FACULDADE DE MEDICINA DA UNIVERSIDADE DE COIMBRA

TRABALHO FINAL DO 6° ANO MÉDICO COM VISTA À ATRIBUIÇÃO DO GRAU DE
MESTRE NO ÂMBITO DO CICLO DE ESTUDOS DE MESTRADO INTEGRADO EM
MEDICINA

LUÍS GALANTE SANTIAGO

ADENOMAS HIPOFISÁRIOS HEREDITÁRIOS: ASPETOS
GENÉTICOS E CLÍNICOS

ARTIGO DE REVISÃO

ÁREA CIENTÍFICA DE ENDOCRINOLOGIA

TRABALHO REALIZADO SOB A ORIENTAÇÃO DE:
PROF.ª DOUTORA MARIA LEONOR VIEGAS GOMES

SETEMBRO/2012
Adenomas hipofisários hereditários: aspetos clínicos e genéticos

Artigo de Revisão

Por:

Luís Galante Santiago
Aluno do 6º ano do MIM da Faculdade de Medicina da Universidade de Coimbra

Orientadora:

Maria Leonor Viegas Gomes
Professora Auxiliar Convidada da Faculdade de Medicina da Universidade de Coimbra
(Regente da Valência de Endocrinologia da Unidade Curricular de Patologia Médica II)
Assistente Hospitalar Graduada de Endocrinologia dos Hospitais da Universidade de Coimbra, CHUC- EPE

Endereço:

luis_sem_acento@hotmail.com

Setembro de 2012
Trabalho final do Estágio Programado e Orientado do sexto ano do Mestrado Integrado em Medicina da Faculdade de Coimbra, realizado sob orientação da Prof.ª Doutora Maria Leonor Viegas Gomes, professora auxiliar convidada da Faculdade de Medicina da Universidade de Coimbra e assistente graduada de Endocrinologia dos Hospitais da Universidade de Coimbra, CHUC-EPE.
ÍNDICE

Agradecimentos ... v
Resumo .. vi
Palavras-chave ... vii
Abstract ... viii
Keywords ... ix
Glossário de abreviações ... x
Introdução ... 1
Objetivos ... 5
Metodologia .. 6
Desenvolvimento ... 7

Neoplasia endócrina múltipla tipo 1 .. 7
Características clínicas da MEN-1 ... 8
Características clínicas dos TH associados a MEN-1 ... 8
Características moleculares da MEN-1 ... 10
MEN-1 esporádicos com mutações no gene MEN1 ... 12
MEN-1 sem mutações no gene MEN1 ... 12
Tumores esporádicos (incluindo TH) não associados à MEN-1 com mutações no gene MEN1........ 13
Tumores familiares não associados à MEN-1 com mutações no gene MEN1.............................. 13
Correlação genótipo-fenótipo ... 14
Mecanismo de ação da proteína menin ... 14
Modelos animais de gênese tumoral hipofisária na MEN-1 .. 16
Investigação clínica da MEN-1 .. 16

Neoplasia Múltipla Endócrina tipo 4 .. 19
Características genéticas e clínicas da MEN-4 em humanos ... 19
Novas investigações em MEN-4 .. 20
Mecanismo de ação do p27kip1 .. 20
Investigação clínica da MEN-4 .. 20

Complexo de Carney ... 22
Características clínicas do CC ... 22
Características genéticas do CC .. 23
Mecanismo de ação do produto do gene PRKAR1A ... 23
Modelos animais para estudo do CC ... 24
Investigação clínica do CC .. 24
Adenomas hipofisários familiares isolados .. 26
Características clínicas dos FIPA ... 26
Características genéticas dos FIPA - Mutações AIP .. 28
Características clínicas dos FIPA com mutações AIP .. 30
Mutações AIP em TH esporádicos ... 31
Da mutação AIP aos FIPA .. 31
Modelos animais para estudo dos FIPA ... 34
Investigação clínica dos FIPA .. 35
Conclusões .. 36
Referências .. 39
AGRADECIMENTOS

Este trabalho final do 6º ano médico com vista à atribuição do grau de mestre pela Faculdade de Medicina da Universidade de Coimbra é o culminar de um objetivo académico.

Estou especialmente agradecido à Prof.ª Doutora Leonor Gomes, pelos seus conselhos e recomendações transmitidas durante a sua elaboração. Agradeço pela disponibilidade que sempre me dispensou e pela preocupação em assegurar o caráter científico do trabalho.

Agradeço à minha família, por me incutir os melhores sentimentos que existem: a paz, o amor, o carinho, a compreensão e o respeito. Obrigado por estarem sempre ao meu lado.

Estou ainda em dívida para com muitas pessoas e amigos pela sua ajuda e paciência. Por isso, quero dedicar também este trabalho a todos aqueles que partilharam comigo todo este percurso académico.
RESUMO

Introdução. O conhecimento da genética e da biologia molecular tem evoluído de forma surpreendente nos últimos anos, condicionando importantes alterações na abordagem a doenças hereditárias, como por exemplo os tumores hipofisários hereditários. Os tumores hipofisários representam um dos tumores intracranianos mais frequentes com séries radiológicas e de autópsia recentes que apontam para uma prevalência de 10 a 25% da população. A maioria corresponde a achados incidentais sem tradução clínica. Contudo, podem conduzir a uma morbilidade significativa ao apresentarem-se clinicamente por disfunção hormonal e/ou efeito de massa.

Objetivos. Na revisão proposta descreve-se o conhecimento atual das características clínicas e moleculares das síndromes que envolvem tumores hipofisários hereditários.

Resultados. A maioria dos tumores hipofisários surge de forma esporádica, benigna e em adultos, porém apenas uma minoria (5%) faz parte de síndromes endócrinas genéticas como a neoplasia endócrina múltipla tipo 1 (MEN-1), o complexo de Carney, a MEN-4 e os adenomas hipofisários familiares isolados (FIPA). A etiopatogenia dos tumores esporádicos ainda é pouco conhecida, contudo foram feitos avanços significativos no conhecimento das formas hereditárias. A MEN-1 e o Complexo de Carney são conhecidos há várias décadas e apresentam mutações nos genes MEN1 e PRKAR1A ou alterações no locus 2p16, respectivamente. Mutações no gene CDKN1B foram encontradas na extremamente rara MEN-4. Estes três genes estão associados a patologias extra-hipofisárias que podem ajudar na identificação destas síndromes. Por sua vez, cerca de 15 a 25% dos doentes com FIPA,
particularmente famílias com adenomas secretores de GH, apresentam alterações genéticas no gene AIP, localizado no cromossoma 11q13. Os tumores familiares parecem não só diferir dos esporádicos na patogénese, mas também na apresentação clínica e comportamento biológico. Há evidência de que na MEN-1 e FIPA, são mais agressivos, de maior volume e afetam idades jovens, justificando-se assim a importância de um diagnóstico precoce e tratamento individualizado.

Conclusão. Apesar de raras, as síndromes tumorais hipofisárias hereditárias oferecem uma oportunidade única para compreender a patofisiologia dos processos de génese tumoral hipofisária. O conhecimento das características destas síndromes hereditárias possibilita uma abordagem específica com diagnóstico familiar precoce, melhor investigação clínica e tratamento apropriado diferente dos tumores esporádicos.

PALAVRAS-CHAVE

Tumor hipofisário hereditário · Neoplasia Endócrina Múltipla tipo 1 · Complexo de Carney · Neoplasia Endócrina Múltipla tipo 4 · Adenomas hipofisários familiares isolados · Genes MEN1, CDKN1B, PRKAR1A, AIP
ABSTRACT

Introduction. The knowledge of genetics and molecular biology has evolved so surprisingly in recent years, leading to important changes in the approach to hereditary diseases, for example the familial pituitary tumors. Pituitary tumors are one of the most frequent intracranial tumors and data derived from autopsy and radiological series suggest prevalence close to 10-25% of the general population. However they can still result in significant morbidity because of hormone overproduction and/or tumor mass effects, including hypopituitarism.

Objective. This review summarizes the current knowledge on the clinical and molecular characteristics of familial pituitary tumor syndromes.

Methods. This review is based on a search through the PubMed database with use of the following words: “familial pituitary tumor”, “MEN-1”, “MEN-4”, “Carney’s Complex” and “FIPA”.

Results. The vast majority of pituitary tumors are benign, occur sporadically and affect adults, but only about 5% of all arise in a familial setting such as Multiple Endocrine Neoplasia type 1 (MEN-1), Carney’s Complex, MEN-4 and Familial Isolated Pituitary Adenomas (FIPA). The etiology of sporadic tumor is still poorly understood, however advances have been made in our understanding of familial syndromes. MEN-1 and Carney’s Complex have been known for decades and show mutations in MEN1 and PRKARIA genes or changes in a locus at 2p16, respectively. These genes are associated with a variety of extrapituitary pathologies, which aid identification of these syndromes. By contrast, almost 15-25% of FIPA patients, particularly somatotropinomas families, present with mutations of the AIP gene in a locus at 11q13. Familial tumors appear to be different not only in etiology but also in clinical presentation and biological behavior. Data suggests that MEN-1 and
FIPA are more aggressive, larger in size and affect younger age, therefore justifying the importance of early diagnosis and individualized management of affected patients.

Conclusion. Although rare, familial pituitary tumors present an opportunity to understand the pathophysiology of pituitary tumorigenesis. The knowledge of their characteristics enables specific approach with early familiar diagnosis, better clinical management and directed treatment.

