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Abstract

C omputer networks are present everywhere, making them a key aspect
to the proper functioning of products and services that are often served
exclusively through the Internet. The pervasive nature of computer

networks makes them particularly suitable to attacks. Therefore, more than
just functional systems, we are also looking for systems that are reliable, avail-
able, scalable and secure. A solution to meet the growing demands of industries
and customers alike is cloud computing. Among several other advantages of
this paradigm, the possibility of increased profits by reducing costs with infra-
structure and software licenses, while allowing for virtually unlimited growth is
particularly relevant. However, these advantages are many times shadowed by
the increased security risks that steam from having different entities involved,
with relationships and responsibilities not properly identified. This may lead to
misuse or malicious attacks against cloud computing, which may compromise
sensitive information that is stored in shared third party facilities, and many
open issues still prevail. Due to these and other issues, it is extremely import-
ant to devise new solutions that increase the trustworthiness of cloud computing
environments and help to keep the continued growth in demand for virtualized
resources. Facing this challenge, this work aims to study, analyze, propose, de-
velop and evaluate several models and mechanisms to fill these gaps. Firstly, a
systematic approach for selecting a group of candidate predictors that is suitable
for cloud network traffic prediction is proposed. On the basis of this scenario, a
predictor model for cloud network traffic that involves a tradeoff between predic-
tion error, historical data dependence, computational costs, and timely response
is proposed. Next, an Anomaly Detection System to support decision-making
and counter attack malicious actions against cloud computing systems is presen-
ted. This contribution relies on network traffic prediction to obtain features that
represent the expected appropriate behaviour of the cloud network traffic used
jointly with a Support Vector Machine model for detecting anomalous events
in the cloud environment. Finally, a mechanism for determining the similarity
level between features of the alarms is proposed. This mechanism aims to op-
timize the efficiency for generating alarms, decreasing the network data traffic
to manage the IDS and its associated transfer costs. The benefits and draw-
backs of the contributions were demonstrated in realistic simulations using data
from real network traces. Furthermore, the evaluations were conducted with
well-known metrics and the results show that all the proposed mechanisms were
able to outperform similar proposals in literature.

Keywords: Security; Cloud Computing; Network Traffic Prediction;
Intrusion Detection System; Alarm Management.





Resumo

R edes de computadores estão presentes por todos os lados, se tornando
um ponto chave para o funcionamento adequado de produtos e serviços
que são oferecidos exclusivamente através da Internet. A natureza per-

vasiva das redes de computadores as tornam sujeitas a ataques. Desse modo,
mais que apenas sistemas funcionais, também estamos a procura de sistemas que
são confiáveis, disponíveis, escaláveis e seguros. Uma solução que vai de encon-
tro com a crescente demanda da indústria e clientes é a computação em nuvem.
Entre muitas outras vantagens desse paradigma, a possibilidade de aumentar
lucros através da redução de custos com infraestrutura e licenças de software,
ao mesmo tempo que permite um crescimento praticamente ilimitado é relev-
ante. No entanto, essas vantagens são muitas vezes obstruídas pelo aumento
dos riscos de segurança que cobrem as entidades envolvidas, com relaciona-
mentos e responsabilidades não propriamente estabelecidos. Isso pode levar a
abusos ou ataques maliciosos contra a computação em nuvem, o qual pode com-
prometer informação sensível que é armazenada e em instalações de terceiros
compartilhada. Devido a esses e outros problemas, é de extrema importância
conceber novas soluções que aumentem a confiança do ambiente de computação
em nuvem e ajude a manter um crescimento contínuo na demanda por esses
recursos. Diante deste desafio, esta tese tem como objetivo estudar, analisar,
propor, desenvolver e avaliar vários modelos e mecanismos para preencher essas
lacunas. Em primeiro lugar, uma abordagem sistemática para a seleção de um
grupo de preditores candidatos adequados para a previsão do tráfego da rede
em nuvem é proposta. Com base nesse cenário, um modelo de predição para
o tráfego de rede em nuvem que envolve uma relação entre erro de predição,
dependência histórica de dados, custos computacionais e tempo de resposta
é proposto. Em seguida, um Sistema de Detecção de Anomalias para apoiar
a tomada de decisões e combater ações mal intencionadas contra sistemas na
nuvem é apresentado. Esta contribuição baseia-se na previsão de tráfego de rede
para obter variáveis que representam o comportamento adequado esperado do
tráfego de rede usado em conjunto com um modelo de Máquina de Vetores de
Suporte para a detecção de eventos anômalos no ambiente da nuvem. Final-
mente, um mecanismo para determinar o nível de similaridade entre as variáveis
que descrevem um alarme é proposto. Este mecanismo visa otimizar a eficiência
na geração de alarmes, diminuindo o tráfego de dados para gerenciar um IDS e
seus custos de transferência associados. Os benefícios e desvantagens das con-
tribuições foram demonstrados em simulações realistas usando dados de rede
reais. Além disso, as avaliações foram realizadas com métricas bem conhecidas
e os resultados mostram que os mecanismos propostos foram capazes de superar
propostas similares na literatura.

Palavras-chave: Segurança; Computação em Nuvem; Predição de Tráfego
de Rede; Sistemas de Detecção de Intrusão; Gerenciamento de Alarmes.
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Chapter 1
Introduction

Logic will get you from A to
B. Imagination will take you
everywhere.

(Albert Einstein)

Contents
1.1 Motivation and Problem Statement . . . . . . . . . . . 1
1.2 Objectives and Contributions . . . . . . . . . . . . . . . 3
1.3 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . 5

T his work aims at improving security and trustworthiness of cloud com-
puting environments by developing a model for predicting cloud net-
work traffic, an approach for detecting anomalies in cloud network

traffic that relies on traffic prediction, as well as a mechanism for aggregat-
ing similar alarms from an IDS in the context of the cloud network traffic. The
motivation and research scope of this thesis are presented and investigated fol-
lowed by the discussion of the proposed objectives together with the respective
contributions, as well as the thesis outline.

1.1 Motivation and Problem Statement

A study performed by the Carbon Disclosure Project attests that large IT com-
panies could achieve expressive cost savings and carbon reductions by 2020 if
they move their IT assets to the cloud [Baumast, 2013]. This study claims
that these companies could benefit from billions in savings. Furthermore, an-
other study published in The New York Times [Gilmer, 2011] went deeper: they
estimate that companies in the U.S.A. using cloud computing can save $12.3
billion per year by 2020. In addition, these companies could make an annual
reduction in carbon emissions equivalent to 200 million barrels of oil.

Cloud computing enables the adoption of a promising computing model that al-
lows consuming a computer resource rather than having to build and hold their
own computing infrastructure. However, a widespread adoption of this paradigm
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has been hampered by the lack of security mechanisms. For instance, it is pre-
dicted that cybercrimes will cost the world $6 trillion annually by 2021 [Net-
working, CISCO Global Cloud Index, 2018]. Furthermore, 74% of Informa-
tion Technology executives believe that security is the top factor that needs to
be addressed to expand the use of cloud computing [Subashini and Kavitha,
2011].

In this context, the last several years have been the most remarkable period
from a cloud security threat perspective. For illustrative purposes, in 2017 there
were at least two high-profile incidents involving gaming platforms. Firstly,
Blizzard Entertainment reported a flood of junk traffic that caused problems
for players of Overwatch and World of Warcraft. Another situation involves
the UK National Lottery that was seriously damaged for being unable to place
their stakes online or via applications for hours. These two organizations were
victims of a Distributed Denial of Service (DDoS) performed by botnets powered
by cloud infrastructures [Khalimonenko et al., 2017].

The cloud network is prone to several kinds of threats. Although some of these
threats are able to leave traces, the task of identifying them is not trivial. To
give an example, there are attacks that cause an anomalous behaviour in the
network traffic which allows the threat to be detected. However, at the same
time, the elastic and scalable nature of cloud environments makes them prone to
undergo sudden changes [Ballani et al., 2011, Vieira et al., 2010], which makes it
even harder to detect which parts of the incoming traffic are caused by vandalism
or are being used legitimately.

Moreover, the cloud provider also has to deal with a huge number of devices and
virtual machines so that it can manage all the assets of its network infrastructure.
It is increasingly being found that neglecting this area of management can cause
irreparable economic damage to businesses and their customers [Owezarski et al.,
2013].

It is therefore imperative to monitor and analyze these networks. In doing so,
relevant information about network traffic can be collected and used to support
decision-making processes. After all this information has been gathered, it is
possible, for example, to identify and analyse suspicious network traffic patterns
to prevent similar situations from occurring in the future [Dainotti et al., 2012].
This calls for network traffic predictions mechanisms that favour timely detection
of issues in the network, which is particularly challenging in cloud environments
due to the volume and volatility of traffic and resources available, as addressed
in chapter 3.

In addition to the network traffic prediction, several techniques have already
been proposed to perform anomaly detection in the cloud environment, such as
fuzzy logic [Patel et al., 2013], entropy-based [Wang et al., 2010], artificial neural
networks [Vieira et al., 2010] and decision tree classifier [Fu, 2011]. Incidentally,
different types of network traffic information are used to detect anomalies, such
as the behaviour of protocols, CPU utilization and user logs. However, there
is an apparent deficiency in their ability to detect anomalies when analysing a
large amount of data. In particular, these techniques require extensive tuning
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to improve their sensitivity to achieve satisfactory results. There is also no
consensus about the best way to represent the huge volume of data generated
by the cloud infrastructure. As a result, the literature lacks mechanisms that
can improve the accuracy of anomaly detection for cloud environments while
reducing false-positive detection rates, as addressed in chapter 4”.

A further aggravating factor is regarding to the number of alarms generated.
Alarm management approaches have been proposed in the literature such as
alarm correlation [Benferhat et al., 2013], regular expression matching [Li et al.,
2010] and clustering alarms [Lo et al., 2010]. However, these works are more
concerned with increasing the number of true alarms. As a result, they fail to
meet a low number of false alarms as well as decreasing the number of control
messages in general. To make matters worse, it is known that around 99% of the
alarms are false both in cloud computing [Patel et al., 2013] and in traditional
environments [Elshoush and Osman, 2011, Hubballi and Suryanarayanan, 2014,
Di Pietro and Mancini, 2008]. The wide disparity between the true and false
alarms generated has certainly compromised the performance of IDS. From this,
two significant problems arise, as addressed in chapter 5: the huge volume of
control messages between the virtual machines and the servers and the associated
transfer costs.

A review of diverse solutions that have been proposed to address the aforemen-
tioned challenges are explored and summarized in the following chapters. How-
ever, as far as the literature goes, there are still gaps to be filled. A set of diverse
solutions that have been proposed to address the aforementioned challenges is
explored and summarized in the following chapters. Their main shortcomings
are identified and mechanisms designed to address those gaps are proposed and
evaluated in this thesis.

1.2 Objectives and Contributions

The goal of this thesis is to enhance security aspects of the cloud computing
environment. This is done by addressing security aspects including areas such as
network traffic prediction models, intrusion detection systems for the cloud and
methodologies for aggregating alarms from the IDS. This task brings attention
for more specific activities, for instance, characterization of the needs, design
new solutions, implement and evaluate such proposals.

More specifically, this thesis contains a comprehensive analysis of the state of the
art in these fields in order to identify and mitigate numerous open issues. The
proposed solutions were evaluated by using traces from real network operations.
In addition, the entire methodology presented in this thesis allows a systematic
comparison of results from a general perspective among several research efforts
found in the literature.

The specific goals of this thesis are as follows:

Goal 1 – Proposing a new network traffic prediction model and a methodology
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for selecting and evaluating a set of prediction models that is suitable for
the highly dynamic cloud computing environment;

Goal 2 – Extracting features that represent the expected appropriate behaviour
of the cloud network traffic, then used jointly with a Support Vector Ma-
chine (SVM) for detecting anomalous events in the cloud environment;

Goal 3 – Grouping similar alarms that may correspond to the same attack (or
attack attempt) in order to optimize the efficiency for generating alarms,
decreasing the network data traffic to manage an IDS and its associated
transfer costs.

Taking into consideration the specific goals, this thesis has succeeded in produ-
cing the follow main contributions:

Contribution 1, The Poisson Moving Average Model
A new Moving Average approach based on the Poisson distribution is
proposed. A Poisson process is used to determine the probable minimum
and maximum number of transactions that can occur within a given time
period, from a series of discrete values. The models and mechanisms
proposed in chapters 3 and 4 of this thesis benefit from the findings
generated in this contribution.

Contribution 2, The Dynamic Window Size Algorithm
To reduce the complexity of predicting network traffic, time-bounded past
information is considered by means of a sliding window with size defined
by the Dynamic Window Size Algorithm, which makes it suitable for on-
line prediction in a cloud computing context. This contribution plays an
important role as basis of the dynamic solution for predicting network
traffic in the Section 3.3.3.

Contribution 3, The Feature Extraction Approach
Feature extraction involves reducing the amount of information required
to describe a large set of data, therefore enabling its processing by the
mechanism for detection anomalous events in the cloud environment. This
contribution is presented in Section 4.3.2.

Contribution 4, The Anomaly Detection Mechanism
The proposal, design, and evaluation of an Anomaly Detection Mechanism
is one of the contributions of this thesis. The purpose of this mechanism is
to provide an efficient method to detect anomalies in cloud-based network
traffic. Section 4.3 presents this contribution.

Contribution 5, The Triple-Similarity Mechanism
Another contribution of this thesis is grouping similar alarms that may
correspond to the same attack in order to reduce the number of messages
sent from the virtual machines to the servers. This contribution is detailed
in Chapter 5.

Contribution 6, The Severity Adjustment of Alarms Algorithm
This contribution allows to analyse the output of the Triple-Similarity
Mechanism ir order to seeking for alarms and classifies them according to a
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database. Then, the algorithm assigns a level of severity. This mechanism
is described in Section 5.3.4.

1.3 Outline of the Thesis

The remainder of this thesis is organized in six chapters, as described be-
low.

Chapter 2 – General Background
Introduces a general background and main concepts about the environ-
ment around cloud computing and the solutions proposed. In addition,
these definitions are used for designing the prediction model, the anomaly
detection mechanism and the similarity approach in the rest of this thesis.

Chapter 3 – Network Traffic Prediction in the Cloud
Discusses the state of the art and presents a taxonomy for network traffic
prediction models, as well as an analysis mechanism that provides a stand-
ardized approach for evaluating network traffic predictors based on global
and local data analysis. Moreover, a new traffic prediction approach based
on a statistical model where observations are weighted with a Poisson dis-
tribution is proposed. The outcomes of this mechanism enable the per-
formance comparison of several predictors in the cloud, particularly in
terms of accuracy, historical dependency, time and computational over-
head.

Chapter 4 – Intrusion Detection for Cloud Network Traffic
Proposes an approach to detect anomalies in the cloud scenario. This
work differs from previous anomaly detection techniques since it relies on a
distributed and collaborative mechanism that combines a Support Vector
Machine model with features extracted from a Poisson Moving Average
predictor. Moreover, a sensitivity analysis showing the trade-off between
the time granularity and the accuracy of the model is presented.

Chapter 5 – Triple-Similarity Mechanism for Alarm Management
Looks into the main issue generated by Intrusion Detection Systems for
cloud computing, namely, the huge number of alarms generated over time.
To address this problem, it was proposed the Triple-Similarity Mechanism,
a methodology for aggregating similar alarms in the context of the cloud
network traffic and an algorithm to assign severity level to alarms.

Chapter 6 – Conclusions and Future Work
Presents the conclusions that emerged from the research described in this
thesis, as well as the outline of future research to further advance this
work.
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Chapter 2
General Background

All truths are easy to
understand once they are
discovered; the point is to
discover them.

(Galileu Galilei)
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T his chapter introduces concepts and definitions required to provide the-
oretical basis for better characterization of the environment around
cloud computing and the solutions for improving security aspects. An

overview about cloud computing is presented in Section 2.1. After that, Sec-
tion 2.2 discusses the characterization of network traffic in the cloud and the
main threats that may jeopardize its operation. Section 2.3 provides a gen-
eral description of Intrusion Detection Systems (IDSs) focused on virtualized
environments. Finally, Section 2.4 depicts concepts about similarity in order to
aggregate alarms and minimize the network traffic and its associated costs.
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2.1 Cloud Computing

Cloud computing is a term commonly accepted to describe several different com-
puting concepts that involve a large number of computers providing computer
power over the Internet. This definition is also related to Network Provisioning
in the sense of providing clients with software hosted in remote locations. In
this case, services are assigned to the customer by the provider, and this kind of
relationship is known as Customer Relationship Management (CRM). Usually,
cloud computing is characterized as a CRM between one provider and many
users (1:N) [Buttle, 2015].

Cloud computing enables the realization of a promising computing model that
leverages on the need for more powerful and ubiquitously available resources.
Despite of the several definitions of cloud computing mentioned in Section 2.1.1,
some characteristics are widely agreed upon, such as the possibility to provide
computing power dynamically on demand. In order to provide a better un-
derstanding about cloud computing challenges and identify important research
directions in this topic, the key concepts such as the architectural principles,
security responsibilities as well as research challenges will be addressed.

2.1.1 Definition

Among the several definitions of cloud computing, some of them deal with oper-
ational aspects and define cloud computing as a large scale distributed comput-
ing paradigm for storing, managing, processing and hosting dynamically scal-
able resources that are delivered on demand over the Internet [Zhang et al.,
2010, Armbrust et al., 2010, Joshi et al., 2012]. However, other works prefer to
highlight the economic aspects of cloud computing, for instance, defining cloud
computing as a way to increase the capacity or add capabilities dynamically
without investing in new infrastructure, training new personnel, or licensing
new software [Subashini and Kavitha, 2011, Hwang et al., 2009, Jensen et al.,
2009].

In this thesis, the view of the cloud computing paradigm is defined by The
National Institute of Standards and Technology (NIST): Cloud computing is a
model for enabling convenient, on-demand network access to a shared pool of con-
figurable computing resources (e.g., networks, servers, storage, applications, and
services) that can be rapidly provisioned and released with minimal management
effort or service provider interaction [Mell and Grance, 2011]. This definition
covers all the essential characterizing features of cloud computing systems.

2.1.2 Architectural Principles

The NIST [Mell and Grance, 2011] classified cloud computing systems according
to four deployment models: private cloud, community cloud, public cloud and
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hybrid cloud. Furthermore, the cloud computing can also provide three service
models: Software as a Service (SaaS), Platform as a Service (PaaS), and Infra-
structure as a Service (IaaS). Figure 2.1 depicts the relationship between the
cloud deployment models and the delivery models in terms of the layers that
compose the system and the corresponding management responsibilities.
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Figure 2.1: Cloud computing architecture and responsibilities

Deployment Models

There are essentially four cloud deployment models, each of which has specific
trade-offs for organizations that are migrating services and operations to cloud-
based environments. They are presented below:

• Private cloud – this cloud deployment model consists of a cloud infrastruc-
ture that is operated exclusively for one organization. However it can be
managed by the organization itself or a third party;

• Public cloud – the cloud infrastructure is available to the general public
or a large industry group and is owned by an organization selling cloud
services;

• Community cloud – the cloud infrastructure is shared by several organ-
izations and supports a specific community that has shared concerns and
goals (e.g., security requirements, business, e-commerce, and compliance
considerations);

• Hybrid cloud – it is characterized by a cloud infrastructure that is com-
posed of two or more clouds with different models (private, community or
public).
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These deployment models can be implemented following different types of de-
livery models, as described below.

Delivery Models

Delivery Models are service models by which different types of services are de-
livered to the end user [Kandukuri et al., 2009, Hwang et al., 2009]. Three
common cloud delivery models have become widely established and formalized:
Software as a Service, Platform as a Service and Infrastructure as a Service.
They are described as follows:

• SaaS – consists of providing applications that are accessible to several cli-
ent devices through a thin client interface such as a web browser (e.g.,
web email). One of the biggest benefits for these clients is the potential to
reduce IT support costs by outsourcing hardware, software maintenance
and support. In short, it is a software deployment model where applica-
tions are remotely hosted by the service provider and made available to
customers on demand, usually over the Internet;

• PaaS – comprehends a platform layer consisting of operating systems and
application frameworks that enable client to minimize the workload of
deploying new applications directly on the virtual machines. Applications
may be created using programming languages and tools supported by the
provider. In this delivery model, the user does not manage or control
the underlying cloud infrastructure including network, servers, operating
systems, or storage, but has control over the deployed applications and
application hosting environment configurations;

• IaaS – comprises the hardware layer and the infrastructure layer, including
provision processing, storage, networks, and other fundamental computing
resources where the consumer is able to deploy and run arbitrary software,
which can include operating systems and applications. Usually, the client
may be responsible for managing some of the physical resources (e.g., serv-
ers, routers, switches). The virtualization layer provisions instances of the
physical infrastructure to different clients by means of virtualization tech-
niques.

One of the main advantages of these service models is their automatic-scaling
ability that allows them to provide the necessary means (not more, not less)
to achieve a desired performance level with low operating costs. However, the
fact that the data (in cloud computing) is usually placed far from the clients can
raise some discomfort due to the lack of control and knowledge of how their data
is stored and secured, specially for enterprises that still follow the traditional
on-premise model, where the data continues to reside within the enterprise’s
boundaries, and subject to their own policies.
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Different service models place distinct levels of security requirements in the
cloud environment, and each service carries its own security issues [Kandukuri
et al., 2009]. There is an inherent hierarchical structure among the three service
models, with IaaS forming the base for all cloud services. Namely, PaaS builds
upon IaaS to provide a platform that, in turn, is used as basis for SaaS. In this
sense, while the capabilities are inherited along this hierarchy, the information
security issues and the risks are as well.

There are many trade-offs to each model in terms of integrated features, such
as management level vs. security. For example, if the cloud service provider
is only responsible for implementing security mechanisms at the lower-layers
of the cloud architecture, end users can unexpectedly become responsible for
implementing and managing the security mechanisms at higher layers.

Clearly, cloud computing is a disruptive technology which changed the way tra-
ditional services are delivered and had an impact on the IT sector as a whole.
More than ever, neglecting the management of these networks may cause irrepar-
able economic harm to businesses and their customers. Network administrators
of these cloud-supporting networks must then monitor and analyse those net-
works in order to collect relevant information about network traffic that may be
used to support decision-making in case of failures.

