the perspectives 

concerning further numerical simulation studies on carbon nanotubes as well as 

non-carbon nanotubes and complex carbon nanotubes structures. 
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5.1. Introduction 

The previous analytical and numerical studies on the evaluation of the mechanical 

properties of the carbon nanotubes show variability of results due to the different 

modelling approaches and formulations used. Furthermore, there is a scarcity of 

parametric studies concerning the effect of the carbon nanotube length, diameter, 

chirality and wall thickness values on their elastic properties. Systematic studies 

can be particularly useful to understand and model the mechanical behaviour of 

the CNT-based complex structures, such as CNTs reinforced materials and CNTs 2D 

and 3D networks, and to provide a benchmark for ascertaining the mechanical 

properties of carbon nanotubes. The understanding of the mechanical response of 

carbon nanotube heterojunctions is also an important issue with respect to their 

applications, which demands deeper research efforts. 

In this context, a nanoscale continuum modelling approach was used to carry out a 

systematic evaluation of the tensile, bending and torsional rigidities and, 

subsequently, Young’s and shear moduli and Poisson’s ratio of various single-

walled carbon nanotube structures. Namely, non-chiral and several families of 

chiral nanotubes were studied, over a wide range of chiral indices, nanotube 

lengths and diameters. Three-dimensional finite element modelling was used for 

this purpose. Also, a comprehensive study was conducted on the modelling and 

numerical simulation of the mechanical behaviour of single-walled carbon 

nanotube heterojunctions. The conclusions of this thesis are next described. 

5.2. Elastic properties of perfect and with defects SWCNTs’ structures 

The results of the systematic study on the tensile, bending and torsional rigidities 

of SWCNTs can be summarised as follows. 

The tensile, 𝐸𝐴, rigidity increases quasi-linearly with the sum of the chiral indices, 

(𝑛 + 𝑚), and the bending, 𝐸𝐼, and torsional, 𝐺𝐽, rigidities increase with the sum of 

the chiral indices according to a cubic power expression, which parameters 

depend on the case. The 𝐸𝐴 evolutions for armchair, zigzag and chiral SWCNTs are 

not entirely coincident. The same is true for 𝐸𝐼 and 𝐺𝐽 evolutions. 

In order to better clarify these trends, the tensile, 𝐸𝐴, bending, 𝐸𝐼, and torsional, 

𝐺𝐽, rigidities were analysed as a function of nanotube diameter, 𝐷𝑛. The evolutions 

of the rigidities with nanotube diameter, 𝐷𝑛, can be described by a single linear 
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function for the case of the tensile rigidity, 𝐸𝐴, and by a single cubic power 

function for the cases of bending, 𝐸𝐼, and torsional, 𝐺𝐽, rigidities for all SWCNTs 

studied, i.e. regardless of the index and the angle of chirality. This allows unifying 

the evolutions of each of three rigidities with 𝐷𝑛 and makes their representation 

more suitable for further analyses than when rigidities are analysed as a function 

of (𝑛 + 𝑚). 

The representation of the 𝐸𝐴, 𝐸𝐼 and 𝐺𝐽 rigidities as a function of nanotube 

diameter was used to analyse the mechanical response of the SWCNTs with 

vacancy defects. As a result, relationships between the elastic rigidities and the 

diameter are proposed for the perfect SWCNTs and containing vacancy defects, as 

follows: 

𝐸𝐴 = α𝑝(𝐷𝑛 − 𝐷0𝐸𝐴
𝑝

) (5.1) 

𝐸𝐼 = β𝑝(𝐷𝑛 − 𝐷0𝐸𝐼
𝑝

)
3

 (5.2) 

𝐺𝐽 = γ𝑝(𝐷𝑛 − 𝐷0𝐺𝐽
𝑝

)
3

 (5.3) 

where the fitting parameters α𝑝 and 𝐷0𝐸𝐴
𝑝

, β𝑝 and 𝐷0𝐸𝐼
𝑝

, and γ𝑝 and 𝐷0𝐺𝐽
𝑝

 refer to 

cases of tensile, bending and torsion rigidities, respectively, for a given percentage, 

𝑝, of vacancy defects, whatever the chirality of the SWCNTs. The full list of the 

fitting parameters is given in Table 5.1, where 𝐷0
𝑝

 is an average value of the 

parameters 𝐷0𝐸𝐴
𝑝

, 𝐷0𝐸𝐼
𝑝

, 𝐷0𝐺𝐽
𝑝

 for three types of the mechanical test at each 

percentage of defects, 𝑝. The value of 𝑝 equal to zero corresponds to the case of the 

perfect (without defects) SWCNTs, where α𝑝 = α, β𝑝 = β, γ𝑝 = γ and 𝐷0
𝑝

= 𝐷0. 

Table 5.1. Fitting parameters α𝑝, β𝑝, γ𝑝 and𝐷0
𝑝
. 

Parameter 
𝑝 [% vacancies] 

0.0 0.1 0.5 1.0 2.0 5.0 10.0 

α𝑝 [nNnm-1] 1131.66 1116.94 1095.39 1051.67 961.12 784.04 522.34 

β𝑝 [nNnm-1] 143.48 141.01 139.75 137.32 126.02 105.11 71.36 

γ𝑝 [nNnm-1] 130.39 127.97 126.83 123.69 111.00 86.00 49.70 

𝐷0
𝑝

**[nm] 3.510-3 4.010-4 0.010 0.025 0.010 0.016 1.010-3 
The values of the parameters include armchair, zigzag and all types of chiral SWCNTs studied. 
**The values of 𝐷0

𝑝
 are so small that they can be considered zero, at first approximation. 
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The mean difference between the values of 𝐸𝐴, 𝐸𝐼 and 𝐺𝐽 rigidities calculated with 

Eqs. (5.1) to (5.3), and the values obtained directly from FE analysis is 0.39%, 

2.82% and 1.25%, respectively, for the case of the perfect SWCNTs and 3.66%, 

6.68% and 7.87%, respectively, for the case of the SWCNTs with 10% of vacancy 

defects. The evolution of the parameters α𝑝, β𝑝and γ𝑝 with the percentage of 

vacancy defects follows a nearly linear trend that causes the decrease of the three 

rigidities with the increase of the percentage of vacancies. 

