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ABSTRACT 

Data centers are the backbone of a growing number of activities in modern economies. However, the 

large increase of digital content, big data, e-commerce, and Internet traffic is also making data centers 

one of the fastest-growing users of electricity. The total energy consumption of data centers 

corresponded to almost 1.5% of the global electricity consumption and has an approximated annual 

growth rate of 4.3%. Therefore, it is very important to increase the energy efficiency in data centers 

with actions such as power usage management, server consolidation, energy efficient components and 

systems, as well as demand response programs and renewable energy sources.  

Small and medium data centers account for more than 50% of the total electricity consumption 

in this sector. In fact, surveys indicate that this data center profile waste more energy than larger 

facilities. Nevertheless, existing studies tend to be focused on the energy related issues for large data 

centers rather than small and medium data centers. Thus, this work aims to present how an intensive 

energy consumer, such as small and medium data centers, can become more efficient from the energy 

point of view and how they can take advantage of demand response programs to decrease costs and 

to cooperate with the grid to ensure higher reliability and sustainable development goals.  

For this purpose, a set of actions have been taken in pursuit of this objective. Firstly, a 

meticulous state-of-the-art literature review of data centers energy efficiency and demand response 

perspectives was performed, providing fundamental information about the complex and technological 

world of small and medium data centers, in order to support the knowledge of their flexible load.  

An energy efficiency survey directed at Brazil, Portugal and the United States was also 

conducted, showing an alarming reality regarding energy efficiency practices within small and 

medium data centers. In the same context, an impact and potential assessment on energy efficiency 

towards small and medium data centers was performed allowing to observe the main advantages, 

disadvantages and applications in three important methodologies.  

A design of load management strategies and opportunities for demand response was 

developed considering a framework with two layers encompassing an energy efficiency methodology, 

the management of flexibility and the deployment of demand response scenarios with dynamic tariffs 

or an incentive-based contract. Alongside, the small and medium data centers load mathematical 

modeling and specification of optimization processes were provided within the same scope with two 

algorithms implemented with different approaches; one focused on small and medium data 

centers operators, and other dedicated to distribution system operators. At the data center level, 



a mixed-integer linear programming optimization technique is used to control flexible loads 

(considering ICT workload, cooling and UPS), in order to reduce the cost function in a price-based 

outline or to match the load reduction requirements in an incentive-based outline. Concerning the 

distribution system operator, a random-rotation and fairness algorithm selects the data centers to 

be used in each demand response event. Such algorithm deals with small and medium data centers 

in an aggregated and equitable way by drawing on their joint and flexible loads in contractual terms, 

as if they were one large data center. 

Finally, the optimization results were firstly demonstrated in a small and medium data centers 

perspective, as well as their respective scenarios, in which it has been proven the algorithm operation 

and reliability. The potential for cost savings in demand response was also proved, being achieved with 

the considered incentives in the simulation process, savings of 1.33% for small and 5.15% for medium 

data centers in the incentive approach, and 0.21% for small and 0.68% medium data centers in the 

dynamic tariff approach. Subsequently, the same premises were utilized with focus on the distribution 

system operator point of view, enabling to predict specific contractual policies that can be adopted in 

this type of relationship through the best and the worst scenarios simulations. The scenario with a 

preponderance of incentives stimulates the adoption of demand response programs applied to small 

and medium data centers, nevertheless the unchanged and penalty cases enable to forecast an 

unfavorable scenario for this sort of demand response program. In this context, on one hand, the one 

single day analysis showed a variation in the reduction potential between 18.02% and 91.16%, while 

the highest value in the penalty profile was 356 € and in the incentive profile 10,580 €. The 22 business 

day analyses presented a fluctuation in the reduction potential in the range of 13.12% and 71.38%, 

whilst the highest value in the penalty profile was 1,200 € and in the incentive profile 84,700 €. 

Keywords: Data Centers, Information and Communication Technologies, Energy Efficiency, Load 

Management, Demand Response 



RESUMO 

Os centros de dados são a base de um número crescente de atividades na economia moderna. No 

entanto, o grande aumento de conteúdo digital, big data, comércio eletrónico e tráfego da Internet 

está a tornar os centros de dados um dos utilizadores de eletricidade com um crescimento mais 

acentuado, com um consumo de energia correspondente a quase 1,5% do consumo global e com uma 

taxa de crescimento anual de aproximadamente 4,3%. Portanto, é de extrema importância aumentar 

as iniciativas de eficiência energética em centros de dados, direcionadas para a gestão do uso de 

energia, a consolidação de servidores, utilização de componentes e sistemas energeticamente 

eficientes, bem como a adoção de programas de resposta da procura e a utilização de fontes de energia 

renováveis. 

Os pequenos e médios centros de dados representam mais de 50% do consumo total de 

energia neste setor. De fato, pesquisas indicam que esse perfil de centros de dados desperdiça mais 

energia do que as instalações de maior dimensão. No entanto, os estudos existentes tendem a estar 

focados nos aspetos do consumo de energia em grandes centros de dados, em vez dos pequenos e 

médios. Desse modo, este trabalho visa avaliar como um consumidor intensivo de energia, como os 

pequenos e médios centros de dados, se pode tornar mais eficiente do ponto de vista energético e ao 

mesmo tempo tirar proveito dos programas de resposta da procura para diminuir custos e cooperar 

com a rede de energia elétrica, garantindo maior fiabilidade e objetivos de desenvolvimento 

sustentável. 

Para cumprir tal propósito, foi desenvolvido um conjunto de ações para alcançar esse objetivo. 

Em primeiro lugar, foi realizada uma meticulosa revisão bibliográfica abordando a eficiência energética 

e a resposta da procura no contexto dos centros de dados, fornecendo informações fundamentais 

sobre este complexo mundo tecnológico, de modo a permitir uma melhor compreensão da sua carga 

flexível. 

Além disso, foi realizado um inquérito acerca de eficiência energética direcionada ao Brasil, a 

Portugal e aos Estados Unidos, mostrando uma realidade alarmante em relação às práticas de eficiência 

energética nos centros de dados de pequena e média dimensão. No mesmo contexto, foi desenvolvida 

uma avaliação do impacto e do potencial de eficiência energética nos pequenos e médios centros de 

dados, permitindo observar as principais vantagens, desvantagens e aplicações considerando três 

importantes metodologias. 



Foi proposto um modelo, com duas camadas, para o planeamento de estratégias de gestão de 

cargas, que engloba oportunidades direcionadas à resposta da procura. Este abrange uma metodologia 

de eficiência energética, a gestão de cenários de flexibilidade e a implementação por meio de tarifas 

dinâmicas, ou por um contrato baseado em incentivos. Paralelamente, foram modeladas 

matematicamente as principais cargas dos pequenos e médio centros de dados e foi feita a 

especificação dos processos de otimização com dois algoritmos implementados com diferentes 

abordagens; um focado em operadores de pequenos e médios centros de dados e outro dedicado aos 

operadores de sistemas de distribuição. Em relação aos centros de dados, foi utilizada uma técnica de 

otimização de programação linear inteira mista para gestão das cargas flexíveis (considerando cargas 

de tecnologias da informação e comunicação, climatização e UPS) a fim de minimizar os custos de 

energia com uma abordagem direcionada à tarifa ou com um contrato baseado em incentivos. Já ao 

analisar a perspetiva do operador do sistema de distribuição, foi implementado um algoritmo de 

rotação aleatória e seleção justa dos centros de dados a serem usados em cada evento de resposta da 

procura, de forma agregada e equitativa, recorrendo às suas cargas flexíveis de forma conjunta em 

termos contratuais, tal como se tratasse de um grande centro de dados. 

Por fim, os resultados da otimização foram em primeiro lugar demonstrados na perspetiva dos 

pequenos e médios centros de dados, bem como os cenários respetivos, em que ficou demonstrado o 

funcionamento e a fiabilidade do algoritmo. O potencial de poupança na abordagem de resposta da 

procura baseada em incentivos foi de 1,33% para pequenos centros de dados e 5,15% para médios. Já 

na abordagem por tarifárias dinâmicas os pequenos centros de dados alcançaram 0,21% e os médios, 

0,68%. Posteriormente, as mesmas premissas foram utilizadas com foco no ponto de vista do operador 

do sistema de distribuição, possibilitando simular políticas contratuais específicas que podem ser 

adotadas nesse tipo de relação de consumo. Neste contexto, por um lado, a análise de um único dia 

mostrou uma variação no potencial de redução de potência entre 18,02% e 91,16%, enquanto o valor 

mais alto no perfil de penalização foi de 356 € e no perfil de incentivo 10,580 €. As análises que 

consideraram 22 dias úteis apresentaram uma variação no potencial de redução de potência no 

intervalo de 13,12% e 71,38%, enquanto que o valor mais elevado no perfil de penalizações foi de 1.200 

€ e no perfil de incentivo 84.700 €. 

Palavras-chave: Centros de Dados, Tecnologia da Informação e Comunicação, Eficiência Energética, 

Gestão de Cargas, Resposta da Procura  



 

CONTENTS 

LIST OF FIGURES............................................................................................................................................... I 

LIST OF TABLES ............................................................................................................................................... V 

LIST OF ACRONYMS AND ABBREVIATIONS .................................................................................................... VII 

LIST OF MATHEMATICAL PARAMETERS ......................................................................................................... XI 

 CHAPTER 1 — INTRODUCTION ........................................................................................................................1 

1.1 Motivation .......................................................................................................................................3 
1.2 Research Framework .......................................................................................................................5 
1.3 Main Goals ......................................................................................................................................6 
1.4 Dissemination ..................................................................................................................................7 
1.5 Main Contributions ..........................................................................................................................7 
1.6 Thesis Outline ..................................................................................................................................8 

 CHAPTER 2 — STATE-OF-THE-ART ................................................................................................................. 11 

2.1 Metrics, Energy Efficiency and Energy Load Management in Data Centers ...................................... 13 
2.1.1 Metrics ...................................................................................................................................... 14 
2.1.2 CPU ........................................................................................................................................... 16 
2.1.3 Memory .................................................................................................................................... 17 
2.1.4 Disk ........................................................................................................................................... 19 
2.1.5 Networking Interface ................................................................................................................. 21 
2.1.6 Virtualization Framework .......................................................................................................... 22 
2.1.7 Uninterrupted Power Supply (UPS) ............................................................................................ 26 
2.1.8 Cooling ...................................................................................................................................... 29 
2.1.9 Energy Load Management ......................................................................................................... 32 

2.2 Data Center Demand Response ...................................................................................................... 34 
2.3 Renewable Integration in Data Centers .......................................................................................... 38 
2.4 Small and Medium Data Centers .................................................................................................... 41 

 CHAPTER 3 — ENERGY EFFICIENCY ASSESSMENT FRAMEWORK .................................................................... 49 

3.1 Energy Efficiency Surveys ............................................................................................................... 49 
3.2 Impact Assessment of Energy Efficiency Methodology ................................................................... 57 

3.2.1 Energy Logic Methodology (EL) .................................................................................................. 57 
3.2.2 Lawrence Berkeley National Laboratory Methodology (LBNL) .................................................... 59 
3.2.3 National Renewable Energy Laboratory Methodology (NREL) ..................................................... 65 
3.2.4 Applications............................................................................................................................... 71 



 

3.2.5 Advantages and Disadvantages .................................................................................................. 71 
3.2.6 Comparative Analysis ................................................................................................................ 72 

 CHAPTER 4 — DEMAND RESPONSE METHODOLOGY FRAMEWORK .............................................................. 77 

4.1 Approaches to Optimize Data Centers Energy Loads....................................................................... 78 
4.2 Framework Proposal ...................................................................................................................... 80 
4.3 SMDC Mathematical Models .......................................................................................................... 85 

4.3.1 ICT Workload ............................................................................................................................. 86 
4.3.2 Cooling Solutions ....................................................................................................................... 87 
4.3.3 Uninterrupted Power Supplies ................................................................................................... 88 
4.3.4 Power Consumption .................................................................................................................. 89 
4.3.5 Energy Cost ............................................................................................................................... 90 

4.4 Problem 1: Small and Medium Data Centers Optimization.............................................................. 93 
4.4.1 Linear Optimization Programming Techniques ........................................................................... 93 
4.4.2 MATLAB’s ‘intlinprog’ Algorithm ................................................................................................ 95 
4.4.3 Electricity Price Fluctuation ........................................................................................................ 96 
4.4.4 Optimization Scenarios .............................................................................................................. 98 

4.5 Problem 2: Distribution System Operator Optimization ................................................................ 101 
4.5.1 Contractual Terms ................................................................................................................... 102 
4.5.2 Random-Rotating and Fairness Algorithm Overview ................................................................. 104 
4.5.3 Random-Rotating and Fairness Algorithm Flow ........................................................................ 109 

 CHAPTER 5 — SIMULATION RESULTS AND DISCUSSION .............................................................................. 115 

5.1 Small and Medium Data Centers Optimization Results ................................................................. 115 
5.1.1 Case Study 1 ............................................................................................................................ 118 
5.1.2 Case Study 2 ............................................................................................................................ 120 
5.1.3 Case Study 3 ............................................................................................................................ 125 
5.1.4 Case Study 4 ............................................................................................................................ 127 

5.2 Distribution System Operator Optimization Results ...................................................................... 128 
5.2.1 Case Study 1 ............................................................................................................................ 130 
5.2.2 Case Study 2 ............................................................................................................................ 136 
5.2.3 Case Study 3 ............................................................................................................................ 142 
5.2.4 Case Study Analysis ................................................................................................................. 147 

 CHAPTER 6 — CONCLUSIONS AND FUTURE WORK ...................................................................................... 151 

6.1 Conclusions ................................................................................................................................. 151 
6.2 Future Work ................................................................................................................................ 156 

REFERENCES ................................................................................................................................................. 157 



 

ANNEX 1: ALGORITHMS ............................................................................................................................... 175 

1.1 SMDC .......................................................................................................................................... 175 
1.1.1 The Best Time Window ............................................................................................................ 175 
1.1.2 Cost Minimization.................................................................................................................... 176 
1.1.3 DR and RE in Daily Load Diagram ............................................................................................. 177 
1.1.4 DR and RE in an Incentive-based Daily Load Diagram ............................................................... 180 

1.2 DSO ............................................................................................................................................. 182 
1.2.1 DemandResponse .................................................................................................................... 182 
1.2.2 RatioCalculation ...................................................................................................................... 186 
1.2.3 PowerNCCriterion.................................................................................................................... 188 
1.2.4 ReductionFairnessCriterion ...................................................................................................... 190 

ANNEX 2: DR SIMULATION DATA ................................................................................................................. 191 

ANNEX 3: DR SIMULATION CHARTS ............................................................................................................. 193 

3.1 One Day Scenario ........................................................................................................................ 193 
3.1.1 16 Small Data Centers 16 Medium Data Centers (Unchanged) .................................................. 193 
3.1.2 16 Small Data Centers 16 Medium Data Centers (Penalty) ........................................................ 194 
3.1.3 21 Small Data Centers 15 Medium Data Centers (Incentive) ..................................................... 195 
3.1.4 21 Small Data Centers 15 Medium Data Centers (Penalty) ........................................................ 196 
3.1.5 10 Small Data Centers 17 Medium Data Centers (Incentive) ..................................................... 197 
3.1.6 10 Small Data Centers 17 Medium Data Centers (Unchanged) .................................................. 198 

3.2 22 Days Scenario.......................................................................................................................... 199 
3.2.1 16 Small Data Centers 16 Medium Data Centers (Unchanged) .................................................. 199 
3.2.2 16 Small Data Centers 16 Medium Data Centers (Penalty) ........................................................ 200 
3.2.3 21 Small Data Centers 15 Medium Data Centers (Incentive) ..................................................... 201 
3.2.4 21 Small Data Centers 15 Medium Data Centers (Penalty) ........................................................ 202 
3.2.5 10 Small Data Centers 17 Medium Data Centers (Incentive) ..................................................... 203 
3.2.6 10 Small Data Centers 17 Medium Data Centers (Unchanged) .................................................. 204 

 

  



 

 



 I 

List of Figures 

Figure 1.1 – Typical electrical and ICT components in a data center (Ghatikar et al. 2010) .................... 2 

Figure 1.2 –  Analysis of a typical 465 m² data center (Emerson 2015)..................................................... 3 

Figure 1.3  –  A typical architecture of multiple data centers .................................................................... 4 

Figure 2.1  –  Interconnected panorama of this work .............................................................................. 12 

Figure 2.2 –  Breakdown of power consumption in servers (Emerson 2015) ......................................... 16 

Figure 2.3 – Memory hierarchy key characteristic’s in a computing system (Varrette et al. 2015) ...... 18 

Figure 2.4 –  A pictorial example of VM management components (Pore et al. 2015) .......................... 23 

Figure 2.5 –  Typical UPS efficiency curve (Moura et al. 2016) ................................................................ 27 

Figure 2.6 –  UPS efficiency with linear and non-linear loads (Pier 2008) ............................................... 28 

Figure 2.7 –  Estimated U.S. data center electricity consumption by market segment (2011) (Josh and 

Delforge 2014) ............................................................................................................................................ 43 

Figure 3.1 – Organizations' energy efficiency objectives (The Green Grid 2016) ................................... 50 

Figure 3.2 – Areas requiring most improvement (The Green Grid 2016) ................................................ 51 

Figure 3.3 – Comparative survey results (Bennett and Delforge 2012)................................................... 52 

Figure 3.4 –  Institutional profile and data center actor role ................................................................... 54 

Figure 3.5 –  Data center size distribution ................................................................................................. 54 

Figure 3.6 – Energy efficiency monitoring actions .................................................................................... 56 

Figure 3.7 – Energy efficiency action tendency ........................................................................................ 56 

Figure 3.8 – Cascade effect for cumulative savings (Emerson 2015) ...................................................... 58 

Figure 4.1 – Framework overview of Basmadjian et al. (2013) ................................................................ 81 

Figure 4.2 – Framework proposal .............................................................................................................. 82 

Figure 4.3 – Hourly electricity price fluctuation ........................................................................................ 97 

Figure 4.4 – Hourly electricity price fluctuation in 20 minute intervals .................................................. 97 

Figure 4.5 – Hourly electricity price fluctuation applied to a DR action .................................................. 98 

Figure 4.6 – Tariff periods electricity price fluctuation............................................................................. 98 



 II 

Figure 4.7 –  Main algorithm files ............................................................................................................ 106 

Figure 4.8 – Random-rotating and fairness algorithm flowchart ........................................................... 110 

Figure 5.1 – ICT workload predominance in DR and RE tariff window .................................................. 119 

Figure 5.2 – Cooling predominance in DR and RE tariff window ........................................................... 119 

Figure 5.3 – UPS predominance in DR and RE tariff window ................................................................. 120 

Figure 5.4 – SMDC accomplished DR ....................................................................................................... 121 

Figure 5.5 – SMDC slightly above DR ....................................................................................................... 122 

Figure 5.6 – SMDC slightly below DR ....................................................................................................... 122 

Figure 5.7 – SMDC bellow DR ................................................................................................................... 123 

Figure 5.8 – SMDC quite bellow DR ......................................................................................................... 124 

Figure 5.9 – SMDC ideal DR ...................................................................................................................... 125 

Figure 5.10 – DR and RE in daily load diagram ........................................................................................ 126 

Figure 5.11 – DR and RE in an incentive-based daily load diagram ....................................................... 128 

Figure 5.12 – Fair choice criterion for one DR event in case study 1 ..................................................... 131 

Figure 5.13 – SMDC power reduction potential for one DR event in case study 1 ............................... 131 

Figure 5.14 – DR power reduction outcomes for one DR event in case study 1 ................................... 132 

Figure 5.15 – SMDC financial profile for one DR event in case study 1 ................................................. 132 

Figure 5.16 – SMDC financial index for one DR event in case study 1 ................................................... 133 

Figure 5.17 – Acceptance and denial statistics for 22-DR events in case study 1 ................................. 133 

Figure 5.18 – Accepted and rejected calls for 22-DR events in case study 1 ........................................ 134 

Figure 5.19 – Fair choice criterion for 22-DR events in case study 1 ..................................................... 134 

Figure 5.20 – SMDC power reduction for 22-DR events in case study 1 ............................................... 135 

Figure 5.21 – DR power reduction outcomes for 22-DR events in case study 1 ................................... 135 

Figure 5.22 – SMDC financial profile for 22-DR events in case study 1 ................................................. 136 

Figure 5.23 – SMDC financial index for 22-DR events in case study 1 ................................................... 136 

Figure 5.24 – Fair choice criterion for one DR event in case study 2 ..................................................... 137 

Figure 5.25 – SMDC power reduction for one DR event in case study 2 ............................................... 137 



 III 

Figure 5.26 – DR power reduction outcomes for one DR event in case study 2 ................................... 138 

Figure 5.27 – SMDC financial profile for one DR event in case study 2 ................................................. 138 

Figure 5.28 – SMDC financial index for one DR event in case study 2 ................................................... 139 

Figure 5.29 – Acceptance and denial statistics for 22-DR events in case study 2 ................................. 139 

Figure 5.30 – Accepted and rejected calls for 22-DR events in case study 2 ........................................ 140 

Figure 5.31 – Fair choice criterion for 22-DR events in case study 2 ..................................................... 140 

Figure 5.32 – SMDC power reduction potential for 22-DR events in case study 2 ............................... 141 

Figure 5.33 – DR power reduction outcomes for 22-DR events in case study 2 ................................... 141 

Figure 5.34 – SMDC financial profile for 22-DR events in case study 2 ................................................. 141 

Figure 5.35 – SMDC financial index for 22-DR events in case study 2 ................................................... 142 

Figure 5.36 – Fair choice criterion for one DR event in case study 3 ..................................................... 143 

Figure 5.37 – SMDC power reduction for one DR event in case study 3 ............................................... 143 

Figure 5.38 – DR power reduction outcomes for one DR event in case study 3 ................................... 144 

Figure 5.39 – SMDC financial profile for one DR event in case study 3 ................................................. 144 

Figure 5.40 – SMDC financial index for one DR event in case study 3 ................................................... 144 

Figure 5.41 – Acceptance and denial statistics for 22-DR events in case study 3 ................................. 145 

Figure 5.42 – Accepted and rejected calls for 22-DR events in case study 3 ........................................ 145 

Figure 5.43 – Fair choice criterion for 22-DR events in case study 3 ..................................................... 146 

Figure 5.44 – SMDC power reduction potential for 22-DR events in case study 3 ............................... 146 

Figure 5.45 – DR power reduction outcomes for 22-DR events in case study 2 ................................... 146 

Figure 5.46 – SMDC financial profile for 22-DR events in case study 3 ................................................. 147 

Figure 5.47 – SMDC financial index for 22-DR events in case study 3 ................................................... 147 



 IV 

  



 V 

List of Tables 

Table 2.1 – Power distribution efficiency comparing AC and different DC distribution methods 

(Moreno-Munoz et al. 2011) ...................................................................................................................... 29 

Table 2.2 – Price-based programs (Tang et al. 2014) ............................................................................... 36 

Table 2.3 – Incentive-based programs (Tang et al. 2014) ........................................................................ 36 

Table 2.4 – Typical characteristics of data center space types (Masanet et al. 2011) ............................ 42 

Table 2.5 – Estimated U.S. data center electricity consumption by market segment (2011) (Whitney 

and Delforge 2014) ..................................................................................................................................... 44 

Table 2.6 – Summary of “typical” data center thermal loads and temperature limits. (Ebrahimi, et al. 

2014)............................................................................................................................................................ 45 

Table 2.7 – Summary of 2011 ASHRAE thermal guidelines for data centers .......................................... 46 

Table 2.8 – Hypothetical data center as a case study. (Fulpagare and Bhargav 2015)........................... 47 

Table 2.9 – Data center costs, component, and sub-components. (Uddin et al. 2015) ......................... 47 

Table 2.10 – CO2 emissions (carbon foot print) climate group and the global e sustainability initiative 

SMART 2020 (Uddin and Rahman 2012). .................................................................................................. 48 

Table 3.1 – Benefits from efficiency improvement actions (Emerson 2015) .......................................... 58 

Table 3.2 – Methodologies advantages and disadvantages ..................................................................... 72 

Table 3.3 – Methodologies comparative analysis. .................................................................................... 73 

Table 4.1 – Workloads hierarchy ............................................................................................................... 84 

Table 4.2 – Power SMDC values ............................................................................................................... 108 

Table 5.1 – Cooling fan specification (Vertiv 2017) ................................................................................ 116 

Table 5.2 – UPS specification (Delta 2018) .............................................................................................. 117 

Table 5.3 – Cooling and UPS data per profile .......................................................................................... 118 

Table 5.4 – DR cost analysis with different scenarios ............................................................................. 126 

Table 5.5 – DR cost analysis in an incentive-based contract .................................................................. 128 

Table 5.6 – Acceptance and denial statistics for one DR event in case study 1 .................................... 131 

Table 5.7 – Acceptance and denial statistics for one DR event in case study 2 .................................... 137 



 VI 

Table 5.8 – Acceptance and denial statistics for one DR event in case study 3 .................................... 142 

Table 5.9 – DSO power and financial balance sheet ............................................................................... 148 

  



 VII 

LIST OF ACRONYMS AND ABBREVIATIONS 

AC Air Conditioning 
ACK Acknowledgment 
APC Adaptability Power Curve 
APCren Adaptability Power Curve at Renewable Energies 
ASM Ancillary Service Market  
BEAMs Building Environmental Assessment Methods 
CHP Combined Heat and Power 
CM Capacity Market 
CPP Critical Peaking Price  
CPU Central Processing Unit 
CRAC Computer Room Air Conditioners  
CREW CPU and RAM Energy Aware 
CS Curtailable Service 
CUE Carbon Usage Effectiveness 
DB Demand Bidding/Buy Back 
DC Direct Current  
DC-EEP Data Center Energy Efficiency and Productivity 
DCA DCAdapt 
DCE Power Usage Data Center Efficiency 
DCEP Data Center Energy Productivity 
DCiE Data Center infrastructure Efficiency 
DCIM Data Center Infrastructure Management 
DDR3 Double Data Rate 3 
DDR4 Double Data Rate 4 
DDR5 Double Data Rate 5 
DLC Direct Load Control  
DoE Department of Energy 
DPPE Data Center Performance Per Energy 
DR Demand Response  
DRAM Dynamic Random-Access Memory 
DSM Demand Side Management 
DSO Distribution System Operators 
DVFS Dynamic Voltage and Frequency Scaling  
EDE Electronics Disposal Efficiency 
EDR Emergency Demand Response 
EES Energy ExpenseS 
ENTSO-E European Network of Transmission System Operators for Electricity  
EP Energy Provider 
EPC Energy Proportionality Coefficient 
ERE Energy Reuse Effectiveness 
ERE Energy Reuse Effectiveness 
ERF Energy Reuse Factor 
ESDs Energy Storage Devices ESDs 



 VIII 

FERC Federal Energy Regulatory Commission 
FVER Fixed-to-Variable Energy Ratio 
FVER Fixed to Variable Energy Ratio 
GEC Green Energy Coefficient 
GHG Greenhouse Gases 
GUF Grid Utilization Factor 
HVAC Heating, Ventilation, and Air Conditioning 
I/O Input and Output  
ICT Information Communication Technologies 
IoT Internet of Things 
ISO Independent System Operators 
ITC IT Customer 
LBNL Lawrence Berkeley National Laboratory 
LCA Life Cycle Assessment 
LP Liner Programming 
MDC Medium Data Center(s) 
MIBEL Iberian Electricity Market 
MILP Mixed Integer Linear Programming 
NACK Negative Acknowledgement 
NIST National Institute of Standards and Technology  
NRDC Natural Resources Defense Council 
OP Operations Research  
PDE Power Density Efficiency 
PE Savings Primary Energy Savings 
PMSM Power Monitor System and Management 
PUE Power Usage Effectiveness 
QoS Quality of Service 
RCI Rack Cooling Index 
RDRAM Rambus DRAM  
RE Rebound Effect 
REF Renewable Energy Factor 
RHI Return Heat Indexes 
ROI Return of Investment 
RTI Return Temperature Index 
RTP Real-Time Pricing  
SCE Server Compute Efficiency 
SDA Supply Demand Agreements 
SDC Small Data Center(s) 
SDRAM Synchronous DRAM 
SHI Supply Heat Indexes 
SI-EER Site Infrastructure Energy Efficiency Ratio 
SLA Service Level Agreement  
SMDC Small and Medium Data Centers 
sPUE System Power Usage Effectiveness 
SSD Solid State Drives  
TCI Thermal Correlation Index 



 IX 

TE Thermodynamic Efficiency 
TOU Time-of-Use  
TSO Transmission System Operators 
TSP Travelling Salesman Problem 
U.S. The United States of America 
UPS Uninterruptible Power Supply  
VMs Virtual Machines  
WSOA Services Outsourcing Agreements 
WUE Water Usage Effectiveness 
DEEC Department of Electrical and Computer Engineering 
UC University of Coimbra  
CoP Coefficient of Performance 

  



 X 

  



 XI 

LIST OF MATHEMATICAL PARAMETERS 

Sets  
! Set of DR time slots 

" Set of SMDC, or ICT workload, or crack, or UPS units 

# Set of time slots 

  
Index  
$ Index of SMDC, or ICT workload, or crack, or UPS units, or server class, 

or device, array 
% Index of DR time slots, or space type, or device, or array 
& Index of time slots 
  

Parameters  

'	 Percentage of energy efficiency improvement of an ENERGY STAR 
server relatively to a “standard” unit 

)*+,	 Read or write bandwidth 

-	 Percentage of energy efficiency improvement of an ENERGY STAR 
storage relatively to a “standard” unit 

-./
011	 Y-intercept of power-utilization function (DFVS disabled) for server 

class $ in space type % 

-./
02	 Y-intercept of power-utilization function (DFVS enabled) for server 

class $ in space type % 
3	 Capacitance of the circuit 

45.6	 Minimum capacity level of the battery 

47	 UPS capacity level 

47879:	 Total capacity of the battery  

3;<	 Coefficient of Performance  

=	 Total DRAM channels 

>	 Constant factor 

>6	 Total number of memory fetched in the storage disk 

=;=	 Depth-of-discharge  

?@A	 Energy required to activate and pre-charge 
?B8C7D	 Energy cost during the DR event in time slot % 
?B8C7DEF	 Energy cost in a rebound effect situation in time slot %+1 

?B8C7G	 Baseline energy cost in a normal time slot & 

?H.CD(=;=)	
Amount of UPS energy that can be discharged at the depth-of-
discharge level in a DR event % 

?+KBDEF(=;=)	 Amount of UPS energy that can be recharged at the depth-of-discharge 
level in a rebound effect process %+1 

?LM	 Data center electricity demand 

?H.CN	 Disk energy 

?LO@P	 Dram energy 

?B8C7D Reduction of energy cost in a DR event in time slot % 
?B8C7DEF  Reduction of energy cost in a DR event in time slot %+1 

?.B8C7D Incentive in a normal time slot & 



 XII 

?7879:B8C7QG	 Total energy cost in a dynamic tariff approach 

?7879:B8C7RS	 Total energy cost in an incentive-based contractual approach 

?TU9CK:.6K	 Efficiency metric for baseline server 
?TU9CKVW(/)	 Efficiency metric for baseline storage equipment in array % 
?TU9CKVX 	 Efficiency metric for baseline storage equipment 

?TXX	 Efficiency metric for efficient server 
?TXXVW(/)	 Efficiency metric for baseline storage equipment in array % 
?TXXVX	 Efficiency metric for energy-efficient storage equipment 

	?59YH.C	 Maximum energy that can be discharged  

?59Y+KB	 Maximum energy that can be charged  

?6K7	 Networking energy 

?/
2	 Electricity used by network devices in space type % 

?./
V 	 Electricity used by servers of class $ in space type % 

?/
VZ	 Electricity used by external storage devices in space type % 

?+,	 Energy per read or write 

ě./
V 	 Baseline annual electricity use per server of class $ in space type % 

ě/
VZ	 Baseline annual electricity use per external storage device in space 

type % 

\/N
] 	 Ratio of electricity use by infrastructure system component ^ in space 

type % to ICT device electricity use in space type % 
\./
V 	 Annual electricity use per server of class $ in space type % 

?_	 ENERGY STAR server number 

?`a	 Expected useful life based on ICT upgrade cycle of data center 

b	 Frequency 

b(>&)	 Objective function based on dynamic tariffs 

b($4)	 Objective function based on incentive-based contracts 

b@A	 Frequency required to activate and pre-charge 
bU9CKVX(/)	 Fraction of total TB stored on a baseline device/array % 
bXXVW(.)	 Fraction of total TB stored on energy-efficient device/array $ 
b59Y	 Maximum frequency 

c	 Amount of heat removed  

d- Lower boundary constraint 

e./
011	 Slope of power-utilization function (DFVS disabled) for server class $ in 

space type % 

e./
02	 Slope of power-utilization function (DFVS enabled) for server class $ in 

space type % 
Ň./

V 	 Baseline number of servers of class $ installed in space type % 
Ň/

VZ	 Baseline number of external storage devices installed in space type % 
gC,	 Average number of circuit switches per clock cycle 

hV	 Switching number 

<	 Power consumption 

<9B7.iK	 Active state power 

<9::8BR
D	 Allocated computational capacity to attend a DR event in a SMDC $ in 

time slot % 
<U9CK:.6K Power draw of baseline servers 

<B+9BR	 Power consumption of CRAC units 
<B88:D 	 Potential of power reduction in a cooling DR event in time slot % 



 XIII 

<B88:DEF Potential of power reduction in a cooling RE situation in time slot % 
<XX Power draw of new efficient server equipment 

<XXVX  Power draw of new energy-efficient storage equipment 

<X2XOjk	VZ@O	 Power draw of ENERGY STAR server 

<XV	VZ0O	 Power draw of ENERGY STAR storage 
<XV,mn::	:89H  Power draw of ENERGY STAR server at full load 

<XV,.H:K Power draw of ENERGY STAR server at idle 
<m96	 Power of CRAC fan 

<.H:K	 Servers idle power 

<.B7	
Power consumption of ICT with their heat flow directed towards the 
CRAC unit 

<59Y	 Maximum CPU power consumption 

<oK9N	 Servers peak power  

<A8C7	LC	P96	 
Total power draw of data storage after data storage management tools 
are implemented and after efficient data storage equipment is 
installed 

<A+K	LC	P96	 
Total power draw of data storage before data storage management 
tool measures implemented (or with tool turned off) and after efficient 
data storage equipment is installed 

<C9,mn::	:89H	 Power draw of a single-application server at full load 

<C9,.H:K Power draw of a single-application server at idle 
<C5HBR

G	 Total SMDC power consumption $ in time slot & 

<C5HBHKBR
D	 Decreased SMDC power consumption in a DR event % 

<C5HB.6BR
DEF	 Increased SMDC power consumption in a RE situation %+1 

<C796HUp	 Low power state power 
<7879:R

G	 Total computational power of SMDC $ in time slot & 
<7,m:KYD	 Total flexible workload in all SMDC’s within time slot % 
<noCD  Power reduction in a UPS DR event in time slot % 
<noCDEF Power increase in a UPS RE situation in time slot % 
<iq,mn::	:89H  Power draw of a virtual host server at full load 

<iq,.H:K Power draw of a virtual host server at idle 
<,m:KYR

D Flexible workload assigned to SMDC $ in time slot j 

<,m:KYR
DEF  Flexible workload assigned to SMDC $ in time slot %+1 

<,	s.+7	 Total power draw of all virtual hosts 

<`?	.
7	 Power usage effectiveness (PUE) in a SMDC $ in time slot & 

<`?Vn55K+	 Average PUE over the summer peak demand period 

<`?t.67K+	 Average PUE over the winter peak demand period 

u;_	 Quality of service 
_59YR	 Total number of servers in data center $  

_CK:KB7R
D	 Number of selected servers in data center $ to attend a DR event in 

time slot % 
	_7879:D 	 Total number of selected servers in all SMDC data center in time slot % 
v'	 Single application servers, numbered 1 to n 

&9BBKCC	 Access time  

&9B7.iK	 Active state time 
w9H/	 Temperature of adjustment 



 XIV 

&H.CN	 Disk time 

&LO@P	 DRAM time 

w59Y	 Maximum temperature of the server inlets 

&5.CC	 Miss time 

&6K7 	 Network time 

&Ox	 Rotational latency 

wC9mK	 Maximum permitted temperature at the server inlets 

&CKKN	 Seek time 

&C796HUp	 Low power state time 
wCno	 Temperature of the air supplied by CRAC units 

&C,.7Bq.6y	 Switching time 
&7+96CmK+ 	 Transfer time 

&77	 Transfer time from disk to higher level cache 

&v Time slot per hour 

`XV	 Utilization of ENERGY STAR server 
z./	 Post-reduction processor utilization per server of class $ in space type % 
ǔ./	 Baseline processor utilization for active servers of class $ in space type % 

C̀9	 Average utilization of a single-application server over the year 

`iq	 Average virtual host server utilization over the year 

z- Upper boundary constraint 

|HH} 	 Supply voltage of CPU 

~ℎ	 Virtual host servers number 

*	 Amount of work necessary to remove the heat 

Ä./
V 	 Fraction of servers of class $ in space type % with energy efficient 

hardware 
Ä/
VZ	 Fraction of energy efficient external storage devices in space type % 

Å./
V 	 Fraction of servers of class $ in space type % with dynamic voltage 

scaling enabled 

Ç./
V 	 Ratio of efficient server to baseline server electricity use for servers of 

class $ in space type % 

Ç/
VZ 	 Ratio of efficient external storage device to baseline external storage 

device electricity use in space type % 
É./
Ñ , É./

ÑÑ	 DFVS and utilization factors 

Ö/
2	 Ratio of network device to total ICT device electricity use in space type 

% 

Ü./
V 	 Baseline fraction of servers of class $ in space type % that are legacy 

servers 
Ä	 Use factor percentage to a DR event 

á	 Efficiency  

à7	 Incentive given to participate in a DR event in the % time instant 

â./
V 	 Device reduction ratio for servers of class $ in space type % 

â/
VZ	 Device reduction ratio for external storage in space type % 

ä.
7	 Average servers’ utilization in a SMDC $ in time slot & 

	ã7	 Electricity price in a time slot & 

 

 



LOAD MANAGEMENT AND DEMAND RESPONSE IN SMALL AND MEDIUM DATA CENTERS   
 

1 

1. INTRODUCTION 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CHAPTER 1 

INTRODUCTION 
 

 

he availability of Internet and the relevance that Information and Communication Technology (ICT) 

has in modern society is changing the way in which computing resources are typically provisioned 

and allocated, where the computing infrastructure itself is provided as a service to its users. In a not 

very distant past, data were generated and communicated primarily among ICT systems – albeit of 

diminishing size. In the future, data-producing systems will increasingly involve small, low-power 

sensors and actuators embedded in the physical world – a network of cyber-physical systems, also 

referred to as the Internet of Things (IoT) (SIA 2015). However, the increasing demand of computing 

resources has brought an inevitable growth in the energy consumption associated with this 

infrastructure, fostering a set of ICT to reduce the environmental impacts called Green ICT (Craig-wood 

et al. 2010; Uddin; Rahman 2012). 

Jiang et al. (2015) globally conceptualize a data center as a facility used to house enterprise’s 

ICT equipment, such as servers, telecommunications, and storage systems, including also supporting 

infrastructures of high quality power delivery and cooling systems. More specifically, Pierson (2015) 
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address data centers as being structures, or group of structures, dedicated to the centralized 

accommodation, interconnection and operation of ICT and network telecommunications equipment, 

providing data storage, processing and transport services, along with all the support facilities for high 

quality power supply and environmental control with the levels of resilience and security required to 

provide the desired service availability, as shown by Figure 1.1 in a more detailed and disaggregated 

flowchart. 

 

Figure 1.1 – Typical electrical and ICT components in a data center (Ghatikar et al. 2010) 

 This particular infrastructure is divided in three spaces: ICT room, data center support area and 

ancillary spaces (Rong et al. 2016). The ICT room is an environmentally controlled space that houses 

equipment and cabling directly related to computer and telecommunications systems which generate 

considerable amounts of heat. Moreover, the ICT equipment is highly sensitive to temperature and 

humidity fluctuations, so a data center must keep restricted environmental conditions for assuring the 

integrity and functionality of its hosted equipment. Data centers support areas are all those where 

different systems, such as the Uninterruptible Power Supply (UPS) systems, cooling control system and 

switch boards are located. Finally, the ancillary spaces include mainly offices, lobby and restrooms 

(Grice et al. 2013), (Oró et al. 2015). 

Nowadays, data centers are the backbone of contemporary economies, having different 

profiles, such as server rooms that power small-to medium-sized organizations, enterprise data centers 
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that support large corporations and server farms that run cloud computing services hosted by major 

market players. 

Based on Ghatikar et al. (2010) data centers can include more than 100,000 hardware devices 

and the electrical load can range from about 1 kW to about 100 MW with different sizes and profiles. 

A typical example in terms of demand and supply, as well as the power draw unbundling of a medium 

data center is categorized in Figure 1.2.  

 

Figure 1.2 – Analysis of a typical 465 m² data center (Emerson 2015) 

In the context of this huge load spectrum, according to Sheppy et al. (2011) data centers load 

profile is usually almost steady and up to 76% of existing facilities are oversized and therefore inefficient. 

In addition, it is estimated that up to 58% of energy is wasted in unnecessary and inefficient 

components, such as chips, slots, fans, voltage regulators, power supplies and many servers 

(International Energy Agency 2014). 

1.1 MOTIVATION 

The increase of digital content, big data, e-commerce, and Internet traffic is also making data centers 

one of the fastest-growing users of electricity (Josh and Delforge 2014). The total energy consumption 

of data centers in 2012 was about 270 TWh, which corresponds to almost 1.5% of the global electricity 

consumption, and has an approximated annual growth rate of 4.3% (Van Heddeghem et al. 2014). Just 

in 2014, U.S. data centers consumed 70 TWh of electricity and such consumption is projected to 

increase to roughly 73 TWh by 2020 (Shehabi et al. 2016), costing $13 billion annually in electricity bills 

and emitting nearly 150 million metric tons of Greenhouse Gases (GHG) emissions per year. If 

worldwide data centers were a country, they would be the globe’s 12th-largest consumer of electricity, 
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ranking somewhere between Spain and Italy (Josh and Delforge 2014). Thus, an understanding of data 

center energy use, disaggregated energy efficiency options, as well as the metrics used to characterize 

data center energy performance are fundamental to address this large load in the most sustainable 

way. 

Connected with the above reality, conventional power systems have been facing a noticeable 

transition from a centralized supply side management to a decentralized supply and Demand Side 

Management (DSM), as a result of the inclusion of distributed renewable generation, among other 

factors (Wang et al. 2011). The electric power grid infrastructure, the so called smart grid (Aghaei and 

Alizadeh 2013), should ensure a higher efficiency and reliability through automated control, high-power 

converters, novel communication infrastructures, sensing and metering technologies, sophisticated 

energy management techniques, renewable energy, and network availability (Wiboonrat 2012; Cecati 

et al. 2010; Panajotovic et al. 2011; Fang et al. 2012; Güngör et al. 2011). Data centers are completely 

immersed in this grid context as a player and a typical architecture of them under smart grid 

environment is presented in Figure 1.3, where the flow of relationships between services requests and 

power supply can be identified. On the one hand, data centers can take advantage of the flexibility of 

their loads to implement load management strategies aiming at reducing the operation costs and, on 

the other hand, play an important role to ensure the efficient and reliable operation of electrical grids 

by providing which is named Demand Response (DR) services. 

   

Figure 1.3 – A typical architecture of multiple data centers 
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This possibility is corroborated by The National Institute of Standards and Technology (NIST) 

and the Department of Energy (DoE) in the U.S., which have both identified DR as one of the precedence 

areas for the future smart grid and furthermore the National Assessment of Demand Response 

Potential report has identified that DR as the potential to reduce up to 20% of the total peak electricity 

demand in the U.S (Liu et al. 2013). The European Network of Transmission System Operators for 

Electricity (ENTSO-E) has also quantified a load reduction potential of about 11 GW available 

throughout continental Europe (Gils 2014).  

Another reality is that existing studies tend to be focused on the energy related issues, such as 

power usage management, server consolidation, load management and DR programs for large data 

centers rather than small and medium data centers (SMDC). However, SMDC account for more than 

50% of the total electricity consumption (Josh and Delforge 2014) and many organizations, such as 

laboratories, research institutes, universities, industries and enterprises have multiple SMDC scattered 

around their facilities. In fact, surveys indicate that this data center profile waste more energy than 

larger facilities, whereby the power consumption is often overlooked, because the energy cost of an 

individual data center usually accounts for just a portion of total spending. In this context, just as there 

is a neglected energy efficiency potential for SMDC, there is also a lack of DR programs aimed at these 

consumers that can contribute to the grid in aggregate form (Josh and Delforge 2014; Delforge 2014; 

Bennett and Delforge 2012). 

The impact and the relevance of this research proposal directly affects data center owners and 

operators, the electric sector in general, i.e. Distribution System Operators (DSO), Transmission System 

Operators (TSO), Independent System Operators (ISO), aggregators, universities, researchers, research 

organizations or even the society in general. 

1.2 RESEARCH FRAMEWORK 

The research framework was structured to contemplate the research questions to be answered by this 

work, as well as the study plan to cover the main tasks to achieve the goals. Thus, the four research 

questions which arose were: 

• How can SMDC take advantage of energy efficiency through centralized management of loads? 

• Which loads should be defined by data center operators to respond to DR events? 

• Can measures of energy efficiency, or participation in DR programs affect the quality and 

availability of computer services?  
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• How can data centers owners and utilities balance the maximization of benefits and sustainable 

goals? 

In respect of the thesis research process, it was developed a study plan which was structured 

in several tasks over time, as follows: 

• State of the art. 

• Survey of technologies and best practices to reduce and optimize the energy consumption in 

SMDC. 

• Characterization of equipment, associated energy consumption and consumption profile. 

• Assessment of the impact and potential of energy efficiency. 

• Design of strategies of load management and opportunities for DR. 

• Modeling and simulation of the strategies. 

• Assessment of the impact of such strategies to the user and to the grid. 

1.3 MAIN GOALS 

The general goal of this work is to understand how intensive energy consumers, as SMDC, can become 

more efficient from the energy point of view and how they can take advantage of DR programs to 

decrease costs and to cooperate with the grid to ensure higher reliability and sustainable development 

goals. Nonetheless, for each one of the research questions raised in this work there are also specific 

and consecutives objectives, namely: 

• Analyzing the main technologies and best practices to reduce and optimize the energy 

consumption in SMDC, providing detailed information related to different type of data 

center dimensions, equipment characteristics, associated electricity consumption and 

power profile. 

• Develop and implement a survey on the current reality regarding energy efficiency in SMDC. 

• Definition of the most appropriated energy efficiency methodology for SMDC. 

• Definition of load management strategies in the context of SMDC. 

• Development of an approach to set specific loads for participation in DR programs. 

• Development of an approach to create different DR scenarios based on metrics, thresholds and 

parameters applied in data centers. 
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• Development of a conceptual framework that balances sustainable development goals with 

benefits to the grid and SMDC. 

• Development of algorithms that enable the implementation of DR scenarios simulations. 

1.4 DISSEMINATION 

The following publications resulted from the research reported in this thesis: 

Journal papers: 

• T. L. Vasques, P. S. Moura, A. T. de Almeida, A Review on Energy Efficiency and Demand 

Response in Small and Medium Data Centers, In Energy Efficiency (Springer 2018) – Accepted 

for Publication. 

• T. L. Vasques, P. S. Moura, Demand Response Modeling and Optimization Applied to Small and 

Medium Data Centers, In Applied Energy (Elsevier 2018) – In Review. 

Conference papers: 

• T. Vasques, S. Araújo, F. Vieira, G. Júnior, M. Castro, G. Souza, P. Moura, Building the Brazilian 

Smart Grid: Implementation of Smart Grid Technologies in Goiás, In Energy for Sustainability 

2015, Sustainable Cities: Designing for People and the Planet (EfS 2015). 

• T. L. Vasques, P. S. Moura, An Energy Efficiency Perspective into Small and Medium Data 

Centers: Progress and Reality Based on Surveys, In Energy for Sustainability International 

Conference: Designing Cities & Communities for the Future (EfS 2017), 2017. 

• T. L. Vasques, P. S. Moura, A. T. de Almeida, Energy Efficiency Insight into Small and Medium 

Data Centers: A Comparative Analysis Based on a Survey, In Summer Study on Energy Efficiency 

(ECEEE 2017), 2017. 

Presentations: 

• T. L. Vasques, P. S. Moura, Load Management and Demand Response in Small and Medium 

Data Centers, In Energy for Sustainability Research Day (EfS – Research Day 2018), 2018. 

1.5 MAIN CONTRIBUTIONS 

In this thesis, the main contribution is the participation analysis of a specific and currently 

neglected type of consumer in the energy market, the SMDC, in DR programs through the 

management of their loads. 
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 For this purpose, the main technologies and best practices to decrease and optimize the 

energy consumption in SMDC were selected along with the mathematical models and information 

such as power, energy consumption, cost and CO2 emissions. 

A current energy efficiency survey directed at Brazil, Portugal and the United States was 

conducted, showing an alarming reality regarding energy efficiency practices within the SMDC. A 

comparative analysis with two other surveys with complementary profiles is also specified in order 

to provide a more holistic view of this scenario.  

In the same context, an impact and potential assessment on energy efficiency towards SMDC 

was performed allowing to observe the main advantages, disadvantages and applications in three 

important methodologies. 