KEYWORDS

Familial pituitary tumor · Multiple Endocrine Neoplasia type 1 · Carney’s Complex · Multiple Endocrine Neoplasia type 4 · Familial Isolated Pituitary Adenomas · MEN1, CDKN1B, PRKAR1A, AIP genes
GLOSSÁRIO DE ABBREVIATURAS

ACTH: corticotrofina
ADN: ácido desoxirribonucleico
AHR: aryl-hydrocarbon receptor
AIP: aryl-hydrocarbon receptor interacting protein
AMPc: adenosina monofosfato cíclico
AP-1: activating protein-1
ARNm: ácido ribonucleico mensageiro
ARNT: aryl-hidrocarbon receptor nuclear translocator
ASK: activator of S-phase kinase
BMP-2: bone morphogenetic protein 2
BMP-4: bone morphogenetic protein 4
CC: complexo de Carney
CDKN1B: gene cyclin-dependent kinase inhibitor 1B
CHES1: checkpoint suppressor 1
CREB: cAMP response element binding protein
DAPK1: death-associated protein kinase 1
EBNA-3: EBV-determined nuclear antigen 3
EGFR: epidermal growth factor receptor
ERα: nuclear receptor for estrogen α
ERX: elemento de resposta xenobiótica
FGFR4: fibroblast growth factor receptor 4
FIPA: adenomas hipofisários familiares isolados
FoxN3: forkhead box N3
FSH: hormona estimulante folicular
Ga: subunidade α da proteína G
GADD45: *growth arrest and DNA-damage-inducible*

GFAP: *glial fibrillary acidic protein*

GH: hormona de crescimento

GHRH: *growth-hormone-releasing hormone*

GNAS: *guanine nucleotide binding protein, alpha stimulating*

HBVX: *X protein of the hepatitis B virus*

HDAC: *histone deacetylase*

H-RAS: *v-Ha-ras Harvey rat sarcoma viral oncogene homolog*

HSP90: *heat shock protein 90*

HSC70: *heat-shock cognate 70*

IFS: somatotrofinomas isolados familiares

IGF-1: *insulin-like growth factor 1*

K-RAS: *v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog*

LH: hormona luteinizante

LOH: perda de heterozigotia

MEN-1: neoplasia endócrina múltipla tipo 1

MEN-2: neoplasia endócrina múltipla tipo 2

MEN-4: neoplasia endócrina múltipla tipo 4

NF: não funcionantes

NFkB: *nuclear factor kappa B*

NME1: *protein expressed in nonmetastatic cells*

NMHC II-A: *nonmuscle myosin II-A heavy chain*

N-RAS: *neuroblastoma RAS viral (v-ras) oncogene homolog*

PCR: reação em cadeia da polimerase

PDE: *phosphodiesterase*

pem: *mouse placental embryonic*

PKA: proteína cinase A
PKC: paroxysmal kinesigenic choreoathetosis
PLAGL1: pleiomorphic adenoma gene-like 1
PPARα: peroxisome proliferator-activated receptor α
PPNAD: hipertrofia primária nodular pigmentada suprarrenal
PRKAR1A: gene type 1 A regulatory subunit of protein kinase A
PRL: pro lactina
PTTG: pituitary tumour transforming gene
Rb: retinoblastoma
RET: rearranged during transfection
RPA2: replication protein A2
Runx2: runt-related transcription factor 2
SLN: sinal de localização nuclear
SFRP: secreted frizzled-related protein
TH: tumores hipofisários
TNNI3K: cardiac troponin I-interacting kinase
TOMM20: translocate of the outer membrane of mitochondria 20
TPR: tetratricopeptide repeat
TRβ1: thyroid hormone receptors β1
TSH: hormona estimulante da tiróide
XAP2: hepatitis B virus X-associated protein 2
WIF: WNT inhibitory factor
INTRODUÇÃO

Nos últimos anos tem-se assistido a um grande desenvolvimento da biologia celular e molecular, imunohistoquímica e imagiologia com implicações importantes em todas as áreas do conhecimento científico e também na medicina, desde a abordagem diagnóstica de doenças hereditárias ou associadas a alterações genéticas ou moleculares específicas, passando pela decisão terapêutica e prognóstico. A área da endocrinologia não é exceção e, nomeadamente os tumores hipofisários (TH) hereditários são um dos exemplos em que os avanços nas áreas referidas permitiram o início da compreensão da história natural, identificação de doenças em idades jovens, identificação de portadores sem manifestação da doença e o diagnóstico e intervenção precoces a nível individual, familiar e da população em geral.

Os TH representam cerca de 10% a 25% dos tumores intracranianos primários e são o segundo tipo histológico mais frequente na faixa etária dos 20 aos 34 anos (Scheithauer BW et al, 2006). Em geral, estes tumores são benignos e clinicamente assintomáticos, o que justificou valores discrepantes de prevalência. Durante anos foram considerados uma entidade rara, baseado em estudos clínicos que apresentavam uma baixa prevalência de 1:3571-1:5263 (Clayton RN et al, 1999). Recentemente, contudo, séries epidemiológicas realizadas na província de Liége (Bélgica) e, mais tarde confirmadas em Banbury (Reino Unido), sugerem que os TH clinicamente sintomáticos apresentam uma prevalência de 1:1000 (Daly AF et al, 2006; Fernandez A, 2010), enquanto séries de autópsia e radiológicas demonstram que os incidentalomas hipofisários ocorrem frequentemente (14,4% e 22,5%, respectivamente), podendo estar presentes em uma em cada 6 pessoas (Essat S et al, 2004). Os TH clinicamente sintomáticos são, assim, 3 a 5 vezes mais frequentes do que anteriormente esperado (Daly AF et al, 2006), o que revela a importância da investigação nesta área e da compreensão dos mecanismos da patogênese, apresentação clínica e comportamento biológico.
Os TH são típicos dos adultos, com apenas 3,5-8,5% são diagnosticados antes dos 20 anos (Keil MF, 2008). Os tumores da hipófise apresentam a seguinte distribuição fenotípica: a maioria são prolactinomas (45%), seguido de tumores não funcionantes (25%), somatotrofinomas (18,5%), corticotrofinomas (10%), adenomas secretores de gonadotrofinas (1%) e adenomas secretores de TSH (0,5%) (Figura 1) (Guaraldi F et al, 2011). A doença de Cushing é o tipo mais frequente na infância e pré-adolescência, enquanto os prolactinomas predominam nos adultos e adolescentes (Keil MF et al, 2008).

Figura 1. Comparação da prevalência dos fenótipos dos tumores hipofisários, MEN-1, FIPA e FIPA com mutações AIP.

Os TH raramente apresentam caráter maligno, no entanto, podem causar morbidade significativa. Primeiro, dada a sua expansão na sela turca, podem conduzir a efeitos de massa (incluindo cefaleias, défices visuais e parésias de nervos cranianos); segundo, a proliferação de células funcionantes pode levar a síndromes endócrinas; terceiro, podem causar insuficiência hipofisária (hipopituitarismo parcial ou global); e quarto, o seu tratamento pode
exigir neurocirurgia, radioterapia e terapêutica médica crónica com as respetivas implicações (Scheithauer BW et al, 2006).

A etiopatogenia dos TH tem atraído atenção considerável dado que representam uma oportunidade de estudar os mecanismos genéticos e moleculares da génese tumoral, podendo servir de modelo para o estudo de carcinomas mais agressivos. Para além disso, a sua etiologia continua largamente desconhecida, apesar dos enormes avanços na caracterização das formas hereditárias (Dworakowaska D, 2009). É atualmente aceite que os TH têm origem monoclonal, surgindo da expansão clonal de uma única célula mutada. Contudo, a nível tecidual, a hipófise pode apresentar múltiplos tumores ou áreas hiperplásicas, cada uma com a sua linhagem genética (Herman V, 1990). O desenvolvimento dos TH tem sido associado com diversas mutações genéticas adquiridas ou hereditárias (Tabela 1) e com alterações na disponibilidade de factores reguladores (factores de crescimento autócrinos e parácrinos, hormonas hipotalâmicas e periféricas), incluindo mutações no oncogene GNAS, aumento de expressão de PTTG, alterações na regulação do ciclo celular e vias de sinalização intracelular e, raramente, mutações em oncogenes clássicos (Vandeva S, 2010; Dworakowaska D, 2009).