The values of the rigidities obtained by FE analysis allowed evaluating the Young's, 

𝐸, and shear, 𝐺, moduli, and the Poisson’s ratio, 𝜈, of the SWCNTs without and with 

vacancy defects, as follows: 

𝐸 =
𝐸𝐴

𝐴
=

𝐸𝐴

𝜋𝑡𝑛√8 (
𝐸𝐼
𝐸𝐴

) − 𝑡𝑛
2

 (5.4) 

𝐺 =
𝐺𝐽

𝐽
=

𝐺𝐽

2𝜋𝑡𝑛 (
𝐸𝐼
𝐸𝐴

) √8 (
𝐸𝐼
𝐸𝐴

) − 𝑡𝑛
2

 (5.5) 

𝜈 =
𝐸

2𝐺
− 1 =

𝐸𝐼

𝐺𝐽
− 1 (5.6) 

The value of the nanotube wall thickness used in current calculations is 𝑡𝑛 = 0.34 

nm, equal to the interlayer spacing of graphite, the most widely accepted in 

literature. 

Parametric studies on the influence of chiral indices, nanotube diameter and wall 

thickness on the elastic constants of SWCNTs were carried out. The Young's 

modulus, 𝐸, of perfect SWCNTs, calculated using Eq. (5.4), decreases with 

increasing the sum of the chiral indices, for the SWCNTs with small chiral indices 

 𝑛 + 𝑚 ≤ 10 (which corresponds to the nanotube diameter up to about 𝐷𝑛 =

1 𝑛𝑚); afterwards the Young's modulus tends to stabilize at the value of about 

1.078 TPa. In the case of representation of the Young's modulus as a function of the 

nanotube diameter, 𝐷𝑛, its evolution can be unified, regardless of the SWCNT 

configurations. 

The comparison between the experimental results reported in the literature and 

those of the present study shows that the current Young's modulus is in 
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satisfactory agreement with the experimental values of the Young's modulus 

reported by Krishnan et al. (1998), who used thermal vibrations to estimate the 

SWCNT Young’s modulus, and the results of Yu et al. (2000), who used the tensile 

test. 

The evolution of the shear modulus, 𝐺, with the nanotube diameter is similar to 

that observed for the Young's modulus, i.e. the shear modulus value calculated by 

Eq. (5.5) also decreases initially with the diameter, and then tends to a stable value 

of about 0.48 TPa, for nanotube diameters 𝐷𝑛 ≥ 1 𝑛𝑚, regardless of the type of 

nanotube. This value is in satisfactory agreement with those previously reported in 

literature from theoretical approaches, and with the experimental value obtained 

by electrostatic torsion in the work of Hall et al. (2006). 

The average value of Poisson’s ratio, 𝜈, calculated with Eq. (5.6) assuming isotropy, 

and resorting to data from torsion and bending tests, converges for a value close to 

0.10 for large nanotube diameters, whatever the nanotube chirality. For values of 

the nanotube diameters such that 𝐷𝑛 < 1.5 𝑛𝑚, the Poisson’s ratio strongly 

depends on the chiral angle and increases from zigzag nanotubes (𝜃 = 0°) to 

armchair nanotubes (𝜃 = 30°). This is in agreement with the results for the torsion 

rigidity that does not follow a linear correlation with (𝐷𝑛 − 𝐷0)3, for very low 

values of the nanotube diameter, 𝐷𝑛. 

For the nanotubes containing vacancy defects, the Young’s modulus value 

decreases with increasing the nanotube diameter, and tends to stabilize for high 

values of the nanotube diameter, as in SWCNTs without defects. The same trend is 

observed for the shear modulus. The stabilized values of Young’s modulus and 

shear modulus are shown in Table 5.2. These values decrease with increasing 

content of vacancies in the SWCNTs. The stabilized values of the Poisson's ratio for 

each percentage of vacancy defects studied are also shown in the Table 5.2. The 

Poisson's ratio increases with the increase of the percentage of vacancies, for all 

types of SWCNTs studied. For SWCNTs with 10.0% of vacancy defects, the Young's 

modulus is about 43% of that of the perfect nanotubes, and the shear modulus is 

about 33%. Contrariwise, the Poisson's ratio increases about 4 times, compared to 

that obtained for the perfect nanotube. 
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Table 5.2. The stabilized values of Young’s and shear moduli, and Poisson's ratio 

of defective SWCNTs for different percentage of the vacancies. 

Vac. percent. 0.0% 0.1% 0.5% 1.0% 2.0% 5.0% 10.0% 

𝐸 [TPa] 1.078 1.062 1.025 0.992 0.897 0.697 0.458 

𝐺 [TPa] 0.480 0.482 0.467 0.438 0.385 0.277 0.160 

𝜈 0.100 0.101 0.102 0.118 0.168 0.256 0.430 

The reduction of the Young’s and shear moduli as a function of the percentage of 

vacancies follows quasi-linear trends for SWCNTs containing up to 5.0% of 

vacancy defects: 

𝐸𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛(%) =  −7.12 ∙ 𝑉𝑎𝑐𝑎𝑛𝑐𝑦 (%) (5.7) 

𝐺𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛(%) =  −8.85 ∙ 𝑉𝑎𝑐𝑎𝑛𝑐𝑦  (%) (5.8) 

When using Eqs (5.4) and (5.5), the choice of the value of the nanotube wall 

thickness, 𝑡𝑛, influences the calculation of the SWCNT elastic moduli. In this 

context, a study on effect of the wall thickness on the values of the elastic moduli of 

perfect SWCNTs was carried out. The Young's modulus determined by Eq. (5.4) as 

a function of the inverse of the wall thickness 1 𝑡𝑛⁄  (for the range of 𝑡𝑛 values 0.066 

– 0.69 nm) follows a quasi-linear trend, for nanotubes with diameter 𝐷𝑛 ≳

1.085 𝑛𝑚. This linear dependence can be understood based on Eq. (5.4), neglecting 

the value of 𝑡𝑛
2. The current quasi-linear trend of the Young's modulus as a function 

of the inverse of the wall thickness is in good agreement with the results of Young's 

modulus published by other authors for a considerable number of modelling 

approaches. For small nanotube diameters, 𝐷𝑛 ≲ 1.085 𝑛𝑚, there is deviation from 

the quasi-linear trend when the nanotube wall thickness is approaching half of its 

diameter, 𝑡𝑛 ≈ 𝐷𝑛/2. The evolution of the shear modulus calculated by Eq. (5.5) as 

a function of the inverse of the wall thickness also follows a quasi-linear trend for 

nanotubes with diameter 𝐷𝑛 ≳ 1.085 𝑛𝑚, which is no longer observed for small 

nanotube diameters, 𝐷𝑛 ≲ 1.085 𝑛𝑚 when 𝑡𝑛 approaches the value of 𝐷𝑛/2. 