A design of load management strategies and opportunities for DR were proposed in a 

framework with two layers encompassing an energy efficiency methodology, the management of 

flexibility and DR scenarios by dynamic tariffs and an incentive-based contract. The first layer has a 

responsibility-oriented approach, where energy efficiency actions were taken over by SMDC operators 

through the use of the most appropriate energy efficiency. Flexibility management was ensured by a 

SMDC algorithm that optimized the best time window to decrease load, whereby DR scenarios were 

defined by a DSO random-rotating and fairness algorithm in an aggregated and equitable way as if they 

were large data centers. The second layer is oriented towards the goals, constraints and deployment 

of DR strategies applied to SMDC and DSO. Alongside, the SMDC load mathematical modeling and 

specification of optimization processes were provided within the same scope. 

 After the evolution and conclusion of each of the contributions mentioned so far, 

simulations were carried out in different scenarios in order to support and provide a cost analysis 

in different contexts, but aimed at addressing the SMDC and DSO perspective.  

1.6 THESIS OUTLINE 

This document is composed of 6 chapters that address the work conducted within this thesis. 

Chapter 2 provides a comprehensive review in energy efficiency, DR and renewable energy 

integration, providing the state-of-the-art, perspectives and interconnections to SMDC. 

An energy efficiency framework is discussed in chapter 3, whereas three current surveys are 

presented — one of which was carried out within the framework of this thesis —, underlining their 

premises and conclusions. Furthermore, on a proposal basis, three consolidated energy efficiency 
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methodologies are analyzed, compared and assessed, allowing a more appropriate use in the context 

of the SMDC. 

Chapter 4 presents a methodology framework addressing the DR phenomenon in different 

angles, providing an overview on the main approaches to optimize workloads in data centers with 

examples applied to SMDC. A framework proposal aligned with the goals of this thesis is presented and 

detailed. The mathematical models denoting the main workloads in a SMDC environment during 

demand response and rebound events are defined. From this ground, the two problems established in 

the context of this thesis, one from SMDC point of view and the other from DSO perspective are 

discussed alongside their resolution hypotheses through an algorithm optimization process. 

The simulation results along with the arguments that describe the adopted case studies, input 

parameters, running, output data and a comparative analysis are presented in chapter 5. Firstly, the 

optimization outcomes in SMDC perspective and their respective scenarios are demonstrated. 

Subsequently, the same steps are applied with emphasis on DSO point of view, allowing to simulate the 

impact of specific actions present in this consumer relationship. 

Chapter 6 summarizes the conclusions drawn in the course of this work, making a critical 

analysis of the obtained results, as well as answering the research questions of this thesis. Some 

suggestions of future work are also indicated. 
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2. STATE-OF-THE-ART 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CHAPTER 2 

STATE-OF-THE-ART 
 

 

his chapter starts by presenting some introductory concepts and definitions referred along this 

thesis. Based on the wide and currently heterogeneous scenario described in this thesis 

introduction, the main purpose of this chapter is bringing light to the above-mentioned issues through 

a comprehensive review in energy efficiency, DR and renewable integration providing the state-of-the-

art, perspectives and interconnections to SMDC. 

Several studies have conducted extensive literature reviews whose focus was specifically on 

data centers, energy efficiency, DR, or related issues. Ebrahimi et al. (2014), Fulpagare and Bhargav 

(2015) and Zhang et al. (2014) reviewed aspects related to the main cooling solutions used in data 

centers, as well as aspects related with waste heat recovery and advances in thermal management. 

Energy efficiency in networks, telecom systems, power efficient algorithms and server consolidation 

were addressed respectively in Hammadi and Mhamdi (2014), Garimella et al. (2013), Uddin et al. 

(2015) and Ahmad et al. (2015), nevertheless in a cloud data center context. Green metrics and 

renewable energy integration are the main aspects addressed by Uddin and Rahman (2012) and Oró et 

T 
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al. (2015), regardless of the dimension of data centers. Concerning DR, there are few broad reviews 

such as Oconnell et al. (2014) and (Paterakis et al. 2017), however not always focused on data centers 

specifically, mainly dealing with specific strategies.  

Therefore, the present literature review arises from the initiative to relevantly increment and 

interconnect all the assumptions discussed hitherto separately, understanding that the panorama of 

this work, as structured in Figure 2.1, should be aligned with the future of data centers, where energy 

efficiency and DR should go hand in hand taking advantage of all joint potential from a technical (grid 

services and reliability) and economic (costs minimization) point of view. Thus, such role is ensured with 

a framework that prioritizes decreasing energy consumption, ensuring the remaining consumption with 

renewable sources and simultaneously providing DR services to the grid. 

  

Figure 2.1 – Interconnected panorama of this work 

The approach used in this chapter to achieve this goal is dismembering server components 

generically and analyzing their energy consumption profile and the energy efficiency strategies applied 

nowadays. By the same criterion, virtualization, cooling, UPS and energy management will be analyzed, 

as well as their DR strategies and related renewable sources integration. Firstly, this systematic analysis 

will be performed globally, considering data centers as a whole and finally a SMDC perspective will be 

given based on recent studies, implementations and respective adaptions. 
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2.1 METRICS, ENERGY EFFICIENCY AND ENERGY LOAD MANAGEMENT IN DATA CENTERS  

The computational management with emphasis on energy efficiency was initially applied in the context 

of mobile devices powered by batteries. In such devices, energy consumption should be minimized in 

order to increase the battery lifetime (Beloglazov and Buyya 2013). Although servers with their different 

generalizations (e.g. blade, tower, and rackable) and data centers can use techniques developed for 

mobile devices, these systems require specific methods. Thus, the power consumption in data centers 

is affected by two main factors. The first one, from the hardware point of view, can also be divided in 

two points: one is caused by the amount of active computational resources and the other is the energy 

efficiency of the physical components. A way of dealing with the energy efficiency of physical 

components is the use of a power management system to keep their operation in proportion to the 

demand for use by applications. This has been done through solutions in hardware and firmware, which 

will be analyzed in the following sections.  

Another factor in the problem of energy consumption, handled from a software point of view, 

is the inefficiency in the use of computational resources. A study including more than 5,000 production 

servers over a six-month period showed that even when they are not idle, most of the time, the server 

utilization is between 10% and 50% of its work capacity, generating heat and unnecessarily consuming 

energy (Barroso and Hölzle 2007). The existence of a set of computational resources much higher than 

the average use is justified by the need to deal with peak loads. Although this peak scenario occurs with 

a low frequency, it is necessary to ensure that performance is not adversely affected, which would 

happen if an application was executed on an overloaded server. 

Judge et al. (2008) found that, even when standing idle, servers consume about 70% of the 

energy consumed during peak working hours. However, according to the data obtained from the SPEC 

power benchmark (SPEC 2017), the server configurations designed in the end of 2015 consume about 

15% to 34% of the energy when idle. Despite the significant reduction of consumption, primarily due 

to the development of more efficient architectures, maintaining a server connected with a low level of 

usage is still highly inefficient from the energy consumption point of view. 

Based on the highlighted context, it is fundamental to analyze the role of the servers and every 

supportive technological environment that surrounds it under the energy efficiency panorama in a 

detailed way, dismembering each component and pointing out the contemporary energy efficiency 

strategies used in each of them, as well as potential savings divided by CPU, memory, disk, network 

interface card and the impact of virtualization, cooling and UPS. 
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2.1.1 Metrics 

Before addressing the specifics of a data center in terms of computational components, cooling 

technologies and power delivery, it is important to understand the metrics currently used for measuring 

energy efficiency variables in this type of heterogeneous environment. The power consumption of a 

data center consists of the power consumed by the computing equipment, cooling systems and other 

sources of power consumption such as lighting, and distribution and conversion losses.  

 Thereby, The Green Grid consortium has approached four features of efficient data center 

metrics: intuitive name, scalability to techno-economical changes, scientific accuracy, and the 

granularity to provide data-driven decisions (Uddin et al. 2014). Based on those trends Wahlroos et al. 

(2017) highlight that gauging and assessing the performance of an energy efficiency metric are essential 

actions in energy efficiency enhancement, allowing tracking the improvements, changes, comparisons 

between technologies, and benchmarking against average industry performance. 

In practical terms, Power Usage Effectiveness (PUE) is a widely-used metric to measure the 

energy efficiency of non-computing equipment in data centers. It is calculated as the ratio between the 

total power consumed by a data center facility and the power consumed by the computing equipment 

(Brady et al. 2013), as given by Equation 2.1. 

  <`? = Z879:	A8,K+	.678	7qK	H979	BK67K+
]MZ	Kçn.o5K67	o8,K+

   (2.1) 

A PUE of 1.0 is the best theoretical value, nevertheless not achievable, since in that case no 

power can be spend on cooling and other facilities. Nowadays, the average data center has a PUE 

between 1.5 and 2.0, and a highly optimized data center can reach a PUE of 1.1 (Beitelmal and Fabris 

2014). Thus, the industry should gradually enhance measurement potentialities over time so that 

measuring of ICT energy consumption straight at the ICT load (e.g., servers, storage, network, etc.) turns 

into a widespread practice. 

Whereas PUE has become the industry standard for reporting data center energy performance, 

nonetheless it is not unanimity. Horner and Azevedo (2016) claim that PUE remains an incomplete 

metric, failing to address hardware efficiency, energy productivity, and environmental performance. 

They propose a framework under which data center operators report general characteristics and 

performance metrics to provide a new scenario beyond the PUE inconsistences. In the same aspect, 

the study conducted by Chinnici et al. (2016) provides a general methodology that can be used to 

measure the energy efficiency of data centers through a holistic approach in which the advantages and 

the disadvantages of existing and emerging metrics are considered. 



LOAD MANAGEMENT AND DEMAND RESPONSE IN SMALL AND MEDIUM DATA CENTERS   
 

15 

However, there are also a wide number of others metrics used in data centers (The Green Grid 

2012) described by application, as follow.  

In terms of utilization of renewables and reduction of CO2 emissions Whitehead et al. (2014) 

highlights an important summary with some of the most ordinary metrics applied in data center 

industry, such as Green Energy Coefficient (GEC) that quantifies the portion of a facility’s energy that 

comes from green sources, Energy Reuse Factor (ERF) and Carbon Usage Effectiveness (CUE). Jeong 

and Kim (2014) include in this category Water Usage Effectiveness (WUE), Renewable Energy Factor 

(REF) and Energy Proportionality Coefficient (EPC).  

Additionally, eight European research projects have joined forces to introduce new metrics for 

the evaluation of data centers flexibility, as well as the effects of optimization to their general 

operational efficiency, such as: Adaptability Power Curve (APC), Adaptability Power Curve at Renewable 

Energies (APCren), DCAdapt (DCA), Grid Utilization Factor (GUF), Energy Reuse Effectiveness (ERE), 

Primary Energy Savings (PE Savings), CO2 avoided emissions (CO2Savings) and Energy ExpenseS (EES) 

(Aravanis et al. 2015). 

Comprising the domain of heating, ventilation, and air conditioning in a data center Wahlroos 

et al. (2017) state the important energy efficiency metrics are: Thermal Correlation Index (TCI), Rack 

Cooling Index (RCI), Return Temperature Index (RTI), Supply and Return Heat Indexes (SHI) and (RHI), 

Power Density Efficiency (PDE), Thermodynamic Efficiency (TE) and Energy Reuse Effectiveness (ERE). 

According to Nada and Elgelany (2014) generic data center energy efficiency metrics include 

Power Usage Data Center Efficiency (DCE), Data Center infrastructure Efficiency (DCiE), System Power 

Usage Effectiveness (sPUE), Fixed-to-Variable Energy Ratio (FVER), Data Center Energy Productivity 

(DCEP), Server Compute Efficiency (SCE), Data Center Performance Per Energy (DPPE), Fixed to Variable 

Energy Ratio metric (FVER), Data Center Energy Efficiency and Productivity (DC-EEP), Site Infrastructure 

Energy Efficiency Ratio (SI-EER) and Electronics Disposal Efficiency (EDE).  

Finally, in comparison with single-issue metrics, Whitehead et al. (2015) emphasize the 

importance of Building Environmental Assessment Methods (BEAMs) and Life Cycle Assessment (LCA) 

to assess and decrease the impact of data centers on environment in the process to reduce their power 

infrastructures demand. Meanwhile BEAMs analyze the performance of buildings against benchmarks 

using a set of categories, their respective environment impact weight and a final rating awarded, LCA 

compiles an inventory to assess iteratively the impact of products, process and services on environment. 
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2.1.2 CPU 

Processor is the central part of servers and as claimed by Wang et al. (2017), typically, CPU has been 

the largest, yet not prevailing, contributing to the power consumption, as characterized in Figure 2.2. 

In order to provide extra performance when necessary, traditional CPUs are equipped with additional 

procedures, whose purpose is to minimize the active and static power consumption in an energy 

efficiency procedure (Varrette et al. 2015).  

 

Figure 2.2 – Breakdown of power consumption in servers (Emerson 2015) 

 Dynamic Voltage and Frequency Scaling (DVFS) is conceptualized by Sueur and Heiser (2010) 

as being a commonly-used power-management technique where the clock frequency of a processor is 

reduced to allow a related decreasing in the supply voltage intending to establish an energy efficiency 

relationship, where the reduction of energy consumption is befitting with the processed workload. The 

reduction of power consumption leads to a meaningful decreasing in the energy requested for 

computation, specifically for memory-bound workloads. However, Lu et al. (2016) emphasizes that the 

lowest operating frequency is constrained by the stable voltage conditions of the circuit. The power 

consumption by DVFS at a frequency b is given by Equation 2.2. 

<(b) = 3gC,|HH} b   (2.2) 

where 3 is the capacitance of the circuit, a significant percentage of which is wire-associated, gC, is 

the average number of circuit switches per clock cycle and |HH  is the supply voltage of the CPU 

(Zhuravlev et al. 2013). As the maximum frequency is linearly subjected to the supply voltage, DVFS has 

a cubic effect on the power savings, as given by Equation 2.3. 
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DVFS minimizes the power requirements, but maximizes the application execution time or 

requests response time, whereas the DVFS total energy efficiency scheme concerns the fact that power 

reduction is a cubic effect of frequency at the cost of rise in the execution time, which is inversely 

proportional to the frequency. When considering the delay of sensitive applications (e.g., Internet 

services) it is fundamental to maintain the response time within certain thresholds. Furthermore, DVFS 

increases the overall execution time of the task in delay tolerant applications. As an outcome, there is 

a penalty of using the growth in the execution time even when instantaneous power savings are 

achieved. Nevertheless, to increase the energy savings without exceeding the execution deadline the 

energy delay trade-off can be used (Arianyan et al. 2017). 

Other CPU procedures to provide energy efficiency are the Low-Power Sleep Modes and 

Dynamic Power Switching. The former, also known by Core Power Gating (Johannah et al. 2017) is 

utilized when the CPU is idle. By cutting the clock signal and power from idle units, the CPU might be 

commanded to enter in a low-power mode providing energy savings. Dynamic Power Switching 

technique enables the power management processing in all the domains and constantly monitoring to 

switch its state to a lower power mode when required. 

A different approach was conducted by Krzywda et al. (2017) in which several actuators were 

analyzed jointly to optimize data center servers: DVFS and  CPU pinning, which defines the set of CPU 

cores that each thread can run, were tested and results show that DVFS rarely reduces the power 

consumption of underloaded servers by more than 5%, but it can be used to limit the maximal power 

consumption of a saturated server by up to 20% (at a cost of performance degradation). CPU pinning 

reduces the power consumption of underloaded server (by up to 7%) at the cost of performance 

degradation, which can be limited by choosing an appropriate CPU pinning scheme.  

2.1.3 Memory 

Another important component is the local memory, which exists at different levels and it is 

interconnected to CPU and disk drives, as illustrated in Figure 2.3. The main memory, the Dynamic 

Random-Access Memory (DRAM), is responsible for a significant fraction of a server’s power 

consumption. However, memory with various power states have been developed. Therefore, any 

memory power management should assure the performance of memory if DRAM low power states are 

present. 
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Figure 2.3 – Memory hierarchy key characteristic’s in a computing system (Varrette et al. 2015) 

The main memory contains static and dynamic energy consumption. In the decoding of 

addresses and fetching the data from the memory, dynamic energy is consumed. The static energy is 

consumed during the active period repaid over the number of data transfers. If ?+, is the energy per 

read or write, )*+, is the read or write bandwidth, = are the total DRAM channels, ?@A is the energy 

required to activate and pre-charge, and b@A  their frequency then the energy consumption for each 

DRAM channel is given by Equation 2.4 (Ahn and Jouppi 2009). 

 ?LO@P = _&'&$4?h\òôö + ?+,)*+, + =?@Ab@A   (2.4) 

The time needed to regain data from the main memory impacts on the memory-based 

applications performance. To collect data from the main memory, the probability of hit and miss of the 

previous level of memory, i.e. caches, can be perceived. If the hit probability is úq.7, the miss probability 

is given by Equation 2.5. The time needed to obtain data from main memory with one level of cache, 

taking into account the access time &9BBKCC and miss time &5.CC, is given by Equation 2.6.  

 ú5.CC = 1 − úq.7   (2.5) 

 &LO@P = úq.7&	9BBKCC + ú5.CC&5.CC   (2.6) 

Based on several studies, presented by Pore et al. (2015), the main technologies used in 

memory to promote a more efficient use of energy are: 
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• Memory Architecture Modifications: Dividing the memory into ranks and making use of smaller 

subsets of memory rather than the entire memory, results into activation savings and pre-

charge energy associated with the rank subsets that are not accessed. Nevertheless, the 

prompt impact of this technique is the data path for each access becoming longer. The design 

of memory schemes incorporates different factors such as load balancing across memory 

ranks, number of memory ranks impacting the effective bandwidth, as well as the application 

features. Several other methods of power savings comprise managing the refresh rates of 

memory, use of memory buffer, etc. 

• Memory Low Power Modes: Currently, new memory sorts have more power states, i.e., Rambus 

DRAM (RDRAM) establishes four different power states: active, standby, nap and shutdown. 

Power management patterns for the memory utilize these states to minimize the energy 

consumption. 

— Static power management: The memory is assigned to a low power state and when the 

memory access takes place, the chip has to resume to the active power state. 

— Dynamic power management: The low power state time interval is varied according to 

the access pattern. The limit time interval after which the memory is in low power state 

is a crucial design aspect of the power management. This limit is given for improving 

energy savings, nonetheless the delay is within the time limitation of the application. 

Taking into account the Synchronous DRAM Memory (SDRAM), meaning numerous types of 

DRAM synchronized with the clock speed optimized by the microprocessor and increasing the number 

of instructions that the processor can perform in a given time, the current generation, Double Data 

Rate 4 (DDR4) differs due to a 20% decrease in energy consumption from its predecessor, DDR3 (Kim 

2016). Whereas Double Data Rate 3 (DDR3) normally demands 1.5 V of electrical voltage, DDR4 

demands as little as 1.2 V. In data centers implementing servers running as much as a terabyte of 

memory on a 24/7 profile, associated with onboard fans and external ventilation systems as cooling 

solutions, upgrading to DDR4 means big Return of Investment (ROI) in the form of energy savings (Islam 

et al. 2015). Furthermore, development of specifications for the new next generation, Double Data Rate 

5 (DDR5) SDRAM, has started, which will be two times faster than DDR4, having double the density, 

twice the gigabyte capacity and also more power efficient (JEDEC 2017). 

2.1.4 Disk 

According to Dayarathna et al. (2016) and Tang et al. (2017) the majority of the storage disks have 

transition to on-off power states capability. They are either in idle state, standby state or off state when 

the disks are not in use. Taking into account that >6 is the total number of memory fetched in the 
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storage disk, the active state power, <9B7.iK is proportional to >6 by a constant factor d, <C796HUp is the 

power during disk Input and Output (I/O) in the low power state, &9B7.iK is time spent in active state 

and &C796HUp  is time spent in the low power state, then the energy consumption is given by Equation 

2.7. 

 ?H.CN = ><9B7.iK&9B7.iK + <C796HUp&C796HUp   (2.7) 

The time requested to obtain data from disk is essential in the disk design of power 

management patterns. If &CKKN  is seek time, &Ox  is the rotational latency and &77  is the transfer time 

from disk to higher level cache, then the time requested to obtain data from disk is given by Equation 

2.8: 

 &H.CN = >6(&CKKN + &Ox + &77)    (2.8) 

Based on several studies assessed by Pore et al. (2015) the main technologies used in disk to 

promote more efficient use of energy are: 

• Disk Spinning Down: Spinning down is the best-known procedure of power management in 

disks (i.e., switching the power off) when not in utilization. Nevertheless, the time to re-

establish the disk to the active state takes few seconds and there are sudden fluctuations in 

the data center workload, being able to strongly degrade the delay sensitive applications 

performance. However, using prediction-based techniques to schedule the disk spinning down 

in the idle timeframe in the workloads it is possible the performance breakdown of the 

applications due to power state transitions. 

• Managing Data Storage and Replication: There is often a large data set stored in multiple 

storage disks in data center applications, involving popular data, which are more frequently 

accessed than the common data remaining. Identifying these most requested data, storing on 

fewer disks and replicating them for performance, whereas the rest of data is stored on 

remaining disks is the role of this technique. The disks with most requested data are always in 

active state while more power management patterns are used to the remaining disks. Other 

power management techniques involve the usage of hybrid disk types such as a combination 

of Solid State Drives (SSD), Flash Storage Devices and DRAM to control the data storage based 

on the combination of their power, performance features and costs. The most requested data 

is migrated to more energy efficient devices, but moving the data frequently might exceed the 

savings obtained by a spinning down of disks. 
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Several studies related with these technologies have been done (Zakarya and Gillam 2017) 

concluding that an ideally proportional system has an energy reduction potential of 40 – 75%. Examples 

of power management schemes proposed for disk power proportionality are: 

• Consolidation: Moving data to a specific number of storage devices (Verma et al. 2010) or using 

a scalable architecture (Tsirogiannis et al. 2010). 

• Migration: Storage of data in different energy efficient devices, e.g., SSD (Tsirogiannis et al. 

2010), (Härder et al. 2011), hybrid disks, such as NAND flash storage and DRAM (Deng 2011) or 

in accordance with data popularity (Amur et al. 2010). 

• Aggregation: In order to maximize the idle times among the operations to provide more 

opportunities for energy savings, read or writes are postponed (Gupta and Singh 2007). 

• Disk spin down: During idle periods spinning down the disk is used regardless or in combination 

with other management policies (Verma et al. 2010). 

• Compression: Utilization of Data Compression in some workload cases (Gupta and Singh 2007). 

2.1.5 Networking Interface 

Chen et al. (2016) highlights that the average use in the data centers is very low and idle networks 

devices such as ports, line cards, switches, are one of the considerable consumers of energy in the low 

utilization periods (Gupta and Singh 2007). Therefore, a power management procedure that is 

frequently used for network devices is to turn off the network components during idle timeframes 

(Gupta and Singh 2003). When the network components are not in use, they are either in idle or 

standby states. If <9B7.iK is the active state power and <C796HUp is the power in the standby state, 

&9B7.iKis the time spent in the active state and &C796HUp is the idle period, ?6K7 is the energy needed for 

switching between the power states and hC is the number of switching that occurred, then the energy 

consumption is given by Equation 2.9.  

?6K7 = <9B7.iK&9B7.iK + <C796HUp&C796HUp + hV    (2.9) 

The time, in seconds, needed to transfer the data through a network component in terms of 

the transfer time, &7+96CmK+ , and switching time, &C,.7Bq.6y, is given by Equation 2.10. 

&6K7 = &7+96CmK+ + &C,.7Bq.6y    (2.10) 
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Network cards are generally off-board in the main data center servers and therefore are 

included in the estimation of 20% of the peripheral slots presented in Figure 2.2. The main techniques 

to promote an efficiency use of energy associated with networking interfaces are (Pore et al. 2015): 

• Switching off the Network Component: Use of a reactive scheme that switches-off the network 

component for a certain time after observing that there is no workload for few seconds. Some 

procedures imply proactive patterns where network interfaces are continually monitored for 

learning the inter-arrival time between packets in a window-based method. 

• Managing the Workload: Data can be aggregated, stored in buffers for some period and sent if 

the application deadlines are not stringent, enabling the network components to be turned off 

during the idle period.  

• Sleep: The network components, such as switches and routers are in sleeping mode or turned 

off in the idle timeframe between the workload arrivals, reaching energy savings between 10 

and 20% (Gupta and Singh 2007; Nedevschi et al. 2008). 

• Aggregation: The network topology is modified to consolidate the network flow on fewest 

possible routes, such that the data is sent on minimum active series of network devices. 

Bonetto et al. (2014) present that even simple policies allows to save from 30% to 50%. 

• Rate adaptation: With this technique the workload rate is adjusted such that traffic is serviced 

within the required time constraints, achieving energy savings between 10 and 90% (Gupta and 

Singh 2007). 

• Traffic shaping: The traffic is divided into bursts, in the Elastic Tree procedure. This traffic to 

same destinations is buffered before it is routed. This scheme increases the idle periods 

between the traffic bursts applied to transition the network devices into low power states and 

can save up to 50% of network energy, while maintaining the ability to handle traffic surges 

(Heller et al. 2010). 

2.1.6 Virtualization Framework 

Virtualization is an increasing and leading technology to mutualize the energy required by a single 

server operating multiple Virtual Machines (VMs) instances. Often virtualization is confused with 

colocation, which is the practice of housing privately-owned servers and networking equipment in a 

third-party data center. Nevertheless, short consensus has been produced about the capacity overhead 

in energy consumption and the throughput minimization for virtualized servers and/or computing 

components. Other way to address this topic is conceptualized by Mazumdar and Pranzo (2017), where 

virtualization helps to reduce the power consumption within a cloud infrastructure by enabling 

consolidation of heterogeneous applications in few active servers. 
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The main structure of any virtualization platform and thereby Cloud middleware, remains the 

hypervisor or Virtual Machine Manager. Thereafter, a VM operating managed by a hypervisor is called 

a guest machine. The main two categories of hypervisors are: native and hosted, but only the former 

(also called bare-metal) contains an interest in data center context. This category of hypervisor operates 

straight on the host’s hardware to take over the hardware and to supervise guest operating systems. 

Nevertheless, from the energy efficiency point of view, to implement efficient virtualization 

mechanisms, it is required to define the allocation of a VM to a physical machine and live VM migration 

during overburdening situations.  

It is important to take into account that a virtualized data center with servers hosts a sub-

assembly of applications by supplying a virtual machine for each application hosted upon it. Hence, an 

application might have numerous tiers, multiple instances, operating across different VMs and being 

managed by a global VM controller in the data center, which is responsible by the admission control, 

load balance, assignment and migration of VMs, as it can be seen in Figure 2.4.  

 

Figure 2.4 – A pictorial example of VM management components (Pore et al. 2015) 

The VM management determines: how many VMs are necessary for each tier of an application; 

how the workload should be propagated among multiple instances of the application for each tier; how 
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the resources should be held in common among VMs that are collocated in a VM; when and how VM 

migration should be conducted; and how the resources should be held in common among collocated 

VMs. 

By analyzing the standard of VM Assignment and Migration, in practical terms, VM assignment 

is harder owing to the VM migration overhead and the uncertainty related to the resource constraints 

of the VMs. The overhead of VM migration produces a cost of VM assignment which is not time-

independent. Thereby, the optimal solution for the VM assignment issue in non-negligible migration 

cost, is found offline where the information of resource demand of VMs are known over all times in 

advance. Hermenier et al. (2009) claim that consolidation based on the entropy definition, providing 

cluster resource management and a group of sensors, can achieve savings of more than 50% if 

compared to the static solution.  

Several works have been addressing the problem of VM assignment and migration. Dhiman et 

al. (2010) highlights the variations in the power consumption for CPU-intensive and I/O-intensive 

applications through trials, where different applications have different characteristic specifications at 

different times and thereby VM allocation in physical server can be reached when power peak does not 

occur in parallel. It is stated that placing a hybrid of CPU-intensive and I/O-intensive application in a 

physical server produces less power consumption compared to any other arrangement. This occurs 

because it breaks up with the hotspot, which is an intense operation in CPU-intensive or I/O-intensive 

applications on one physical machine and splits the global system resources in a much more efficient 

form. An implementation of the system on a state-of-the-art testbed of server machines called vGreen, 

an open control loop to manage the application assignments (VMs) to the physical server, is presented 

maximizing average performance and system-level energy savings by around 40%, using benchmarks 

with different specificities (Dhiman et al. 2010). 

The condition of holding fully used machines is the requirement of VMs being dynamically 

managed, as the resource demands of interactions-based applications (e.g. web-based application) and 

batch jobs are distinct. In the part of batch jobs, when a job is over, its resource requirement might not 

reach the resource requirement for the new job, thus, VMs should be repositioned to the physical 

machines to hold fully used machines. Hermenier et al. (2009), implements a dynamic restriction 

programming based on VM manager named Entropy, which operates VMs such that whenever an 

unallocated VM is accessible, it is applied to a physical machine that is capable to meet its resource 

demand. Every new allocation might cause some live virtual machine migration satisfying the objective. 

From the VM Dynamic Resource Allocation point of view, to make the services in the form of 

VM applications available, the cloud presents autonomous management of the available physical 
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resources. Two techniques are available for autonomic resource allocation to VMs: Static resource 

allocation (Hermenier et al. 2009), and Dynamic resource allocation (Wang and Wang 2011; Padala et 

al. 2009; Nathuji and Schwan 2007).  

The static resource allocation model assumes that the resource demand of VMs are known in 

advance and the VMs’ resource demands does not modify significantly during their life and the VM 

allocation is carried out in accordance with the peak resource requirements of the application. The 

pattern discussed in the literature for dynamic resource allocation interval analyzes how to optimize a 

utility model that catch Service Level Agreement (SLA) revenue cost as well as energy cost (Ardagna et 

al. 2012; Urgaonkar et al. 2008; Padala et al. 2009), machine learning techniques for learning resource 

requirement of applications (Tesauro et al. 2006), and control theory methodologies (Wang and Wang 

2011).  

An adaptive control scheme to define on VM resources share of multi-tier web based 

applications is used in Padala et al. (2009). An optimal control technique  is used in Urgaonkar et al. 

(2008) to decide resource allocation and power management for time-varying workloads and 

heterogeneous applications. Wang and Wang (2011) studied power capping in a virtualized cluster to 

create a closed control loop by using Model Predictive Control and PI controller to supervise both the 

power consumption and performance goals of applications in a coordinated way. VM assignment and 

resource allocation were studied in Ardagna et al. (2012) in a combined way, considering a multi-tier 

virtualized system with the objective of increasing the SLAs revenue while decreasing energy costs, 

reaching substantial revenue earnings for the provider in comparison with alternative methods (up to 

45%). A dynamic provisioning technique for multi-tier Internet applications was proposed by Urgaonkar 

et al. (2008) employing a queuing model to define how many resources have to be allocated to each 

tier of application and a hybrid of predictive and reactive mechanisms, determining when to provision 

these resources. 

Castro et al. (2013) propose three new approaches for dynamic consolidation of VMs that take 

into account both CPU and RAM usage. A heuristic called CPU and RAM Energy Aware (CREW), which 

uses an energy model that jointly considers the consumption of CPU usage and RAM was proposed to 

define the allocation of VMs, ensuring the lowest possible power consumption. The implementation 

and evaluation of tenders done in the CloudSim (Calheiros et al. 2009) simulator used real workload 

VMs from the PlanetLab (Spring et al. 2006) and an enterprise cluster Google (Reiss et al. 2012). The 

results showed a reduction on the energy consumption in up to 33% and an increase on the Quality of 

Service (QoS) guarantee. 
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Based on this context, there are still demands in the VM management, given that VM migration 

overhead deteriorate not only the performance of the migrated VM, nevertheless also the performance 

of the VMs collocated in the source and destination physical machine (Lim et al. 2011). Constant cost 

per each migration is the base for many studies (Sanders et al. 2004), using migration time, which 

affects many elements as follow: (1) the memory update rate and the memory content of each virtual 

machine, (2) the virtual machines migrated total number, (3) network bandwidth availability for 

migration, and (4) the destination servers at the time of migration and the workload of the source 

(Dargie 2014). Thereafter, most of the presented solutions are greedy or heuristic, whose 

approximation ratio in comparison with optimal solutions are not derived, nevertheless VM assignment 

and resource management are given as a NP-hard. Lastly, virtualization approach simplifies dynamic 

power management and minimize power consumption, however the applicability of the virtualization 

under various situations such as real-time is not well researched. This is essential, considering that the 

VM overhead, the delay demands of some applications in an underused VM might not be satisfied. 

2.1.7 Uninterrupted Power Supply (UPS) 

UPS are key components of ICT systems, ensuring reliability by maintaining the continuity and quality 

of the systems’ power supply. An UPS is understood to be a short duration (minutes to hours) power 

supply system that maintains the functions of the connected load when the main continuous power 

source has failed or has significant disturbances (IEC 2013). Therefore, the primary purpose of a UPS is 

to bridge an unexpected power gap and/or to provide the amount of power needed to safely power 

down the connected load. A UPS may also be used to continuously maintain the quality (e.g. harmonic 

content) and stability (voltage and frequency) of the power to the connected load. In data centers, the 

UPS systems are used to ensure the service continuity of ICT, to protect it from risk of halts in data 

processing, contributing to 7% of the total energy consumption (Moura et al. 2016).  

The energy consumption of UPS should be an important consideration due to its high impact 

on the lifecycle costs, nevertheless in most applications of UPS, energy efficiency is not the most 

important issue, since the operational reliability of the ICT systems and the related security of data 

processing and storage are the major concerns. However, the conversion efficiency of UPS systems has 

been improving in recent years and large energy savings can be achieved with the adoption of new 

technologies without a reduction of the reliability levels. 

Regarding UPS life cycle, Khan and Khan (2015) present the amount of power that can be stored 

or retrieved from the batteries, at a given time t, of the UPS, which are limited by their maximum 

amounts. The lifetime of the UPS is constrained by the number of cycles of UPS charging and discharging 
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(Wang et al. 2012) and therefore the operating cost of the UPS also depends upon UPS charging and 

discharging cycles.  

Moura et al. (2016) analyzes the UPS efficiency clamming that product performance reliability 

and system configurations with high redundancy often conflict with optimized life-cycle costs. At a given 

level of supply security, these costs are an important consideration for the user. 

In UPSs, a decrease in the consumed energy of the product and their installation system 

architecture leads not only to a direct decrease in the UPS energy costs, nonetheless also produces 

cooler operating conditions within the installation environment. This leads to a reduction in ventilating 

and air conditioning energy and infrastructure installation costs, an extension of the service life of UPS 

key components (e.g. such as energy storage batteries and capacitors) and an increase in the overall 

lifetime reliability of the UPS system. 

The key factors that must be considered regarding energy efficiency are the size of the UPS, 

load type and load level. Larger UPS modules typically have higher energy efficiency than smaller ones 

because the power required for control electronics and auxiliary components becomes a smaller 

portion of the total capacity of the UPS system. The efficiency of an UPS depends on the load level, 

achieving the highest efficiency with a 100% load, as depicted Figure 2.5. However, the curve is 

relatively flat with load levels higher than 50%. An UPS operating with a low load level will have 

significant losses when compared with the same UPS operating at full load. In a realistic scenario, the 

load level is typically between 10 and 30%, which leads to a 4 – 17% reduction of efficiency (Moura et 

al. 2016).  

 

Figure 2.5 – Typical UPS efficiency curve (Moura et al. 2016) 

The load type also has a strong influence on the achieved efficiency. UPS efficiency is usually 

tested with resistive or linear loads, but several UPSs are used with non-linear loads, with low power 
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factor and high total harmonic distortion (Pier 2008). The low power factor will require a higher peak 

current from the UPS, decreasing its efficiency (Figure 2.6). 

 

Figure 2.6 – UPS efficiency with linear and non-linear loads (Pier 2008) 

Moura et al. (2016) assess the potential savings considering several technologies at UPS’s 

component and product level, modeling the main design options and considering policy options 

focused on minimum efficiency performance standards and energy labelling. The results show a 

potential for energy savings in the European Union in 2025 of 11.4 TWh (65% energy saving relative to 

predicted energy requirement of EU ICT system UPS based on current practice). 

Other alternative that can be considered concerning energy efficiency related to UPS's in 

accordance with Boulos et al. (2014) is the Direct Current (DC) distribution, since all data centers ICT 

equipment such as servers and storage devices are essentially DC-based loads. The backup supply 

system commonly required for critical facilities consists of batteries, which are also based on DC. Thus, 

by deploying a DC distribution rather than conventional AC, several conversion steps in the power 

delivery system can be eliminated, reducing distribution losses. By using DC entirely throughout a data 

center will save 10% to 20% in power costs and improve reliability (Sithimolada and Sauer 2010). 

As seen in Table 2.1, DC-DC converters can reach an efficiency of 90 – 96% as compared to AC-

DC power supplies which provide an efficiency of 65 – 75%. Even comparing best-in-class AC-DC to DC-

DC a 2 – 5% advantage to the DC-DC solution can be reached. The efficiency findings show that 380 V 

DC provides the highest efficiency DC option, particularly when compared with the 48 V DC system, 

however, it requires a critical mass of 380 V DC commercial equipment to exist in the building before 

any user could decide for this option (Moreno-Munoz et al. 2011). 

  



LOAD MANAGEMENT AND DEMAND RESPONSE IN SMALL AND MEDIUM DATA CENTERS   
 

29 

Table 2.1 – Power distribution efficiency comparing AC and different DC distribution methods (Moreno-Munoz 
et al. 2011) 

 UPS Distribution wiring + 

PDU (Power 

Distribution Unit) 

PSU 

(Power Supply 

Unit) 

Load 

Converter 

12 V–1V 

Total 

Efficiency 

Facility AC-UPS 92.00% 99.00% 75.00% 88.00% 60.00% 

Facility DC-UPS 

48V/24V 

92.86% 99.00% 91.54% 88.00% 74.00% 

Facility DC-UPS 

380V 

96.00% 99.00% 91.75% 88.00% 76.73% 

Distributed DC-

UPS 

92.00% 99.00% 94.00% 88.00% 75.34% 

2.1.8 Cooling 

One of the important elements to manage a data center reaching the expected performance is the 

cooling system. Depending on their power consumption, server systems need a specific amount of cool 

air at the intake and exhausts the same volume of heated air at the outtake. In such situation, the room 

is not able of supplying this amount of air, the server will draw in its own exhaust air, overheating the 

device. Thus, a proper cooling approach is inevitable for an uninterruptable server functioning, however 

Ni and Bai (2017) claim that more than half of the data centers’ air conditioning systems are inefficient. 

Thereby, in order to increase the energy efficiency, it is fundamental to take into account many factors 

before adopting a cooling solution, such as energy use, facility location, density per rack, power density 

and other user specificities (Varrette et al. 2015). One practical example of this heterogeneity it that 

the power used by single racks might vary dramatically, with an average of around 1.7 kW up to 20 kW 

in high density servers (Varrette et al. 2015), directly affecting the adopted cooling solution. 

There are three main cooling architectures used in Data Centers, such as room-, row- and rack-

oriented. In the first scenario Computer Room Air Conditioners (CRAC) units are linked with the room 

(Fulpagare and Bhargav 2015) and cool air might be unrestricted or partly limited by ducts or vents 

when provided by the conditioners. Because the air supply uniformity is poor due to specific room 

designs, such as their shape or obstructions, the full rated capacity of the CRAC unit cannot be used in 

most situations. In row-oriented solutions, CRAC units are linked with a row, being their performance 

higher, as the airflow paths are shorter. Consequently, the requested CRAC fan power supply is smaller, 

decreasing the energy cost. In the last scenario, rack-oriented, CRAC units are linked with the rack 

allowing the cooling to be accurately adapted to the constraints of servers. On the other hand, the 
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disadvantage is requiring a large amount of air conditioning equipment (Sohel Murshed and Nieto de 

Castro 2017). 

Cooling systems mainly utilize air or a refrigerant and depending on the kind of cooling systems 

different operation temperatures will be required. In addition, depending of the different amount of 

heat exchanger processes, different elements will compose the cooling system, with different efficiency 

or losses (M. Vordem Berge et al. 2015). In order to reach energy-efficient data center cooling, 

numerous solutions have been presented, being the three most broadly adopted and effective: hot- 

and cold-aisle isolation, closed-coupled cooling and free cooling.  

Considering the hot- and cold-aisle isolation, through a raised floor, a steel grid resting on 

stanchions installed 60 – 120 cm on the concrete floor, the cold air is supplied by CRAC units. By 

perforated tiles the cold air will flow into racks and then, hot air will be exhausted through a rear side 

of rack after absorbing heat produced by servers in the rack. One strategy to maximize the cooling 

efficiency is to avoid mixing the cold air supplied by CRAC and hot air exhausted by servers. This is 

guaranteed by a solution named hot- and cold-aisle isolation, arranging server racks such that the 

intakes of cold air in server racks are faced each other. The hot air is eventually drawn by the CRAC and 

the cold air is once more supplied to cold aisles by exchanging the heat with cold air (or water) delivered 

from chillers. This solution can achieve up to 40% energy savings according to Kim et al. (2015). 

On the other hand, according to Alkharabsheh et al. (2015) and Capozzoli et al. (2015) there 

are inefficiencies associated with the cooling scheme in data centers, being air mixing one of the most 

important. The cold aisle–hot aisle implementation does not completely isolate the cold air streams in 

the cold aisle and the hot air streams in the rack exhaust for two causes: hot air recirculation and cold 

air bypass. The former, indicates that the hot air enters into the cold aisle from the top of the racks and 

the front end of the cold aisle closest to the cooling units. The recirculating warm air mixes with the 

cold air and increases the inlet temperature in a difficult way to foresee. Thereby, air mixing affects the 

reliability of the ICT equipment. Avoiding this would require the cooling system to have a complicated 

control system. The later, cold air bypass, happens by the time the cold air from the perforated tiles 

overshoots the racks and returns to the cooling unit at a lower temperature. This can also happen due 

to floor leakage between the cold aisle and the cooling unit. The resulting low cooling unit extract 

temperature decrease the efficiency of the cooling system by narrowing the temperature difference 

between the extract and the supply. 

With the aim of decreasing the losses incurred throughout the supply of the cooling medium 

and quickly react to spatial temperature distribution, closed-couple cooling solutions place cooling units 

more nearly to computing units. There are mainly two categories according to the granularity of 
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computing cluster covered by single cooling unit i.e., in-row and in-rack cooling’s. An in-row cooling 

adapts the cooling requirements at every row in accordance with the corresponding conditions, while 

an in-row cooling adjusts its cooling settings in accordance with operating condition at each rack, 

achieving energy savings up to 40% (Kim et al. 2015). Nevertheless, the capital expenses for the 

installation is very high. 

Free cooling is an approach to lowering the air temperature in a building or data center by using 

naturally cool air or water instead of mechanical refrigeration (Oró et al. 2015). The adoption of free 

cooling schemes is currently one of the most utilized techniques to turn data center more efficient. 

Zhang et al. (2014) and Ebrahimi et al. (2014) reviewed the improvements of data center free cooling 

schemes mainly with attention on setting characteristics and performances which can be roughly 

separated as follow: 

• Airside free cooling: Use outside air for cooling data centers. 

— Direct airside free cooling: Drawing the cold outside air straight, after filtering into the 

data center. 

— Indirect airside free cooling: Running through air to air heat exchangers. 

• Waterside free cooling: Use natural cold source by cooling water infrastructure. 

— Direct water cooled system: Natural cold water is used directly to cool the 

infrastructure through a heat exchange between the warm air and sea, river, ground 

water. 

— Air cooled system: Air cooler is utilized to cool the water circulating to CRACs when 

wet-bulb temperature of the outside air is low enough. 

— Cooling tower system: A cooling tower is adopted to cool the water circulating in CRACs 

and heat exchangers. Two water loops are required; a cooling (external) water loop 

and a chilled (internal) water loop. 

Siriwadrana et al. (2013) researched the inclusion of outside air with desired supply air for data 

center cooling in the Australian climate conditions. It was found a significant potential for using this 

scheme in some states that could lead to significant savings on cooling costs. Subsequently, Lee and 

Chen (2013) using a dynamic building energy simulation program (eQUEST) have found some energy 

savings potential of airside free cooling for data centers in worldwide climate zones, highlighting that 

sizable direct air free cooling potential was reached in data centers positioned in humid climate zones. 

In addition, in dry climate conditions substantial humidification is needed using techniques such as 

evaporative cooling, where raising the humidity of air lowers the temperature and thereby the water 
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consumption must be considered, since 1 MW in a data center can consume 68 m3/day of water for 

cooling, as presented by Ristic et al. (2015). 

However, there is a potential risk to damage ICT equipment using direct airside free cooling 

due to the risk of particulate contaminants entering data centers. In this context, Dai et al. (2012a); 

(2012b); (2013) studied different strategies to minimize the risks for ICT and telecommunication 

devices under this cooling policy. Nevertheless, even though Shehabi et al. (2007); (2008) claimed that 

with an appropriated filtration, the ASHRAE (2011) suggests particulate contaminant concentration for 

data centers is accomplished and significant economic saving can be achieved. 

Some data center operators are leveraging to utilize seawater and geothermal energy to 

produce cooling for their infrastructure and pursuing green practices and minimize energy costs. After 

implementing a unique seawater cooling system, an 1600 m2 data center located in Stockholm reduced 

energy costs by 80% (Oró et al. 2015). Furthermore, it was reused the sweater to heat local offices and 

residential buildings before returning it to the sea. Consequently, the data center has lowered its PUE 

value to 1.09 minimizing its ICT load enough to enable additional customers to distribute in the facility, 

reinforcing its economic benefit. Similarly,  data centers in Iowa and Nebraska are cooled by a 

geothermal bore field utilizing the cool temperatures underground to cool down the servers (Oró et al. 

2015). 

2.1.9 Energy Load Management 

Data center energy load management is an area of growing interest as it is supported by real 

preoccupations on energy usage and cost by modern computing systems. It has evolved to a category 

called Data Center Infrastructure Management (DCIM), i.e., software that reports granularly from the 

data center facility to the server and device level. 

The DCIM concept involves the ICT integration along with facility management, aiming at 

centralized monitoring, management and intelligent capacity planning of data center systems. Capacity 

planning focuses firstly on energy, power, space, ICT equipment, cabling, network, cooling and 

environmental factors, such as temperature and relative humidity are covered (Cappuccio 2010). DCIM 

systems can provide more energy efficiency mapping and managing the entire power chain and 

therefore the energy capacity of the data center.  

Even though DCIM systems are typically adapted for large data centers, the needs of small to 

medium data centers are not adequately contemplated nowadays, since such systems are generally 

complex, pricy, difficult to utilize and not modular enough. Additionally, currently solutions offered on 

the market are normally proprietary (Kim et al. 2015).  
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Besides enterprise solutions, relevant research effort was conducted on energy efficiency 

modeling and optimization to provide energy management. For example, models of servers’ power 

usage were introduced in Basmadjian et al. (2011) whereas application of these models to energy-

aware scheduling in Mämmelä et al. (2012). Moreover, Witkowski et al. (2013) address power modeling 

and estimation methodologies through specific application classes and Mukherjee et al. (2010) utilized 

thermodynamic information in scheduling. However, the previous studies are focused on research and 

optimization issues instead of offering models to simulate real data centers.  

In Raghavendra et al. (2008), a power management solution that coordinates different 

individual approaches was proposed using simulations from 180 server traces from nine different real-

world companies. Shah and Krishnan (2008) present the possibility of globally compute workloads to 

take advantage of local climatic conditions to reduce cooling energy costs, by undertaking an in-depth 

analysis of the environmental and economic burden of managing the thermal infrastructure of a 

globally connected data center network. SimWare (Yeo and Lee 2012) is a data warehouse simulator 

which computes energy efficiency analyzing the power consumption of servers, cooling units, fans as 

well as the effects of heat recirculation and air supply timing. A platform and application agnostic 

methodology for full-system power modeling in heterogeneous data centers was proposed (Canuto et 

al. 2016). It is based on collecting power and resource usage measurements while running a special 

training workload and fitting them through machine learning. 

Innovative DCIM support systems for datacenter management are therefore needed. Power 

Monitor System and Management (PMSM) (Kim et al. 2015) is an example of such an innovation, as 

well as CoolemAll project (Cupertino et al. 2015), which proposes rethinking data center efficiency 

based on the interaction of all the factors involved rather just one set of technologies. The expected 

results included a data center monitoring, simulation and visualization software, design of energy 

efficient ICT hardware, contribution to existing and new energy efficiency metrics. In the same aspect, 

RenewIT project (Salom et al. 2017) developed a simulation tool to evaluate the energy performance 

of different technical solution integrating RES in several European climate regions. The public RenewIT 

tool helps actors from both the energy and ICT sectors to reduce the carbon footprint of planned data 

centers in the horizon of 2030, being based on selected meta-models extracted from advanced dynamic 

simulation models of challenging energy concepts for renewable energy supply of data centers. 