Collecting statistics of the network is a useful management task that enables
traffic patterns to be understood and strategies to be planned in order to prevent
future problems. When these statistics accumulate over time, inferences can be
made with respect to the future behaviour of the network traffic and when
an abnormality occurs the administrator will have enough time to act before
the problem worsens. In light of this, a general overview of this is subject of
discussion in the next section.

2.2 Network Traffic Prediction

The uprise of next generation networking paradigms, such as the Internet of
things and cloud computing, has entirely changed the way that networks are
conceived and handled. By deploying a cloud computing model, organizations
have many advantages such as on-demand computing services and reduced main-
tenance costs [Mell and Grance, 2011]. However, along with these benefits,
cloud computing brought a multitude of challenges into the focus of worldwide
research [Jennings and Stadler, 2015]. Many services and products rely on cloud-
based systems and networks. Ignoring the management of these assets may cause
irreversible economic damage to the cloud providers [Alshaer, 2015]. In this con-
text, network managers need tools suited to deal with the high network traffic
volume common in cloud environments.
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2.2.1 Motivation

In order to collect relevant information about network traffic, the network ad-
ministrator has to monitor and analyse the computer network. Monitoring a
network allows the cloud provider to analyse many metrics with respect to the
network traffic, such as throughput, response time, jitter, lost data, etc. Most
monitoring tools available nowadays provide a graphical interface of network
statistics, from which problems can be identified and remedied [Plonka and
Barford, 2009].

Additionally, network administrators can use these statistics to perform routine
tasks that may or may not show anomalies in the traffic. Eventually, these
anomalies may be diagnosed as a problem, for example, locate a server down or
a server that is getting an abnormal number of requests. This kind of problem
was widely investigated by Ricardo dos Santos with Root Cause Analysis [dos
Santos et al., 2013].

Monitoring the network traffic allows constantly keeping statistics of network
connectivity and applications’ availability, facilitating the detection of problems
in hosts, networks, or servers. After capturing all this information, several pat-
terns into the network traffic that characterize these anomalies can be identified.
These patterns help us to plan strategies to prevent similar problems that may
happen in the future [Dainotti et al., 2012]. When these statistics accumulate
over time, it is possible to make inferences about the future behaviour of net-
work traffic. Thus, when an abnormality occurs, the network administrator will
have time to act before the problem worsens.

It is known that there are differences between the normal behaviour of network
traffic and an anomaly. However, the transition between these two extremes
is obscure, i.e., we do not know at which point the network traffic ceases to
represent legitimate use and should be considered an anomaly, as illustrated in
Figure 2.2. Studies have shown that the task of identifying anomalous behaviour
in network traffic is not a trivial matter [Dainotti et al., 2012, Yan-hui and Tao,
hina]. This challenge is even greater in cloud computing due to the scalability
and dynamics of this environment [Dhage and Meshram, 2012]. In particular,
one must be careful at dealing with an abrupt request of high processing load,
which can easily be confused with malicious use.

Normal Anomaly 

?                ?                ?                ? 

Legitimate use Attack 

Figure 2.2: Identifying an attack by network traffic behaviour

As previously stated, the cloud network traffic is subject to a large number of
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threats. It is worth noticing that the lack of security mechanisms is the top
factor that prevents the wide adoption of cloud service models. Moreover, 74%
of Information Technology executives believe that security is one of the main
issues that needs to be addressed [Subashini and Kavitha, 2011]. Although mis-
configuration or hardware failure can cause occasional anomalies in the network
traffic, most of the time the root cause is an intentional attack. The next sub-
section will present the most common types of attacks that can be detected by
using techniques of predicting the network traffic.

2.2.2 Computer Network Attack

Computer Network Attack (CNA) is composed by actions usually practiced by
software designed with harmful intentions. The consequences are quite varied,
some of them aim to infect or invade another’s computer to then damage the
hardware or software, by deleting files, changing the operation of the machine or
even leaving the computer vulnerable to other types of attacks. There are also
those aimed at sensitive user’s data such as passwords and credit card numbers
or just to capturing personal information.

Other definitions for CNA can be found in:

• The Committee on National Security Systems of United States of America
defines an attack as: Any kind of malicious activity that attempts to
collect, disrupt, deny, degrade, or destroy information system resources or
the information itself [Kissel, 2011].

• The Internet Engineering Task Force (IETF) defines attack in RFC 2828
as: An assault on system security that derives from an intelligent threat,
i.e., an intelligent act that is a deliberate attempt (especially in the sense of
a method or technique) to evade security services and violate the security
policy of a system [Shirey, 2000].

The cloud network is prone to several kinds of threats. Although some of these
threats are able to leave traces, the task of identifying them is not trivial. For
instance, there is a class of attacks that may cause anomalies in the behaviour
of the network traffic, as seen in the next subsection.

2.2.2.1 Identifying an Anomaly

A network anomaly corresponds to a circumstance in which the network beha-
viour deviates from its normal operational pattern [Hajji, 2005]. The identific-
ation of an anomaly requires the network administrator to learn before-hand
about the nature of normal traffic behaviour. A deep knowledge of its computer
network is necessary to ensure an adequate degree of protection, and this is
an important point to make the system more resilient and protect the network
traffic against threats.
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There is no simple and fast method from which one can affirm that the network
presents a normal legitimate traffic. Traditionally, this requires monitoring the
network for a long period to extract the characteristics of normal behaviour of
the network. This type of methodology is known in literature as building a
traffic baseline [Palmieri et al., 2013].

In general, there is no consensus about a rule or criterion regarding how much
the normal traffic can be divergent from the abnormal. The judgment of this
deviation is based on the context of past experience materialized through the
observation of the network baseline. The key point for success in this task is
defining which are the tolerable limits. These tolerable limits are known as
thresholds and they are estimated as the deviation from normal range under
which the measured feature is assumed to operate under normal conditions.
During the network monitoring, whenever some observed variable exceeds these
thresholds an alarm is generated [Rittinghouse and Ransome, 2016].

It is important to emphasize that a network traffic anomaly does not always
correspond to the occurrence of an attempt to attack [Cuppens and Miège,
2002]. For instance, an anomaly could be generated from a network failure event
or temporary misconfiguration that results in a problem or outage. Usually, it
occurs soon after installing some new equipment in the network infrastructure.
Network traffic anomalies are also common whenever a new software release
becomes available or there is an increased external interest in a web site due to
some kind of national (international) advertising [Barford et al., 2002, Sperotto
et al., 2010].

2.2.2.2 Main Types of Attacks that Cause Anomalies

Without appropriate security tools and effective controls plan, the network data
might be subjected to an attack. Among the existing attacks, it is possible
classify them in two groups: passive and active.

Passive attack means that the information is just visualized without change of
the data. For instance, passive attacks include traffic analysis, monitoring of un-
protected communications, decrypting weakly encrypted traffic, and capturing
authentication information such as passwords.

An active attack, instead, alters information with the intention of destroying
or damaging the data. For example, active attacks include attempts to cheat
or break protection features, to introduce malicious code, and steal or modify
sensitive information.

There are many works in the literature about the most common attacks in cloud
computing against networks or isolated virtual machines [Subashini and Kavitha,
2011]. This subject is so vast that could be the subject of a dedicated section.
It is possible to list numerous types of attacks, but here will be mentioned only
attacks that may generate some kind of anomaly in network traffic [Modi et al.,
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2013]. Briefly, the main ones are:

• Denial of Service (DoS): A DoS attack does not result in the theft
of information, but in an attempt to block legitimate users of a service
from using that service. Typical targets are sites or services hosted in the
Internet, and the attack attempts to make the hosted pages (or services)
unavailable on the World Wide Web (WWW) [Center, 1998].

• Distributed Denial of Service (DDoS): DDoS is similar to DoS. The
main difference between DoS and DDoS is that the DoS is done from one
single machine, while DDoS is performed from multiple points simultan-
eously. The DDoS attack has the same goal of the DoS, turning a machine
or network resource unavailable for a time period. Usually, the DDoS is
more effective than DoS because it can use up to thousands of computers to
attack a particular machine [Joshi et al., 2012]. Typically it occurs when a
large number of Internet packets from compromised hosts (zombies) flood
the bandwidth or resources of a single target (victim).

• Sniffer Attack: This attack is done by a computer program or a hardware
that can intercept and log traffic passing over a network or part thereof. Its
initial purpose was to help in managing and identifying network problems
[Kotz and Essien, 2005]. Sniffers are used by hackers to capture sensitive
network information, such as passwords and account information.

• Remote to Local (R2L): In this attack, the intruder does not have an
account on the victim machine. Therefore he tries to exploit the system
vulnerabilities in order to control the remote machine through the network
as a local user.

• User to Root (U2R): This attack presents a particularity, since the
attacker has local access to the victim machine. However, he tries to gain
super user privileges without authorization.

• Probe: The intruder in a Probe attack tries to gain information about
the target host. For instance, an attacker attempts to gather useful in-
formation about machines and services available on the network in order
to facilitate looking for exploits.

• Brute Force: Consists of an attacker trying to guess a password via
terminal, usually with the support of automatic scripts and dictionaries.

• Flash Crowd: This is not exactly an attack, but the anomalies generated
for flash crowds are quite similar to DDoS attack [Li et al., 2009]. Flash
crowds are large surges of legitimate traffic focusing on some specific sites,
or new software release available on Internet over the relatively short period
of time.

In cloud computing these kinds of attacks are even more dangerous and may
negatively affect its users in two distinct ways. First, imagine an attacker who
has obtained unauthorized access to a cloud infrastructure. He will be able to
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trigger an attack with large proportions once this malicious action may be sent
by hundreds of virtual machines at the same time. Secondly, the service provider
must guarantee that management and traffic control are performed efficiently. If
the provider fails in this task the consequences can be severe. From an irregular
traffic control, the provider may be mistaken when dealing with a legitimate big
request for resources. The provider traffic control system can relate this to an
attempted of malicious use. As result, a large number of legitimate users would
see their resources blocked and suffer the same effects of a DoS attack.

After addressing the main types of attacks and anomalies to which a network
may be subject, it will be presented methods to detect such malicious actions.
In this context, intrusion detection systems are one of the most used tools to
increase network security.

2.3 Intrusion Detection System

IDSs are complex tools that include a number of concepts and techniques that
may differ, depending on the situation. In order to clarify the understanding
about IDS and the main types of approaches they use to identify attacks, the
definition and a taxonomy are provided.

2.3.1 Definition

An IDS usually relies on two main approaches to detect intrusions that differ in
the way the data is analysed and processed. The first approach corresponds to a
search for evidence of an attack based on signatures of other similar attacks while
the second approach consists of a search for deviations from the appropriate
behaviour found in periodic observations of the system. The principal advantage
of the signature-based detection method is that it leads to a low number of false
alarms. However, signature-based IDSs are not able to detect new or variant
forms of known attacks. One of the benefits of anomaly-based detection is that
a new attack for which a signature does not exist can be detected if it occurs
outside of the regular traffic patterns. In this thesis, we focus on the second
class of IDS to detect threats to the network traffic in the cloud environment.
Whenever such an event occurs, one entity or a local security office takes notice
and should take appropriate measures, e.g. ousting the intruder or exposing it
to proper external authorities.

The process of detecting attacks performed by an IDS comprises three key activ-
ities: collection, analysis and response. The collection corresponds to obtaining
data from the monitored system. The collection of information may be made
directly, through software or hardware called collector. The analysis consists
in processing the collected data trying to identify the occurrence of an intru-
sion. There are two main approaches for data analysis: signature-based and
anomaly-based (see also Section 2.3.2). The response is a set of actions that
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the IDS performs when it detects an intrusion. Typically, the IDS generates
alarms and reports, but may also be configured for automatic intervention in
case of intrusion. The alarms generated in the response phase can be classified
into four different states: true positive, false positive, true negative and false
negative. Figure 2.3 illustrates and describes each of these situations (adapted
from [Estevez-Tapiador et al., 2004]).
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Figure 2.3: Types of response from an IDS

2.3.2 IDS Taxonomy

A classification of IDSs is important to help us understand the existing ap-
proaches, identify new challenges and aspects to be improved [Mallissery et al.,
2011]. Despite several studies suggest some kind of classification [Sabahi and
Movaghar, 2008, Zhu and Sastry, 2010, Debar et al., 1999], in this thesis it is
presented a taxonomy in order to organize and detail the key advantages and
disadvantages arising from each approach.

Figure 2.4 depicts such taxonomy, identifying features such as information
source, detection approach, architecture and type of intruders. The aim of this
classification is to identify important issues that characterize an effective IDS,
regardless of what mechanism it is based on.

In the following we present a detailed description of each components illustrated
in Figure 2.4.

Information Source

Although information may come from many different sources (host, network,
sensors or exclusively by applications) [Vokorokos and Balaz, 2010], usually an
IDS is classified according to two categories: Host-based Intrusion Detection
System (HIDS) and Network Intrusion Detection System (NIDS).
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Figure 2.4: Taxonomy of Intrusion Detection Systems

The HIDS is placed on one device such as server or workstation, where the
data is collected locally to the machine. The analysed data can come from
different places (system files and logs). NIDS are, in turn, used to monitor and
analyse network traffic in order to avoid or hamper attacks against networks
infrastructure. NIDS are also referred as “packet-sniffers”, because they capture
packets passing through the communication medium.

Reaction on Detection

When identifying abnormal behaviour, an IDS could act in two distinct ways:
passively or actively. In both cases an alarm is triggered, the difference is what
the IDS will do after the alarm. The passive IDS will wait for expert human
intervention, while in an active IDS a set of pre-established rules will be triggered
automatically upon alarm.

Time to Detection

Regarding the runtime, there are two approaches that can be used to detect
an intrusion (or intrusion attempt), they are: offline and online. The offline
approach is used on two occasions: when we need to test the efficiency and ef-
fectiveness under specific conditions or in the training phase of an IDS. However,
in general an IDS must operate online since its purpose is to identify attacks in
real-time.

Detection Approach

Intrusion detection systems usually rely on two main approaches to identify
intrusions that differ in the way data is analysed and processed. The first ap-
proach corresponds to search for evidence of an attack based of signatures of
other similar attacks, while the second approach consists in searching for devi-
ations/anomalies to the normal behaviour through periodic observations of the
system [Mallissery et al., 2011].
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A key advantage of the signature-based detection method is that signatures are
easy to develop and understand. Moreover this approach presents a low number
of false alarms. However, signature-based IDSs also have their disadvantages.
Namely, they are only able to detect known attacks and a signature must be
created for every attack.

Anomaly-based detection has the advantage that a new attack for which a sig-
nature does not exist can be detected if it falls out of the normal traffic patterns.
However, defining rules for what constitute an anomaly is a difficult task. For
each protocol under analysis, new rules must be defined, implemented and tested
for accuracy [Modi et al., 2013].

Architecture

This feature relates to the location where the information from the traffic in
question will be collected and processed. For instance, if the gathering, storage
and processing are performed on a single component, we say the architecture
is centralized. We say that the architecture is distributed when the gathering,
storage and processing are performed by several entities in a distributed manner.
Finally, an hybrid approach corresponds to a mix between the centralized and
distributed methods, eventually following a hierarchy structure.

Intruder Type

IDS can also be classified with respect to the type of attacker they address
(internal or external). External attackers do not have legal access and target
machines in an unauthorized way. Internal attackers can be of two types: those
who masquerade as another user or those who act clandestine by taking ad-
vantage of the possibility of turning off the audit control mechanisms [Sobh,
2006].

An IDS provides a wealth of information about network behaviour. This in-
formation can be seen as a fingerprint of the network that represents its history
regarding intrusion attempts suffered. Based on this data it is possible to define
proper metrics to infer the level of network security. Moreover, storing and
analysing this data enable the cloud provider taking advantage of privileged
information of the network. For example, by means of a similarity analysis
between the features extracted from the IDS, it is possible to decrease the num-
ber of alarms and reduce the network data traffic to manage [Hudic et al., 2017].
More importantly, via the similarity analysis, it is possible to define the severity
of the alarm according to the severity level predefined by the operator or by
the historical data of attacks. Next section will provide general concepts about
similarity.
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2.4 Similarity

Cloud computing and IDSs involve information collected from several sources,
for instance, infrastructure, platform for software development or applications.
In light of this, a mechanism able to aggregate information and support man-
agement tasks is needed.

Similarity analysis is a technique which allows us to assess whether given features
are considered similar or dissimilar according to the characteristics that describe
them. Basically, there are two properties related to the similarity measures: the
level and the commutativity. The similarity level relates to how much an entity
X is similar to the entity Y, it ranges from 0 to 1. When two entities are identical
the similarity level scores the minimum value, zero. Commutativity determines
that the similarity level between X and Y is equal to the similarity level between
Y and X.

Assessing similarity between features is a central issue in many research areas
such as face recognition [Chopra et al., 2005], linguistic [Mohler and Mihalcea,
2009] and management systems [Cilibrasi and Vitanyi, 2007]. The importance
of finding suitable similarity measures cannot be overemphasized [Cilibrasi and
Vitanyi, 2007]. The choice of similarity measures depends on the measurement
type or representation of the features. The distance between two entities can
be used to indicate how similar they are and can be defined by the number of
operations to convert an entity X in an entity Y.

There are several approaches to measure similarity, for instance: Manhattan
distance, Chebyshev and Euclidian distance [Cha, 2007]. Manhattan distance
depends on the rotation of the coordinate system but does not depend on its
reflection about a coordinate axis or its translation. When Chebyshev is applied
in one dimension, the distance is just the absolute value of the differences. If
Chebyshev is applied for two dimensions, the distance is equivalent to the planar
Manhattan distance. Euclidean distance measures the similarity between two
points in a Euclidean space as illustrated in Equation 2.1:

SimED(x, y) =

√√√√ n∑
i=1

(xi − yi)2 (2.1)

The Tanimoto coefficient is another metric used to measure similarity level in
finite sample sets based on the size of the intersection divided by the size of the
union of the sample sets, as illustrated in Equation 2.2. The Tanimoto coefficient
is a variation of the Jaccard index, the difference being that Tanimoto can be
applied to non-binary or quantitative data (groups) while Jaccard can be applied
to binary values [Leydesdorff, 2008].
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SimT M(x, y) =

n∑
i=1

xiyi

n∑
i=1

x2
i +

n∑
i=1

y2
i −

n∑
i=1

xiyi

(2.2)

2.5 Summary of the Chapter

This chapter presented a general background required to provide a theoretical
basis for better characterization of the environment around cloud computing
and the solutions proposed. More specifically, a description of the environment
around cloud computing from The National Institute of Standards and Techno-
logy point of view is presented. Also, the characterization of network traffic in
the cloud and the main issues that may harm its operation is introduced. A de-
scription of IDSs focused on virtualized environments and similarity concepts in
order to aggregate alarms are presented. Furthermore, these definitions, as well
as other concepts presented in this chapter, are used for designing the prediction
model, the security mechanism and the similarity approach in the subsequent
chapters.
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Chapter 3
Network Traffic Prediction in the

Cloud
Prediction is very difficult,
especially about the future.
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P redicting the inherent traffic behaviour of a network is an essential task,
which can be used for various purposes, such as monitoring and man-
aging the infrastructure of the network. However, the recent surge of

dynamic environments, such as Internet of things and cloud computing have
hampered this task. This means that the traffic on these networks is even more
complex, displaying a nonlinear behaviour with specific aperiodic characteristics
during daily operation. Traditional network traffic predictors are usually based
on large historical data bases which are used to train algorithms. This may
not be suitable for these highly volatile environments, where the strength of the
force exerted in the interaction between past and current values may change
quickly with time.

3.1 Introduction

Cloud computing is a basis for providing benefits well beyond Information Tech-
nology (IT) cost savings. It comprises a set of service models to scale on-demand,
such as Infrastructure as a Service, Software as a Service or Platform as a Service.
These services can be offered to a wide range of clients through an organization
called cloud provider [Mell and Grance, 2011]. Cloud computing is at the core
of the always connected paradigm, in which users access their data any time
and anywhere requiring only a device with Internet access. This has increased
the continuing demand for ubiquity and more powerful resources, making cloud
computing a solution that perfectly matches need with efficiency.

On a daily basis, the cloud provider has to deal with a huge number of devices
and virtual machines so that it can handle all the assets of its network infrastruc-
ture. It is increasingly being found that neglecting this area of management can
cause irreparable economic damage to businesses and their customers [Owez-
arski et al., 2013]. In light of this, the network administrators of these cloud-
supporting networks must monitor and analyse these networks so that relevant
information about network traffic can be collected and used to support decision-
making. After all this information has been gathered, it is possible to identify
and analyse suspicious network traffic patterns. These patterns can help in
planning strategies to prevent similar problems (e.g. anomalies in the network
traffic) from occurring in the future [Dainotti et al., 2012].

Analysing network traffic is a means of facilitating the monitoring and manage-
ment of computer networks. In this context, a network traffic predictor is a tool
that uses accumulated statistics over time to make inferences about the future
behaviour of network traffic [Prangchumpol, 2013]. Thus, when an abnormal-
ity is forecast, the network administrator will have time to act even before the
problem arises. For this reason, network traffic prediction has been receiving
a great deal of attention from the scientific community. In addition, network
traffic prediction is also important in other fields such as: traffic shaping for
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improved Quality of Service [Rahmani et al., 2009], prediction of bandwidth
requirements [Sang and Li, 2002], conceiving more accurate simulation mod-
els [Papadopouli et al., 2006], admission control [Zhou et al., 2006], and adaptive
applications [Salah et al., 2016].

3.1.1 Requirements for Cloud Network Traffic Prediction

Characterizing and monitoring network traffic is becoming a more complex task,
particularly with the surge in traffic arising from the huge number of individu-
als and machines that are permanently connected to the Internet. The chal-
lenge is even greater in cloud computing because its traffic is apt to undergo
sudden changes [Ballani et al., 2011, Vieira et al., 2010], and the elastic and
scalable nature of cloud environments may be easily confused with traffic anom-
alies [Plonka and Barford, 2009].