From Eqs. (5.4) – (5.6), the Young's, 𝐸, and shear, 𝐺, moduli, and Poisson’s ratio, 𝜈, 

of the SWCNTs without and with vacancy can be calculated taking into account the 

relationships Eqs. (5.1) – (5.3) between each of the three rigidities and the 

nanotube diameter, using the following expressions: 
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𝐸 =
𝐸𝐴

𝐴
=

α𝑝(𝐷𝑛 − 𝐷0)

𝜋𝑡𝑛√8
β𝑝

α𝑝 (𝐷𝑛 − 𝐷0)2 − 𝑡𝑛
2

 (5.9) 

𝐺 =
𝐺𝐽

𝐽
=

γ𝑝(𝐷𝑛 − 𝐷0)

2𝜋𝑡𝑛 (
β𝑝

α𝑝) √8
β𝑝(𝐷𝑛 − 𝐷0)2

α𝑝 − 𝑡𝑛
2

 (5.10) 

𝜈 =
𝐸

2𝐺
− 1 =

β𝑝

γ𝑝
− 1 

(5.11) 

Equations (5.9) – (5.11) allows easy and rapid evaluation of the Young's, 𝐸, and 

shear, 𝐺, moduli, and Poisson’s ratio, 𝜈, of the single-walled carbon nanotubes, 

without resorting to numerical simulation. They establish three robust 

methodologies for calculation of the nanotube elastic constants. One, for evaluation 

the Young’s modulus, makes use of values of the parameters that describe the 

evolutions of the tensile and bending rigidities with the nanotube diameter. The 

second permits the evaluation of the shear modulus from results of tensile, 

bending and torsion tests. And the third is to assess the Poisson’s ratio from 

torsion and bending tests data. These methodologies are valid for perfect and 

defective carbon nanotubes, over a wide range of diameters and chirality. The 

evaluation of the Young's and shear moduli by Eqs. (5.9) and (5.10), respectively, 

gives accurate results when compared with those obtained by Eqs. (5.4) and (5.5), 

from the rigidities results of the numerical simulations. Eq. (5.11) leads to a value 

of the Poisson’s ratio of about 0.10. This value is independent of the nanotube 

diameter and corresponds to that obtained by Eq. (5.6) for large nanotube 

diameters. 

5.3. Elastic properties of the SWCNT heterojunctions 

A study was carried out in order to describe the geometry of the connecting region 

of heterojunctions. It was shown that the angle between the direction of the axes of 

the nanotubes constituting the HJs, and the centre line of the junction is equal to 

12.7°, whatever the diameters of nanotubes. Besides, the length of the connecting 

region, 𝐿3, follows a quasi linear function with the difference between the 

diameters of the nanotubes, (𝐷𝑛2 − 𝐷𝑛1), for armchair – armchair and zigzag – 

zigzag HJs, as follows: 
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𝐿3 = 2.9157(𝐷𝑛2 − 𝐷𝑛1) (5.12) 

Since the analysis of the mechanical behaviour of the armchair – armchair and 

zigzag – zigzag HJs, pointed out the occurrence of redundant bending deformation 

during the tensile test, the mechanical behaviour was only analysed under bending 

and torsion. It was found that both the bending and the torsional rigidities of HJs 

increase with increasing heterojunction diameter. The values of the bending 

rigidity of heterojunctions are comparable with those obtained for the narrower 

constituent nanotube, and lower than those obtained for wider constituent 

nanotube. In a different way, the values of the torsional rigidity of heterojunctions 

are between of those obtained for the narrower and wider constituent nanotubes. 

Among the findings of this study, it is worth to highlight that the bending, (𝐸𝐼)𝐻𝐽, 

and torsional, (𝐺𝐽)𝐻𝐽, rigidities of the HJ structures can be calculated from the 

rigidities of the constituent SWCNTs. The bending rigidity of HJs structures, with 

overall length, 𝐿𝐻𝐽, can be obtained from the equation of beam deflection, and 

considering that the HJ transverse displacement is equal to the sum of the 

corresponding transverse displacements of each SWCNT constituent of the HJs, as 

follows: 

(𝐸𝐼)𝐻𝐽 =
𝐿𝐻𝐽

3

(
𝐿𝑎

3

(𝐸𝐼)𝑎
+

3𝐿𝑎
2 𝐿𝑓 + 3𝐿𝑎𝐿𝑓

2 + 𝐿𝑓
3

(𝐸𝐼)𝑓
)

 (5.13) 

The torsional rigidity of the HJs can be calculated assuming that the respective 

twist angle is equal to the sum of the corresponding twist angles of each SWCNT 

constituent of the HJs, as follows: 

(𝐺𝐽)𝐻𝐽 =
𝐿𝐻𝐽

(
𝐿𝑎

(𝐺𝐽)𝑎
+

𝐿𝑓

(𝐺𝐽)𝑓
)

 (5.14) 

The letters 𝑎 and 𝑓 refer to the nanotubes at whose ends the force (moment) is 

applied and is fixed, respectively. 

The accuracy of the proposed analytical solutions, Eqs. (5.13) and (5.14), was 

evidenced. These expressions, which make easy the evaluation of the bending and 

torsion rigidities of SWCNT HJs from the respective rigidities of the constituents 
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SWCNTs, enable, in turn, the evaluations of Young’s, 𝐸𝐻𝐽, and shear, 𝐺𝐻𝐽, moduli of 

the heterojunction, assuming its diameter equal to the mean value of the diameters 

of the nanotubes that make up the heterojunction, 𝐷̅𝐻𝐽 =
1

2
(𝐷𝑛1 + 𝐷𝑛2): 

𝐸𝐻𝐽 =
(𝐸𝐼)𝐻𝐽

𝐼𝐻𝐽
=

(𝐸𝐼)𝐻𝐽

𝜋
64

[(𝐷̅𝐻𝐽 + 𝑡𝑛)
4

− (𝐷̅𝐻𝐽 − 𝑡𝑛)
4

]
 (5.15) 

𝐺𝐻𝐽 =
(𝐺𝐽)𝐻𝐽

𝐽𝐻𝐽
=

(𝐺𝐽)𝐻𝐽

𝜋
32

[(𝐷̅𝐻𝐽 + 𝑡𝑛)
4

− (𝐷̅𝐻𝐽 − 𝑡𝑛)
4

]
 

(5.16) 

It was found that both, the Young’s and shear moduli decrease with increasing HJ 

aspect ratio (𝜂 = 𝐿3/𝐷̅𝐻𝐽). The value of the Young’s modulus obtained for the 

heterojunctions is sensitive to how the load is imposed, that is if the force is 

applied at the narrower or the wider nanotube, whereas the shear modulus of HJs 

is insensitive to the loading condition. The elastic moduli results from the 

literature are summarised in the work of Sakharova et al. (2017a). The 

discrepancies reported are due to different modelling approaches and 

formulations for Young’s and shear moduli determination. Also, when using tensile 

tests, the existence of redundant bending deformation is usually not taken into 

account by most authors, which can influence their results of Young’s modulus of 

HJs. 