Therefore, DCIM progressive adoption will produce technology updates, which in turn will 

enhance DCIM-compliant equipment and sensors. This is a fruitful and growing research area which is 

being updated as data centers improve. 
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2.2 DATA CENTER DEMAND RESPONSE 

Nowadays, conventional power systems have been facing a noticeable transition from a centralized 

supply side management to a decentralized supply and demand side management, as a result of the 

inclusion of distributed renewable generation, among other factors (Wang et al. 2011). Traditionally, 

power systems were managed by scheduling the generation resources since loads were not 

controllable or even measurable with the required time resolution (Du and Lu 2011). However, with 

recent technological advances, consumers can be motivated to actively participate in the balancing 

between demand and supply by controlling their electricity consumption and using energy storage 

systems (Eu Commission Tf For Smart Grids Expert Group 2010). This is ensured by the smart grid, which 

is an electricity network that can intelligently integrate the actions of all users connected to it—

generators, consumers and those that do both—in order to efficiently deliver sustainable, economic 

and secure electricity supplies. (Gellings 2011). Supported by ICT, the intelligent control of loads, 

generation and storage resources would increase the overall sustainability and reliability with potential 

benefits to the entire value-chain of generation companies, transmission system operators, distribution 

system operators, energy suppliers and end-users. 

A DR event is when end-use customers reduce their use of electricity in response to power grid 

needs, economic signals from a competitive wholesale market or special retail rates. DR is another 

important competitive resource that can be used to maintain demand and supply in balance for grid 

operations and the associated wholesale markets (PJM 2013). 

Therefore, large energy consumers are ideal candidates for participation in DR programs for 

having a significant impact on the load diagram. A feasible example of this case are data centers, which 

are intensive energy consumers. 

A data center perspective on DR programs relies on the intersection of two important social 

issues. First, as ICT becomes increasingly pivotal to society, the associated energy demand are way up, 

being the growth in electricity demand for ICT ten times larger than the overall growth of electricity 

demand (Dreibholz et al. 2007; Koomey 2011; Ghatikar et al. 2012). Second, the integration of 

renewable energy into the power grid is essential for enhancing sustainability, however causes 

significant challenges for management of the grid (Zhu et al. 2012). The focus behind DR and energy 

efficiency in data centers is that these two challenges are in fact cooperative to reduce carbon 

emissions from electric power generation and to combat the effects of global climate change. Therefore, 

it is important not only to assess how an intensive energy consumer, such as data centers, can decrease 
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costs by increasing their energy efficiency, nevertheless also how they can take advantage of DR 

programs to decrease costs and cooperate with the grid. 

Data centers represent very large loads that can reach up to 100 MW and are particularly well-

suited for participation in DR programs (Wierman et al. 2014), since they have flexible loads (Ghatikar 

et al. 2010) and are greatly automated and monitored, since the power load, the state of ICT equipment 

and cooling facilities are usually monitored and adjusted.  

The survey developed by Liu et al. (2014) indicates that data centers can use 40 times more 

energy than conventional office facilities, and 5% of the load can typically be shed in 5 minutes and 10% 

in 15 minutes, with no impact on the ICT procedures. Moreover, if workload management approaches 

are exploited, the flexibility level can be even larger, without additional time needed to shed the load.  

Ghatikar et al. (2010; 2012) concluded that data centers present significant load-reduction 

potential, nonetheless not all data centers can take advantage of all approaches because of different 

operational profile. Some strategies are appropriated for energy efficiency, however additional 

incremental benefits can be reached by temporarily decreasing service levels for a few hours a day and 

a few days a year for the implementation of DR. Consequently, data center DR strategies generally are 

divided between load-shedding (reduction or interruption of the load) and load-shifting (moving load 

from peak to off- peak periods). 

A U.S. Federal Energy Regulatory Commission (FERC) assessment lists DR programs presented 

by Tang et al. (2012; 2014) as: dynamic pricing without enabling technology, dynamic pricing with 

enabling technology, Direct Load Control (DLC), interruptible tariffs, and other programs, such as 

capacity/demand bidding and wholesale programs. These programs are categorized into:  

• Price-based, market-led or stability-based programs offer participants time-varying rates that 

reflect the value and cost of electricity in different time periods, as presented in Table 2.2. 

• Incentive-based, system-led, reliability-based, or economic-based programs offer participants 

discount rates or rebates for their participation or load reduction performance on DR signals, 

as presented in Table 2.3. 

The progress of advanced metering technologies will enable all types of customers to 

participate in automated DR programs and, in the data center case, taking advantage of the flexible 

features highlighted by (Irwin et al. 2011), as follows: 

• Servers are equipped with programmable power management procedures, settling their power 

consumption by commands from selected interfaces. 
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• Many workloads are tolerant to delays or performance degrading, allowing data centers to suit 

the power consumption in response to price fluctuations. 

• Data centers consume a massive amount of energy with a substantial impact on grid 

requirement. 

Table 2.2 – Price-based programs (Tang et al. 2014) 

Price-Based Programs 

Types Description 

Time-of-Use (TOU) TOU rates differ in different blocks of time. The rate reflects the 

average cost of electricity during different periods. 

Critical Peaking Price (CPP) CPP benefits the participants by reducing their energy usage 

during CPP events. 

Real-Time Pricing (RTP) The price signal of RTP is released a day or an hour or even 

shorter ahead of the time for which it applies. 

 

Table 2.3 – Incentive-based programs (Tang et al. 2014) 

Incentive-Based Programs 

Types Description 

Direct Load Control 

(DLC) 

DLC program operators offer a participant an incentive, usually 

financial, in the form of credits on the utility bill. 

Interruptible/Curtailable 

Service (CS) Programs 

Participants of these programs receive a rate discount or bill credit 

in return for agreeing to reduce load during certain time periods. 

Demand Bidding/Buy 

Back (DB) 

Participants offer their most cost-beneficial bids, price and reducible 

load, to an electricity market when the price has its highest value. 

The consumer benefits from cost savings and gaining rewards.  

Emergency Demand 

Response (EDR) 

Participants receive incentives for measured load reductions during 

emergency conditions, however curtailment is voluntary. 

Capacity Market (CM) Participants who commit to providing contracted load reductions 

when necessary receive incentives. 

Ancillary Service Market 

(ASM) 

Participants must adjust huge amount of load quickly when an event 

occurs. The response duration is typically in minutes rather than 

hours. 

  

 Tang et al. (2012; 2014) argue the achievement of demand control approaches relies on several 

factors, including: frequency, duration, local weather patterns, or electric grid conditions. However, to 

undertake a proper DR control strategy it is needed to assemble enough power consumption 

information of the participating facilities. 
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Even though simulation results of many studies have been demonstrating that it is possible to 

improve power grid reliability and provide an important source of economic benefits in DR market, 

nowadays data centers are largely non-participants due to four main challenges to overcome (Wierman 

et al. 2014): 

1. Regulation and Market Maturity: Many of these DR programs are not yet available to data 

centers in several markets due to the need for adjustments in the regulatory aspects. As a 

result, the opportunities for their participation may be limited to simple and traditional 

programs, such as smart and coincident peak pricing, as demonstrated by Liu et al. (2013) and 

Brocanelli et al. (2014). The first step to overcome challenges in this aspect is transitioning to 

deregulated market with an independent energy regulator, providing more specific roles and 

competition in the whole value chain through, for example, aggregators, which are companies 

that pool the generation or flexible demand capacities of a number of smaller consumers 

(Flanagan 2013). 

2. Risk Management: Camacho et al. (2014) claim that data centers prefer to negotiate long-term 

energy contracts with fixed usage prices because their main business is the maximizing uptime 

and performance, and energy issues are certainly secondary when compared with the need to 

maintain strong guarantees about these primary measures. However, the electric sector needs 

to provide information about this old mindset, using scientific works such as Basmadjian et al. 

(2015), in which new and appropriated data centers contracts are proposed and validated 

ensuring performance and reliability to data center operations. 

3. Control: An active debate within the demand response field is about the entity that should have 

the control of DR actions. Grid operators would like to have a guaranteed response when they 

ask for it, which leads to “direct load control” programs for which the grid sends a signal to a 

controller of the program participant. However, this is not always acceptable to participants. 

The other extreme alternative is “prices-to-devices” where real-time prices are conveyed to 

participants; nevertheless, such programs typically require huge price variation in order to 

extract desired responses. This volatility is not acceptable given the risk tolerance of data 

centers, thus other programs must be developed in order to facilitate data center participation. 

(Wang and De Groot 2013). This volatility is not acceptable given the risk tolerance of data 

centers, thus other programs such as the pricing and operation strategy optimized used in (Jin 

et al. 2017) must be developed to facilitate their participation. 

4. Market Complexity: The complexity to automate and incorporate the bidding process into a 

data center management system, as well as the high regulation have prevented data centers 

from entering these markets despite the financial opportunities (Wang et al. 2013). 
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Nevertheless, the ICT industry continues to refine technical capabilities in relation to power-

capping, load management and virtualization of workload that will help manage any perceived 

risk and along with alternatives as microgrid optimal dispatch in Feng et al. (2017), changing 

some complexities. 

Therefore, it is fundamental to promote the necessary adjustments with very specific polices 

in order that the progress made so far can widely also contemplate the emerging reality in the market 

of small and medium profile data centers. 

2.3 RENEWABLE INTEGRATION IN DATA CENTERS 

Data centers obtain their primary power from the electrical grid, however many data centers use on-

site renewable energy sources, such as solar and wind power. Although progress in rising renewable-

energy-powered data centers, with no large-scale Energy Storage Devices (ESDs) the use of available 

on-site renewable energy resources remains challenging due to the fluctuation in the power demand, 

as well as the intermittent characteristic of the renewable energy sources (Parra et al. 2017). 

 Gavald et al. (2014) claims that new renewable generation in data centers capacity is 

constructed to serve the infrastructure and typically requires an anticipated investment. In this context, 

the generated energy generation can be classified in according to Salom et al. (2017): 

• On-site generation from on-site renewables: the renewable energy resources are directly 

supplied in the site. 

• On-site generation from off-site renewables: the renewable energy source needs to be 

provided from outside the building site, instead of the generation of workable forms of energy 

occurring on the project site, i.e. energy carriers must be transported, such as biomass or 

biogas. 

Other approaches are currently being adopted by data center operators, such as buying 

renewable energy generated from other organizations, where in this context the data center is no 

longer an active actor in the provisioning and operation of the energy source. Other important 

mechanisms in this framework are electricity tracking certificates and renewable electricity products 

(Depoorter et al. 2015). 

Several studies address the renewable integration in data center on a wide spectrum. 

Malkamäki and Ovaska (2012) researched the free cooling potential and solar energy in European data 

centers, as well as existing interactions between solar energy, air temperature and ensuing data center 

cooling requirements, concluding that spots with high solar energy generation potential are slightly less 
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ideal for free cooling, due to their higher ambient temperature. Arlit et al. (2012) presented an 

approach to manage data centers with renewable energy minimizing their dependence on grid power 

while decreasing capital cost. The load was designed and managed to utilize on-site renewables, mostly 

photovoltaic, and fully offset the utilization of non-renewable energy from the grid. For this purpose, it 

was combined the use of RES with dynamic ICT workload scheduling and incorporated management 

techniques to enhance overall data center utilization while enabling demand to be ‘shaped’ in 

accordance with the resource availability.  

Stewart and Shen (2009) addressed a renewable energy management methodology in data 

centers stating that the specificities of their workloads reduce the dependence on non-renewable 

energy. Shuja et al. (2016) discuss the case of modular data centers based on shipping containers with 

capacity to be allocated to optimal sites with on-site availability of renewable energy, free cooling 

resources and waste heat recovery opportunities. Depoorter et al. (2015) suggests that forthcoming 

data centers rollout could consider site selection as a new strategy to restrict the environmental impact 

and their energy demand. To suggest so, a dynamic energy model incorporating free cooling and 

photovoltaic energy was developed assessing indicators of energy usage and the data center behavior 

located at different representative emplacements in Europe. 

Mäsker et al. (2016) present the dispersed, intermittent and dissociated profile from energy 

demand nature in the process of expansion and establishment of renewable energies. By using a low 

average utilization workload profile, data centers providers can adapt the computational workload to 

be an energy price dependent through scheduling. The study compared two scheduling strategies for 

decreasing energy costs. The former using present values from smart meters to run the workloads and 

the later estimating the future energy price in the energy market based on weather forecasts, having a 

satisfactory effect on the use of renewable energy and on the mitigation of energy costs. 

Combined Heat and Power (CHP) technologies in data centers aim at reducing consumption, 

by recycling wasted thermal energy, making them more cost-effective and energetically efficient 

assisting primary power. This technology uses absorption units for recovering heat unloaded by a 

thermal engine or a fuel cell, providing a decrease of electricity demand from large power plants and 

reduce congestion in electric transmission and distribution infrastructures as a main application 

(Darrow and Hedman 2009).  

Guizzi et al. (2009) proposed a comparative analysis between a traditional data center and one 

utilizing CHP to generate electricity linked with an absorption machine to produce cold. Later on, Guizzi 

and Manno (2012) assessed a CHP system for a 100 kW ICT load data center, using a natural gas 

membrane steam reformer yielding a pure hydrogen flow for electric power generation in a polymer 
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electrolyte membrane fuel cell. Heat was recouped from both the reforming unit and the fuel cell 

suppling the requirements of an office building located in the vicinity. The simulations demonstrated 

that a 47% cost reduction could be achieved when thermal energy from the CHP system is usefully 

recovered. Thereby, Salom et al. (2017) state that the concept is not subject to any geographical 

restrictions and depends on biogas availability. It might be deployed in very small, as well as large data 

centers (50 kW to 10 MW). However, the CHP plant demands a certain amount of annual operating 

hours to be cost-effective. Hence, it is necessary to have an appropriate heat demand available close 

to data center to absorb the heat especially during winter, by the time it is cooled by means of indirect 

air free cooling. 

Little and Garimella (2012) presented  the deployment of geothermal heat pumps to feed a 

district heating system. Since absorption units demand a heat medium temperature spectrum of 70 – 

95 °C for chiller operation, the CPU must operate exceeding those values. Nevertheless, this operation 

might minimize the reliability of the CPU computing at this temperature interval, requiring further 

research for characterizing maximum operational CPU temperature will not impact its reliability and 

efficiency.  

A data center in Utah is totally powered by 6 MW fuel cells, making the infrastructure more 

reliable to grid blackouts and representing an important environmental step. A data center research in 

Cheyenne, Wyoming was powered by a fuel cell supplied biogas generated by a wastewater treatment 

facility (Microsoft 2012). A data center in Maiden, North Carolina, doubled the size of the solid oxide 

fuel cell installation with a total of 10 MW installed capacity (Apple 2013). 

Solar power has not been broadly used in data centers, due to the necessity of a large area of 

photovoltaic panels to generate even a portion of the energy needed by these high-energy density 

infrastructures. However, there are some successfully implementations, such as a 100 kW solar panel 

set occupying 730 m² situated on the data center roof in Missouri (Oró et al. 2015). For testing the 

capacity of using photovoltaic solar energy for data centers, a 10 kW of photovoltaic power system was 

installed in a data center in New Mexico (Oró et al. 2015). Goiri et al. (2013) presented a green data 

center prototype which covers a small container, an array of solar panels, an electrical battery and a 

grid-tie. In Portugal, a Data Center is 100% maintained by renewable energy; 40% of the energy is 

supplied by a 400 kW photovoltaic plant comprised by 1610 panels and 60% by a wind farm with 28 

towers built near the data center (BCSD Portugal 2017).  

In a similar way, a cluster of laptop motherboards supplied by two micro wind turbines and two 

solar panels was built (Sharma et al. 2011). On the other hand, by switching its daily operations energy 

requirements over to a 500-kW wind turbine, a small data center in Illinois became the first 100% on-
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site wind power data center in the U.S. (Oró et al. 2015) and a data center built a wind farm which is 

operational since late 2016 and generate 40% of its electrical usage (Nadjaran Toosi et al. 2017). 

Moreover, an Oklahoma’s data centers purchased 20 years’ wind energy from Iowa wind farm other 

operators are using the self-generated solar energy or wind energy in order to power their data centers 

(Gu et al. 2016). 

As can be observed, the trend of renewable energy implementations in data centers is to grow, 

given the current requirements of international eco-committees for this purpose and the savings that 

can be obtained. However, the largest proportion should be in large data centers because they have 

higher investment capacity and larger available area to install generation systems. Therefore, new 

policies should be implemented to contemplate small and medium data centers as a singular and 

energy-intensive market. Projects such as DC4Cities (Klingert et al. 2015), which offer a technical and 

business related solution for optimizing the share of local renewable power sources when operating 

data centers in smart cities, are essential for the acceleration and integration in this scenario. 

2.4 SMALL AND MEDIUM DATA CENTERS 

Data centers fall into two general categories: internal and external. Internal data centers are dedicated 

to the needs of the organization that operates them and typically serve one of two main functions: 

production or research and development. External data centers provide services to companies that 

have outsourced some or all of their ICT functions. Both can still be subdivided into small, medium and 

large size profiles, depending on their purpose, mission and financial resources. Salom et al. (2017) 

present a way to express the dimension of data centers by using ICT power capacity, with the following 

breakdown: 

• Server room: < 50 kW 

• Very small data center: 50 – 250 kW 

• Small data center: 250 – 1000 kW 

• Medium size data center: 1 – 2 MW 

• Large data center: 2 – 10 MW 

• Very large data center: > 10 MW 

However, Whitney and Josh (2014) also claim that the Small and Medium-Sized Organization 

category comprises four data center types: server closet, server room, localized and mid-tier as 

summarized in Table 2.4. In this work, a combination of these two approaches will be considered, where 
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server closet, server room, very small, small and localized are examples of small data centers. The 

medium data center is common in the two classification methodologies. 

Table 2.4 – Typical characteristics of data center space types (Masanet et al. 2011) 

Space  

Type 

Typical 

Size 

(m²) 

Typical ICT  

Features 

Typical Infrastructure 

System Characteristics 

Server 

closet 

< 19 1-2 servers 

 

No external 

storage 

Typically conditioned through an office Heating, Ventilation, and Air 

Conditioning (HVAC) system. Environmental conditions are not as 

tightly maintained as for other data center types. HVAC energy 

efficiency associated with server closets is probably similar to the 

efficiency of office HVAC systems. 

Server room < 47 A few to 

dozens of 

servers 

 

No external 

storage 

Typically conditioned through an office HVAC system, with additional 

cooling capacity, probably in the form of a split system specifically 

designed to condition the room. The cooling system and power backup 

equipment are typically of average or low efficiency because there is 

no economy of scale to make efficient systems more first-cost 

competitive. 

Localized 

data center 

< 93 Dozens to 

hundreds 

of servers 

 

Moderate 

external 

storage 

Typically use under-floor or overhead air distribution systems and a 

few CRAC units. Air conditioning units in localized data centers are 

more likely to be air cooled and have constant-speed fans and 

relatively low efficiency. Operational staff is likely to be minimal, which 

makes it likely that equipment orientation and airflow management 

are not optimized. Air temperature and humidity are tightly 

monitored. However, power and cooling redundancy may reduce 

overall efficiency. 

Mid-tier 

data center 

< 465 Hundreds 

of servers 

 

Extensive 

external 

storage 

Typically use under-floor air distribution and CRAC units. The larger 

size of the center increases the probability that efficient cooling, e.g., 

a central chilled water plant and central air handling units with variable 

speed fans, is used. Staff at this size data center may be aware of 

equipment orientation and airflow management best practices. 

However, power and cooling redundancy may reduce overall 

efficiency. 

Enterprise-

class  

data center 

> 465 Hundreds 

to 

thousands 

of servers 

The most efficient equipment is expected to be found in these large 

data centers. Along with efficient cooling, these data centers may have 

energy management systems. Equipment orientation and airflow 

management best practices are most likely implemented. However, 
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Extensive 

external 

storage 

enterprise-class data centers are designed with maximum redundancy, 

which can reduce the benefits gained from the operational and 

technological efficiency measures. 

Energy efficiency measures, demand response and integration of renewable sources discussed 

so far were analyzed without considering size, or proportion of data centers. However, while most 

technical sectors and even scientific community attention are focused on the largest data centers, these 

hyper-scale cloud computing profile represent only a small portion of overall energy consumption in 

this market. The extensive majority of data center energy is consumed in small, medium and multi-

tenant environments. These profiles have generally made much less advancement than their hyper-

scale cloud equivalent due to market barriers, lack of more specific data centers energy efficiency 

metrics and also misalignment of inducements according to Delforge (2014). The fact that the cost 

center is generally disassociated from the data center itself, since it is not the main business, is another 

key factor that influences the investment capacity in adopting new and more efficient technologies. 

However, the above-mentioned realities are also applicable to SMDC, dimensions respected. 

Specifically, what can change is the amount of financial resources available to implement such 

measures, because in terms of technological level what will be changed is the proportion of a data 

center resources available. 

Regarding data center energy efficiency, there has been significant advance in the last decade, 

with server farms operated by large companies leading the way. Nevertheless, these hyper-scale cloud 

computing enterprises account for approximately only 5% of all data center, as depicted by Figure 2.7. 

The corporate-owned enterprises, small and medium-sized organizations and multi-tenant data centers 

are far behind in terms of efficiency, requiring focused actions, such as utility incentive programs to 

reduce waste in the huge amount of electricity used by data centers of all sizes (Delforge 2014).  

 

Figure 2.7 – Estimated U.S. data center electricity consumption by market segment (2011) (Josh and Delforge 
2014) 
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Natural Resources Defense Council (NRDC) report states that large, mid-tier, and enterprise-

class data centers represent only half of all U.S. servers, as can be seen in Table 2.5. The other half 

constitutes small server rooms and closets typically available in small and medium businesses and 

organizations, as well as in research institutes, departments and subsidiaries of larger organizations.  

Even in the face of such statistics, in terms of energy efficiency an estimated 20 to 30% of 

servers (Delforge 2014) in even these large data centers are obsolete or unused because the 

completion or changes in project profiles, however they are still in operation and consuming electricity 

every day, for lack of awareness of their real need.  

Table 2.5 – Estimated U.S. data center electricity consumption by market segment (2011) (Whitney and 
Delforge 2014) 

Segment % of 

stock 

(based 

on # of 

servers) 

Average 

PUE 

Average 

server 

utilization 

Average 

server 

age 

(years) 

2011 

Electricity 

Use (GWh) 

Server 

power at 

average 

utilization 

level (W) 

Data center 

market 

segmentation 

by electricity 

consumption 

Small and 

Medium 

Server 

Rooms 

40 2.0 10% 3 37.5 149 49% 

Enterprise/ 

Corporate 

Data Centers 

30 1.8 20% 2 20.5 120 27% 

Multi-Tenant 

Data Centers 

22 1.8 15% 2 14.1 113 19% 

Hyper-Scale 

Cloud 

Computing 

7 1.5 40% 1 3.3 101 4% 

High-

Performance 

Computing 

1 1.8 50% 2 1 169 1% 

 100    76.4  100% 

As the main focus of this present thesis is the small and medium data centers case, the 

aggregation of these two types of size profile is justified by the fact that the substantial difference 

between one and the other subsists in the proportion and quantity of equipment, and there are no 

major technological changes, unlike large data centers, where the complexity, technological profile and 

energy demand scenario are very different. 
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In this context, the characterization of such data centers addressing details in terms of thermal 

loads, temperature limits, electricity consumption, costs and carbon foot print, is primordially 

important. 

From one part the raising demand for the ICT services and from the other part the straight 

proportionality between data center costs and floor area, have resulted in the design and development 

of more dense and higher power modules. Nowadays, the design and manufacture of thermal 

management systems is one of the most challenging aspects of data center design. The thermal 

management system must deal with the growth thermal loads while remaining the temperature of 

electronic components at an insured operating parameter. For designing such a system, it is needed to 

get specific, accurate and reliable information about the maximum thermal loads and temperature 

limits in each component of a data center as a whole. Therefore, Table 2.6 presents typical and modular 

data center thermal loads and temperature limits as a way of characterizing this aspect in this type of 

environment. 

Table 2.6 – Summary of “typical” data center thermal loads and temperature limits. (Ebrahimi, et al. 2014) 

Power loads 

Component Values 

Processors 60 – 75 W each (2 per server) 

DIMM (Dual Inline Memory Module) 6 W each 

Auxiliary power per server 150 – 250 W  

Total power per server 300 – 400 W 

Rack capacity 1 U servers, up to 42 per rack 

Blade servers at 10 U, up to 64 per rack 

Total rack power 13 – 26 kW 

Racks per data center  250 

Total power per data center 3.2 – 6.5 MW 

Temperature limits 

Component Value (°C) 

Processor 85 

DIMM 85 

Disk drive 45 

The ICT equipment are the main responsible by energy consumption and heat production in 

any data center. Typically, these singular infrastructures have had very contained environments due to 

its particularity. Suitable environmental conditions for electronic equipment divided by temperatures 

and relative humidity (RH) recommended by the American Society of Heating, Refrigerating and Air-
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Conditioning Engineers (ASHRAE) (ASHRAE Technical Committee 9.9 2011) for all equipment classes 

can be seen in Table 2.7. These thresholds indicate the air inlet conditions in the ICT equipment and 

hence into the room or the cold aisles in cold/hot aisles settings. A wrong operation of humidity ranges 

will put at risk the reliability of the computing equipment, since a high humidity will cause water vapor 

to condensate on the equipment, while very low humidity can cause electrostatic discharges. Thereby 

the recommendation is a humidity envelope between 20 to 80%. 

Table 2.7 – Summary of 2011 ASHRAE thermal guidelines for data centers 

Data Centers Classes Dry-bulb 

temperature 

Humidity 

range 

Maximum 

dew point 

Class Definition Recommended   

A1 - A4  18 to 27 °C 5.5 °C DP to 

60% RH and 

15 °C DP 

- 

  Allowable   

A1 Enterprise servers and storage products tightly 

controlled 

15 to 32 °C 20% to 80% 17 °C 

A2 Volume servers, storage products, personal 

computers and workstations with some control 

10 to 35 °C 20% to 80% 21 °C 

A3 Volume servers, storage products, personal 

computers and workstations with some control 

along with use of free cooling techniques when 

allowable 

5 to 40 °C 8% to 85% 24 °C 

A4 Volume servers, storage products, personal 

computers and workstations with some control 

along with near full-time usage of free-cooling 

techniques 

5 to 45 °C 8% to 90% 24 °C 

In relation to the energy consumption, Table 2.8 presents the case of a medium data center 

whereby some ICT features are demonstrated, such as the amount of racks, servers, purchase year of 

servers and the total data center energy use per year. This type of information is essential to compare 

and analyze different data center profiles due to specificities and detail level. 

Regarding a cost analyses, the increase in demand for computer resources has been leading to 

a raise of servers’ numbers in data centers and correspondingly a considerable growth in power and 

capital costs for upgrading of capacity and development of new data centers. As with up-to-date 

computers, cloud environments provide multicore CPUs in the high-performance tires, which in fact 
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demand parallelism for a cost-effective exploitation of the assets (Uddin et al. 2015). Consequently, the 

cost per process reduces since the number of processes performs in parallel in the instance rises up to 

the number of available cores, considering the dimension of data center standard costs related to 

components and sub component as presented in Table 2.9. 

Table 2.8 – Hypothetical data center as a case study. (Fulpagare and Bhargav 2015) 

Area (m²) 185 

Number of racks 500 

Servers per rack 20 

Total servers 1000 

Server vintage (year) 2006 

Average server power (W) 273 

Average data center connected load (total of all ICT) (kW) 273 

Peak server power 427 

Annual ICT energy use (kWh) 2,391,480 

Annual energy loss in UPS to ICT (kWh) 144,000 

Annual energy loss in PDU (kWh) 96,000 

Annual energy use in lighting/security (kWh) 60,000 

Annual energy use in chiller plant (kWh) 450,000 

Annual energy use in CRAC units (kWh) 700,000 

Annual energy loss in UPS to cooling plant (kWh) 50,000 

Total energy use (crossing the data center boundary) (kWh) 3,891,480 

Total ICT energy use (kWh) 2,391,480 

 

Table 2.9 – Data center costs, component, and sub-components. (Uddin et al. 2015) 

Cost Component Sub-components 

~45% Servers CPU, memory, storage system 

~25% Infrastructure Power distribution and cooling 

~15% Power draw Electrical utility costs 

~15% Network Links, transit, equipment 

Standard costs of data center components 

Cost per CPU core $0.040/h 

Cost per 1GB RAM $0.025/h 

Cost per 1 GB storage $0.0003/h 

Cost per server $3.243/h 
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In the context of carbon foot print it is important to highlight that greenhouse gases (GHG) 

emissions from aviation’s, shipping, transportations, telecommunications and manufacturing industry 

are rising significantly. However the emissions from ICT are growing faster (Añón Higón et al. 2017). 

Reductions reached using Green ICT in strategic economic sectors would be five times superior than 

the increase in emissions from the ICT sector itself. Additionally, emissions from ICT is projected to rise 

from 3% of total global emissions in 2007 to a huge 6% by 2020 as can be seen in Table 2.10 (Uddin and 

Rahman 2012.  

Table 2.10 – CO2 emissions (carbon foot print) climate group and the global e sustainability initiative SMART 

2020 (Uddin and Rahman 2012). 

World Emission 2007 

MtCO2e 

Percentage 2007 Emission 2020 

MtCO2e 

Percentage 2020 

Server farms/data 

centers 

116 14% 257 18% 

Telecom 

infrastructure and 

devices 

307 37% 358 25% 

PCs and peripherals 407 49% 815 57% 

Total 830 100% 1430 100% 

Finally, this chapter has focused in researching the several available technologies to promote 

energy efficiency, the most prominent and recently discussed by various authors summarizing the most 

relevant aspects focusing on dismemberment strategy of computational components of servers, 

software solutions such as virtualization, cooling technologies, energy storage and management, 

addressing also the integration of renewable energy sources. All these aspects have been discussed on 

the framework and the perspective of SMDC, discussing demand response programs as a prominent 

solution to reduce costs and collaborate with the grid to pursue a higher joint reliability and 

sustainability in this process. 
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3. ENERGY EFFICIENCY ASSESSMENT FRAMEWORK 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CHAPTER 3 

ENERGY EFFICIENCY 
ASSESSMENT FRAMEWORK 

 

 

n this chapter, based on the previous assumptions, an energy efficiency framework will be discussed, 

where three current surveys will be presented underlining their premises as well as their conclusions, 

one of which was conducted within the framework of this thesis. Furthermore, on a proposal basis, 

three consolidated energy efficiency methodologies are analyzed, compared and assessed to allow a 

more appropriate use in the context of the SMDC. 

3.1 ENERGY EFFICIENCY SURVEYS 

In order to verify the data centers energy efficiency reality, specifically in SMDC, three surveys with 

different approaches are presented. The first two surveys provide a comparative and argumentative 

basis from the literature and the third one was carried out in the context of this thesis.  

 The Green Grid (2016) questioned 150 key European ICT decision makers with data center 

responsibilities in the UK, France and Germany. It was found that while most organizations are facing 

I 
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growing pressures to improve the efficiency of their data centers, 43% of those surveyed have no 

energy efficiency objectives in place, as presented in Figure 3.1. Key findings addressed include: 

• Energy efficiency and operating costs are the most common areas of the data center reported 

as requiring improvement, as can be seen in Figure 3.2. 

• Two in five respondents reported that their data centers are expensive to run (48%) or upgrade 

(41%), demonstrating that cost is the most commonly reported impact of data center 

operations. 

• The difficulty in predicting future costs (43%) and the cost of refreshing hardware (37%) are 

cited as the top challenges to developing resource efficient data centers, along with the 

difficulty in meeting environmental targets (33%). 

 

Figure 3.1 – Organizations' energy efficiency objectives (The Green Grid 2016) 

Furthermore, 97% felt that they could improve their monitoring capabilities. Some of the 

findings presented a positive outlook for future innovations in data center resource efficiency, with 

nearly all those surveyed clearly seeing areas for improvement and 55% stating that energy efficiency 

was their highest priority when making changes.  

However, to match the European Commission’s expectation for data centers to be at least 80% 

powered by renewable energy by 2020, ICT leaders will need to commit to renovate their resource 

efficiency policies, since the share of renewable generation in data centers is still very low (The Green 

Grid 2016). 
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Figure 3.2 – Areas requiring most improvement (The Green Grid 2016) 

The other survey, carried out by NRDC (Bennett and Delforge 2012), surveyed 30 U.S. ICT 

managers. The focus was on virtualization and server purchasing and replacement, since they are the 

largest and most cost-effective savings opportunities profile in SMDC. From the energy efficiency point 

of view, it is possible to reduce operating costs by replacing and using greener equipment, as well as to 

decrease the amount of hardware in use and idle processing time, improving the utilization of resources 

and providing energy savings through virtualization. Regarding DR, one of the used techniques to 

exploit the flexibility potential is the use of virtualization on servers to perform workloads shifting, or 

shedding, taking advantage of a time window where the energy cost is more profitable. In this context, 

the questions addressed various issues related to their current server fleet, virtualization practices, 

cloud computing, obstacles to implementing efficiency improvements, energy use, and billing. The 

results from this survey compared with results from other survey of large companies’ virtualization 

practices conducted by the market research firm (Vanson-Bourne 2011),  as presented in Figure 3.3 

have shown that: 

• Small and medium-sized businesses operate servers in a variety of ownership configurations 

that may make efficiency upgrades challenging. For example, if the company decides which 

hardware to lease or purchase, but the host pays the electricity bills at the off-site location, the 

server operator does not have a financial incentive to optimize the energy efficiency of their 

servers. This split-incentive situation is similar to the owner-tenant problem so common in 

commercial buildings. 

• Indicators of virtualization adoption by smaller businesses lag behind larges ones. Most 

companies have tried virtualization and plan to do more in the future, but still have progress to 

make before achieving deep transitions to a mostly virtual server fleet. Their surveys’ results 

revealed starkly different results, especially in the percentage of companies that have tried 
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virtualization and the percentage that plan to use or increase virtualization in the future. 

Whereas 90% of large enterprises have virtualized at least one server, only 37% of small 

companies have done so. This shows that there is still a lot of education and marketing to be 

done in this sector. 

• When virtualization is used, small organizations tend to implement it more broadly than large 

ones, which narrows the penetration gap to 11%. However, there remains a large untapped 

virtualization opportunity in both markets and particularly in small and medium-sized 

organizations, where only 26% of all server stock has been virtualized. 

• Almost all large companies have used virtualization, and many say they plan to increase its use 

in their operations, increasing the virtualization penetration rate. In contrast, only 23% of small 

companies said they plan to increase their virtualization in the next 12 months.  

• Small companies have not adopted virtualization because of unaligned incentives and lack of 

information. Currently, 60% of the staff that make server purchasing decisions do not have 

access to their company’s energy bill. This is critical, as server rooms can account for anywhere 

from 30 to 70% of an organization’s electricity consumption (particularly in office-based 

organizations). Because over 90% of organizations do not have a way of monitoring server room 

electrical use, this opportunity is being overlooked as a strategic way to seriously reduce 

overhead costs and environmental impact. 

• Half of all organizations surveyed plan on a server room upgrade in the subsequent year to the 

survey. Replacement of servers coming to the end of their warranty is the most cost-effective 

way to implement efficiency best-practices, since project benefits include the cost avoidance 

of investing in 1-for-1 server hardware and software replacement. 

 

Figure 3.3 – Comparative survey results (Bennett and Delforge 2012) 
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Based on information from the main surveys available in the literature, their characteristics, 

particularities and focus, one of the tasks of this research was to develop its own survey aimed at better 

understanding the SMDC environment. Hence, it would be possible to analyze specific contexts in 

different countries, with several diversity of energy efficiency patterns and actions taken by SMDC 

actors.  

The 27 questions were addressed to key decision makers with technical and management 

responsibilities for these data centers. The survey obtained 22 responses. Since the total population 

(number of data centers) is not high (at least comparing it with other types of buildings and facilities) it 

is normal to have the assessment based on a relatively small number, of relevant, responses. Such 

number is not too different from the 33 responses obtained in the survey conducted in the U.S. by 

NRDC. The 22 responses are distributed between the three different countries, as follows: Brazil with 

13 responses, the U.S. with 5 and Portugal with 4. The response rate was 65% in Brazil, 50% in the U.S. 

and 40% in Portugal. 

The main objective was to analyze the energy efficiency of small and medium data centers in 

Brazil. The U.S. was chosen as a North America representative and Portugal as the European Union 

representative, of regions where surveys had already been published, to provide a good comparison. 

Two questions were asked to map the data center respondent’s professional role, and their 

institutional profile. As depicted in Figure 3.4, the major professional role in the responses was technical 

or encompassing both management and technical responsibilities. The planning/design and just the 

management role had 2 and 1 responses, respectively. In addition, most responses were from the 

educational sector, such as: universities, laboratories, or companies related to this type of activity in 

the different participants’ countries. There were two responses from business, electricity and electoral 

justice government sector, contrasting with only one from healthcare sector. 

Respondents were asked about the size of their data centers based on floor area. Floor area 

was chosen because many servers are expected to be located in server closets and server rooms, which 

have different technology characteristics — and, hence, different efficiency opportunities — than larger 

data centers. It also facilitates the characterization of electricity costs and potential cost savings, since 

small and medium data centers are the objects of this work. 
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Figure 3.4 – Institutional profile and data center actor role 

The distribution of size of data center collected by this survey is presented in Figure 3.5. This 

shows that 65% of those surveyed operated a small data center, and 32% a medium. Just one response 

came from the operator of an enterprise class data center. Howsoever, it is important to highlight that 

this survey was directed to just the small and medium-sized centers operators and managers. 

 
Figure 3.5 – Data center size distribution 

Thereafter, a set of questions was asked in order to find out the level of energy efficiency of 

the servers, such as:  

• How many servers does the data center have? 

• How many legacy servers are there? 

• What is the number of servers with some energy efficiency label? 
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• How many Dynamic Voltage and Frequency Scaling (DVFS)-enabled servers does the data 

center have? 

The average obtained proportion, considering the order of questions, was 10-3-8-2, i.e., for 

each set of 10 servers, 3 are legacy, 8 have some energy efficiency label and only two have DVFS 

enabled. 

In order to verify energy efficiency actions at the storage devices level the following questions 

were asked: 

• How many storages appliances does the data center have? 

• What is the maximum storage capacity? 

• What is the current raw storage? 

• How many storage appliances with energy efficiency label does the data center have? 

The average proportion was 1-1, i.e., all the actors who have storage appliances in their facilities 

have already acquired them with some energy efficiency label. However, the average proportion to 

those data centers which do not have storages appliances in their facilities was 10-3, i.e., for each 10 

data centers, nearly 3 of them do not have storage appliances. 

A set of questions was asked on cooling solutions: which are the most popular solutions in this 

data center profile, the amount of equipment in the facility, and their joint power consumption. 15 out 

of 22 (69%) of participants have answered these questions with the following outcome: 

• Split: 55% 

• Hot and Cold Aisle: 45% 

• Chillers: 27% 

• High Precision: 18% 

• In Row: 18% 

• Free cooling: 10% 

• Rack Air Distribution: 0% 

• Perimetral: 0% 

• Other: 0% 

The participants were able to choose more than one solution and split cooling is the most used 

solution in small and medium-sized data center profiles, followed by hot and cold aisle, whereas 

solutions such as free cooling tends to be adopted in larger spaces. 

The rest of the questions sought to assess, through a yes or no methodology, if servers, storage 

appliances and network devices have energy monitoring. Respondents were also asked about the 
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adoption of simple measures, such as the use of metrics like PUE, the annual calculation of data center 

energy consumption and the knowledge of the electric load diagram. Figure 3.6 presents the responses 

and the results are alarming from the energy efficiency point of view as the energy consumption of 

most of the servers, storage appliances and network devices are not monitored. A higher proportion 

did not calculate annual energy consumption. Moreover, 14% of respondents were unaware of metrics 

such as PUE and 18% did not know if there was an electrical load diagram in the facility. 

 

Figure 3.6 – Energy efficiency monitoring actions 

The answers to the questions on monitoring actions can be used to calculate a propensity for 

energy efficiency actions by country, as shown in Figure 3.7. For the overall number of answers, the 

average data center actors most effectively participating in energy efficiency actions are 4 out of 5 for 

the U.S., 2 out of 4 for Portugal and 3 out of 13 for Brazil.  

 

Figure 3.7 – Energy efficiency action tendency 
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The answer to the last two survey questions can be used as indicators to establish a correlation 

with the low index of actions in energy efficiency by the majority of those surveyed, where nearly 73% 

answered that another sector is responsible for managing the overall data center energy consumption 

and nearly 91% answered that payment of energy bill is the responsibility of the institution that owns 

the data center the and not the data center itself. 

3.2 IMPACT ASSESSMENT OF ENERGY EFFICIENCY METHODOLOGY 

Based on the worrisome reality in terms of energy efficiency demonstrated by the specificities of the 

three presented surveys, especially in SMDC, it is important to analyze methodologies already 

consolidated in the literature that, when implemented in the most appropriate context, allow the 

change of this scenario. 

Thus, the main purpose of this section is to discuss three different energy efficiency 

methodologies and compare them highlighting the best scenario for implementations, as well as their 

advantages and disadvantages in an impact assessment. The chosen methodologies were respectively 

proposed by “Energy Logic”, “Lawrence Berkeley National Laboratory” and “National Renewable Energy 

Laboratory” and the selection criterion prioritized the relevance of the research institutes, how updated 

they are and the number of mentions during the literature review stage. 

3.2.1 Energy Logic Methodology (EL) 

The methodology presented in Emerson 2015 highlights the best energy efficiency practices applied to 

a 465 m² data center based on real-world technologies and operating parameters, as depicted in Figure 

1.2. Through this model, it was possible to quantify the savings in five years due to each action at the 

system level, as well as to assess how energy reduction in some systems affects consumption in 

supporting systems. The results have shown nearly 50% reduction in data center energy consumption 

without compromising performance or availability, as presented in Table 3.1. 

The model indicates that decreases in energy consumption at the ICT equipment level have the 

greatest impact on total consumption because they cascade across all supporting systems, as can be 

demonstrated in Figure 3.8. However, to ensure these savings a sequential approach to reduce energy 

costs is needed, applying the 10 technologies and best practices that exhibited the most potential in 

the order in which they have the greatest impact. Even though the sequence is not fundamental 

because it is not a step-by-step methodology, the energy-saving measures contained should be 

considered a guide with flexibility in implementing this sequence depending on each context. The first 

measurement in this approach is establishing an ICT equipment procurement policy that exploits the 
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energy efficiency benefits of low-power processors and high-efficiency power supplies. Thus, inefficient 

servers will be removed and replaced with higher-efficiency units, providing a more energy-optimized 

data center. 

Table 3.1 – Benefits from efficiency improvement actions (Emerson 2015) 

Efficiency Improvement Area Power 

Reduction 

(kW) 

Estimated Cumulative Yearly 

Reduction 

Year 

1 

Year 

2 

Year 

3 

Year 

4 

Year 

5 

ICT 

Polices 

Low-power processors 111 6 22 45 78 111 

High-efficiency  

power supplies 

124 12 43 68 99 124 

Server power management 86 9 26 43 65 86 

ICT 

Projects 

Blade servers 7 1 7 7 7 7 

Virtualization 86 9 65 69 86 86 

Best 

Practices 

Higher voltage  

AC power distribution 

20 0 0 20 20 20 

Cooling best practices 15 15 15 15 15 15 

Variable-capacity cooling 49 49 49 49 49 49 

Infrastructure 

Projects 

High-density  

supplemental cooling 

72 0 57 72 72 72 

Monitoring and optimization 15 0 15 15 15 15 

Total  585 100 299 402 505 585 

 

 

Figure 3.8 – Cascade effect for cumulative savings (Emerson 2015) 
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Power management software has great capacity to decrease energy costs and should be 

considered as part of an energy optimization strategy, mainly for data centers with large differences 

between peak and average utilization rates.  

The next initiative involves ICT projects with impact on energy consumption such as the 

utilization of blade servers — which is a server architecture that houses multiple server modules 

("blades") in a single chassis and it is widely used in data centers to save space and improve system 

management — and server virtualization techniques. These technologies have arisen as “best practice” 

procedures to data center management and are fundamental in the process of optimizing a data center 

for efficiency, performance and manageability. 

After applying policies and plans to optimize ICT systems, the focus changes to supply-side 

systems. The most effective procedures to infrastructure optimization involve cooling best practices, 

higher voltage AC power distribution, variable-capacity cooling, supplemental cooling, monitoring and 

optimization. Employing these measures on the model reduced the energy use by 52% without 

compromising performance or availability. 

In its unoptimized state, the 465 m² data center example used to develop the methodology 

had a total computational load of 588 kW and total facility load of 1,127 kW. Through the presented 

optimization strategies, this facility has been changed to allow the same level of performance using 

eventfully less power and space. Overall compute load was decreased to 367 kW, while rack density 

was raised from 2.8 kW per rack to 6.1 kW per rack. The number of racks required to support the 

compute load as reduced from 210 to 60 and eliminated power, cooling and space limitations 

constraining growth. Total energy consumption was reduced to 542 kW and the total floor space 

required for ICT equipment was reduced by 65%. 

This methodology intends to be adaptable for every type of data center, however the sequence 

might be affected by facility profile. 24/7 facilities will want to focus initial efforts on sourcing ICT 

equipment with low-power processors and high-efficiency power supplies. Facilities that experience 

predictable peaks in activity might reach the greatest results from power management technology. 

3.2.2 Lawrence Berkeley National Laboratory Methodology (LBNL) 

The methodology proposed by Masanet et al. 2011 presents a general bottom-up approach, which 

enables to model an estimation of energy demand in different data center space types, considering 

energy use of servers, storage and network devices in order to estimate the potential electricity savings 

associated with a set of broad data center efficiency improvements. The study further estimated that 
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2011 electricity demand could be reduced by as much as 70% through adoption of energy efficient 

technologies and operating practices. 

The approach facilitates analysis of energy demand in five data center space types already 

presented in Table 2.4: server closets, server rooms, localized data centers, mid-tier data centers, and 

enterprise-class data centers. 

The data center energy model to estimate the energy use and efficiency potential in data 

centers is described in general form by Equation 3.1.  

?LM = ùûù?./
V + ?/

VZ + ?/
2

.

ü
/

<`?/	 (3.1) 

where, 

?LM = data center electricity demand (kWh/year) 

?./
V  = electricity used by servers of class $ in space type % (kWh/year)  

?/
VZ = electricity used by external storage devices in space type % (kWh/year)  

?/
2 = electricity used by network devices in space type % (kWh/year)  

<`?/ = power utilization effectiveness of infrastructure equipment in space type % (pu)  

In Equation 3.1, the total electricity use of ICT devices within a given space type is established 

through summation of the electricity utilization of servers, external storage, and network equipment. 

The total electricity use of ICT devices is then multiplied by an assumed power utilization effectiveness 

(PUE) for that space type. The variables in Equation 3.1 rely on several parameters correlated with to 

the adoption of energy efficiency measures. This feature enables the model to estimate current 

electricity demand, as well as potential electricity savings in different measure implementation 

scenarios. The measures inserted in the model capture the major classes of data center devices and 

operations efficiency strategies listed in the EPA study Dreibholz et al. 2007, which extensively reviewed 

such strategies. 

An important remark is that a number of calculations in the model are made relatively to static 

baseline values that reflect current data center features. This enables the estimation of electricity 

savings potentials between scenarios in a consistent mode.  

Equation 3.2 is applied to estimate server electricity utilization by space type based on server 

class, the number of servers in each space type, and the annual electricity utilization per server in each 

class. The model employs three server class definitions from market research firm International Data 

Corporation (IDC) (Koomey 2011), measuring power data by server class, and estimating infrastructure 
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device energy use based on unit sales prices: volume servers (<$25,000), mid-range servers ($25,000 

to $500,000), and high-end servers (>$500,000).  

?./
V =

Ň./
V

â./
V† \./

V  
(3.2) 

where, 

?./
V  = electricity used by servers of class $ in space type % (kWh/year)  

Ň./
V  = baseline number of servers of class $ installed in space type % 

â./
V  = device reduction ratio for servers of class $ in space type % 

\./
V  = annual electricity use per server of class $ in space type % (kWh/year) 

Equation 2 estimates the number of installed servers in each class using a baseline value— 

defined as the actual number of installed servers—divided by a “device reduction ratio.” The device 

reduction ratio accounts for the relative reduction in servers that can occur through efficiency 

strategies that diminishes server counts, such as virtualization, consolidation of applications, and legacy 

server removal. For example, a device decreasing ratio of 3 specifies that three servers have been 

replaced by one server (i.e., a 3:1 reduction ratio). Annual electricity use per server is estimated using 

Equations 3, which demonstrated the relationships between server electricity utilization and the 

enactment of key efficiency measures. 

Namely, the potentials for three major efficiency strategies are characterized: (1) use of 

efficient server hardware; (2) use of dynamic frequency and voltage scaling (DFVS); and (3) reducing 

the number of physical servers. Efficient server hardware relates itself broadly to hardware measures 

such as high efficiency power supplies, multiple-core processors, more efficient memory, and variable 

speed fans. Equation 3.3 presents the net effect of such measures relatively to baseline server 

electricity use for each server class. DFVS is a usual energy saving characteristic that ensures a 

processor’s clock speed to ramp down during intervals of low utilization, hence reducing power use. 

The fractions of a server population with efficient hardware and DFVS enabled can be differed in 

Equation 3.3 to estimate server electricity utilization at different levels of measure adoption. 

\./
V = ě./

V (Ä./
V °Ç./

V − 1¢ + 1)(Å./
V É./

Ñ + °1 − Å./
V ¢É./

ÑÑ) (3.3) 

where, 

\./
V  = annual electricity use per server of class $ in space type % (kWh/year)  

ě./
V  = baseline annual electricity use per server of class $ in space type % (kWh/year) 
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Ä./
V  = fraction of servers of class $ in space type % with energy efficient hardware 

Ç./
V  = ratio of efficient server to baseline server electricity use for servers of class $ in space type % 

Å./
V  = fraction of servers of class $ in space type % with dynamic voltage scaling enabled 

É./
Ñ , É./

ÑÑ = DFVS and utilization factors 

The net effect of decreasing the number of physical servers is assigned in Equation 3.3 through 

two “DFVS and utilization factors.” These two factors represent the dynamic relationship between the 

number of installed servers that exist after device reduction initiatives, the average processor use of 

these remaining servers, and the utilization of DFVS. 