Network traffic prediction requires an accurate model, which can capture the
statistical features of the real condition of the traffic. However, the degree of
accuracy needed for predicting the network traffic deteriorates quickly as the
historic interval increases [Zhang et al., 2013], and thus calls for a model that is
suited to the dynamics of cloud traffic. These observations suggest that this kind
of network traffic is different from traditional IT network traffic, and requires
special attention in some aspects. This implies that the cloud network traffic
predictor must not only have traditional features such as accuracy, but also
some other essential requirements for the cloud environment. These include the
following:

1. Low historical dependency: Models for predicting data traffic usually
take into account large amounts of historical data. However, employing
these models is not the most suitable approach for carrying out the traffic
prediction of cloud computing systems, because the network baseline does
not have the same periodic behaviour as traditional networks [Xiong et al.,
2014];

2. Low complexity: Several prediction models have been proposed in the
literature that can be employed in various network traffic environments.
However, most of them are not appropriate for dealing with a large amount
of information in a short period of time and keeping a low computational
complexity [Buyya et al., 2010, Lim et al., 2000];

3. Online prediction: Offline predictions are usually made to test the pre-
dictor efficiency under specific conditions and in the training phase. How-
ever, an effective monitoring of cloud computing networks must be con-
stantly carried out to address detection issues as they occur or even before-
hand. This statement applies to online traffic prediction mechanisms [Sang
and Li, 2002].

In short, from this set of requirements it is possible to select a group of candidate
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predictors that is suitable for cloud network traffic prediction. On the basis of
this scenario, we consider that the choice of an ideal predictor model for cloud
network traffic will involve a tradeoff between prediction error, historical data
dependence, computational costs, and timely response.

3.1.2 Contributions and Outline

Most research studies on network traffic prediction have focused on classical
methods that rely heavily on historical data such as time series, neural net-
works and machine learning. However, there is still no consensus among the
research community about which model is best suited for cloud network traffic
prediction.

Usually, there is only a fine line separating concerns about high accuracy from
computational costs, and sometimes it is difficult to determine where the border
line should be drawn. The challenge in cloud network traffic prediction is to
minimize the computational cost as much as possible, while keeping acceptable
levels of accuracy. This is not a trivial issue, since most of the current prediction
models are not able to keep a low computational complexity while dealing with
a high degree of workload information in a short period of time. The main prob-
lem with these models is the increasing computational overhead in accordance
with the size of the input data. For instance, approaches based on large his-
torical dependency could obtain a slightly better degree of accuracy than other
models based on short historical dependency. However, when compared with
local analysis approaches, they have a much higher computational complexity
to compute the predictions [Buyya et al., 2010].

To address these issues, we now review the state of the art and provide a tax-
onomy for network traffic prediction models. This lays the foundation for select-
ing a set of prediction models that is suitable for the cloud environment. Thus,
an analysis mechanism through which a standardized approach is adopted for
evaluating the candidate predictor models using real traces is presented. The
remainder of this chapter is organized as follows. Section 3.2 presents a review
of state of the art and a taxonomy with the most prominent related studies
on network traffic prediction models. Section 3.2.4 details prediction methods
deemed applicable to the highly dynamic cloud computing environment require-
ments. Section 3.3 describes the methodology used to evaluate the prediction
mechanisms, whilst Section 3.4 presents the evaluation and discusses the results.
Section 3.5 summarizes the chapter.

3.2 State of the Art

The classification of network traffic prediction models is a useful means of help-
ing us understand the existing approaches, addressing new challenges and find-
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ing out features that need to be improved [Hoque et al., 2014, Whaiduzzaman
et al., 2014]. In this section, the main concepts in network traffic prediction
and an outline the most commonly used techniques are presented. In addition,
a taxonomy for assessing and listing the main benefits and drawbacks of each
prediction mechanism is proposed. Figure 3.1 depicts the taxonomy that we will
now describe in detail.

The choice of the forecast model should take into account the purpose of the pre-
diction as well as the characteristics that reflect the main properties of the data,
such as trends, seasonality, patterns of variation and time dependence. After
that, we are able to store, organize and analyse the data, and make inferences
about the future behaviour [Lu et al., 2014]. There are several predictor models
for network traffic in the literature. On top of the taxonomy, the models are
divided into two distinct categories: Pattern Recognition and Time Series.

3.2.1 Pattern Recognition

Pattern Recognition is an attempt to model the human brain, which means that
pattern recognition basically involves learning from experience. In addition, the
model must be able to maintain a good accuracy, which is not simple in short
time, since the precision of these techniques is dependent on sufficient historical
data being available. Furthermore, predictors based on pattern recognition use
quantitative information. The term “quantitative” refers to a type of inform-
ation based on quantifiable data (objective properties). A prediction system
based on pattern recognition requires taking note of many issues such as feature
extraction, selection and cluster analysis. In this sense, Artificial Neural Net-
works (ANN) [Cortez et al., 2006], Bayesian Networks [Dalmazo et al., 2011],
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Figure 3.1: Taxonomy of prediction models
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Hidden Markov [Dainotti et al., 2008], and Machine Learning [Erman et al.,
2006] techniques have been receiving increasing attention in the field of predic-
tion models.

Chen et al. use genetic programming to build a Flexible Neural Tree (a flex-
ible multi-layer feed-forward neural network) for online network traffic predic-
tion [Chen et al., 2012]. This approach was adopted to obtain a better under-
standing of the main features of traffic data. Moreover, the proposed method is
able to forecast small time-scale traffic measurements and can reproduce the stat-
istical features of real traffic measurements. However, to achieve reliable results,
it requires an initial input that is dependent on the characteristics of the data
under evaluation. Hongying also presents a neural network (back-propagation
neural network) trained by a modified quantum-behaved particle swarm optim-
ization in order to predict the dynamic network traffic flow [Hongying and Li,
2013].

Auld et al. propose a tool based on Bayesian Networks to support Internet
traffic identification [Auld et al., 2007]. This model is useful for recognizing the
future behaviour of the network traffic by taking into account past experience.
By means of this approach, it was possible to classify several application types
without a source or destination address, by using samples of traffic that could
enable the categorization to be made on the basis of commonly available inform-
ation. However, the authors concluded that the accuracy of the classification
declines quickly over time as the nature of the Internet traffic changes. This
limitation hampers its applicability in cloud computing.

Dainotti et al. resort to a statistically-based approach to classify network
traffic by combining network traffic with different categories of network ap-
plications [Dainotti et al., 2008]. Traffic prediction is performed by taking into
account characteristics such as inter-packet times and payload size, as well as
their temporal correlation. The proposed solution involves a classification of the
packet-level traffic based on a Hidden Markov Model. The aim of this work is
to use the obtained classification to offer different levels of Quality of Service
(QoS) that depend on the class of traffic. It also assists in the enforcement
of security policies for different applications and the identification of malicious
traffic flows. All the evaluations are carried out by analysing offline traffic from
different network topologies.

Methods from the machine learning theory [Erman et al., 2006] involve develop-
ing systems with the capability of learning from the recognition of old patterns.
Nguyen and Armitage conducted a survey with many applications for machine
learning [Nguyen and Armitage, 2008]. Among them, machine learning also has
the potential to support network traffic prediction. In this context, the applic-
ation of machine learning involves several stages. First, the features must be
selected to feed the algorithm. After that, these features are assigned to flows
that are calculated over multiple packets. The machine learning classifier cre-
ates rules by linking the features with well-known traffic behaviour. Finally,
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the algorithm is able to predict the network traffic based on previous learned
rules.

Bermolen and Rossi propose a solution based on a support vector machine to
solve the problem of link load forecasting based only on their past measure-
ments [Bermolen and Rossi, 2009]. This machine learning approach showed
a noticeable variation in the prediction performance carried out for a given
training set size. When the training set is smaller than 50% of all the historical
data, the authors consider the model to be under-trained and the prediction
error is large, and thus precludes its application in real-time.

In general, pattern recognition approaches are performed in two stages: training
and forecasting. The training and forecasting tasks have to be performed in
different time-scales. Although the model training is an offline operation, it has
to be done periodically so that a strict degree of accuracy is maintained, while
the forecasting has to be made continuously and online [Bermolen and Rossi,
2009]. If these two stages overlap, there will be an increase in the workload,
thus making it unsuitable to online traffic prediction in dynamic environments
such as cloud.

3.2.2 Time Series

In general terms, time series are an ordered sequence of the values of a variable at
equally spaced time intervals. Time series techniques take account of the internal
features in the data flow such as autocorrelation and seasonality. On the basis
of these features, it is possible to estimate the future behaviour of the data flow
from a set of past data. In this context, the scope of the analysis enables us to
classify time series approaches into two types: global and local.

Global Analysis

A global analysis is based on assumptions about the shape of the data that can
be numerically described by taking into account all the values of the population.
More importantly, the data sample has to represent the distribution of the pop-
ulation in question, and the normal distribution is usually adopted for this kind
of approach. In this context, a global analysis procedure allows more conclusions
to be made about the data. However, there is a limitation in the approach that
follows the normal distribution since the model does not work properly for small
sample sizes (n < 30). Nevertheless, a local analysis procedure is a good means
of overcoming this drawback [Freedman, 2009].

If the series follows a repetitive pattern which is believed to be constant at each
slot of time (for instance, from week to week or from day to day), a seasonal ad-
justment may be required to anticipate the behavioural pattern. The advantage
of a seasonal prediction model is that it fits the seasonal pattern, by enabling the
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periodic variations to be included in the prediction results. The disadvantage is
that this type of prediction model requires a time window with a large number
of values, and this adds an extra workload to compute the estimation. In this
case, two models can be used to forecast the time series, Autoregressive Moving
Average (ARMA) [Torres et al., 2005] or its Integrated variant (ARIMA) [Song
and Li, 2008].

Sang and Li use the ARMA model to evaluate the network traffic prediction
regarding two points of view: (i) how far into the future the network traffic
can be forecast; and (ii) about the minimum acceptable forecast error [Sang
and Li, 2002]. In the prediction assessment, the results show a tradeoff between
prediction error and control time-scale. Furthermore, the paper shows that the
prediction accuracy deteriorates as the slot time size increases.

Moayedi and Masnadi-Shirazi propose a network traffic prediction and anomaly
detection model based on ARIMA [Zare Moayedi and Masnadi-Shirazi, 2008].
The ARIMA model gives a description of a stationary stochastic process in
terms of polynomials to fit the dataset. In their paper, they decompose the data
flow to isolate the anomalies from the normal traffic variation. The authors
then try to predict anomalies separately from the normal traffic, and the paper
evaluation shows that the anomalies have been successfully detected. Their
work was evaluated with synthetic data and depends on large historical data.
Zhao [Zhao, 2009] uses wavelets for analysing time domain signal of the time
series for improving the prediction accuracy level. However, the computational
complexity in predicting each wavelet coefficient is high.

Rajnish Yadav and Manoj Balakrishnan present a comparative performance
evaluation between the ARIMA and an Adaptive Neuro Fuzzy Inference System
(ANFIS) [Yadav and Balakrishnan, 2014]. The goal of this work is to model the
behaviour of wireless network traffic. In the scenario evaluated, ANFIS shows
the best results, but with high computational costs, hampering traffic prediction
on virtualized environments.

Wen-Kuang Kuo and Kuo-Wei Wu propose a traffic predictor designed to provide
online prediction with the goal of guaranteeing QoS in real-time live video trans-
mission [Kuo and Wu, 2011]. The predictor, based on variable step size least
mean square algorithm, achieves high channel utilization and guarantees the
QoS requirements for real-time video. However, it obtains information only
from the last simple scene, restricting the ability to forecast abrupt changes,
common in cloud environments.

Li and Lim identify a noticeable traffic behaviour, which is called “burstiness”
or “packet trains”, defined by peak-to-average transmission rate [Li and Lim,
2008]. This behaviour is characterized by a long repetition of time intervals in
which firstly no packets are transmitted, and afterwards a wave of packets is
sent. In this work, the network traffic is studied from the perspective of fractal
time series. Using this approach, it is possible to project time series predict-
ing the future behaviour of the network. This approach is used to study specific
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parameters (such as the Hurst parameter) and relies on playback of offline traffic,
taking into consideration traffic properties such as long-range dependency and
heavy-tailed distribution. These properties relate to large historical data, there-
fore making this approach unsuitable for real-time traffic monitoring in dynamic
environments.

Local Analysis

Local analysis procedures are considered to be more inaccurate than a global
analysis because they use less information in making their calculations. The data
correlation only relies on local data to make assumptions about the population.
For instance, it fits in with the real data using just one subset to develop a
function that describes the behaviour or the variation of the data. This is
an advantage since the analysis does not require global information to make
statistical inferences [Freedman, 2009].

Sometimes, the time series has a linear dependence with regard to its series of
values, and shows a constant growth factor. In this case, non-parametric regres-
sion method can be regarded as a prediction model type [Zhang and Qi, 2005].
In light of this, regression models may be used for estimating a polynomial func-
tion that represents the time series trend. However, cloud computing provides
a dynamic environment with a complex network traffic behaviour, and is far
from having a linear trend pattern. This means that it requires high degree
polynomials to fit the network traffic baseline. To achieve an online prediction
with accurate results, the prediction model requires a constant adjustment of
a polynomial function. However, this incessant process is expensive [Jin, 2005]
and thus causes the regression models to conflict with the Low complexity re-
quirement for cloud network traffic prediction.

When a local analysis is expected, a moving average model may compute a local
average of data at the end of a time window, on the assumption that this is
the best estimate to represent the current mean value around which the data is
ranged. The size of the time window can be adjusted dynamically making these
models more suitable if the time series change suddenly. A moving average model
is closely correlated to a local analysis procedure since it combines simplicity
with an attempt to build up a function to describe a local trend.

Papadopouli et al. evaluate a set of forecast algorithms to characterize the
traffic load in an IEEE802.11 infrastructure [Papadopouli et al., 2006]. Their
work describes the Simple Moving Average (SMA) as the unweighted mean of
the previous data points in the time series. In addition, SMA is less demanding
than more complex predictors, such as ARIMA, which requires more parameters
to compute the prediction. They point out some of the advantages of SMA, such
as its simplicity, low complexity and ease of application. Together with this, Lee
et al., show that SMA also provides a basic and efficient tendency index [Lee
et al., 2012].
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Li et al. study anomaly detection methods for high-speed network traffic. The
purpose of this work is to come up with a sensible mechanism for detecting sig-
nificant changes in massive data streams with a large number of flows. Through
a model based on a Weighted Moving Average (WMA), the algorithm estimates
the value of the next interval and compares with the real traffic [Li et al., 2012].
After that, all traffic that does not match the reference model is considered to
be an anomaly, thus it is able to detect Distributed Denial-of-Service (DDoS)
and scan attacks.

Klinker describes mathematical tools to identify and predict market trends. In
particular, their study shows that the Exponential Moving Average (EMA) can
be used for an effective forecasting of network traffic combined with a local
analysis of the historical data [Klinker, 2011].

Chang and Tsai analyse the flow trend of two types of packet flows: inflow and
outflow of data packets [Chang and Tsai, 2009]. This work highlights some prob-
lems that could occur, namely the volatility clustering problems and its effect
on deteriorating the accuracy of short-term predictions. The proposed model is
enhanced by Adaptive Support Vector Regression to form a linear combination
of two models (Adaptive Neuro-Fuzzy Inference System and Nonlinear General-
ized Autoregressive Conditional Heteroscedasticity) in order to not only simplify
the complexity of the system, but also improve the prediction accuracy by solv-
ing the overshoot and volatility clustering problems. This scheme can act as
a core component of network traffic analysis in order to help a web manager
in providing network traffic control. Due to the several algorithms and stat-
istical calculations employed, this approach is deemed heavy and requires high
processing overhead, therefore not being suitable to cloud computing environ-
ments.

As part of the contributions of this thesis, Bruno Dalmazo et al. proposed a
systematic approach for estimating network traffic by resorting to a statistical
method based on a Poisson process (Poisson Moving Average - PMA) [Dalmazo
et al., 2013]. In addition, we used a dynamic sliding window size algorithm (Dy-
WiSA) to weight past observations by taking advantage of well-known network
traffic features such as short-range dependence [Dalmazo et al., 2014]. These
approaches will be presented in more details in the Subsection 3.2.5.

3.2.3 Pattern Recognition vs. Time Series

A comparison between Pattern Recognition and Time Series has already been
performed in [Zhang and Qi, 2005] and [Wilamowski, 2009]. Zhang and Qi
compare a neural network with an ARIMA [Zhang and Qi, 2005]. In this case,
even when the neural network is trained with all original data available, its per-
formance is inferior to the ARIMA model. This shows that neural networks
are not able to capture trend variations effectively. Approaches based on pat-
tern recognition, such as neural networks, have a serious drawback: they learn
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the training patterns but lose the ability to make generalizations, which means
that the model may give inaccurate results for unknown patterns [Wilamowski,
2009].

Another limitation of pattern recognition in network traffic prediction for cloud
is the fact that a considerable amount of offline computation is needed to train
it properly. In order to make pattern recognition approaches effective, these
models must be trained on a representative data set; otherwise, it may not
be feasible to achieve a satisfactory degree of accuracy [Akesson and Toivonen,
2006]. For instance, research studies have shown that using 50% of the data
for training is not enough to provide accurate predictions [Bermolen and Rossi,
2009]. Other studies show that even using 100% of the historical data pattern
recognition achieves worse results than the Autoregressive Integrated Moving
Average [Wilamowski, 2009]. Wei Li and Andrew W. Moore show that the
labour required in hand-classification process increases along with the size of the
training set using Machine Learning approach [Li and Moore, 2007]. In addition,
pattern recognition does not meet the Low historical dependency requirement,
and is computationally expensive, going against the Low complexity requirement
for cloud computing.

In regarding to time series approaches, Zhani M. F. et al. show that enlarging
training data set does not really improve traffic predictability using a time series-
based approach (ARMA and ARIMA models) [Zhani et al., 2009]. In addition,
several weighted sampling schemes can be employed such as: Simple Moving
Average (SMA), Weighted Moving Average (WMA), Exponential Moving Aver-
age (EMA) or Poisson Moving Average (PMA). The WMA is more sensitive to
recent values than a SMA. However, an EMA is usually preferred to a WMA,
because its exponentially weighted average does a more sensible work of dis-
counting the older data and its smoothing parameter is continuous since it is
readily optimized to each new iteration [Papadopouli et al., 2006]. PMA, which
is based on a Poisson process, usually fits the network traffic behaviour better
than the other short-term predictors [Dalmazo et al., 2014].

Summing up, as was shown previously, approaches based on pattern recogni-
tion and non-parametric regression method are not considered for cloud traffic
prediction due to their high complexity and historical dependency. Table 3.1
summarizes several network traffic predictor models regarding desirable require-
ments for cloud computing environment.

Approaches based on local analysis generally display low levels of historical de-
pendency. This leads to a low complexity solution for traffic prediction by
reducing the amount of data required for processing, when compared with the
strong historical dependency models. Both of them (local and global analysis),
allow online traffic prediction (using DyWiSA for local analysis approaches),
but with solutions of different levels of complexity. On the one hand, models
with global analysis usually achieve accurate results in prediction. On the other
hand, models based on local analysis provide a solution with lower computa-
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Table 3.1: Summary of related work

Approach
Desirable features

Low

hist
oric

al

dep
en

den
cy

Low

co
m

plex
ity

Onlin
e

pre
dict

ion

High

acc
ura

cy

SMA – [Papadopouli et al., 2006] √ √
× ×

SMA – [Lee et al., 2012] √ √
× ×

WMA – [Li et al., 2012] √ √
×

√

EMA – [Klinker, 2011] √ √
×

√

PMA – [Dalmazo et al., 2013] √ √
×

√

DyWiSA – [Dalmazo et al., 2014] √ √ √ √

ARMA – [Torres et al., 2005] × ×
√ √

ARIMA – [Zare Moayedi and Masnadi-Shirazi, 2008] × ×
√ √

tional complexity (see Subsection 3.2.6).

In this thesis, it is compared several local and global analysis approaches by
taking into account the requirements of the cloud computing environment (high-
lighted in Table 3.1). In particular, it provides a systematic methodology
for evaluation of predictors, that makes it easier to compare different mod-
els in terms of accuracy, historical dependency, time and computational over-
head.

3.2.4 Prediction Approaches

The model of behavioural prediction can usually be characterized by using a
time series of historical values (e.g. network traffic packets). With the aid of
historical traffic data, it is possible to predict future cloud network traffic. Hence,
future values can be forecast based on a correlation between the variation of the
values at the time and in its current state.

As noted earlier, there is a large and growing body of literature that regards
network traffic prediction as a means of facilitating the monitoring and man-
agement of computer networks [Chunlin and Layuan, 2014]. Although most
research studies employ classical methods that are largely based on historical
data such as time series and neural networks, some recent works [Ballani et al.,
2011, Vieira et al., 2010] show that long-term historical dependence is not suited
to cloud computing due to the high volatility of this environment. In this section
we consider previous prediction models which carry out forecasting on the basis
of local and global data analysis.

3.2.4.1 Simple Moving Average - SMA

The Simple Moving Average (SMA) is the most popular of the moving averages
used for predicting based on local analysis. It is calculated as the unweighted
mean of the previous n data values as shown in Figure 3.3(a).
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The term moving is used because for each new slice of time, the oldest data
value is dropped from the sliding window as soon as the new value becomes
available. An example of a simple equally weighted moving average for a sample
of n values v is the mean of the previous n values of the time series, as we can
see in Equation 3.1:

SMA =

n∑
i=1

(vi)

n
(3.1)

3.2.4.2 Weighted Moving Average - WMA

When using a moving average technique as described in the previous subsection,
each of the coefficients used to compute the predicted value is weighted equally.
However, it might sometimes be useful to put more weight on recent observations
that are closer to the time period being predicted. In this case, we use a weighted
moving average technique. As a general rule, a weighted average is any average
that uses several coefficients to provide various weights for data at different
positions in the sliding window. Figure 3.3(b) shows an example of this function
inside a sliding window.

In this work, WMA specifically refers to weights that increase in arithmetical
progression. In a sliding window with n samples, in the WMA, the newest value
has weight wn, the second newest wn1 and so on until the oldest value goes down
to zero. The sum of the weights in a WMA have to be 1. In a normal case, for
each weight w and value v in the sliding window, the denominator will always
be the sum of the individual weights, as can be seen in Equation 3.2:

WMA =

n∑
i=1

(wi ∗ vi)
n∑

i=1
(wi)

(3.2)

3.2.4.3 Exponential Moving Average - EMA

The Exponential Moving Average (EMA) is an exponentially weighted moving
average that applies weighting coefficients which decrease exponentially in the
course of time inside a sliding window. The weighting for each older value
decreases exponentially, but never reaches zero. Figure 3.3(c) shows an example
of the weight decrease.