5.4. Future perspectives 

This work contributed to the systematic characterization of the elastic properties 

of single-walled carbon nanotubes and their heterojunctions, by numerical 

simulation. The results obtained can be useful for understanding and modelling the 

mechanical behaviour of CNT-based structures, especially CNT reinforced 

materials. The outcomes achieved have provided a benchmark in relation to 

ascertaining the elastic properties of chiral and non-chiral SWCNTs by numerical 

models. Some issues that merit further research efforts are now suggested. 

First of all, considering the ambiguity of the evolution of the SWCNT elastic 

constants with the nanotube diameter in the case of small nanotube diameters, 

reported in the literature, the development of a special model for SWCNTs with the 

diameter value less than 1𝑛𝑚 will be helpful. 
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The achieved contribution for the systematic characterization of the mechanical 

properties of SWCNTs, which are fundamental building blocks for complex 

structures, can be the basis to understand the mechanical behaviour of multi-

walled carbon nanotubes (MWCNTs), in which the building of an adequate 

numerical model has received fewer analyses to date, in spite of their high level of 

commercialization. A simplified FE model to evaluate the elastic properties of 

armchair and zigzag MWCNTs, which does not take into account the van der Waals 

forces acting between layers, was already developed by the applicant (Sakharova 

et al., 2017c, see Appendix A). In this context, it will be of interest to develop a 

modelling approach that allows simulating the van der Waals interactions between 

adjacent layers, in order to compare the results and to proceed with the correct 

selection of the numerical simulation method to be used for MWCNTs. 

The results concerning the mechanical behaviour of the isolated SWCNTs obtained 

in this work should allow the modelling of the mechanical response of complex 

carbon nanotube based structures. In this context, the mechanical characterization 

by numerical simulation of CNT-reinforced composites, as well 2D and 3D CNTs 

networks are suggested. 

The modelling approach successfully used in this work to numerically simulate the 

mechanical response of the SWCNTs has a prospective application in the study of 

the mechanical behaviour of non-carbon nanotubes (such as, for example, boron 

nitride, aluminium nitride, gallium nitride, chalcogenides nanotubes with a 

hexagonal honeycomb-like structure). Also, the modelling and numerical 

simulation of the mechanical behaviour of heterostructures with carbon and non-

carbon nanotubes are investigations of potential interest. 
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Appendix A 

This appendix contains the paper by Sakharova et al. (2017c), which deals with a 

simplified finite element model to evaluate the elastic properties of armchair and 

zigzag multi-walled carbon nanotubes. This simplified model does not take into 

account the van der Waals forces acting between layers in the MWCNTs. 
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Abstract. The mechanical behaviour of non-chiral multi-walled carbon nanotubes under tensile and 
bending loading conditions was investigated. For this purpose, a simplified finite element model of 
armchair and zigzag multi-walled carbon nanotubes, which does not take into account the van der 
Waals forces acting between layers, was tested in order to evaluate their tensile and bending 
rigidities, as well as the Young’s modulus. The current numerical simulation results are compared 
with data reported in the literature. The robustness of the simplified model for evaluation of the 
Young’s modulus of multi-walled carbon nanotubes is discussed. 

Introduction 

The unique mechanical, optical, thermal and electrical properties of carbon nanotubes (CNTs) 
empower a wide range of further requests and enhancements in the performance of existing 
applications. In recent years, the research interest has been focused on multi-walled carbon 
nanotubes (MWCNTs), i.e. structures formed by two or more concentric single-walled carbon 
nanotubes (SWCNTs), because of their outstanding mechanical properties which can be 
advantageous for the improvement of structural composites and their consequent high level of 
commercialization [1]. Multi-walled carbon nanotube are comprised of 2 to 50 coaxial single-
walled carbon nanotubes with an interlayer spacing of approximately 0.34 nm, which interact with 
each other by non-covalent interactions, adequately described by a weak van der Waals force using 
the Lennard-Jones potential. The diameter of MWCNTs can attain 30 nm in contrast to 0.7–2.0 nm 
for typical SWCNTs. 

There are two approaches for evaluation of the elastic properties of CNTs (for both structure 
types, SWCNTs and MWCNTs): experimental [2, 3] and computational (see, for example, [4-10]). 
Due to the fact that the experimental results reported in the literature are limited, owing to the 
complexity of the nanomaterials characterization at the atomic scale, modelling and computer 
simulation methods for predicting the mechanical properties of CNTs have been progressed [4]. 
There are three main groups of methodologies for the modelling of CNTs mechanical behaviour: 
the atomistic approach, the continuum mechanics approach and the nanoscale continuum mechanics 
approach. The atomistic modelling approach (see, for example [5]) due to its large computational 
cost, has been progressively replaced by the continuum mechanics modelling approach (CM). In 
this case, the existent discrete CNT structure is replaced by a continuum medium (see, for example 
[6]), but this technique does not seem to be sufficiently adequate to model nanotube mechanical 
behaviour [7]. In case of the nanoscale continuum modelling approach (NCM) each carbon-carbon 
(C-C) bond is replaced by a continuum element, e.g. a beam element, whose behaviour is described 
by elasticity theory (see, [8 – 10]). The NCM approach overcomes the disadvantages of the MD and 
CM modelling approaches, leading to accurate results without computational complexity and 
additional costs. Consequently, the NCM approach has been successfully used for simulation of the 
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mechanical behaviour of SWCNTs [10 – 12], after Li and Chou [8] established a direct relationship 
between the structural mechanics parameters of the beam element and the molecular mechanics 
parameters. One of the remaining challenges in this research area is building an adequate numerical 
model of MWCNTs in order to accomplish accurate evaluation of their mechanical properties. 

