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Abstract

Public transit systems are not only essential for urban mobility but are also advantageous from the

fuel consumption, pollutant emissions and traffic congestion standpoints. In addition to this, transit also

provides an alternative with acceptable levels of mobility to people who cannot own or drive a car. In fact,

the main goal of having a transit system is to offer good quality service, where users travel easily at a low

fare while reducing pollution and traffic congestion. This goal often results in serious financial problems

for the transit operators, as their revenues are rarely enough to cover their expenses, requiring subsidies

funded by local governments. In this context, we propose the integration of transit and parking systems

as an option to decrease the subsidies of transit systems. This integration is developed considering two

different views. A physical integration of the two systems; and an integration through prices (transit fares

and parking fees), where two different standpoints are considered. One that assumes a regulated market,

where the parking operator revenues will be used to fund the transit operator deficits; and another that

assumes a fully deregulated market, where both transit operators and parking operators have a profit

maximization goal.

The physical integration of the two systems was illustrated through an optimization-based study car-

ried out for Coimbra (Portugal), with the goal of selecting the best locations for park-and-ride facilities so

that car use inside the city is minimized. Park-and-ride facilities are parking lots located in the periphery

of cities to intercept car trips coming from the suburbs, and divert them to transit. In this study, the

transport mode choices were assumed to be dependent on the generalized travel costs of car, transit and

park-and-ride according to a logit function. The main result was that the introduction of a park-and-ride

network could reduce car use in Coimbra’s city center by 19%.

The integration of transit and parking systems through prices in a regulated market was approached

with an optimization model, where transit and parking are managed together to minimize the joint de-

ficit of the respective operators, considering transit fares and parking fees as decision variables. The

context of application of this model is a city divided into zones, where trips between each pair of zones

can be made either by car or by bus, or not made if (generalized) travel costs are considered too high

by the traveler. Modal choice in the city is described by a logit model of the generalized travel costs of

both modes. In the case of car, these costs consist of vehicle depreciation, fuel, maintenance, travel time

and parking fees, while time costs, discomfort costs and transit fares are the costs included in the transit
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generalized travel cost. This model was applied to a case study in Coimbra, where both transit and par-

king systems become clearly profitable due to a substantial increase of prices. However, the relationship

between demand and speed is not addressed in this model, as it is assumed that speed values remain

unchanged even when modal choices change.

This shortcoming was handled by embedding on the optimization model a network level aggregate

traffic model based on the macroscopic fundamental diagram (MFD), which determines the speeds and

cruising-for-parking costs considering car travel demand. Due to the complexity of the optimization

model, a solution method based on a traffic-equilibrium algorithm and a greedy algorithm was develo-

ped. Through the application of a case study inspired by the city of Coimbra, it was possible to verify that

the joint operating deficits were decreased, leading to a profitable transit system.

An alternative SA algorithm was also developed in view of its future application to solve the previous

model. If properly designed, algorithms of this type show good global optimum convergence properties.

Otherwise, the quality of the best solution they return may be low or the computation time they require

may be excessively long. The reason for this to happen may be because SA algorithms spend too much

effort evaluating poor quality solutions. To avoid this, we hybridize a cross-entropy algorithm with a SA

algorithm, in order to decrease the probability that a low-quality candidate solution is selected in each

iteration. The results of a computational study developed for a facility location problem indicate that the

hybrid algorithm clearly improves the classic SA algorithm.

The integration of transit and parking systems under a deregulated market was handled through a

two-stage game-theoretic approach, assuming transit and parking operator as profit maximizers. The

first stage decisions are parking capacity, transit frequencies and fleet size, whereas pricing decisions are

made in the second stage, assuming the first-stage decisions known and fixed. The concept of subgame-

perfect pure strategy Nash equilibrium was used to solve this game. By analyzing several hypothetical

case studies (inspired by real-world situations), it was shown how the decisions of the operators are

expected to interact.

In general, the proposed models and their applications contribute what we believe to be a significant

addition to the literature. These integrated transit-parking planning models provide a better understan-

ding of how park-and-ride networks and pricing schemes affect the city’s mobility dynamics and modal

choices, and insight into the impact of the decisions of transit and parking operators on their financial

performance.
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Resumo

Os sistemas de transportes públicos são não só essenciais à mobilidade urbana, mas também van-

tajosos em relação ao automóvel quanto ao consumo de combustível, emissão de poluentes e congesti-

onamento do tráfego. Adicionalmente, os transportes públicos são uma opção que garante níveis acei-

táveis de mobilidade a quem não conduz ou não tem automóvel. De facto, o principal objetivo de um

sistema de transportes públicos é providenciar um serviço de qualidade através do qual os seus utili-

zadores possam viajar a custo relativamente baixo e, simultaneamente, contribuir para a diminuição