In a virtualization scenario, several physical servers are replaced by “virtual” servers that reside 

on a single physical “host” server. An important implication is that the processor use of the remaining 

host servers will rise due to the increased computational demand necessary to support the virtual 

servers. In spite of the increase in server electricity utilization that accompanies virtualization, data 

centers can notice substantial electricity savings through large decreasing in the number of servers. 

Equations 3.4 and 3.5 measure the DFVS and usage factors based on server power-utilization 

functions. For simplification, these functions are assumed to be linear and are thus described using 

slopes and y-axis intercepts in the model. 

É./
Ñ =

(e./
02z./ + -./

02)
(e./

011ǔ./ + -./
011)†  

(3.4) 

where, 

e./
02 = slope of power-utilization function (DFVS enabled) for server class $ in space type % 

z./  = post-reduction processor utilization per server of class $ in space type % (%)  

-./
02 = Y-intercept of power-utilization function (DFVS enabled) for server class $ in space type % 

e./
011 = slope of power-utilization function (DFVS disabled) for server class $ in space type % 

ǔ./  = baseline processor utilization for active servers of class $ in space type % (%) 

-./
011  = Y-intercept of power-utilization function (DFVS disabled) for server class $ in space type % 

É./
ÑÑ =

(e./
011z./ + -./

011)
(e./

011ǔ./ + -./
011)†  

(3.5) 

where, 

e./
011 = slope of power-utilization function (DFVS disabled) for server class $ in space type % 
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z./  = post-reduction processor utilization per server of class $ in space type % (%) 

-./
011  = Y-intercept of power-utilization function (DFVS disabled) for server class $ in space type % 

ǔ./  = baseline processor utilization for active servers of class $ in space type % (%) 

The average utilization per server, after device reduction, is estimated through Equation 3.6. 

The post-reduction use is a function of four variables: (1) the device reduction ratio for servers (defined 

as the baseline number of installed servers divided by the number that remain after server reduction); 

(2) the baseline utilization of active servers prior to reduction; (3) the fraction of removed servers that 

are legacy servers; and (4) the average utilization “overhead” of virtualization software. Legacy servers 

are those that are functionally obsolete (e.g., hosting applications that are no longer used), but still 

draw power. Although the presence of legacy servers varies greatly by data center, some industry 

analysts indicate that they can comprise up to 10% (or more) of the server population at a typical large 

data center. For simplifying, it is assumed that legacy servers have negligible usage and will be 

completely removed in server reduction efforts; thus, they have no impact on post-reduction processor 

utilization. The utilization overhead variable accounts for the processor utilization growth needed to 

run virtualization software on the remaining host servers. This software overhead is in addition to 

utilization increases related to the computational demands of virtual servers. 

z./ = ǔ./â./
V °1 − Ü./

V ¢ + ú./  (3.6) 

where, 

z./  = post-reduction processor utilization per server of class $ in space type % (%) 

ǔ./  = baseline processor utilization for active servers of class $ in space type % (%) 

â./
V  = device reduction ratio for servers of class $ in space type % 

Ü./
V  = baseline fraction of servers of class $ in space type % that are legacy servers 

ú./  = Post-reduction processor utilization overhead per server of class $ in space type % 

Equation 3.7 is utilized to calculate the electricity use of external storage equipment by space 

type. The electricity use of external storage is expressed as a function of the baseline (i.e., current) 

number of installed devices, the device reduction ratio, baseline storage device electricity use, and 

assumed adoption levels of key efficiency measures. Equation 3.7 highlights the savings potentials 

associated with two broad efficiency strategies: (1) efficient storage devices and management; and (2) 

reducing the number of external storage devices. Efficient storage devices and management refers to 

actions aimed at improving the efficiency of both the physical device (e.g., a switch to high efficiency 

hard disk drives (HDDs) and solid state devices (SSD)) and data management (e.g., tiered storage and/or 
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spinning down HDDs). Device decreasing strategies for external storage include actions, such as data 

de-duplication, virtualization, and growing capacity utilization. 

?/
VZ = 	

Ň/
VZ

â/
VZ ě/

VZ(1 + Ä/
VZ°Ç/

VZ − 1¢) 
(3.7) 

where, 

?/
VZ = electricity used by external storage devices in space type % (kWh/year) 

Ň/
VZ  = baseline number of external storage devices installed in space type % 

â/
VZ  = device reduction ratio for external storage in space type % 

ě/
VZ  = baseline annual electricity use per external storage device in space type % (kWh/year) 

Ä/
VZ  = fraction of energy efficient external storage devices in space type % 

Ç/
VZ  = ratio of efficient external storage device to baseline external storage device electricity use in 

space type % 

The model estimates the electricity usage of network devices as a fraction of total ICT electricity 

demand for each space type using Equation 3.8 (rather than in the bottom-up fashion used for servers 

and storage devices). Thus, the model allows the use of available (albeit limited) data on network 

devices in a mode that is consistent with the manner those data are reported. Still, Equation 3.8 could 

be used to coarsely calculate the effects of network efficiency improvements by adjusting downward 

the network device scaling term (i.e., the second term within the brackets). 
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2
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where, 

?/
2 = electricity used by network devices in space type % (kWh/year)  

?./
V  = electricity used by servers of class $ in space type % (kWh/year) 

?/
VZ = electricity used by external storage devices in space type % (kWh/year) 

Ö/
2 = ratio of network device to total ICT device electricity use in space type % (kWh/kWh) 

The electricity use of infrastructure devices is estimated by an assumed PUE for each space 

type. Equation 3.9 is utilized to calculate each PUE, based on assumptions for the electricity use of four 

major infrastructure system components: power transformers, UPS, cooling systems, and lighting. The 
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cooling systems component represents the broadest class of infrastructure devices in the model, 

including primary refrigeration units (e.g., air conditioners and water chillers), coolant pumps, fans and 

air handlers, cooling towers, and similar devices. Since the types and configurations of such equipment 

vary greatly across data centers, cooling system electricity utilization is represented in aggregate by 

space type. The effects of efficiency measurements are estimated through modifications to the ratio of 

component to ICT device energy demand in Equation 3.9. 

<`?/ = 1 +ù\/N
]

/

 (3.9) 

where, 

<`?/ = PUE of infrastructure equipment in space type % (kWh/kWh) 

\/N
]  = ratio of electricity use by infrastructure system component ^  in space type %  to ICT device 

electricity use in space type j (kWh/kWh) 

3.2.3 National Renewable Energy Laboratory Methodology (NREL) 

The methodology addressed in Masanet and Robert (2014) examines the techniques and 

analysis methods utilized to verify savings from improving the efficiency of two specific parts of ICT 

equipment: servers and data storage. The discussion analyzes the premise using more efficient server 

and data storage equipment, as well as managing them to work more efficiently through measures such 

as: 

• Server virtualization: where instead of operating many servers at low utilization rates, 

virtualized environments will combine the processing power onto fewer servers, operating at 

higher total utilization rates. 

• More efficient servers: using ENERGY STAR servers the energy consumption can be reduced in 

30% when compared with standard servers. The servers run efficiently at low loads, since the 

processor power management demands lower power consumption by the time servers are idle 

and provide the follow characteristics: 

o Efficient power supplies to limit power conversion losses. 

o Improved power quality. 

o Idle power draw limits for rack-mounted or pedestal servers with one or two 

processors. 

o Results of the Server Efficiency Rating Tool (SERT) tests to accommodate comparisons 

of server efficiency under various usage scenarios. 
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o Ability to measure real-time power use, processor utilization, and air inlet 

temperatures. 

o Advanced power management features and efficient components that save energy 

across various operating states (including idle). 

o A power and performance data sheet for purchasers; this standardizes key information 

on energy performance, features, and other capabilities. 

• Data storage management: through tools such as: 

o Automated storage provisioning, which improves storage efficiency by right-sizing, 

identifying and reallocating unused storage, and increases server capacity by improving 

existing storage use. 

o Deduplication software, which condenses the data stored at many organizations by 

more than 95% by finding and eliminating unnecessary copies. 

o Thin provisioning, which allocates just enough storage just in time by centrally 

controlling capacity and allocating space only as applications require it. 

o Redundant Array of Independent Disks (RAID), combining multiple disk drive 

components into a single logical unit. 

o Tiering storage, which stores automatically low-priority data, that are rarely accessed, 

on higher-latency equipment that uses less energy. 

• More efficient data storage equipment: which uses less energy by adoptions technologies such 

as: 

o Lower speed drives. 

o Massive array of idle disks (MAID). 

o Solid-state drives (SSDs). 

o ENERGY STAR-certified data storage. 

The simple algorithm is proposed in order to estimate annual savings for data center ICT 

measures, using Equation 3.10. 

®hhz'd	?h\òôö	_'~$hôv

= 8760 ∗ (<;Æ\ò	=ò'ÆA+KØKY.C7.6y	5K9Cn+K

−	<;Æ\ò	=ò'ÆXmm.B.K67	PK9Cn+K) 

(3.10) 

Equation 3.11 estimates the savings when server efficient metrics increase due to units with 

higher efficiency (e.g., operations/Watt). 
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®hhz'd	?h\òôö	_'~$hôvXmm.B.K67	VK+iK+C = <XX ∗ ë1 − ?TXX
?TU9CK:.6K
∞ ï ∗ 8760 (3.11) 

where, 

<XX = power draw of new efficient server equipment (kW) 

?TXX  = efficiency metric for efficient server 

?TU9CK:.6K  = efficiency metric for baseline server 

8760 = number of hours in a year as servers run 24/7 in a data center 

Another form to compute savings for servers is considering ENERGY STAR-certified servers as 

“efficient servers.” Using EPA estimates of percentage savings compared to standard or typical servers, 

savings can be calculated using Equations 3.12, 3.13 and 3.14. 

®hhz'd	?h\òôö	_'~$hôvXV	VK+iK+C = (<U9CK:.6K	–	<X2XOjk	VZ@O	) ∗ 8760 (3.12) 

<X2XOjk	VZ@O	 = 	∑ (<XV,.H:K6
XV≥¥ + `XV ∗ (<XV,mn::	:89H −	<XV,.H:K) (3.13) 

<U9CK:.6K =	<X2XOjk	VZ@O	/(1 − ') (3.14) 

This approach conducts to the simplified expression represented in Equation 3.15. 

®hhz'd	?h\òôö	_'~$hôvXV	VK+iK+C = ë1 (1 − ')∞ – 	1ï<X2XOjk	VZ@O	 ∗ 8760 (3.15) 

where, 

<X2XOjk	VZ@O	 = power draw of ENERGY STAR server (kW) 

?_ = ENERGY STAR server, numbered 1 to n 

<XV,.H:K	= power draw of ENERGY STAR server at idle (kW) 

<XV,mn::	:89H  = power draw of ENERGY STAR server at full load (kW) 

`XV = utilization of ENERGY STAR server 

<U9CK:.6K = power draw of baseline servers 

' = percentage ENERGY STAR server is more efficient than baseline “standard” or “typical” unit 

8760 = number of hours in a year as servers run 24/7 in a data center 
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Server virtualization savings compare baseline energy use of a large combination of single 

application servers that would have been purchased normally during a server upgrade, without 

virtualization to a smaller set of virtual host servers, as can be seen in Equations 3.16, 3.17 and 3.18. 

<U9CK:.6K =	∑ (<C9,.H:K6
¥ + C̀9 ∗ 	(<C9,mn::	:89H − 	<C9,.H:K)) (3.16) 

<,	s.+7	 = 	∑ (<iq,.H:K5
¥ + `iq ∗ (<iq,mn::	:89H −	<iq,.H:K)) (3.17) 

®hhz'd	?h\òôö	_'~$hôvXV	VK+iK+C = (<U9CK:.6K	–	<,	s.+7	) ∗ 8760 (3.18) 

where, 

<U9CK:.6K= total power draw of all single-application servers without virtualization during server refresh 

(kW) 

v' = single application servers, numbered 1 to n 

<C9,.H:K= power draw of a single-application server at idle (kW) 

<C9,mn::	:89H	= power draw of a single-application server at full load (kW) 

C̀9= average utilization of a single-application server over the year 

<,	s.+7	= total power draw in kilowatts of all virtual hosts 

~ℎ = virtual host servers, numbered 1 to m 

<iq,.H:K= power draw of a virtual host server at idle (kW) 

<iq,mn::	:89H  = power draw of a virtual host server at full load (kW) 

`iq= average virtual host server utilization over the year 

Savings from upgrading to more efficient storage devices can be calculated using Equations 

from 3.19 to 3.22. Equations 3.19, 3.29 and 3.21 utilize efficiency metrics of the efficient and baseline 

unit to estimate savings. Equation 3.22 makes use of the percentage savings for an ENERGY STAR-

certified data storage to estimate savings. To calculate savings from software management tools 

Equation 3.23 relies on measuring power draws before and after storage management tools are 

implemented. 

?TU9CKVX = (ùbU9CKVX(/)?TU9CKVX(%)
5

/≥¥

 
(3.19) 
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?TXXVX = (ùbXXVX(/)?TXXVX(%)
6

.≥¥

 
(3.20) 

®hhz'd	?h\òôö	_'~$hôvXmm.B.K67	V78+9yK = <XXVX ∗ ë?TU9CKVX
(?TXXVX)∞ – 	1ï ∗ 8760 (3.21) 

where, 

<XXVX  = power draw of new energy-efficient storage equipment 

?TXXVX  = efficiency metric for energy-efficient storage equipment 

?TU9CKVX = efficiency metric for baseline storage equipment 

?TXXVW(/)= watts per terabyte (TB) of energy-efficient storage device/array % (this value can come 

from product specifications for devices and/or arrays) 

?TU9CKVW(/) = watts per terabyte (TB) of energy-efficient storage device/array % (this value can come 

from product specifications for devices and/or arrays) 

bXXVW(.)= fraction of total TB stored on energy-efficient device/array $ 

% = baseline devices/arrays, numbered 1 to m 

bU9CKVX(/) =	fraction of total TB stored on a baseline device/array % 

$ = energy-efficient devices/arrays, numbered 1 to n 

8760 = number of hours in a year as servers run 24/7 in a data center 

®hhz'd	?h\òôö	_'~$hôvXV	V78+9yK = ë1 (1 − -)∞ – 	1ï<XV	VZ0O	 ∗ 8760 (3.22) 

where, 

<XV	VZ0O	 =	power draw in kilowatts of ENERGY STAR storage 

- = percentage of ENERGY STAR storage more efficient than typical or standard storage 

8760 = number of hours in a year as servers run 24/7 in a data center 

®hhz'd	?h\òôö	_'~$hôvLV	P96 = 8760 ∗ (^*A+K	LC	P96	 − 	^*A8C7	LC	P96	) (3.23) 

where, 

<A+K	LC	P96	 = total power draw of data storage before data storage management tool measures 

implemented (or with tool turned off) and after efficient data storage equipment is installed, if that was 
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part of the measure (the savings from the efficient storage equipment can be calculated using 

Equations from 3.19 to 3.22) (kW) 

<A8C7	LC	P96	 =	 total power draw of data storage after data storage management tools are 

implemented and after efficient data storage equipment is installed, if that was part of the measure 

(the savings from the efficient storage equipment can be calculated using Equations from 3.19 to 3.22) 

(kW) 

8760 = number of hours in a year as servers run 24/7 in a data center 

Total energy savings, which contain additional cooling and power infrastructure savings, is 

calculated by multiplying energy savings from an ICT upgrade by the data center’s power usage 

effectiveness (PUE). As a data center becomes more efficient, PUE moves toward 1. Equation 3.24 

estimates total energy and demand savings. 

®hhz'd	?h\òôö	_'~$hôvZ879: = <`? ∗	®hhz'd	?h\òôö	_'~$hôv]Z (3.24) 

where, 

<`?= average PUE determined over the entire year 

Equation 3.25 describes ICT lifetime savings for server virtualization, efficient server upgrades, 

or efficient storage. 

a$b\&$e\	?h\òôö	_'~$hôv]Z = 	®hhz'd	?h\òôö	_'~$hôvZ879: ∗ ?`a (3.25) 

where, 

?`a= expected useful life based on IT upgrade cycle of data center 

Equations 3.26 and 3.27 estimate seasonal peak demand savings, based on server and storage 

24/7 operations. 

<\'^	=\e'h>	_'~$hôvt.67K+ = <`?t.67K+ ∗ ®hhz'd	?h\òôö	_'~$hôv]Z/8760 (3.26) 

<\'^	=\e'h>	_'~$hôvVn55K+ = <`?Vn55K+ ∗ ®hhz'd	?h\òôö	_'~$hôv]Z/8760 (3.27) 

where, 

<`?t.67K+= average PUE over the winter peak demand period, which can be tracked over an entire 

year. <`?t.67K+  may be smaller in winter due to free cooling) 
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<`?Vn55K+  = average PUE over the summer peak demand period. <`?Vn55K+  may be much higher 

during the summer as free cooling options may not be available as often. 

3.2.4 Applications 

For each of the presented methodologies there is a more appropriate implementation scenario, after 

all, each approach has particular characteristics that can make it more appropriate for a given situation. 

The EL approach is indicated to policies-based situations, where the use of efficient ICT 

technologies to be introduced into the data center is a part of the normal equipment replacement 

cycle. It is advisable to previously use methodologies with consistent mathematical models in order to 

estimate the current energy scenario and savings perspectives. 

The LBNL model is more appropriated to the assessment of electricity use and efficiency due 

to calculations complexity. Given the bottom up nature of the model, improved data on installed device 

numbers, classes, and equipment electricity use in different space types would particularly improve its 

accuracy.  

The NREL method is more suitable where information about ENERGY STAR, SERT and 

particularities on virtualization and storage metrics and devices lifetime are present to calculate data 

center ICT savings. 

3.2.5 Advantages and Disadvantages 

In order to analyze each approach in its specificities Table 3.2 presents their main advantages and 

disadvantages.  
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Table 3.2 – Methodologies advantages and disadvantages 

Methodologies Advantages Disadvantages 

EL Demand and supply power consumption-

based 

Model based on a reduced number of 

technologies and best practices 

Vendor-neutral approach Not mathematically clear 

Provide cascade effect of savings Do not contemplate network devices 

Flexibility regarding the sequence of 

implementation measures 

Do not contemplate storage devices 

LBNL Bottom-up approach based on reliable 

studies 

Equations not fully based on ENERGY STAR 

Concise mathematical modelling 

framework 

More comprehensive and complex  

Estimates data center energy use and 

efficiency potentials at different 

geographic scales and can be replicated or 

refined by others 

Restricted data coming from paid 

consulting firms 

Contemplate network and storage devices Do not contemplate the virtualization 

impact 

NREL Bottom-up approach based on servers and 

data storage-utilities incentives oriented 

Do not contemplate network devices 

Concise mathematical modelling 

framework with equations based on 

ENERGY STAR and SERT requirements 

Difficulty in determining useful life 

Contemplate storage devices and 

virtualization impact 

Do not contemplate different geographic 

scales, just different equipment’s capacity 

 

Easier data obtaining and updated in terms 

of technologies 

Regulators do not define “typical” or 

“standard” efficiencies for ICT equipment 

3.2.6 Comparative Analysis 

The analysis of the presented methodologies clarifies that their objectives are not the same, as can be 

seen in Table 3.3, although they present some similarities. Therefore, it is important to highlight the 

main features found in the respective approaches in order to compare them enabling future decision-

making in the choice of the most appropriate approach. 
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Table 3.3 – Methodologies comparative analysis. 

Features Methodologies 

EL LBNL NREL 

Guide and list-based X   

Police recommendations X   

Bottom-up approach X X X 

Vendor-neutral evaluation X X X 

Quantitative analysis X X X 

Cascade effect of savings X   

Mathematical modelling framework  X X 

Different data center size profiles  X  

Storage devices-base  X X 

Different type of disks   X 

Network devices-based  X  

Virtualization impact X  X 

Cooling solutions X X X 

UPS’s solutions X   

Lightning solutions X X  

Different classes of servers X X X 

Lifetime-based X  X 

Designing for high density X   

Power management X   

DVFS-based  X  

Airflow management X   

ENERGY STAR-based X X X 

SERT-based   X 

Utilities incentive-based   X 

Upgrading X  X 

Replacement perspective X  X 

Peak demand savings   X 

PUE-based  X X 

Weather considerations   X 

Difficult to obtain data   X X 
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Considering the goals of this work, as well as the described characteristics, the more 

appropriated methodology for energy efficiency adoption is from EL. The reasons that have supported 

this choice were being more suitable for the SMDC case, taking into account the devices replacement 

window, the capacity to estimate the savings in five years with cascade effect and using equipment’s 

suggested by ENERGY STARS. However, it is important to complement the model using network, backup 

and storage solutions to improve the comprehensiveness of the approach in terms of energy efficiency. 

Finally, this chapter has presented an insight on the energy efficiency perspective based on 

three surveys which assessed the importance of energy use to operators of SMDC. This shows that, 

even though there have been major advances in energy efficiency for large data centers over the last 

decade, with nearly 52% savings, in SMDC the reality is greatly different – 43% have no energy efficiency 

objectives in place. Furthermore, the survey conducted in this work highlighted alarming statistics, 

where 64%, 73% and 77% of surveyed participants do not monitor servers’, storages appliances’ and 

network devices’ energy use, respectively. 

Complementally, three energy efficiency methodologies have been discussed emphasizing 

their main characteristics as well as their applications. Subsequently, they have been assessed 

concluding that EL approach is more suitable and appropriated to SMDC profile. 

The results of the presented surveys demonstrated a paradoxical reality in relation to the 

technological possibilities in the field of energy efficiency in the data center environment as a whole, 

including those of small and medium profile. Although best practices using technologies that enable 

more efficient use of energy are increasing, it has proven that the absorption of this reality in the data 

center market does not occur in the same pace. Thus, it was important to carry out the evaluation of 

energy efficiency methodologies in SMDC already applied in real scenarios in order to mitigate this 

mismatch. Combining the information provided by recent surveys with approaches that alter certain 

scenarios, enables the creation of new policies and frameworks for this neglected market. Thus, the 

results of the survey carried out in this thesis will be taken into account in the elaboration of scenarios 

for the future simulations in this work. Likewise, the methodology assessed will be considered in the 

development of the framework that will be presented in the next section. 

Therefore, it is important to note that lack of accurate information and corporate misalignment 

are the main causes of slow deployment of energy efficiency in this sector. Thus, the policy 

recommendation is that it is essential to treat small and medium data centers as an individual market 

case, which requires attention, specific incentives and policies to address their particularities. 

Innovative possibilities include making joint energy analysis of multiples data centers at the same time 

and proposing an aggregator to mediate operations between data centers and utilities. 
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It is a desirable goal to achieve a trade-off between the maximum performance of data centers 

and the minimum environmental impact by considering various aspects such as cost, and energy 

consumption as constraints. Thus, DR programs emerge in this context as an alternative to the 

minimization of energy-related costs, since an inversely proportional relationship is established, i.e., 

the less energy efficient a data center is, the more opportunities there are to explore DR alternatives 

and the next sections will cover this alternative. 
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4. DEMAND RESPONSE METHODOLOGY FRAMEWORK 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CHAPTER 4 

DEMAND RESPONSE 
METHODOLOGY 

FRAMEWORK 
 

 

his chapter presents a methodology framework addressing demand response in different 

perspectives. Firstly, it is provided an overview on the main approaches to optimize workloads in 

data centers, with examples applied to SMDC. Then, a framework proposal in accordance with the goals 

of this thesis is presented and discussed in detail based on other examples from the literature. The 

mathematical models denoting the key workloads in a SMDC environment during power reduction and 

rebound events are also defined. From these premises, the two problems established in the context of 

this work, one from SMDC point of view and the other from DSO perspective are discussed. Their 

resolution hypotheses through algorithm optimization processes are presented with detail in order to 

further introduce the simulations and data collection. 

T 
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4.1 APPROACHES TO OPTIMIZE DATA CENTERS ENERGY LOADS 

For the purpose of reducing the energy cost and perform a gradual inclusion of data centers in DR 

programs, recent and relevant works have been conducted proposing theoretical frameworks of robust 

optimization and low computational complexity to obtain close-to-optimal solutions.  

 Cioara et al. (2016) propose an electronic marketplace designed for trading energy flexibility 

and ancillary services, enacting data centers to shape their energy demand to buy additional energy 

when prices are low and sell energy surplus when prices are high. 

A new pricing mechanism, which extracts load reductions from tenants in colocation data 

centers during emergence demand response events, was proposed by Chen et al. (2015). Their results 

present benefits to the environment and data center operators by decreasing the need for backup 

diesel generation and providing payments for load reductions. 

The dynamic interactions between smart grid and data centers, as a two-stage price 

optimization problem, were presented in Wang et al. (2016), using an heuristic algorithm and 

simulations to achieve a win-win solution for both the utility and data centers.  

Fridgen et al. (2017) present an economic analysis of spatial load migration using geographically 

distributed data centers as an alternative form of demand side flexibility compared to load shifting and 

load shedding, finding that spatially migrating load provides an interesting alternative to economically 

balancing a grid, as well as realistic opportunities to virtually transfer balancing power between 

different market areas worldwide. 

A multi-objective energy-efficient task scheduling problem on a green data center partially 

powered by renewable energy, where the computing nodes are DVFS-enabled is highlighted in Lei et 

al. (2016). The solution is provided by a multi-objective co-evolutionary algorithm that searches the 

suitable computing node, supply voltage and clock frequency for the task computation, and the smart 

time scheduling strategy is employed to determine the start and finish time of the task on the chosen 

node.  

Wang et al. (2017) propose scheduling algorithms to adjust the scheduling policies for the 

incoming jobs according to the performance target and the behavior of other competitors based on 

the game theory. The results show the capacity to reduce the conflict in scheduling decisions made by 

different schedulers and hence improve the scheduling performance in the data centers deployed with 

clusters and distributed schedulers.  

A novel method based on demand response was proposed to control the cooling supply related 

to ICT dynamic load in Zhu et al. (2017) and the assessment pointed out reductions of 7.9%, 14.2%, 
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15.6% and 17.9% of energy consumption in a cooling demand response at room, row, rack and server 

levels, respectively during the demand response period. Determining the cooling demand according to 

the ICT load at server level, the reduction of the electricity consumption of cooling systems during the 

demand response period was by 0.9% and considering the dynamic energy efficiency of cooling units, 

ICT load shifting could be optimized in 1.2%. 

As well as there are energy efficiency strategies exploiting workloads with direct impact on 

CPU, memory, disk and network, virtualization, cooling, and UPS, there are data centers demand 

response approaches in terms of flexibility. The technique addressed in Cioara et al. (2016) provides 

flexibility mechanisms defined for hardware components, such as load time shifting, alternative usage 

of non-electrical cooling devices and charging/discharging UPS, evidencing potential to shape and 

modify the data center baseline energy profile to meet energy network levels goals and to provide 

several types of energy and balancing services.  

 Tran et al. (2014) and Li et al. (2015) define optimization problems, where processing, 

virtualization, quality of service and cooling solutions are analyzed together in a demand response 

scenario, resulting in a significant energy consumption and electricity cost reduction.  

In Ghatikar et al. (2012), an initial set of control and load migration strategies and economic 

feasibility for four data centers was evaluated. The findings show that with minimal or no impact to 

data center operations demand savings of 25% at the data center level, or 10% to 12% at the whole 

building level can be achieved with demand response strategies, such as server and CRAC unit 

shutdown, load shifting or queuing ICT jobs while server are idle, temperature set point adjustment 

and load migration between homogeneous and heterogeneous cluster systems. 

In the same context, it is important to consider the adaptation to data centers of measures 

already used in other sectors with a higher tradition of participation in DR programs. In this way, 

Paterakis et al. (2017) perform an extensive overview on the theme covering different sectors and 

international experiences.  

Regarding industrial customers, the demand can usually be decreased by on-site generation, 

energy storage, consumption shifting, non-critical load curtailment and temporary shut-down of 

several processes. Temporarily interrupting one or more processes may result in significant load 

reductions. Nevertheless, several constraints such as the criticality of a process, the number of available 

production lines, the required production target, inventory restrictions, etc., may have longer term 

impacts on the process line, in a very similar way that occurs in the case of data centers, respecting the 

differences of equipment and business profile.  
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Analyzing commercial and other non-residential customers, the main DR strategy is load 

reduction, where air conditioner is the most significant load that can be controlled. However, energy 

intelligent buildings with energy consumption monitoring and management of locally available 

resources, as well as the energy procurement from the grid, has been introduced (Christantoni et al. 

2016) and can also be used in SMDC.  

Residential customers are suitable for DLC and price-based DR programs and can invest on an 

automated system, which monitors and controls the consumption of several appliances (Paul et al. 

2017). Following this same premise, data centers can use algorithms, software, or even appliances to 

provide this level of supervision in their loads (Paul et al. 2017), taking advantage of specific demand 

response programs. Nevertheless, the main similarity of the residential sector compared to the SMDC 

market is the fact that their loads have a low potential to participate in DR events acting individually, 

and therefore there is a need for aggregation, as suggested the review conducted by Carreiro et al. 

(2017), covering several cases of aggregators in the context of end users, namely in the residential case. 

However, although the contribution of each of the above-mentioned works is undeniable in 

the DR field, there are researches that are closer to the purpose of this thesis and that will be used as 

the guiding and argumentative elements in this process. 

From the SMDC point of view, studies such as Tran et al. (2014) and Wang et al. (2016) prioritize 

a detailed mathematical description of the load systems present in data centers, as well as the problem 

formulation oriented to an objective function and its respective constraints. Thereby, this work will 

follow the same criterion in sections 4.2, 4.3 and 4.4. 

Regarding the Distribution System Operator (DSO) point of view, with the aim of taking 

advantage from the massively automated infrastructure and expressive energy usage, the definition of 

power adaptation collaboration was researched by Basmadjian, Lovasz, et al. (2013) and shortly 

thereafter a supply demand exploring this concept between energy provider and data centers was 

presented in Basmadjian et al. (2013). Those two works were utilized as a comparative basis to the 

algorithms and polices proposed by (Basmadjian et al. 2015) and they will be used jointly as references 

to this present thesis, specifically in sections 4.2 and 4.5. 

4.2 FRAMEWORK PROPOSAL 

The framework proposed in Basmadjian et al. (2013) take into account the following entities: Energy 

Provider (EP), Data Center  and Data Center IT Customer (ITC) sub-ecosystems. Aiming at contemplating 

them, as Figure 4.1 displays, a three-tier architecture has been established.  
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The Level I, called Connection, comprises all the particularities of the EPs and data centers 

involved infrastructure. Accordingly, the monitoring and control infrastructure is carried out by the 

Connection level. The Level II, known as Negotiation, represents the decision-making logic deployed in 

the form of agents to allow power adaptation collaboration. Hence, this level must interact with Level 

I in order to read the current status (e.g. shortage situation) and adopt certain power adaptation 

requests to the involved infrastructure, as well as with Level III, which includes the contracts to 

stimulate power adaptation collaboration between EP – Data Centers – ITC. 

 

Figure 4.1 – Framework overview of Basmadjian et al. (2013) 

However, the framework proposed by this work intends to simplify the process by reducing the 

number of actors, interactions and restricting the structure. In the same way it is intended to present 

more detail in the processes belonging to each of the strategies described in the aforementioned layers, 

as represented in more descriptive details in Figure 4.2. 

The main actors in this proposed framework are restrict just to SMDC and DSO, as well as their 

relationships and interactions. One of its premises is that the connections between data centers and 

their consumers are not part of the DSO responsibilities; in other words, they are transparent to this 

fact, as opposed to the three actors in Basmadjian et al. (2013) and the strong relationship between 

them. 

This framework is initially SMDC-oriented, however it can be adapted to cover different data 

centers profiles, since each layer is properly contextualized. Nevertheless, in the context of this work, 

SMDC are analyzed jointly and the intermediation between their operators and the energy provider is 
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performed by a DSO, or an Aggregator, which sees each SMDC as a single component that has flexible 

loads and along with other SMDC contain a significant load to be used in DR programs. 

 

Figure 4.2 – Framework proposal 

Thus, the main objective is to combine energy efficiency initiatives, which in turn provide a 

better knowledge and management of the flexible data center load, as well as the mutual possibility of 

taking financial advantages in DR programs established between SMDC and DSO. The framework is 

divided into two layers, as can be seen in Figure 4.2.  

The first layer has a responsibility-oriented approach, where energy efficiency actions are taken 

over by SMDC operators through the consistent use of the most appropriate energy efficiency 

methodology, as analyzed in Chapter 3. Flexibility management will be the responsibility of a SMDC 

algorithm that optimizes the best time window to decrease load, whereas DR scenarios will be defined 

by a DSO random-rotating and fairness algorithm.  
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Besides the advantage of reducing the number of layers, actors and interactions, another 

important feature of this framework is to detail the specificities of the lower layer. The second layer is 

oriented towards the goals, constraints and deployment of DR strategies applied to SMDC and DSO. On 

one hand, the main goal of SMDC is to decrease expenses while providing DR services to DSOs, and 

simultaneously maintain their requirements and QoS thresholds. On the other hand, the DSO aims at 

providing services to SMDC, enabling the management of demand, reduction of costs (demand vs. 

generation and implementation of DR program) and increasing the grid stability.  

In the SMDC constraints of energy cost minimization algorithm sublayer, it is possible to note 

that the subdivision is given by ICT flexible workload, where a set of delay-tolerant loads will be run in 

a given time. Non-ICT workloads comprise cooling solutions and UPS strategy. Rebound Effect (RE), or 

“payback effect” as it is sometimes referred to,  has been defined as the tendency of electrical loads to 

produce a demand spike while “catching-up” to normal (Wrinch et al. 2012), is the last constraint in 

this sublayer. An example of such behavior is that once a given data center has reduced power during 

a DR event, the same reduced power must be taken over shortly thereafter, to only recover its baseline 

values. 

In other words, SMDC will make use of these three profiles of flexible loads to reduce power 

during a DR event, first prioritizing Non-ICT loads and only using ICT loads after it, as presented by Table 

4.1. 

In the next sublayer, a DSO random-rotating and fairness algorithm will define which SMDC will 

be used in DR events, ensuring that they are utilized in a balanced and fair manner over a given 

contractual period, until a new usage cycle begins. However, there are several constraints, such as: 

maximum reduction of power that cannot be exceeded, number participations in events by cycle, time 

windows per event and the correct ratio between SMDC, which must be maintained in each selection 

process. 

In the deployment sublayer, the structure to be used can be based on dynamic tariffs, in which 

the energy price changes over time or an incentive-based contract established between the parties, 

where SMDC might receive a financial compensation to reduce power in a given period, or in the case 

of not accomplishing with a specific contractual clause, to pay a penalty. 
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Table 4.1 – Workloads hierarchy 

Resources Elements Component Flexibility 
Technologies 

DR Action Constraints Priority 

ICT Load Server CPU DVFS  Shedding 
Shifting 

Load Profile 
Delay Time 

3 

Dynamic 
Shutdown 

Shedding 
Shifting 

Load Profile 
Off Time 

5 

Memories  
and  
Disks 

Consolidation 
Live Migration 

Shifting Load Profile 
Delay Time 

4 

Dynamic 
Shutdown 

Shedding 
Shifting 

Load Profile 
Off Time 

3 

Networking CPU DVFS Shedding 
Shifting 

Load Profile 
Delay Time 

3 

Active 
Connections 

Shedding 
Shifting 

Load Profile 
Delay Time 

4 

Dynamic 
Shutdown 

Shedding 
Shifting 

Load Profile 
Off Time 

5 

Non-ICT 
Load 

Cooling HVAC Set Point 
Adjustment 

Shedding 
Shifting 

Delay Time 2 

Dynamic 
Shutdown 

Shedding 
Shifting 

Off Time - 

Lightning Sensors Dynamic 
Shutdown 

Shedding Off Time - 

Storage UPS Discharge Shifting Load Profile 
Delay Time 

1 

Generator Use Shifting Load Profile 
Delay Time 

- 

Renewable 
Generation 

Use On-Site 
Generation 

What  
How Much 

- 

In the upcoming sections the contract premises proposed by this work will be discussed in 

detail within the DSO optimization particularities. However, it is important to highlight that the 

background to this type of agreement has been established by Basmadjian et al. (2013) with three 

different strands: 

• GreenSLA (Green Service Level Agreements) contracts are agreements between data centers 

and ITCs, which reflect the agreed scope for the data center to operate in an energy-aware 

manner and at the same time guarantee a certain level of QoS for the IT customers. 

• GreenSDA (Green Supply Demand Agreements) contracts are agreements between EPs and 

data centers, which define the flexibilities and energy-related contractual terms that these 

parties grant to each other. 

• GreenWSOA (Workload Services Outsourcing Agreements) contracts are agreements among 

federated data centers that set rules for the geographical shifting of workload. 

This thesis is focused just in the GreenSDA profile as prescribed by the proposed framework, 

however the contractual terms discussed in Basmadjian, Niedermeier, et al. (2013), will be adopted as 

comparative parameter of analysis.  



LOAD MANAGEMENT AND DEMAND RESPONSE IN SMALL AND MEDIUM DATA CENTERS   
 

85 

While the terms in Basmadjian, Niedermeier, et al. (2013) are based on power adaptation 

profiles during a DR event, the proposed terms of the contract in this thesis stem from the premise that 

these profiles must be previously established, in the act of signing the agreement between the parties, 

i.e., before a data center participates in the contract it is necessary that it can guarantee the reduction 

profile stipulated by DSO. For such purposes, this work is going to consider the profile values 

determined in the trials of Basmadjian et al. (2015), which are: 105 kW for small data centers and  

550 kW for medium data centers. 

4.3 SMDC MATHEMATICAL MODELS 

SMDC can support a broad range of workloads in a normal operation during a time window &. These 

loads are typically divided in computational (e.g., CPU, memory, network and storage) and non-

computational (e.g., cooling, lighting, and power facility) and then subdivided in delay-sensitive, with 

no flexibility and delay-tolerant, with flexibility of scheduling.  

Assuming that, for the purpose of DR strategies, the loads should be primarily flexible, all data 

centers will be managed at DR time % responsible for shifting or shedding the flexible workload of geo-

dispersed data centers, in order to attend a DR event decreasing their loads in response to the DSO 

needs established in a contract, or to dynamic tariffs.  

However, after the DR period the reduced power tends to return to its baseline (&), but before 

it, in a time window % + 1 occurs a process of RE, wherein there is an energy consumption increase 

equivalent to 100% of the energy consumption reduction during the DR period aggravated by the 

losses, to ensure the service replenishment that was decreased during DR. For example, as the 

temperature of cooling devices increases in a DR event, the power decreases. Subsequently, to recover 

the temperature after the DR event, a higher power is needed, before resuming the usual value. 

It is considered a discrete time model & ∈ # = {1,… , w} representing a temporal baseline (e.g., 

typically a day, or a month), where the normal operation of SMDC and their critical mission occurs. Let 

% ∈ 	ℐ = {1, … , ª} denote a DR period and % + 1 ∈ 	ℐ = {1,… , ª} denote a RE situation. Let $ ∈ 	" =

{1,… , º} represent the set of SMDC, ICT workloads, or CRAC units.  

 In the same context, it is important to highlight the general constraints of this problem as 
follows: 

• ICT workload. 

• Cooling. 

• Uninterrupted Power Supplies. 



DEMAND RESPONSE METHODOLOGY FRAMEWORK 
 

86 

4.3.1 ICT Workload 

Each data center $, has hundreds of servers providing services to meet users’ requests. _59YR  represent 

the maximum number of servers per data center. The data center operator can switch on or off servers 

to adjust the service time, as well as shift or shed certain workloads in selected servers _CK:KB7R
D in order 

to attend a DR event, as formulated by Equation 4.1. Since the number of servers is typically large, it 

can relax the integer constraint on the number of selected servers without significantly affecting the 

optimal result. 

ù_CK:KB7R
D

2

.≥¥

= 	_7879:D, _CK:KB7R
D ≥ 0	, ∀$ ∈ ", % ∈ ! (4.1) 

where Equation 4.2 _7879:D is the total of selected server in a set of SMDC.  

0 ≤ _CK:KB7R
D ≤ _7879:D ≤ _59YR	, ∀$ ∈ ", % ∈ ! (4.2) 

In a specific time slot %, flexible workloads can be ready to run in each data center during a 

demand response signal. There are different types of workloads, and each one may correspond to a 

specific application. Then, a total of " data centers might work jointly from the DSO point of view to 

complete the total flexible workload of SMDC <7,m:KYD with the attribution of a single data center $ 

running <,m:KYR
G  or a set of them, $ + 1, working together, as can be seen in Equation 4.3.  

ù<,m:KYR
D

2

.≥¥

= <7,m:KYD	, <,m:KYR
D ≥ 0, ∀$ ∈ ", % ∈ ! (4.3) 

<,m:KYR
D represents the computation demand that can be decreased in terms of power in a DR event 

and executed in an appropriated cost-effectiveness time window in a load shed DR strategy. In this 

approach, the workload service demand, considering memory, storage and network, is neglected for 

simplicity. In order to consider it, the service demand have to be changed from a scalar to a vector, in 

which each element corresponds to one type of demand. Equation 4.4 models the workload.  

ù <9::8BR
D	

2

.≥¥
= <,m:KYR

D , 0 ≤ <9::8BR
D 		 ≤ <+KC.HR

GED 	, ∀$ ∈ ", & ∈ #, % ∈ !   (4.4) 

where, % is the maximum number of time slots allowed for finishing the flexible workload $ from its 

arrival time &, in a DR event i.e., the work $ must be fully served before the beginning of time slot & + %. 
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<9::8BR
D  is the SMDC allocated capacity in slot &, where (0 ≤ % ≤ &). <+KC.HR

GED	 represents the SMDC 

baseline residual capacity to run the workload after a DR event in time slot & + % of a load shifting DR 

strategy, where (0 ≤ <+KC.HR
GED ≤ <7879:R

G), with <7879:R
G denoting the SMDC total capacity. On the other 

hand, <,m:KYR
DEF  denotes the flexible power assuming the residual and baseline values. 

Data centers should provide to their users guarantees through a QoS policy, ensured by a 

previous established service level agreement (SLA), where average performance for the data center 

operation is guaranteed in a time window. Small and medium data centers usually do not have SLA in 

terms of general data center operation. However, it is common that several applications and services 

have a certain QoS level in their operation.  

Hence, in a DR event the prior assumption is that the workload will be reduced, i.e., it will have 

quality constraints in terms of processing, memory and disk allocation. Therefore, the first criterion to 

meet the DR QoS requirements, as shown Equation 4.5, is being a flexible workload.  

u;_ =
<,m:KYR

D

<9::8BR
D	† , ∀$ ∈ ", & ∈ #, % ∈ !    (4.5) 

The second criterion lies in the fact of strictly observing the flexible workloads reduction 

thresholds and subsequently returning to a previous baseline where the prices are cheaper. Thus, these 

thresholds are mathematically described in Equation 4.6.  

  0 ≤ <9::8BR
D ≤ <+KC.HR

GED ≤ <7879:R
G,	 ∀$ ∈ ", & ∈ #, % ∈ !    (4.6) 

where the workload to be reduced by a previous cut of resources should fulfil the allocated capacity, 

or remain below, if there are no requirements of computational elements. These QoS thresholds are 

lower than the baseline residual capacity, which in turn is lower than the total capacity. 

4.3.2 Cooling Solutions 

Besides server power consumption and UPS’s, cooling solutions also greatly contribute to the energy 

consumption of a data center. One of the simplest power models for computer room air conditioner 

(CRAC), used in the majority of SMDC, was demonstrated by Zhan and Reda (2013), in which the total 

power budget is split among computational environment and cooling solutions. The power 

consumption was modeled by Equation 4.7 with <B+9B  of a CRAC unit $. 

<B+9BR =
∑ <.B7.

3;<∞ , ∀$ ∈ " (4.7) 
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where <.B7 is the power consumption of the ICT load with their heat flow directed towards the CRAC 

unit, being the 3;<, given by Equation 4.8, the Coefficient of Performance, which is the ratio between 

the removed heat c and the amount of work necessary * to remove that heat and varying in function 

of the temperature wCno  and w9H/ . wCno  is the temperature of the air supplied by CRAC units, w9H/ =

wC9mK − w59Y, with wC9mK denoting the maximum permitted temperature at the server inlets in order 

to prevent device damage and w59Y the maximum temperature of the server inlets in SMDC; if w9H/  is 

negative, it indicates that a server inlet exceeds the maximum safe temperature. In response, it 

necessary to decrease wCno  to bring the servers back below the system redline level 

3;< = c
*∞  (4.8) 

The temperature set-point of the computer room air conditioner (CRAC) recommended by 

ASHRAE is between 10 to 35 °C for A2 class. In a DR event, in a time window %, the environment 

temperature can increase to the maximum set-point, in order to reduce the consumption. Based on 

Doyle et al. (2013), the potential of power reduction in a cooling DR event can be obtained by Equation 

4.9. 

<B88:R
D = 	<.B7 3;<∞ + <m96	, ∀% ∈ !    (4.9) 

where <.B7 is the total power of ICT load consumption, <m96 is the power required by the fans of the 

CRAC units and <B88:R
DEF it the RE situation where the temperature decreases and assumes the previous 

baseline values. 

4.3.3 Uninterrupted Power Supplies 

In a DR event, SMDC have to make a decision on whether they use UPS’s as a resource by discharging 

energy from the available batteries, being ?H.CD(=;=) the discharged energy and ?59YH.C the amount 

of UPS energy that can be discharged at the depth-of-discharge level (DoD) where DoD ∈ [0,1], as 

given by Equation 4.10. 

?59YH.C = (−=;= + =;=59Y)47879: (4.10) 

The recharge function at the depth-of-discharge level is represented by ?+KBDEF(=;=) and its 

maximum value ?59Y+KB  is formulated by Equation 4.11. 

?59Y+KB = (=;=)47879:  (4.11) 
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In order to preserve the useful lifetime, the UPS battery must reserve a minimum energy level 

of its capacity 45.6. Additionally, the UPS should not be totally discharged during the DR event, in order 

to preserve energy for the data center operation. Therefore, the maximum amount of energy for 

discharge during a DR event should be limited, being Ä is use factor percentage to a DR event. Assuming 

that an UPS has a capacity of 47879:	and the efficiency of UPS (including the battery) charging and 

discharging are the same, represented by á ∈ [0,1] , where á = 0.9 . The UPS capacity level 47  is 

expressed by the set of Equations from 4.12 to 4.15:  

0 ≤ ?H.CD(=;=)	≤ ?59YH.C	Ä	, ∀% ∈ !  (4.12) 

0 ≤ ?+KBDEF(=;=) ≤ ?59Y+KB 	, ∀% ∈ !    (4.13) 

47∆¥ = 47  + á?+KBDEF(=;=)	−	
?H.CD(=;=) á∞   (4.14) 

45.6 ≤ 47 ≤ 47879:	, ∀& ∈ # (4.15) 

Using a different mathematical notation in function of the power during the DR event, the 

formulation of Equation 4.14 can be rewritten in Equation 4.16 

47 = 47Ø¥ + 	á<noCDEF	(% + 1) 	−	<noCR
D 	%/á	, ∀& ∈ #, % ∈ !    (4.16) 

where, <noCR
D  is the power to be discharged during the event in a time window %, 47Ø¥ is the capacity in 

the previous time instant and <noCR
DEF is the recharging process in a RE situation. 

4.3.4 Power Consumption 

The data centers power consumption can be divided between ICT power consumption and non-ICT 

power consumption. The quantitative relation between them is measured by the PUE, which is 

represented as the ratio between the total power consumption and the ICT energy consumption. One 

on hand, the power used by computing devices is considered productive. On the other hand, the power 

for support infrastructure is auxiliary. Thus, PUE helps to understand the total power consumption 

based on the ICT power consumption. Therefore, in Equation 4.17 the total data center energy 

consumption <C5HBR
G  can be calculated in a data center $ in the time slot &. 

<C5HBR
G = _59YR [<.H:K + (<oK9N − <.H:K)	ä.

7] + _59YR[(<.H:K + (<`?	.
7 − 1)<oK9N], 	

∀$ ∈ ", & ∈ # 

(4.17) 
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where, _59YR  is the maximum number of servers in the data center, <oK9N and	<.H:K are the servers 

peak and idle power, respectively and	ä.
7 is the average server utilization (between 0 and 1) at time &, 

assuming that servers and their utilization rate are homogeneous. The expression in (4.17) has two key 

terms. The first term, i.e., _59YR[<.H:K + (<oK9N − <.H:K)	ä.
7] represents the power dependent on ICT 

load and the second term, i.e., _59YR [°<.H:K + °<`?	.
7 − 1¢<oK9N«represents the power incident on 

non-ICT load.  

4.3.5 Energy Cost 

In a normal operation, Equation 4.18 presents the energy cost in SMDC considering all time slots &. 

?B8C7G = ùûùë<C5HBR
G	ã7ï

Z

7≥¥

ü
]

.≥¥

 

	∀$ ∈ ", & ∈ #    

(4.18) 

where,  

?B8C7G  = is the baseline energy cost in a time normal time slot &  

<C5HBR
G  = is the total SMDC power consumption 

	ã7= is the electricity price in a time slot & 

When dynamic tariffs are considered, it is possible to create variations in the tariff, in order to 

motivate DR events, since a high cost will encourage a consumption reduction. However, immediately 

afterwards the DR event, the rebound effect occurs, in which the previously reduced power will be fully 

taken over until it reaches the baseline value. Thereby, the total energy cost, taking into account the 

normal operation, the demand response and rebound effect windows is given by Equation 4.19. 