In spite of numerous numerical simulation studies performed towards the evaluation of the 
mechanical properties of carbon nanotubes, the modelling and numerical characterization of multi-
walled carbon nanotubes have received less research attention than SWCNTs. The essential 
difference between the simulation of SWCNTs and MWCNTs is to consider, in the simulation of 
these latter, the non-covalent weak van der Waals force, which leads to significant modelling and 
computing efforts. The first simulations taking into account the van der Waals force were 
performed by Li and Chou [13], by introducing a nonlinear truss rod model in their study on the 
elastic behaviour of multi-walled carbon nanotubes with up to 4 layers under tension and torsion. 
This model comprises the complex mesh of the truss rods in addition to the beam element mesh for 
the simulation of each SWCNT composing the MWCNT. The following studies in this research 
area were mostly focused on the search for a modelling technique, which permits simplifying the 
simulation procedure of MWCNTs. Since Kalmakarov et al. [14] proposed a spring with no mass as 
the best element to simulate the van der Waals force, several models of MWCNTs with up to                  
5 layers, employing spring elements for describing the van der Waals interactions, were 
successfully developed by Rahmandoust and Öchsner [15] and Ghavamian et al. [16]. Rahmandoust 
and Öchsner [15] concluded that the modelling of the van der Waals interactions between non-
covalent neighbour atoms is not necessary in the case of uniaxial tensile test, because the MWCNT 
models with and without considering the van der Waals force showed similar Young’s modulus 
results. In case of torsion testing, a difference in the shear modulus of about 9.0% is observed 
between results obtained with and without consideration of the van der Waals interactions in the 
MWCNT models. In their finite element model of double-walled carbon nanotubes, Fan et al. [17] 
proposed to consider an interlayer pressure to model the van der Waals interaction. The mentioned 
models help to save the computing efforts and show reasonable agreement with the results in the 
literature. Besides the springs, other elements were tested to model the van der Waals force, as for 
example, beam elements were used by Nahas and Abd-Rabou [18] to simulate not only the covalent 
C-C bonds but also the van der Waals force between layers, in double- and triple-walled CNTs. 

This work aims to contribute towards the study of the mechanical behaviour of non-chiral 
(armchair and zigzag) MWCNTs, with different number (up to 10) of walls, under tension, bending 
and torsion loading conditions, focusing on the respective rigidities and Young’s moduli. The NCM 
approach, employing beam elements, was used to simulate individual layers, i.e. each SWCNT 
composing the MWCNTs. A simplified finite element model of MWCNTs, without taking into 
account the van der Waals forces, was considered. 

Geometric definition 

The fundamental configurations of CNTs are defined by the chiral vector Ch or the chiral angle, 
θ, between the chiral vector Ch and the direction (n, 0) [19]: 

�� = n�� +m�	,                                                                                                                           (1) 

θ = sin
� √��
�√��������,                                                                                                                   (2) 

where (n,m) is a pair of the lattice translation indices a1 and a2, the unit vectors of the graphene 
hexagonal lattice; n and m are integers. The length of the unit vector a is defined as a = √3a�
� 
with the equilibrium carbon-carbon (C-C) covalent bond length aC-C = 0.1421 nm. 

In this way, zigzag (m = 0, θ = 0°), armchair (n = m, θ = 30°), and chiral (n ≠ m, 0° < θ <
30°) nanotubes are the fundamental configurations of CNTs.  
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The single-walled CNT diameter is calculated as follows: 

D� = �√��������
� .                                                                                                                          (3) 

MWCNTs comprise two or more coaxial SWCNTs (layers). The distance between layers in 
MWCNTs is generally considered similar to the interlayer spacing of graphene, 034 nm. The most 
common values experimentally determined for the interlayer distance are close to this value. For 
example, Kharissova and Kharisov [20] and Kiang et al. [21] reported values in the ranges of 0.32 – 
0.35 nm and 0.342 – 0.375 nm, respectively. 

Numerical simulation and analysis 

Configurations and finite element modelling of MWCNTs. The NCM approach that replaces 
the carbon-carbon bonds of CNT by equivalent beam elements was used for modelling each layer of 
MWCNTs. The finite element (FE) model uses the coordinates of the carbon atoms for generating 
the nodes and their suitable connection creates the beam elements. The relationships found out 
between the inter-atomic potential energies of the molecular CNT structure and strain energies of 
the equivalent continuum CNT structure, consisting of beams undergoing axial, bending and 
torsional deformations, are the basis for the application of continuum mechanics to the analysis of 
the mechanical behaviour of MWCNTs [13]. The FE simulation uses the analogy between the bond 
length, a�
�, and the element length l, assuming this element with a circular cross-section area (see 
Fig. 1). 

 

Figure 1: Modelling of CNT, replacing the C-C bonds by beam elements. 

The meshes of the MWCNTs structures to be used in the FE analyses, were built using the 
CoNTub 1.0 software [22]. This code generates ASCII files, describing atom positions and their 
connectivity that enter as input data in available commercial and in-house FE codes. A previously 
developed in-house application, designated InterfaceNanotubes [10], was used in order to convert 
the ASCII files, acquired from the CoNTub 1.0 software, into the format compatible with the 
commercial FE code ABAQUS®. An example of finite element mesh for armchair MWCNT is 
shown in Fig. 2. The geometrical characteristics of MWCNTs used in the present FE analyses are 
summarized in Table 1. The interlayer spacing, d!�", in the numerical models of MWCNT structures 
was chosen to be as close as possible to the interlayer spacing of graphene, 0.34 nm, i.e. 0.339 nm 
and 0.352 nm for armchair and zigzag MWCNTs, respectively. The nanotube length used in the 
numerical simulations was 30 times bigger than the outer diameter, such that the mechanical 
behaviour can be independent of the length. 

In the current study, a simplified model of the MWCNTs that does not take into account the non-
covalent van der Waals interactions between the carbon atoms in the adjacent layers will be used to 
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simulate their mechanical behaviour under simple tension and bending. The current results are 
compared with those from the numerical simulation studies, where the van der Waals interactions 
are considered in the MWCNTs models. 

 

Figure 2: Example of FE mesh, for armchair MWCNT with 4 layers: 
(10,10)(15,15)(20,20)(25,25). 

Table 1: Geometrical characteristics of MWCNTs under study. 