Apesar da maioria dos TH serem esporádicos, cerca de 4 a 5% ocorre em síndromes familiares (Daly AF et al, 2006; Keil MF et al, 2008; Tichomirowa MA, 2009). Até ao ano 2000, o gene supressor tumoral MEN1 era o único locus associado a síndromes hereditárias, contudo a pesquisa feita nos últimos 12 anos permitiu estabelecer associações entre 3 novos genes: mutações do gene CDKN1B e MEN 4, do gene PRKRA e Complexo de Carney e do gene AIP e uma minoria dos casos de FIPA. Estas anomalias são raramente encontradas nos tumores esporádicos (Poncin J et al, 1999), o que reforça as diferenças genéticas, clínicas e epidemiológicas entre os TH esporádicos e hereditários e justificam atitudes diagnósticas e terapêuticas individualizadas. Para estudar a influência das mutações destes genes na
patogênese tumoral faz-se uso de modelos animais transgênicos e do estudo das famílias afetadas.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Defeito genético</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oncogenes</td>
<td></td>
</tr>
<tr>
<td>GNAS 1 (20q13.3)</td>
<td>Mutações esporádicas em TH-GH</td>
</tr>
<tr>
<td>Ccn1a d1 (11q13)</td>
<td>Aumento da expressão em TH-GH e TH-NF</td>
</tr>
<tr>
<td>PTTG (5q35.1)</td>
<td>Aumento da expressão em TH invasivos</td>
</tr>
<tr>
<td>K-RAS (12p12.1), N-RAS (1p13.2) e H-RAS (11p15.5)</td>
<td>Mutações ativadoras em TH altamente invasivos</td>
</tr>
<tr>
<td>PKC (16p11.2)</td>
<td>Mutações pontuais em TH invasivos</td>
</tr>
<tr>
<td>Ptdf1-FGFR4 (5q35.1)</td>
<td>Iniciador alternativo da transcrição em TH-GH invasivos</td>
</tr>
<tr>
<td>Genes supressores tumorais</td>
<td></td>
</tr>
<tr>
<td>AIP (11q13.3)</td>
<td>Mutações em algumas famílias FIPA e raramente em TH esporádicos</td>
</tr>
<tr>
<td>BMP-4 (14q22-q23)</td>
<td>Ação promotora em TH-PRL. Papel inibidor em TH-ACTH</td>
</tr>
<tr>
<td>P27<sup>kip1</sup> (CDKN1B) (12p13.1-p12)</td>
<td>Mutação da linha germinativa em MEN-4. Expressão reduzida em TH esporádicos, mas sem mutação somática</td>
</tr>
<tr>
<td>P16<sup>INK4A</sup> (CDKN2A) (9p21)</td>
<td>Hipermetilação da região promotora em TH</td>
</tr>
<tr>
<td>GADD45gamma (9q22.1-q22.2)</td>
<td>Perda da heterozigotia em TH</td>
</tr>
<tr>
<td>MEG3a (14q32)</td>
<td>Hipermetilação da região promotora resulta na perda de expressão encontrada em TH-NF e TH-FSH/LH</td>
</tr>
<tr>
<td>MEN1 (11q13)</td>
<td>Perda de heterozigotia, mutações da linha germinativa e somáticas em MEN-1. Raramente perda de heterozigotia em TH esporádicos</td>
</tr>
<tr>
<td>P53 (17p13.1)</td>
<td>Aumento da expressão em TH. Mutações em carcinomas hipofisários</td>
</tr>
<tr>
<td>PKA (PRKAR1A) (17q23-q24)</td>
<td>Mutações no Complexo de Carney</td>
</tr>
<tr>
<td>Rb (13q14.2)</td>
<td>Perda de heterozigotia em TH</td>
</tr>
<tr>
<td>Inibidores da via Wnt (WIF, SFRP2, SFRP3 (FZDB), SFRP4)</td>
<td>Expressão reduzida e hipermetilação da região promotora de WIF em TH (especialmente TH-NF)</td>
</tr>
<tr>
<td>PLAG1 (6q24-q25)</td>
<td>Aumento da expressão e hipermetilação da região promotora de TH (especialmente TH-NF)</td>
</tr>
<tr>
<td>DAPK1 (9q34.1)</td>
<td>Perda da expressão da cinase DAP em TH invasivos</td>
</tr>
</tbody>
</table>

TH-GH: tumores hipofisários secretores de GH; TH-PRL: tumores hipofisários secretores de prolactina; TH-NF: tumores hipofisários não funcionantes; TH-ACTH: tumores hipofisários secretores de ACTH; TH-FSH/LH: tumores hipofisários secretores de LH e FSH

É de referir que, apesar de geneticamente bem determinado (mutação no oncogene GNAS), a síndrome de McCune-Albright não parece seguir uma tendência hereditária (Levine MA, 1999) e, por isso, não será desenvolvida nesta revisão.
OBJETIVOS

Na revisão proposta descreve-se o conhecimento atual dos TH hereditários, com ênfase nos aspectos clínicos e moleculares. Faz-se ainda uma abordagem do mecanismo de ação dos produtos dos genes envolvidos nas síndromes TH hereditários, da correlação genótipo-fenótipo e da investigação clínica.
METODOLOGIA

DESENVOLVIMENTO

NEOPLASIA ENDÓCRINA MÚLTIPLA TIPO 1 (MEN-1)

A MEN-1 é uma condição rara que afeta, aproximadamente, 1:30000 indivíduos. A sintomatologia geralmente inicia-se na segunda década de vida nos doentes portadores de mutação germinativa com desenvolvimento de tumores benignos, enquanto a partir da quarta década há um aumento significativo da ocorrência de tumores malignos. A doença pode afetar todas as faixas etárias com casos descritos desde os 5 aos 81 anos e com manifestações em 98% dos doentes com 50 anos (Thakker RV, 2010). As formas esporádicas dos tumores relacionados com esta síndrome são mais frequentes, sendo a incidência da MEN-1 em doentes com hiperparatiroidismo primário de 1 a 18%, de 16 a 38% em doentes com gastrinomas e menos de 3% em doentes com TH (Doherty G et al, 1998). Na ausência de tratamento os doentes com MEN-1 têm uma esperança de vida diminuída, com 50% de
mortalidade pelos 50 anos. A probabilidade de vir a falecer devido a uma sequela da doença é de 50% (Dean PG et al, 2000).

Características clínicas da MEN-1. Os tumores associados à MEN-1 são geralmente múltiplos e multicêntricos (Trouillas J et al, 2008). Combinações de mais de 20 tumores endócrinos e não endócrinos, benegnus ou malignos, diferentes têm sido descritas. Os tumores da paratiróide são os mais comuns dos três componentes clássicos da MEN-1, com uma penetrância de praticamente 100% aos 50 anos e são a primeira manifestação em mais de 85% dos casos; os tumores enteropancreáticos, que compreendem gastrinomas (deste grupo os mais frequentes), insulinomas, PPomas, glucagonomas e VIPomas, desenvolvem-se em 30 a 75% dos casos e são a principal causa de mortalidade e morbilidade; e os tumores da hipófise anterior em cerca de 65% dos doentes, apesar de vários estudos descreverem prevalências de apenas 30-40% (Vasilev V et al, 2011). Adicionalmente, alguns doentes podem apresentar ainda tumores endócrinos como tumores da zona cortical da suprarrenal, geralmente não funcionantes; tumores carcinóides, raros mas 90% são malignos; feocromocitomas e lesões não endócrinas como angiofibromas faciais, colagenomas e lipomas. A sintomatologia associada à MEN-1 é decorrente geralmente do excesso de secreção de produtos hormonalmente ativos e menos frequentemente da invasão dos tecidos locais pela massa tumoral ou metástases (Brandi ML et al, 2001).

Características clínicas dos TH associados a MEN-1. Enquanto o hiperparatiroidismo é geralmente a primeira manifestação da MEN-1, os tumores da hipófise são-no em menos de 15% dos casos (Verges B et al, 2002). A idade média de apresentação dos TH associados a MEN-1 varia de acordo com o fenótipo, com os prolactinomas a surgirem em média aos 34 anos e os adenomas não funcionantes aos 50 anos. Contudo, esta diferença pode resultar do facto dos adenomas funcionantes provocarem sintomatologia mais precocemente que os não
funcionantes. As mulheres com MEN-1 têm taxas mais elevadas de TH (50% versus 21%), sendo a razão desconhecida (Verges B et al, 2002).

Os prolactinomas são os TH associados à MEN-1 mais comuns (60%); os adenomas secretores de GH representam 10%; os não funcionantes 15%; os secretores de ACTH 5%; e os secretores de TSH são raros (Verges B et al, 2002). Estas prevalências são ligeiramente diferentes dos doentes não-MEN1 (Figura 1). Comparado com os doentes que têm TH não associados à MEN-1, estes são mais frequentemente multicêntricos e pluri-hormonais, apresentando habitualmente co-secretão de GH e prolactina com uma associação incomum com LH, FSH ou ACTH (Trouillas J et al, 2008).

Até 85% dos TH associados à MEN-1 são macroadenomas (comparado com 42% nos casos esporádicos) (Verges B et al, 2002), contudo é de esperar que esta frequência diminua porque o rastreio e investigação de membros de famílias de alto risco permite um diagnóstico precoce. Como os tumores apresentam maiores dimensões no momento do diagnóstico, os sintomas relacionados com o efeito de massa são mais comuns em indivíduos com esta síndrome, bem como mais agressivos e mais invasivos radiologicamente e histologicamente (Trouillas J et al, 2008). Para além disso, apresentam maiores taxas de resistência aos agonistas da dopamina em comparação com os não associados à MEN-1, com apenas 44% a responder ao tratamento versus 90% nos casos esporádicos. Contudo, os carcinomas da hipófise são tão raros na MEN-1 como nos TH esporádicos (Verges B et al, 2002).

No diagnóstico diferencial de lesões hipofisárias relacionadas com MEN-1 é extremamente importante termos em atenção que estimulados pela produção ectópica de hormonas com origem em tumores carcinóides ou enteropancreáticos produtores de GHRH podem-se desenvolver hiperplasia ou adenomas hipofisários policlonais (Trouillas J et al, 2008). Nestes
casos, se a origem da hormona ectópica não for eliminada, corre-se o risco de atingir respostas fracas ao tratamento.

Características moleculares da MEN-1. O gene *MEN1* foi localizado em 1988 no cromossoma 11q13 por estudos genéticos de mapeamento que investigaram a perda de heterozigotia [referente à inativação somática de um gene supressor tumoral; do inglês Loss of Heterozygosity (LOH)] em tumores associados à MEN-1 (Larsson C *et al*, 1988). Os resultados destes estudos estão de acordo com a hipótese de Knudson para a génese tumoral e indicam que se trata de um gene supressor tumoral. De acordo com a hipótese de Knudson, o desenvolvimento de tumores ocorre numa sequência de dois eventos mutacionais, sendo que o primeiro evento se refere a uma mutação herdada (mutação germinativa), normalmente uma deleção ou mutação pontual. Assim, todas as células somáticas dos portadores possuem um alelo do gene inativo. O segundo evento mutacional corresponde a uma mutação somática a nível tecidual que na MEN-1 ocorre em mais de 90% dos casos por perda de heterozigotia, normalmente devido a grandes deleções que envolvem a região 11q13; contudo uma pequena mutação pontual ou deleção intragénica são mecanismos adicionais possíveis para a inativação do segundo alelo. Assim, os doentes acumulam uma mutação em cada alelo, com inativação completa do gene *MEN1* e consequente formação tumoral. Em contraste, a ocorrência esporádica dos mesmos tumores exige 2 mutações somáticas independentes no mesmo gene e na mesma célula (**Figura 2**) (Pannett AA & Thakker RV, 2001).