da poluição e do congestionamento. A prossecução deste objetivo origina geralmente sérios problemas

financeiros para os operadores de transportes públicos, uma vez que as receitas não são, em regra, su-

ficientes para cobrir os custos do sistema, o que requer a subsidiação por entidades públicas. É neste

contexto que analisamos a integração de sistemas de transportes públicos e de estacionamento como

uma possibilidade para diminuir os subsídios dos transportes públicos. Esta integração dos dois sis-

temas é estudada de duas perspetivas distintas – integração física e integração através dos preços (dos

bilhetes de transporte público e de tarifas de estacionamento) – e segundo dois pontos de vista diferen-

tes: um que assume um mercado regulado, no qual as receitas do estacionamento são utilizadas para

financiar os défices dos transportes públicos; e outro que assume um mercado totalmente desregulado,

em que tanto o operador de transportes públicos como o operador do estacionamento têm como obje-

tivo a maximização do lucro.

A integração física dos dois sistemas é analisada tendo por referência um estudo de otimização de-

senvolvido para Coimbra (Portugal), com o objetivo de selecionar localizações para estacionamentos

park-and-ride que minimizem a utilização de automóveis no centro das cidades. Os estacionamentos

park-and-ride localizam-se na periferia das cidades com o objetivo de intercetar as viagens de automóvel

que vêm dos subúrbios. Neste estudo, assume-se que as escolhas modais dependem dos custos genera-

lizados de viagem por automóvel, por transportes públicos ou pelos dois modos através de um parque

de estacionamento periférico, de acordo com uma função logit. O principal resultado que obtivemos

com a introdução de estacionamentos park-and-ride foi a redução do uso do automóvel no centro de

Coimbra em 19%.

A integração de transportes públicos e estacionamento através de preços num mercado regulado foi

analisada com base em um modelo de otimização no qual os transportes públicos e o estacionamento
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são geridos em conjunto, a fim de diminuir o seu défice global, considerando os preços dos bilhetes e

as tarifas de estacionamento como variáveis de decisão. O contexto para a aplicação deste modelo é

uma cidade dividida em zonas, onde as viagens correspondentes a cada par origem-destino podem ser

feitas ou de automóvel ou de transportes públicos, ou não ser realizadas caso o seu custo generalizado

seja considerado muito elevado. A escolha do modo de transportes é descrita por um modelo logit dos

custos generalizados dos vários modos. No caso do automóvel, estes custos contemplam a depreciação

do veículo, o combustível, a manutenção, o tempo de viagem e a tarifa de estacionamento, enquanto o

tempo de viagem, o desconforto e o preço do bilhete são contabilizados nos custos generalizados de uma

viagem em transportes públicos. Este modelo foi aplicado ao estudo de caso de Coimbra, concluindo-se

que ambos os sistemas se poderiam tornar bastante lucrativos como resultado de um aumento substan-

cial de preços. Contudo, a relação entre volumes de tráfego e velocidades de circulação não foi tratada

de forma apropriada neste modelo, pois que se considerou que aquelas velocidades permaneceriam

constantes independentemente das escolhas modais. Esta lacuna foi ultrapassada através da inclusão,

no modelo de otimização, de um modelo de tráfego agregado a nível de rede baseado no denominado

diagrama fundamental, que determina as velocidades de circulação e os níveis de cruising-for-parking

tendo em conta a procura de viagens de automóvel. Dada a complexidade do modelo, foi desenvolvido

um método para o resolver baseado na combinação de um algoritmo de equilíbrio de tráfego com uma

heurística de tipo greedy. A respetiva aplicação ao caso de Coimbra permitiu concluir que seria possível

tornar o sistema de transportes públicos lucrativo.

Uma heurística alternativa baseada num algoritmo de simulated annealing (SA) foi também desen-

volvida para futura resolução do modelo anteriormente apresentado. Os algoritmos SA apresentam boas

propriedades de convergência para um ótimo global, mas podem tornar-se muito lentos se se quiser

garantir soluções de boa qualidade. Essa lentidão decorre do facto do algoritmo passar muito tempo

a analisar soluções de baixa qualidade. Para contornar este problema, hibridizámos um algoritmo de

cross entropy com um algoritmo SA. Os resultados obtidos através de um estudo computacional desen-

volvido para um problema de localização de equipamentos indicam que o algoritmo híbrido melhora

claramente a performance do algoritmo SA clássico.