Interlay. 
spacing, 
d!�" [nm] 

CNT 
type 

N, 
number 
of layers 

(n, m) 
Outer layer 
diameter, 
D#$" [nm] 

0.339 

ar
m

ch
ai

r 

1 (10,10) 1.356 

2 (10,10) (15,15) 2.034 

3 (10,10) (15,15) (20,20) 2.713 

4 (10,10) (15,15) (20,20) (25,25) 3.390 

5 (10,10) (15,15) (20,20) (25,25) (30.30) 4.068 

6 (10,10) (15,15) (20,20) (25,25) (30.30) (35,35) 4.746 

7 (10,10) (15,15) (20,20) (25,25) (30.30) (35,35) (40.40) 5.424 

8 (10,10) (15,15) (20,20) (25,25) (30.30) (35,35) (40.40) (45,45) 6.101 

9 (10,10) (15,15) (20,20) (25,25) (30.30) (35,35) (40.40) (45,45) (50,50) 6.780 

10 (10,10) (15,15) (20,20) (25,25) (30.30) (35,35) (40.40) (45,45) (50,50) (55,55) 7.457 

0.352 

zi
gz

ag
 

1 (14,0) 1.096 

2 (14,0) (23,0) 1.802 

3 (14,0) (23,0) (32,0) 2.507 

4 (14,0) (23,0) (32,0) (41,0) 3.212 

5 (14,0) (23,0) (32,0) (41,0) (50,0) 3.916 

6 (14,0) (23,0) (32,0) (41,0) (50,0) (59,0) 4.618 

7 (14,0) (23,0) (32,0) (41,0) (50,0) (59,0) (68,0) 5.323 

8 (14,0) (23,0) (32,0) (41,0) (50,0) (59,0) (68,0) (77,0) 6.027 

9 (14,0) (23,0) (32,0) (41,0) (50,0) (59,0) (68,0) (77,0) (86,0) 6.732 

10 (14,0) (23,0) (32,0) (41,0) (50,0) (59,0) (68,0) (77,0) (86,0) (95,0) 7.436 

Molecular interactions and equivalent properties of beam elements. The elastic properties of 
the beam elements can be determined by establishing the equivalence between the energies 
associated with the bond interactions, as bond stretching, Ur, and bond bending, Uθ [23] and the 
energies related to elastic deformations of the beams, in stretching, UA, and bending, UM, as 
follows: 
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	U' = U( ⇒ �
� k'+Δr.� = �

�
/0(0
1 +Δl.�                                                                                                  (4) 

U3 = U4 ⇒ �
� k3+Δθ.� = �

�
/050
1 +2α.�                                                                                       (5) 

where kr and kθ are the bond stretching and bond bending constants, and ∆r and ∆θ are the bond 
stretching increment and bond angle bending variation; ∆l is the axial stretching displacement of the 
beam with length, l, α is the rotational angle at the ends of the beam, Ab and Ib are the cross-
sectional area and moment of inertia of the beam, respectively; and Eb is the Young’s modulus of 
the beam. 

Direct relationships can be established between the structural mechanics parameters, EbAb, EbIb	
and the force field constants, kr, kθ [8] through the Eqs. 4 and 5: 

/0(0
1 = k'                                                                                                                                             (6) 

/050
1 = k3                                                                                                                                       (7) 

Equations 6 and 7 are the base for the application of continuum mechanics to the analysis of the 
mechanical behaviour of MWCNTs, and provide the input for simulation. The values of force 
constants and input data for the FE model are given in Table 2. 

Table 2: Mechanical and geometric properties of beam elements, giving input parameters for FE 
simulations. 

Parameter Value Formulation 

Force constant, kr [24] 6.52×10
-7

 [N nm-1
] – 

Force constant, kθ [24] 8.76×10
-10

 [N⋅nm⋅rad-2
] – 

Beam length, l = a�
� 0.1421 [nm] – 

Beam diameter, d 0.147 [nm] d = 49k3 k'⁄  

Cross section area, Ab 0.01688 [nm2
] A< = πd� 4⁄  

Moment of inertia, Ib 2.269×10
-5

 [nm4
] I< = πd? 64⁄  

Young’s modulus, Eb 5488 [GPa] E< = k'�l 4πk3⁄  

Tensile rigidity, EbAb 92.65 [nN] E<A< = k'l 
Bending rigidity, EbIb 0.1245 [nN⋅nm2

] E<I< = k3l 
Loading conditions. Numerical simulations of conventional tensile and bending tests were 

carried out in order to study the effect of chirality, outer layer diameter and number of layers on the 
MWCNTs mechanical properties. The boundary and loading conditions are shown in Fig. 3. The FE 
analysis was performed using the commercial FE code ABAQUS®. 

In order to simulate the mechanical behaviour of MWCNT in tension, an axial displacement ux is 
applied to all nodes of one nanotube end, leaving the other end immobile. The tensile rigidity of the 
nanotube, EA, is determined as: 

EA = BCD
$C                                                                                                                                               (8) 

where L is the nanotube length and Fx is an axial force, taken from the FE analysis. 
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In bending, a transverse displacement, uy, is applied at one nanotube end, leaving the other end 
immobile. The bending rigidity of the nanotube, EI, is determined as: 

EI = BEDF
�$E                                                                                                                                               (9) 

where Fy is the transverse force taken from the FE analysis. 

 

(a) 

  
(b) 

Figure 3(a, b): Example of loading and boundary conditions for armchair MWCNT with 4 layers: 
(10,10)(15,15)(20,20)(25,25). 

Young’s modulus of SWCNTs and MWCNTs. The Young’s modulus of SWCNTs (inner and 
outer layers of the MWCNTs) and MWCNTs were calculated using the following expression taking 
into account the rigidity in tension, EA, calculated from the FE analysis: 

E = /(
(                                                                                                                                           (10) 

A hollow cylindrical profile, i.e. a geometry similar to the SWCNT, as shown in the Fig. 4a 
(with mean diameter Dn and thickness tn), has the cross-sectional area and the moment of inertia 
given by, respectively: 

A = �
? G+D� + t�.� I +D� I t�.�J = πD�t�                                                                                      (11) 

I = �
K? G+D� + t�.? I +D� I t�.?J = �LMF "M

? N1 + P "MLM
Q�R                                                                    (12) 
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For the case of the MWCNT, the cross-sectional area and the moment of inertia of the equivalent 
hollow cylinder with the inner layer diameter, Din, the outer layer diameter, Dout, and the thickness 
of layers, tn (see, Fig. 4b), given by, respectively: 

A = �
? G+D#$" + t�.� I +D!� I t�.�J                                                                                                  (13) 

I = �
K? G+D#$" + t�.? I +D!� I t�.?J                                                                                                  (14) 

  
(a) (b) 

Figure 4 (a, b): Schematic representations of the profiles of: (a) SWCNT and (b) MWCNT. 