In a similar way to other moving average techniques, EMA must only be used
for a set of data without seasonal behaviour [Chatfield and Yar, 1988]. This
moving average technique reacts faster to recent value changes than with a
simple moving average that attributes more weight to the latest changes and
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less to the changes that lie further away. The formula for calculating EMA is
given by Equation 3.3:

EMA =

n∑
i=1

(expi ∗ vi)
n∑

i=1
(expi)

(3.3)

3.2.4.4 Autoregressive Moving Average - ARMA

With regard to a time series analysis, the ARMA model provides a description
of a stationary stochastic process in terms of two polynomials – first an autore-
gressive (AR) and, secondly, a moving average (MA). The ARMA is usually
referred as the ARMA(p,q) model where p is the order of the autoregressive
part and q is the order of the moving average part [Sang and Li, 2002].

Given a time series data, the ARMA model is able to characterize and then
forecast future values within the time series and can be defined as shown be-
low:

Xt = c +
p∑

i=1
φiXt−i + εt +

q∑
i=1

θiεt−i (3.4)

where c is a constant, φ1, ..., φp are the autoregressive parameters of the model,
θ1, ..., θq are the moving average parameters of the model and the random vari-
able εt, εt−i are white noise error, usually assumed to be a Gaussian distribution
with zero mean [Wei, 1994].

3.2.4.5 Autoregressive Integrated Moving Average - ARIMA

The Autoregressive Integrated Moving Average - ARIMA is a model powered
with a time series and used either to obtain a better understanding of the data
behaviour or to forecast future points in the series [Makridakis et al., 2008].
ARIMA is a predictor model which is a generalization of an ARMA model [Yin
et al., 2005].

The ARIMA model is referred to in the literature as ARIMA(p,d,q) where the
parameters p and q have the same meaning as in the ARMA model. The differ-
ence is the d parameter which refers to the order of the integrated part of the
model. All the parameters must be non-negative integer numbers. Given a time
series of data Xt where t is an integer index and the Xt is any real number, an
ARIMA(p,d,q) model is given by:

(
1−

p∑
i=1

ϕiB
i

)
(1−B)d Xt = δ +

(
1 +

q∑
i=1

θiB
i

)
εt (3.5)

— 36 —



CHAPTER 3. NETWORK TRAFFIC PREDICTION IN THE CLOUD

where B is the backshift operator, i.e., the previous element of a time series
(Xt−1), ϕ1, ..., ϕp are the autoregressive parameters of the model, θ1, ..., θq are
the moving average parameters of the model and the random variable εt is the
white noise error, as described in the ARMA model.

3.2.5 Poisson Moving Average - PMA

In order to provide another alternative more suitable for cloud environments,
this section proposes a new Moving Average approach based on the Poisson
distribution. The Poisson distribution is a natural choice for describing the
probability of the number of occurrences in a field or continuous interval (usually
time or space), such as number of defects per square meter, number of accidents
per day or number of network packets per minute [Dalmazo et al., 2013]. We
note that in our field of application the unit of measure (time) is continuous, but
the random variable (number of packets) is discrete. In other words, a Poisson
process is used to determine the probable minimum and maximum number of
transactions that can occur within a given time period, from a series of discrete
values [Gardiner et al., 1985].

Algorithm 3.1. Poisson Procedure
Input : Lambda parameter
Output: Poisson slices vector

1: Start
2: procedure poisson(lambda)
3: vector vPoisson
4: var poissonSlice
5: for (i = (lambda); i > 0; i−−) do
6: poissonSlice← e−λ(λ)i

i!
7: vPoisson.add(poissonSlice)
8: end for
9: return vPoisson

10: end procedure
11: End

Let k be a discrete variable taking the values 0, 1, 2, 3, ... ,∞. If k represents a
time interval following the Poisson process with parameter λ > 0, then:

P [N(t) = k] = e−λt(λt)k

k!
(3.6)

where the Poisson parameter lambda (λ) represents the total number of events
(z) divided by the number of units (n) of data (λ = z/n). The unit forms
the basis or denominator for calculation of the average. A Poisson process is
described in Algorithm 3.1.

In order to reduce the complexity of predicting network traffic, we consider
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time-bounded past information by means of a sliding window. This window is
applied by weighting past observations according to a Poisson distribution with
λ sampled values. The example illustrated in Figure 3.2 shows a static sliding
window with size three. Each value of the data flow is weighted with a portion
of the Poisson process, and the most recent value of the data flow receives the
highest Poisson slice/weight. Thus, at time t, the sliding window has a set of
three values {0, 0, 3}. In the next turn, at time t + 1 the next value to enter
inside the window will be 1, and when this occurs the oldest value (0) leaves
the sliding window. This process will be repeated as long as there is a data flow
from the network.

 

Poisson with  

λ = 3 
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p3 p2 p1 

3 

Sliding window 

size = λ 

2 1 9 8 1 Time t Data flow 

2 0 0 1 9 8 1 Time t+1 

. 
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. 

Poisson with  

λ = 3 

0 0 3 

p3 p2 p1 Poisson weight 

Figure 3.2: The operation of sliding window

The Poisson distribution is represented by a discrete function observed over time
t, the distribution starts at t = 0 and, when t = λ the function has its maximum.
For a time interval of size t = λ, let a truncated Poisson distribution of size n be
represented by values p1, p2, …, pn. To determine a prediction of the expected
value of network traffic at time t, ỹt, our solution uses a Poisson distribution
truncated from t = 0 to t = λ. Then we weight previous values according to the
Poisson distribution as follows,

ŷt = p1yt−1 + p2yt−2 + ... + pλyt−λ (3.7)
where ŷt represents the result of the prediction process, namely, the expected
value of the network traffic. Equation 3.8 summarizes this process, whilst Figure
3.3(d) presents the behaviour’s function inside the sliding window.

PMA =
λ∑

i=1
piyt−i (3.8)
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Figure 3.3: Behaviour of the models inside the sliding window

3.2.6 Computational Complexity Comparison

As presented in this chapter, there are various algorithms that can be used for
solving the problem of predicting network traffic. However, there is an amount
of resources required for running it [Cormen et al., 2001]. This computational
complexity comparison deal with the number of elementary operations necessary
to run the algorithms and time consumption.

The performance analysis is conducted for the average volume of network traffic,
which defines the next sliding window size. Once the sliding window size is set,
it is possible to estimate the number of operations that will be performed by the
predictors.

For the purpose of our analysis, we consider that the operation time to read
the elements inside the sliding windows yields negligible complexity (or the ever
constant O(1)). The SMA-based predictor has a function that assigns equal
action to all the elements of the sliding window, thus, the number of operations
increases linearly with the size n. Other predictors evaluated in this work have
special values to weight the elements inside the sliding window. For example,
WMA uses a linear function that increases from zero to its maximum size, as
illustrated in Figure 3.3(b). The EMA approach uses an exponential function,
but the number of calculations and the window size increase at the same rate
than other moving average models presented here. Therefore, EMA has O(n)
complexity. PMA uses a weighting function based on the Poisson process and
like EMA, PMA also has O(n) complexity, as illustrated in Table 3.2. Finally,
the computational complexity for the ARMA predictor, as well as the ARIMA
model, is O(n2) [Feng and Shu, 2005, Monahan, 2005, Krunz and Makowski,
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1998]. The behaviour of all these local analysis approaches is illustrated in
Figure 3.3, which shows a window for n = 20.

Table 3.2: Summary of the computational complexity comparison

Model Complexity
SMA O(n)
WMA O(n)
EMA O(n)
PMA O(n)

ARMA O(n2)
ARIMA O(n2)

It is worth noting that this performance evaluation considers the recursive use
of the algorithms. In other words, from 1 to i, each element ei uses all the
results from the previous ei−1 values. In summary, the analysis of algorithms
is quite important since it is a means of obtaining performance evaluation cri-
teria that are independent of the technology adopted or programming language
used [Garey and Johnson, 1979].

3.3 Mechanism for Evaluating Traffic Predictors

The purpose of this analysis mechanism is to provide a standardized approach to
evaluate the predictor models from real historical data of cloud-based network
traffic. Figure 3.4 depicts the steps of our mechanism, by highlighting its main
conceptual components, the personnel involved, and their interactions.
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Figure 3.4: Elements of the proposed mechanism and interactions
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Real-time cloud traffic data (Flow 1) is constantly being gathered from the cloud
environment by the Cloud Network Traffic Monitor. This data is subsequently
processed by Time Series Builder to retrieve and organize relevant information
(e.g. timestamp, number of network packets, and the protocols involved) for
the following prediction (Flow 2). Once the Time Series Builder process is
complete, the time series is ready to be read (Flow 3). In addition, an Operator
may interact with the Predictor Selector to determine which predictor model
will perform the prediction (Flow 4).

Following this, the time series (combined with the predictor model) is sent to
the next two components (Flows 5 and 6). At this point, the prediction will
be performed fully- and semi-automated (Dynamic and Static approaches). The
latter approach is subject to an a priori data flow analysis to enable it to produce
the statistics about the data or intervention by an Operator (Flow 7) and thus
aid the process (manually set up with the aid of the statistical parameters). As
the output of these processes, the Report component will generate a description
regarding the accuracy of both prediction approaches (Flows 8 and 9).

Having presented a general outline of the analysis mechanism, in the following
subsections there will be a more detailed description of: (i) the monitoring pro-
cess of cloud-based network traffic, (ii) creating a time series, and (iii) the Static
and Dynamic approaches to predicting network traffic in a cloud computing en-
vironment.

3.3.1 The Cloud Network Traffic Monitor

Cloud computing provides a scalable and elastic environment, but geographically
far away from the user. However, as previously mentioned, the prediction of the
cloud network traffic requires having access to detailed information about the
operation of the network (e.g. timestamp, protocols, etc.).

To address this issue and facilitate the prediction process, the Cloud Network
Traffic Monitor must constantly monitor the cloud infrastructure (or a specific
application). Thus, it will be able to capture the usage patterns and network
traffic trends during a given time period. Basically, this component is responsible
for counting all the traffic it receives from the network rather than counting only
the frames that the controller is supposed to receive.

The cloud environment offers different levels of services to the clients. The lower
level resources are usually restricted and hidden from the users (at the PaaS and
SaaS level, for instance). Hence, the user does not have permission to monitor
and control the whole network infrastructure. However, the cloud providers are
able to monitor the network at the resource and virtualization layer since they
are responsible for the low-level monitoring [Weingartner et al., 2015].

It is not within the scope of this study to propose a particular approach to
monitor the cloud infrastructure. However, several tools have the potential to
monitor the cloud environment with the aid of distributed agents in virtual
machines, such as Nagios, OpenNebula, and Nimbus [Aceto et al., 2013].
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3.3.2 The Time Series Builder

As illustrated in Figure 3.4, once the data has been collected, it is sent to the
next component. The Time Series Builder handles the data by measuring the
number of packets in the network traffic at regularly spaced intervals (i.e. the
time between the observations must be constant), and thus forms a discrete time
series ordered by the time.

At the same time, the Time Series Builder has to filter all the data in a search
for similar protocols and the excess data that does not match the requirements
of the filtering will be dropped. When building a time series, the input value
is computed for each single variable. As a result of this process, the time series
will be ready for analysis by any of the prediction models.

3.3.3 The Predictor Selector

Traffic predictors usually operate over all of the previous data or resort to win-
dows of a finite but fixed size [Chen et al., 2012]. However, the network traffic
in the cloud computing environment may undergo sudden changes due to the
large number of requests and dynamic demands which are made without any
prior notification [Ballani et al., 2011].

This led us to consider adopting the sliding window approach as a “forgetting”
process, which makes it possible to restrict the amount of data to be processed.
If the sliding window is small (which is normal for local analysis approaches),
the model will be more sensitive to changes. In addition, it will generate low
workload due to the reduced number of data packets that need processing. This
occurs when the data flow has a stable behaviour. If the sliding window is large
(such as the ARMA and ARIMA models), the predictor will hide any traffic
anomalies. This situation arises when the time series is rapidly increasing (or
reducing) the data flow.
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Figure 3.5: Sample of prediction inside the sliding window

Different approaches are required for local and global analysis so that these
changes in traffic behaviour can be taken into account. When predicting net-
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work traffic data based on a global analysis, the ARMA and ARIMA models
are used. In the case of ARMA and ARIMA modelling, we use the statistical
environment R [Team, 2012]. When estimating the network traffic by means
of the ARMA model, the Analysis Mechanism selects the “FitARMA” pack-
age [McLeod and Zhang, 2008]. When the estimate was performed using the
ARIMA model, the Predictor Selector used the “forecast” package [Hyndman
and Khandakar, 2008] to fit the time series. For this, both packages use a func-
tion for returning automatically the best set of parameters (GetFitARMA and
Auto.Arima, respectively) according to the algorithms presented in [McLeod and
Zhang, 2008] and [Hyndman and Khandakar, 2008]. These functions conduct a
search over possible model within the order constraints provided.

The variance between the previous and current sliding window was taken into
account for the local analysis. The example illustrated in Figure 3.5 shows a
sliding window with size four. Each value of the original data flow is weighted
with a portion of the statistical distribution of the corresponding predictor model
(SMA, WMA, EMA, and PMA). Thus, at time t, the sliding window has a set
of four values {12, 16, 26, 18}. In the next turn, at time t + 1, the next value to
enter inside the window will be 19, and when this occurs, the oldest value (12)
leaves the sliding window. This process will be repeated as long as there is a
data flow from the network.

At this point, the Operator might interact with the Predictor Selector component
so that it can choose the predictor model and define some parameters for the
static approach (e.g. arithmetic mean, variance of the data, and time period).
Thereafter, the prediction will perform two types of approaches for each time
period inside a sliding window for all the local analysis models, namely, static
and dynamic.

Algorithm 3.2. Pseudocode for Predicting Network Traffic
Input: Time series trace
Output: Prediction of network traffic

1: Start
2: read tmTrace
3: read parameters
4: vector vPModel
5: vector vPrediction
6: for (i = 0; i < tmTrace.size(); i + +) do
7: var nextV alue← 0
8: for (j = 0; j <= window.size(); j + +) do
9: if (i− j >= 0) then

10: var tmp← (vPModel[j] ∗ tmTrace[i− j])
11: end if
12: nextV alue← (nextV alue + tmp)
13: end for
14: vPrediction.add(nextV alue)
15: end for
16: End
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3.3.3.1 Static Approach

Algorithm 3.2 shows the procedure for predicting traffic. The input (i.e. the data
flow in Figure 3.5) corresponds to the time series traces (tmTrace). It should be
remembered that the input data can be any set of cloud data. Furthermore, the
Operator also has to set up the statistical parameters such as arithmetic mean,
variance, standard deviation, number of slices, vector model, as illustrated at
lines 3 and 4 of Algorithm 3.2 (for the static approach). When the algorithm
works dynamically, these parameters are computed automatically inside the last
sliding window. The number of slices is equivalent to the number of samples
of data used for the calculation of the prediction coefficients (from the moving
average models). Once the vector with slices has been properly shaped, the
algorithm estimates the next value for the network traffic for each new value
from the time series (line 12, nextValue). As output, the vector containing the
network traffic prediction, is represented by vPrediction.

3.3.3.2 Dynamic Approach

The Dynamic Approach component is responsible for defining the window size
that serves as input for the next sliding window. To reduce the complexity
of predicting network traffic, time-bounded past information is considered by
means of a sliding window of a size defined by the Dynamic Window Size Al-
gorithm (Algorithm 3.3), which thus makes it suitable for online prediction in a
cloud computing context [Dalmazo et al., 2016a].
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Figure 3.6: Elements of the Dynamic Window Size approach and iterations

Figure 3.6 illustrates the main conceptual components and their interactions.
Real-time cloud traffic data (step 1) is gathered and analysed in the Sliding
Window component in order to estimate network traffic from short historical
data. This cloud data traffic is processed according to a particular predictor
model, as illustrated in step 2. Possible candidates for the predictor model
(described in Section 3.2.4) include Simple Moving Average, Weighted Moving
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Average, Exponential Moving Average and Poisson Moving Average. The Dy-
namic Window Size Algorithm component is responsible for the definition of
the window size that serves as input to the Sliding Window component (step
3). The next value for cloud data traffic is predicted (step 4) according to the
chosen predictor model, therefore resulting in a sequence of predicted values for
the cloud data traffic (step 5).

By employing a window of dynamic but limited size, we minimize the workload
by reducing the amount of data that must be processed by the predictor model.
We now describe each component in more detail.

Sliding Window

In order to reduce the complexity of predicting network traffic, we propose time-
bounded past information by means of a sliding window of size defined by the
Dynamic Window Size Algorithm (Algorithm 3.3 – DyWiSA). A window of the
given size is used to weight past observations of data traffic according to the
distribution employed by the predictor model.

The example illustrated in Figure 3.6 shows a sliding window with size four.
Each value of the original data flow is weighted with a portion of the statistical
distribution of the corresponding predictor model [Dalmazo et al., 2013]. For
instance, the DyWiSA is familiar with the statistical behaviour of the predictor
models. In this specific case, for each time slot, the Sliding Window considers the
fourth part of the distribution to ponder the number of network packets.

It is worth pointing out that the Simple Moving Average, Weighted Moving Av-
erage and the Poisson Moving Average use a discrete function to weight the data.
However, for the Exponential Moving Average, the DyWiSA divides the func-
tion into a finite number of discrete elements before using, namely, it discretizes
of the exponential function.

Thus, at time t, the sliding window has a set of four values {12, 16, 26, 18}. In
the next turn, at time t + 1, the next value to enter inside the window will be
20, and when this occurs, the oldest value (12) leaves the sliding window. This
process will be repeated as long as there is a data flow from the network.

Dynamic Window Size Algorithm - DyWiSA

In order to fill the gap from the static model aforementioned, this section pro-
poses a new Dynamic Window Size Algorithm. Traffic predictors usually operate
over all of previous data [Chen et al., 2012] or resort to windows of finite but
fixed size. However, the network traffic in the cloud computing environment
may suffer sudden changes due to the large amount of requests and dynamic
demands without prior notification [Ballani et al., 2011].

Considering the open issue aforementioned this section proposes and describes a
sliding window approach as a forgetting process that limits the amount of data to
be processed. If the sliding window is large, the predictor will be able to smooth
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Algorithm 3.3. Dynamic Window Size
Input: Average of the current sliding window, newAvg

Average of the previous sliding window, oldAvg
Current sliding window, sWindow

Output: Next window size, wSize
1: Start
2: procedure DyWiSA(newAvg, oldAvg, sWindow)
3: var wSize ← sWindow.size()
4: var direct ← newAvg/oldAvg
5: var inverse ← oldAvg/newAvg
6: var ratio ← | direct− inverse |
7: if (ratio > (1 + α)) then
8: var volume = σ2

max

σ2

9: if (newAvg > oldAvg) then
10: wSize ← wSize + volume
11: else
12: wSize ← wSize− volume
13: end if
14: end if
15: return wSize
16: end procedure
17: End

traffic anomalies. This situation happens when the time series are increasing
(or decreasing) the data flow quickly. If the sliding window is small, the model
will be more sensitive to changes, however it will generate lower workload due
to the fewer number of data packets to process. This happens when the data
flow presents a stable behaviour.

To take these traffic behaviour changes into account, we consider the variance
(σ2) between the previous and current values inside of the sliding window. Al-
gorithm 3.3 describes the operation of the Dynamic Window Size Algorithm. It
resorts to a sliding window of variable size, with size changes happening only
when the difference between the average of current and previous window exceeds
a threshold α.

The algorithm receives as input the average of the current sliding window, the
average from the previous sliding window and the current sliding window. It
compares the average of the old sliding window with the average of the current
sliding window. In order to avoid unnecessary algorithm overhead, we consider
a threshold α for changes to the sliding window. This threshold corresponds to
a boundary value for the population parameter for which the difference between
the current value and the mean of the last window is not statistically significant
at the α level. The α estimation and evaluation are reported in Section 3.4.

Let ratio be a value which measures average changes between the current
window and last window. If the difference between newAvg and oldAvg is higher
than the threshold (1 + α), i.e. statistically significant, the window size is
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increased (or decreased) by volume. In order to quantify the maximum variance
of a sliding window and, consequently, know the variation of the window size,
a measurement to express the largest variance possible inside of a subset of the
entire population is needed. We consider the theoretical maximum variance
(σ2

max) to be the variance of the extreme values of a sliding window. For this,
we use the ratio between the σ2

max and the σ2 inside a sliding window. This
whole process is represented by the variable volume at line 6 of Algorithm 3.3.

Proposition 1. The theoretical maximum variance of a given set of data can be
estimated from the product of the difference of its extreme values, ya (lowest
value), yb (highest value), and the average, as follows:

σ2
max = (m− ya)(yb −m) (3.9)

Proof. See Appendix A. ■

Figure 3.7 illustrates the performance of different approaches (using DyWiSA)
with the traffic data set containing information from Dropbox monitoring (see
Subsection 3.4.1). In order to provide a better viewing of the results, we only
show forecasts for a limited period. However, the observable match between real
values and predictions held for remaining time periods.

Finally, the algorithm returns the window size to be used by the Sliding Window
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Figure 3.7: Sample of cloud network traffic prediction
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component. This Dynamic Window Size Algorithm is at the core of online traffic
prediction by dynamically adapting the window size resorting only to local data
from current and previous sliding windows, instead of global traffic data.

α Parameter Estimation

For this thesis, we propose an approach to estimate the best α for each forecast.
The goal of this methodology is twofold: to select the α parameter that provides
the highest possible accuracy for predicting network traffic; and to minimize the
computational costs as much as possible. We consider the α parameter a control
mechanism which represents the minimum variation of data traffic needed for
the window size to change. A small α will lead to frequent window size changes
and higher computationally complexity, while a higher α leads to less frequent
changes with corresponding lower computational costs. For instance, when the
α is equal to 0.1 it means that the average of the current sliding window must be,
at least, 10% greater or smaller than the last sliding window for the algorithm
to require a new window size calculation.