O gene *MEN1* compreende 10 exões que codificam a proteína *menin* com 610 aminoácidos. O gene tem uma complexa região reguladora a montante que regula a expressão da proteína *menin* (Chandrasekharappa SC, 1997). A proteína *menin* é expressada de forma ubiquitária e é predominantemente uma proteína nuclear em células em interfase, com importantes interações na transcrição de vários genes promotores endócrinos (Guru SC, 1998). De facto,
expressão diferencial da *menin* em diferentes tecidos pode explicar em parte o facto das mutações no gene *MEN1* terem repercussão preferencialmente nas células do sistema endócrino, apesar de ser expressada numa variedade de células não-endócrinas (Tichomirowa MA *et al.*, 2009; Taguchi R *et al.*, 2011).

Como já referido, o gene *MEN1* parece atuar como supressor tumoral, com uma imensidão de interações que ultrapassam o âmbito desta revisão. A *menin* interage com as regiões promotoras de centenas de genes, indicando que tem um papel regulador da transcrição, incluindo a expressão do próprio gene *MEN1* por retrocontrolo negativo.

Em 2008, Lemos e Thaker publicaram uma revisão na qual analisaram 1336 anormalidades genéticas no gene *MEN1* (1133 germinativas e 203 somáticas) e identificaram 565 mutações diferentes ao longo de todo gene, sem localizações/agrupamento preferenciais (Lemos M &
Adenomas hipofisários hereditários: aspectos genéticos e clínicos

Mestrado Integrado em Medicina. FMUC, Setembro de 2012

Luís Galante Santiago

- 12 -

Thakker, 2008). Contudo, há evidência da existência de raros hot-spots mutacionais e de sequências do gene mais suscetíveis a mutações com inserção ou deleção (Basset JH et al, 1998). Aproximadamente 41% das mutações são frameshift, 23% mutações nonsense, 20% mutações missense e 9% mutações splice-site. Mais de 70% das mutações MEN1 resultam, assim, na tradução de uma proteína truncada. A mutação mais comum é uma deleção de 4pb (c.249-252delGTCT) com uma frequência de 4,5% e resulta numa mutação frameshift no exão 2 (Lemos M & Thakker RV, 2008).

MEN-1 esporádicos com mutações no gene MEN1. A forma esporádica desenvolve-se em 8-14% dos doentes com MEN-1. Estudos genéticos confirmaram precisamente que mais de 10% das mutações ocorrem de novo e estas podem ser transmitidas às gerações futuras de forma autossômica dominante. Contudo, pode ser difícil a distinção entre as formas esporádicas e as familiares; em alguns casos a história familiar pode ser negativa dado que o parente com MEN-1 não está disponível para estudo ou pode ter falecido antes da sintomatologia se ter manifestado (Lemos M & Thakker RV, 2008).

MEN-1 sem mutações no gene MEN1. Cerca de 80-90% das famílias com MEN-1 possuem mutações no gene MEN1, contudo 10-20% com fenótipo MEN-1 não têm esta mutação e estes casos podem tanto ocorrer na forma esporádica como na familiar (Ellard S et al, 2005; Lemos M & Thakker RV, 2008). Há várias possibilidades que podem explicar a existência destes casos: os cerca de 5-10% dos doentes com MEN-1 que não têm mutações na região codificante do gene, sugerindo que podem ter mutações em regiões não transcritas, na região promotora ou ainda deleções de todo o gene não identificadas via PCR (Lemos M & Thakker RV, 2008); ou podem corresponder a ‘fenocópias’ da síndrome MEN-1 que podem mimetizar a sintomatologia da MEN-1 por ocorrência de um tumor endócrino esporádico numa família com MEN-1 ou a ocorrência de duas anormalidades endócrinas associadas a outras etiologias.
Adenomas hipofisários hereditários: aspectos genéticos e clínicos
Mestrado Integrado em Medicina. FMUC, Setembro de 2012

Luís Galante Santiago

(Burgess JR et al, 2000); ou ainda e, principalmente, devido à existência de outros genes como o recentemente descoberto CDKN1B que deu origem a uma nova entidade: a MEN-4 (Karhu A & Aaltonen LA, 2007). Surpreendentemente, mutações no gene AIP localizado também em 11q13 não foram detetadas em doentes com MEN-1 sem mutações no gene MEN1, estando assim associados a uma também nova entidade: os FIPA (Karhu A & Aaltonen LA, 2007).

Tumores esporádicos (incluindo TH) não associados à MEN-1 com mutações no gene MEN1. São encontradas mutações somáticas no gene MEN1 em 30% dos tumores enteropancreáticos esporádicos e 20% dos tumores da paratiróide esporádicos, contudo, estas são extremamente raras em TH esporádicos não associados a MEN-1. A perda de heterozigotia em 11q13 foi descrita em 5-30% dos TH esporádicos, contudo, o gene MEN1 não foi regulado negativamente (Boggild MD et al, 1994; Lemos M & Thakker RV, 2008). Theodoropoulou M verificou que a proteína menin é detetável em 67 dos 68 TH esporádicos não MEN-1 estudados. Assim, a inativação do gene supressor tumoral MEN1 não parece ter um papel proeminente na gênese dos TH esporádicos (Theodoropoulou M et al, 2004).

Tumores familiares não associados à MEN-1 com mutações no gene MEN1. As mutações MEN1 raramente podem estar associadas unicamente a neoplasia limitada à hipófise sem que haja outros tumores típicos de MEN-1 associados. O mesmo pode ocorrer mais frequentemente com as glândulas paratiróides designando-se por hiperparatiroidismo isolado familiar. Nestes ocorrem mais frequentemente mutações missense, e menos frequentemente nonsense e frameshift (que resultam em proteínas truncadas) do que na MEN-1, o que pode explicar em parte o fenótipo moderado observado nesta doença. Contudo, a presença de mutações em famílias com hiperparatiroidismo isolado familiar semelhantes às que ocorrem na MEN-1 (incluindo mutações que conduzem à produção de proteínas truncadas), torna
difícil estabelecer uma correlação genótipo-fenótipo, sendo desconhecido a razão por que os restantes tumores associados à MEN-1 não se desenvolvem nestas famílias (Pannett AA, 2003).

Correlação genótipo-fenótipo. Em contraste com a MEN-2, não foi encontrada uma associação entre o local ou o tipo de mutações do gene MEN1 (genótipo) e a idade de início ou a agressividade, bem como a presença ou ausência de outras neoplasias endócrinas (fenótipo). Um estudo francês com 170 famílias MEN-1 não relacionadas não encontrou uma forte correlação genótipo-fenótipo (Wautot V et al, 2002). Contudo, foram reconhecidas variantes da MEN-1 associadas a um aumento da frequência de prolactinomas e adenomas não funcionantes incluindo a MEN1*Burin* (observada em mais de 100 famílias na península de Burin no Canadá) e a MEN1*Tasman1* (Hao W et al, 2004; Burgess JR et al, 1996).

Os doentes com a variante MEN1*Burin* têm uma elevada incidência de prolactinoma (50%) e hiperparatiroidismo primário (90%) e uma baixa incidência de gastrinoma (10%) (Hao W et al, 2004). A variante MEN1*Tasman1* corresponde a uma família da Tasmânia, Austrália, com uma mutação c.446-3C>G no gene MEN1, associada a uma baixa penetrância de TH (20%), a uma elevada incidência de prolactinomas (76%) e à ausência de adenomas secretores de GH (Burgess JR et al, 1996).

Mecanismo de ação da proteína menin. A função da proteína menin ainda não foi completamente compreendida. Para além disso, permanece desconhecida a razão por que as mutações de gene MEN1 estão apenas associadas a um padrão restrito de tumores endócrinos, apesar de este gene apresentar uma transcrição generalizada. A proteína menin tem três sinais de localização nuclear perto da região terminal C e é expressa de forma ubiquitária, com localização predominantemente nuclear em células em interfase. Como já referido, a maioria das mutações (nonsense e frameshift) traduz-se em proteínas truncadas, o que leva à perda de
Adenomas hipofisários hereditários: aspetos genéticos e clínicos

Mestrado Integrado em Medicina. FMUC, Setembro de 2012

Luís Galante Santiago

- 15 -

pelo menos um destes três domínios e, por isso, afeta a localização celular da *menin* (Guru SC, 1998).

Vários papéis foram atribuídos à *menin*, devido à sua interação com proteínas envolvidas nos processos de regulação da transcrição génica, proliferação celular, apoptose, estabilidade do genoma e reparação do ADN. Estas proteínas incluem o AP-1, os fatores de transcrição JunD e C-Jun, membros da família NFkB, membros da família dos fatores de crescimento transformantes β (incluindo SMAD3), BMP2, Rhox5, FANCD2, RPA2, GFAP, vimentin, FoxN3 e NME1 (*Tabela 2*) (Lemos MC & Thakker, 2008; Yang Y & Hua X, 2007).