?7879:B8C7QG = ù
1
&v

»ûù<C5HBR
G	ã7

Z

7≥¥

ü − …ùé<C5HBHKBR
D	ã/ó

 

/≥¥

À
]

.≥¥

+ …ùé<C5HB.6BR
DEF	ã/∆¥ó

 

/≥¥

ÀÃ 

∀$ ∈ ", & ∈ #, % ∈ ! 

(4.19) 

where, 
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?7879:B8C7QG  = is the total energy cost in a dynamic tariff approach 

<C5HBHKBR
D = is the decreased SMDC power consumption in a DR event % 

<C5HB.6BR
DEF  = is the increased SMDC power consumption in a RE situation % + 1 

ã7  = is the electricity price in a time slot &  

	ã/= is the electricity price in a time slot % 

	ã/∆¥ = is the electricity price in a time slot % + 1 

&v = time slots per hour 

or in other terms as formulated by Equation 4.20. 

?7879:B8C7QG = ù°?B8C7G − ?B8C7D + ?B8C7DEF¢
]

.≥¥

 

	∀$ ∈ ", & ∈ #, % ∈ ! 

(4.20) 

where,  

?B8C7D = is the reduction of energy cost in a DR event in time slot % 

?B8C7DEF  = is the increase of energy cost in a RE situation in time slot % + 1 

On the other hand, in the case where the approach to be considered is an incentive-based 

contract, the formulation presented in Equation 4.21 is depicted as: 

?7879:B8C7RS = ù
1
&v

»ûùë<C5HBR
G	ã7ï

Z

7≥¥

ü − ûùé<C5HBHKBR
D	ã7ó

Z

7≥¥

ü
]

.≥¥

+ ûùé<C5HB.6BR
DEF	ã7ó

Z

7≥¥

ü − …ùé<C5HBHKBR
D	à/ó

 

/≥¥

ÀÃ 

	∀$ ∈ ", & ∈ #, % ∈ ! 

(4.21) 

where,  

?7879:B8C7RS = is the total energy cost in an incentive-based contract approach 

à/ = is the incentive given to participate in a DR event in the % time instant 



DEMAND RESPONSE METHODOLOGY FRAMEWORK 
 

92 

or in other terms as formulated by Equation 4.22. 

?7879:B8C7RS = ù°?B8C7G − ?B8C7D + ?B8C7DEF − ?.B8C7D¢
]

.≥¥

, ∀$ ∈ ", & ∈ #, % ∈ !  (4.22) 

where,  

?.B8C7D = is the incentive in a normal time slot & 

Upon accepting a DR signal, in order to decrease power, a SMDC can fall into three situations 

based on the power reduction percentage in the defined time window: 

• Reducing between 80% and 100% of the power target and therefore receiving the incentive; 

• Reducing between 20% and 79% of the power target and thus, not receiving the incentive and 

not paying the penalty; 

• Reducing below 20% of the power target and then paying the penalty. 

With the above-mentioned constraints, it is possible to formulate the SMDC energy costs 

minimization problem. Thus, the objective is to minimize the SMDC total energy cost in DR events, both 

in the dynamic tariff scenario in Equation 4.23 and in the incentive-based contract in Equation 4.24, as 

follows: 

• Objective function 1: Dynamic tariff SMDC energy cost minimization 

minb(>&) = ù
1
&v

»ûù<C5HBR
G	ã7

Z

7≥¥

ü − …ùé<C5HBHKBR
D 	ã/ó

 

/≥¥

À
]

.≥¥

+ …ùé<C5HB.6BR
DEF	ã/∆¥ó

 

/≥¥

ÀÃ 

vz-%\4&	&;	4;hv&ò'$h&v 

(4.3) − (4.6) 

(4.7) − (4.9) 

(4.10) − (4.16) 

(4.23) 
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• Objective function 2: Incentive-based contract SMDC energy cost minimization 

minb($4) = ù
1
&v

»ûùë<C5HBR
G	ã7ï

Z

7≥¥

ü − ûùé<C5HBHKBR
D	ã7ó

Z

7≥¥

ü + ûùé<C5HB.6BR
DEF	ã7ó

Z

7≥¥

ü
]

.≥¥

− …ùé<C5HBHKBR
D	à/ó

 

/≥¥

ÀÃ 

vz-%\4&	&;	4;hv&ò'$h&v 

(4.3) − (4.6) 

(4.7) − (4.9) 

(4.10) − (4.16) 

(4.24) 

4.4 PROBLEM 1: SMALL AND MEDIUM DATA CENTERS OPTIMIZATION 

The first optimization problem, established by the second layer of the proposed framework, is 

specifically focused on SMDC and successively on their relationship with DSOs. Through the 

optimization techniques and strategies that will be detailed, it will be possible to carry out an 

implementation process capable of extracting the best advantages in terms of energy costs. 

4.4.1 Linear Optimization Programming Techniques 

Operations Research (OP) techniques have been used to solve many problems since 1950s (Clímaco et 

al. 2003). With each passing year, new forms of solving different sort of problems through OR 

techniques are proposed. Nonetheless, Linear Programming (LP), which was introduced in 1827 by 

Joseph Fourier (Sierksma 2001), developed in 1939, during World War II by Leonid Kantorovich 

(Schrijver 1986), and was framed in the literature by the invention of the Simplex Method in 1947 by 

George Dantzig (Schrijver 1986), has never lost its acceptance among all those used techniques.  

In LP, all functions and constraints are correlated to a variable “ with the form '7“ + -. These 

linear optimization techniques can be divided into three main categories: continuous, integer and 

mixed-integer. The continuous linear method optimizes variables that are commonly real numbers. It 

is resolved using algorithms, which produce iterated values of the variables until a solution is found 

(Wright 2010). The integer programming method is comparable to the continuous, however includes 

an additional constraint that claims that some or all the optimization variables need to be integers. The 

programming technique used in this thesis is the Mixed Integer Linear Programming (MILP), that was 
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composed on the base of Dantzig’s Simplex Method. According to Bixby (2012) the first commercially 

used mixed integer linear programming code dates back to 1960s. It is characterized by the fact that it 

associates continuous and discrete variables. Mathematically, the mixed integer technique search for 

a vector “ that maximize or minimize an objective function under a set of constraints (Iqbal et al. 2014). 

The formal mathematical expression is given in the set of Equations and Inequations 4.25, 4.26 and 

4.27. 

e$h 4Z  (4.25) 

v. &	®“ ≤ -	 (4.26) 

'h>	“ ≥ 0 (4.27) 

In this classical demonstration of LP model, e$h or e'“ depicts the objective of creating the 

model. For example, the objective function of a cost problem normally aims to minimize the cost, while 

a profit problem usually tends to maximize the objective function. 4  is a row vector that denotes 

coefficients of unknowns in the objective function. - is a column vector that demonstrates right hand 

side coefficients of constraints. w is the transpose symbol that converts the row vector to a column 

vector. The abbreviation v. &	corresponds to ‘subject to’ in optimization context. ® is a matrix that 

comprises coefficients of unknowns in constraints. “  is a column vector that symbolizes unknown 

variables which can assume continuous or discrete values. In this context, MILP is applicable; if the 

problem adopts “ as a continuous variable, then the problem is a LP problem, otherwise (“ is discrete 

or integer), it is a MILP problem. Therefore, adding one more constraint, such as “ ∈ ”6, becomes the 

LP problem in a MILP problem. 

MILP is a notorious utilized optimization method for solving many sorts of engineering and 

business problems, such as travelling salesman problem (a very well-known problem as TSP), 

transportation, optimal scheduling, optimal dispatch of power generator, etc. There are many 

optimization package programs, such as MATLAB’s Optimization Toolbox, LINDO, Gurobi, Mathcad, 

MOSEK, GAMS, OptimJ, AMPL. Many other packages that uses C, C++, CPLEX, Java, FORTRAN, Visual 

Basic, .net, MATLAB interfaces to solve optimization problems are available as a possibility. Moreover, 

the Microsoft Excel has an Excel Solver add-on that is applicable to deal with optimization problems. 

However, this study uses MATLAB’s 'intlinprog' algorithm that enables the user to choose the preferred 

solving method among these existing techniques. This algorithm and its corresponding options will be 

explained with more details in the next section. 
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4.4.2 MATLAB’s ‘intlinprog’ Algorithm 

MATLAB contains many algorithms for a broad diversity of optimization problems, such as linear, 

nonlinear, and quadratic programming problems in its optimization toolbox. MATLAB’s ‘intlinprog’ 

algorithm is one of the tools present in this toolbox for solving MILP problems. The word ‘intlinprog’ is 

the abbreviation of integer linear programming in the perspective. This algorithm was added into the 

optimization toolbox in 2014. Considering that MILP has become a known mathematical language in 

the literature since 1960s, the inclusion date of this algorithm might be comprehended as a late release. 

However, MATLAB is a modular software with continuous updates. Meanwhile, there has already 

existed other codes for other programming languages to solve MILP problems among optimization 

software. The difference that makes this algorithm more compelling is its user-friendliness. The 

referred algorithm contains a considerably large variety of settings that can be customized by the user 

in order to address the problems solutions from different aspects. There are essentially three methods 

used in this algorithm to find optimal solutions for MILP problems: B&B method, cutting plane method, 

and MATLAB’s heuristics method. 

The algorithm is developed by default as a minimizer and requires an objective function aiming 

at minimizing the solution. Hence, a maximization problem has to be transformed in a minimization 

structure by multiplying its objective function by ‘-1’ in order to allow this solver’s solution approach. 

Furthermore, all inequality constraints of minimization or maximization problem type, which contains 

greater than or equal to (≥) signs should be also converted into a less than or equal to (≤) by multiplying 

both sides of constraints by ‘-1’. Summarizing, the ‘intlinprog’ algorithm solves problems in the 

following form the set of Equations and Inequations from 4.28 to 4.33. 

e$h bZ“  (4.28) 

v. &	® ∙ “ ≤ -	 (4.29) 

®\’ ∙ “ = -\’	 (4.30) 

d- ≤ “		 (4.31) 

“ ≤ z- (4.32) 

“($h&4;h)	values	are	integers (4.33) 

The ‘intlinprog’ algorithm fundamentally requires some matrices and vectors, such as ® matrix 

for coefficients of inequality constraints, - column vector for inequality constraints corresponding right 

hand sides, ®\’  matrix for coefficients of equality constraints, -\’  column vector for equality 

constraints corresponding right hand sides, b  vector for coefficients of variables in the objective 



DEMAND RESPONSE METHODOLOGY FRAMEWORK 
 

96 

function, z- and d- column vectors to set upper bounds and lower bounds for values of variables given 

in the objective function, and $h&4;h row vector to differentiate discrete variables from continuous 

variables. After setting these matrices and vectors for a specific MILP problem, the ‘intlinprog’ algorithm 

applies the above-mentioned three MILP solving procedures and identifies the optimal solution. 

4.4.3 Electricity Price Fluctuation 

Before defining the mathematical model based on a MILP algorithm to implement the SMDC 

optimization, different electricity price fluctuation scenarios are considered and the electricity market 

is regulated depending on the economic conjuncture and the energy policy of a given country. The 

electricity price methodology that will be adopted is from Portugal. 

 According to Energy Services Regulatory Authority (2018) in Portugal “in the context of the 

markets liberalization process, where the activities of the network operators are considered natural 

monopolies and are therefore subject to economic regulation, the production and selling of electricity 

are open to competition.  

The Iberian Electricity Market (MIBEL) is a platform where electricity is traded for delivery the 

day following that of the negotiation. This market forms the price for each one of the 24 hours of each 

day and for each one of the 365 or 366 days of each year. The market price at each hour is found 

through a process where the price of the production offers is placed in ascending order (supply curve) 

and the price of the electricity buying offers are placed in descending order (demand curve) for the 

same time. The market price (corresponding to the crossing of the supply and demand curves on a 

graph) is the lowest price which guarantees that supply satisfies demand. The operating rules of this 

organized market are specific to the market operator (OMEL). 

The process development for the electricity sector liberalization dictated the trading market 

opening, and, in the present framework, any consumer can freely choose their electricity supplier. 

The evolution of the retail market conditions, namely pertaining in what concerns the price of 

electricity, is clearly restricted by the evolution of the wholesale market, since the latter determines a 

substantial part (energy costs) of the total costs of the supply of electricity.” 

In this context, three electricity price fluctuation scenarios are taken into account: 

• The first one is based on an hourly electricity price fluctuation, whereby the tariffs are dynamic 

and fluctuate hourly depending on the energy generation, consumption and the peak hourly 

loads, as shows in Figure 4.3.  
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Figure 4.3 – Hourly electricity price fluctuation 

This tariff was firstly composed using as sample the prices of energy in the wholesale market 

on February 22, 2018, which is a representative day in terms of the price variation in Winter. 

The next step was to use the average energy price of a service building, namely the 

Department of Electrical and Computer Engineering (DEEC) of the University of Coimbra (UC) 

in Portugal. The ratio between the average prices of the service building and the wholesale 

market was calculated to have a tariff with the hourly variation of the wholesale market and 

the average price of the building. 

Following the same premises, in order to present the same prices in 20 minute intervals, each 

hour is divided into three periods, totalizing 72 different markings, as depicted in Figure 4.4. 

Although it is more common to consider periods of a quarter of an hour, i.e., 4 periods of 15 

minutes, for the purpose of simplification this work will consider 20 minutes to coincide with 

the number of constraints described in optimization problems in SMDC.  

 

Figure 4.4 – Hourly electricity price fluctuation in 20 minute intervals 

• In the second scenario, the same hourly electricity price fluctuation is taken into account, 

however in a specific 20-minutes period the price is induced to stimulate a DR action (price 
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increase) and shortly thereafter contemplate a RE situation (price decrease), as shown in 

Figure 4.5. 

 

Figure 4.5 – Hourly electricity price fluctuation applied to a DR action 

• The third case also considers three periods of 20 minutes in each hour, but using a Time-of 

Use tariff with four periods, as can be seen in Figure 4.6, namely: peak, half-peak, normal off-

peak and super off-peak hours. The prices established in this composition are originated from 

those practiced by the DEEC service building at the UC. Additionally, in the DR period, it is 

considered the application of a financial incentive. 

 

Figure 4.6 – Tariff periods electricity price fluctuation 

4.4.4 Optimization Scenarios 

Taking into account the electricity price fluctuations already defined, three different optimization 

scenarios will be established for SMDC using the MATLAB ‘intlinprog’ algorithm in MILP simulations 

with their respective constraints. 

• Considering that SMDC can take advantage of dynamic tariffs in an hourly electricity price 

fluctuation to reduce power in a DR event, the first scenario aims to find an optimal price time 

for this reduction, as well as setting the best tariff windows to smooth the rebound effect 
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process, as presented in the example code of Annex 1.1.1. Thus, the optimization function is 

given by the defined electricity cost value 	ã}fl  and the following º × 24 matrix in Equation 

4.34, where º is the number of SMDC. 
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⎥
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⎥
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(4.34) 

With the same price variation, but a different aggregation of data defined by periods of 20 

minutes every hour, the optimization function is given by the defined electricity cost value 	ãÏ} 

along with º × 72 normal operation matrix, º × 1 DR matrix and º × 1 RE matrix, compounding 

Equation 4.35, where º is the number of SMDC. 

     

 

 

(4.35) 

• The second scenario used the same matrix arrangement of Equation 4.35, but the change of 

prices in DR e RE circumstances vary sharply as previous defined e to stimulate a DR event and 

contemplate a RE, as presented in the example codes of Annexes 1.1.2 and 1.1.3.  
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• In the third scenario, the objective is that SMDC can receive incentives for each reduction in 

the power percentage agreed in the contract and for this purpose it is considered that DR and 

RE occurs in the same tariff period, as presented in the example code of Annex 1.1.4. Thereby, 

the optimization function is given by the defined electricity cost value 	ãÏ} along with º × 72 

normal operation matrix, º × 1 DR matrix, º × 1 RE matrix and the addition of º × 1 incentive 

matrix, compounding Equation 4.36, where º is the number of SMDC. 

    

 

 

(4.36) 

The three assumed scenarios are subjected to three different constraints. The SMDC total 

power is expressed by <C5HBR
G, however either <C5HBHKBR

D in a DR event, or <C5HB.6BR
DEF in a RE situation 

are respectively composed in Equation 4.37 and 4.38 of the sum of the ICT and non-ICT loads, the latter 

being the aggregation of the cooling and the UPS workloads. 

<C5HBHKBR
D = 	<,m:KYR

D + <noCR
D + <B88:R

D (4.37) 

<C5HB.6BR
DEF = 	<,m:KYR

DEF + <noCR
DEF + <B88:R

DEF (4.38) 

 Thereby, in the first constraint the sum of the decreased power <,m:KYR
D , <H+noCR

D , <H+B88:R
D 	in a 

DR event cannot exceed the contractual power reduction target of -105 kW for small data centers, as 

formulated by Equation 4.39 and -550 kW for medium data centers, as set by Equation 4.40. 

	<,m:KYR
D + <noCR

D + <B88:R
D ≤ −105  (4.39) 

<,m:KYR
DEF + <noCR

DEF + <B88:R
DEF ≤ −550 (4.40) 
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 In the second constraint, the sum of the increased power <,m:KYR
D , <H+noCR

D , <H+B88:R
D  in a RE 

situation cannot exceed 105 kW for small data centers, as formulated by Equation 4.41 and 550 kW for 

medium data centers, as set by Equation 4.42. 

<,m:KYR
D + <noCR

D + <B88:R
D ≤ 105  (4.41) 

<,m:KYR
DEF + <noCR

DEF + <B88:R
DEF ≤ 550 (4.42) 

The third constraint establishes the SMDC lower and upper boundaries for each strategy of 

power reduction and raising in a DR event and RE situation respectively, as can be seen in Equations 

4.43, 4.44 and 4.45. 

d- ≤ <,m:KYR ≤ z- (4.43) 

d- ≤ <noCR ≤ z- (4.44) 

d- ≤ <B88:R ≤ z- (4.45) 

4.5 PROBLEM 2: DISTRIBUTION SYSTEM OPERATOR OPTIMIZATION 

In the course of this work it has been highlighted the importance to implement new policies that 

contemplate the relationships established between the DSO and SMDCs. The best way to build these 

bases will be through the growth of optimization, simulation and analysis of results process. Specifically, 

in the case of DSOs, it is extremely important to focus on optimization processes that allow predicting 

and anticipating the key relationships and interactions that can occur contractually between the parties. 

In this way, it is possible to strengthen existing policies and propose new ones from such observations. 

In the first problem, already described, the interaction proposed by the framework between 

the actors established in the scope of this work, occurs fundamentally from SMDC responding to a 

direct, or indirect request of DSO. The implementation of this process can happen through dynamic 

tariffs, or by contracts. In other words, SMDC can act individually to take advantage of the best tariff 

window by reducing power in a DR event and consequently minimizing their energy costs. In another 

form, they can sign a DSO contract where incentives are received if a given percentage of power is 

reduced, or a penalty payment will be due otherwise. 
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However, the interaction flow between the actors in the second problem is inverse, i.e., it 

fundamentally happens with DSOs direct, or indirectly requiring a response from SMDC. In this case, 

the mechanisms of implementation can also occur by tariffs, or contractually, whereby the 

operationalization terms are established by DSO and if it is advantageous, signed by any SMDC that 

meet the prerequisites. 

4.5.1 Contractual Terms 

In this context, the DSO contract is optimized by a random-rotating and fairness algorithm capable to 

define, after manifest interest, which SMDC will be chosen in each DR event. In order to promote 

fairness among SMDC participations, the algorithm also establishes a justice criterion balancing the 

various selections during a given contractual period. 

On one hand, the contract proposed in Basmadjian, Niedermeier, et al. (2013) and also adopted 

in Basmadjian et al. (2015) advocates eight terms.  

• The first and second contractual terms correspond respectively to a minimum and maximum 

power reduction expressed in kW. For each of the above-mentioned terms, two sub-terms are 

defined that specify the minimum and maximum duration (in minutes) of the corresponding 

power adaptation.  

• The third term represents the maximum amount of time (in minutes) DC needs to send back a 

reply to EP.  

• The fourth term specifies the maximum number of rejections by DC to EP’s power adaptation 

requests on a monthly basis.  

• The fifth term defines the maximum number of successive rejections allowed by DC.  

• The sixth term states the maximum number of requests EP can send to each DC on a monthly 

basis.  

• Since recovering from a power adaptation needs to be performed within a reasonable amount 

of time, the seventh term specifies the minimum period of time (in minutes) between two 

successive EP’s power adaptation requests to DC.  

• The eighth term guarantees that the DC has enough time (in minutes) to receive a notice from 

EP regarding a potential power adaptation request. Every time one of the parties’ breaches one 

or more contractual terms of this contract, a penalty is applied. Also, incentives are created 

based on the signed terms. 

Therefore, as can be noticed, this contractual profile in addition to establishing multiple terms 

adding greater complexity, increases the probability of incurring in penalty cases, making this approach 
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more restrictive, penalty-oriented, and hindering adoption by data centers data centers, whose the 

primary mission is to provide ICT services rather than energy services. 

On the other hand, the proposed contract by this work establishes only four terms, in order to 

reduce the complexity, making the contractual model more attractive to SMDC. Nonetheless, as already 

mentioned, one of the added values of this contract profile is that SMDC need, before signing the 

contract, to ensure that they have conditions to reduce the power objective established by the DSO: 

105 kW for small data centers and 550 kW for medium data centers. This premise, in addition to avoid 

the power adaptation profile phenomenon adopted by Basmadjian et al. (2015) and explained in the 

scope of the Section 4.2, also avoids the surprise and complexity of dealing with various load profiles 

not long before the DR event began. Hence, the four terms are: 

• In the first term, each SMDC can establish along with the DSO the sum of power (accumulated 

during a period of time) that can be reduced during a cycle, for example, a monthly cycle. This 

liberation alternates the penalty-oriented flow and causes the goal of reducing a critical mission 

power to gain financial advantage, becoming more attractive, anyway if a data center has 

stipulated a maximum power to be accomplished during a cycle, it will do its utmost to achieve 

that value to receive the proposed incentive. 

• Regarding the number of DR events to participate during a cycle, the second term states that 

to data center shall be granted the right not to participate in a given event, claiming operational 

or maintenance reasons. Non-participation will not count for incentive, or penalty effects. 

Therefore, the number of participations of a data center is conditioned to the maximum power 

agreed per cycle and the criterion of randomness and fairness of the algorithm. This policy 

reinforces the DSO interest of contemplating and creating mechanisms to make the aggregate 

participation of consumers as small and medium-sized data centers feasible and operational. 

• The third term specifies that a DR event can occur in one single time window, or more and the 

power required cannot exceed the total power considering the sum of all data centers present 

in the contract. This policy assures SMDCs that the DSO will not take advantage of this type of 

contract in addition to what was previously established. 

• The fourth term defines that the correct ratio between small and medium data centers present 

in the contract must be obeyed at each DR event in order that DSO does not take advantage of 

larger loads or penalize a group of data centers over others, ensuring equal conditions among 

participants.  
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4.5.2 Random-Rotating and Fairness Algorithm Overview 

The algorithm behavior must meet the following conditions: 

• The DSO will send a demand response signal to all SMDC included in the contract. This DR 

signal is characterized by two vectors announcing periods of time and the associated power 

to be reduced. Thus, from the time vector it can extract the total duration of the DR event and 

the power vector, the maximum and average values. 

• Before sending a DR signal, the DSO can predict the amount of SMDC that will be required to 

attend the DR event based on the premise that ensures data centers with different dimensions 

will participate on equal terms of choice, following the ratio criterion of participating data 

centers established in the contract. 

• After receiving such a signal, one or more SMDC, according to their contractual premises, will 

give an answer expressing interest in participating in the DR event (ACK), making themselves 

available to try reducing their loads during the time set by DSO. 

• A certain data center can deny the participation in a DR event (NACK) claiming operational 

reasons, e.g. maintenance, change or devices upgrade. 

• If after sending the DR signal there are more SMDC interested in participating of the DR event 

than necessary to achieve the reduction, a first random selection with a uniform distribution 

is done, creating a list with all the respondents. Then, the SMDC needed for reduction over 

the defined time periods are going to be used. In a second selection process until the end of 

cycle, make a new random selection, but now contemplating the criterion of fairness, which 

will prioritize those data centers who have not yet participated. In case of all data centers have 

already participated, the selection process will be set randomly. 

• Then, reduce certain power in each data center within the time window defined in the 

agreement (e.g. minutes, or hours per day) and in the signal of DR. This reduction must occur 

consecutively using the random and fair list of choice with a uniform distribution within an 

interval time window of 10s, in order to minimize the impact of the rebound effect. 

• The DR event is analyzed in small time fractions enacting the above reduction criterion, rather 

than the entire DR time window. This mechanism will provide more reliability in terms of grid 

stability and security since the distribution of power reduction by time will be steadier and 

smoother. 

• This power is going to be decrease through priority workloads defined by SMDC operators and 

mentioned in the contract. 
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• The workloads should follow the criteria of initially prioritizing the non-ICT loads and only after 

the ICT loads. 

• During the time window where the DR event will happen, the power to be reduced is 

monitored in real time to assess if the defined objectives are achieved. If not, new remaining 

SMDC from the previous list are called to meet the requirements. 

• The reduced power from each chosen SMDC is decreased from the previously established 

accumulated power reduction present in the contract. 

• At the next DR event, the remaining accumulated power is considered to the reduction and no 

more the total power. 

• The above-mentioned procedures at each DR event are repeated. 

• After the contractual cycle closes, perform calculations to grant incentives, apply penalties, or 

present data centers that will not have to receive or pay any amount penalties in an unchanged 

scenario. 

• Print the needed outputs based on a balance sheet on function of events, acceptance rate, 

reduced power and financial information. The parameters to do these calculations should be 

the amount of reduced power, the associated reduction percentage and the incentive and 

penalty rates considered: 1 € for small data centers and 1.5 € for medium ones. The adoption 

criterion for these values was the cost of power during peak demand hours, i.e., 10 and 15 

times the cost of the additional that is paid during such hours.  

• Note that at the beginning of every cycle, the contract reduction parameters need to be reset; 

• The code development of this algorithm was also implemented in MATLAB and its main 

functions were separated into different files, as represented by Figure 4.7. 
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Figure 4.7 – Main algorithm files 

It is important to highlight the assignment of each file, as follows: 

• Start: it runs the “Demand Response” file and at the same time imposes a constraint preventing 

that, at each event, DSO requests a larger amount of power to reduce than the total power 

offered by the data centers present in the contract. 

• DemandResponse: it is the main file where the other instructions are called. It is presented in 

Annex 1.2.1 an example of this code. 

• DeclareVariables: it stores the main table inputs in variables format, setting the amount of DR 

events and the percentage of data centers participation by event. In practice, the instructions 

in this file simulate the sending of the DR signal and all data centers that might reject, or accept 

to participate in each event in order to take advantage of power reduction. 

• AssignVariables: the flow continues and the average power to be decreased in multiple time 

windows in the DR events is calculated calling the “Starting Event” file. Thereafter, in this stage 

yet, the process of random selection of all the data centers that previously accepted the 

demand response signal occurs. 
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• StartingEvent: this file is responsible to calculate the average power that will be reduced in 

each time window required in the DR event. 

• RatioCalculation: three types of different ratio calculations are performed by this file. Firstly, it 

is calculated the ratio of SMDC present in the contract by dividing the number of small 

participants by the total of data centers and doing the same process for the medium profile. 

Thereafter, it is needed to calculate the amount of SMDC to participate on the DR event, as 

well as their respective time windows by dividing the amount of small data centers that 

accepted the demand response signal by the amount of time windows and doing the same 

process for the medium profile. Finally, multiplying separately the average power to be 

decreased by the respective SMDC ratio previously calculated, it is assessed how much power 

should be decreased by each small and medium profile, as presented in the example code in 

Annex 1.2.2. 

• PowerNcCriterion: this file, presented as an example in Annex 1.2.3, uses an approach based 

on five different power profiles to set how much power each data center will decrease by event. 

In the contract, data centers commit themselves to a defined amount of flexible load to be 

reduced, once they accept to participate in a DR event. However, during the DR event this 

situation can be occur as agreed, or in a different way. Thereby, the power values considered 

in Table 4.2 to simulate a real scenario are: 

o Accomplish: 105 kW for small data centers and 550 kW for medium data centers. 

o Slightly above: 20% above of the set power. 

o Slightly below: 20% below of the set power. 

o Below: between 20% and 79% of the set power. 

o Quite bellow: between 0.1% and 19% of the set power. 

The values used to fulfill the input table are derived from the result of equations that 

demonstrate the sum of the three flexible load profiles used in this work: flexible ICT workload, 

set point adjustment of cooling devices and UPS discharge. 

Once the values have been defined, percentages will be assigned to each of the 5 profiles, 

which in turn will be distributed randomly among all participants data centers in the contract, 

for simulation purposes. For example, if a contract has 16 small and 16 medium data centers, 

at each demand response event these 5 power profiles will be randomly distributed among 

them. It is important to emphasize the possibility of assigning different weights between these 

profiles in order to simulate scenarios where, for example, the predominance is data centers 

that meet the agreed, or that are a little above, significantly below and so forth. 
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Table 4.2 – Power SMDC values 

Small Data Centers Medium Data Centers 
Pdrwork Pdrups Pdrcool Total Profile Pdrwork Pdrups Pdrcool Total 

40 30 35 105 accomplished 220 150 180 550 

23 55 27 105 accomplished 120 230 200 550 

30 23 52 105 accomplished 150 100 300 550 

52 33 22 107 slightly above 215 185 155 555 

23 59 27 109 slightly above 140 230 200 570 

28 35 47 110 slightly above 166 190 195 551 

37 28 30 95 slightly below 219 150 180 549 

29 41 24 94 slightly below 170 200 160 530 

20 29 37 86 slightly below 100 190 195 485 

24 18 23 65 below 200 100 130 430 

23 31 10 64 below 70 100 60 230 

14 10 16 40 below 119 50 186 355 

9 6 4 19 quite below 53 33 22 108 

4 10 4 18 quite below 32  48 25 105 

1 2 5 8 quite below 20 29 37 86 

• ReductionFairnessCriterion: the sending of the demand response signal is, in practice, to 

broadcast to all data centers of the contract the average power to be reduced during the event, 

as it occurs in the “Star Event” file. Subsequently, the present file is responsible to check if the 

number of SMDC that accepted to participate in the event is less than or equal to the available 

amount of data centers. If this condition is met, the algorithm will choose the data center with 

the least amount of participations. If it is the first event of the cycle, where there was no 

participation, or all of them have the same amount of participations in other events, then the 

choice will be randomly selected. After this fairness process, the number of requests and the 

amount of power reduced by the chosen data centers in the event are stored, as presented in 

the example code of Annex 1.2.4. 

• ResultsRecording: Considering that a cycle is a quantity of demand response events that have 

occurred, regardless of whether it is weekly or monthly, at the end of this process all the results 

are stored in their respective variables, being ready to be presented in charts, or tables. 

• ResultsPresentation: This file neatly displays all charts and tables generated after the end of 

the DSO demand response cycle, such as: 

o Acceptance percentage by data center dimension. 

o Denial percentage by data center dimension.                   

o Joint acceptance and denial percentage by data center dimension. 

o Total accepted calls.                                         
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o Total rejected calls.                                         

o Average power and percentage of non-accomplishment.               

o Participation by events.                                       

o Power reduction percentage.                                      

o Data centers power reduction.                                  

o Minimum, average and maximum reduction per each data center.    

o DSO minimum, average and maximum reduction.                    

o Required and reduced power by event.                           

o Small and medium data center average power reduction by event.   

o Required and achieved power.                                   

o Total reduction achievement.                                    

o Incentive, unchanged and penalty numbers by data center dimension.                     

o Incentive, unchanged and penalty percentage.  

o Financial return. 

4.5.3 Random-Rotating and Fairness Algorithm Flow 

It is fundamental to have a real perspective of the algorithm flow, mainly of the loop and conditional 

structures. Through the flowchart presented in Figure 4.8 it is possible reinforce the core elements of 

the code, such as: the specific ratio calculations, how the Nc power profiles are assigned, the main 

contractual thresholds, in addition to random, fairness and reduction criteria, which are the basis where 

the algorithm was designed.  

Before the initialization process it is important to point out that the main input element of the 

algorithm is a table that makes use of Excel software and internally has three structured spreadsheets 

in the form of matrices.  

• Ssmdc: which represents the contractual information matrix assigned to data centers of small 

and medium profile and their respective ratio. 

• Sdso: defines the representative matrix of the DR signal sent by the DSO in each DR event. 

• Snc: is the matrix that has the responsibility for randomly establishing the different power 

profiles that will be part of the simulation process. 

When the algorithm starts each of these variables is assigned, and the total amount of DR 

events is stored, being part of the loop that defines a complete cycle and the random and fair simulation 

of SMDC participation and choice begins. 
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Figure 4.8 – Random-rotating and fairness algorithm flowchart 

The first condition structure checks whether the data center has its maximum power limit per 

cycle reached. If yes, it leaves the loop, finishes the cycle, prints the results and finds out if it received 

an incentive, has to pay a penalty, or is in an unchanged situation. If not, it is able to participate and 

eventually be chosen in a DR event following all the participation and power reduction process until it 

goes to the next condition structure. In this case, the DSO checks through the instantaneous power 

whether the required power broadcasted in DR signal was achieved. If yes, it leaves the loop, finishes 

the cycle, prints the results and follow the same process of the other condition. But if not, other data 

centers are called to try reaching the required power and follow the previous condition steps. 

In order to better comprehend the flow and specificities of this algorithm a sequential line by 

line description is provided in Algorithm 4.1. 
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Algorithm 4.1: Random-rotating and fairness in small and medium data centers 

 Require: Scon: Set of all SMDC present in the DR contract 

Ensure:  Ssmdc: Matrix (ID; D; Pm; Pa; Pain; C; R; Pred), where 

               ID: is the unique data center recognized by one single identification 

               D: data center dimension (small-size (SDC) or medium size (MDC)) 

               Pm: is the maximum power reduction allowed per cycle 

               Pa: is the achieved power reduction per event 

               Pain: is the instantaneous power reduced in real time during a DR event 

               C: is the accumulated of power reduced during each DR event 

               R: is the amount of request 

               Pred: is the achieved power reduction percentage per event per cycle 

               Sdso: Matrix (T; Pdr; Ap), where: 

               T: DR time window vector 

               Pdr: Vector of power to be reduced in a DR event by all chosen SMDC          

               Pdrm: Average power to be reduced in a DR event and its time windows by all chosen SMDC          

               Ap: Acceptance percentage by DR event          

               Snc: Matrix (Nc; Sa; A; Sb; B; Qb), where: 

               Nc: Power number coefficient 

               Sa: Slightly above power profile 

               A: Accomplish power profile 

               Sb: Slightly below power profile 

               B: Below power profile 

               Qb: Quite below power profile      

1: for Ssmdc Î Scon && n = 1: totalevents do  

2:      if C £  Pm Î Ssmdc then  

3:         send the DR signal Sdso to all SMDC included in the contract with  

        Pdrm = Pdr(1) +Pdr(2)…+Pdr(N) / T(1) +T(2)…+T(N) 

4:         randomly set Ap (ACK) and make a list 

5:         randomly assign Nc by each SMDC ID based on the power profiles (Sa, A, Sb, B, Qb) Î Snc 

6:         set out an equal ratio to participation of SMDC that have accepted the DR signal 

        pSDC = TotalSDCAcceptance / TotalIDList && pMDC = TotalMDCAcceptance/ TotalIDList        

7:         calculate how many SDMC have to be called to participate of the event and its time windows 

        chSDC = TotalSDCAcceptance / TNumber && chMDC = totalMDCAcceptance/ TNumber 

8:         choose SMDC with the lowest R and in equal R conditions, randomly choose 

9:         calculate Pa by each ID in order to decrease power 

        PaSDC=Pdrm * pSDC && PaMDC = Pdrm * pMDC  

10:         increase C by each participant ID 
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        C(ID) = C(ID) + PaSDC && C(ID) = C(ID) + PaMDC 

11:         increase R by each participant ID 

        R(ID) = R(ID) + 1 

12:             if  Pain(ID1) + Pain(ID2) + Pain(IDN) Î Ssmdc £ Pdr(T) then 

13:              choose one or more SMDC from the previous list according to D 

14:              choose SMDC with the lowest R and with equal R conditions, randomly choose. 

15:              calculate Pa by each ID in order to decrease power 

            PaSDC=Pdrm * pSDC && PaMDC = Pdrm * pMDC  

16:             increase C by each participant ID 

            C(ID) = C(ID) + PaSDC && C(ID) = C(ID) + PaMDC 

17:             increase R by each participant ID 

            R(ID) = R(ID) + 1 

18:           else           

19:                  go to the end of the loop 

20:            end if 

21:      else   

22:         randomly send (NACK) rejecting the DR signal Sdso 

23:         keep the previous values of power  

        C(ID) = C(ID) + 0  

24:          keep the previous values of request  

25:          R(ID) = R(ID) + 0 

 26:          go to the end of the loop 

27:         end if 

28: end for 

29: assign the reduction percentage per cycle 

Pred(ID) = (C / (D * R)) * 100 

30: if at the end of the cycle for each SMDC Pred(ID)  ≥ 80 % then 

31:    SMDC will receive the incentive 

Pred(ID) / 100 * C  * 1 && Pred(ID) / 100 * C  * 1.5 

32: elseif at the end of the cycle for each SMDC Pred(ID)  ≥ 20 % && Pred(ID) < 80 % then 

33:           SMDC will not pay the penalty and will not receive the incentive 

34: else at the end of the cycle for each SMDC Pred(ID)  < 20 % then 

35:          SMDC will pay the penalty 

(20% - Pred(ID) / 100) *(21 kW * R - C) * 1 && (20% - Pred(ID) / 100) *(110 kW * R - C) * 1.5  

36: end if 

37: print the charts and tables related to the output variables 

38: all parameters will be reset at the end of the cycle 
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 Finally, this chapter proposed a new framework according to the previously set goals and study 

approaches. Using two layers it was possible to define the main relations and interactions between 

SMDC and DSO in order to pursue the best practices in terms of energy efficiency and at the same time 

to take advantage from DR programs. Specific domains such as the mathematical modeling and 

optimization strategies and techniques were detailed and discussed aiming to highlight their 

characteristics, added value and means of implementation. The next chapter will be focused on 

simulating scenarios based on real power data coming from devices specifications. 
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5. SIMULATION RESULTS AND DISCUSSION 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

CHAPTER 5 

SIMULATION RESULTS AND 
DISCUSSION 

 

 

his chapter aims to present the simulation results, along with the arguments that describe the 

adopted case studies, input parameters, running, output data and a comparative analysis. Firstly, 

the optimization outcomes in SMDC perspective and their respective scenarios are presented. 

Thereafter, the same steps are applied with focus on DSO point of view, allowing to simulate the impact 

of specific actions present in this type of relationship, such as a contract with different amounts of 

SMDC and with different DR cycles. 

5.1 SMALL AND MEDIUM DATA CENTERS OPTIMIZATION RESULTS 

The optimization process described in this section contemplates different goals and consequently 

different scenarios. Thus, the following case studies will be established: 

T 
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• In the first case, the objective is to find the optimal tariff windows in order that SMDC can 

individually decide which are the best hours to reduce power when participating in a DR event, 

as well as considering a successive power increase in a RE situation. Thus, knowing that the RE 

should occur immediately after the DR, it is necessary to manage the flexible loads in order that 

the DR occurs at the very end of a high price window for the RE to start at a low price window. 

• In a different context, a DSO action to induce the prices in specific time windows in order to 

stimulate a SMDC participation in DR events is presented in the second case also aiming to 

present different scenarios, with diverse power reduction possibilities, where it is possible to 

notice the DR and RE occurrence by one small and one medium data center.  

• The third case presents respectively the DR and RE impact on the daily load diagram scope 

along with a subsequent cost analysis involving different amounts of SMDC, i.e., while in the 

second case the analysis happens individually in a small and a medium data center, in this 

specific case it occurs in aggregate form for different quantities of SMDC. 

• The impact on costs and savings prospects based on an incentive-based approach is the 

objective of the fourth case study.  

It is important to emphasize that during these case studies the different strategies directed to 

flexible loads, such as ICT workload, set point adjustment in cooling devices and batteries discharge in 

UPS equipment will be demonstrated. The power values utilized in all case studies have different source 

reference, but are real-based data and applied according to the data center size. For the ICT workload 

the values are based on Table 2.6 and Table 2.8, as well as in the size range profile proposed by Salom 

et al. (2017). The set point adjustment implemented on CRAC devices as cooling strategies has its 

premises in the ASHRAE thermal guidelines from Table 2.7 and the specification of the used fan device 

is presented in Table 5.1.  

Table 5.1 – Cooling fan specification (Vertiv 2017) 

Speed 
MODEL FH 600C, 72F°/50% RH, 45E WT, 

10° WATER TD 0.3” EXTERNAL STATIC 
PRESSURE 

NET SENSIBLE COOLING 
CAPACITY 

(kJ) 

MOTOR 
kW 

100% 

Centrifugal blowers with VSD 
 

EC motorized impeller under floor 

299 
312 

11.0 
7.6 

90% 
274 
282 

8.0 
5.5 

80% 
246 
252 

5.6 
3.9 

70% 
203 
205 

3.8 
2.6 

60% 
206 
208 

2.5 
1.7 
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Regarding the UPS equipment utilized, the specification, arranged by diverse power levels, is 

presented in Table 5.2. 

Table 5.2 – UPS specification (Delta 2018) 

Manufacture 
Model 

Delta  
HPH-20K 

Delta 
HPH-30K 

Delta 
HPH-40K 

Delta 
HPH-60K 

Delta 
HPH-70K 

Delta 
HPH-80K 

Power 20 kW 30 kW 40 kW 60 kW 70 kW 80 kW 
Application 
(Data Center Profile) 

Small Small Small Medium Medium Medium 

Input/Output Voltage 380/220 Vac, 400/230 Vac, 415/240 Vac 
Input Frequency 40~70 Hz 
Output Frequency 50/60 Hz +/- 0,05 Hz 
Power Factor > 0,99 
Efficiency Up To 96% 

 Through these equipment’ and the mentioned references, Table 5.3 shows how it is possible 

to obtain data to feed the input parameters that compose the equations formulated in the section of 

mathematical modeling and therefore obtain results. The complete table can be seen in Annex 2. 

For the sake of simplicity, the data presented in this table also consider the five different power 

reduction profiles and their respective variations from the threshold of 105 kW for small data centers 

and 550 kW for medium data centers, as already mentioned in the contractual context, i.e., based on 

the contractually agreed objective, data centers can accomplish the power reduction, being slightly 

above, slightly below, below, or quite below. 

For cooling data, the input parameters are: 

• Power consumption of ICT load. 

• Coefficient of performance. 

• Supplied temperature. 

• Adjustment temperature. 

• Fans power. 

For UPS data, the input parameters are: 

• Discharge energy. 

• Capacity in the previous stage. 

• Total capacity. 

• Efficiency of the UPS, including the battery. 

• DR time. 

 

 



SIMULATION RESULTS AND DISCUSSION 
 

118 

Table 5.3 – Cooling and UPS data per profile 

Small Data Center 

Cooling UPS 

Unit <.B7  3;< wCno w9H/  <m96  Profile Unit ?H.CD 47Ø¥ 47879: á % 
2 190 2 10 25 8 accomplished 2 35.5 40 40 0.9 0.3 

2 60 2 10 25 8 slightly above 2 32.8 40 40 0.9 0.3 

2 96 2 12 27 11 slightly below 2 25.8 30 30 0.9 0.3 

2 99 2 15 30 1.7 below 2 18.5 20 20 0.9 0.3 

2 39 2 15 30 1.7 quite below 2 18.5 20 20 0.9 0.3 

Medium Data Center 

Cooling UPS 

Unit <.B7  3;< wCno w9H/  <m96  Profile Unit ?H.CD 47Ø¥ 47879: á % 
6 440 2 10 25 8 accomplished 2 50.3 80 80 0.9 0.3 

6 880 2 12 27 11 slightly above 2 57.7 80 80 0.9 0.3 

6 376 2 12 27 11 slightly below 2 47.7 70 70 0.9 0.3 

6 249 2 15 30 1.7 below 2 40.6 60 60 0.9 0.3 

6 125 2 15 30 1.7 quite below 2 51.2 60 60 0.9 0.3 

5.1.1 Case Study 1 

Based on an hourly electricity price fluctuation, whereby the tariffs are dynamic in a 1 x 24 vector with 

the prices of Figure 4.3, the optimization process chooses higher prices to decrease power in a DR event 

and lower prices to increase power in a RE. As this time window has 24 positions, representing the 

number of hours in a day, the 12 highest prices are assigned to periods with potential for DR, while the 

others 12 will contemplate a RE situation, as demonstrated in Figure 5.1.  

The main objective of this case is to demonstrate how a small or medium data center can 

differently manage their flexible loads, graphically showing how they act in face of the different prices. 

For threshold effects, the maximum power values adopted in the DR reduction process are: 

105 kW for small and 550 kW for medium data centers. It is also possible to notice that among the 

selected flexible loads to be reduced in this case, the greatest predominance occurs in ICT workload 

with 40 kW in the small data center and 220 kW in the medium data center. Whereas for cooling the 

power is 35 kW in the small and 180 kW in the medium and for UPS the reduction was 30 kW in the 

small and 150 kW in the medium data center. However, the small difference among the loads prevails. 

The same situation can be seen in Figure 5.2, where the predominance is clear in the cooling 

devices set point adjustment, in which the achieved decreased power was 42 kW in the small and 300 

kW in the medium profile. The ICT workload reached 28 kW in the small and 150 kW in the medium. 

The UPS battery was used to discharge in this case 35 kW in the small and 100 kW in the medium data 
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center. An interesting aspect to be observed in this case is the difference between the loads of the 

small and medium data center. While in the former the difference is small, in the latter it is possible to 

perceive a greater discrepancy in relation to the notoriety of the reduced load by the cooling strategy. 

 

Figure 5.1 – ICT workload predominance in DR and RE tariff window 

 

 

Figure 5.2 – Cooling predominance in DR and RE tariff window 

In this last case, the dominant strategy is the discharge of battery in UPS equipment shown in 

Figure 5.3. The respective power reduction was 45 kW in the small and 230 kW in the medium data 
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center. On second place, in terms of higher power is the cooling solution, in which the reduced power 

was 25 kW in the small and 200 kW in the medium profile. The ICT workload achieved 35 kW in the 

small and 120 kW in the medium data center on the third position. Regarding the uniformity between 

the difference of loads, while in the small data center is clear, in the medium data center the 

discrepancy can be realized in the ICT workload, since the difference noticed in the UPS and cooling 

solutions is uniform. 

 

Figure 5.3 – UPS predominance in DR and RE tariff window 

5.1.2 Case Study 2 

 Regarding this price scenario, a more detailed hourly electricity price fluctuation with 20 

minute intervals per hour is used and the second study case is structured in a 1 x 72 vector with the 

prices of Figure 4.5. As can be noticed, the stimulus to a power reduction occurs at 11:00 h, where the 

energy price rises to 0.20 €/kWh and oppositely, the power increase stimulus happens between 12:00 

and 14:00 h, whereby the energy cost decreases to 0.114 €/kWh. The DR event starts at 11:40 h and 

ends at 12:00 h. Immediately, the RE gradually begins at 12:00 h and ends at 14:00 h in order to avoid 

a peak situation during the power rebound which was decreased previously in the DR action. Thus, this 

pattern will be adopted in this case study. The phenomenon of the DR event happening at 11:40 am is 

due to this period being the exactly prior to the price decline for the rebound. If it happened at 11am, 

for example, the rebound would happen at 11:20 and 11:40, where prices would still be high. 

 In Figure 5.4 an accomplished scenario is represented, i.e., the DSO had a reduction expectation 

of 105 kW from a small data center and 550 kW from a medium one and this reduction has happened 
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exactly as expected. As can be noticed, during the DR event the small data center decreases a power 

of 40 kW from ICT workload, 35 kW from cooling and 30 kW from UPS. Nonetheless, the highest 

decreased power with the medium data center occurs through UPS devices with 200 kW, ICT slightly 

below with 190 kW and afterwards 160 kW by cooling equipment’. Moreover, it is possible to observe 

the RE smoothly happening in both data centers profiles, but with 2 periods of 20 kW, 17 kW, and 15 

kW by ICT, cooling and UPS respectively in the small data center. This is due to the strategy, which 

gradually resumes power in a non-simultaneous way in order to avoid a peak power increase. For the 

medium one the RE occurs with the same period division, but with the power increasing 100 kW in UPS, 

95 kW in ICT and 80 kW in cooling strategies. The predominant yellow line before and after de DR e RE 

actions is as a matter of fact the overlapping of strategies in a baseline normal operation circumstance, 

because the main objective of this optimization process is to just highlight the DR and RE in the induced 

time windows. 

 

Figure 5.4 – SMDC accomplished DR  

On the other hand, data centers can ensure a certain reduction and stay slightly above the 

desired value. Figure 5.5 shows this scenario, emphasizing a UPS power predominance in the small data 

center and a cooling power predominance in the medium one. The values of DR in the small data center 

are 59 kW for UPS, 27 kW for cooling and 23 kW for ICT, totalizing 109 kW. In the medium data center, 

the values are distributed by 286 kW for cooling, 176 kW for ICT and 100 kW for UPS, totalizing 562 kW. 