Seeking a methodology that determines a value of α that provides good accuracy
results without compromising the need for online traffic prediction (i.e. little
dependence on historical data), we consider only an initial set of windows to
determine an optimal α value. As observed in other works [Kwon et al., 2011,
Loiseau et al., 2010], the resemblance between the first two sliding windows and
the entire dataset suggests that the network traffic data exhibits the property
of self-similarity. The algorithm will set the best α to predict the entire dataset
taking advantage of this concept. Section 3.4.3 presents the evaluation of this
process.

3.3.4 Report

For evaluating network traffic prediction techniques many different metrics are
used to measure the quality of the forecasting [Joshi and Hadi, 2015]. The ana-
lysis mechanism provides as result a detailed report about the prediction mod-
els. For the static and the dynamic approaches, several statistical descriptors
are calculated and arranged in a table such as arithmetic mean, mean square
error, standard deviation, standard error, variance, etc.

The effectiveness of the prediction is measured through the Normalized Mean
Square Error (NMSE) [Weigend and Gershenfeld, 1994] and Mean Absolute
Percent Error (MAPE) [Makridakis et al., 2008]. NMSE is defined as:

NMSE = 1
σ2

1
N

N∑
t=1

(
Xt − X̂t

)2
(3.10)

where σ2 is the variance of the time series over the prediction duration, Xt is the
observed value of the time series at time t, X̂t is the predicted value expected
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from Xt, and N is the total number of predicted values. This metric is widely
utilized to assess prediction accuracy. Its results are compared with a trivial
predictor, which statistically predicts the mean of the actual time series, in
which case NMSE = 1. If NMSE = 0, this means that it is a perfect predictor,
whereas NMSE > 1 means that the predictor performance is worse than that of
a trivial predictor [Weigend and Gershenfeld, 1994].

MAPE measures expressed errors as a percentage of the actual data over the
prediction data. It is calculated as the average of the unsigned percentage error,
and is defined by the formula:

MAPE =



(
1
N

∑N
t=1

|Xt−X̂t|
|Xt|

)
∗ 100 if(Xt > 0)

(
1
N

∑N
t=1

|Xt−X̂t|
|X|

)
∗ 100 otherwise

(3.11)

where, Xt is the observed value, X̂t is the predicted value and N represents the
total number of values in the time series as well as referenced in NMSE. If the
denominator is zero then the actual value Xt is replaced by the average of time
series, X. When having a perfect fit, MAPE is zero.

3.4 Evaluation and Discussion

Throughout this section, the time series setup that is used to assess this work,
is provided. Furthermore, we evaluate the performance of the static and dy-
namic sliding window mechanisms (the best parameter α) employed for the
local analysis of traffic prediction. In addition, the results are compared with
all the predictors outlined in Section 3.2.4. We consider two case studies for
evaluation: Dropbox datasets and Data Centre dataset.

3.4.1 Dropbox Dataset

Two datasets from Dropbox monitoring were used for this case study, they are:
Home 1 and Campus 2, as described in the [Drago et al., 2012]. Home 1 dataset
consists of ADSL and Fiber to the Home customers of a nation-wide Internet
Service Provider, but they might be able to use WiFi routers at home to share
the connection. Campus 2 was collected in academic environments instead, such
as wired workstations in research and administrative offices as well as campus-
wide wireless access points.

Setup

The evaluated time series data captures the usage of Dropbox, the most widely
used cloud storage system [Drago et al., 2012]. All the measurements and data
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provided in this subsection were collected from March 24, 2012 to May 5, 2012.
The original Dropbox dataset encompasses more than 100 metrics about net-
work traffic. However, for the purposes of this study, the Time Series Builder
(Subsection 3.3.2) considers the total number of packets observed from the client
(server) to the server (client) and SSL/TLS protocol.

3.4.2 Data Centre Dataset

At the same time another dataset was used, for a better characterization of
the cloud computing environment, and which provides data from monitoring a
variety of services that are common in cloud computing [Benson et al., 2010].
In that work, the authors describe several services that can be found in the
dataset such as webmail servers, web portals, instant messaging, web services
and multicast video streams.

The authors use SNMP link statistics to examine the network-level impact in
terms of link utilization, congestion, packet drops, and the dependence of these
properties on the location of the links in the network topology and on a daily
basis. In addition, the dataset has data from a two-layer topology that introduce
server virtualization techniques in order to reduce heating and electric power
consumption.

Setup

The data was collected in an academic environment and the dataset consists of
more than five years of monitoring. However, the authors only provide a fraction
of the total amount of data used in the original paper [Benson et al., 2010], for
around 10 days. The granularity of the data generated is sixty seconds for each
time slot and the resulting time series is called by Data Centre throughout this
study. The Data Centre stores data from around 1000 servers located in the
West and Mid-West of the U.S. The Analysis Mechanism was performed for the
data in a similar way to what is described in the Dropbox case study.

3.4.3 α Parameter Evaluation

In this section we analyse the impact of α on the prediction accuracy and present
a methodology for selecting its value for two scenarios: Dropbox and Data Cen-
ter datasets. Figure 3.8(a) depicts accuracy results (NMSE) of the two initial
windows for a range of α values between 0.01 and 1.0. This shows that the op-
timal α for the two initial windows is 0.23 (smaller NMSE), which incidentally
is also the optimal α value when considering the whole dataset, as shown in
Figure 3.8(b). The same happens when considering the MAPE accuracy metric,
as shown in Figure 3.8(c) and 3.8(d), respectively for the two initial windows
and the overall dataset.

Figure 3.9 presents similar results for the Data Center dataset. For this case, this
methodology leads to an optimal α value of 0.15 for both metrics as well. While
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Figure 3.8: Evaluation of α parameter for the Dropbox dataset

this may not provide an overall optimal value, it is figured out that selecting
the best α parameter from the two initial windows provides, in general, a good
approximation.

Table 3.3 shows the output results when we run the algorithm with different
α values in a sample time series. With an α of 0.23, the Dynamic Windows
Size Algorithm changes the windows size 886 times (just 7.13% of the total)
with no significant changes in the overall average and standard deviation of
the data predicted. As α becomes smaller, the overhead becomes higher and
vice-versa.

From a computational point of view, the α estimation yields negligible com-
plexity because this process requires only an initial set of two sliding windows.
In comparison with the first version of the Dynamic Window Size Algorithm
(with fixed α), the prediction time has been decreased by almost half after
the α optimization approach. For instance, in the previous version of the Dy-
WiSA, the Poisson Moving Average (the predictor model with the best predic-
tion accuracy) spends 0.1570 seconds to compute the forecast for a data set with
more than 12000 values, namely, Home 1 data set from Dropbox (see Subsec-
tion 3.4.1). After the α optimization, the DyWiSA computes the prediction in
0.0830 seconds. Details about the time consumption improvement, NMSE and
MAPE for the other models are presented in Table 3.4.

It is evident that α has an important impact on the prediction quality, while
also affecting the computational requirements of the Dynamic Window Size Al-
gorithm. To warrant a fair comparison between all datasets evaluated in this
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Table 3.3: Sample of α evaluation

α value Model Average Std. Deviation Changes

0.30

SMA 29.79 16.47 759
WMA 29.80 16.49 759
EMA 29.81 17.11 759
PMA 29.80 16.64 759

0.20

SMA 29.79 16.25 916
WMA 29.80 16.28 916
EMA 29.81 17.09 916
PMA 29.81 16.51 916

0.10

SMA 29.70 16.24 2093
WMA 29.74 16.27 2093
EMA 29.81 17.09 2093
PMA 29.79 16.51 2093

0.02

SMA 29.18 15.92 8070
WMA 29.42 16.05 8070
EMA 29.79 17.12 8070
PMA 29.70 16.48 8070

Table 3.4: Time consumption (seconds) and improvement

Model α-Fixed (s) α-Optimized (s) Time
Time NMSE MAPE Time NMSE MAPE Improvement

SMA 0.0287 0.4045 41.58 0.0169 0.2709 28.18 41.11%
WMA 0.1024 0.3422 36.50 0.0707 0.2590 27.47 30.96%
EMA 0.1174 0.2807 29.36 0.0768 0.2600 27.20 34.58%
PMA 0.1570 0.2720 28.90 0.0830 0.2543 26.77 47.13%
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Figure 3.9: Evaluation of α parameter for the Data Center dataset

work, we consider the same methodology to determine the best α from the initial
sliding windows, as described above.

3.4.3.1 Dropbox Case Study

Figure 3.10 illustrates the evaluation for two different windows size. For this,
the time series was divided into intervals of thirty seconds and five minutes. In
this scenario, we use the dynamic approach for evaluating the Campus 2 data-
set, and the analysis mechanism was performed by applying a sliding window
weighted with the four statistical models, ARMA and ARIMA models described
in Section 3.2.4. The results show that the best level of accuracy can be achieved
with 5 minutes interval because larger intervals present lower variance among
the data. Other datasets evaluated in this work have presented similar beha-
viour when performed with thirty seconds and five minutes. For the remainder
of the evaluation, we use 5 minutes interval for evaluating the predictions.

3.4.3.2 Results and Discussion

First, Table 3.5 shows the results of the static approach in which the sliding
window size remains constant during the prediction data. After that, we show
the performance of a dynamic approach which calculates the sliding window size
by means of Algorithm 3.3 in Table 3.6. Finally, we compare the results with the
forecast data that were obtained from the ARMA and ARIMA predictors.
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Figure 3.10: Evaluation for different sliding window sizes (Campus2)

Static Approach

The evaluation of the network traffic prediction based on sliding window with
static size is determined by metrics of the overall historical data, such as the
global average. Then, the Static Approach demands an a priori analysis of the
dataset. After this process, the analysis of the data generates several statistical
descriptors that are employed as the size parameter of the static sliding win-
dows. Table 3.5 provides results for three different values of the sliding window:
arithmetic mean, standard deviation and variance. The first line shows statist-
ics of the Dropbox dataset that was used as input for the predictors, while the
second line exhibits results achieved for a trivial predictor that always predicts
the next value as the arithmetic mean of data. The following lines show results
for Poisson prediction model as well as three others (EMA, WMA and SMA)
presented in Section 3.2.4.

While for most metrics the results of the remaining predictors are not far from
those obtained by the Poisson approach, it is worth noting that the results
achieved by this approach have the best performance concerning NMSE and
MAPE, where PMA excels when compared to the others. This means that the
difference between the estimated values and the real values is the lowest in the
evaluation’s result.
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Table 3.5: Descriptive statistics for Campus 2 dataset

Dataset
Mean

Std. Dev. Variance NMSE MAPEArithmetic Square Error Std. Error
1 Dropbox 45.994 0.000 0.486 54.123 2929.4 0.000 0.000
2 Trivial 45.994 2929.4 0.000 0.000 0.000 1.000 337.98
Approach Sliding window size arithmetic mean
3 PMA 45.990 143.076 0.482 53.634 2876.71 0.0494 37.93
4 EMA 45.989 185.282 0.476 52.988 2807.81 0.0887 39.04
5 WMA 45.995 395.621 0.466 51.838 2687.19 0.1845 54.61
6 SMA 45.993 581.035 0.463 51.546 2657.02 0.2856 66.68
Approach Sliding window size standard deviation
7 PMA 45.988 208.785 0.474 52.834 2791.46 0.0745 38.36
8 EMA 45.990 278.076 0.468 52.045 2708.71 0.1026 41.93
9 WMA 45.999 594.747 0.455 50.679 2568.38 0.2313 57.43
10 SMA 45.993 931.031 0.449 50.063 2506.40 0.3714 71.31
Approach Sliding window size variance
11 PMA 45.988 268.790 0.471 52.468 2752.61 0.0974 41.43
12 EMA 45.990 381.512 0.457 50.829 2583.66 0.1475 46.19
13 WMA 46.003 1175.951 0.420 46.837 2193.73 0.5356 94.46
14 SMA 45.984 1908.381 0.405 45.121 2035.95 0.9372 134.69
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Table 3.6: Dynamic sliding window size

Dataset
Mean

Std. Dev. Variance NMSE MAPEArithmetic Square Error Std. Error
1 Home1 29.81 0 0.161 17.96 322.42 0 0
Approach
2 SMA 29.802 93.58 0.146 16.31 265.94 0.2709 28.18
3 WMA 29.829 87.13 0.146 16.35 287.31 0.2590 27.47
4 EMA 29.818 84.62 0.153 17.13 273.38 0.2600 27.20
5 PMA 29.827 82.68 0.148 16.58 274.87 0.2543 26.77
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As illustrated in Table 3.5, for the sliding window with size arithmetic mean, we
note that the Mean Square Error ranges between 143.08 to 581.04 (the lowest
error range), while for sliding window size with variance size, goes from 268.79
to 1908.38 (the highest error range). Thus, sliding window size arithmetic mean
provides results more stable than other approaches. As we can observe, NMSE
and MAPE values are the lowest for the arithmetic mean size (0.0494; 0.0887;
0.1845; 0.2856), indicating higher levels of accuracy.

We also use this methodology to estimate the best case scenario for the Home 1
in the static approach. It generates a table similar to Table 3.5 (omitted to avoid
redundancy of information). Among different sliding window size assessed, the
best result was achieved by the sliding window with arithmetic mean size, as
illustrated in Table 3.5.

While for most metrics the results of the remaining predictors are not far from
those obtained by the Poisson approach, we highlight the results achieved in
terms of NMSE and MAPE, where PMA excels when compared with the others.
This means that the difference between the estimated values and the real values
is the lowest in the overall result of the evaluation. In addition, Table 3.7 attests
that the Poisson predictor has the strongest correlation among the predictors
assessed in this evaluation.

Table 3.7: Pearson correlation

Dropbox SMA WMA EMA PMA
Dropbox 1,00 0,729 0,903 0,909 0,924

Dynamic Approach

For the assessment of the dynamic approach, the Algorithm 3.3 was used to
calculate the sliding window size. Furthermore, in the dynamic approach, the
predictor models were evaluated from the two Dropbox traffic traces (Home 1
and Campus 2). Figure 3.11 illustrates the NMSE accuracy of the predictor
models. All the local analysis predictor models were tested in their original ver-
sion with a static window size, as well as by employing the dynamic window size
methodology. Although our focus is on making a comparison between predictor
models operating with a static window size and a dynamic window size, it was
clear that the SMA consistently provides the worst results, irrespective of what
window size methodology was used. At the other extreme, there is PMA, which
provides the best overall results.

With regard to the comparison between the static and dynamic approaches, our
results show that all the predictor models achieve better results when employing
the dynamic window size methodology. There is further evidence of this in the
NMSE results of Figure 3.11, which show that all the predictors are improved
from as little as 6.51% for the best predictor model (PMA in Home1) to as
much as 81.1% for the worst predictor identified (SMA in Campus2). ARMA
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Figure 3.11: The NMSE results from the Dropbox datasets

and ARIMA models provide results that are slightly better for the Campus2
dataset.

It is worth noticing that in Figure 3.11 (a), WMA achieves a better result than
EMA and this is not confirmed in Figure 3.12 (a). When the predictor model is
assessed by NMSE, the data normalization process tends to improve the results
of the predictor with the highest variance (see Equation 3.10). In this case, the
WMA obtains better results than EMA because its predicted data shows the
higher σ2 (see Table 3.6). In order to avoid the problem of a wide variance of
data, the Dynamic Window Size Algorithm was also evaluated by MAPE.

Figure 3.12 shows the performance of the predictor models in terms of error
percentage. This illustrates the fact that in both cases (Home 1 and Campus 2)
the error rate decreases when the dynamic window size methodology is employed.
The overall MAPE results can be seen in Figure 3.12, which shows that the
dynamic methodology improves the prediction results for all the local analysis
predictors, from 5.44% (PMA) to 46.8% (SMA). While the ARMA and ARIMA
models have similar results for Home1 and Campus2 in terms of MAPE, the
best being the PMA.
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Figure 3.12: The MAPE results from the Dropbox datasets
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Running Time

In this subsection, we present the time cost of running the prediction models
presented in Section 3.2.4. In addition, we compare the performance between
the first version of the static window size approach and the Dynamic Window
Size Algorithm. Table 3.8 presents details about the processing time of the pre-
diction models with different size of input data. It is possible to observe that the
SMA, WMA, EMA and PMA models spend a similar time to compute the pre-
diction. Analogously, the ARMA and ARIMA models present a similar time for
performing predictions. These results are in accordance with the computational
complexity discussed in the Subsection 3.2.6.

It is worth noticing that other datasets evaluated in this work have presented a
similar processing time to perform the prediction. An entire view of the results
is displayed in Figure 3.13 which shows the Static Approach as the average
time of the SMA, WMA, EMA and PMA models with static window size. The
Dynamic Approach represents the average time of the SMA, WMA, EMA and
PMA models using the Dynamic Window Size Algorithm. It is clear that the
Dynamic Approach presents the best time performance due the lower number
of operations [Dalmazo et al., 2014]. Moreover, the prediction time has been
increased exponentially for ARMA and ARIMA models.

Naturally, the minimum real-time measurement that can be achieved depends on
the hardware configuration (i.e., processor clock rate, memory available, etc.).
For comparative purposes, all the tests performed in this work were based on
a standard personal computer with a DualCore Intel Core 2 Duo CPU 6300
1.86GHz and 3Gb DDR2-SDRAM.

Table 3.8: Time consumption for Home1

Model 123800 elements 61900 elements 12380 elements
Static Dynamic Static Dynamic Static Dynamic

SMA 0.069 0.238 0.034 0.130 0.006 0.026
WMA 0.076 0.614 0.038 0.345 0.006 0.085
EMA 0.076 0.645 0.038 0.363 0.006 0.092
PMA 0.076 0.670 0.038 0.391 0.006 0.112
ARIMA - 9.456 - 4.558 - 0.791
ARMA - 8.897 - 4.464 - 0.766
Results in seconds.

3.4.3.3 Data Centre Case Study

We divided the evaluation report into two parts. First, all the local analysis
approaches were assessed using the Data Centre dataset as input. In this case,
the Analysis Mechanism is employed for the data by adopting both a static
and dynamic approaches. In the static approach, the window size is invariable
during the prediction data. In the case of the dynamic approach, Algorithm 3.3
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Figure 3.13: Time consumption comparison for all data sets

calculates the sliding window size. After that, we carried out the prediction of
the data with ARMA and ARIMA predictors.

Static Approach

In Figure 3.14, the prediction results are given by drawing on data from the
Data Centre. In Figure 3.14 (a), we can see the bars in gray that represent the
NMSE achieved for the local analysis predictors (SMA, WMA, EMA and PMA).
Analogously to the Dropbox case study, PMA yields the best result which is close
to 0.91 for NMSE. Figure 3.14 (b) shows the performance for MAPE. PMA, like
in the NMSE evaluation, achieves a better result than the other local analysis
predictors assessed in this work.
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Figure 3.14: NMSE and MAPE results for Data Centre

Dynamic Approach

The Data Centre dataset was also evaluated by Algorithm 3.3 so that it could
generate results from a dynamic window size perspective. Figure 3.14 illustrates
the accuracy of the prediction models.

It is clear that all the predictors significantly improve their results after adopting
a dynamic window size approach to forecast the time series. This was confirmed
in the NMSE and MAPE results of Figure 3.14. The EMA predictor showed the
smallest improvement with 2.54% and the SMA showed the best improvement
with 12.5% regarding NMSE. In the case of MAPE, Figure 3.14 (b) illustrates
an improvement from 14.5% (PMA) to 24.2% for WMA. Figure 3.14 shows
that the ARIMA model provides better results than all the others predictors
to forecast the data from the Data Centre with NMSE = 0.796 and MAPE =
456.8%. Finally, regarding NMSE, the ARMA model achieves a high degree of
accuracy when predicting the network traffic, but is slightly outperformed by
the ARIMA model, which achieves the best prediction result. In the case of the
MAPE evaluation, the results are not different and the ARIMA model provides
the most accurate prediction in the context of the cloud Data Centre.

The results are based on a comparison between several predictors. In summary,
the moving average approach represents a solution that computes a local average
of data at the end of the time window, based on the assumption that this is the
best estimate to represent the current mean value around which the data are
ranging. These approaches are suitable if the time series is subject to sudden
changes, as cloud computing traffic is. In this case, an anomaly may be easily
absorbed within the time window without compromising the prediction as a
whole [Modi et al., 2013].

Approaches using global analysis (ARMA and ARIMA) achieve more accurate
results when predicting network traffic from the cloud Data Centre. However,
local analysis approaches outperform the results for cloud applications monit-
oring, as was seen in the Dropbox case study. Moreover, with a smaller sliding
window, oldest values also have less influence on the predicted network traffic.
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This indicates that a predictor that gives priority to recent history achieves
better results for dynamic cloud computing environments.

On the one hand the global analysis achieves accurate results, while on the other,
this kind of prediction is more expensive in computational terms than predictors
based on local data analysis. In addition, a local data analysis is able to provide
accurate predictions with relatively low levels of historical data dependency and
computational complexity.

3.5 Summary of the Chapter

This chapter presented the state of the art and a taxonomy for network traffic
prediction models, as well as an analysis mechanism that provides a standardized
approach for evaluating network traffic predictors based on global and local data
analysis. The outcomes of this mechanism enable the performance comparison
of several predictors in the cloud, particularly in terms of accuracy, historical
dependency, time and computational overhead.

From the observation of the results of the Dropbox case study, it can be seen
that all the predictions based on local analysis present a considerable improve-
ment after using the Dynamic Window Size Algorithm (DyWiSA). Apart from
this, the DyWiSA facilitates online traffic prediction due to its short depend-
ency on historical data. Compared to other predictors, Simple Moving Average
performed significantly worse. Furthermore, besides the good results, the Pois-
son Moving Average has maintained the same computational complexity of the
predictor models based on local analysis assessed in this work. Considering the
Data Centre dataset with traffic from a diverse set of common cloud services,
the ARIMA model shows a slight advantage over the other predictors in terms of
accuracy. However, this is achieved at the cost of high computational complex-
ity and time consumption. Poisson Moving Average, which is more attractive
due to its lower computational complexity, has shown itself to be more suitable
for dynamic cloud environments than the other predictor models assessed.
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• Dalmazo, Bruno L. and João P. Vilela and Marilia Curado, “Online
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agement, vol. 26, 4, pp. 269-285, John Wiley & Sons, 2016. Impact factor:
1.34

• Dalmazo, Bruno L. and João P. Vilela and Marilia Curado, “Online
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Chapter 4
Anomaly Detection for Cloud

Network Traffic
Intelligence is the ability to
adapt to change.