<table>
<thead>
<tr>
<th>Função</th>
<th>Molécula de interação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regulação da transcrição</td>
<td>JunD</td>
</tr>
<tr>
<td></td>
<td>NFkB (P50, P52, P65)</td>
</tr>
<tr>
<td></td>
<td>Pem</td>
</tr>
<tr>
<td></td>
<td>Sin3A</td>
</tr>
<tr>
<td></td>
<td>HDAC</td>
</tr>
<tr>
<td></td>
<td>Smad1, 3, 5</td>
</tr>
<tr>
<td></td>
<td>Runx2</td>
</tr>
<tr>
<td></td>
<td>Complexo com a metiltransferase</td>
</tr>
<tr>
<td></td>
<td>Erα</td>
</tr>
<tr>
<td></td>
<td>CHES1</td>
</tr>
<tr>
<td>Divisão celular</td>
<td>NMHC II-A</td>
</tr>
<tr>
<td></td>
<td>GFAP</td>
</tr>
<tr>
<td></td>
<td>Vimentin</td>
</tr>
<tr>
<td>Estabilidade do genoma</td>
<td>RPA2</td>
</tr>
<tr>
<td></td>
<td>FANCD2</td>
</tr>
<tr>
<td>Controlo do ciclo celular</td>
<td>nm23</td>
</tr>
<tr>
<td></td>
<td>ASK</td>
</tr>
</tbody>
</table>

De destacar que sendo um componente do complexo com a metiltransferase, a proteína *menin* pode atuar como regular da transcrição e, por isso, regula a expressão de genes como o gene *Hox* e os genes que codificam os inibidores cinase dependentes da ciclina como p27kip1 e p18. Os efeitos da *menin* na regulação de p27kip1 e p18 são particularmente relevantes, dado que a perda destes inibidores em modelos animais e humanos resulta em tumores semelhantes à

Modelos animais de génese tumoral hipofisária na MEN-1. Ratos knockout para a proteína menin têm sido desenvolvidos para o estudo da génese tumoral na MEN-1. Os ratos knockout homozigóticos para Men1 (Men1^{−/−}) apresentam fenótipo embriológico letal. Já os heterozigóticos (Men1^{+/−}) apresentam tumores hipofisários, insulinomas e tumores da paratiróide com características semelhantes às encontradas em doentes com MEN-1. Estes tumores são mais comuns em fêmeas, são imunohistoquimicamente positivos para a prolactina e GH e mais de 50% são carcinomas. A perda parcial ou completa do alelo selvagem ocorre na hipófise destes ratos heterozigóticos num processo semelhante ao dos doentes com MEN-1. Num modelo com genótipo Men1^{−/−} restrito ao pâncreas e hipófise ocorreu desenvolvimento normal do rato, mas foram observados prolactinomas e hiperplasia das paratiróides (Tichomirowa MA, 2009).

Investigação clínica da MEN-1. A MEN-1 é uma doença rara, mas devido à sua transmissão autossómica dominante, a sua descoberta num doente tem implicações para outros membros familiares (os parentes em primeiro grau têm 50% de probabilidade de desenvolverem a doença). A investigação da MEN-1 envolve a deteção das neoplasias envolvidas e a averiguação da existência ou não de mutação genética, facilitada pela caracterização recente do gene MEN1.

A probabilidade de encontrar uma mutação no gene MEN1 correlaciona-se com o número de tumores associados à MEN-1. Por exemplo, a probabilidade de encontrar uma mutação num doente que apresente os três tumores clássicos sem história familiar é de 69%; esta
probabilidade aumenta para 91% se a história familiar for positiva. Como já referido uma taxa muito baixa de mutações do gene MEN1 foi encontrada em tumores hipofisários esporádicos (<5%), não se justificando a pesquisa nestes casos (Ellard S et al, 2005). Há recomendação para estudo da mutação no gene MEN1 nos seguintes casos: doentes com mais de 2 tumores associados à MEN-1; indivíduos com parentes em 1º grau com mutação MEN1; doentes que apresentem tumores múltiplos da paratiróide antes dos 30 anos ou tumores neuro-endócrinos pancreáticos em qualquer idade (Brandi et al, 2001). A identificação de um indivíduo portador de uma mutação em princípio não conduz a uma atitude médica ou cirurgia, mas inicia-se precocemente um rastreio bioquímico e radiológico, enquanto se não for portador não se realiza mais investigação clínica (Figura 3) (Lemos MC & Thakker, 2008).

Figura 3. Investigação de um doente assintomático com um membro da família com MEN-1. Adaptada de Thakker RV, 2010.
A detecção dos tumores envolve estudo clínico, bioquímico e imagiológico e o seu reconhecimento deve ser o mais precoce possível mesmo em membros de família assintomáticos dado que o tratamento destas patologias reduz a mortalidade e morbilidade. As normas de orientação para a investigação da MEN-1 já foram desenvolvidas há mais de 10 anos (Brandi et al., 2001). O exame físico e história clínica devem ser direcionados para a presença de sinais e sintomas de hipercalcémia, nefrolitíase, úlceras pépticas, hipopituitarismo, galactorreia, amenorreia, acromegalia, doença de Cushing, distúrbios visuais, neuroglicopenia, lipomas subcutâneos, angiofibromas e colagenomas. Todos os adultos com mutações da linha germinativa do gene MEN1 devem avaliar os níveis de cálcio, PTH, hormonas gastrointestinais (gastrina, insulina, glucagon, VIP e PP), glicémia, prolactina e IGF-1 anualmente. O estudo imagiológico é recomendado a cada 1-3 anos, incluindo estudo de carcinóides e uma ressonância magnética para estudo do pâncreas, suprarrenais e hipófise desde os 5 anos para crianças com história familiar positiva – corresponde à idade de apresentação mais precoce de um TH associado à MEN-1. A penetrância do gene MEN1 é de cerca de 50% aos 20 anos e de mais de 95% aos 40 anos, o que demonstra a importância da continuação da investigação por toda a vida, mesmo que a clínica inicial seja negativa (Basset JH et al., 1998). No caso de ser negativo para mutação no gene MEN1, mas o doente apresentar fenótipo MEN-1, a procura de uma deleção parcial ou total do gene pode ser considerada, assim como a pesquisa de mutações no gene CDNK1B. O conhecimento das ‘fenócopias’ da MEN-1 deve também ser considerado, na medida em que não representam aumento do risco de desenvolvimento de outras patologias associadas à MEN-1 ou de transmissão à descendência, podendo, no entanto, ter uma forma distinta de patologia e orientação clínica (Thakker RV, 2010).
Neoplasia múltipla endócrina tipo 4 (MEN-4)

Em aproximadamente 10-20% dos doentes com uma síndrome fenotipicamente à MEN-1 não são encontradas mutações no gene MEN1, sugerindo que existem genes ainda não descritos que estão implicados na formação de TH familiares (Ellard S et al, 2005; Lemos M & Thakker RV, 2008). Os estudos de Pellegata et al identificaram uma mutação homozigótica em cdkn1b no cromossoma 4 num rato MENX, que ocorre naturalmente em estirpes de ratos, com um fenótipo com características sobrepostas da MEN-1 e MEN-2 (carcinomas neuroendócrinos múltiplos incluindo feocromocitoma, carcinoma medular da tireóide, tumores da paratireóide, paragangliomas, cataratas, hiperplasia pancreática e TH) (Pellegata NS et al, 2006).

Características moleculares e clínicas da MEN-4 em humanos. Mais tarde, os mesmos autores encontraram mutações nonsense (Trp76X) no gene CDKN1B no cromossoma 12p13, que codifica a proteína p27kip1, numa família alemã com história de acromegalia, hiperparatiroidismo primário, angiomiolipoma renal e carcinoma testicular e estudo genético negativo para MEN-1 (Pellegata NS et al, 2006). Após este estudo, uma segunda mutação (uma deleção de 19 pb no exão 1 que conduz a um codão stop prematuro) foi identificada numa doente holandesa com clínica de carcinoma cervical neuroendócrino de células pequenas, hiperparatiroidismo e síndrome de Cushing, igualmente com estudo negativo para MEN-1. Nos dois, o estudo imunohistoquímico para p27kip1 era negativo em tecidos do angiomiolipoma renal e carcinoma neuroendócrino cervical, respetivamente (Georgitsi M et al, 2007). Foi, assim, descrita uma nova entidade extremamente rara com fenótipo semelhante à MEN-1 e mutação no gene CDKN1B designada MEN-4. Até à data, estes dois casos de MEN-4 foram os únicos descritos em aproximadamente 140 doentes, contando por menos de
3% dos indivíduos com fenótipo semelhante à MEN-1 sem mutações no gene \textit{MEN1} (Pellegata NS \textit{et al}, 2006).

Mecanismo de ação da p27\textit{kip}1. A proteína p27\textit{kip}1, uma proteína inibidora da cinase depende da ciclina, é um regulador negativo do ciclo celular e parece ser um alvo da proteína \textit{menin} e, por isso, alterações das suas funções são provavelmente um mecanismo envolvido no desenvolvimento da MEN-4. Para além disso, a p27\textit{kip}1 é alvo do \textit{aryl hydrocarbon receptor} (AHR) (Milne TA \textit{et al}, 2005). Em contraste com o rato MENX e as suas múltiplas neoplasias, um rato \textit{knockout} \textit{Cdkn1b} apenas apresenta formação de TH espontâneos no lobo intermédio. Um modelo animal alternativo foi criado, no qual foram efetuadas substituições de 4 aminoácidos na p27\textit{kip}1. Estas mutações resultam na perda de interações entre p27\textit{kip}1 e ciclinas ou outras cinases dependentes da ciclina. Este rato (p27\textit{CK}) apresenta um fenótipo alargado com tumores e hiperplasia em múltiplos órgãos, incluindo hipófise, pulmão, retina, baço, ovário e suprarrenal (inclusu feocromocitoma) (Besson A \textit{et al}, 2007).

Investigaçao clínica da MEN-4. Atendendo a que as mutações no gene \textit{CDKNIB} são uma causa rara de TH familiares (até hoje só duas famílias foram identificadas) e enquanto não existem mais estudos disponíveis sobre a frequência desta mutação, os rastreios de rotina em
doentes com TH esporádicos ou familiares com ou sem características de MEN-1 (mesmo que com estudo genético negativo para o mutações no gene MEN1) não estão recomendados por rotina (Tichomirowa MA et al, 2009).
COMPLEXO DE CARNEY (CC)

O complexo de Carney (CC) foi descrito como síndrome endócrina múltipla hereditária nos anos 80. É uma doença autossómica dominante rara, caracterizada pela presença de mixomas, alterações da pigmentação cutânea (lentiginose), schwannomas e hiperatividade endócrina (Carney JA et al., 1985). Atualmente estão descritos 500 casos, em que 70% apresentam história familiar e 60% mutações no gene *type 1 A regulatory subunit of protein kinase A* (*PRKARIA*), situado no locus 17q23-24.