Looking at RE time windows is evident the heterogeneity among the powers of the loads. 
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Figure 5.5 – SMDC slightly above DR 

The opposite scenario might also happen, where a data center operator wants to reduce the 

pre-set value and stays slightly below of that goal. In Figure 5.6 the DR event happening in the small 

data center has a cooling predominance with 37 kW, afterwards 23 kW with UPS and 20 kW with ICT 

workload. In the medium data center, the ICT workload has the highest power with 219 kW, followed 

by cooling with 180 kW and UPS with 150 kW. The rebound pattern remains the same, with the power 

going up every period of 20 minutes over a 2-hour interval.   

 

Figure 5.6 – SMDC slightly below DR 
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Another type of scenario is when the power to be reduced only reaches an intermediate value 

getting below of the intended, as it is the case depicted in Figure 5.7. The highest power in both data 

centers belongs to the UPS strategy in this DR event, nevertheless the main difference is in the fact that 

in the small data center the second place come from the ICT strategy and finally the cooling. In the 

medium data center is exactly the opposite, the second place belongs to the cooling reduction and the 

last one is from the ICT workload. The power values in the small data center are 31 kW, 23 kW and 10 

kW for UPS, ICT and cooling, respectively. For the medium data center, the reached values are 130 kW, 

90 kW and 80 kW for UPS, cooling and ICT, consecutively. 

The worst case that can occur is if a data center committed to reducing a certain value and falls 

quite below, as presented in Figure 5.8. This might denote some unexpected problem, characterizing 

some failure in a determined process, or in a set of them, such as inability to reschedule a certain ICT 

load, intense external temperature increase, or a low availability for discharging UPS batteries.  

 

Figure 5.7 – SMDC bellow DR 

It is clear in Figure 5.8 the predominance of the set point adjustment of cooling devices strategy 

in both data centers with exactly the same distribution regarding the other power loads, just with 

different values. In the small data center, the power reduction was 5 kW with cooling, 2 kW in UPS and 

1 kW from ICT workload, whereas 37 kW with cooling, 29 kW in UPS and 20 kW from ICT workload were 

obtained in the medium data center. 
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Figure 5.8 – SMDC quite bellow DR 

Finally, differently from Figure 5.4 where the flexile loads are reduced without any criterion, 

the ideal scenario from SMDC point of view is that the intended power reduction is exactly 

accomplished and for this purpose, that the use of flexible loads follows the hierarchy proposed in Table 

4.1 considering the critical mission state of a data center: firstly the UPS load, subsequently cooling 

devices and lastly the ICT workload, which is the core business of a data center. In this regard, Figure 

5.9 shows both the small data centers and the medium one achieving 105 kW and 550 kW of power 

reduction respectively in this DR event and the strategies distribution being arranged as follows: 50 kW 

for UPS, 35 kW with cooling and 20 kW from ICT in the small data center and 220 kW for UPS, 180 kW 

with cooling and 150 kW from ICT in the medium data center. The RE smoothly occurs following the 

same process in a 2 hours’ time window. 
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Figure 5.9 – SMDC ideal DR 

5.1.3 Case Study 3 

In this third case study the main goal is to observe how DR and RE happens taking into account the daily 

load diagram of SMDC, as shown in Figure 5.10. The adopted tariff strategy is the same as in the last 

case study, i.e., an hourly electricity price fluctuation with 20 minutes intervals, whereby the DR event 

starts at 11:40 h and ends at 12:00h and shortly after the RE process begins, finishing at 14:00 h. The 

others time periods are framed in a baseline power values. 

In this context, the average energy price is 0.1402 €/kWh, but  during DR the price is increased 

to 0.2 €/kWh. Thereafter, a cost analysis will be performed considering three different scenarios. The 

first one in equal conditions with 16 small and 16 medium data centers, the second one with a 

preponderance of 21 small and 15 medium and the third one with 10 small and a predominance of 17 

medium data centers. It is important to point out that in this case it will be considered that all data 

centers that respond to the tariff stimulus at the same time will reduce the intended power by following 

the accomplished profile and jointly totalizing an approximate 10 MW of power reduction impact in 

this type of DR. 

In the cost analysis described by Table 5.4 it is possible to notice the exact power decreased by 

small and medium data center, as well as by their summation during the DR event. As can be seen, the 

amount of reduced power is different considering the size of data center and the respective scenario; 

and the determinant factor for that is the diversity of SMDC combination established in each situation.  
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Figure 5.10 – DR and RE in daily load diagram 

Table 5.4 – DR cost analysis with different scenarios 

Analysis Parameters 1st  Scenario 2nd Scenario 3rd Scenario 
Average price of energy 0.14 €/kWh 0.14 €/kWh 0.14 €/kWh 
Average price of energy during DR  0.2 €/kWh  0.2 €/kWh 0.2 €/kWh 
Small Data Centers DR participation  16 21 10 
Medium Data Centers DR participation 16 15 17 
Decreased power by Small Data Center 1,680 kW 2,205 kW 1,050 kW 
Decreased power by Medium Data Center 8,800 kW 8,250 kW 9,350 kW 
Accumulated decreased power during the DR event  10,480 kW 10,455 kW 10,400 kW 
DR cost considering RE 898 € 896 € 891 € 
Operational cost by Small Data Center 7,386 € 7,386 € 7,386 € 
Operational cost by Medium Data Center 14,770 € 14,770 € 14,770 € 
Operational cost with all Small Data Centers  118,200 € 155,100 € 73,860 € 
Operational cost with all Medium Data Centers 236,400 € 221,600 € 251,100 € 
Total operational cost  354,500 € 376,700 € 325,000 € 
Operational cost with DR by Small Data Center 7,370 € 7,370 € 7,370 € 
Operational cost with DR by Medium Data Center 14,670 € 14,670 € 14,670 € 
Operational cost with DR with all Small Data Centers 117,900 € 154,800 € 73,700 € 
Operational cost with DR with all Medium Data Centers 234,700 € 220,100 € 249,400 € 
Total operational cost with DR 352,600 € 374,900 € 323,100 € 

For comparative purposes, the total reduced power is approximately 10 MW with slight 

variations among the scenarios. In this context, the DR cost takes into account the RE process, i.e., the 

achieved savings in the reduction process is directly affected by the power increase after the DR period. 

What will determine the amount of the savings is exactly the tariff stimulus allocated for each time 

window in the respective actions. Thus, as the power reduction variation is derisory, the difference in 

the DR cost by scenario will also be. 

Moreover, this analysis also includes the data center operational cost using the hourly price 

fluctuation, in order to compare it with the operational cost influenced by the price stimulus induced 
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by DSO. Both calculations are addressed individually and encompassing the diversity of data centers in 

each scenario. 

Verifying the savings potential in a DR event, the small data center reached 15.91 €, which 

represents 0.22% of its daily operational cost. On the other side, the medium one achieved 99.82 €, i.e., 

0.68% or its daily expense. Regarding the three scenarios, the second one with predominance of small 

data centers was the most profitable given their total power, followed by the first one with equivalence 

of quantity and finally the third one, with preponderance of medium data centers. 

5.1.4 Case Study 4 

The fourth case study also considers three periods of 20 minutes in each hour, however there are four 

different tariff periods: peak, half-peak, normal off-peak and super off-peak. This type of tariff is used 

in a situation in which a given data center enter into a contract with a DSO in order to receive a certain 

financial incentive to reduce power in a DR event receiving a direct incentive for the power reduction. 

 Specifically, for this scenario presented in Figure 5.11, the diagram shows the DR starting at 

14:40 h and ending at 15:00 h, whereas the RE occurs from that point onto 17:00 h. The others time 

periods are framed in a baseline power values. The DR event occurrence in this time window happened 

because the DSO requested, through the contract, a power reduction in that period, paying an incentive 

for that purpose. 

The DR cost analysis in an incentive-based contract depicted in Table 5.5 presents an energy 

average price of 0.1496 €/kWh (considering the entire period of 24h). Regarding the DR and RE 

occurrence, the energy price is 0.1400 €/kWh in a half-peak time window. In this case the operational 

cost with tariff price is calculated by multiplying the data center power by the energy price in each hour 

taking into account the four different time windows and prices, consequently. The operational cost is 

presented and arranged by data center profile, where it is possible to realize that the medium data 

center is exactly double in terms of power in comparison with the small one, and therefore both values 

are doubled. 

The incentives are estimated taking into consideration values that provide a relevant stimulus 

to motivate energy-intensive consumers such as SMDC. The adopted values are 1 € for small and 1.5 € 

for medium data centers. Thereby, the incentive application will be granted in accordance with the 

amount of reduced power, namely 105 kW and 550 kW for the small and medium data center in an 

accomplished profile respectively. Therefore, the cost difference between them is due to the greater 

reduction potential found in mid-sized data centers. 
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In terms of savings, the small data center achieved 110 € by event, or in other words, 1.33% of 

its daily operational cost. Regarding the medium one, it received from the DSO a rebate of 850 €, i.e., 

5.15% of its daily energy expense. 

 

Figure 5.11 – DR and RE in an incentive-based daily load diagram 

Table 5.5 – DR cost analysis in an incentive-based contract 

Analysis Parameters Costs 
Average price 0.1496 €/kWh 
Average price during the DR and RE period  0.14 €/kWh 
Operational cost with tariff price by Small Data Center  8,220 € 
Operational cost with tariff price by Medium Data Center 16,450 € 
Small Data Center incentive 1 €/kW 
Medium Data Center incentive 1.5 €/kW 
Operational cost with DR and RE with incentive by Small Data Center  8,110 € 
Operational cost with DR and RE with incentive by Medium Data Center  15,600 € 

5.2 DISTRIBUTION SYSTEM OPERATOR OPTIMIZATION RESULTS 

The results presented in the optimization process of this section are intended to demonstrate how a 

particular contractual policy oriented towards DR can be advantageous in order to include energy 

consumers, previously excluded from the DR market because their core business has a mission-critical 

characteristic, such as the SMDC. Accordingly, the developed algorithm allows to optimize different 

contractual scenarios in egalitarian situations or with predominance of small, or medium data centers 

in the context of DR. Another advantage is to enable the simulation of a contract with diversified time 

cycles, such as day or month, evaluating the potential reactions of this type of consumer in response 
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to a contractual agreement that provides incentives for the successfully implementation of DR, but also 

imposes penalties when the contractual commitments are not achieved. 

 Hence, three case studies based on different quantities of data centers will be addressed with 

the aim of standardizing and simplifying the approach. The first case will include an egalitarian contract 

with 16 small and 16 medium data centers. The second one with a predominance of small data centers 

with 21 participants and 15 medium ones. The third case study has 10 small and a preponderance of 

medium data centers, with 17 participants. 

 For each case study it will be possible to predict a monthly contract considering 22 working 

days, as well as to analyze a single DR event per day, to financially analyze different scenarios, with 

prevalence of incentives, penalties, or an unchanged state. In this context, it was considered that small 

data centers signed the contract with a DR power objective of 105 kW and medium data centers with 

550 kW. 

Some characteristics of the optimization process are common to all case studies. Overall, at 

each demand response event the DSO might request a reduction corresponding to the sum of the 

power of all data centers participating in the contract. However, knowing the possibility of declination, 

the DSO will consider as its objective an adhesion rate of 80% of the total power of the contract when 

sending the demand response signal. Hereinafter, as already mentioned, it is possible to set as input 

the percentage of data centers that will accept the DR signal. Hence, this optimization process 

considered an acceptance rate between 60 and 100% as default values, with the final value being 

randomly set. 

  Specifically, in the scenario where only one demand response event will be addressed, it will 

occur always during one hour, simulating four time windows of 15 minutes. Nevertheless, in the 22-

days scenario, the DR time window will have other terms: in 50% of the days the signal broadcasted will 

have 4 temporary periods, occurring in 1h and in the other 50% there will be intercalated periods of 45, 

30 and 15 minutes with the same 80% of adhesion rate by the participants SMDC.  

Specifically, for a monthly contract with 22 working days, in the first case study the set of time 

windows will be: 

• Four periods of 15 minutes with 2.09 MW of power during one hour. 

• Three periods with 2.79 MW in 45 minutes. 

• Two periods of 4.17 MW in 30 minutes. 

• One period of 8.38 MW in 15 minutes, which corresponds to the DSO objective, i.e., 80% of the 

total power capacity of the contract considering the adhesion rate.  
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In the second case study: 

• Four periods of 15 minutes with 2.09 MW of power. 

• Three periods with 2.78 MW, two periods of 4.18 MW. 

• One period of 8.36 MW.  

In the third case study: 

•  Four periods of 15 minutes with 2.08 MW of power,  

• Three periods with 2.77 MW,  

• Two periods of 4.16 MW. 

• One period of 8.32 MW. 

Finally, it should be noted that the present simulation process was conducted in order to 

consider all the potential results that are possible to achieve with the algorithm. Thus, for each of the 

mentioned quantitative case studies, a simulation of 1 and 22 days respectively was performed. For 

each of these simulations, 3 scenarios of predominance with incentive, penalty and unchanged profile 

were generated. Finally, each of these scenarios provides 18 different charts, totaling 324 charts. Thus, 

in order to simplify this results presentation, the first case study will address the incentive scenario, the 

second one the unchanged case and the third case will be responsible for presenting the penalty 

scenario. However, the other important charts related to the case studies and scenarios that were not 

covered in this section are presented in Annex 3. 

5.2.1 Case Study 1 

Analyzing a single event in a specific perspective, the DSO broadcasts the DR signal to the 32 

participants, namely 16 small and 16 medium data centers, totalizing 8.38 MW of power, with an 

expected constant reduction of 2.09 MW during four periods of 15 minutes. 

As described in Table 5.6, in this scenario all medium-sized data centers present in the contract 

randomly accepted the signal, while 93.75% of the small ones accepted to participate in a total and 

non-imposed adhesion rate of 98%. Thereby, in order to ensure the power reduction required by the 

DSO, all data centers that accepted to participate in the event were randomly sorted in a list and 

selected immediately afterwards based on such list. For this reduction process, 16 calls were made to 

small data centers with 1 rejection and 14 calls to medium data centers without any rejection. 

It is possible to note the criterion of fair choice among data centers through Figure 5.12, where 

the ID’s from one to 16 are small data centers and from 17 to 32 are medium data centers. However, 

in a single event it is not possible to have a complete overview of this algorithm feature, but it can still 
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perceive that even 31 data centers accepting to participate in the DR event, two medium data centers 

(17 and 18) were not selected by the DSO algorithm for power reduction, in order to maintain the 

balance between small and medium data centers. 

Table 5.6 – Acceptance and denial statistics for one DR event in case study 1 

Parameters Statistics 
DR Event Acceptance Percentage (%) 98 
DR Event Denial Percentage (%) 2 
Small Data Center Acceptance Percentage (%) 93.75 
Small Data Center Accepted Calls 15 
Small Data Center Denial Percentage (%) 6.25 
Small Data Center Rejected Calls 1 
Medium Data Center Acceptance Percentage (%) 100 
Medium Data Center Accepted Calls 14 
Medium Data Center Denial Percentage (%) 0 
Medium Data Center Rejected Calls 0 

  

 

Figure 5.12 – Fair choice criterion for one DR event in case study 1 

Analyzing the power reduction potential in Figure 5.13, on one hand a few data centers do not 

participate of the DR event and obviously do not reduce any amount of power. On the other hand, 

several others reach a reduction of 100% of the contractual power reduction target and even exceed. 

Other data centers have an intermediate reduction percentage of 20%, while others have a minimum 

reduction of 1%. 

 

Figure 5.13 – SMDC power reduction potential for one DR event in case study 1 
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Specifically, as shown in Figure 5.14, the maximum power reduced in this event is 572 kW, the 

average 238.8 kW and the minimum 1.05 kW, whereas the total power reduced considering all 

participations is 7.64 MW, i.e., 91.16% of the required power reduction. What justifies such a 

percentage is that although the algorithm might call other data centers present on the DR event 

acceptance list, there is no guarantee that those called will reduce the agreed power. In this case what 

happened was exactly that, i.e., the DSO called other data centers, but these did not meet the reduction 

percentage previously established. Concerning the contractual premises, 72% of the data centers 

achieved their objective. 

 

Figure 5.14 – DR power reduction outcomes for one DR event in case study 1 

At the end of the DR event and the conclusion of the contractual cycle, it is possible to extract 

information that determines how many data centers received incentive, how many were penalized and 

how many were left unchanged, as can be seen in Figure 5.15. As in this scenario the predominance is 

of incentive, 75% of the data centers received this financial payment, or credit, of which 13 are of small 

profile and 11 of medium one. Of those that remained unchanged, one is small and four are medium 

and of those who will pay penalty, two are small data centers and only one is medium. 

 

Figure 5.15 – SMDC financial profile for one DR event in case study 1 

Therefore, the highest value received from the DSO to a small data center is 109.2 € and to a 

medium one is 847 € for having reduced more than 80% of the agreed power. Five data centers will not 

receive, or pay any amount, for having reduced between 20 and 79%. Finally, the highest amount to be 
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paid to the DSO will be 3.94 € to a small and 30.57 € to a medium data center, for having reduced less 

than 20%, as presented in Figure 5.16.  

 

Figure 5.16 – SMDC financial index for one DR event in case study 1 

 Going toward a more comprehensive analysis, looking into a realistic scenario, with DR 

occurring in 22 workdays, it is understood that the DSO will perform one DR event per workday and will 

send the DR signal to the same number of data centers covered in this case study. Thus, in Figure 5.17 

the acceptance and denial percentages are characterized by small and medium data centers. It is 

possible to note in this cycle that small data centers denied DR events more frequently than the 

medium ones and the highest acceptance rate was 99% and the lowest 62%. 

 

Figure 5.17 – Acceptance and denial statistics for 22-DR events in case study 1 
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On the other side, in Figure 5.18 all calls by event are specified and can be visualized in terms 

of acceptance, or rejection with an aggregation defined by size, where the number of calls made to 

small data centers was 249, to medium ones 255 and the total number of rejections was 103 in small 

data centers and 47 in medium ones.      

 

Figure 5.18 – Accepted and rejected calls for 22-DR events in case study 1 

Another substantial difference that can be perceived when analyzing a monthly cycle is the 

functioning of the fairness criterion, as shown in Figure 5.19, where the ID’s from one to 16 are small 

data centers and from 17 to 32 are medium data centers. As there are several events occurring, it is 

evident a nearly flat feature of the chart, with slight variations of 15 and 16 participations. 

 

Figure 5.19 – Fair choice criterion for 22-DR events in case study 1 

 Observing the SMDC power reduction in Figure 5.20, there are fluctuations in the range of 

48.37% and 89.87% per SMDC, proving that data centers are not always able to reduce the totality of 

the power agreed in contract. 
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Figure 5.20 – SMDC power reduction for 22-DR events in case study 1 

Figure 5.21, on the other hand, revels that no data center has been able to reach 100% of the 

maximum power agreed in contract. Analyzing all 22 DR events, the maximum power reduced was 

7,909 kW, the average 4,112 kW and the minimum 812.7 kW. The total accumulated power required 

by the DSO was 184.33 MW and the accumulated reduced power by SMDC was 131.57 MW, i.e., a DR 

cycle with 71.38% of power reduction. 

 

Figure 5.21 – DR power reduction outcomes for 22-DR events in case study 1 

 Regarding the financial aspects, it is interesting to note that due to the randomness degree 

implemented in the algorithm, even with the input data contemplating a scenario of predominance of 

incentives, unchanged and penalty in that order, the participation of data centers in various events 

have changed the final results for a majority of unchanged, as shown by Figure 5.22. 

The same input data used for a DR event was adopted for the 22-day scenario, however the 

reason for the chart changing, where can be perceived the lack of penalized data centers, was the fact 

that a data center that reduced a certain power below, or quite below that agreed upon in a particular 

event, will not necessarily repeat that same action in another event. On the contrary, since this type of 

contract is already part of a SMDC reduction expectation, data center operators want to take financial 

advantage and reduce the agreed power. Thus, the final report of this cycle presents 11 small and 8 

medium data centers in an unchanged condition, whereas 5 small and 8 medium data centers will 

receive financial incentive.  
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Figure 5.22 – SMDC financial profile for 22-DR events in case study 1 

Consequently, based on this final report the highest value received from the DSO by a small 

data center is 1,394 € and to the medium one is 10,950 € for having reduced the agreed power in the 

contract. All other data centers did not receive or pay any amount to the DSO, as presented by Figure 

5.23. 

 

Figure 5.23 – SMDC financial index for 22-DR events in case study 1 

5.2.2 Case Study 2 

In this second case study, the DSO broadcasts the DR signal to 36 participants, being 21 small and 15 

medium data centers in one single DR event. This event follows exactly the same time determinations 

as the previous case study, but with a difference in the amount of the 80% of power to be reduced by 

the given adhesion rate, totalizing an accumulated power of 8.36 MW in four periods of 15 minutes 

each, with 2.09 MW of constant power. It was randomly stipulated for this scenario simulation an 

acceptance rate of 63%, as described by Table 5.7, where all medium-sized data centers present in the 

contract accepted the signal, while only 38.09% of the small ones accepted to participate in the DR 

event, which represents a value below that previously considered by the DSO on sending the signal, 

being possible to test extreme and non-representative cases in comparison with an ordinary situation. 

For this decrease process, 8 calls were made to small data centers with 13 rejections and 14 calls to 

medium data centers without any rejection. 
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Table 5.7 – Acceptance and denial statistics for one DR event in case study 2 

Parameters Statistics 
DR Event Acceptance Percentage (%) 63 
DR Event Denial Percentage (%) 37 
Small Data Center Acceptance Percentage (%) 38.09 
Small Data Center Accepted Calls 8 
Small Data Center Denial Percentage (%) 61.91 
Small Data Center Rejected Calls 13 
Medium Data Center Acceptance Percentage (%) 100 
Medium Data Center Accepted Calls 14 
Medium Data Center Denial Percentage (%) 0 
Medium Data Center Rejected Calls 0 

The criterion of fair choice among data centers showed in Figure 5.24 presents almost 40% of 

non-acceptance rate and in addition one medium data center (with ID 22) which has not been chosen 

after the random selection process. The ID’s from one to 21 are small data centers and from 22 to 36 

are medium data centers. 

 

Figure 5.24 – Fair choice criterion for one DR event in case study 2 

Observing the power reduction potential in Figure 5.25, it can be noticed that 14 data centers 

do not reduce any amount of power, four others reached a reduction of 100% and three reached 4% 

beyond agreed. Additionality, eight data centers have an intermediate reduction percentage of 20%, 

while five others have just 1% of reduction. 

 

Figure 5.25 – SMDC power reduction for one DR event in case study 2 
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Particularly, Figure 5.26 depicts the maximum power reduced in this event, 550 kW, the 

average, 94.6 kW, and the minimum, 1.05 kW. The total power reduced considering all data center 

contributions is 3.4 MW, which corresponds to just 40.66% of the required power reduction, a value 

that is justified by the low acceptance percentage of data centers participating in the contract. About 

the contractual terms, 22% of the data centers accomplished their power reduction objectives, at the 

same time as 78% did not accomplish. 

 

Figure 5.26 – DR power reduction outcomes for one DR event in case study 2 

In the results highlighted by Figure 5.27 the majority of data centers falls under the unchanged 

profile (totalizing 61%), with 15 small data centers and 7 medium ones. 25% of the data centers 

received a financial incentive of which 5 are of small profile and 4 of medium one. The 14% remnant 

will pay a penalty, where 1 is small-sized and 4 are medium data centers. 

 

Figure 5.27 – SMDC financial profile for one DR event in case study 2 

Therefore, based on this final information the highest value received from the DSO by a small 

data center is 109.2 € and by a medium one is 847 €, respectively. 22 data centers will not receive, or 

pay any amount, whilst the highest amount to be paid to the DSO due to a penalty will be 3.94 € to a 

small and 30.57 € to a medium data center, as shown in Figure 5.28.  
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Figure 5.28 – SMDC financial index for one DR event in case study 2 

 Figure 5.29 indicates the acceptance and denial statistics considering 22 days of cycle. As in this 

cycle the contractual majority belongs to small data centers, similarly the evident denial actions are 

more frequent in small data centers than in the medium ones. The highest acceptance rate found was 

99% and the lowest was 61%. 

 

Figure 5.29 – Acceptance and denial statistics for 22-DR events in case study 2 

In Figure 5.30, on one hand the number of calls made by small data centers was 339 and by 

medium ones 244. On the other hand, the total number of rejections was 123 in small data centers and 

27 in medium ones.      
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Figure 5.30 – Accepted and rejected calls for 22-DR events in case study 2 

The fair choice criterion in Figure 5.31 presents 80.6% of data centers with 16 participations 

and 19.4% with 17 participations, demonstrating that even considering the possibility of denying 

participation in a certain event, the fairness criterion of the algorithm works in a balanced way. The ID’s 

from one to 21 are small data centers and from 22 to 36 are medium data centers. 

 

Figure 5.31 – Fair choice criterion for 22-DR events in case study 2 

The SMDC achieved power reduction presented in Figure 5.32 shows fluctuations in the range 

of 12.87% and 67.87%, whilst Figure 5.33 indicates that no data center has been able to achieve 100% 

of the maximum power agreed in contract. Analyzing all 22 DR events as whole the maximum power 

reduced was 5,863 kW, the average 2,062 kW and the minimum 216.3 kW. The total accumulated 

power required by DSO was 184 MW and the accumulated reduced power by SMDC was 74.22 MW, 

i.e., a DR cycle with just 40.33% of power reduction, i.e., a scenario to test the performance of the 

algorithm in an extreme and non-representative case of an ordinary contractual situation. 

Similarly to the previous case study, the randomness degree implemented in the algorithm 

made the same input data that initially included the three financial profiles in a single event was 

changed to a 2-profile chart with an unchanged profile dominance of 97%. Hence, only one small data 

center was penalized, whereas 15 medium ones and 20 small data centers will not have to receive, or 

pay any amount to DSO, as depicted by Figure 5.34.  
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Figure 5.32 – SMDC power reduction potential for 22-DR events in case study 2 

 

Figure 5.33 – DR power reduction outcomes for 22-DR events in case study 2 

 

Figure 5.34 – SMDC financial profile for 22-DR events in case study 2 

Therefore, according to the final results presented in Figure 5.35, of the 36 data centers present 

in the contract, 35 had no loss nor profit, and only one small data center should pay to the DSO the 

amount of 14.47 € for having reduced less than 20% of the previous agreed power. In other words, the 

algorithm enables to predict such scenario in order to avoid this type of contractual situation. 
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Figure 5.35 – SMDC financial index for 22-DR events in case study 2 

5.2.3 Case Study 3 

In the third case study the DSO broadcasts the DR signal to 27 participants, in which 10 are small and 

17 are medium data centers. This event will follow exactly the same time assumption as the previous 

case studies, totalizing 8.32 MW in four periods of 15 minutes each, with 2.08 MW of constant power 

referring to the 80% adhesion. It was randomly stipulated for this scenario simulation an acceptance 

rate of 85%, as presented in Table 5.8, where all medium data centers existing in the contract accepted 

the signal, while 60% of the small ones accepted to participate in the DR event. For this reduction 

activity, six calls were made to small data centers with four rejections and 15 calls to medium data 

centers without any rejection. 

Table 5.8 – Acceptance and denial statistics for one DR event in case study 3 

Parameters Statistics 
DR Event Acceptance Percentage (%) 85 
DR Event Denial Percentage (%) 15 
Small Data Center Acceptance Percentage (%) 60 
Small Data Center Accepted Calls 6 
Small Data Center Denial Percentage (%) 40 
Small Data Center Rejected Calls 4 
Medium Data Center Acceptance Percentage (%) 100 
Medium Data Center Accepted Calls 15 
Medium Data Center Denial Percentage (%) 0 
Medium Data Center Rejected Calls 0 

The criterion of fair choice among data centers presented in Figure 5.36 shows that although 

denials to the DR signal occurred only from small data centers, two medium-sized data centers (with ID 

11 and 12) were not called upon to reduce the stipulated power after defining the list of participants, 

to ensure balance between SMDC. The ID’s from one to 10 are small data centers and from 11 to 27 

are medium data centers. 
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Figure 5.36 – Fair choice criterion for one DR event in case study 3 

Analyzing the power reduction in Figure 5.37, on one hand several data centers do not 

participate of the DR event and obviously do not reduce any amount of power. On the other hand, the 

majority of the others reach a minimum reduction of 1%, characterizing a very low reduction scenario. 

In the group that decreases the agreed power, one data center accomplished 100% of the power 

reduction, other slightly exceeds this value with 104% and other is slightly below with 90%. Of those 

who reduced an intermediate amount of power, only two data centers reached 20%. 

 

Figure 5.37 – SMDC power reduction for one DR event in case study 3 

In a detailed way, as present Figure 5.38, the maximum power reduced in this event is 572 kW, 

the average 55.63 kW and the minimum 1.05 kW, whereas the total accumulated power reduced 

considering all participations is 1.5 MW, i.e., 18.02% of power reduction. Regarding the contractual 

premises, only 7% of the data centers achieved their objective, whilst 93% did not achieve.  

In this scenario shown by Figure 5.39, the predominance is of penalty state characterized by 

59% of the data centers, where five are small-sized and 11 are medium profile. The unchanged state 

has 30% of data centers with both small and medium ones represented with four and with only 11% 

belonging to the incentive state, where there is only one small data center and two medium ones. 

Therefore, these final results highlight that the highest value received from the DSO by a small 

data center is € 88.45 and to a medium one is 847 €. A set of eight data centers will not receive, or pay 

any amount and the highest amount to be paid to DSO will be 3.94 € to a small and 30.7 € to a medium 
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data center, as can be seen in Figure 5.40. In other words, this is the worst case analyzing a contractual 

perspective, and this is the main function of the algorithm, allowing to predict this sort of unwanted 

contractual situations. 

 

Figure 5.38 – DR power reduction outcomes for one DR event in case study 3 

 

Figure 5.39 – SMDC financial profile for one DR event in case study 3 

 

Figure 5.40 – SMDC financial index for one DR event in case study 3 

 Following the same pattern and evaluating the statistics of acceptance and denial for 22-DR 

events, this contractual cycle has mostly medium data centers, but the same feature is repeated in this 

scenario, where the highest percentage of denial occurs through small data centers according to Figure 

5.41. In this context, the highest acceptance rate was 99% and the lowest 62%. 
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Figure 5.41 – Acceptance and denial statistics for 22-DR events in case study 3 

Analyzing in terms of call, Figure 5.42 demonstrates that the number of calls made to small 

data centers was 153 and to medium ones 202.  On the other side, the total number of rejections was 

67 in small data centers and 31 in medium ones.    

 

Figure 5.42 – Accepted and rejected calls for 22-DR events in case study 3 

In relation to the fair choice criterion for 22-DR events, the chart presented in Figure 5.43 is 

the one with the most distinct characteristic, not presenting a flatter performance. This phenomenon 

can be explained because the flat character is observed in the right division between data centers, in 

which the ID’s from one to 10 are small data centers and from 11 to 27 are medium data centers. Thus, 

on one hand, from the 10 small data centers three ones, i.e., 30% had 16 participations, while seven 
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ones, or 70% had 15 attendances. On the other hand, regarding the medium data centers, two, i.e., 

12% had 11 participations, unlike the others 15 (88%), which had 12 attendances. 

 

Figure 5.43 – Fair choice criterion for 22-DR events in case study 3 

Regarding, the SMDC power reduction, on one hand Figure 5.44 depicts the fluctuations in the 

range of 2.58% and 33.5%. On the other hand, Figure 5.45 specifies, similarly to the previous case 

studies, that no data center has been able to achieve 100% of the maximum power agreed in contract. 

Evaluating all 22 DR events as whole, the maximum power reduced was 2,211 kW, the average 889.7 

kW and the minimum 119.7 kW. The total power required by the DSO was 183.03 MW and the reduced 

power by SMDC was 24.02 MW, i.e., a DR cycle with just 13.12% of power reduction, repeating the 

statement of how the algorithm is able to predict this type of undesired contractual situation in order 

to avoid the worst case. 

 

Figure 5.44 – SMDC power reduction potential for 22-DR events in case study 3 

 

Figure 5.45 – DR power reduction outcomes for 22-DR events in case study 2 
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In the same way as in previous cases, the randomness degree applied in the algorithm made 

the same input data that originally contained the three financial profiles in a single event was changed 

to a 2-profile chart with a penalty profile dominance of 52%. Henceforth, five small data centers and 

nine medium ones were penalized, whereas five small data centers and eight medium ones will not 

have to receive, or pay any amount to DSO, as represented by Figure 5.46. 

 

Figure 5.46 – SMDC financial profile for 22-DR events in case study 3 

Therefore, in accordance with the final report specified by Figure 5.47, of the 27 data centers 

present in the contract, 13 of them had no loss nor profit and 14 should pay a penalty to the DSO. 

Accordingly, the highest value due from a small data center to the DSO was 41.63 €, while from a 

medium data center was 209.4 € for not having reduced the agreed power in the contract. 

 

Figure 5.47 – SMDC financial index for 22-DR events in case study 3 

5.2.4 Case Study Analysis 

Finally, in order to compose a more refined analysis, Table 5.9 presents the compilation of the 

3 cases of studies discussed so far in this subsection, specified by the number of data centers used in 

the contract, as well as whether the determining profile was incentive, unchanged, or penalty. Each 

case was analyzed taking into account a single event, or a monthly cycle of 22 business days.  
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Table 5.9 – DSO power and financial balance sheet 

1 Event 

Case Study 
1 

(16/16) 
Incentive 

 

DSO Power Balance 
Minimum  

(kW) 
Average  

(kW) 
Maximum 

(kW) 
Required 

(MW) 
Achieved 

(MW) 
Reduction 

Potential (%) 
1.05 238.8 572 8.38 7.64 91.16 

DSO Financial Balance 
Penalty Incentive 

Small Medium Total (€) Small Medium Total (€) 
2 1 38.46 13 11 10.580 

Case Study 
2 

(21/17) 
Unchanged 

 

DSO Power Balance 
Minimum  

(kW) 
Average  

(kW) 
Maximum 

(kW) 
Required 

(MW) 
Achieved 

(MW) 
Reduction 

Potential (%) 
1.05 94.6 550 8.36 3.40 40.66 

DSO Financial Balance 
Penalty Incentive 

Small Medium Total (€) Small Medium Total (€) 
1 4 126.3 5 4 3,336 

Case Study 
3 

(10/17) 
Penalty 

 

DSO Power Balance 
Minimum  

(kW) 
Average  

(kW) 
Maximum 

(kW) 
Required 

(MW) 
Achieved 

(MW) 
Reduction 

Potential (%) 
1.05 55.63 572 8.32 1.50 18.02 

DSO Financial Balance 
Penalty Incentive 

Small Medium Total (€) Small Medium Total (€) 
5 11 356 1 2 1,782 

22 Events 

Case Study 
1 

(16/16) 
Incentive 

 

DSO Power Balance 
Minimum  

(kW) 
Average  

(kW) 
Maximum 

(kW) 
Required 

(MW) 
Achieved 

(MW) 
Reduction 

Potential (%) 
812.7 4,112 7,909 184.3 131.6 71.38 

DSO Financial Balance 
Penalty Incentive 

Small Medium Total (€) Small Medium Total (€) 
0 0 0 5 8 84,680 

Case Study 
2 

(21/17) 
Unchanged 

 

DSO Power Balance 
Minimum  

(kW) 
Average  

(kW) 
Maximum 

(kW) 
Required 

(MW) 
Achieved 

(MW) 
Reduction 

Potential (%) 
216.3 2,062 5,863 184 74.22 40.33 

DSO Financial Balance 
Penalty Incentive 

Small Medium Total (€) Small Medium Total (€) 
1 0 14.47 0 0 0 

Case Study 
3 

(10/17) 
Penalty 

 

DSO Power Balance 
Minimum  

(kW) 
Average  

(kW) 
Maximum 

(kW) 
Required 

(MW) 
Achieved 

(MW) 
Reduction 

Potential (%) 
119.7 889.7 2,211 183.03 24.02 13.12 

DSO Financial Balance 
Penalty Incentive 

Small Medium Total (€) Small Medium Total (€) 
5 9 1,218 0 0 0 
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The purpose of this analysis is to provide a comparation from the DSO perspective and a 

balance sheet as a function of the achieved power reduction and the financial aspect of how much the 

DSO will have to receive or pay in respect of the SMDC. 

The case where the predominance was incentive represents the ideal scenario to justify DR 

programs applied to consumers such as SMDC, since both the DSO and the data center operators 

achieved their goals. The former adjusting the load diagram to its needs instead of resorting to power 

generation and the later to obtain financial advantages in order to reduce energy costs. In other words, 

this is the case that is expected in the vast majority of situations. 

However, the unchanged and penalty cases represent the opposite, i.e., the worst scenarios in 

which programs do not present benefits for any of the contractually involved actors; data centers would 

have to pay penalties, or not receive any amount of money per power reduction, and the DSO would 

be far from its main objectives, which are the power reduction geared to demand management and 

increase of the grid stability. Hence, these cases are extreme and non-representative, but that were 

demonstrated in order to reinforce the predictive character of the algorithm to avoid this scenario. 

Therefore, the way to minimize bad results is to ensure through the value of incentive and 

more restricted contractual clauses, a higher DR signal acceptance rate by contract participants and 

that SMDC operators are able to keep the power reduction rate as close as possible to the values agreed 

in the contract. Another alternative is to have a larger SMDC universe. If the total number of SMDC is 

greater, the percentages required to achieve the objectives are lower. In conclusion, this chapter 

presented the simulation process results and a discussion process towards the adopted case studies, 

input parameters, running, output data and a comparative analysis addressing all the involved 

particularities.  

The optimization outcomes were firstly demonstrated in SMDC perspective, as well as their 

respective scenarios. It has been proven the algorithm operation and reliability. The potential for cost 

savings in DR was also proved, being achieved with the considered incentives in the simulation process, 

savings of 1.33% for small and 5.15% for medium data centers in the incentive approach, and 0.21% for 

small and 0.68% for medium data centers in the dynamic tariff approach. 

Subsequently, the same premises were utilized with focus on DSO point of view, enabling to 

predict specific contractual policies that can be adopted in this type of relationship through the best 

and the worst scenarios simulations. In this context, the scenario with a preponderance of incentives 

strengthens and proves the need for DR programs applied to SMDCs, however the unchanged and 

penalty cases allow to foresee a discouraging scenario for this type of DR program and avoid it through 

the value of incentive, more restricted contractual clauses and increasing the universe of SMDC to reach 
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the objectives with more flexibility. Therefore, in terms of the random values used in the simulation 

process, the one single day analysis showed a variation in the power reduction potential between 

18.02% and 91.16%, while the highest value in the penalty profile was 356 € and in the incentive profile 

10,580 €. On the other hand, the 22 business day analyses presented a fluctuation in the power 

reduction potential in the range of 13.12% and 71.38%, whilst the highest value in the penalty profile 

was 1,219 € and in the incentive profile 84,680 €. 
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6. CONCLUSIONS AND FUTURE WORK 
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CONCLUSIONS AND FUTURE 
WORK 

 

 

n this chapter, a summary of the conclusions drawn in the course of this work is presented, making 

a critical analysis of the obtained results and answering the research questions raised at the 

beginning of this thesis. Some suggestions of future work are also indicated. 

6.1 CONCLUSIONS 

The growth of data centers demand in recent years has led to an increase in their requirements, power, 

and therefore in their electricity consumption, being the impact of these unique infrastructures on the 

worldwide energy map increasingly relevant. Modern data centers are filled by computing equipment, 

which in a critical mission operate uninterruptedly to maintain on-demand network requests. They vary 

I 
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in size from individual servers located in literal closets to expansive warehouses populated with 

thousands of servers, networking, data storage equipment, as well as a support infrastructure with 

cooling and UPS solutions. 

Data centers designs incorporate oversized and redundant systems, in most cases, running at 

partial load, and the power and cooling requirements are greatly overstated, leading to extra 

investment and operational cost expenses. Overall, the data concerning to this type of energy 

consumer are alarming, since the total energy consumption of data centers is about 1.5% of the global 

electricity consumption and presents an approximated annual growth rate of 4.3%. 

Due to the large savings potential, many researchers have been focused on the development 

of knowledge, tools and systematic standards to use efficient technologies and methodologies to 

reduce the data center energy consumption and integrate renewables in their energy portfolio within 

smart grid context, whereas the power grid evolves together with the integration of smart embedded 

systems combining instrumentation, analytics and control contributing to deliver electricity in a more 

reliable and efficient way. 

In this perspective, efficient measures in load management and DR increasingly emerge as 

proposals to mitigate this reality as a whole, being confirmed by important and backed organizations in 

the U.S. context, such as NIST and DoE and ENTSO-E in the European context.  

Thus, several studies have analyzed the evolving landscape of data centers mostly focusing on 

largest data centers, which are able to obtain large operational cost savings from efficiency 

improvements and DR programs already in place for industry and great consumers. Companies running 

large data centers benefit from economies of scale and have the resources to invest in efficiency 

measures, as well as being an influential player in the energy market. Given high operational costs of 

large data centers, upfront capital expenditures on efficiency measures are quickly recovered by 

operating cost savings, in addition to having very expressive individual loads able to take advantage 

from DR energy programs. 

Nevertheless, considerably less attention has been given to small and medium-scale data 

centers, which account for more than 50% of the total electricity consumption and where the small and 

medium physical footprint is characteristically embedded within a larger building, becoming difficult an 

identification and classification process focused on efficiency measures. These spaces are commonly 

operated by institutions unfamiliar with ICT systems and best practices for data center management, 

hence the often improvisation, the ad hoc nature and an overlooked power consumption, making 

SMDC considerably less efficient relative to their large counterparts. Simultaneously, several studies 

have been addressing DR programs, but almost always applied to large data centers, being evidenced 
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how DR is still insipid in this sort of small and medium profile environment, as well as the policies for 

this type of energy consumer has often been neglected, as this thesis has demonstrated. 

Based on this big picture, this work aimed at alerting about this reality, but not remaining inert 

to it, rather, asking questions and seeking propositional responses that would provide changes in this 

current scenario. Thereby, it was intended to know through the research questions how SMDC could 

take advantage of energy efficiency through centralized management of loads, which loads should be 

defined by data center operators to respond to DR events, whether measures of energy efficiency, or 

participation in DR programs could affect the quality and availability of computer services and lastly 

how data centers owners and utilities could balance the maximization of benefits and sustainable goals. 

Mapped to these questions, general and specific goals were drawn in order to find such 

answers. The general goal of this work was to understand how intensive energy consumers, as SMDC, 

can become more efficient from the energy point of view and how they can take advantage of DR 

programs to decrease costs and to cooperate with the grid to ensure higher reliability and sustainable 

development goals. The specific goals were to define a group of centralized load management 

strategies, the development of an approach to set specific loads for participation in DR programs, to 

build an approach to create different DR scenarios based on metrics, thresholds and parameters 

applied in data centers and lastly, the development of a conceptual framework that balances 

sustainable development goals with benefits to the grid and SMDC. Thus, the development of this work 

sought to answer such questions and rigorously follow these goals through the time-distributed work 

packages that were discussed in sections form in this thesis. 

In order to shine a light to the above-mentioned issues, an extensive review on energy 

efficiency and DR, specifying the state-of-the-art, outlook and connection to SMDC was performed. 

Several available and prominent technologies recently examined by various authors to stimulate energy 

efficiency actions were presented. In addition, contemporary studies related to the DR field were 

addressed highlighting the main advances in the optimization area. All this effort has allowed to have a 

broad vision of the investigated problem, as well as to penetrate the specificities and peculiarities of 

this complex technological mix that is a data center.  

Through the literature review process, it was possible to collect the main mathematical models 

related to the energy consumption of the main components of a server, which is the central element 

of a data center, regardless of size. It was also possible to realize how virtualization, cooling and UPS 

solutions could contribute in the future DR actions. And mainly, this process allowed to extract valuable 

data about power, energy consumption, costs and CO2 emissions regarding SMDC in a characterization 

mapping, which enabled to use some of these values in the simulation process. 
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Thereafter, based on an energy efficiency background, three current surveys were presented 

underlining their premises, one of which was carried out within the framework of this thesis. The main 

conclusions demonstrated that even though there have been major advances in energy efficiency for 

large data centers over the last decade with nearly 52% savings, in SMDC the reality is greatly different, 

whereas 43% of the surveyed have no energy efficiency objectives in place. Furthermore, the survey 

conducted in this work highlighted alarming statistics, where 64%, 73% and 77% of surveyed 

participants do not monitor servers’, storages appliances’ and network devices’ energy use, 

respectively. 

Additionally, three energy efficiency methodologies were discussed and assessed emphasizing 

their main features, as well as their applications. Taking into account the goals of this work the more 

appropriated methodology was from EL, by the fact of being more suitable to the SMDC case, 

considering the devices replacement window, the capacity to estimate the savings in five years with 

cascade effect and using equipment’s suggested by ENERGY STARS. Nonetheless, it was pointed out 

the importance to complement the model utilizing network, backup and storage solutions to improve 

the extensiveness of the approach in terms of energy efficiency. 

According to the previously set goals and study approaches a new framework was proposed. 

Using two layers was possible to define the main relations and interactions between SMDC and DSO, in 

order to pursue to combine energy efficiency initiatives, which in turn provide a better knowledge and 

management of the flexible data center load, as well as the mutual possibility of taking financial 

advantages in DR programs. To implement it, the mathematical models denoting the key workloads 

(ICT, cooling and UPS) in a SMDC environment during power decreasing and rebound power conditions 

were set in an approach aimed at elaborating the respective objective functions and their constraints. 

From that point, the two problems established in the context of this work, one from SMDC 

point of view and the other from DSO perspective were thoroughly specified along with their resolution 

hypotheses through algorithm optimization process and two strategies: one founded on dynamic tariffs 

and the other in an incentive-based approach. In this context, three electricity price fluctuation 

scenarios were adopted to conduct the simulations. The first one considered an hourly electricity price 

fluctuation, whereby the tariffs are dynamic and fluctuate hourly. The second scenario utilized the same 

hourly electricity price fluctuation, however in a specific 20-minutes period, where the price was 

induced to stimulate a DR action and hereinafter contemplated a RE situation. The third one took into 

account three periods of 20 minutes in each hour with four different tariff periods: peak, half-peak, 

normal off-peak and super off-peak hours with variations in summer and winter seasons, and 

contemplating the application of a financial incentive to promote DR actions. 
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The first problem from SMDC point of view was solved by the use of linear optimization 

programming techniques, more specifically applying Mixed Integer Linear Programming. The second 

problem was optimized implementing new polices in form of contractual terms by the development of 

a random-rotating and fairness algorithm qualified to define, after manifest interest, which SMDC will 

be chosen in DR events. 

The optimization results were firstly validated in SMDC perspective, as well as their 

corresponding scenarios, in which it has been demonstrated the algorithm operation and reliability. 

According to the adopted values in the simulation process, the potential for savings in DR approach by 

incentive showed that the small data center achieved 110 € of saving by event, or in other words, 1.33% 

of its daily operational cost. Concerning the medium one, it received from the DSO a rebate of 847 €, 

i.e., 5.15% of its daily energy expense. In the DR approach by dynamic tariffs the small data center 

reached 15.9 € of savings, which represents 0.22% of its daily operational cost. On the other side, the 

medium one achieved 99.82 € of savings, i.e., 0.68% or its daily expense. In relation to the three 

simulated scenarios, in terms of operation the one that was most profitable for DSO, considering or not 

a DR situation, it was the second scenario with dominance of small data centers, followed by the first 

one with equivalence of quantity and the third one, with the majority of medium data centers. However, 

it is important to point out that this did not only depend on the predominance of small or medium data 

centers, but on the random conditions that varied among scenarios. 

Successively, the same properties were employed with focus on DSO point of view, allowing to 

simulate certain contractual policies that can be implemented in this sort of association through the 

best and the worst scenarios simulations. The scenario with a preponderance of incentives stimulates 

the adoption of DR programs applied to SMDCs, nevertheless the unchanged and penalty cases enable 

to test an unfavorable scenario for this sort of DR program. Therefore, in terms of the random values 

used in the simulation process, the one single day analysis showed a fluctuation in the power reduction 

potential between 18.02% and 91.16%, while the highest value in the penalty profile was 356 € and in 

the incentive profile 10,580 €. The 22 business day analyses presented a variation in the power 

reduction potential in the range of 13.12% and 71.38%, whilst the highest value in the penalty profile 

was 1,220 € and in the incentive profile 84,700 €. 

Therefore, answering the research questions made by this work consecutively, SMDC can take 

advantage of energy efficiency through centralized management of loads using specific methodologies 

such as EL assessed by this work, in addition to keeping up to date with the best practices pointed out 

by the main surveys. It was also concluded that the loads that should be defined by data center 

operators to respond to DR events are UPS, cooling and finally ICT workloads, for being inserted more 
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properly in the main business of data centers. The suggested framework along with the optimization 

process responded to the last two questions, demonstrating that it is necessary to establish specific 

energy policies appropriate to the particularity of the SMDC market, jointly dealing with it and not 

isolated as in the case of large data centers. Thus, it is possible not to affect the quality and availability 

of computer services, extract financial benefits and be in line with sustainable goals. 

6.2 FUTURE WORK 

Related to the developed work there are several alternatives that could be used to make this research 

either more comprehensive on one hand, or more specific on the other hand, such as: 

• The profile of server room and very small data centers can be inserted in the domain of the 

analyzed data center size. 