A integração de transportes públicos e estacionamento num mercado totalmente desregulado foi

analisada através de uma abordagem por teoria dos jogos com dois estádios. O primeiro estádio tem

como decisões a capacidade de estacionamento, a frequência dos transportes públicos e a dimensão

da frota, ao passo que as decisões referentes aos preços são tomadas num segundo estádio, onde são

assumidas como conhecidas e fixas as decisões tomadas no primeiro estádio. Cada estádio do jogo foi

resolvido tendo em conta o conceito de equilíbrio de Nash. Em diversos estudos de caso hipotéticos (ins-

pirados em situações reais) é examinada a forma como se dá a interação entre as decisões do operador

de transporte público e do operador de estacionamento.
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Em geral, acreditamos que os modelos propostos e as suas aplicações contribuem de forma signifi-

cativa para a literatura. Os modelos em causa permitem apoiar as entidades responsáveis pelo plane-

amento de transportes públicos e do estacionamento, contribuindo para que as decisões que tomem

sejam mais eficientes.
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Chapter 1

Introduction

1.1 Context

The problems raised by the increase of automobile ownership and use – such as traffic congestion,

pollutant emissions and land use occupancy – are not a new subject. In fact, the worldwide increase of

mobility lead to losses of about 40 hours per year in traffic congestion in US and European countries

(Inrix, 2016 1), cars are responsible for 44% of the total CO2 emissions and 70% of other greenhouse gas

in urban areas (European Comission, 2009), and 40% to 60% of urban CBD are devoted to roads and

parking in the US (Litman, 2014).

Public transport is probably the main alternative to deal with these transport problems (Schiller et al.,

2010; Miller, 2014). Public transport systems (or “transit systems”) – which include, for instance, buses,

metro/subway and trams – promote equality of opportunity within the community, improve the qua-

lity of life (enabling people to enjoy access to a range of goods, services, people and places), in addition

of being clearly advantageous from the environmental and economic standpoints (Kennedy, 2002; Vu-

chic, 2005). In fact, these systems should account for requirements with respect to network coverage

or extensiveness, service frequency, in and out of vehicle time, delays, transit stop design and transfer

time, comfort, regularity, safety and transit fares (Ceder et al., 2013; Wardman, 2004; Rodríguez-Núñez

and García-Palomares, 2014; Guo and Wilson, 2011; van Lierop et al., 2017). These requirements expec-

ted to be met with transit systems come with a cost, usually higher than the service revenues collected

from transit fares, bringing the need of subsidizing transit systems with public funds in order for them to

continue operating (Parry and Small, 2009; Reynolds-Feighan et al., 2000). By subsidy it is understood a

payment that does not require a direct exchange of goods or services of equal market value in return; it

is used to accomplish a specific objective or has a specific effect (Black, 1995).

Besides the previously mentioned socio-economic reasons that support the need of subsidizing tran-

sit systems, two additional classic rationales are often advanced. The first one concerns the Mohring

1http://scorecard.inrix.com/scorecard/default.asp (Retrieved on 26th August 2017)
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effect (Mohring, 1972) while the second refers to the un-priced negative externalities generated by tra-

velling by car (such as congestion, pollution and noise).

The Mohring effect was a concept developed by Mohring (1972) that regards the relationship between

users’ waiting time, the increase of transit frequency and the consequent influence on marginal social

costs, attempting at determining the optimum fare under first-best conditions 2 by including the waiting

time costs into the user generalized costs. In other words, the Mohring effect accounts for the existence

of economies of scale as a reasonable justification to sustain the existence of subsidies for the transit

operators. This notion was further analyzed and improved by several authors with and without the in-

clusion of first-best assumptions to justify the need (or not) of subsidization due to economies of scale

(e.g. Vickrey, 1980; Small et al., 2007; Van Reeven, 2008; Basso and Jara-Díaz, 2010; 2012).

These studies can be considered as one of the two consolidated literature streams of transit plan-

ning models, falling into microeconomic analysis and focused on establishing optimal transit pricing

and subsidization rules for stylized cities. The other stream concerns operations research approaches,

where transit management is planned mainly from the supply perspective, including features such as fre-

quency, transit scheduling, routes and passengers’ assignment, and usually with exogenous transit fares.

Planning processes can be divided into three different stages: strategic, tactical and operational (Bar-

nhart and Laporte, 2007). The first stage, or the strategic stage, refers to long-term decisions and seeks

at maximizing service quality, including, for instance, the definition of routes as sequences of bus stops

in order to meet the demand levels for each possible origin-destination route pair (i.e., transit network

design and passenger assignment, respectively). The tactical stage concerns the decisions that are made

in the light of the service that is provided to the user, including the management of bus frequencies

for each line and time period (transit networks frequencies) and the schedules of each bus trip (transit

network timetabling). Finally, the operational stage deals with the minimization of the operating costs

of the system (e.g., vehicle scheduling, duty scheduling, crew rostering and parking and dispatching). For

further details on the application of operations research in the study of transit systems, we suggest the re-

views made by Barnhart and Laporte (2007), Desaulniers and Hickman (2007), Guihaire and Hao (2008),

Kepaptsoglou and Karlaftis (2009) and Ibarra-Rojas et al. (2015). However, and as pointed out by Ceder

(2007), Vuchic (2005) and Guihaire and Hao (2008), the interaction between supply, demand and pricing

is usually excluded from this stream, and the integration of multi-modal possibilities in the transport

system is not commonly addressed.