Características clínicas do CC. As alterações endócrinas são observadas num terço dos doentes e compreendem maioritariamente a síndrome de Cushing ACTH-dependente secundária à hipertrofia primária nodular pigmentada suprarrenal (PPNAD), mas também tumores testiculares (tumores de células de Leydig e calcificantes de células de Sertoli), tumores da tiróide e acromegalia devido a TH ou hiperplasia (Boikos S & Stratakis CA, 2007). Os doentes com CC apresentam tumores hipofisários em cerca de 10-12% dos casos e geralmente resultam em acromegalia, mas pelo menos uma família com prolactinomas foi descrita (Kirschner LS, 2010). Estes doentes exibem anomalias do eixo da GH, habitualmente com níveis assintomáticos, mas elevados de GH, IGF-1 e prolactina (cerca de 75% dos indivíduos), com uma minoria imunohistologicamente também positivos para TSH, LH e subunidade-alfa (Pack SD et al., 2000); contudo a acromegalia e a hiperprolactinémia sintomática, bem como a deteção de tumores por imagiologia são situações raras e observados em idades mais avançadas (depois dos 30 anos) (Watson JC et al., 2000). Este facto sugere que a acromegalia no CC desenvolve-se lentamente, começando com tecido aparentemente normal que sofre hiperplasia multifocal, terminando num adenoma secretor de GH/prolactina (Kirschner LS, 2010). Uma característica que distingue os TH relacionados com a acromegalia do CC é o carácter hiperplásico multifocal mal demarcado das células...
somatotróficas, que inclui tecidos normais (não adenomatosos) no interior dos tumores (Pack SD et al, 2000; Kurtkaya-Yapicier O et al, 2002).

Mecanismo de ação do produto do gene PRKAR1A. A proteína cinase A (PKA produto do gene *PRKAR1A*) é o principal mediador da sinalização pelo AMPc, sendo constituída por duas subunidades catalíticas e duas subunidades reguladoras. A sua ligação ao AMPc conduz à dissociação da subunidade catalítica e ativação enzimática, tendo um papel na regulação de vias envolvidas na proliferação celular, transcrição e apoptose. Na ausência de uma normal função da subunidade reguladora por mutações do *PRKAR1A*, a subunidade catalítica torna-se ativa na ausência de AMPc, fosforilando CREB (*cAMP response element binding protein*) que atua como um fator de transcrição (*Figura 4*) (Bossis I & Stratakis CA, 2004).
Figura 4. Mecanismo de ação da PKA. O ligando une-se à proteína G transmembranar ativando a proteína G (G). Esta interage com a adenilato ciclase e permite a acumulação de AMPc que entra em contacto com a PKA permitindo a ativação desta e libertação das subunidades catalíticas (C). Estas são capazes de fosforilar os resíduos de serina ou treonina na membrana, núcleo ou citoplasma. Um destes alvos é o CREB (cAMP response element-binding) situado no núcleo que permite a ativação da transcrição. Adaptada de Losada Grande EJ et al., 2011.

Modelos animais para estudo do CC. Em modelos animais, a homozigotia PRKAR1A^{−/−} é letal durante o desenvolvimento embrionário e os heterozigóticos não apresentam características fenotípicas típicas do CC em humanos. Contudo, ratos knockout do gene PRKAR1A em tecidos da hipófise são muito semelhantes ao fenótipo hipofisário do CC, com hiperatividade do eixo da GH e aumento da frequência de TH (Yin Z et al, 2008).

Investigação clínica do CC. Para fazer o diagnóstico de CC é necessário cumprir critérios clínicos e histológicos restritos, que foram revistos por Boikos & Stratakis. É necessário apresentar pelo menos duas ou mais características das seguintes: PPNAD, mixoma cardíaco,
mixoma cutâneo, lentiginose, tumor calcificante de células de Sertoli, quístos dos ovários, schwanomas, tumor da tiróide, acromegalia e osteocondromixoma. Caso possuam estes critérios devem ser propostos para sequenciamento de mutações da linha germinativa do gene *PRKARIA*; se esta for negativa pode ser considerado o estudo de grandes deleções ou duplicações do gene. Os portadores de mutação *PRKARIA* devem ser avaliados através de um estudo clínico, hormonal e imagiológico completo anualmente. Esta investigação é particularmente importante na medida em que podem existir patologias associadas que facilmente não são detetadas no rastreio inicial (por exemplo, mixomas cardíacos) (Boikos S & Stratakis CA, 2007). O tratamento dos TH no CC não difere substancialmente dos casos esporádicos. Contudo, ao contrário das restantes síndromes, os TH no CC desenvolvem-se lentamente (Tichomirowa MA et al, 2009).
ADENOMAS HIPOFISÁRIOS FAMILIARES ISOLADOS (FIPA)

No final do século XX eram pouco os casos descritos de TH hereditários não associados a síndromes endócrinas, a maioria relacionados com acromegalia (Verloes A et al, 1999). Os primeiros estudos sobre TH familiares, de todos os fenótipos, não-MEN1 e não-Complexo de Carney foram realizados em Liège (Bélgica) nos anos 90 e conduziram à identificação de uma nova entidade designada adenomas hipofisários familiares isolados (FIPA) (Valdes Socin H et al, 2001). Esta definição permitiu expandir a investigação internacional e, atualmente, estão identificadas mais de 200 famílias. Os FIPA são considerados atualmente responsáveis por 2-3% dos TH (Vasilev V et al, 2011).

Características clínicas dos FIPA. A síndrome FIPA é definida como a presença de dois ou mais familiares com qualquer fenótipo de TH na ausência de evidência clínica ou genética de MEN-1 ou Complexo de Carney (Valdes Socin H et al, 2001; Daly AF et al, 2006; Beckers A et al, 2007). Esta definição inclui a síndroma dos somatotrofinomas isolados familiares (IFS), definido como dois ou mais casos de acromegalia numa família na ausência de MEN-1 e Complexo de Carney (Gadelha MR et al, 1999). Contudo, é importante referir que os FIPA não estão limitados fenotípicamente à acromegalia como inicialmente esperado. A análise genealógica sugere que os FIPA apresentam transmissão autossómica dominante com penetrância incompleta (Igreja S et al, 2010) e uma prevalência ligeiramente superior nas mulheres. A maioria dos indivíduos afetados são familiares diretos (relações de 1º grau em 75% dos casos), apresentando penetrância tumoral aparentemente inferior à da MEN-1, correspondendo a cerca de 14% (Beckers A et al, 2007). A idade do diagnóstico dos FIPA é inferior à dos doentes com adenomas esporádicos, em média 4 anos. Os descendentes de famílias FIPA com múltiplas gerações afetadas são diagnosticadas consideravelmente mais cedo do que os seus pais/ avós (29 versus 50,5 anos). Este facto pode estar relacionado um
fenómeno de antecipação genética ou devido ao seu reconhecimento precoce por estarem mais atentos às manifestações clínicas (Beckers A et al, 2007).

Com base nos fenótipos das famílias com FIPA, estes podem ser divididos em dois subgrupos: homogêneos, quando todos os membros da família apresentam o mesmo fenótipo de adenoma; e heterogêneos, quando existem diferentes fenótipos de tumores dentro da mesma família. Apesar de todos os tipos de tumores poderem ser observados numa família heterogénea, normalmente existe pelo menos um prolactinoma ou somatotrofinoma num indivíduo. Em geral, os doentes com FIPA apresentam macroadenomas (63%) e não foram encontradas diferenças significativas na tendência para invadir estruturas vizinhas comparados com os adenomas esporádicos. Contudo em famílias heterogéneas encontraram-se taxas mais elevadas de macroadenomas com um comportamento mais agressivo e com maiores taxas de extensão supra-sellar, que resulta de um aumento da taxa de adenomas não funcionantes e diminuição dos microprolactinomas quando comparado com as famílias homogéneas (Beckers A et al, 2007; Daly AF et al, 2007).

Os prolactinomas (41%) e os somatotrofinomas (30%) são os tipos mais frequentes, com prevalências diferentes quando comparada com a MEN-1 (nos FIPA há menos percentagem de prolactinomas e mais de somatotrofinomas – Figura 1). As características dos prolactinomas nos FIPA em termos de predisposição por género, idade de apresentação e proporção de microadenomas não apresentam diferenças significativas quando comparados com os esporádicos. Contudo, em famílias heterogéneas os prolactinomas apresentam carácter agressivo, com taxas elevadas de expansão extra-hipofisária. Os somatotrofinomas nos FIPA estão igualmente distribuídos entre famílias homogéneas e heterogéneas, mas geralmente apresentam-se como macroadenomas e, portanto, com carácter mais agressivo em famílias homogéneas (ao contrário dos restantes fenótipos). Caracterizam-se por causar gigantismo em
25% dos casos, por uma maior prevalência masculina e por afetar idades mais jovens (média de 25 anos), sendo em média diagnosticados 10 anos mais cedo do que os esporádicos (Daly AF et al, 2006). Em mais de metade das famílias, a doença não é transmitida às gerações seguintes provavelmente devido ao desenvolvimento do tumor em idades jovens e ao seu carácter agressivo que leva a uma perda da função gonadotrófica e do potencial de reprodução (Frohman LA et al, 2004). A acromegalia nos doentes com FIPA tem menor resposta aos análogos da somatostatina (Leontiou CA et al, 2007). Os adenomas não funcionantes (13%) estão predominantemente associados a famílias heterogéneas e caracterizam-se por ser diagnosticados 8 anos mais cedo e ter evolução agressiva quando comparados com os esporádicos. Os somatomamotrofinomas, gonadotrofinomas, corticotrofinomas e tirotrofinomas são raros, estando geralmente associados a outros fenótipos nas famílias heterogéneas, e correspondem a 7%, 4%, 4% e 1% dos FIPA, respetivamente (Igreja S et al, 2010; Beckers A et al, 2007).