(Stephen Hawking)
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T he widespread adoption of cloud computing has been hampered by the
lack of security mechanisms. In view of this, an approach for detecting
anomalies in cloud network traffic is presented. The anomaly detection
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mechanism works on the basis of a Support Vector Machine (SVM) and pre-
diction of the network traffic. The key requirement for improving an anomaly
detection mechanism, in the context of cloud, is to reduce the total amount of
network data traffic that will feed the SVM.

4.1 Introduction

Cloud computing is a paradigm that involves service delivery models over the
Internet, such as: infrastructure, software and platform. These services can be
offered to a wide range of clients through the cloud providers. A recent report
by Cisco Global Cloud Index predicts that by 2021, 94% of all workloads will
shift from traditional data centers to cloud data centers [Networking, CISCO
Global Cloud Index, 2018]. According to the same report, the lack of security
mechanisms is the top factor that prevents the wide adoption of cloud service
models. For example, 30% of reported breaches in 2016 involved attacks on
cloud applications.

Online threats are constantly evolving in the virtual environment. In this con-
text, cloud computing introduces significant new paths of attack. To give an
example, Denial of Service (DoS) is a well-known type of attack that disrupts
online operations. The attack is usually carried out by hundreds (or thousands)
of requests for a service and has to be detected before it breaks down the server.
Owing to the large number of simultaneous requests, this type of attack causes
an anomalous behaviour in the network traffic. At the same time, the elastic and
scalable nature of cloud environments means that they are also apt to undergo
sudden changes [Ballani et al., 2011, Vieira et al., 2010], which makes it even
harder to detect which parts of the incoming traffic are caused by vandalism or
are being used legitimately.

IDSs are complex tools that include a number of concepts, definitions and tech-
niques that may differ, depending on the situation. An IDS usually relies on two
main approaches to detect intrusions that differ in the way the data is analysed
and processed. The first approach corresponds to a search for evidence of an
attack based on signatures of other similar attacks while the second approach
consists of a search for deviations from the appropriate behaviour found in peri-
odic observations of the system. The principal advantage of the signature-based
detection method is that it leads to a low number of false alarms. However,
signature-based IDSs are not able to detect new or variant forms of known at-
tacks. One of the benefits of anomaly-based detection is that a new attack for
which a signature does not exist can be detected if it occurs outside of the reg-
ular traffic patterns. In our study, we focus on the second class of IDS to detect
threats to the network traffic in the cloud environment.
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4.1.1 Open Issues for Anomaly Detection in the Cloud

Several techniques have already been proposed to perform anomaly detection
in the cloud environment, such as fuzzy logic [Patel et al., 2013], entropy-
based [Wang et al., 2010], artificial neural networks [Vieira et al., 2010] and
decision tree classifier [Fu, 2011]. Also, different types of network traffic inform-
ation are used to detect anomalies, such as the behaviour of protocols, CPU
utilization and user logs. However, there is an apparent deficiency in their abil-
ity to detect anomalies from a large amount of data, as detailed in the related
work (see Section 4.2).

In particular, these techniques require extensive tuning to improve their sensit-
ivity and achieve satisfactory results. There is also no consensus about the best
way to represent the huge volume of data generated by the cloud infrastructure.
In this context, extracting a good set of features that represents the behaviour of
the cloud network traffic remains an open issue. As a result, the literature lacks
mechanisms that can enable it to improve the accuracy of anomaly detection for
cloud environments while reducing false detection rates.

4.1.2 Contributions and Outline

To fill these gaps, an approach to detect anomalies in a cloud environment is
presented. Our proposal relies on traffic prediction to obtain features that rep-
resent the expected appropriate behaviour of the cloud network traffic. This
information is then used jointly with a Support Vector Machine (SVM) model
that is supplied with these features. The combination of these two tools repres-
ents a novel and effective approach for detecting anomalous events in the cloud
environment. The forecasting is conducted by a statistical method based on a
Poisson process, that has proved to be suitable for dynamic environments such
as cloud computing. SVM is already known as one of the best machine learn-
ing algorithms for binary classification [Deng et al., 2012]. Binary classification
meets the objectives of this proposal, since our aim is to detect anomalies inside
the normal network traffic.

The remainder of the chapter is organized as follows. Section 4.2 covers some
of the most prominent related work. Section 4.3 describes the proposed solu-
tion and the methodology used for this chapter, whilst Section 4.4 presents the
evaluation and discusses the results. Section 4.5 summarizes the chapter.

4.2 State of the Art

The current state of the art in IDSs contains many different techniques. How-
ever, due to the focus on evaluating a feature extraction approach, we restrict
ourselves to present SVM models applied in the IDS context and several models
for detecting anomalies in the cloud computing environment. In light of this, it
is worth noticing that SVM was used as a tool for evaluating the quality of the
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features that represent the cloud network traffic. Thus, it is possible to perform
a fair comparison among other works in literature that use other approaches
for extract features. In the end, a discussion about the state-of-the-art and the
open issues is provided.

4.2.1 Support Vector Machine IDSs

Horng et al. proposed a Network Intrusion Detection System on the basis of
Support Vector Machine with features selected by a hierarchical clustering al-
gorithm [Horng et al., 2011]. The SVM uses features such as the type of protocol,
the status of the connection, the number of file creation operations, length of
the connection and the number of root accesses. In spite of the good results
for attacks that generate anomalies, this approach does not present the same
effectiveness for other attacks such as User-to-Root (U2R) and Remote-to-Local
(R2L). The DARPA dataset was used to evaluate the proposed IDS.

Mulay et al. presented an IDS that combines Support Vector Machine and
decision trees to build a multi-class SVM [Mulay et al., 2010]. This model
can classify the network traffic in normal or abnormal. For the second case, the
system also tries to identify which is the attack. The SVM model uses data from
the DARPA dataset for the training phase. However, the work does not provide
evaluation results to validate the performance of the detection system.

Shon and Moon presented a hybrid machine learning approach to detect anom-
alies in the network traffic [Shon and Moon, 2007]. This model is a blending
between supervised and unsupervised SVM model. From this, they aim to in-
crease the performance in detecting new attacks. Besides, they use a Genetic
Algorithm for extracting more appropriate packet fields (protocol, IP, TTL).
However, in the evaluation section, the proposal presents a high false positive
rate with data from the DARPA dataset.

Li and Liu proposed a new module for the Intrusion Detection System Snort,
that is a well-known IDS based on signature [Li and Liu, 2010]. Although their
proposal does not provide evaluation results on the paper, the authors said that
the SVM improves the response time for new attacks. Features, such as protocols
and network packets, are extracted from Netfilter and Iptables.

Chen et al. performed a comparative study between Artificial Neural Network
(ANN) and Support Vector Machine to predict attacks on the basis of frequency-
based encoding techniques to select the features [Chen et al., 2005]. The aim of
this proposal is to increase the generalization capability of detecting more attacks
from less training data. The results have shown that both approaches are able
to detect anomalies in the network traffic, but SVM outperforms ANN.

4.2.2 Anomaly Detection in Cloud

Kholidy and Baiardi proposed a framework for a cloud-based IDS with features
from signature attacks and user logs [Kholidy and Baiardi, 2012]. This solution
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presents a distributed architecture without central coordinator to avoid a single
point of failure. This framework, based on event correlation, has a drawback in
terms of efficiency. According to the authors, this model presents an excessive
overhead to update the neural network parameters. Besides, the authors use
their own dataset to validate this approach, namely, the CIDD dataset.

Lee et al. built a multi-level IDS and log management approach on the basis
of user behaviour to better fit the cloud system requirements [Lee et al., 2011].
The method supports classifying the logs in normal or anomalous, but the net-
work administrator is responsible for taking the final decision. In this case, the
system requires human intervention to detect an attack, increasing the detection
time.

Song Fu proposed a framework for autonomic anomaly detection in the cloud
context [Fu, 2011]. The detection mechanism is fed through an algorithm for
metric selection based on mutual information: maximal relevance and minimal
redundancy. After that, a semi-supervised decision tree classifier identifies an-
omalies considering information such as CPU usage, memory utilization, paging
fault. Real data from a university campus is employed to assess the feasibility
of the solution.

Vieira et al. showed some particularities of five IDSs and a comparative study
is presented. The IDS proposed uses ANN for anomaly detection in cloud en-
vironment, and it improves the security level by integrating two approaches to
intrusion detection: behaviour- and knowledge-based [Vieira et al., 2010]. This
investigation covers some characteristics such as host- and network-based in-
trusion detection system; data from grid and cloud computing; IDS approach
and validation. In the suggested proposal, each node cooperatively participates
identifying local events (user logs) that could represent security violations. The
authors use simulation to assess this IDS.

Xiong et al. surveyed different types of security threats in cloud communication.
Furthermore, to reduce security risks, they propose an IDS to detect network
traffic anomaly based on synergetic neural networks and the catastrophe the-
ory [Xiong et al., 2014]. The DARPA dataset was used to validate this approach.
The results show high detection rates (83% up to 97%) and low false alarm rates
(8.3% to 11.4%). Ahmed Patel et al. presented a taxonomy and state-of-the-art
of intrusion detection and prevention systems for cloud [Patel et al., 2013]. At
the end, they propose an IDS focused on four applicable concepts for cloud-based
intrusion detection systems: autonomic computing, ontology, risk management,
and fuzzy theory. This proposal lacks a feature extraction approach and evalu-
ation of the feasibility.
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Proposal Approach Features
Feature extraction

Dataset
Management Cloud

approach structure scenario
Horng S. et al. [Horng et al., 2011] SVM Protocol, duration of

connection, status,
etc...

Hierarchical clus-
tering algorithm

DARPA Individual ×

Mulay S. et al. [Mulay et al., 2010] SVM Network packets Decisions trees DARPA Individual ×
Li H. and Liu D. [Li and Liu, 2010] SVM Signature Netfilter and IPt-

ables
– Individual ×

Shon T. and Moon J. [Shon and Moon, 2007] SVM Protocol, source port,
destination port, IP,
TTL, etc...

Genetic algorithm DARPA Individual ×

Chen W. et al. [Chen et al., 2005] SVM and ANN Protocol, source port,
destination port, IP,
TTL, etc...

Frequency-based
encoding

DARPA Individual ×

Kholidy H. and Baiardi F. [Kholidy and Baiardi, 2012] ANN User logs and signa-
ture

Event correlation CIDD Collaborative √

Lee J. et al. [Lee et al., 2011] – User logs – – Collaborative √

Song Fu [Fu, 2011] Decision tree clas-
sifier

CPU usage, memory
and swap utilization,
paging and paging
faults, etc...

Maximal relevance
and minimal re-
dundancy

Own dataset Individual √

Vieira K. et al. [Vieira et al., 2010] ANN User logs Event correlation Simulation Collaborative √

Xiong W. et al. [Xiong et al., 2014] Neural network
and Catastrophe
theory

Hurst parameter and
dynamic associate
factor

Synergetic dy-
namic equation

DARPA Individual √

Ahmed Patel et al. [Patel et al., 2013] Fuzzy theory – – – Individual √

Chengwei Wang et al. [Wang et al., 2010] Entropy CPU utilization,
memory virtual block
write/read

Multiple analytical
methods

Simulation Individual √
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Chengwei Wang et al. proposed multiple analytical methods to aggregate dif-
ferent levels of metrics in cloud data traffic for anomaly detection using en-
tropy [Wang et al., 2010]. The results, based on synthetic data (CPU utilization,
memory utilization and VBD read/write), show that the solution outperforms
threshold-based methods in accuracy and false alarm rate.

4.2.3 Discussion

Table 4.1 summarizes several IDS approaches and displays their key features.
On the one hand, all the SVM models proposed for traditional networks were
designed as an individual and centralized module. On the other hand, a couple of
the IDSs employed in cloud computing have a collaborative design, but most of
them were assessed by synthetic data (simulations) or have a conceptual model
that still has to be validated.

Regardless of whether or not anomaly detection methods are reliable, some
requirements are still not being met when they are employed in the cloud com-
puting environment, such as finding the best set of features and reducing the
amount of information required to describe a large set of data. In the training
phase, the SVM spends an amount of time that is proportional to the amount
of input data. This means that reducing the amount of data is the key factor
for successfully using the SVM in the context of cloud. According to the related
work, among the approaches for feature extraction, there is none that is applied
to cope with the massive volume of data traffic generated by the cloud infra-
structure. Thus, extracting a good set of features that represents the behaviour
of the cloud network traffic remains an open issue.

In the following section, a conceptual solution for detecting anomalies in the
cloud network traffic is introduced. The mechanism works by means of a SVM
model that is fed with features extracted from a predictor based on a Poisson
process.

4.3 Anomaly Detection Mechanism in Cloud

The purpose of the Anomaly Detection Mechanism is to provide an efficient
method to detect anomalies in the cloud-based network traffic. Figure 4.1 depicts
the basis of our mechanism, by highlighting the application scenario and the
main conceptual components.

The cloud provider offers several services by the Internet, such as infrastructure,
software and platform to the clients. Real-time cloud traffic data (Flow 1) is con-
tinuously being gathered from the cloud environment by the Cloud Monitoring
module. This information is subsequently processed by the Feature Extraction
Approach that performs prediction based on information such as the protocol
type, the number of network packets and timestamp. After that, the SVM
Model is fed with features extracted from the aggregated data (Flow 2). Then,
the SVM Model triggers a warning to the Event Auditor when an anomalous
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behaviour is detected (Flow 3). In the meantime, the Repository of Outcomes
component stores a detailed output regarding the historic of the Virtual Machine
(VM) operation (Flow 4). Furthermore, the Event Auditor represents an agent
placed in the VM that is able to communicate collaboratively with agents in
the other VMs. This agent receives any anomalous event from the SVM Model
and builds a message with information of all components (Flow 5) for sending
alerts to other agents. Having presented an overview of the anomaly detection
mechanism, in the following subsections there will be a more detailed description
of the components.

4.3.1 Cloud Monitoring

Detecting anomalies in cloud network traffic requires access to detailed informa-
tion about the operation of the network. In this context, the Cloud Monitoring
has to continuously monitor the service provided by the virtual machine. Thus,
the Cloud Monitoring is able to take the cloud network traffic patterns during
a given period. In other words, this component is responsible for recording all
the incoming and outgoing network packets in a virtual machine. As input,
raw data is gathered continuously from the cloud network traffic. The next
step is building a time series that will be analysed for the following prediction.
As output, the Cloud Monitoring prepares the collected data by measuring the
number of packets in the network traffic at regularly spaced intervals, and thus
forms a discrete time series ordered by time. It is not within the scope of this
study to propose a particular approach for monitoring the cloud infrastructure.
However, several tools have the potential to monitor the cloud computing envir-
onment with the aid of distributed agents in virtual machines, such as Nagios,
OpenNebula, and Nimbus [Aceto et al., 2013].
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Figure 4.1: Application scenario and elements of the proposed mechanism
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4.3.2 Feature Extraction Approach

Extracting features from the network traffic is of crucial importance for providing
a better performance by adopting a non-parametric approach such as using a
Support Vector Machine. In our view, feature extraction involves reducing the
amount of information required to describe a large set of data, therefore enabling
its processing by the SVM. Besides, it creates new features from functions of
the original data. In this context, we propose a supervised learning technique
that operates through a multi-level representation of data. Our approach uses
multiple temporal layers of data for feature extraction so that it can express
data in a compact representation by removing redundancy.
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Figure 4.2: Feature extraction approach based on PMA

Figure 4.2 illustrates the process of extracting features. These features
(F1, F2, ..., Fn) are gathered from the Cloud Monitoring process described in
the last subsection and they characterize the real operation of a virtual ma-
chine. The set of features is arranged into vectors. Each layer contains all the
feature vectors from a virtual machine at time t. A sliding window of a given
size is used to weight past observations of data traffic according to the Pois-
son Moving Average (PMA) predictor model [Dalmazo et al., 2014]. Based on
the PMA methodology, at each time period, out feature extraction approach
produces:

• a unique value that results from condensing the temporal layers by weight-
ing past observations following a Poisson distribution;

• a predicted value for the subsequent time period.

These values are then used as input to the SVM for detection of anomalies.

Kind et al. identified a set of relevant features for network anomaly detec-
tion [Kind et al., 2009]. Cloud computing generates large amounts of monitored
data, thus calling for a methodology to summarize this information. As detailed
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in Table 4.2, the set of features from Kind et al. over which we perform our
extraction technique consist of: the type of the protocol, the port number, the
packet size, the number of packets, time interval between anomalies, the vari-
ance between real network traffic and predicted network traffic (∆-variation)
and attack type.

Table 4.2: Details of the extracted features

Feature Description
Protocol type (f) Dividing the network traffic by protocol type facilitates

identifying anomalies not visible in the global network
traffic

Destination Port number (f) Port number analysis is useful for revealing attacks
that attempt to scan ports

Source Port number (f)
Source IP address (f) This information is useful for recognizing Denial of Ser-

vice attacks
Destination IP address (f)
Packet size (f) The sudden increase of this feature can indicate a SYN

flood attack
Number of packets (c) Consists of control information and user data used in

the prediction
Time interval (c) A time set containing information between the begin-

ning and the end of the anomaly
∆-variation (c) The absolute difference between the real network traffic

and the predicted network traffic
Attack type (f) It describes which is the attack that is being executed
Alarm (f) Boolean variable that indicates the presence of an

alarm

These features are divided into two types: frequency (f) features (e.g. the number
of times a packet from a protocol appears) and cumulative (c) features (e.g. the
total number of packets received in a time period). For cumulative features,
PMA aggregates values from different temporal layers and estimates the future
behaviour of the network; for frequency features, PMA determines which port
numbers are most common by a frequency function, and then estimates the
occurrences of the port numbers for each slice of time. With the aid of the PMA
algorithm, the outcome (extracted feature vector) contains just the most accessed
port numbers. This operation is analogous to the other frequency features.

The Poisson-based Predictor [Dalmazo et al., 2016a] represents the core of our
feature extraction approach. PMA has been adopted because of its high accuracy
in terms of network traffic prediction, and its ability to generate a subset of
representative features. It is worth noting that the feature extraction approach
enhances generalisation by reducing the variance in the data. In other words,
by employing PMA, the outliers (in a time series) are smoothed inside a sliding
window but still noticeable in a global context. The PMA acts as a method of
aggregating values over time so that the issue of processing large amounts of
information by the SVM can be addressed, while still representing the data with
sufficient accuracy.

Combining different traffic features is useful for detecting anomalies. For in-
stance, joining source IP addresses, the port number and the number of packets
is a potential mean of characterizing a DoS attack. At the end of this process,
the extracted feature vector is available for feeding the SVM model.
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4.3.3 SVM Model

The Support Vector Machine (SVM) is a supervised learning model that eval-
uates data and identifies patterns with the goal of classifying the data. SVM
model uses a methodology for choosing the best hyperplane (among many oth-
ers) that represents the largest margin between two classes, namely, normal
network traffic and anomalies in this work. Then, the hyperplane is chosen
such that the distance from it to the nearest support vector on each side is
maximized [Deng et al., 2012], as illustrated in Figure 4.3.

Anomalies

Support vectors

Normal network traffic

Figure 4.3: Support vectors and the optimal hyperplane for binary classification

The Support Vector Machine learning model includes two stages: training and
testing. The first learns the two possible patterns of the network traffic (the
normal and the anomalous behaviour). The second tests the knowledge achieved
in the past stage to detect unknown anomalies. Separating data into training and
testing data is an important part of validating the SVM model. At this point, the
risk of learning from compromised data is reduced once the SVM can distinguish
between the regular traffic and the anomaly. By this, we can minimize the effects
of data inconsistencies and better understand the characteristics of the data.
Once the SVM model has been processed by using the training set, it is needed
to evaluate the prediction capability against the training set. Considering the
data in the testing set already contains known values for the attribute that we
want to predict, it is possible to determine whether the suggestions of the model
are correct.

Summing up, the anomaly detection for the cloud network traffic based on SVM
with PMA expresses a process of recognizing an unexpected comportment. In
this process, the training data represents the standard pattern and the testing
data alludes to identify such pattern. The process of identifying a particular
behaviour inside of the testing data is a mapping process of the testing data in
some existing pattern of the training data.

4.3.4 Repository of Outcomes

The component called Repository of Outcomes is a database that brings together
a set of information used to describe the anomaly detection mechanism activities.
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This database is done on the basis of the network traffic behaviour and its goal
is to keep track of the virtual machine operating history. Furthermore, this
information can be used to support the cloud decision-making. In this case, it
can be used as subject to investigation by the operator or serves as a foundation
to trigger alerts to other agents from other cloud services.

4.3.5 Event Auditor

In order to detect an anomaly, auditing events that describes the environment
and the state of the system is needed. In this context, the Event Auditor consults
the Repository of Outcomes periodically looking for unexpected occurrences.
Once the Event Auditor finds a suspicious action, it will gather information
from the Repository of Outcomes to build an alert message. The alerts represent
that the current course of an event could be in some way dangerous or detri-
mental to the system. Although the anomalous pattern is being captured by the
Event Auditor, other virtual machines may be unaware this event. Thus, the
Event Auditor can collaborate with agents from other virtual machines so that
appropriate actions are taken. This paves the way to identification of distributed
attacks.

4.4 Evaluation and Discussion

Throughout this section, the anomaly detection model based on SVM that is
used to assess this work is presented. Furthermore, we evaluate the effectiveness
of the mechanism regarding the most common metrics found in similar stud-
ies in the literature. In addition, the results are compared with several SVM
models outlined in Section 4.2. We consider two case studies for evaluation:
DARPA [Haines et al., 2001] and CAIDA [Hick et al., 2007] datasets. Finally,
a sensitivity analysis of the model showing the trade-off between the time gran-
ularity and the accuracy is provided.

4.4.1 Metrics

Typical metrics to evaluate the effectiveness of an anomaly detection system are:
detection rate (DR), false positive rate (FPR) and false negative rate (FNR).
The DR is the number of correctly classified as normal packets divided by the
total number of the data of a test dataset (or true negative plus false positive),
as showed in Eq. (4.1). The FPR is defined as the total number of normal
data traffic, which were classified as anomalies wrongly, divided by the total
number of normal data traffic (or true negative plus false positive), as depicted
in Eq. (4.2). The FNR is expressed as the total number of abnormals data
that were incorrectly classified as normal traffic, divided by the total number
of real abnormals data (or true positive plus false negative), as illustrated in
Eq. (4.3).
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These metrics from the confusion matrix produce a numeric value that allows
the comparison among other anomaly detection approaches. They are depicted
in Eq. 4.1, Eq. 4.2 and Eq. 4.3.