Assigning DS = (D!� + D#$"./2 as the average diameter of the MWCNT, Eqs. 13 and 14 can be 
modified as follows: 

A = �
� DS+D#$" I D!� + 2t�.                                                                                                               (15) 

I = �
�KDS+D#$" I D!� + 2t�. ∙ G2DS� I D#$"D!� + t�+D#$" I D!�. + t��J                                            (16) 

Similarly to what was carried out for the SWCNTs in the previous studies [10], from Eqs. 15 and 
16, it is now possible to write: 

EI
EA = 1

8 G2DS� I D#$"D!� + t�+D#$" I D!�. + t��J ⇒ 

	DS = �
√�W8P

/5
/(Q I t�� + D#$"D!� I t�+D#$" I D!�.                                                                          (17) 

Consequently, the Young’s modulus of MWCNTs can be calculated from Eqs. 15 and 17, taking 
into account the cross-section area and the moment of inertia: 

E = /(
( = /(

�+LXYZ
L[M��"M.	WP\]\^Q�_LXYZL[M
+LXYZ
L[M."M
"M� `/a		
                                                                (18) 

The nanotube wall thickness considered is tn = 0.34 nm, as very commonly used [8, 10, 13, 15, 16]. 

Results and discussion 

Rigidities of SWCNTs and MWCNTs. The evolutions of the tensile, EA, and bending, EI, 
rigidities with the nanotube diameter were studied for individual SWCNTs, corresponding to the 
inner and outer layers of the MWCNTs in Table 1. Fig. 5 shows the evolutions of the EA and EI 
rigidities as a function of the SWCNT diameter, Dn. The results of Fig. 5 comprise not only 
previously studied cases of the SWCNTs with Dn up to 2.713 nm [10], but also those with higher Dn 
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up to 7.457 nm. The evolutions of the rigidities with nanotube diameter, Dn, can be represented by a 
quasi-linear function for the case of tensile rigidity, EA, and close to a cubic power function for the 
case of bending, EI, rigidity, for armchair and zigzag SWCNTs studied, as shown in Fig. 6. The 
linear dependence can be understood on the base of the linear relationship between cross-sectional 
area and the nanotube diameter (Eq. 11). In a similar way, the cubic dependence can be understood 

  
(a) (b) 

Figure 5 (a, b): Evolution of: (a) the tensile, EA, and (b) bending, EI, rigidities, as a function of the 
nanotube diameter, Dn, for individual structures of armchair and zigzag (SWCNTs). 

  
(a) (b) 

Figure 6 (a, b): Evolution of: (a) the tensile, EA, rigidity as a function of the nanotube diameter, Dn, 
and (b) bending, EI , rigidity as a function of D��, for individual structures of armchair and zigzag 

(SWCNTs). 

based on the quasi-cubic relationship between the moment of inertia and the nanotube diameter 
(Eq. 12, neglecting the value of +tb D�⁄ .�). These linear relationships extend up to diameters of 
about 7.5 nm, those already found for SWCNTs up to about 2.7 nm [10]. 

The values of the tensile, EAMW, and bending, EIMW, rigidities of the MWCNTs, obtained from 
Eqs. 8 and 9, are represented as a function of the outer layer diameter, Dout, in the Figs. 7a and 7b, 
respectively. The evolution of the tensile rigidity, EAMW, with the outer layer diameter, Dout, can be 
described by a square power trend, and for the bending rigidity, EIMW, a fourth power trend can be 
used as shown in the Figs. 8a and 8b, respectively. These trends are related with the square power 
relationship between the cross-sectional area and the outer layer diameter, Dout (see, Eq. 13), and the 
fourth power relationship between the moment of inertia and the outer layer diameter, Dout (see, 
Eq. 14), being the inner layer diameter, Din, constant for each MWCNT structure (armchair and 
zigzag) studied. The evolutions of tensile, EAMW, rigidity with D#$"�  can be separated for the cases 
of armchair and zigzag MWCNTs. The same is true for the evolutions of bending, EIMW, rigidity as 
a function of D#$"? . This dissimilarity between the values of both rigidities for armchair and zigzag 
MWCNTs can be attributed to the different interlayer spacing for armchair (dint = 0.339 nm) and 
zigzag (dint = 0.352 nm) structures. 
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(a) (b) 

Figure 7 (a, b): Evolution of: (a) the tensile, EAMW, and (b) bending, EIMW, rigidities, as a function 
of the outer layer diameter, Dout, for armchair and zigzag MWCNTs. 

  
(a) (b) 

Figure 8 (a, b): Evolution of: (a) the tensile, EAMW, rigidity as a function of D#$"�  and (b) bending, 
EIMW, rigidity, as a function of D#$"? , for armchair and zigzag MWCNTs. 

 
Young’s modulus of MWCNTs. The MWCNTs Young’s modulus values were calculated by 

Eq. 10, just using the tensile test results, and Eq. 18, which uses the results of tensile and bending 
tests. Figure 9 compares the Young’s modulus results as a function of the outer layer diameter 
(Fig. 9a) and the number of layers (Fig. 9b) constituting the MWCNT structure, for armchair and 
zigzag MWCNTs. The Young’s modulus values obtained by both equations are shown. The 
Young’s modulus of the armchair structure are slightly higher than the zigzag structure, and for 
each structure the evolution is similar, regardless of the calculation approach used (Eq. 10 or 
Eq. 18). Hereinafter, the Young’s modulus values obtained by Eq. 18 are used. 

The Young’s modulus value of the armchair MWCNTs is about the same regardless of the outer 
layer diameter (Fig. 9a) or the number of layers (Fig. 9b) constituting the MWCNT. In the case of 
zigzag structures a slight decrease of the Young’s modulus value is observed when the outer layer 
diameter (Fig. 9a) or the number of layers (Fig. 9b) increase. The Young’s modulus values of 
zigzag MWCNTs are in average 3.9% lower than for armchair MWCNTs. 
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(a) (b) 

Figure 9 (a, b): Evolutions of the Young’s modulus of MWCNTs with: (a) the outer layer diameter 
and (b) the number of layers constituting the MWCNT. The Young’s moduli of MWCNTs were 

evaluated by Eqs. 10 and 18. 