Características moleculares dos FIPA - Mutações AIP. A primeira mutação relacionada com os FIPA foi identificada em 2006 no gene AIP (aryl-hydrocarbon recetor interacting protein), localizado no locus 11q13.3, numa família da Finlândia com baixa penetrância de acromegalia sem mutações no gene MEN1 (Vierimaa O et al, 2006). Mais de 50 mutações diferentes (missense, nonsense, frameshift e delecções) na sequência do gene AIP foram posteriormente identificadas em famílias com FIPA por todo o mundo e ao longo de todo o gene (Ozfirat Z et al, 2010; Cazabat L et al, 2007). Contudo, apenas 15 a 25% das famílias FIPA e 40-50% dos doentes com acromegalia de famílias homogéneas possuem esta mutação (Beckers A et al, 2007; Vasilev V et al, 2011). Mesmo famílias com forte ocorrência de TH em vários elementos podem ser negativas para a mutação AIP, o que sugere a existência de outros genes envolvidos (Daly AF et al, 2007). A maioria das mutações (70%) são missense e afetam o terminal C e o domínio TPR (exemplo: R302X e R304O), o que suporta o seu papel...
essencial na função do *AIP* e na interação com o AHR e a HSP90 (Figura 5) (Igreja S *et al*, 2010; Georgitsi M *et al*, 2008). As restantes mutações conduzem à produção de proteínas truncadas ou afetam *splice sites*. Foram descritas mutações nos codões R304, R271 e R81 em famílias independentes, indicando possíveis *hotspots*. Não foram observadas correlações genótipo-fenótipo em doentes com mutação do gene *AIP* (Daly AF *et al*, 2010).

Figura 5. A - Estrutura tridimensional hipotética da proteína AIP mostrando as áreas mais afetadas por mutações: TPR e hélice-α (mutações mais comuns a vermelho) B – Estrutura esquemática da proteína AIP. AIP contém um domínio FKBP-PPI junto ao terminal N e uma parte terminal C que contém 3 domínios TPR. Tem ainda um terminal em hélice-α que é crucial na interação proteína-proteína. As mutações *missense* estão marcadas e verifica-se predominância nos domínios TPR especialmente o 3. Adaptada de Trivellin G *et al*, 2011.
A causa genética para os restantes casos de FIPA, particularmente nas famílias heterogéneas, é ainda desconhecida, mas vários outros loci, como 2p16, 3q28, 4q32, 8q12, 19q13 e 21q22 podem estar envolvidos no desenvolvimento desta síndrome. Por outro lado, nenhuma das mutações de vários oncogenes ou de genes supressores identificadas em TH esporádicos foram observados em indivíduos com FIPA (*Tabela 1*) (Beckers *et al.*, 2007; Vierimaa *O et al.*, 2006). Novos estudos devem ser realizados no sentido de apurar causas desconhecidas.

Características clínicas dos FIPA com mutações AIP. Os doentes com TH relacionados com mutações no gene *AIP* apresentam características clínicas específicas que os permitem distinguir dos restantes doentes com TH. Em contraste com os FIPA, neste subgrupo o género masculino (63,6%) é predominante, sendo a razão desconhecida (Daly *AF et al.*, 2010). Todos os fenótipos podem ocorrer associados a mutações *AIP*, contudo os somatotrofinomas são mais comuns, existindo em cerca de 80% dos doentes (com co-secretão de prolactina em mais de 50% destes) e prolactinomas em 15%, diferindo dos FIPA sem mutação *AIP* (*Figura 1*). Os TH familiares e também os esporádicos com mutações *AIP* são diagnosticados mais cedo (25 anos versus 38 anos) e são mais agressivos (de dimensões maiores e associados a níveis mais elevados de GH) do que os sem mutações *AIP*. Em mais de 50% dos casos apresentam macroadenomas invasivos e cerca de um terço dos doentes com somatotrofinomas apresenta gigantismo. A penetrância dos TH em famílias FIPA com mutações *AIP* permanece um mistério, com estudos variando de penetrância muito baixas a 66% (Vierimaa *O et al.*, 2006; Leontiou *CA et al.*, 2008).

O tratamento é também mais difícil de atingir, dado que os análogos da somatostatina são menos eficazes em diminuir os níveis de IGF-1 e GH e em induzir redução do volume tumoral. Daí que apresentem pior resposta terapêutica a longo prazo com maior frequência de recurso a cirurgia e radioterapia. Os doentes com prolactinomas e mutações *AIP* também
apresentam tumores maiores e mais invasivos do que os sem mutações, com 50% dos casos resistentes aos agonistas da dopamina (Leontiou CA et al, 2008; Daly AF et al, 2010).

Mutações AIP em TH esporádicos. Foram identificadas mutações AIP em TH esporádicos, mas esta situação aparenta ser rara. De facto, um dos primeiros estudos foi realizado por Gomes L et al e não foi encontrada qualquer mutação no gene AIP em 30 doentes jovens com acromegalia e TH esporádicos (Gomes L et al, 2007). Mais tarde, foram analisados mais de 1000 doentes com TH esporádicos e em menos de 2% foram identificadas mutações AIP (Vierimaa O et al, 2006; Leontiou CA et al, 2008; Igreja S et al, 2010). Os indivíduos que com maior probabilidade apresentam esta mutação são aqueles com macroadenomas secretores de GH em idades jovens (principalmente crianças). Contudo, de acordo com Cazabat et al, aparentemente os doentes com acromegalia e mutação AIP esporádica têm pelo menos um familiar positivo, sugerindo que a mutação apresenta baixa penetrância ou que foi efetuado um estudo familiar incompleto (Cazabat L et al, 2007).

Da mutação AIP aos FIPA. O mecanismo pelo qual as mutações AIP dão origem aos TH nos FIPA e aparentemente em TH esporádicos permanece desconhecido. O gene AIP é considerado um gene supressor tumoral, dado que o aumento de expressão do gene AIP em culturas diminui a proliferação celular. De facto, a perda de heterozigotia é encontrada em tumores de doentes com FIPA, seguindo a hipótese de Knudson de que primeiro existe uma mutação hereditária de um alelo, ao qual numa segunda fase se irá adicionar uma mutação somática do outro alelo (Soares BS et al, 2005; Guaraldi F et al, 2011).

O gene AIP consiste em seis exões que codificam uma proteína com sequência altamente conservada entre espécies com 330 aminoácidos que é parte constituinte da via do aryl-hydrocarbon receptor (Figura 6). O AHR é um regulador da transcrição dependente de ligando que regula a resposta celular de vários eventos fisiológicos (componentes
Adenomas hipofisários hereditários: aspetos genéticos e clínicos
Mestrado Integrado em Medicina. FMUC, Setembro de 2012

Luís Galante Santiago

- 32 -

xenobióticos como dioxinas, componentes endógenos como AMPc, resposta à hipoxia e função hormonal) (Carver LA & Bradfield CA, 1997). A interação entre a proteína AIP e o AHR ainda é tema de debate, mas estudos sugerem que a proteína AIP mantém a estabilidade do complexo protegendo o AHR da degração pela via da ubiquitina e prevenindo a sua ação como fator de transcrição. De facto, baixos níveis de proteína AIP nos TH com mutações nesse gene estão associados à diminuição dos níveis nucleares de AHR sugerindo o seu envolvimento na génese tumoral hipofisária (Jaffrain-Rea ML et al, 2009).

Na ausência do ligando, o AHR é inativo e localiza-se no citoplasma onde forma um complexo com as XAP2 ou ARA9, a AIP, a HSP90 e o co-chaperone p23. Após a ligação do ligando (xenobiótico), o AHR é ativado por uma alteração conformacional que expõe um sinal de localização nuclear. A HSP90 é libertada do complexo e o recetor dirige-se para o núcleo onde se liga com o *aryl-hidrocarbon receptor nuclear translocator* (ARNT). O heterodímero formado liga-se ao elemento de resposta xenobiótica (ERX) e regula a expressão génica de várias enzimas xenobióticas, tendo um papel na modulação dos seus efeitos tóxicos (*Figura 6*). A ativação do AHR por componentes xenobióticos conduz a vários efeitos tóxicos, incluindo carcinogénese, teratogenicidade e imunossupressão. O AHR está também envolvido em outras vias de sinalização, incluindo interações com a proteína Rb e p27kip1 (Kazlauskas A *et al.*, 2002; Guaraldi F *et al.*, 2011).