DR = TN/(TN + FP ) (4.1)
FPR = FP/(TN + FP ) (4.2)
FNR = FN/(TP + FN) (4.3)

4.4.2 DARPA Case Study

The Cyber Security and Information Sciences Group of MIT Lincoln Laborat-
ory, under Defense Advanced Research Projects Agency (DARPA) and Air Force
Research Laboratory sponsorship, collected the first standard dataset for evalu-
ation of computer network intrusion detection systems [Haines et al., 2001]. This
dataset was the first formal, repeatable, and statistically significant evaluation
of intrusion detection systems. We would like to point out that the DARPA
data set is a renowned data set for anomaly detection. Although the data set
was created in 1998/1999, it is still being used by many works, including re-
cent works in the context of the cloud [Xiong et al., 2014, Ganeshkumar and
Pandeeswari, 2015, Liu et al., 2012].

The datasets contains data collected from February 1998 up to October 1999.
The data consists of three weeks of training data and two weeks of test data. The
first and third weeks of the training data do not contain any attack. The second
and the fourth week of the training data contains a select subset of labelled
attacks. In this work, we use the first and the second week for the training
phase and the third and the fourth week for the testing phase. In order to make
the dataset more realistic, we organized many of the attacks so that the resulting
data sets consisted of 10% attacks and 90% normal traffic (for both datasets,
training phase and testing phase).

4.4.2.1 Parameter Setup

The SVM model proposed in this work was implemented with LIBSVM version
3.20. LIBSVM is an integrated software for support vector classification, regres-
sion and distribution estimation. We consider the Radius Basis Function (RBF)
kernel as SVM algorithm. RBF is a real-valued function whose value depends
on the distance from the origin or on the distance from some another point
called by center. The Euclidean distance is the main example of a Radius Basis
Function. This kernel presents two parameters: C and γ. C is the parameter
for the soft margin cost function, which controls the influence of each individual
support vector. This process involves trading error penalty for stability. The
γ is the free parameter of the Gaussian radial basis function, it defines how far
the influence of a single training example reaches.
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We use a grid-search on C and γ using the cross-validation process (performed
automatically by the LIBSVM). In this process, several pairs of (C, γ) values
are tried and the one with the best cross-validation accuracy is picked. In this
process, for the DARPA dataset, the best pair is: (32768, 3.05e−5) and the
best pair for the CAIDA dataset is (512, 0.5). As illustrated in Figure 4.4 and
Figure 4.5, respectively.
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Figure 4.4: Grid searching for the best pair (C, γ) in the DARPA dataset
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Figure 4.5: Grid searching for the best pair (C, γ) in the CAIDA dataset

4.4.2.2 Accuracy of the Model

Table 4.3 shows the comparison among several approaches that use SVM and
DARPA dataset to validate the model. Regarding detection rate (DR) point
of view, Soft margin SVM with Radial Basis Function (RBF) kernel obtained
97.48%, but at cost of high false negative rate (FNR), more than 11%. Another
model with high DR, but low FPR, is the approach proposed by Chen W. et al.
[Chen et al., 2005]. Although the model hits almost 90% of the time, it showed
more than 10% of false positive rate (FPR). Other models presented in the
Table 4.3 present at least one drawback: low accuracy, high FPR or high FNR.
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In summary, our method on the basis of SVM and RBF kernel with features
extracted from Poisson Moving Average predictor presents the best equilibrium
in the results. It reaches 98.56% of detection rate and 8% of FNR. Also, our
approach displays the lowest FPR among the related work, just 1.44%.

Table 4.3: Approaches that use SVM and DARPA dataset

Approach Kernel DR(%) FPR(%) FNR(%)
LIBSVM and PMA RBF 98.56 1.44 8.00

Horng S. et al. [Horng et al., 2011] RBF 95.72 N/A N/A

Enhanced SVM [Shon and Moon, 2007] Sigmoid 89.59 10.41 27.27

Soft margin SVM [Shon and Moon, 2007] Inner product 89.52 10.48 4.36
Soft margin SVM [Shon and Moon, 2007] Polynomial 94.80 5.20 10.45
Soft margin SVM [Shon and Moon, 2007] RBF 97.48 2.52 11.09
Soft margin SVM [Shon and Moon, 2007] Sigmoid 96.06 3.94 12.73

One-class SVM [Shon and Moon, 2007] Inner product 52.67 47.33 36.00
One-class SVM [Shon and Moon, 2007] Polynomial 54.57 45.43 46.00
One-class SVM [Shon and Moon, 2007] RBF 82.23 17.77 44.00

Chen W. et al. [Chen et al., 2005] RBF 89.65 10.35 N/A

4.4.3 CAIDA Case Study

The CAIDA (Center for Applied Internet Data Analysis) DDoS Attack 2007
Dataset contains a traffic trace of a DDoS attack. This dataset contains
pseudonymised traces occurred on August 4, 2007 for approximately one hour
(20:50:08 UTC to 21:56:16). The entire CAIDA dataset is divided into 5 minutes
packet capture (pcap) files. Only attack traffic to the victim and responses to
the attack from the victim are included in the trace. The trace corresponds to
a Ping Flood Attack that greatly increases the ICMP packets in the network
traffic. The attack in the dataset is not labelled, precluding the training phase of
the machine learning algorithms. However, to overcome this gap, the evaluation
of the anomaly detection model through the CAIDA dataset was used just in
the testing phase. We use the DARPA dataset for the training phase.

4.4.3.1 Parameter Setup

For the CAIDA case study, we consider the same RBF kernel as SVM algorithm.
The grid-search presented (512, 0.5) as the best values for C and γ, as illustrated
in the cross-validation process in Figure 4.5.

4.4.3.2 Accuracy of the Model

The CAIDA dataset contains around 66 minutes of network traffic monitoring.
This dataset exposes a flood attack that begins after 25 minutes until the end of
the monitoring process. In this case, the anomaly detection approach was able

— 79 —



CHAPTER 4. ANOMALY DETECTION FOR CLOUD NETWORK
TRAFFIC

to entirely identify the attack (100% of DR and 0% of FPR) with delay less than
5 minutes.

4.4.4 Sensitivity Analysis

The goal of the sensitivity analysis is providing a better understanding of the
relationship between the time granularity and the accuracy of the model. This
evaluation is used within specific sliding window boundaries that will reflect
on the effectiveness of the solution, such as the effect that changes in time
granularity will have on the model detection rate.

In the literature, similar studies usually perform anomaly detection consider-
ing periods of 5 minutes as monitoring window size. This consensus acts as a
default benchmark that facilitates the performance comparison among different
approaches. Table 4.4 depicts the anomaly detection approach accuracy facing
three different sliding window sizes. It is worth noticing that all the sensitivity
analysis is performed in the same dataset, namely, DARPA dataset.

The first line shows the performance of the model using 1 minute to aggregate
data in the monitoring process. For this scenario, the model presents around
96% of DR and the worst FPR, reaching almost 4%. In the second line, it
is presented the results for the default time granularity used in this work, 5
minutes. In this case, the SVM model achieves the result displayed before in
this chapter (98.56% of DR and 1.44% of FPR).

Table 4.4: Sensitivity of the model

Model Time granularity DR(%) FPR(%)
1 LIBSVM and PMA 1 minute 96.10 3.90
2 LIBSVM and PMA 5 minutes 98.56 1.44
3 LIBSVM and PMA 10 minutes 98.61 1.39

Although the 10 minutes of time granularity presented the best results (98.61%
of DR and 1.39% of FPR), it was achieved at the cost of higher monitoring time.
More specifically, the 10 minutes case shows a small advantage in comparison
with the 5 minutes case, yet requiring double the monitoring time. Also, note
that the DARPA documentation [Haines et al., 2001] shows that each attack
takes, on average, 9 minutes and 3 seconds to be performed. This further attests
the irrelevance of increasing the monitoring time to 10 minutes, as most of the
attacks will be successfully performed before the anomaly was detected.

4.5 Summary of the Chapter

In this chapter, an attempt has been presented to shed light on the main obstacle
to the adoption of the cloud service models: the lack of security. To address this
problem, an approach to detect anomalies in the cloud scenario was proposed.
This work differs from previous anomaly detection techniques since it relies on a
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collaborative mechanism that combines a Support Vector Machine model with
features extracted from a Poisson Moving Average predictor.

By analysing the results of the evaluation, it can be seen that the anomaly detec-
tion mechanism was able to detect anomalies by means of two case studies with
real data. The SVM model achieved a high degree of accuracy. In particular,
compared with other approaches, the best level of detection rate and the second
best number of false negative rates were achieved. The sensitivity analysis has
shown the trade-off between the time granularity and the accuracy of the model,
showing that our scheme performs accurate detection within a 5 minute time-
frame. Finally, it is worth pointing out that the mechanism outperforms other
approaches in the literature, owing to the high quality of the features extracted
from the Poisson-based predictor, such as its accurate prediction.

This chapter resulted in the following papers::

• Dalmazo, Bruno L. and João P. Vilela and Marilia Curado, “Security
and Trustworthiness in Cloud Computing”, in Meeting with Science
and Technology in Portugal, 2017

• Dalmazo, Bruno L. and João P. Vilela and Simões, P. and Marilia Curado,
“Expedite feature extraction for enhanced cloud anomaly detec-
tion”, in NOMS - IEEE/IFIP Network Operations and Management Sym-
posium, 2016

• Dalmazo, Bruno L. and João P. Vilela and Marilia Curado, “A SVM
Model based on Network Traffic Prediction for Detecting An-
omalies”, in 21th edition of the Portuguese Conference on Pattern Re-
cognition, 2015
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Chapter 5
Triple-Similarity Mechanism for

Alarm Management

For a successful technology,
reality must take precedence
over public relations, for
Nature cannot be fooled.

(Richard P. Feynman)
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I ts distributed nature and ubiquitous service make the cloud subject to
several vulnerabilities. One of the main tools used for reporting suspicious
activity in the network’s traffic is the Intrusion Detection System. However,

two significant problems arise: the huge volume of control messages between the
virtual machines and the servers; and the associated transfer costs.

5.1 Introduction

An IDS is designed to monitor a system or a network in order to report any
suspicious activity that may compromise its operation. The report of the suspect
activity represents an output of the IDS, namely, an alarm. Usually, alarms carry
information about the suspicious activity such as: type of attack, the timestamp,
the number of packets, the IP address and the port number. Thus, alarms are
considered valuable information to support the administrator in decision-making
about whether it is a true attack or a false alarm which came from one or
more collaborative IDSs [Rittinghouse and Ransome, 2016] [Zissis and Lekkas,
2012].

An IDS may be based on two main approaches to recognize an attack (or at-
tempt) that differ in the way the data is analysed and processed. The signature
approach refers to the detection of attacks by looking for specific patterns based
on other similar attacks, while the anomaly approach consists in searching for
deviations from proper behaviour through periodic observations of the system.
Signature-based detection methods usually present a low number of false alarms
but do not have the ability to detect new or variants of known attacks, while
anomaly-based detection has the benefit that a new attack, for which a signature
does not exist, can be detected if it falls out of the regular traffic patterns.

Intrusion detection in a cloud environment involves other aspects that need to
be considered, for instance, the relationship between the server and the virtual
machine (VM). Usually, a server may host hundreds of virtual machines that
provide different services, for instance, storage, web server, e-mail, and oth-
ers [Mell and Grance, 2011]. Another important feature relates to where the
information in question will be collected and processed. In this case, the inform-
ation may come from the infrastructure, platforms of software development or
applications. Furthermore, the distributed architecture design of clouds is seen
as the key point on which IDSs rely for detecting threats.

The distributed nature and ubiquitous service make cloud computing vulner-
able to several types of attacks. For example: a denial of service attack, data
privacy and integrity, identity management and access control, and others [Ali
et al., 2015, Hudic et al., 2017]. Furthermore, the amount of alarms generated
can be overwhelming [Ballani et al., 2011], thus requiring alarm management
solutions for an effective management of resources. Managing alarms triggered
by traditional intrusion detection methods is even more challenging in the cloud
computing environment. In this case, the network traffic is apt to undergo sud-
den changes and these may be easily confused with traffic anomalies [Plonka
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and Barford, 2009].

5.1.1 Requirements and Open Issues for Managing Alarms in the
Cloud

In recent years, new approaches regarding alarm management have been pro-
posed in the literature such as alarm correlation [Benferhat et al., 2013], regular
expression matching [Li et al., 2010] and clustering alarms [Lo et al., 2010]. How-
ever, these studies are concerned with increasing the number of true alarms and
they fail to respond appropriately to a low number of false alarms or decrease
the number of control messages in general [Patel et al., 2013].

The number of alarms generated over time is even greater in cloud computing.
Besides the sudden changes that the traffic suffers due to the elastic and scalable
nature of cloud environments, the number of messages increases proportionally
with the number of virtual machines. Moreover, it is known that around 99%
of the alarms are false both in cloud computing [Patel et al., 2013] and in tra-
ditional environments [Elshoush and Osman, 2011] [Hubballi and Suryanaray-
anan, 2014] [Di Pietro and Mancini, 2008]. The wide disparity between the
true and false alarms generated has certainly compromised the performance of
IDSs.

The problem is further aggravated in cloud computing due to the huge volume
of control messages between the virtual machines and the server. This situation
makes the detection system inefficient because it provides an unmanageable
amount of alarms for the administrators [Elshoush and Osman, 2011]. In addi-
tion, according to a technical report by the University of California, the cost of
the data transfer lies in the region of $100 to $150 per terabyte [Fox et al., 2009].
Therefore, besides reducing the number of alarms and supporting the manage-
ment of the cloud infrastructure, managing alarms also facilitates minimizing
the network’s bandwidth and the associated transfer costs.

From these observations a set of key requirements for managing alarms in the
cloud emerge, which are listed as follows:

1. Self-adaptive: this requirement refers to the model’s ability to learn
or train itself based on current information, which is different from static
approaches. Cloud computing ensures elasticity which provides scalability.
In this context, the cloud provider should be able to preserve its operation
under conditions of unexpected change by constantly evaluating its own
behaviour.

2. Low message overhead: as important as decreasing the false alarm rate,
a key point is to reduce the number of control messages between the server
and virtual machines. An alarm reduction technique is an absolute neces-
sity for solving this problem [Hubballi and Suryanarayanan, 2014]. This
requirement calls for a compatible model for detecting attacks and classi-
fying alarms dynamically, generating the minimum possible workload.
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3. Collaborative: this requirement is characterized by the sharing and con-
struction of knowledge among multiple information sources in order to
accomplish a task. A large number of heterogeneous entities usually have
different information, and combing them can potentially provide better
alarm management to the cloud networks and their applications. A col-
laborative approach is particularly well suited to the cloud environment
because these entities have to communicate continuously in order to sup-
port decision-making.

4. Distributed: an approach in which components are located in different
virtual machines and coordinate their actions by passing messages rep-
resents, in this context, a distributed alarm management. This feature
ensures that the VMs interact with each other in order to join forces to
recognize an attack. Moreover, adverse events generated by an individual
failure may be minimized [Arshad et al., 2013].

By following this set of key requirements, it is possible to devise an alarm man-
agement system suitable for cloud computing.

5.1.2 Contributions and Outline

In order to address these issues and requirements, we have made several con-
tributions in this work: (i) grouping similar alarms that may correspond to the
same attack or attack attempt in order to reduce the number of messages sent
to the server/administrator and; (ii) using the number of occurrences of these
groups to adjust the severity of a single alarm based on a similarity analysis.
From these contributions, we intend to optimize the efficiency for generating
alarms, decreasing the network data traffic to manage IDS and its associated
transfer costs.

The remainder of the chapter is organized as follows. Section 5.2 covers some
of the most prominent related work. Section 5.3 describes the proposed solu-
tion and the methodology used for this thesis, whilst Section 5.4 presents the
evaluation and discusses the results. Section 5.5 summarizes the chapter.

5.2 State of the Art

Improving alarm management in the cloud is a useful means of supporting the
cloud provider to manage its assets. Besides decreasing the number of false
alarms, it may reduce the amount of alerts that need to be handled. In this
section, latest research findings are organized into two parts. First, several
approaches for alarm correlation are presented, outlining the main benefits and
drawbacks of each technique. Finally, a discussion about the state-of-the-art
and the open issues is provided.

— 86 —



CHAPTER 5. TRIPLE-SIMILARITY MECHANISM FOR ALARM
MANAGEMENT

5.2.1 Managing Alarms

There are numerous approaches to improve the quality of alarms by increasing
the number of false positives, such as fuzzy logic [Patel et al., 2013], artificial
neural networks [Vieira et al., 2010], decision tree classifier [Fu, 2011] among
others. Other approaches on alarm management aim to decrease the false alarms
rate by recognizing relationships between them [Hubballi and Suryanarayanan,
2014]. The main approaches found in the literature are described below.

Zhichun Li et al. [Li et al., 2010] applied signature detection techniques for
enhancing an IDS looking for vulnerabilities in a high speed network. An ap-
proach that uses semantic information can potentially reduce the number of false
alarms. They decreased the false alarm rate based on a signature parsing and
regular expression matching engine by using the Single PDU Multiple Signature
Matching algorithm. However, there is no a real implementation of this proposal
yet, just a small prototype implementation which can handle a limited number
of protocols.

Parikh and Chen [Parikh and Chen, 2008] used statistical pattern recognition
techniques among multiple sources of information to decrease the cost of oper-
ations associated to intrusion detection activities. Different errors in classifying
network traffic generate different costs associated with them, for instance, the
cost of a false alarm and the useless traffic generated by it. Although the cost
minimization strategy has been successful based on a objective function minim-
ization, the capabilities of learning incrementally and adaptively are not assessed
which is important due to the dynamically changing characteristic of network
traffic in cloud environments.

Lo et al. [Lo et al., 2010] extended the Snort IDS. In this proposal, four modules
are created to work in cooperative mode: intrusion detection, alarms clustering,
threshold computation and comparison. The intrusion detection is based on ana-
lysis of the number of packets over time. In comparison with pure Snort-based
IDS, they showed that the solution spends almost the same time to compute the
detection. The benefit of the proposed modules is preventing the system from
a single point of failure attack for cloud environment.

Salem Benferhat et al. [Benferhat et al., 2013] proposed a generic approach
that can be applied for any classifier (e.g. Hidden Naive Bayes, decision tree
classifiers, etc) for alarm correlation. The term “expert knowledge” refers to a
person who has extensive skill or knowledge in a particular field. Then, they
leverage the expert knowledge for increasing the accuracy of the classification
model. However, approaches based on Neural Networks have a serious limitation:
they learn the training patterns but lose the ability to make generalizations. For
instance, a new adaptation of a known attack may not be detected, thus limiting
finding slight variations of instances already classified by the model.
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Table 5.1: Characteristics of related works concerning requirements for alarm management

Proposal Self-adaptive
Low message

Collaborative Distributed
Cloud

overhead scenario
Zhichun Li et al. [Li et al., 2010] × × × × ×
Parikh and Chen [Parikh and Chen, 2008] × ×

√
× ×

Lo et al. [Lo et al., 2010] × ×
√ √ √

Salem Benferhat et al. [Benferhat et al., 2013] √
×

√ √
×

Leau Beng et al. [Beng et al., 2014] √ √ √
× ×

Elshoush and Osman [Elshoush and Osman, 2012] ×
√ √ √

×
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Leau Beng et al. [Beng et al., 2014] perform an extensive study about exist-
ing efforts to address the identification of similarities and causality relationships
between alerts. They elect the main problem that researchers are trying to solve,
namely, the generation of large number of alerts and false positives. Further-
more, they point out the most popular alert correlation approaches with their
advantages and drawbacks. This paper surveys existing works and does not
propose a new solution.

Elshoush and Osman [Elshoush and Osman, 2012] presented a multiple com-
ponents approach for dealing with different features of alert correlation, each
responsible for a different aspect of the overall correlation aim. However the
sequence order of acting components affects the process performance. In this
context, they introduce a method based on the Alert Fusion Algorithm to merge
unrelated alerts and thus reducing the number of messages. Nevertheless, the
total time needed for processing this approach increases depending on the num-
ber of alerts triggered in each component.

5.2.2 Discussion

This section compares several approaches by taking into account the require-
ments for managing alarms in a cloud computing environment. In particular,
it summarizes the related work regarding their key requirements, application in
cloud context and the remaining open issues as illustrated in Table 5.1.

IDSs are designed to report basic events that are malicious in nature but power-
less to recognise causal relationships between the consecutive instances of an
attack. Approaches focused on alarm management are a potential solution for
reducing the number of false or missed alerts. However, these approaches can
not deal with a low number of messages and a self-adaptive solution in a distrib-
uted architecture at the same time. Moreover, the related work approaches are
not designed for adapting itself to the elastic and scalable nature of cloud envir-
onments because they fail to learn based on current information. Furthermore,
the cloud environment lacks an approach for alarm management able to cope
with large amounts of information and control messages. In addition, all types
of alarms are processed in the same way in the current approaches, without any
level of distinction between the severity of alarms.

In order to tackle these limitations, we introduce a conceptual solution for man-
aging alarms in the cloud network context by means of a similarity analysis
between the features extracted from the IDS, in the following section. From
this, it is expected to improve the performance in terms of the usage of the
network’s bandwidth and the number of alarms. More specifically: the solu-
tion proposed reduces the network data traffic to manage IDS and its associated
transfer costs; and raises the severity of an individual alarm based on the number
of occurrences of similar alarms.
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Figure 5.1: Conceptual components for managing alarms in cloud

5.3 Triple-Similarity Mechanism

The purpose of this proposal is to provide an efficient method to aggregate
similar alarms in cloud-based network traffic. Figure 5.1 depicts the basis of
our proposal, by highlighting the application scenario and the main conceptual
components.