• Data from real data centers with different characteristics can be used in simulations with their 

consumption profiles. 

• The same research can be applied to other countries, or specific energy markets. 

• This work addressed load management with energy efficiency measures and participation in 

DR programs directed to the SMDC, but it would be important to analyze the participation of 

this type of energy consumer in other energy markets, such as Ancillary Services. Similar 

research questions, specific objectives, applied literature review, inclusion on the specter of 

this framework, modeling and optimization could bring answers to SMDC, DSOs, TSOs and 

aggregators in this direction.  

• Different tariffs models can be considered, analyzing their particularities and impact. 

• Other incentive values can be used to analyze the optimal balance for data center operators 

and DSO. 

• Only three scenarios were analyzed in terms of SMDC quantity and two scenarios in relation to 

the number of events. This quantitative could be extrapolated in order to study if such a change 

would directly affect the policies adopted and the suggestion of new ones. 

• The algorithm from the DSO point of view can include the impact assessment of the RE in the 

contractual terms, as well as the costs minimization through tariff variations, or incentives. 

• A multi-objective analysis with other objective functions such as reliability and QoS could be 

considered in the future, as well as the use of other techniques and algorithms. 

• A stronger integration between the DR methodology and energy efficiency can be 
implemented, for example, by adding the ability to simulate the impact of energy efficiency 
measures.  



LOAD MANAGEMENT AND DEMAND RESPONSE IN SMALL AND MEDIUM DATA CENTERS   
 

157 

REFERENCES 

Aghaei, J. and Alizadeh, M. I. (2013) ‘Demand response in smart electricity grids equipped with 

renewable energy sources: A review’, Renewable and Sustainable Energy Reviews, pp. 64–72. doi: 

10.1016/j.rser.2012.09.019. 

Ahmad, R. W., Gani, A., Hamid, S. H. A., Shiraz, M., Yousafzai, A. and Xia, F. (2015) ‘A survey on virtual 

machine migration and server consolidation frameworks for cloud data centers’, Journal of Network 

and Computer Applications, pp. 11–25. doi: 10.1016/j.jnca.2015.02.002. 

Ahn, J. and Jouppi, N. (2009) ‘Future scaling of processor-memory interfaces’, Proceedings of the 

Conference on High Performance Computing Networking, Storage and Analysis - SC ’09. New York, New 

York, USA: ACM Press, p. 1. doi: 10.1145/1654059.1654102. 

Alkharabsheh, S., Fernandes, J., Gebrehiwot, B., Agonafer, D., Ghose, K., Ortega, A., Joshi, Y. and 

Sammakia, B. (2015) ‘A Brief Overview of Recent Developments in Thermal Management in Data 

Centers’, Journal of Electronic Packaging, 137(4), p. 40801. doi: 10.1115/1.4031326. 

Amur, H., Cipar, J. and Gupta, V. (2010) ‘Robust and Flexible Power-Proportional Storage’, Proceedings 

of the 1st ACM symposium on Cloud computing - SoCC ’10, pp. 217--228. doi: 

10.1145/1807128.1807164. 

Añón Higón, D., Gholami, R. and Shirazi, F. (2017) ‘ICT and environmental sustainability: A global 

perspective’, Telematics and Informatics, 34(4), pp. 85–95. doi: 10.1016/j.tele.2017.01.001. 

‘Apple doubles fuel cell capacity at NC data centre with Bloom’ (2013) Fuel Cells Bulletin, 2013(1), p. 5. 

doi: 10.1016/S1464-2859(13)70011-7. 

Aravanis, A. I., Voulkidis, A., Salom, J., Townley, J., Georgiadou, V., Oleksiak, A., Porto, M. R., Roudet, F. 

and Zahariadis, T. (2015) ‘Metrics for assessing flexibility and sustainability of next generation data 

centers’, 2015 IEEE Globecom Workshops, GC Wkshps 2015 - Proceedings. doi: 

10.1109/GLOCOMW.2015.7414182. 

Ardagna, D., Panicucci, B., Trubian, M. and Zhang, L. (2012) ‘Energy-aware autonomic resource 

allocation in multitier virtualized environments’, IEEE Transactions on Services Computing, 5(1), pp. 2–

19. doi: 10.1109/TSC.2010.42. 

Arianyan, E., Taheri, H. and Khoshdel, V. (2017) ‘Novel fuzzy multi objective DVFS-aware consolidation 

heuristics for energy and SLA efficient resource management in cloud data centers’, Journal of Network 

and Computer Applications, 78, pp. 43–61. doi: 10.1016/j.jnca.2016.09.016. 



REFERENCES 
 

158 

Arlitt, M., Bash, C., Blagodurov, S., Chen, Y., Christian, T., Gmach, D., Hyser, C., Kumari, N., Liu, Z., 

Marwah, M., McReynolds, A., Patel, C., Shah, A., Wang, Z. and Zhou, R. (2012) ‘Towards the design and 

operation of net-zero energy data centers’, Thermal and Thermomechanical Phenomena in Electronic 

Systems (ITherm), 2012 13th IEEE Intersociety Conference on, pp. 552–561. doi: 

10.1109/itherm.2012.6231479. 

ASHRAE (2011) ‘2011 Gaseous and Particulate Contamination Guidelines For Data Centers’, American 

Society of Heating, Refrigerating and Air-Conditioning Engineers, pp. 1–22. 

ASHRAE Technical Committee 9.9 (2011) 'Thermal Guidelines for Data Processing Environments', 

American Society of Heating, Refrigerating, and Air-Conditioning Engineers Inc. 

Barroso, L. A. and Hölzle, U. (2007) ‘The case for energy-proportional computing’, Computer, 40(12), 

pp. 33–37. doi: 10.1109/MC.2007.443. 

Basmadjian, R., Ali, N., Niedermeier, F., de Meer, H. and Giuliani, G. (2011) ‘A methodology to predict 

the power consumption of servers in data centres’, Proceedings of the 2nd International Conference on 

Energy-Efficient Computing and Networking - e-Energy ’11. New York, New York, USA: ACM Press, p. 1. 

doi: 10.1145/2318716.2318718. 

Basmadjian, R., Lovasz, G., Beck, M., Meer, H. De, Hesselbach-Serra, X., Botero, J. F., Klingert, S., Ortega, 

M. P., Lopez, J. C., Stam, A., Krevelen, R. Van and Girolamo, M. Di (2013) ‘A Generic Architecture for 

Demand Response: The ALL4Green Approach’, 2013 International Conference on Cloud and Green 

Computing. IEEE, pp. 464–471. doi: 10.1109/CGC.2013.79. 

Basmadjian, R., Müller, L. and De Meer, H. (2015) ‘Data centres’ power profile selecting policies for 

Demand Response: Insights of Green Supply Demand Agreement’, Ad Hoc Networks, 25(PB), pp. 581–

594. doi: 10.1016/j.adhoc.2014.11.007. 

Basmadjian, R., Niedermeier, F., Lovasz, G., De Meer, H. and Klingert, S. (2013) ‘GreenSDAs leveraging 

power adaption collaboration between energy provider and data centres’, 2013 Sustainable Internet 

and ICT for Sustainability, SustainIT 2013. doi: 10.1109/SustainIT.2013.6685195. 

BCSDPortugal (2017) ‘Data Center da PT Portugal’, pp. 1–9. Accessed: 14-01-2017. 

Beitelmal, A. H. and Fabris, D. (2014) ‘Servers and data centers energy performance metrics’, Energy 

and Buildings, 80, pp. 562–569. doi: 10.1016/j.enbuild.2014.04.036. 

Beloglazov, A. and Buyya, R. (2013) ‘Managing overloaded hosts for dynamic consolidation of virtual 

machines in cloud data centers under quality of service constraints’, IEEE Transactions on Parallel and 

Distributed Systems, 24(7), pp. 1366–1379. doi: 10.1109/TPDS.2012.240. 



LOAD MANAGEMENT AND DEMAND RESPONSE IN SMALL AND MEDIUM DATA CENTERS   
 

159 

Bennett, D. and Delforge, P. (2012) ‘Small Server Rooms , Big Energy Savings Opportunities and Barriers 

to Energy Efficiency on the Small Server Room Market’, NRDC, (February). 

Bixby, R. E. (2012) ‘A Brief History of Linear and Mixed-Integer Programming Computation’, Documenta 

Mathematica · Extra, ISMP ISMP, pp. 107–121. 

Bonetto, E., Finamore, A., Mellia, M. and Fiandra, R. (2014) ‘Energy efficiency in access and aggregation 

networks: From current traffic to potential savings’, Computer Networks, 65, pp. 151–166. doi: 

10.1016/j.comnet.2014.03.008. 

Boulos, S., Nuttall, C., Harrison, B., Moura, P. and Jehle, C. (2014) 'ErP Lot 27 – Uninterruptible Power 

Supplies: Preparatory Study - Final Report'. Ricardo-AEA, Intertek, ISR – University of Coimbra. 

Brady, G. A., Kapur, N., Summers, J. L. and Thompson, H. M. (2013) ‘A case study and critical assessment 

in calculating power usage effectiveness for a data centre’, Energy Conversion and Management, 76, 

pp. 155–161. doi: 10.1016/j.enconman.2013.07.035. 

Brocanelli, M., Li, S., Wang, X. and Zhang, W. (2014) ‘Maximizing the revenues of data centers in 

regulation market by coordinating with electric vehicles’, Sustainable Computing: Informatics and 

Systems. Elsevier Inc., pp. 1–13. doi: 10.1016/j.suscom.2014.03.004. 

Calheiros, R. N., Ranjan, R., De Rose, C. A. F. and Buyya, R. (2009) ‘CloudSim: A Novel Framework for 

Modeling and Simulation of Cloud Computing Infrastructures and Services’, arXiv preprint 

arXiv:0903.2525, p. 9. 

Camacho, J., Zhang, Y., Chen, M. and Chiu, D. M. (2014) ‘Balance your Bids before your Bits : The 

Economics of Geographic Load-Balancing’, Proc. of the 5th Int. Conf. on Future Energy Systems (ACM e-

Energy), pp. 75–85. doi: 10.1145/2602044.2602068. 

Canuto, M., Bosch, R., Macias, M. and Guitart, J. (2016) ‘A methodology for full-system power modeling 

in heterogeneous data centers’, Proceedings of the 9th International Conference on Utility and Cloud 

Computing - UCC ’16. New York, New York, USA: ACM Press, pp. 20–29. doi: 10.1145/2996890.2996899. 

Capozzoli, A., Chinnici, M., Perino, M. and Serale, G. (2015) ‘Review on Performance Metrics for Energy 

Efficiency in Data Center: The Role of Thermal Management’, Energy Efficient Data Centers, pp. 135–

151. doi: 10.1007/978-3-319-15786-3_9. 

Cappuccio, D. J. (2010) ‘DCIM : Going Beyond IT’, Research ID Number: G00174769, (March). 

Carreiro, A. M., Jorge, H. M. and Antunes, C. H. (2017) ‘Energy management systems aggregators: A 

literature survey’, Renewable and Sustainable Energy Reviews, pp. 1160–1172. doi: 

10.1016/j.rser.2017.01.179. 



REFERENCES 
 

160 

Castro, P. H. P., Cardoso, K. V and Corrêa, S. (2013) ‘Uma Abordagem Baseada no Consumo de CPU e 

RAM para a Eficiencia Energetica em Centros de Dados para Computação em Nuvem’, Wscad-Ssc 2013, 

(February), p. 8. doi: 10.13140/2.1.4681.0242. 

Cecati, C., Mokryani, G., Piccolo, A. and Siano, P. (2010) ‘An overview on the Smart Grid concept’,  IECON 

Proceedings (Industrial Electronics Conference), pp. 3322–3327. doi: 10.1109/IECON.2010.5675310. 

Chen, N., Ren, X., Ren, S. and Wierman, A. (2015) ‘Greening multi-tenant data center demand response’, 

Performance Evaluation. Elsevier B.V., 91, pp. 229–254. doi: 10.1016/j.peva.2015.06.014. 

Chen, T., Gao, X. and Chen, G. (2016) ‘The features, hardware, and architectures of data center 

networks: A survey’, Journal of Parallel and Distributed Computing, 96, pp. 45–74. doi: 

10.1016/j.jpdc.2016.05.009. 

Chinnici, M., Capozzoli, A. and Serale, G. (2016) ‘Measuring energy efficiency in data centers’,  Pervasive 

Computing. Elsevier, pp. 299–351. doi: 10.1016/B978-0-12-803663-1.00010-3. 

Christantoni, D., Oxizidis, S., Flynn, D. and Finn, D. P. (2016) ‘Implementation of demand response 

strategies in a multi-purpose commercial building using a whole-building simulation model approach’, 

Energy and Buildings, 131, pp. 76–86. doi: 10.1016/j.enbuild.2016.09.017. 

Cioara, T., Anghel, I., Bertoncini, M., Salomie, I., Arnone, D., Mammina, M., Velivassaki, T.-H. and Antal, 

M. (2016) ‘Optimized flexibility management enacting Data Centres participation in Smart Demand 

Response programs’, Future Generation Computer Systems. doi: 10.1016/j.future.2016.05.010. 

Clímaco, J. N., Antunes, C. H. and Alves, M. J. G. (2003) Programação linear multiobjectivo: do modelo 

de programação linear clássico à consideração explícita de várias funções objectivo. Imprensa da 

Universidade de Coimbra. doi: 10.14195/978-989-26-0479-4. 

Craig-wood, K., Krause, P. and Mason, A. (2010) ‘Green ICT : Oxymoron or call to innovation?’, Transport, 

(Ict), pp. 978–981. doi: 10.5176/978-981-08-7240-3. 

Cupertino, L., Da Costa, G., Oleksiak, A., Pia¸tek, W., Pierson, J.-M., Salom, J., Sisó, L., Stolf, P., Sun, H. 

and Zilio, T. (2015) ‘Energy-efficient, thermal-aware modeling and simulation of data centers: The 

CoolEmAll approach and evaluation results’, Ad Hoc Networks, 25, pp. 535–553. doi: 

10.1016/j.adhoc.2014.11.002. 

Dai, J., Das, D., Ohadi, M. and Pecht, M. (2013) ‘Reliability risk mitigation of free air cooling through 

prognostics and health management’, Applied Energy, 111, pp. 104–112. doi: 

10.1016/j.apenergy.2013.04.047. 

Dai, J., Das, D. and Pecht, M. (2012a) ‘A multiple stage approach to mitigate the risks of 



LOAD MANAGEMENT AND DEMAND RESPONSE IN SMALL AND MEDIUM DATA CENTERS   
 

161 

telecommunication equipment under free air cooling conditions’, Energy Conversion and Management, 

64, pp. 424–432. doi: 10.1016/j.enconman.2012.06.018. 

Dai, J., Das, D. and Pecht, M. (2012b) ‘Prognostics-based risk mitigation for telecom equipment under 

free air cooling conditions’, Applied Energy, 99, pp. 423–429. doi: 10.1016/j.apenergy.2012.05.055. 

Dargie, W. (2014) ‘Estimation of the cost of VM migration’, Proceedings - International Conference on 

Computer Communications and Networks, ICCCN. doi: 10.1109/ICCCN.2014.6911756. 

Darrow, K. and Hedman, B. (2009) 'Opportunities for Combined Heat and Power in Data Centers', 

Cogeneration and Distributed Generation. 

Dayarathna, M., Wen, Y. and Fan, R. (2016) ‘Data Center Energy Consumption Modeling: A Survey’, IEEE 

Communications Surveys & Tutorials, 18(1), pp. 732–794. doi: 10.1109/COMST.2015.2481183. 

Delforge, P. (2014) ‘America’s Data Centers Are Wasting Huge Amounts of Energy’, Natural Resources 

Defense Council (NRDC), IB:14-08-A(August), pp. 1–5. 

Delta (2018) Delta Power Solutions. Available at: http://www.deltapowersolutions.com. Accessed: 22-

02-2018.  

Deng, Y. (2011) ‘What is the future of disk drives, death or rebirth?’, ACM Computing Surveys, 43(3), 

pp. 1–27. doi: 10.1145/1922649.1922660. 

Depoorter, V., Oró, E. and Salom, J. (2015) ‘The location as an energy efficiency and renewable energy 

supply measure for data centres in Europe’, Applied Energy, 140, pp. 338–349. doi: 

10.1016/j.apenergy.2014.11.067. 

Dhiman, G., Marchetti, G. and Rosing, T. S. (2010) ‘VGreen: A system for energy-efficient management 

of virtual machines’, ACM Transactions on Design Automation of Electronic Systems, 16(1), pp. 1–27. 

doi: 10.1145/1870109.1870115. 

Doyle, J., Shorten, R. and O’mahony, D. (2013) ‘Stratus: Load balancing the cloud for carbon emissions 

control’, IEEE Transactions on Cloud Computing, 1(1), pp. 116–128. doi: 10.1109/TCC.2013.4. 

Dreibholz, T., Becke, M. and Adhari, H. (2007) ‘Report to Congress on Server and Data Center Energy 

Efficiency Public Law 109-431’, tdr.wiwi.uni-due.de, 109, p. 431. 

Du, P. and Lu, N. (2011) ‘Appliance commitment for household load scheduling’, IEEE Transactions on 

Smart Grid, 2(2), pp. 411–419. doi: 10.1109/TSG.2011.2140344. 

Ebrahimi, K., Jones, G. F. and Fleischer, A. S. (2014) ‘A review of data center cooling technology, 

operating conditions and the corresponding low-grade waste heat recovery opportunities’, Renewable 

and Sustainable Energy Reviews, 31, pp. 622–638. doi: 10.1016/j.rser.2013.12.007. 



REFERENCES 
 

162 

Emerson (2015) ‘Energy Logic : Reducing Data Center Energy Consumption by Creating Savings that 

Cascade Across Systems’, White Paper, Emerson Network Power, pp. 1–21. 

Energy Services Regulatory Authority (2018) Electricity Market. Available at: 

http://www.erse.pt/eng/mktsupervision/electricitymkt/Paginas/default.aspx. Accessed: 21-04-2018. 

Eu Commission Tf For Smart Grids Expert Group (2010) ‘Functionalities of smart grids and smart meters’, 

Group, 23(December), pp. 1–69. 

Fang, X., Misra, S., Xue, G. and Yang, D. (2012) ‘Smart Grid — The New and Improved Power Grid: A 

Survey’, IEEE Communications Surveys & Tutorials, 14(4), pp. 944–980. doi: 

10.1109/SURV.2011.101911.00087. 

Flanagan, C. (2013) ‘A Data Center Perspective on Demand Response’, Data Centers Dynamics. 

Fridgen, G., Keller, R., Thimmel, M. and Wederhake, L. (2017) ‘Shifting load through space–The 

economics of spatial demand side management using distributed data centers’, Energy Policy, 109, pp. 

400–413. doi: 10.1016/j.enpol.2017.07.018. 

Fulpagare, Y. and Bhargav, A. (2015) ‘Advances in data center thermal management’, Renewable and 

Sustainable Energy Reviews, pp. 981–996. doi: 10.1016/j.rser.2014.11.056. 

Garimella, S. V., Persoons, T., Weibel, J. and Yeh, L. T. (2013) ‘Technological drivers in data centers and 

telecom systems: Multiscale thermal, electrical, and energy management’, Applied Energy, pp. 66–80. 

doi: 10.1016/j.apenergy.2013.02.047. 

Gavald, O., Depoorter, V. and Oppelt, T. (2014) ‘Report of different options for renewable energy supply 

in Data Centres in Europe’, RenewIT. 

Gellings, C. (EPRI) (2011) 'Estimating the Costs and Benefits of the Smart Grid', Power. 

Ghatikar, G., Ganti, V. and Matson, N. (2012) 'Demand Response Opportunities and Enabling 

Technologies for Data Centers : Findings from Field Studie's, Lawrence Berkeley National Laboratory. 

Ghatikar, G., Piette, M. A., Fujita, S., McKane, A., J.H., D., Radspieler, A., Mares, K. C. and Shroyer, D. 

(2010) 'Demand Response and Open Automated Demand Response Opportunities for Data Centers', 

Lawrence Berkeley National Laboratory. 

Goiri, Í., Katsak, W., Le, K., Nguyen, T. D. and Bianchini, R. (2013) ‘Parasol and GreenSwitch’, Proceedings 

of the eighteenth international conference on Architectural support for programming languages and 

operating systems - ASPLOS ’13. New York, New York, USA: ACM Press, p. 51. doi: 

10.1145/2451116.2451123. 

Grice, J. W., Dean, N. and Eddie, S. (2013) ‘Sustainable Site Selection : The Convergence of Data Center 



LOAD MANAGEMENT AND DEMAND RESPONSE IN SMALL AND MEDIUM DATA CENTERS   
 

163 

Site’, The Green Grid. Research Report, (Sustainable Site Selection), p. 20. 

Gu, C., Fan, L., Wu, W., Huang, H. and Jia, X. (2016) ‘Greening cloud data centers in an economical way 

by energy trading with power grid’, Future Generation Computer Systems. doi: 

10.1016/j.future.2016.12.029. 

Guizzi, G. L. and Manno, M. (2012) ‘Fuel cell-based cogeneration system covering data centers’ energy 

needs’, Energy, 41(1), pp. 56–64. doi: 10.1016/j.energy.2011.07.030. 

Guizzi, G., Manno, M. and Zaccagnini, A. (2009) ‘Comparative analysis of combined cooling, heating and 

power systems (CCHP) covering data centers energy needs’, ECOS 2009 - 22nd International Conference 

on Efficiency, Cost, Optimization Simulation and Environmental Impact of Energy Systems. 

Güngör, V. C., Sahin, D., Kocak, T., Ergüt, S., Buccella, C., Cecati, C. and Hancke, G. P. (2011) ‘Smart grid 

technologies: Communication technologies and standards’, IEEE Transactions on Industrial Informatics, 

7(4), pp. 529–539. doi: 10.1109/TII.2011.2166794. 

Gupta, M. and Singh, S. (2003) ‘Greening of the internet’, Proceedings of the 2003 conference on 

Applications, technologies, architectures, and protocols for computer communications - SIGCOMM ’03, 

pp. 19–26. doi: 10.1145/863956.863959. 

Gupta, M. and Singh, S. (2007) ‘Using Low-Power Modes for Energy Conservation in Ethernet LANs’, 

IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Communications, pp. 2451–

2455. doi: 10.1109/INFCOM.2007.299. 

Hammadi, A. and Mhamdi, L. (2014) ‘A survey on architectures and energy efficiency in Data Center 

Networks’, Computer Communications, 40, pp. 1–21. doi: 10.1016/j.comcom.2013.11.005. 

Härder, T., Hudlet, V., Ou, Y. and Schall, D. (2011) ‘Energy Efficiency Is Not Enough, Energy 

Proportionality Is Needed!’, DASFAA Workshops, pp. 226–239. doi: 10.1007/978-3-642-20244-5. 

Van Heddeghem, W., Lambert, S., Lannoo, B., Colle, D., Pickavet, M. and Demeester, P. (2014) ‘Trends 

in worldwide ICT electricity consumption from 2007 to 2012’, Computer Communications. Elsevier B.V., 

50, pp. 64–76. doi: 10.1016/j.comcom.2014.02.008. 

Heller, B., Seetharaman, S., Mahadevan, P., Yiakoumis, Y., Sharma, P., Banerjee, S. and McKeown, N. 

(2010) ‘ElasticTree : Saving Energy in Data Center Networks’, Proceedings of the 7th USENIX Conference 

on Networked Systems Design and Implementation, pp. 17–17. doi: 10.1021/ci2004779. 

Hermenier, F., Lorca, X., Menaud, J.-M., Muller, G. and Lawall, J. (2009) ‘Entropy: a Consolidation 

Manager for Clusters’, Proceedings of the 2009 ACM SIGPLAN/SIGOPS international conference on 

Virtual execution environments - VEE ’09, p. 41. doi: 10.1145/1508293.1508300. 



REFERENCES 
 

164 

Horner, N. and Azevedo, I. (2016) ‘Power usage effectiveness in data centers: Overloaded and 

underachieving’, Electricity Journal, 29(4), pp. 61–69. doi: 10.1016/j.tej.2016.04.011. 

Iec (2013) Uninterruptible power systems ( UPS ) – Part 1 : General and safety requirements for UPS. 

International Electrotechnical Commission. Reference number. IEC 62040-1. 

International Energy Agency (2014) ‘ENERGY SUPPLY SECURITY 2014 Part 3’, Energy Supply Security: 

The Emergency Response of IEA Countries - 2014 Edition, pp. 1–105. 

Iqbal, M., Azam, M., Naeem, M., Khwaja, A. S. and Anpalagan, A. (2014) ‘Optimization classification, 

algorithms and tools for renewable energy: A review’, Renewable and Sustainable Energy Reviews, pp. 

640–654. doi: 10.1016/j.rser.2014.07.120. 

Irwin, D., Sharma, N. and Shenoy, P. (2011) ‘Towards continuous policy-driven demand response in data 

centers’, Proceedings of the 2nd ACM SIGCOMM workshop on Green networking - GreenNets ’11, p. 19. 

doi: 10.1145/2018536.2018541. 

Islam, M. A., Arafath, M. Y. and Hasan, M. J. (2015) ‘Design of DDR4 SDRAM controller’, 8th International 

Conference on Electrical and Computer Engineering: Advancing Technology for a Better Tomorrow, 

ICECE 2014, pp. 148–151. doi: 10.1109/ICECE.2014.7026950. 

JEDEC (2017) ‘JEDEC DDR5 & NVDIMM-P Standards Under Development’, JEDEC’s Server Forum. 

Jeong, S. and Kim, Y. W. (2014) ‘A holistic investigation method for data center resource efficiency’, 

International Conference on ICT Convergence, pp. 548–551. doi: 10.1109/ICTC.2014.6983207. 

Jiang, T., Yu, L. and Cao, Y. (2015) 'Energy Management of Internet Data Centers in Smart Grid'. Springer. 

doi: 10.1007/978-3-662-45676-7. 

Jin, M., Feng, W., Liu, P., Marnay, C. and Spanos, C. (2017) ‘MOD-DR: Microgrid optimal dispatch with 

demand response’, Applied Energy, 187, pp. 758–776. doi: 10.1016/j.apenergy.2016.11.093. 

Jin, M., Feng, W., Marnay, C. and Spanos, C. (2017) ‘Microgrid to enable optimal distributed energy 

retail and end-user demand response’, Applied Energy. doi: 10.1016/j.apenergy.2017.05.103. 

Johannah, J. J., Korah, R., Kalavathy, M. and Sivanandham (2017) ‘Standby and dynamic power 

minimization using enhanced hybrid power gating structure for deep-submicron CMOS VLSI’, 

Microelectronics Journal, 62, pp. 137–145. doi: 10.1016/j.mejo.2017.02.003. 

Josh, W. and Delforge, P. (2014) 'Data Center Efficiency Assessment: Scaling Up Energy Efficiency Across 

the Data Center Industry: Evaluating Key Drivers and Barriers'. NRDC and Anthesis. 

Judge, J., Pouchet, J., Ekbote, A. and Dixit, S. (2008) ‘Reducing data center energy consumption’, 

ASHRAE Journal, 50(November). 



LOAD MANAGEMENT AND DEMAND RESPONSE IN SMALL AND MEDIUM DATA CENTERS   
 

165 

Khan, M. U. S. and Khan, S. U. (2015) ‘Smart Data Center’, Handbook on Data Centers. New York, NY: 

Springer New York, pp. 247–262. doi: 10.1007/978-1-4939-2092-1_7. 

Kim, J. (2016) Strong, 'Thorough, and Efficient Memory Protection against Existing and Emerging DRAM 

Errors'. University of Texas. 

Kim, J., Sabry, M. M., Ruggiero, M. and Atienza, D. (2015) ‘Power-Thermal Modeling and Control of 

Energy-Efficient Servers and Datacenters’, Handbook on Data Centers. New York, NY: Springer New York, 

pp. 857–913. doi: 10.1007/978-1-4939-2092-1_29. 

Klingert, S., Niedermeier, F., Dupont, C., Giuliani, G., Schulze, T. and de Meer, H. (2015) ‘Renewable 

Energy-aware Data Centre Operations for Smart Cities - The DC4Cities Approach’, Proceedings of the 

4th International Conference on Smart Cities and Green ICT Systems. SCITEPRESS - Science and and 

Technology Publications, pp. 26–34. doi: 10.5220/0005430600260034. 

Koomey (2011) 'Growth in Data Center Electricity use 2005 to 2010', Oakland, CA: Analytics Press. 

August. doi: 10.1088/1748-9326/3/3/034008. 

Krzywda, J., Ali-Eldin, A., Carlson, T. E., Östberg, P.-O. and Elmroth, E. (2017) ‘Power-performance 

tradeoffs in data center servers: DVFS, CPU pinning, horizontal, and vertical scaling’, Future Generation 

Computer Systems. doi: 10.1016/j.future.2017.10.044. 

Lee, K. P. and Chen, H. L. (2013) ‘Analysis of energy saving potential of air-side free cooling for data 

centers in worldwide climate zones’, Energy and Buildings, 64, pp. 103–112. doi: 

10.1016/j.enbuild.2013.04.013. 

Lei, H., Wang, R., Zhang, T., Liu, Y. and Zha, Y. (2016) ‘A multi-objective co-evolutionary algorithm for 

energy-efficient scheduling on a green data center’, Computers and Operations Research, 75, pp. 103–

117. doi: 10.1016/j.cor.2016.05.014. 

Li, J., Bao, Z. and Li, Z. (2015) ‘Modeling demand response capability by internet data centers processing 

batch computing jobs’, IEEE Transactions on Smart Grid, 6(2), pp. 737–747. doi: 

10.1109/TSG.2014.2363583. 

Lim, S.-H., Huh, J.-S., Kim, Y. and Das, C. R. (2011) ‘Migration, Assignment, and Scheduling of Jobs in 

Virtualized Environment’, HotCloud 2011, pp. 1–5. 

Little, A. B. and Garimella, S. (2012) ‘Waste Heat Recovery in Data Centers Using Sorption Systems’, 

Journal of Thermal Science and Engineering Applications, 4(2), p. 21007. doi: 10.1115/1.4005813. 

Liu, Z., Liu, I., Low, S. and Wierman, A. (2014) ‘Pricing Data Center Demand Response’, Acm Sigmetrics, 

pp. 111–123. doi: 10.1145/2591971.2592004. 



REFERENCES 
 

166 

Liu, Z., Wierman, A., Chen, Y., Razon, B. and Chen, N. (2013) ‘Data center demand response: Avoiding 

the coincident peak via workload shifting and local generation’, Performance Evaluation. Elsevier B.V., 

70(10), pp. 770–791. doi: 10.1016/j.peva.2013.08.014. 

Lu, T., Pande, P. P. and Shirazi, B. (2016) ‘A dynamic, compiler guided DVFS mechanism to achieve 

energy-efficiency in multi-core processors’, Sustainable Computing: Informatics and Systems, 12, pp. 

1–9. doi: 10.1016/j.suscom.2016.04.003. 

Malkamäki, T. and Ovaska, S. J. (2012) ‘Solar energy and free cooling potential in European data centers’, 

in Procedia Computer Science, pp. 1004–1009. doi: 10.1016/j.procs.2012.06.138. 

Mämmelä, O., Majanen, M., Basmadjian, R., De Meer, H., Giesler, A. and Homberg, W. (2012) ‘Energy-

aware job scheduler for high-performance computing’, Computer Science - Research and Development, 

27(4), pp. 265–275. doi: 10.1007/s00450-011-0189-6. 

Masanet, E. R., Brown, R. E., Shehabi, A., Koomey, J. G. and Nordman, B. (2011) ‘Estimating the energy 

use and efficiency potential of U.S. data centers’, Proceedings of the IEEE, pp. 1440–1453. doi: 

10.1109/JPROC.2011.2155610. 

Masanet, E. and Robert, H. (2014) ‘Data Center IT Efficiency Measures’, The Uniform Methods Project: 

Methods for Determining Energy Efficiency Savings for Specific Measures, (January 2015). 

Mäsker, M., Nagel, L., Brinkmann, A., Lotfifar, F. and Johnson, M. (2016) ‘Smart Grid-aware scheduling 

in data centres’, Computer Communications, 96, pp. 73–85. doi: 10.1016/j.comcom.2016.04.021. 

Mazumdar, S. and Pranzo, M. (2017) ‘Power efficient server consolidation for Cloud data center’, Future 

Generation Computer Systems, 70, pp. 4–16. doi: 10.1016/j.future.2016.12.022. 

‘Microsoft data centre in Wyoming to use FuelCell Energy unit’ (2012) Fuel Cells Bulletin, 2012(12), p. 

5. doi: 10.1016/S1464-2859(12)70348-6. 

Moreno-Munoz, A., De La Rosa, J. J. G., Pallarés-Lopez, V., Real-Calvo, R. J. and Gil-De-Castro, A. (2011) 

‘Distributed DC-UPS for energy smart buildings’, Energy and Buildings, 43(1), pp. 93–100. doi: 

10.1016/j.enbuild.2010.08.018. 

Moura, P., Nuttall, C., Harrison, B., Jehle, C. and de Almeida, A. (2016) ‘Energy savings potential of 

uninterruptible power supplies in European Union’, Energy Efficiency, 9(5), pp. 993–1013. doi: 

10.1007/s12053-015-9406-7. 

Mukherjee, T., Banerjee, A., Varsamopoulos, G. and Gupta, S. K. S. (2010) ‘Model-driven coordinated 

management of data centers’, Computer Networks, 54(16), pp. 2869–2886. doi: 

10.1016/j.comnet.2010.08.011. 



LOAD MANAGEMENT AND DEMAND RESPONSE IN SMALL AND MEDIUM DATA CENTERS   
 

167 

Nada, N. and Elgelany, A. (2014) ‘Green Technology, Cloud Computing and Data Centers: the Need for 

Integrated Energy Efficiency Framework and Effective Metric’, International Journal of Advanced 

Computer Science and Applications, 5(5), pp. 89–93. doi: 10.14569/IJACSA.2014.050513. 

Nadjaran Toosi, A., Qu, C., de Assunção, M. D. and Buyya, R. (2017) ‘Renewable-aware geographical 

load balancing of web applications for sustainable data centers’, Journal of Network and Computer 

Applications, 83, pp. 155–168. doi: 10.1016/j.jnca.2017.01.036. 

Nathuji, R. and Schwan, K. (2007) ‘VirtualPower: coordinated power management in virtualized 

enterprise systems’, Proceedings of twenty-first ACM SIGOPS symposium on Operating systems 

principles - SOSP ’07, p. 265. doi: 10.1145/1294261.1294287. 

Nedevschi, S., Popa, L., Iannaccone, G., Ratnasamy, S. and Wetherall, D. (2008) ‘Reducing network 

energy consumption via sleeping and rate-adaptation’, Symposium A Quarterly Journal In Modern 

Foreign Literatures, 21(3), pp. 323–336. doi: 10.1.1.143.3471. 

Ni, J. and Bai, X. (2017) ‘A review of air conditioning energy performance in data centers’, Renewable 

and Sustainable Energy Reviews, pp. 625–640. doi: 10.1016/j.rser.2016.09.050. 

Oconnell, N., Pinson, P., Madsen, H. and Omalley, M. (2014) ‘Benefits and challenges of electrical 

demand response: A critical review’, Renewable and Sustainable Energy Reviews, pp. 686–699. doi: 

10.1016/j.rser.2014.07.098. 

Oró, E., Depoorter, V., Garcia, A. and Salom, J. (2015) ‘Energy efficiency and renewable energy 

integration in data centres. Strategies and modelling review’, Renewable and Sustainable Energy 

Reviews, pp. 429–445. doi: 10.1016/j.rser.2014.10.035. 

Padala, P., Hou, K.-Y., Shin, K. G., Zhu, X., Uysal, M., Wang, Z., Singhal, S. and Merchant, A. (2009) 

‘Automated control of multiple virtualized resources’, Proceedings of the 4th ACM European conference 

on Computer systems, pp. 13–26. doi: 10.1145/1519065.1519068. 

Panajotovic, B., Jankovic, M. and Odadzic, B. (2011) ‘ICT and smart grid’, 2011 10th International 

Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Services, TELSIKS 2011 

- Proceedings of Papers, pp. 118–121. doi: 10.1109/TELSKS.2011.6112018. 

Parra, D., Swierczynski, M., Stroe, D. I., Norman, S. A., Abdon, A., Worlitschek, J., O?Doherty, T., 

Rodrigues, L., Gillott, M., Zhang, X., Bauer, C. and Patel, M. K. (2017) ‘An interdisciplinary review of 

energy storage for communities: Challenges and perspectives’, Renewable and Sustainable Energy 

Reviews, 79, pp. 730–749. doi: 10.1016/j.rser.2017.05.003. 

Paterakis, N. G., Erdinç, O. and Catalão, J. P. S. (2017) ‘An overview of Demand Response: Key-elements 

and international experience’, Renewable and Sustainable Energy Reviews, pp. 871–891. doi: 



REFERENCES 
 

168 

10.1016/j.rser.2016.11.167. 

Paul, D., Zhong, W. De and Bose, S. K. (2017) ‘Demand Response in Data Centers Through Energy-

Efficient Scheduling and Simple Incentivization’, IEEE Systems Journal, 11(2), pp. 613–624. doi: 

10.1109/JSYST.2015.2476357. 

Pier (2008) ‘Uninterruptible Power Supplies : A Data Center Efficiency Opportunity. Technical brief. 

California Energy Commission’s Public Interest Energy Research (PIER) Program’. 

Pierson, J.-M. (ed.) (2015) Large-Scale Distributed Systems and Energy Efficiency. Hoboken, NJ, USA: 

John Wiley & Sons, Inc. doi: 10.1002/9781118981122. 

PJM (2013) ‘Retail Electricity Consumer Opportunities for Demand Response in PJM’s Wholesale 

Markets’, pp. 1–3. 

Pore, M., Abbasi, Z., Gupta, S. K. S. and Varsamopoulos, G. (2015) ‘Techniques to Achieve Energy 

Proportionality in Data Centers: A Survey’, Handbook on Data Centers. New York, NY: Springer New 

York, pp. 109–162. doi: 10.1007/978-1-4939-2092-1_4. 

Raghavendra, R., Ranganathan, P., Talwar, V., Wang, Z. and Zhu, X. (2008) ‘No “ Power ” Struggles : 

Coordinated Multi-level Power Management for the Data Center’, Solutions, 36, pp. 48–59. doi: 

http://doi.acm.org/10.1145/1346281.1346289. 

Reiss, C., Tumanov, A. and Ganger, G. (2012) ‘Towards understanding heterogeneous clouds at scale: 

Google trace analysis’, Intel science & technology center for cloud computing. 

Ristic, B., Madani, K. and Makuch, Z. (2015) ‘The Water Footprint of Data Centers’, Sustainability, 7(8), 

pp. 11260–11284. doi: 10.3390/su70811260. 

Rong, H., Zhang, H., Xiao, S., Li, C. and Hu, C. (2016) ‘Optimizing energy consumption for data centers’, 

Renewable and Sustainable Energy Reviews. Elsevier, 58, pp. 674–691. doi: 10.1016/j.rser.2015.12.283. 

Salom, J., Urbaneck, T. and Oró, E. (2017) Advanced Concepts for Renewable Energy Supply of Data 

Centres. River Publishers. doi: 10.13052/rp-9788793519411. 

Sanders, P., Sivadasan, N. and Skutella, M. (2004) ‘Online scheduling with bounded migration’, 

Automata , Languages and Programming, Proceedings, pp. 1111–1122. doi: 10.1287/moor.1090.0381. 

Schrijver, A. (1986) ‘Theory of linear and integer programming’, Wiley-Interscience series in discrete 

mathematics and optimization, p. xi, 471 . doi: 10.1016/0378-4754(87)90121-2. 

Shah, A. J. and Krishnan, N. (2008) ‘Optimization of Global Data Center Thermal Management Workload 

for Minimal Environmental and Economic Burden’, IEEE Transactions on Components and Packaging 

Technologies, 31(1), pp. 39–45. doi: 10.1109/TCAPT.2007.906721. 



LOAD MANAGEMENT AND DEMAND RESPONSE IN SMALL AND MEDIUM DATA CENTERS   
 

169 

Sharma, N., Barker, S., Irwin, D. and Shenoy, P. (2011) ‘Blink: managing server clusters on intermittent 

power’, ACM SIGPLAN Notices, 46(3), p. 185. doi: 10.1145/1961296.1950389. 

Shehabi, A., Horvath, A., Tschudi, W., Gadgil, A. J. and Nazaroff, W. W. (2008) ‘Particle concentrations 

in data centers’, Atmospheric Environment, 42(24), pp. 5978–5990. doi: 

10.1016/j.atmosenv.2008.03.049. 

Shehabi, A., Smith, S. J., Sartor, D. A., Brown, R. E., Herrlin, M., Koomey, J. G., Masanet, E. R., Horner, 

N., Azevedo, I. L. and Lintner, W. (2016) ‘United States Data Center Energy Usage Report’, Ernest 

Orlando Lawrence Barkeley National Laboratory, (June). doi: LBNL-1005775. 

Shehabi, A., Tschudi, W. and Gagdil, A. (2007) 'Data Center Economizer Contamination and Humidity 

Study'. Lawrence Berkeley National Laboratory. 

Sheppy, M., Lobato, C., Geet, O. Van, Pless, S., Donovan, K. and Powers Chuck (2011) 'Reducing Data 

Center Loads for a Large- scale , Low-energy Office Building : NREL ’ s Research Support Facility'. Golden, 

Colorado. 

Shuja, J., Gani, A., Shamshirband, S., Ahmad, R. W. and Bilal, K. (2016) ‘Sustainable Cloud Data Centers: 

A survey of enabling techniques and technologies’, Renewable and Sustainable Energy Reviews, 62, pp. 

195–214. doi: 10.1016/j.rser.2016.04.034. 

SIA (2015) ‘Rebooting the IT Revolution: A Call to Action. Semiconductor Industry Association and the 

Semiconductor Research Corporation’, p. 40. 

Sierksma, G. (2001) Linear and Integer Programming: Theory and Practice. Boca Raton: CRC Press. 

Siriwardana, J., Jayasekara, S. and Halgamuge, S. K. (2013) ‘Potential of air-side economizers for data 

center cooling: A case study for key Australian cities’, Applied Energy, 104, pp. 207–219. doi: 

10.1016/j.apenergy.2012.10.046. 

Sithimolada, V. and Sauer, P. W. (2010) ‘Facility-level DC vs. typical AC distribution for data centers: A 

comparative reliability study’, IEEE Region 10 Annual International Conference, Proceedings/TENCON, 

pp. 2102–2107. doi: 10.1109/TENCON.2010.5686625. 

Sohel Murshed, S. M. and Nieto de Castro, C. A. (2017) ‘A critical review of traditional and emerging 

techniques and fluids for electronics cooling’, Renewable and Sustainable Energy Reviews, 78, pp. 821–

833. doi: 10.1016/j.rser.2017.04.112. 

Spec (2018) SPECpower_ssj2008 benchmark. http://www.spec.org/power_ssj2008/results/. Accessed: 

14-01-2016. 

Spring, N., Peterson, L., Bavier, A. and Pai, V. (2006) ‘Using PlanetLab for Network Research: Myths, 



REFERENCES 
 

170 

Realities, and Best Practices’, ACM SIGOPS Operating Systems Review, 40, pp. 17–24. doi: 

http://doi.acm.org/10.1145/1113361.1113368. 

Stewart, C. and Shen, K. (2009) ‘Some joules are more precious than others: Managing renewable 

energy in the datacenter’, Proceedings of the Workshop on Power Aware Computing and Systems. 

Sueur, E. L. and Heiser, G. (2010) ‘Dynamic voltage and frequency scaling: the laws of diminishing 

returns’, Proceedings of the 2010 international conference on Power aware computing and systems, pp. 

1–8. 

Tang, C.-J., Dai, M.-R., Chuang, C.-C., Chiu, Y.-S. and Lin, W. S. (2014) ‘A load control method for small 

data centers participating in demand response programs’, Future Generation Computer Systems. 

Elsevier B.V., 32, pp. 232–245. doi: 10.1016/j.future.2013.07.020. 

Tang, C., Dai, M. and Chuang, C.-C. (2012) ‘Demand Response Control Strategies for On-campus Small 

Data Centers’, Ubiquitous Intelligence & Computing and 9th International Conference on Autonomic & 

Trusted Computing (UIC/ATC), 2012 9th International Conference on, pp. 217–224. doi: 10.1109/UIC-

ATC.2012.97. 

Tang, Y., Sun, H., Wang, X. and Liu, X. (2017) ‘Achieving convergent causal consistency and high 

availability for cloud storage’, Future Generation Computer Systems, 74, pp. 20–31. doi: 

10.1016/j.future.2017.04.016. 

Tesauro, G., Jong, N. K., Das, R. and Bennani, M. N. (2006) ‘A hybrid reinforcement learning approach 

to autonomic resource allocation’, Proceedings of the IEEE International Conference on Autonomic 

Computing, 2006. ICAC’06., pp. 65–73. doi: 10.1109/ICAC.2006.1662383. 

The Green Grid (2012) Harmonzing Global Metrics for Data Centers Energy Efficiency, Journal of 

Chemical Information and Modeling. doi: 10.1017/CBO9781107415324.004. 

The Green Grid (2016) ‘The Green Grid’. http://www.thegreengrid.org. Accessed: 14-01-2016. 

Tran, N., Ren, S., Han, Z., Man Jang, S., Il Moon, S. and Seon Hong, C. (2014) ‘Demand Response of Data 

Centers: A Real-time Pricing Game between Utilities in Smart Grid’, 9th International Workshop on 

Feedback Computing. 

Tsirogiannis, D., Harizopoulos, S. and Shah, M. a (2010) ‘Analyzing the Energy Efficiency of a Database 

Server’, the 2010 International Conference, p. 231. doi: 10.1145/1807167.1807194. 

Uddin, M., Alsaqour, R., Shah, A. and Saba, T. (2014) ‘Power usage effectiveness metrics to measure 

efficiency and performance of data centers’, Applied Mathematics and Information Sciences, 8(5), pp. 

2207–2216. doi: 10.12785/amis/080514. 



LOAD MANAGEMENT AND DEMAND RESPONSE IN SMALL AND MEDIUM DATA CENTERS   
 

171 

Uddin, M., Darabidarabkhani, Y., Shah, A. and Memon, J. (2015) ‘Evaluating power efficient algorithms 

for efficiency and carbon emissions in cloud data centers: A review’, Renewable and Sustainable Energy 

Reviews, pp. 1553–1563. doi: 10.1016/j.rser.2015.07.061. 

Uddin, M. and Rahman, A. A. (2012) ‘Energy efficiency and low carbon enabler green IT framework for 

data centers considering green metrics’, Renewable and Sustainable Energy Reviews, pp. 4078–4094. 

doi: 10.1016/j.rser.2012.03.014. 

Urgaonkar, B., Shenoy, P., Chandra, A., Goyal, P. and Wood, T. (2008) ‘Agile dynamic provisioning of 

multi-tier Internet applications’, ACM Transactions on Autonomous and Adaptive Systems, 3(1), pp. 1–

39. doi: 10.1145/1342171.1342172. 

Vanson-Bourne (2011) 'V-Index: Virtualization Penetration Rate in the Enterprise'. Available at: 

http://www.v-index.com/full-report.html. 

Varrette, S., Bouvry, P., Jarus, M. and Oleksiak, A. (2015) ‘Energy Efficiency in HPC Data Centers: Latest 

Advances to Build the Path to Exascale’, Handbook on Data Centers. New York, NY: Springer New York, 

pp. 81–107. doi: 10.1007/978-1-4939-2092-1_3. 

Verma, A., Koller, R., Useche, L. and Rangaswami, R. (2010) ‘SRCMap: energy proportional storage using 

dynamic consolidation’, FAST’10 Proceedings of the 8th USENIX conference on File and storage 

technologies, (VM), p. 20. 

Vertiv (2017) 'Energy Efficiency Solutions for Your Data Center'. 

vor dem Berge, M., Buchholz, J., Cupertino, L., Da Costa, G., Donoghue, A., Gallizo, G., Jarus, M., Lopez, 

L., Oleksiak, A., Pages, E., Piątek, W., Pierson, J.-M., Piontek, T., Rathgeb, D., Salom, J., Sisó, L., Volk, E., 

Wössner, U. and Zilio, T. (2015) ‘CoolEmAll: Models and Tools for Planning and Operating Energy 

Efficient Data Centres’, Handbook on Data Centers. New York, NY: Springer New York, pp. 191–245. doi: 

10.1007/978-1-4939-2092-1_6. 

Wahlroos, M., Pärssinen, M., Manner, J. and Syri, S. (2017) ‘Utilizing data center waste heat in district 

heating – Impacts on energy efficiency and prospects for low-temperature district heating networks’, 

Energy, 140, pp. 1228–1238. doi: 10.1016/j.energy.2017.08.078. 

Wang, B., Chen, C., He, L., Gao, B., Ren, J., Fu, Z., Fu, S., Hu, Y. and Li, C. T. (2017) ‘Modelling and 

developing conflict-aware scheduling on large-scale data centres’, Future Generation Computer 

Systems. doi: 10.1016/j.future.2017.07.043. 

Wang, C. and De Groot, M. (2013) ‘Enabling demand response in a computer cluster’, 2013 IEEE 

International Conference on Smart Grid Communications, SmartGridComm 2013, pp. 181–186. doi: 

10.1109/SmartGridComm.2013.6687954. 



REFERENCES 
 

172 

Wang, C., Urgaonkar, B., Wang, Q. and Kesidis, G. (2013) ‘A hierarchical demand response framework 

for data center power cost optimization under real-world electricity pricing’, pp. 1–10. 