Figure 10 compares the Young’s modulus of the MWCNTs with the Young’s moduli of SWCNTs 
corresponding to the inner and outer layers, for armchair (Fig. 10a) and zigzag (Fig. 10b) structures. 
The Young’s modulus values for the armchair MWCNTs are very close to the valuesobtained for 
the inner and outer layers. The Young’s modulus values for zigzag MWCNTs are lower than the 
Young’s moduli of the inner and outer layers. As mentioned above concerning rigidities, the 
dissimilarity between the Young’s modulus of the armchair and zigzag MWCNTs are also certainly 
related with the different interlayer spacing between these structures. 

  
(a) (b) 

Figure 10 (a, b): Young’s moduli of MWCNTs compared with the Young’s moduli of inner and 
outer constituent SWCNTs for nanotubes structures: (a) armchair and (b) zigzag. 

Comparison with literature results. Table 3 summarize the current Young’s modulus results of 
MWCNTs and those from literature that were obtained taking into account the van der Waals 
interactions. Figure 11 compares the evolutions of these Young’s modulus with the number of 
layers, N, constituting the MWCNTs. For this purpose, MWCNT structures with 3 (Fig. 11a) and 4 
or 5 (Fig. 11b) layers were considered [13, 14, 16 – 18]. As in the current work, an interlayer 
spacing, dint, is equal to 0.339 nm and 0.352 nm for armchair and zigzag MWCNTs, respectively, 
was used in the selected studies [13, 14, 16 – 18].  
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Table 3: Comparison of the current Young’s modulus results with those reported in the literature, 
using the NCM approach and taking into account the van der Walls interaction between layers. 

Reference 
tn, 
[nm] 

Interlayer 
spacing, 
dint [nm] 

Approach 
for the van 
der Waals 

interactions 
between 
layers 

MWCNT type
∗
 

N, 
max. 
numb 
layers 

Young’s 
modulus, 
E [TPa] 

Li and 
Chou [13] 

0.34 
0.339 

truss rods 
armchair (3,3)(8,8)(13,13)(18,18) 

4 
1.05 – 1.10 

0.352 zigzag (5,0)(14,0)(23,0)(32,0) 1.05 – 1.12 

Kalamkarov 
et al. [14] 

0.68 
0.339 spring 

elements 
armchair (5, 5)(10, 10)(15, 15)(20, 20) 

4 
1.00 - 1.45 

0.352 zigzag (5, 0)(14, 0)(23, 0)(32, 0) 0.96 – 1.50 

Ghavamian 
et al. [16] 

0.34 
0.339 

spring 
elements 

armchair 
(10,10)(15,15)(20,20)(25,25)(30,30) 

5 

1.040 – 
1.044 

0.352 
zigzag 

(14,0)(23,0)(32,0)(41,0)(50,0) 
1.030 – 
1.035 

Fan et al. 
[17] 

0.34 0.352 

spring 
elements: 
linear part 

of the 
interlayer 
pressure 

zigzag (5,0)(14,0)(23,0) 

3 

1.006 – 
1.011 

zigzag (18,0)(27,0)(36,0) 
1.040 –
1.019 

Nahas and 
Abd-Rabou 

[18] 
0.346 – 

beam 
elements 

armchair 
3 

0.98 – 1.02 

zigzag 0.87 – 0.94 

Current 
study 

0.34 
0.339 

– 
armchair (Table 1) 

10 

1.061 – 
1.054 

0.352 zigzag (Table 1) 
1.069 – 
1.012 

∗The MWCNTs were produced starting from the smallest diameter layer (indicated in the table in the initial 
position) by adding subsequent layers until maximum number of layers. 

All selected studies share the same modelling approach for the simulation each layer of the 
MWCNT structure: a NCM approach employing 3D beam elements. Regarding the simulation of 
the non-covalent van der Waals interactions between layers, truss rod elements [13], spring 
elements [14, 16, 17] and beam elements [18] were used. Particularly good agreement is observed 
when comparing the current Young’s modulus results with those of Fan et al. [17] (Fig. 11a), for 
zigzag MWCNTs, Ghavamian et al. [16] (Fig. 11b), for armchair and zigzag MWCNTs, where the 
spring elements for simulation of the van der Waals interactions were considered, and Li and Chou 
[13] (Fig. 11b), for armchair MWCNTs, who used the truss rod elements for simulation of the van 
der Waals forces. When compared with the current results, the smallest difference of 0.75% occurs 
for the Young's modulus calculation performed by Fan et al. [17] for (18,0) (27,0) (36,0) zigzag 
MWCNTs. Differences of 1.15% and 1.68% occur for the results of Ghavamian et al. [16] for 
armchair and zigzag MWCNTs, respectively. The comparison with the results reported by Li and 
Chou [13] shows differences of 1.65% and 8.84% for armchair and zigzag MWCNTs respectively. 
The Young’s modulus values obtained by Nahas and Abd-Rabou [18] (Fig. 11a) show differences 
of 3.4% and 9.5% for armchair and zigzag MWCNTs, respectively, when compared with the 
current results. The Young’s modulus calculated by Nahas and Abd-Rabou [18] is also lower than 
those obtained in the other studies [13, 14, 16, 17]. The biggest differences (27.0% for armchair and 
32.0% for zigzag MWCNTs) are found with the Young’s modulus results predicted by Kalamkarov 
et al. [14] (Fig. 11b). It can be concluded from the current results that, even without taking into 
account the van der Waals interactions between carbon atoms in the adjacent layers, reliable 
Young’s modulus values are obtained when compared with some of the literature results. This 
simplified MWCNT model helps to save modelling and computing efforts and facilitates the 
numerical simulation of the MWCNTs, particularly for long nanotubes. 
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 (a) 

     (b) 
Figure 11 (a, b): Comparison of the current Young’s modulus results with those reported in the 

literature, using the NCM approach and taking into account the van der Walls interaction between 
layers, for: (a) MWCNTs with 3 layers and (b) MWCNTs with 4 or 5 layers. 

Conclusions 

A simplified finite element model of multi-walled carbon nanotubes, which does not take into 
account the van der Waals forces acting between layers, has been used in order to carry out a 
systematic evaluation of the tensile and bending rigidities, and consequently the Young’s modulus 
of non-chiral MWCNT structures. 

A square power law relates the tensile rigidity of MWCNTs to the outer diameter. A fourth 
power law relates the bending and torsional rigidities to the outer diameter of the MWCNT. 

The Young’s modulus of armchair and zigzag MWCNTs is approximately constant with 
increasing the number of layers and consequently the outer layer diameter. The Young’s modulus 
values determined for the zigzag structures are lower than for the armchair structures. 

The current Young’s modulus values are in good agreement with the results available in the 
literature, taking into account the van der Waals interactions. 
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