Monitoring data from cloud infrastructures is the input of the system. From
this data, an Intrusion Detection System works by supervising any suspicious
network activity. Whenever necessary, it triggers alarms that hold vital in-
formation about the abnormal activities. At this point, the Triple-Similarity
Mechanism relies on data from the Alarms Database for aggregating alarms
and, consequently, reduces the network data traffic and decreases the associated
transfer costs. Then, the Alarm Generator produces a single alarm at a higher
level of severity. We now describe each component in more detail.

5.3.1 Intrusion Detection System

At this point, the Intrusion Detection System monitors the network traffic gen-
erated by the service provided by the virtual machine and its applications during
a given period. In this process, raw data is gathered continuously from the cloud
network traffic in order to build a network baseline. As an output of this pro-
cess, the IDS prepares the data collected by measuring the number of packets in
the network traffic at regularly spaced intervals, and thus forms a discrete time
series ordered by time.

It is important to mention that the similarity mechanism is an open model that
could be applied individually or collaboratively for different IDSs. However, for
this work we use an IDS that generates alarms based on a distributed mechanism
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that combines a Support Vector Machine model with features extracted from
a Poisson Moving Average predictor [Dalmazo et al., 2017a]. The features are
classified into two types: frequency (f) features (e.g. the number of times a packet
from a protocol appears) and cumulative (c) features (e.g. the total number of
packets received in a time period), as presented in Table 4.2.

5.3.2 Proposed Mechanism

The Triple-Similarity Mechanism (T-SyM) acts upon two sets of features: the
dataset of alarms and the network traffic. The entire process for determining
the similarity level comprises 3 steps: individual similarity, clustering relevant
features and generating the output.

• Firstly, the T-SyM needs to measure the individual similarity of each fea-
ture with the Alarms Database. Giving preference to simplicity, the indi-
vidual similarity is given by the Euclidean Distance between both features
from the alarm dataset and the IDS output. Figure 5.2 illustrates First
Similarity which compares two vectors: the vector from the IDS output
and the vector from the Alarms Database which holds information about
previous attacks. These vectors hold all the features that describe the
alarm. In order to consider the different types of features generated by
the IDS, the similarity approach relies on the set of features responsible
for identifying the attack.

• It is then necessary to cluster relevant features based on the individual
similarity level, as illustrated at the Second Similarity in Figure 5.2. The
feature’s behaviour is correlated according to the type of attack. For in-
stance, in a Denial of Service, the attacker uses more than one unique
source IP address, often thousands of them, so a high value for this fea-
ture is expected (source IP address) [Yan et al., 2016]. On the other hand,
the destination IP address is restricted to only one or a small set, in this
case a low number of occurrences for this feature is expected. Therefore,
the set of features representing this attack presents a strong individual
similarity level for some features and a weak individual similarity level for
others. In order to avoid discrepancies between features, a clustering ap-
proach is required, namely, the k-means algorithm. This procedure divides
the features into two groups: relevant and not relevant.

• Finally, an approach for comparing the similarity of the two groups is
needed. The literature presents several techniques with this aim: the
Sorensen index, the Jaccard index and the Tanimoto coefficient. However,
the Sorensen index and the Jaccard index are metrics that only measure
the similarity between objects of purely binary attributes. The Tanimoto
coefficient, on the other hand, is not restricted to working with only binary
attributes. In Third Similarity all similar alarms that correspond to the
same attack are aggregated based on the Tanimoto coefficient. At this
point, this procedure is useful for minimizing the number of control mes-
sages sent to the server/administrator of the cloud provider. In addition,
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Figure 5.2: The triple-similarity mechanism

the severity of a single alarm increases according to the number of similar
occurrences. This procedure is expected to enhance the alarm manage-
ment in the cloud by reducing the network data traffic and its associated
transfer costs.

5.3.3 Alarms Database

The component called Alarms Database is a repository that stores a set of in-
formation used to describe an alarm triggered by the IDS. Besides keeping track
of the IDS operating history, the Alarms Database also includes a finite number
of categories by which each alarm is classified. Then, before sending an alarm to
the server, the Triple-Similarity Mechanism looks for a similar alarm category
inside the Alarms Database. This is useful to decrease the number of messages,
as various alarms can be replaced by just one but with a greater impact.

5.3.4 Alarm Generator

The IDS causes the system to generate a signal regarding the suspicious activity
as soon as it is recognized. Algorithm 5.1 describes the procedure to calcu-
late the severity level for alarms. The Alarm Generator calculates the level of
severity based on the Alarms Database. Optionally, an operator of the cloud
infrastructure may interact with the Alarm Generator to influence the process
for evaluating the level of severity for the alarms. He/she may determine, based
on his/her knowledge, how important an attack is, in comparison with others by
increasing the initial severity level. For instance, an operator may configure the
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algorithm to prioritize an occurrence of DoS attack instead of Portsweep (see
variable opK).

Algorithm 5.1 starts by analysing the network traffic inside a sliding window
provided by the IDS. This procedure seeks alarms and classifies them according
to the Alarms Database and then assigns a level of severity. The ω function
calculates the severity based on the number of alarms and the operator’s know-
ledge. The ω function is based on a regression model that is built from the
network traffic behaviour [Chatterjee and Hadi, 2015]. The Alarm Generator
presents an interval tag that specifies a period of time to wait before sending
similar alarms. All information about the attacks and the size of the interval
to be monitored is given by the IDS. This is an important aspect that ensures
the generalization of the Triple-Similarity Mechanism for working with other
IDSs.

Algorithm 5.1. Severity Adjustment of Alarms
Input: Network traffic, nTraffic

Operator knowledge, opK[ ]
Output: Severity for alarms, severity[ ]

1: Start
2: procedure GetSeverity(nTraffic, opK[ ])
3: var slidingWindow = idsWindow(nTraffic)
4: for each element e in slidingWindow do
5: if (hasAlarm(e)) then
6: var vType = classify(e)
7: var nAlarms[vType] + +
8: end if
9: end for

10: for each element e in nAlarms[ ] do
11: var severity[e] = ω(nAlarms[e], opK[e])
12: end for
13: return severity[ ]
14: end procedure
15: End

Without this control mechanism, events of this nature may occur often and cause
many alarms to be generated. Moreover, they may correspond recurrently to the
same anomaly or attack. To avoid this, alarms will only be sent for the first event
and after that, each occurrence with the same features represents an increase in
the severity according to the severity level defined by the operator for different
types of attacks. This prevents the network and the server from being flooded
with redundant alarms as we will now demonstrate in the evaluation.

5.4 Evaluation and Discussion

To evaluate the effectiveness of the solution, we conducted a case study in which
an Intrusion Detection System generates alarms based on a distributed mechan-
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ism that combines a Support Vector Machine model with features extracted from
a Poisson Moving Average predictor, as described in [Dalmazo et al., 2016a]. We
have considered the DARPA dataset as the case study for evaluation.

5.4.1 Experimental Environment Setup

The experiments were conducted on a 64-bit standard personal computer with
Intel Quad Core i5 Processor with 8Gb of RAM running at 2.70GHz. The oper-
ating system was Ubuntu 16.04 LTS. Furthermore, the programming language
used for implementing the Triple-Similarity Mechanism was C++ (gcc 4.8.4 c11
version) and several shell scripts to deal with the data.

5.4.2 DARPA Dataset

For the evaluation of results, we resort to the DARPA Dataset. Further details
about this dataset have been provided in Section 4.4.2. In the context of this
evaluation, the goal is not evaluate the efficiency of the IDS but decreasing the
amount of alarms generated by it. In light of this, we use the second week for the
training phase because it contains details about the attacks such as timestamp,
ports, duration and IP address. In order to make the dataset more realistic, we
organized many of the attacks so that the resulting data set consisted of 10%
attacks and 90% normal traffic.

The following list describes some attacks included in training data that have
been posted on the Lincoln Laboratory web site. All the selected attacks are
apt to generate anomalies in the network traffic.

• Guest: Try to guess a password via telnet for a guest account (Brute force
attack, as described in Subsection 2.2.2.2)

• Portsweep: Surveillance sweep through many ports to determine which
services are supported on a single host

• Ipsweep: Surveillance sweep performing either a port sweep or ping on
multiple host addresses

• Land: Denial of Service where a remote host is sent a UDP packet with
the same source and destination

• Back: Denial of Service attack against an apache webserver where a client
requests a URL containing many backslashes

• Syslog: Denial of Service for the syslog service connects to port 514 with
unresolvable source IP

• Teardrop: Denial of service where mis-fragmented UDP packets force a
server to reboot

Currently, many providers have been suffering from Distributed DoS attacks,
which, for instance, can cause many alarms to be generated [Nur and Tozal,
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2018]. The next section presents the results from applying T-SyM in order to
reduce the number of alarms generated.

5.4.3 Results

Table 5.3 shows a real Denial of Service attack against a web server. It is possible
to observe that the attacker (172.16.114.50) floods the server (135.13.216.191)
through port 80 trying to overthrow the services provided. According to the IDS,
each line (1, 2, 3, 4, 5 and 7) generates an alarm. However, all the alarms consti-
tute a single attack. This exemplifies a relevant problem for alarm management,
the large number of alarms generated.

The evaluation is based on a comparison between the alarms generated for an
IDS applied to the DARPA dataset. As general results, we observe that for all
attacks fewer alarms were generated after using the Triple-Similarity Mechanism,
as illustrated by Table 5.2. The Portsweep attack has shown the highest gain
in comparison with other attacks (90%). In other words, the Portsweep attack
triggered 574 alarms when using just the IDS. The number of alarms was about
10 times lower than expected when we combine the IDS and T-SyM. The DoS
and Ipsweep attacks present similar results, 78.47% and 79.35% fewer alarms,
respectively. Finally, our mechanism has decreased the number of alarms from
169 to 44 for the brute force attack.

Table 5.2: Comparison between alarms generated with and without the Similar-
ity Mechanism

Type of attack
Number of alarms

Improvement (%)IDS IDS + T-SyM
Brute Force 169 44 73.96%
Portsweep 574 57 90.07%
Ipsweep 155 32 79.35%

DoS 641 138 78.47%

Along with the aggregation of true positive alarms reported above, our scheme is
also able to aggregate false positives, therefore reducing their impact on the IDS
performance. In particular, the IDS originally reported an amount of 2632 false
alarms. After using T-SyM, by aggregating false alarms, their number decreased
to 490, corresponding to an improvement of 81.4%.

The IDS is subject to failures. For example, a missing alarm could occur in the
interval between two (or more) attacks that are performed at the same time.
However, the problem of missing alarms is the exclusive responsibility of the
IDS in question. Once the IDS generates alarms, they can be aggregated by the
Triple-Similarity Mechanism. Therefore, the process of aggregation will never
generate a missing alarm.
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Table 5.3: Example of alarms in the data set

N Timestamp Src IP Src Port Dst IP Dst Port Packet size Number packets Time interval ∆-variation Attack type Alarm
1 920974021 172.16.114.50 80 135.13.216.191 29514 84 21 1 124 back 1
2 920974021 172.16.114.50 80 135.13.216.191 29514 84 21 1 103 back 1
3 920974021 172.16.114.50 80 135.13.216.191 29514 84 21 1 61 back 1
4 920974021 172.16.114.50 80 135.13.216.191 29514 84 21 1 59 back 1
5 920974021 172.16.114.50 80 135.13.216.191 29514 84 20 1 35 back 1
6 920974021 135.13.216.191 29514 172.16.114.50 80 32 59 1 34 - 0
7 920974021 172.16.114.50 80 135.13.216.191 29514 84 21 1 27 back 1
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This case study applies Algorithm 5.1 to calculate the severity level for alarms.
This algorithm resorts to a function ω for assessing the severity level of alarms
based on a regression model fed with the history of attacks in the Alarms Data-
base. We approximate the ω function to a logarithm base 4, meaning that an
alarm at level 3 (the greatest risk for the system in this example) should aggreg-
ate, at least, 64 alarms from the IDS. Each level corresponds to a different class
of alarm priority in increasing order of risk. In this case, actions can be gener-
ated and automatically executed in response to a specific alarm level. Figure 5.3
illustrates the severity level for the alarms. In general, most of the alarms are
regarded as level 1 (about 66% of the alarms), 26% are level 2, whilst level 3
alarms represent 8% of the total.
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Figure 5.3: Evaluation of the severity for alarms

Moreover, the resulting dataset regarding the second week for the training phase
has more than 400MB of data. After using our mechanism, the total amount of
data was 78.3MB. In particular, our mechanism was able to decrease the number
of alarms generated by aggregating similar alarms from the IDS. In addition, it
is efficient when recognizing the attacks from less information.

It is worth noting that the T-SyM is not evaluating the effectiveness of the
IDS to detect attacks nor the diversity of the labelled attacks contained within
the DARPA dataset. Although the DARPA dataset was not designed for the
cloud, it has a wide range of attacks that make it possible to detect threats from
multiple hosts. In this context, using this dataset does not limit the proposal
presented here. In fact, the DARPA dataset provides all the conditions necessary
to validate our mechanism regarding distributed attacks, commonly present in
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the cloud. Therefore, this scenario expresses a case study for a mechanism
designed to aggregate alarms in a cloud environment.

Lastly, the T-SyM has proved to be efficient at aggregating alarms that carry
similar features. In comparison with the alarms generated only by the IDS,
our similarity approach produces fewer alarms but with higher levels of severity.
This makes the network traffic monitoring of the cloud providers faster and more
effective.

5.5 Summary of the Chapter

In this chapter, the main issues generated by Intrusion Detection Systems for
cloud computing are presented. For instance, the huge number of alarms gener-
ated over time and how this impacts on the number of control messages between
virtual machines and servers. To address these problems, the Triple-Similarity
Mechanism (T-SyM), a systematic approach for aggregating similar alarms in
the context of the cloud network traffic and an algorithm to assign severity level
for alarms were proposed.

From the observation of the results, we can see that the mechanism was able to
(i) reduce the generation of alarms by from 73% to 90% and; (ii) decrease the
network data traffic to manage IDS and its associated transfer costs by more
than 80%. Moreover, aggregating similar alarms produces fewer alarms but with
higher levels of severity, supporting the network traffic monitoring of the cloud
providers.

The outcomes of this chapter include the following submission:

• Dalmazo, Bruno L. and João P. Vilela and Marilia Curado, “Triple-
Similarity Mechanism for Alarm Management in the Cloud”,
Computers & Security, vol. 78, pp. 33-42, Elsevier, 2018. Impact factor:
2.65
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Chapter 6
Conclusions and Future Work

Truth is ever to be found in
simplicity, and not in the
multiplicity and confusion of
things.

(Isaac Newton)
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T his final chapter provides an overview around lack of security in cloud
computing environment, the open issues that were addressed and the
contributions to the advancement of the state of the art in this topic.

Future research opportunities and directions are also outlined.

6.1 Synthesis of the Thesis

Cloud computing presents an impressive potential to provide rapid access to
flexible and low cost IT resources on the fly, over the Internet. However, these
benefits are subject to be harmed by the failure to guarantee an appropriate level
of security when using cloud services, resulting in higher costs and potential loss
of business.

Chapter 2 presented the general background required for understanding cloud
computing and the solutions proposed in this thesis. More specifically, a descrip-
tion and characterization of the cloud computing environment was presented.
Also, the characterization of network traffic in the cloud and the main issues
that may harm its operation were introduced. Finally, an overview of IDSs fo-
cused on virtualized environments and similarity concepts in order to aggregate
alarms were presented.

One of the most important instruments used for mitigating potential issues in
the cloud is network traffic predictor. Taking this into consideration, Chapter
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3 presented the state of the art followed by a taxonomy for network traffic pre-
diction models. Moreover, an analysis mechanism that provided a standardized
approach for evaluating network traffic predictors based on global and local
data analysis was introduced. The outcomes of this mechanism enabled the per-
formance comparison of several predictors in the cloud, particularly in terms of
accuracy, historical dependency, time and computational overhead.

Chapter 4 discussed several IDSs designed for the cloud environment and an
approach to detect anomalies in the cloud scenario was proposed. This approach
differs from previous anomaly detection techniques since it relies on a mechanism
that combines a Support Vector Machine model with features extracted from a
Poisson Moving Average predictor. In doing this, the best level of detection rate
and the second best number of false negative rates were achieved in comparison
with other approaches in the literature.

Chapter 5 introduced the main issues caused by Intrusion Detection Systems for
cloud computing, namely, the huge number of alarms produced over time and
how this impacts the number of control messages between virtual machines and
servers. In order to address these problems, the Triple-Similarity Mechanism
was proposed, providing a systematic approach for aggregating similar alarms
in the context of the cloud network traffic and an algorithm to assign severity
level for alarms.

6.2 Contributions

The main contributions of this thesis are as follows. Firstly, a network traffic
prediction model was proposed, that is suitable for the highly dynamic cloud
computing environment. Secondly, an approach for extracting features based
on the network traffic prediction model jointly with a Support Vector Machine
in order to detect anomalies in the cloud network traffic. Finally, a similarity
approach to aggregate alarms that may correspond to the same attack for min-
imizing generation of alarms, thus decreasing the network data traffic and its
associated transfer costs.

More specifically, the following contributions can be identified:

Contribution 1
The Poisson Moving Average approach presented in section 3.2.5 was
used to determine the probable minimum and maximum number of
transactions that can occur within a given time period, from a series of
discrete values. Besides providing the best prediction results with respect
to the literature, the Poisson Moving Average has maintained the same
computing complexity of the predictor models based on local analysis
assessed in this work.

Contribution 2
The Dynamic Window Size Algorithm, introduced in section 3.3.3.2, de-
picted this contribution. In order to reduce the complexity of predicting
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network traffic, time-bounded past information is considered by means of a
sliding window of a size defined by the Dynamic Window Size Algorithm.
All the predictors based on local analysis presented a considerable im-
provement after using this algorithm.

Contribution 3
The Feature Extraction Approach proposed in section 4.3.2 used multiple
temporal layers of data for feature extraction so that it can express data
in a compact representation by removing redundancy. It involves redu-
cing the amount of information, therefore enabling its processing by the
Support Vector Machine.

Contribution 4
The Anomaly Detection Mechanism, presented in section 4.3, described
this contribution. The goal of this mechanism was to provide an efficient
method to detect anomalies for the cloud-based network traffic. This mech-
anism combines a Support Vector Machine model with features extracted
from a Poisson Moving Average predictor.

Contribution 5
The Triple-Similarity Mechanism, introduced in section 5.3, represents a
systematic approach for aggregating similar alarms in the context of the
cloud network traffic. From this mechanism was possible to reduce the
generation of alarms, decreasing the network data traffic to manage IDS
and its associated transfer costs.

Contribution 6
The Severity Adjustment of Alarms Algortihm, presented in section 5.3.4,
has proved to be efficient for aggregating alarms inside a sliding window
provided by the IDS. In comparison with alarms generated only by the IDS,
after using this algorithm, fewer alarms with more severity were produced.

Next subsection proposes further research directions in the fields addressed in
this thesis.

6.3 Future Work

Throughout this thesis, several approaches and mechanisms were proposed,
showing improved results with respect to existing works in the literature. Nev-
ertheless, there are still several aspects that need further work and could be
addressed in the future including, but not limited to, evaluating the prediction
models in other scenarios (with offline datasets or in real networks), extending
the anomaly detection model so that it can cover other areas not initially en-
visaged (for instance, policies for reacting to an attack) and implementing these
mechanisms in a real environment including the launching of real attacks against
the network.

More specifically, approaches regarding prediction models can be enhanced by
using artificial neural networks. For instance, an artificial neural network can
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be fed with the data of the traffic network including the prediction. This kind of
approach will strengthen the force exerted in the interaction between past and
current values. In doing this, the prediction model could keep its generalization,
but at the same time, become more suitable for a specific network baseline.

Additionally, the assessment of the current approaches for detecting anomalies
in the cloud is limited to simulations and outdated offline datasets. In this
context, experimental testbeds are welcome to support the new mechanisms
evaluation in a more realistic scenario facing real attacks. In addition, the
anomaly detection systems should consider an environment where they need to
compete for resources against other applications. One of the main challenges
is how to configure these mechanisms in an automated way to provide the best
performance while not using unnecessary network resources.

Finally, the sudden increase of devices in the network presented by new techno-
logies such as Internet of Things and 5G represents serious security and man-
agement challenges. In light of this, collaborative approaches will be prioritized
in order to avoid the exhaustion of resources and degrade the performance of
the whole system. Furthermore, techniques to minimize redundant informa-
tion in order to meet sustainable computing with energy-aware are needed, as
demonstrated in this thesis.
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Appendices

A Proof for Proposition 1

If we know the minimum and maximum range, e.g. from ya to yb, we are able
to represent its average m by:

m = qaya + qbyb

qa + qb

, (A.1)

where qa and qb are the quantity of ya and yb, respectively. Then, if we consider
the average and these extreme values as referred before to estimate the maximum
variance σ2

max into a sliding window, it may be expressed for:

σ2
max = qa(m− ya)2 + qb(yb −m)2

qa + qb

,

σ2
max = qa(m2 − 2mya + y2

a) + qb(m2 − 2myb + y2
b )

qa + qb

,

σ2
max = (qa + qb)m2

qa + qb

− 2(qaya + qbyb)m
qa + qb

+ qay2
a + qby

2
b

qa + qb

. (A.2)

Simplifying the first term in Equation A.2 and substituting the second term by
Equation A.1 into it, we achieve:

σ2
max = m2 − 2m2 + qay2

a + qby
2
b

qa + qb

. (A.3)

Now, isolating the term qaya from the Equation A.1 we have:

qaya = m(qa + qb)− qbyb. (A.4)

And similarly:

qbyb = m(qa + qb)− qaya. (A.5)

Using these two equations (A.4 and A.5) into the Equation A.3, we have:
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σ2
max = −m2 + ya(m(qa + qb)− qbyb) + yb(m(qa + qb)− qaya)

qa + qb

.

Evidencing the term qa + qb of the equation,

σ2
max = −m2 + m(qa + qb)(ya + yb)− (qa + qb)(yayb)

qa + qb

,

σ2
max = −m2 + m(ya + yb)− yayb.

Evidencing the term yb −m,

σ2
max = m(yb −m)− ya(yb −m). (A.6)

So, we may represent the σ2
max just acknowledging the minimum, the maximum

and the average of the data inside the sliding window. In addition, the Equation
A.6 is equivalent to the Equation 3.9. This finally leads to the results presented
in Proposition 1.
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