Wang, D., Ren, C., Sivasubramaniam, A., Urgaonkar, B. and Fathy, H. (2012) ‘Energy storage in 

datacenters: what, where and how much?’, ACM SIGMETRICS Performance Evaluation Review, 40(1), p. 

187. doi: 10.1145/2318857.2254780. 

Wang, H., Huang, J., Lin, X. and Mohsenian-Rad, H. (2016) ‘Proactive Demand Response for Data 

Centers: A Win-Win Solution’, IEEE Transactions on Smart Grid, 7(3), pp. 1584–1596. doi: 

10.1109/TSG.2015.2501808. 

Wang, P., Huang, J. Y., Ding, Y., Loh, P. and Goel, L. (2011) ‘Demand side load management of smart 

grids using intelligent trading/metering/ billing system’, 2011 IEEE Trondheim PowerTech, pp. 1–6. doi: 

10.1109/PTC.2011.6019420. 

Wang, X. and Wang, Y. (2011) ‘Coordinating power control and performance management for 

virtualized server clusters’, IEEE Transactions on Parallel and Distributed Systems, 22(2), pp. 245–259. 

doi: 10.1109/TPDS.2010.91. 

Wang, Y., Brun, E., Malvagi, F. and Calvin, C. (2017) ‘Competing energy lookup algorithms in Monte 

Carlo neutron transport calculations and their optimization on CPU and Intel MIC architectures’, Journal 

of Computational Science. doi: 10.1016/j.jocs.2017.01.006. 

Whitehead, B., Andrews, D., Shah, A. and Maidment, G. (2014) ‘Assessing the environmental impact of 

data centres part 1: Background, energy use and metrics’, Building and Environment, 82, pp. 151–159. 

doi: 10.1016/j.buildenv.2014.08.021. 

Whitehead, B., Andrews, D., Shah, A. and Maidment, G. (2015) ‘Assessing the environmental impact of 

data centres part 2: Building environmental assessment methods and life cycle assessment’, Building 

and Environment, pp. 395–405. doi: 10.1016/j.buildenv.2014.08.015. 

Whitney, J. and Delforge, P. (2014) ‘Data Center Efficiency Assessment Scaling Up Energy Efficiency 

Across the Data Center Industry : Evaluating Key Drivers and Barriers’, (August). 

Wiboonrat, M. (2012) ‘Next Generation Data Center design under Smart Grid’, Ubiquitous and Future 

Networks (ICUFN), 2012 Fourth International Conference on, pp. 103–108. doi: 

10.1109/ICUFN.2012.6261673. 

Wierman, A., Liu, Z., Liu, I. and Mohsenian-Rad, H. (2014) ‘Opportunities and challenges for data center 

demand response’, International Green Computing Conference. IEEE, pp. 1–10. doi: 

10.1109/IGCC.2014.7039172. 



LOAD MANAGEMENT AND DEMAND RESPONSE IN SMALL AND MEDIUM DATA CENTERS   
 

173 

Witkowski, M., Oleksiak, A., Piontek, T. and Węglarz, J. (2013) ‘Practical power consumption estimation 

for real life HPC applications’, Future Generation Computer Systems, 29(1), pp. 208–217. doi: 

10.1016/j.future.2012.06.003. 

Wright, S. (2010) ‘Continuous Optimization (Nonlinear and Linear Programming)’, Foundations of 

Computer-Aided Process Design, pp. 1–14. 

Wrinch, M., Dennis, G., El-fouly, T. H. M. and Wong, S. (2012) ‘Demand Response Implementation for 

Improved System Efficiency in Remote Communities Pilot Results from the Village of Hartley Bay’, IEEE 

annual Electrical Power and Energy Conference (EPEC 2012), pp. 105–110. 

Yeo, S. and Lee, H.-H. S. (2012) ‘SimWare: A Holistic Warehouse-Scale Computer Simulator’, Computer, 

45(9), pp. 48–55. doi: 10.1109/MC.2012.251. 

Zakarya, M. and Gillam, L. (2017) ‘Energy efficient computing, clusters, grids and clouds: A taxonomy 

and survey’, Sustainable Computing: Informatics and Systems, 14, pp. 13–33. doi: 

10.1016/j.suscom.2017.03.002. 

Zhan, X. and Reda, S. (2013) ‘Techniques for energy-efficient power budgeting in data centers’, 

Proceedings of the 50th Annual Design Automation Conference on - DAC ’13, p. 1. doi: 

10.1145/2463209.2488951. 

Zhang, H., Shao, S., Xu, H., Zou, H. and Tian, C. (2014) ‘Free cooling of data centers: A review’, Renewable 

and Sustainable Energy Reviews, 35, pp. 171–182. doi: 10.1016/j.rser.2014.04.017. 

Zhu, K., Cui, Z., Wang, Y., Li, H., Zhang, X. and Franke, C. (2017) ‘Estimating the maximum energy-saving 

potential based on IT load and IT load shifting’, Energy, 138, pp. 902–909. doi: 

10.1016/j.energy.2017.07.092. 

Zhu, W., Garrett, D., Butkowski, J. and Wang, Y. (2012) ‘Overview of distributive energy storage systems 

for residential communities’, 2012 IEEE Energytech, Energytech 2012, 1, pp. 1–6. doi: 

10.1109/EnergyTech.2012.6304671. 

Zhuravlev, S., Saez, J. C., Blagodurov, S., Fedorova, A. and Prieto, M. (2013) ‘Survey of Energy-Cognizant 

Scheduling Techniques’, Parallel and Distributed Systems, IEEE Transactions on, 24(7), pp. 1447–1464. 

doi: 10.1109/TPDS.2012.20. 

  

 

 

 



REFERENCES 
 

174 

  



LOAD MANAGEMENT AND DEMAND RESPONSE IN SMALL AND MEDIUM DATA CENTERS   
 

175 

ANNEX 1: ALGORITHMS 

1.1 SMDC 

1.1.1 The Best Time Window 

%% Data capture from Excel table dcdata.xlsx 
filename = 'dcdata.xlsx'; 
sheetDC1 = 1; 
sheetDC2 = 2; 
smdc_num1 = xlsread(filename,sheetDC1); 
smdc_num2 = xlsread(filename,sheetDC2); 
%% Variables declaration with the values present in the table 
price24 = smdc_num1(:,4); % daily tariff variable by hour 
price72 = smdc_num2(:,1); % daily tariff variable by a third of an hour 
%% Formulation of objective function of minimization to small data center 
% f = (x1 + x2 +x3)*p 
f = [price24;price24;price24]; 
intcon = 1:24; 
%% Formulation of constraints 
% x1 + x2 + x3 ≤ -150 (Demand Response) 
% -x1 -x2 -x3 ≤ 150 (Rebound Effect) 
vet3 = ones(1,24);  
vet4 = zeros(1,24);  
Aeq1 = [vet3 vet4 vet4];  
Aeq2 = [vet4 vet3 vet4];  
Aeq3 = [vet4 vet4 vet3];  
Aeq = [Aeq1; Aeq2; Aeq3];  
beq = [0; 0; 0];  
%% Boundaries and division of power by demand response strategies 
% lb = -105   
% ub = 105  
lb1(1:24,1) = -28; % workload demand response 
lb2(1:24,1) = -42; % cooling demand response 
lb3(1:24,1) = -35; % ups demand response 
ub1(1:24,1) = 28; % workload rebound effect 
ub2(1:24,1) = 42; % cooling rebound effect 
ub3(1:24,1) = 35; % ups rebound effect 
lb = [lb1;lb2;lb3]; 
ub = [ub1;ub2;ub3]; 
%% Optimization running 
[x,fval] = intlinprog(f, intcon,[],[],Aeq,beq,lb,ub); 
%% Charts 
x1 = x(1:24); 
x2 = x(25:48); 
x3 = x(49:72); 
figure('Name','Small Data Center'); 
subplot (2,1,1); 
plot(x1,'LineWidth',1); 
hold on; 
plot (x2,'LineWidth',1); 
plot (x3,'LineWidth',1); 
grid on; 
title('Daily Diagram of Demand Response and Rebound Effect'); 
xlabel('Time (hours)'); 
ylabel('Power (kW)'); 
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xticks([1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24]); 
legend('ICT Workload', 'Cooling', 'UPS'); 
hold off 
subplot(2,1,2); 
plot(f(1:24),'LineWidth',1); 
grid on; 
title('Daily Tariff'); 
xlabel('Time (hours)'); 
ylabel('Cost (€/kWh)'); 
xticks([1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24]); 

1.1.2 Cost Minimization 

%% Data capture from Excel table dcdata.xlsx 
filename = 'dcdata.xlsx'; 
sheetDC1 = 1; 
sheetDC2 = 2; 
%% Data capture from Excel table dcdata.xlsx 
filename = 'dcdata.xlsx'; 
sheetDC1 = 1; 
sheetDC2 = 2; 
indataM = 4; 
smdc_num1 = xlsread(filename,sheetDC1); 
smdc_num2 = xlsread(filename,sheetDC2); 
smdc_num4 = xlsread(filename,indataM); 
%% Input 
in = input('Which line do you want to record your data on? '); 
my_cell1 = sprintf( 'B%s',num2str(in) ); 
my_cell2 = sprintf( 'J%s',num2str(in) ); 
on = in-1; 
%% Variables declaration with the values present in the table 
price24 = smdc_num1(:,4); % daily tariff variable by hour 
price72 = smdc_num2(:,1); % daily tariff variable by a third of an hour 
% input equations data 
pdrwork = smdc_num4(on,1); % workload demand response equation 
pdrcool = round 
(smdc_num4(on,3)*(smdc_num4(on,4)/(smdc_num4(on,5)*(smdc_num4(on,6)+smdc_nu
m4(on,7)-smdc_num4(on,8)))+smdc_num4(on,9))); % cooling demand response 
equation 
% ups demand response equation 
if (smdc_num4(on,12) <= smdc_num4(on,14))&&(smdc_num4(on,12) >= 
smdc_num4(on,14)*0.5) 
   pdrups = round (smdc_num4(on,11)*(-(smdc_num4(on,12)-
smdc_num4(on,13))/(smdc_num4(on,15)*smdc_num4(on,16)))); 
elseif smdc_num4(on,12) > smdc_num4(on,14) 
       smdc_num4(on,12) = smdc_num4(on,14) 
     pdrups = round (smdc_num4(on,11)*(-(smdc_num4(on,12)-
smdc_num4(on,13))/(smdc_num4(on,15)*smdc_num4(on,16)))); 
elseif smdc_num4(on,12) < smdc_num4(on,14)*0.5 
       smdc_num4(on,12) = smdc_num4(on,14)*0.5 
      pdrups = round (smdc_num4(on,11)*(-(smdc_num4(on,12)-
smdc_num4(on,13))/(smdc_num4(on,15)*smdc_num4(on,16)))); 
end 
xlswrite('dcdata.xlsx',pdrcool,'indataM',my_cell1); % writing pdrcool data 
on Excel table 
xlswrite('dcdata.xlsx',pdrups,'indataM',my_cell2); % writing pdrups data on 
Excel table 
  
%% Formulation of objective function of minimization to medium data center 
% f = (x4 + x5 +x6)*p 
f = [price72;price72;price72]; 
intcon = 1:72; 
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%% Formulation of constraints 
% x1 + x2 + x3 ≤ -550 (demand response 10:40h) 
% -x1 -x2 -x3 ≤ 550 (rebound effect 11h-13h) 
vet3 = ones(1,72);  
vet4 = zeros(1,72);  
DRtime = 33; % DR 
Aeq1 = [vet3 vet4 vet4];  
Aeq2 = [vet4 vet3 vet4];  
Aeq3 = [vet4 vet4 vet3]; 
Aeq = [Aeq1; Aeq2; Aeq3];  
beq = [0; 0; 0];  
%% Boundaries and division of power by demand response strategies 
lb1(1:72,1) = 0; % workload demand response 
lb2(1:72,1) = 0; % cooling demand response 
lb3(1:72,1) = 0; % ups demand response 
lb1(DRtime,1) = -pdrwork; % workload demand response 
lb2(DRtime,1) = -pdrcool; % cooling demand response 
lb3(DRtime,1) = -pdrups; % ups demand response 
ub1(1:72,1) = 0; % workload demand response 
ub2(1:72,1) = 0; % cooling demand response 
ub3(1:72,1) = 0; % ups demand response 
ub1(34:35,1) = pdrwork/2; % workload demand response 
ub2(36:37,1) = pdrcool/2; % cooling demand response 
ub3(38:39,1) = pdrups/2; % ups demand response 
lb = [lb1;lb2;lb3]; 
ub = [ub1;ub2;ub3]; 
%% Optimization running 
[x,fval] = intlinprog(f,intcon,[],[],Aeq,beq,lb,ub); 
%% Charts 
x1 = x(1:72); 
x2 = x(73:144); 
x3 = x(145:216); 
figure('Name','Medium Data Center'); 
subplot (2,1,1); 
plot(x1,'LineWidth',1); 
hold on; 
plot (x2,'LineWidth',1); 
plot (x3,'LineWidth',1); 
grid on; 
title('Daily Diagram of Demand Response and Rebound Effect'); 
xlabel('Time (hours)'); 
ylabel('Power (kW)'); 
xtickangle(60); 
legend('ICT Workload', 'Cooling', 'UPS'); 
hold off 
subplot(2,1,2); 
plot(f(1:72),'LineWidth',1); 
grid on; 
title('Daily Tariff'); 
xlabel('Time (hours)'); 
ylabel('Cost (€/kWh)'); 
xtickangle(60); 

1.1.3 DR and RE in Daily Load Diagram  

%% Data capture from Excel table dcdata.xlsx 
filename = 'dcdata.xlsx'; 
% sheetDC24 = 1; 
sheetDC72 = 2; 
% smdc_num24 = xlsread(filename,sheetDC24); 
smdc_num72 = xlsread(filename,sheetDC72); 
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%% Variables declaration with the values present in the table 
pt_s = smdc_num72(:,2); % SDC power 
pt_m = smdc_num72(:,3); % MDC power 
% preco24 = smdc_num24(:,4); % 24h tariff variable 
price72 = smdc_num72(:,4); % 24h*3 tariff variable 
price_avg = mean(price72); %  average price 
price_avg1(1:32,:) = price_avg; 
price_avg2 = price72(33:39); 
price_avg3(1:33,:) = price_avg; 
price_dr = [price_avg1;price_avg2;price_avg3]; % DR price 
dr_s = smdc_num72(:,5); % DRE in SDC 
dr_m = smdc_num72(:,6); % DRE in MDC 
rb_s = smdc_num72(:,7); % RE in SDC 
rb_m = smdc_num72(:,8); % RE in MDC 
pdr_s = pt_s-dr_s; % decreased power in SDC DRE 
pdr_m = pt_m-dr_m; % decreased power in MDC DRE 
prb_s = pdr_s+rb_s; % increased power in SDC RE 
prb_m = pdr_m+rb_m; % increased power in MDC RE 
t = 1:1:72; % 24h/3 time variable 
smalldc; % call smalldc function 
mediumdc; % call mediumdc function 
%% Interactions and Results 
disp('----- The Demand Response event will occur between 11:40 p.m. and 
12:00 p.m. -----'); 
disp('----- O Rebound Effect will occur between 12h e 14h -----'); 
fprintf('The kWh average price is: %.4f €\n',price_avg); 
fprintf('The kWh price during the Demand Response event is: %.4f 
€\n',price_dr(33)); 
N_s = input('How many Small Data Centers will participate in the event: '); 
N_m = input('How many Medium Data Centers will participate in the event: 
'); 
c1 = sum(pt_s.*price_avg); 
c2 = sum(pt_m.*price_avg); 
c3 = N_s.*sum(pt_s.*price_avg); 
c4 = N_m.*sum(pt_m.*price_avg); 
c5 = c3+c4; 
c6 = sum(pt_s.*price_dr); 
c7 = sum(pt_m.*price_dr); 
c8 = N_s.*sum(pt_s.*price_dr); 
c9 = N_m.*sum(pt_m.*price_dr); 
c10 = c8+c9; 
fprintf('The decreased power by Small Data Centers was: %.f kW\n',N_s*(-
b2_s)); 
fprintf('The decreased power by Medium Data Centers was: %.f kW\n',N_m*(-
b2_m)); 
fprintf('The total decreased power during the event was: %.f kW\n',N_s*(-
b2_s)+N_m*(-b2_m)); 
fprintf('The cost to the DSO of Demand Response considering Rebound Effect 
is: %.2f ‚Ç¨\n',(-fval_s*N_s)+(-fval_m*N_m)); 
fprintf('The average operational cost by Small Data Centers is: %.2f 
‚Ç¨\n',c1); 
fprintf('The average operational cost by Medium Data Centers is: %.2f 
‚Ç¨\n',c2); 
fprintf('The average operational cost by all Small Data Centers is: %.2f 
‚Ç¨\n',c3); 
fprintf('The average operational cost by all Medium Data Centers is: %.2f 
‚Ç¨\n',c4); 
fprintf('The total average operational cost is: %.2f €\n',c5); 
fprintf('The operational cost with Demand Response by Small Data Centers 
is: %.2f €\n',c6); 
fprintf('The operational cost with Demand Response by Medium Data Centers 
is: %.2f €\n',c7); 
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fprintf('The operational cost with Demand Response by all Small Data 
Centers is: %.2f €\n',c8); 
fprintf('The operational cost with Demand Response by all Medium Data 
Centers is: %.2f €\n',c9); 
fprintf('The total average operational cost with Demand Response is: %.2f 
€\n',c10); 
%% Charts 
x1 = x_s(1:72); 
x2 = x_s(73:144); 
x3 = x_s(145:216); 
x4 = x_m(1:72); 
x5 = x_m(73:144); 
x6 = x_m(145:216); 
figure('Name','Demand Response e Rebound Effect'); 
subplot (3,1,1); 
plot(f(1:72),'LineWidth',1); 
grid on; 
title('Daily Tariff'); 
xlabel('Time (hours)'); 
ylabel('Cost (€/kWh)'); 
xtickangle(60); 
subplot (3,1,2); 
plot(x1,'LineWidth',1); 
hold on; 
plot (x2,'LineWidth',1); 
plot (x3,'LineWidth',1); 
grid on; 
title('Daily Diagram of Demand Response (DR) and Rebound Effect (RE) in 
Small Data Center'); 
xlabel('Time (hours)'); 
ylabel('Power (kW)'); 
ylim([-80 80]); 
xtickangle(60); 
legend('ICT Workload', 'Cooling', 'UPS'); 
subplot(3,1,3); 
plot(x4,'LineWidth',1); 
hold on; 
plot (x5,'LineWidth',1); 
plot (x6,'LineWidth',1); 
grid on; 
title('Daily Diagram of Demand Response (DR) and Rebound Effect (RE) in 
Medium Data Center'); 
xlabel('Time (hours)'); 
ylabel('Power (kW)'); 
xtickangle(60); 
legend('ICT Workload', 'Cooling', 'UPS'); 
hold off 
figure('Name','Load Diagram and Related Costs'); 
subplot(2,1,1); 
plot(t,pt_s,t,pt_m,t,pdr_s,'--',t,pdr_m,'--
',t,prb_s,':',t,prb_m,':','LineWidth',1); 
grid on 
title('Daily Load Diagram'); 
xlabel('Time (hours)'); 
ylabel('Power (kW)'); 
legend('Small Data Centers', 'Medium Data Centers', 'Small Data Centers 
with DR', 'Medium Data Centers with DR', 'Small Data Centers com RE', 
'Medium Data Centers with RE','Location','northeastoutside'); 
subplot(2,1,2); 
CT = [c1 c2 c3 c4 c5; c6 c7 c8 c9 c10]; 
c = categorical({'Average Operational Cost','Demand Response Operational 
Cost'}); 
bar(c,CT); 
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title('Related Costs'); 
ylabel('Euros(€)'); 
grid on; 
legend('By Small Data Center', 'By Medium Data Center', 'All Small Data 
Centers', 'All Medium Data Centers','Total','Location','northeastoutside'); 

1.1.4 DR and RE in an Incentive-based Daily Load Diagram 

%% Data capture from Excel table dcdata.xlsx 
filename = 'dcdata.xlsx'; 
% sheetDC24 = 1; 
sheetDC72 = 2; 
% smdc_num24 = xlsread(filename,sheetDC24); 
smdc_num72 = xlsread(filename,sheetDC72); 
%% Variables declaration with the values present in the table 
pt_s = smdc_num72(:,2); % SDC power 
pt_m = smdc_num72(:,3); % MDC power 
price72 = smdc_num72(:,4); % 24h*3 tariff variable 
price_avg = mean(price72); % average price 
price_avg1(1:42,:) = price_avg; 
price_avg2 = price72(43:49); 
price_avg3(1:23,:) = price_avg; 
price_dr = [price_avg1;price_avg2;price_avg3]; % DR price 
dr_s = smdc_num72(:,5); % DRE in SDC 
dr_m = smdc_num72(:,6); % DRE in MDC 
rb_s = smdc_num72(:,7); % RE in SDC 
rb_m = smdc_num72(:,8); % RE in MDC 
pdr_s = pt_s-dr_s; % decreased power in SDC DRE 
pdr_m = pt_m-dr_m; % decreased power in MDC DRE 
prb_s = pdr_s+rb_s; % increased power in SDC RE 
prb_m = pdr_m+rb_m; % increased power in MDC RE 
t = 1:1:72; % 24h/3 time variable 
smalldc; % call smalldc function 
mediumdc; % call mediumdc function 
 %% Interactions and Results 
disp('----- The Demand Response event will occur between 2:40 p.m and 3 p.m 
-----'); 
disp('----- O Rebound Effect will occur between 3 p.m and 5 p.m -----'); 
fprintf('The kWh average price is: %.4f €\n',price_avg); 
fprintf('The kWh price during the Demand Response event is: %.4f 
€\n',price_dr(43)); 
c1 = sum(pt_s.*price_avg); 
c2 = sum(pt_m.*price_avg); 
c11 = sum(pt_s.*price72); % normal daily cost 
c12 = sum(pt_m.*price72); 
c13 = c11-price72(43)*105; % DR cost 
c14 = c12-price72(43)*550; 
c15 = c11-c13; % difference between normal cost and demand response 
c16 = c12-c14; 
c17 = 7.1*c15/100; % incentive considering the above difference 
c18 = 2*c16/100; 
c19 = c11-c17*105; 
c20 = c12-c18*550; 
fprintf('The daily energy cost by Small Data Center is: %.2f €\n',c11); 
fprintf('The daily energy cost by Medium Data Center is: %.2f €\n',c12); 
fprintf('The average operational cost by Small Data Center is: %.2f 
€\n',c1); 
fprintf('The average operational cost by Medium Data Center is: %.2f 
€\n',c2); 
fprintf('The incentive to Small Data Center is: %.2f €\n',c17); 
fprintf('The incentive to Medium Center √©: %.2f €\n',c18); 
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fprintf('The operational cost with Demand Response with no incentive by 
Small Data Center is: %.2f €\n',c13); 
fprintf('The operational cost with Demand Response with no incentive by 
Medium Data Center is: %.2f €\n',c14); 
fprintf('The operational cost with Demand Response with incentive by Small 
Data Center is: %.2f €\n',c19); 
fprintf('The operational cost with Demand Response with incentive by Medium 
Data Center is: %.2f €\n',c20); 
%% Chart 
x1 = x_s(1:72); 
x2 = x_s(73:144); 
x3 = x_s(145:216); 
x4 = x_m(1:72); 
x5 = x_m(73:144); 
x6 = x_m(145:216); 
figure('Name','Demand Response e Rebound Effect by Contract'); 
subplot (4,1,1); 
plot(f(1:72),'LineWidth',1); 
grid on; 
title('Daily Tariff'); 
xlabel('Time (hours)'); 
ylabel('Cost (€/kWh)'); 
xtickangle(60); 
subplot (4,1,2); 
plot(x1,'LineWidth',1); 
hold on; 
plot (x2,'LineWidth',1); 
plot (x3,'LineWidth',1); 
grid on; 
title('Daily Diagram of Demand Response in Small Data Center'); 
xlabel('Time (hours)'); 
ylabel('Power (kW)'); 
ylim([-80 80]); 
xtickangle(60); 
legend('ICT Workload', 'Cooling', 'UPS','Location','northeastoutside'); 
subplot(4,1,3); 
plot(x4,'LineWidth',1); 
hold on; 
plot (x5,'LineWidth',1); 
plot (x6,'LineWidth',1); 
grid on; 
title('Daily Diagram of Demand Response in Medium Data Center'); 
xlabel('Time (hours)'); 
ylabel('Power (kW)'); 
xtickangle(60); 
legend('ICT Workload', 'Cooling', 'UPS','Location','northeastoutside'); 
hold off 
% figure('Name','Diagrama de Carga dos Data Centers'); 
subplot(4,1,4); 
plot(t,pt_s,t,pt_m,t,pdr_s,'--',t,pdr_m,'--
',t,prb_s,':',t,prb_m,':','LineWidth',1); 
grid on 
title('Daily Diagram'); 
xlabel('Time (hours)'); 
ylabel('Power (kW)'); 
:00','16:20','16:40','17:00','17:20','17:40','18:00','18:20','18:40','19:00
','19:20','19:40','20:00','20:20','20:40','21:00','21:20','21:40','22:00','
22:20','22:40','23:00','23:20','23:40','00:00','00:20','00:40'}); 
xtickangle(60); 
legend('Small Data Centers', 'Mediuns Data Centers', 'Small Data Centers 
with DR', 'Medium Data Centers with DR', 'Small Data Centers with RE', 
'Medium Data Centers with RE','Location','northeastoutside'); 
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1.2 DSO 

1.2.1 DemandResponse 

%call variables 
callvariables; 
for evt=1:numEvent    
  ApplyVariables 
  if Acceptedlist(1) > 0       
        startingevent 
        %ratio criterion  
        RatioCalculation; 
        %  Power NC criterion 
        PowerNcCriterion; 
        instantPotDC  = zeros(1,length(SMDC(:,1))).'; 
                format shortG 
                if rate_SDC > 0 && rate_SDC < maxSMDCsmall 
                    for aj=1:rate_SDC 
                        aux_randi = 
returnPositionPositionSmaller(smdc_small(:,5)); 
                        if smdc_small(aux_randi,3) < 
smdc_small(aux_randi,4)   
                           smdc_small(aux_randi,5) = 
smdc_small(aux_randi,5) +1; 
                           power_reduced = power_reduced + 
smdc_small(aux_randi,2)*SMDC(smdc_small(aux_randi,6),7); 
                           smdc_small(aux_randi,3) = 
smdc_small(aux_randi,2) + 
smdc_small(aux_randi,3)*SMDC(smdc_small(aux_randi,6),7); 
                           reducSDCperEvent(evt) = reducSDCperEvent(evt) + 
smdc_small(aux_randi,2)*SMDC(smdc_small(aux_randi,6),7); 
                           SMDC(smdc_small(aux_randi,6),3) = 
SMDC(smdc_small(aux_randi,6),3) + 
SMDC(smdc_small(aux_randi,6),2)*SMDC(smdc_small(aux_randi,6),7); 
                           instantPotDC(smdc_small(aux_randi,6)) = 
SMDC(smdc_small(aux_randi,6),2)*SMDC(smdc_small(aux_randi,6),7); 
                           SMDC(smdc_small(aux_randi,6),5) = 
SMDC(smdc_small(aux_randi,6),5) + 1; 
                           selectedSDC =[selectedSDC 
smdc_small(aux_randi,1)]; % SDC called list 
                           indexSDCCham(evt) = indexSDCCham(evt) + 1; 
                        end 
                    end 
                end 
                if rate_MDC > 0 && rate_MDC < maxSMDCmedium 
                    for aj=1:rate_MDC 
                         aux_randi = 
returnPositionPositionSmaller(smdc_medium(:,5));  
                         if smdc_medium(aux_randi,3) <= 
smdc_medium(aux_randi,4) 
                            smdc_medium(aux_randi,5) = 
smdc_medium(aux_randi,5) +1; 
                            power_reduced =power_reduced + 
smdc_medium(aux_randi,2)*SMDC(smdc_medium(aux_randi,6),7); 
                            smdc_medium(aux_randi,3) = 
smdc_medium(aux_randi,3) + 
smdc_medium(aux_randi,2)*SMDC(smdc_medium(aux_randi,6),7); 
                            reducMDCperEvent(evt) = reducMDCperEvent(evt) + 
smdc_medium(aux_randi,2)*SMDC(smdc_medium(aux_randi,6),7); 
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                            SMDC(smdc_medium(aux_randi,6),3) = 
SMDC(smdc_medium(aux_randi,6),3) + 
SMDC(smdc_medium(aux_randi,6),2)*SMDC(smdc_medium(aux_randi,6),7); 
                            instantPotDC(smdc_medium(aux_randi,6)) = 
SMDC(smdc_medium(aux_randi,6),2)*SMDC(smdc_medium(aux_randi,6),7); 
                            SMDC(smdc_medium(aux_randi,6),5) = 
SMDC(smdc_medium(aux_randi,6),5) + 1; 
                            selectedMDC =[selectedMDC 
smdc_medium(aux_randi,1)]; %MDC called list 
                            indexMDCCham(evt) = indexMDCCham(evt) + 1; 
                         end 
                    end 
                end 
  
                checkPowerReduced = zeros(1,length(DRsignal(:,1))); 
                checkPowerReduced(1) = power_reduced;   
                selectedSDC = selectedSDC(2:end); 
                selectedMDC = selectedMDC(2:end); 
  
                format shortG 
        disp("-------------------------------------------------------------
-----------------------------------------------------------"); 
                disp("Small data centers (SDC) chosen: "); 
                disp([['Dc(s): '],[num2str(selectedSDC)]]); 
                disp("Medium data centers (MDC) chosen: "); 
                disp([['Dc(s): '],[num2str(selectedMDC)]]); 
                disp(" "); 
        disp("-------------------------------------------------------------
-----------------------------------------------------------");       
                                                    for i=1:length(Pdr(:)) 
                                                        
powerTotalrequired(evt) = powerTotalrequired(evt) + Pdr(i); 
                                                    end 
        for c=1:length(DRsignal(:,1)) 
                disp("***** - Time window: "+DRsignal(c,1)+" *****"); 
                disp(" "); 
  
  
  
                if power_reduced < pdrInstante(c,Pdr)  
                 if length(smdc_small) > 0 
                  for ev=1:chamadaSDC 
                      if power_reduced >= pdrInstante(c,Pdr) break; end 
                     aux_randi = 
returnPositionPositionSmaller(smdc_small(:,5)); 
                      if smdc_small(aux_randi,3) <= smdc_small(aux_randi,4) 
                        if (length(selectedSDC)+length(neededCallSDC)) < 
(length(smdc_small(:,1))+1)  
                           power_reduced = power_reduced+ 
smdc_small(aux_randi,2)*SMDC(smdc_small(aux_randi,6),7); 
                           checkPowerReduced(c) = checkPowerReduced(c) + 
smdc_small(aux_randi,2)*SMDC(smdc_small(aux_randi,6),7); 
                           SMDC(smdc_small(aux_randi,6),5) = 
SMDC(smdc_small(aux_randi,6),5)+1; 
                           SMDC(smdc_small(aux_randi,6),3) = 
SMDC(smdc_small(aux_randi,6),2)*SMDC(smdc_small(aux_randi,6),7)+SMDC(smdc_s
mall(aux_randi,6),3); 
                           instantPotDC(smdc_small(aux_randi,6)) = 
SMDC(smdc_small(aux_randi,6),2)*SMDC(smdc_small(aux_randi,6),7); 
                           smdc_small(aux_randi,5) = 
smdc_small(aux_randi,5)+ 1; 
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                           smdc_small(aux_randi,3) = 
smdc_small(aux_randi,2)*SMDC(smdc_small(aux_randi,6),7)+ 
smdc_small(aux_randi,3); 
                           reducSDCperEvent(evt) = reducSDCperEvent(evt) + 
smdc_small(aux_randi,2)*SMDC(smdc_small(aux_randi,6),7); 
                           neededCallSDC = [neededCallSDC 
smdc_small(aux_randi,1)]; 
                           indexSDCCham(evt) = indexSDCCham(evt) + 1; 
                           disp(["SDC that had to be called! Dc: 
",smdc_small(aux_randi,1)]); 
                        end 
                      end 
                  end 
                 end 
                if length(smdc_medium) > 0 
                  for ev=1:chamadaMDC 
                      if power_reduced >= pdrInstante(c,Pdr) break; end 
                      aux_randi = 
returnPositionDoSmaller(smdc_medium(:,5)); 
                      if smdc_medium(aux_randi,3) <= 
smdc_medium(aux_randi,4) 
                        if (length(selectedMDC)+length(neededCallMDC)) < 
length(smdc_medium(:,1)+1) 
                           power_reduced = power_reduced+ 
smdc_medium(aux_randi,2)*SMDC(smdc_medium(aux_randi,6),7); 
                           checkPowerReduced(c) = checkPowerReduced(c) + 
smdc_medium(aux_randi,2)*SMDC(smdc_medium(aux_randi,6),7); 
                           SMDC(smdc_medium(aux_randi,6),5) = 
SMDC(smdc_medium(aux_randi,6),5) + 1; 
                           SMDC(smdc_medium(aux_randi,6),3) = 
SMDC(smdc_medium(aux_randi,6),3) + 
SMDC(smdc_medium(aux_randi,6),2)*SMDC(smdc_medium(aux_randi,6),7); 
                           instantPotDC(smdc_medium(aux_randi,6)) = 
SMDC(smdc_medium(aux_randi,6),2)*SMDC(smdc_medium(aux_randi,6),7); 
                           smdc_medium(aux_randi,5) = 
smdc_medium(aux_randi,5) + 1; 
                           smdc_medium(aux_randi,3) = 
smdc_medium(aux_randi,2)*SMDC(smdc_medium(aux_randi,6),7) + 
smdc_medium(aux_randi,3); 
                           reducMDCperEvent(evt) = reducMDCperEvent(evt) + 
smdc_medium(aux_randi,2)*SMDC(smdc_medium(aux_randi,6),7); 
                           neededCallMDC = [neededCallMDC 
smdc_medium(aux_randi,1)];  
                           indexMDCCham(evt) = indexMDCCham(evt) + 1; 
                           disp(["MDC that had to be called! Dc: 
",smdc_medium(aux_randi,1)]); 
                        end 
                      end 
                  end 
                end 
                end 
                disp("Power to be decreased: "+Pdr(c)+" kW"); 
                disp("Reduction achieved: "+abs(checkPowerReduced(c))+" 
kW"); 
                disp("Reduction of each data center called in this time 
window"); 
                disp(" ") 
                aux_Dc = [0]; 
                aux_D = [0]; 
                aux_instPot = [0]; 
                aux_per = [0]; 
                for i=1:length(SMDC(:,1)) 
                    if instantPotDC(i) ~= 0 
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                        aux_Dc = [aux_Dc SMDC(i,1)]; 
                        aux_D = [aux_D SMDC(i,2)]; 
                        aux_instPot = [aux_instPot instantPotDC(i)]; 
                        aux_per = [aux_per SMDC(i,7)*100]; 
                    end 
                end 
                    aux_Dc  = aux_Dc(2:end).'; 
                    aux_D  = aux_D(2:end).'; 
                    aux_instPot = aux_instPot(2:end).'; 
                    aux_per = aux_per(2:end).'; 
  
                    
disp(table(aux_Dc,aux_D,aux_instPot,aux_per,'VariableNames',{'Dc' 'D' 
'Decreased' 'DecreasedPercentage'})) 
                disp(" "); 
                instantPotDC = instantPotDC*0; 
                clear aux_D; 
                clear aux_instPot; 
                clear aux_per; 
              end 
              format shortG 
  
        gravarDados 
        apresentacaoResultados     
  
        limparVariaveis 
  else 
      disp("Event number: "+evt); 
      disp("There was 0% of acceptance of data centers!"); 
  end 
end %end of loop  
disp(" "); 
disp("Total number of events: "+numEvent); 
disp(" "); 
percentChartQMA_small = percentChartQMA_small(2:end,:); 
percentChartQMA_medium = percentChartQMA_medium(2:end,:); 
percentChartQDM_small = percentChartQDM_small(2:end,:); 
percentChartQDM_medium = percentChartQDM_medium(2:end,:);  
filename = 'input.xlsx'; 
sheetSMDC = 1; 
smdc_num = xlsread(filename,sheetSMDC); 
  
for iv=1:length(smdc_num(:,1)) 
    if (smdc_num(iv,5)*smdc_num(iv,2)) == 0 
        smdc_num(iv,6) = 0; 
    else 
        smdc_num(iv,6) = (smdc_num(iv,3) / 
(smdc_num(iv,5)*smdc_num(iv,2) ))*100; 
    end 
    if smdc_num(iv,3) == 0 && smdc_num(iv,5) == 1 
        smdc_num(iv,5) = 0; 
    end 
end  
chartsDR 
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1.2.2 RatioCalculation 

disp("---------------------------------------------------------------------
--------------------------------------------------------"); 
disp("Ratio of SMDC list:"); 
if ratio_SDC == 0 
    if round(ratio_MDC*100) < 10 
        tab = [[num2str(round(ratio_SDC*100)) ,    '% -  Small Data Centers 
']]; 
        tab = [tab;[num2str(round(ratio_MDC*100)) ,'% -  Medium Data 
Centers']]; 
    else 
        tab = [[num2str(round(ratio_SDC*100)) ,    '% -  Small Data Centers   
']]; 
        tab = [tab;[num2str(round(ratio_MDC*100)) ,'% -  Medium Data 
Centers']]; 
    end 
elseif  ratio_MDC == 0 
    if round(ratio_SDC*100) < 10 
        tab = [[num2str(round(ratio_SDC*100)) ,    '% -  Small Data Centers 
']]; 
        tab = [tab;[num2str(round(ratio_MDC*100)) ,'% -  Medium Data 
Centers']]; 
    else 
        tab = [[num2str(round(ratio_SDC*100)) ,    '% -  Small Data Centers 
']]; 
        tab = [tab;[num2str(round(ratio_MDC*100)) ,'% -  Medium Data 
Centers  ']]; 
    end 
else   
    if round(ratio_SDC*100) < 10 
        tab = [[num2str(round(ratio_SDC*100)) ,    '% -  Small Data Centers  
']]; 
        tab = [tab;[num2str(round(ratio_MDC*100)) ,'% -  Medium Data 
Centers']]; 
    elseif round(ratio_MDC*100) < 10 
        tab = [[num2str(round(ratio_SDC*100)) ,    '% -  Small Data Centers 
']]; 
        tab = [tab;[num2str(round(ratio_MDC*100)) ,'% -  Medium Data 
Centers ']]; 
    else 
        tab = [[num2str(round(ratio_SDC*100)) ,    '% -  Small Data Centers 
']]; 
        tab = [tab;[num2str(round(ratio_MDC*100)) ,'% -  Medium Data 
Centers']]; 
    end 
end 
disp(tab); 
disp("List of SMDC that accepted the invitation:"); 
tab = [["Dc:";SMDC(:,1)],["D: ";SMDC(:,2)]]; 
disp(tab); 
disp("List of SMDCs that denied the invitation"); 
lisDeny = listDeny(smdc_num,SMDC); 
tab = [["Dc:";lisDeny(:,1)],["D: ";lisDeny(:,2)]]; 
disp(tab); 
disp("---------------------------------------------------------------------
--------------------------------------------------------"); 
 % Acceptance percentage in SMDC 
 if length(lisDeny(:,1)) > 0 
     listGeneralSmall   = geteDC(smdc_num,"SMALL");    listGeneralSmall   = 
length(listGeneralSmall(:,1)); 
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     totalDeniedSmall  = geteDC(lisDeny,"SMALL");  totalDeniedSmall  = 
length(totalDeniedSmall(:,1)); 
     listGeneralMedium  = geteDC(smdc_num,"MEDIUM");   listGeneralMedium  = 
length(listGeneralMedium(:,1)); 
     totalDeniedMedium = geteDC(lisDeny,"MEDIUM"); totalDeniedMedium = 
length(totalDeniedMedium(:,1)); 
  
     percentChartQMA_small  = [percentChartQMA_small;  (1-(totalDeniedSmall  
/ listGeneralSmall)) *100]; 
     percentChartQMA_medium = [percentChartQMA_medium; (1-
(totalDeniedMedium / listGeneralMedium ))*100]; 
     percentChartQDM_small  = [percentChartQDM_small;  (totalDeniedSmall     
/ listGeneralSmall)  *100]; 
     percentChartQDM_medium = [percentChartQDM_medium; (totalDeniedMedium    
/ listGeneralMedium) *100]; 
       
 else 
     percentChartQMA_small  = [percentChartQMA_small;[100]]; 
     percentChartQMA_medium = [percentChartQMA_medium;[100]]; 
     percentChartQDM_small  = [percentChartQDM_small;[0]];    
     percentChartQDM_medium = [percentChartQDM_medium;[0]];    
     totalDeniedSmall = 0; 
     totalDeniedMedium = 0; 
 end 
        indexSDCRejCham(evt) = totalDeniedSmall; 
        indexMDCRejCham(evt) = totalDeniedMedium; 
  
if ratio_SDC > maxSMDCsmall && ratio_MDC > maxSMDCmedium 
   disp("The number of data centers that accepted the invitation is not 
enough to reduce the desired power of:");DRsignal  
   disp("Mega Watts"); 
end 
ratio_SDC_aux = ratio_SDC; 
ratio_MDC_aux = ratio_MDC; 
  
ratio_SDC = round( (Pdrm*ratio_SDC) /sizeSMALL_DC ); ratio_MDC = 
round( (Pdrm*ratio_MDC) /sizeMEDIUM_DC ); 
disp('Amount of SDC needed to achieve the power reduction in comparison 
with the average Pdrm:'); 
        disp(ratio_SDC); 
disp('Amount of MDC needed to achieve the power reduction in comparison 
with the average Pdrm:'); 
        disp(ratio_MDC); 
         
% Achieve maximum reduction by event 
  crtSDC = abs(ratio_SDC - ((Pdrm*ratio_SDC_aux) /sizeSMALL_DC )); 
  crtMDC = abs(ratio_MDC - ((Pdrm*ratio_MDC_aux) /sizeMEDIUM_DC));   
  clear ratio_SDC_aux; 
  clear ratio_MDC_aux; 
  if crtMDC < 0.0001 
      crtMDC = 0.05; 
  end 
  if crtSDC < 0.0001 
      crtSDC = 0.05; 
  end 
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1.2.3 PowerNCCriterion 

Nc_num = xlsread(filename,sheetNc); 
     
    [ accomplished, slightly_above, slightly_below, quite_below, below ] = 
homogeneousDistribution(Nc_num(3,3:7),SMDC);  
      
    % Reduction percentage 
    Nc_num = Nc_num(7,3:7); 
     
    % Slightly above 
    percent_slightly_above = Nc_num(1); 
    % Accomplished 
    percent_accomplished     = Nc_num(2); 
    % Slightly bellow 
    percent_slightly_below = Nc_num(3); 
    % Below 
    percent_below        = Nc_num(4); 
    % Quite below 
    percent_quite_below       = Nc_num(5); 
     
    % accomplished column 
    SMDC = [SMDC,zeros(1,length(SMDC(:,1))).']; 
     
%% accomplished group 
    cont = length(SMDC(:,7)); 
    sorting = 0; 
    if accomplished > 0  
        for i=1: accomplished 
  
           if cont > 0  
                sorting =  randi(length(SMDC(:,1))); 
                while SMDC(sorting,7) ~= 0 
                      sorting =  randi(length(SMDC(:,1))); 
                end 
  
                SMDC(sorting,7) = percent_accomplished; 
                cont = cont -1; 
           else 
               break; 
           end 
        end 
    else 
        bool_accomplished = false; 
    end 
%% slightly above group 
    if slightly_above > 0 
        for i=1: slightly_above 
             if cont > 0  
                sorting =  randi(length(SMDC(:,1))); 
                while SMDC(sorting,7) ~= 0 
                      sorting =  randi(length(SMDC(:,1))); 
                end 
  
                SMDC(sorting,7) = percent_slightly_above; 
                cont = cont -1; 
           else 
               break; 
           end 
        end 
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    else 
        bool_slightly_above = false; 
    end 
%% slightly below 
    if slightly_below > 0 
        for i=1: slightly_below 
             if cont > 0  
                sorting =  randi(length(SMDC(:,1))); 
                while SMDC(sorting,7) ~= 0 
                      sorting =  randi(length(SMDC(:,1))); 
                end 
  
                SMDC(sorting,7) = percent_slightly_below; 
                cont = cont -1; 
           else 
               break; 
           end 
        end 
    else 
        bool_slightly_below = false; 
    end 
%% quite below group 
    if quite_below > 0 
        for i=1: quite_below 
            if cont > 0  
                sorting =  randi(length(SMDC(:,1))); 
                while SMDC(sorting,7) ~= 0 
                      sorting =  randi(length(SMDC(:,1))); 
                end 
  
                SMDC(sorting,7) = percent_quite_below; 
                cont = cont -1; 
           else 
               break; 
           end 
        end 
    else 
        bool_quite_below = false; 
    end 
%% below group 
if  > 0 
    for i=1:  
        if cont > 0  
            sorting =  randi(length(SMDC(:,1))); 
            while SMDC(sorting,7) ~= 0 
                  sorting =  randi(length(SMDC(:,1))); 
            end 
             
            SMDC(sorting,7) = percent_; 
            cont = cont -1; 
       else 
           break; 
       end 
    end 
else 
    bool_quite_below = false; 
end 
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1.2.4 ReductionFairnessCriterion 

 
%  reduction fairness criterion 
if ratio_SDC >= maxSMDCsmall  
    ratio_SDC = 0;               
    for i=1:length(smdc_small(:,1))% small data center check 
        if SMDC(i,3) < SMDC(i,4) 
            selectedSDC =[selectedSDC smdc_small(i,1)];  
            power_reduced = power_reduced + 
smdc_small(i,2)*SMDC(smdc_small(i,6),7);            smdc_small(i,5) = 
smdc_small(i,5)+1;            smdc_small(i,3) = 
smdc_small(i,3)+smdc_small(i,2)*SMDC(smdc_small(i,6),7); 
            reducSDCperEvent(evt) = reducSDCperEvent(evt) + 
smdc_small(i,2)*SMDC(smdc_small(i,6),7); 
            instantPotDC(smdc_small(i,6)) = 
SMDC(smdc_small(i,6),2)*SMDC(smdc_small(i,6),7); 
            indexSDCCall(evt) = indexSDCCall(evt) + 1; 
            SMDC(i,5) = SMDC(i,5) + 1;  
            SMDC(i,3) = SMDC(i,3) + SMDC(i,2)*SMDC(smdc_small(i,6),7); 
        end 
    end 
end 
% medium data center check 
if ratio_MDC >= maxSMDCmedium  
    ratio_MDC = 0    for i=1:length(smdc_medium(:,3)) 
        if SMDC(i+maxSMDCsmall,3) < SMDC(maxSMDCsmall+i,4) 
            selectedMDC =[selectedMDC smdc_medium(i,1)]; 
            power_reduced = power_reduced + 
smdc_medium(i,2)*SMDC(smdc_medium(i,6),7            smdc_medium(i,5) = 
smdc_medium(i,5)+1;            smdc_medium(i,3) = 
smdc_medium(i,3)+smdc_medium(i,2)*SMDC(smdc_medium(i,6),7); 
            reducMDCperEvent(evt) = reducMDCperEvent(evt) + 
smdc_medium(i,2)*SMDC(smdc_medium(i,6),7); 
            indexMDCCall(evt) = indexMDCCall(evt) + 1; 
            instantPotDC(smdc_medium(i,6)) = 
SMDC(smdc_medium(i,6),2)*SMDC(smdc_medium(i,6),7); 
            SMDC(i+maxSMDCsmall,5) = SMDC(i+maxSMDCsmall,5) + 1;  
            SMDC(i+maxSMDCsmall,3) = SMDC(i+maxSMDCsmall,3) + 
SMDC(i+maxSMDCsmall,2)*SMDC(smdc_medium(i,6),7); 
        end 
    end 
end         
  



LOAD MANAGEMENT AND DEMAND RESPONSE IN SMALL AND MEDIUM DATA CENTERS   
 

191 

ANNEX 2: DR SIMULATION DATA 
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ANNEX 3: DR SIMULATION CHARTS 

3.1 ONE DAY SCENARIO  

3.1.1 16 Small Data Centers 16 Medium Data Centers (Unchanged)  
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3.1.2 16 Small Data Centers 16 Medium Data Centers (Penalty)  
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3.1.3 21 Small Data Centers 15 Medium Data Centers (Incentive)  
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3.1.4 21 Small Data Centers 15 Medium Data Centers (Penalty)  
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3.1.5 10 Small Data Centers 17 Medium Data Centers (Incentive)  
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3.1.6 10 Small Data Centers 17 Medium Data Centers (Unchanged) 
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3.2 22 DAYS SCENARIO 

3.2.1 16 Small Data Centers 16 Medium Data Centers (Unchanged)  
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3.2.2 16 Small Data Centers 16 Medium Data Centers (Penalty)  
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3.2.3 21 Small Data Centers 15 Medium Data Centers (Incentive)  
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3.2.4 21 Small Data Centers 15 Medium Data Centers (Penalty)  
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3.2.5 10 Small Data Centers 17 Medium Data Centers (Incentive)  
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3.2.6 10 Small Data Centers 17 Medium Data Centers (Unchanged) 

 

 

 

 

 

 

 

 

 

 