A proteína AIP apresenta dois domínios: o terminal N do domínio FKBP-PPI que contribui para a estabilidade do complexo AHR-HSP90-AIP e o domínio terminal C que contém três repetições de tetratricopeptídeos (TPR) e uma alfa-hélice (*Figura 5*) (Igreja S *et al.*, 2010; Trivellin G *et al.*, 2011). Como já referido, a maioria das mutações afeta o domínio TPR responsável por interações proteína-proteína. Este domínio preferencialmente liga-se ao AHR e à HSP90, mas também pode interagir com outras proteínas reguladoras, incluindo fosfodiesterases (subtipos PDE4A5 e PDE2A – envolvidas na regulação de cascatas que usam o AMPc como segundo mensageiro), *survivin* (um inibidor da apoptose) e *RET* (aumenta a degradação de *survivin* por interferir no complexo AIP-*survivin* e, consequentemente, conduz à apoptose), tendo provavelmente um papel na regulação do ciclo celular (Vargiolu M *et al.*, 2009). Muitas outras interações estão descritas mas fogem ao âmbito desta revisão (*Figura 7*). Ainda está por esclarecer é se estas interações e os seus efeitos no ciclo celular são relevantes na génese tumoral hipofisária (Guaraldi F *et al.*, 2011).
Modelos animais para estudo dos FIPA. Todas as mutações AIP hereditárias descritas até à data são heterozigóticas, sugerindo que a homozigotia não é compatível com a vida em humanos, como verificado recentemente num modelo animal do FIPA. De facto, ratos knockout com deleção homozigótica do gene AIP (AIP^{−/−}) morrem durante o desenvolvimento embrionário devido a anomalias cardiovasculares (defeitos do septo ventricular e edema pericardíaco), sugerindo que o gene AIP desempenha um papel no desenvolvimento cardiovascular mediado pelo AHR. Contudo, animais knockout heterozigóticos (AIP^{+/-}) desenvolvem um fenótipo semelhante aos FIPA humanos, com a maioria dos ratos a apresentar múltiplos somatotrofinomas agressivos em idades jovens. O modelo de ratos AIP^{+/-} assemelha-se ao fenótipo humano dos TH hereditários (com exceção da penetrância quase completa nos ratos), sugerindo a presença de mecanismos moleculares semelhantes na génese tumoral hipofisária (Tichomirowa MA et al, 2009; Guaraldi F et al, 2011).
Investigaçãoclinica dos FIPA. Inicialmente deve ser realizada uma história clínicacompleta para exclusão de qualquer patologia extra-hipofisária que possa estar na base de uma síndrome. Os estudos genéticos devem ser limitados a casos com alto índice de suspeição: famílias FIPA, TH em crianças e doentes jovens (antes dos 30 anos) com macroadenomas e somatotrofinomas ou prolactinomas, com vista a um diagnóstico precoce e a melhores resultados no tratamento (Korbonits M et al, 2012). A penetrância dos TH em doentes com mutações AIP, como referido, ainda está por determinar, na medida em que só recentemente foram identificadas como uma causa de FIPA. O estudo das mutações AIP nos restantes TH esporádicos não está recomendado dado a sua baixa prevalência. Apesar de não existir consenso, é benéfico que os doentes com mutação AIP realizem regularmente estudos hormonais (GH, IGF-1 e prolactina) e imagiológicos (ressonância magnética) de controlo desde crianças, pois têm sido observados macroadenomas em doentes com idades de 6 a 8 anos (Barlier A et al, 2007; Tichomirowa MA, 2009).

À semelhança do que acontece com os TH na MEN-1 e CC, as indicações e modalidades de tratamento dos FIPA não difere dos TH esporádicos (Tichomirowa MA, 2009). Contudo, diversos estudos mostram que os FIPA, especialmente com a mutação AIP, são mais resistentes ao tratamento farmacológico e cirúrgico. As características clínicas dos somatotrofinomas com mutação AIP (maior volume tumoral, maior secreção de GH e crescimento rápido) têm impacto na eficácia do tratamento, resultando em taxas baixas de remissão. O tratamento com análogos da somatostatina conduz significativamente a menores taxas de redução de GH e IGF-1 e diminuição do volume; assim como a cirurgia que apresenta taxas mais elevadas de reoperação (Daly AF et al, 2010).
CONCLUSÕES

As síndromes tumorais hipofisárias hereditárias representam uma pequena proporção de todos os TH, mas oferecem uma oportunidade única para estudar e compreender a patofisiologia dos processos de génese tumoral. Nos últimos anos, para além da MEN-1 e Complexo de Carney, foram adicionadas duas definições de síndromes: a MEN-4 e os FIPA, que enriqueceram ainda mais o conhecimento da patologia hipofisária. Os TH associados a MEN-1, Complexo de Carney e FIPA apresentam características mais agressivas, manifestam-se em idades mais jovens e respondem fracamente à terapêutica. Daí a importância de uma história familiar completa e um estudo clínico que permita identificar precocemente as características sugestivas de uma síndrome familiar, apesar da maioria dos TH ser esporádica. Os tumores da hipófise podem ser a primeira manifestação de uma destas síndromes, o que terá obviamente importantes implicações na pesquisa de patologia associada, nomeadamente tumores da paratiróide, tumores neuroendócrinos pancreáticos, mixomas cardíacos, lentiginose e schwannomas. A isto acrescenta-se a necessidade de um estudo genético dirigido não só ao doente, mas também à sua família, e a dificuldade de atingir uma boa resposta ao tratamento, diferindo nestas questões substancialmente dos TH esporádicos. A identificação de membros em elevado risco obriga a um rastreio regular clínico e bioquímico de prevenção, e por seu lado, a ausência de uma mutação exclui esse membro do rastreio.

Quatro genes estão, atualmente, implicados nos TH hereditários: MEN1, CDKN1B, PRKAR1A e AIP, condicionando síndromes com características distintas (Tabela 3). No geral, representam genes de supressão tumoral e foram encontradas alterações na expressão de fatores de crescimento, regulação do ciclo celular e vias de transdução de sinal. A descoberta dos genes responsáveis por estas síndromes revolucionou não só a conduta médica destes doentes e seus familiares, mas também tem proporcionado conhecimentos básicos importantes para entender a função fisiológica destes genes. A importância da pesquisa
precoce de mutações nestes genes reside no facto de que o reconhecimento da mutação constitui atualmente a base para a intervenção nas famílias com síndromes tumorais hipofisárias, em associação com os métodos bioquímicos e imagiológicos já anteriormente utilizados na prática clínica. A seleção dos doentes que merecem receber um rastreio genético pode ser extremamente difícil. Contudo, com a diminuição dos custos da sequenciação do ADN um maior número de indivíduos poderá ser estudado. Se os critérios de diagnóstico da MEN-1 e Complexo de Carney forem satisfeitos é recomendado um rastreio genético e uma monitorização clínica e bioquímica rigorosa. Nos casos de doentes com características MEN-1, mas estudo genético negativo para mutações no gene, atualmente, ainda não está recomendado o estudo de mutações CDKN1B dada a sua raridade. Apesar das mutações do gene AIP existirem em apenas 15-25% dos casos de FIPA, deve ser oferecido estudo genético a doentes com elevado índice de suspeição: famílias FIPA, TH em crianças e jovens (antes dos 30 anos) com macroadenomas e somatotrofinomas ou prolactinomas. No entanto, muito ainda está por fazer, dado que a baixa prevalência e a penetrância desconhecida das mutações AIP nos FIPA e a existência de indivíduos com fenótipo MEN-1 sem mutações MEN1 sugerem a existência de outros genes implicados nestas síndromes. Relativamente ainda aos FIPA, com mutações no gene AIP, existe falta de conhecimento acerca da demografia, terapêutica e características clínicas, bem como uma definição clara das recomendações para rastreio e para seguimento a longo prazo.

São necessários novos estudos para fornecer mais informação acerca das bases moleculares e genéticas do desenvolvimento dos TH hereditários, nomeadamente a descoberta de novos genes e o esclarecimento dos mecanismos de ação dos já conhecidos, bem como novas abordagens de investigação clínica e terapêutica dirigida, tal como já ocorre na MEN-2 através de engenharia molecular.
Adenomas hipofisários hereditários: aspectos genéticos e clínicos
Mestrado Integrado em Medicina. FMUC, Setembro de 2012

<table>
<thead>
<tr>
<th>Síndrome</th>
<th>Gene</th>
<th>Características clínicas</th>
<th>Fenótipo de TH</th>
<th>Prevalência de TH</th>
<th>Modelos animais</th>
</tr>
</thead>
</table>
| MEN-1 | MEN1 (11q13) | Tumores da paratiróide (≈100%); tumores enteropanreaticos (30-75%); TH (30-40%); raramente: tumores da zona cortical da suprarrenal, tumores carcinóides, feocromocitomas, angiofibromas faciais, colagenomas e lipomas | TH-PRL (60%); TH-NF (15%); TH-GH (10%); TH-ACTH (5%) | 30-40% | Ratos knockout *Men1−/−*: fenótipo embriológico letal.
Ratos *Men1+/-*: TH, insulinomas e tumores da paratiróide semelhantes aos MEN-1.
Ratos *Men1−/−* restrito ao pâncreas e hipófise: prolactinomas e hiperplasia das paratiróides. |
| MEN-4 | CDKN1B (12p13) | Apenas dois casos descritos com hiperparatiroidismo primário e TH (um TH-GH e outro TH-ACTH) | | | |
| CC | PRKAR1A (17q23-24) | Mixomas, alterações da pigmentação cutânea (lentiginose), schwannomas e hiperatividade endócrina (hipertrofia primária nodular pigmentada suprarrenal, tumores testiculares, tumores da tiroide e acromegalia devido a TH ou hiperplasia) | Sobretudo TH-GH | 10-12% | Ratos knockout *PRKAR1A−/−*: fenótipo embriológico letal.
Ratos *PRKAR1A+/−*: sem características fenotípicas típicas do CC.
Ratos knockout *PRKAR1A* em tecidos da hipófise: muito semelhante ao fenótipo hipofisário do CC, com hiperatividade do eixo da GH e aumento da frequência de TH. |
| FIPA | AIP (11q13.3) em 15% a 25% das famílias FIPA e 40% a 50% dos doentes com acromegalia | TH | TH-GH (41%); TH-PRL (30%); TH-NF (13%); TH-ACTH (4%). Se mutação *AIP*: TH-GH (80%); TH-PRL (15%). | Por definição 100% | Ratos knockout *AIP−/−*: fenótipo embriológico letal devido a anomalias cardiovasculares.
Ratos knockout *AIP+/−*: fenótipo semelhante aos FIPA humanos, especialmente TH-GH em idades jovens. |

Tabela 3. Síndromes associadas a TH hereditários
REFERÊNCIAS

Agarwal SK, Mateo CM, Marx SJ (2009) Rare germline mutations in cyclin-dependent kinase inhibitor genes in MEN1 and related states. J Clin Endocrinol Metab 94:1826-1834

mutations are found in a subset of young patients with macroadenomas. Eur J Endocrinol 157:1-8

Levine MA (1999) Clinical implications of genetic defects in G proteins: oncogenic mutations in G alpha s as the molecular basis for the McCune-Albright syndrome. Archives of Medical Research 30:522-531

Pannett AA & Thakker RV (2001) Somatic mutations in MEN type 1 tumors, consistent with the Knudson"two-hit"hypothesis. J Clin Endocrinol Metab 86:4371–4374

Yang Y, Hua X (2007) In search of tumor suppressing functions of menin. Mol Cell Endocrinol 266:34-41