Putting ourselves in the transit operator shoes, it would be expectable that transit systems were de-

signed and managed to be financial sustainable and no subsidies needed. However, such thought is

not pursued by the transit operator due to their social responsibility of providing a quality service to the

2A situation in which all prices match marginal costs is known as first best conditions. See Small et al. (2007) for a more
detailed discussion on first-best and second-best issues.
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1.1

population by increasing their mobility at low fares. This results on the general problem faced by tran-

sit operators: how can a quality service be offered while keeping reasonable asset and operating costs?

Furthermore, would transit systems need to be subsidize if car externalities were properly charged to car

users? In fact, transit has not been able to improve its market share all by itself, even when subsidies

are provided to cover the deficits raised by operating its service. This statement has been observed in

the real world, where an increase in the transit supply and/or in the service quality provided by major in-

vestments in several countries to improve the capability of their public transport to be more competitive,

does not automatically led to an increase in transit demand and users’ satisfaction (Friman, 2004).

One way of promoting the use of transit systems is through the implementation of park-and-ride

facilities. Originated in the 1930s, these facilities are parking lots usually located in the periphery of

cities as a mean to increase transit ridership (Noel, 1988). These facilities help the modal shift from car

to transit, allowing to perform the trip by car in the least congested part of the trips and by transit in their

most congested part, alleviating traffic congestion and other adverse external effects of cars. Park-and-

ride facilities combine the two modes into a multi-modal transport system that takes advantages of the

individual strengths of both systems while avoiding their weaknesses. The locations of these facilities

should be carefully selected and they should also include characteristics such as the number of parking

spaces (Bos, 2004), the safety for both travelers and cars (Shirgaokar and Deakin, 2005), and the quality

and accessibility to the transit system (Burns, 1979). These characteristics of the location of park-and-

ride facilities has been shown to be a key consideration to maximize the interception of 2% to 21% of car

drivers in countries such as UK, France, Germany and Netherlands (Bos, 2004; Bos and van der Heijden,

2005).

Other measures considered in the literature have the purpose of persuading car users to switch to

transit by reducing the attractiveness of car and by managing the negative externalities of car (dealing

with one of the reasons that justify the subsidization of transit systems). As showed in the literature, car

is usually considered to be more convenient, comfortable and provider of a greater individual freedom

when compared to transit (Beirão and Cabral, 2007). The use of road pricing and parking fees are usually

advocated as potential solutions to overcome the differences between transit and car with respect to the

users’ perception of the two modes.

Road pricing are direct charges collected for using roads, also referred to as congestion tolls, where

the intention is to charge travelers for the externalities they create in terms of congestion. According

to the literature, road pricing has been integrated with transit so that the maximization of the social

welfare of both users and operators takes place by managing the transit fares and road pricing values,

and by dealing with aspects linked to network design and/or levels of transit service (e.g. Tabuchi, 1993;

Huang, 2000; 2002; Danielis and Marcucci, 2002; Mirabel and Reymond, 2011; Tirachini and Hensher,

2011; Basso et al., 2011). Examples of recent reviews of road pricing studies appear in Tsekeris and Voß
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(2009) and de Palma and Lindsey (2011). However, road pricing schemes are rarely applied in the real

world due to their unpopularity among drivers and to their difficult and costly implementation (Schade

et al., 2000; Santos and Fraser, 2006; Jaensirisak et al., 2005; Ison and Rye, 2005; Noordegraaf et al., 2014).

Parking is the final act of every car trip and cars are parked 80-97% of the time (RAC Foundation,

2004; Marsden, 2006; Shoup, 2005). It is a fundamental component of any vehicle trip and therefore its

inclusion is essential in urban transportation models (Hensher and Button, 2007). Roth (1965) argues

that parking must be treated as a good because the costs linked to the space used as parking should

be paid according to the private value of the occupied land. Parking fees are a good option at fulfilling

this role, together as being major features at reducing the individual transport use (Higgins, 1992), and

consequently decreasing the negative externalities of car. Corroborating this result, the nonexistence of

parking fees is the main factor of distortion in the choice of traveling mode in high density urban areas,

where cheaper parking discourages travel by foot, bicycle and mass transit (Shoup, 2005). Several exam-

ples can be found in the literature to assess the influence of parking and their pricing in traffic networks

under some of the following main subjects: policy oriented perspectives (see Shoup, 2005 for further

descriptions and details), micro-economic analyses (e.g. Douglas Jr et al., 1975; Glazer and Niskanen,

1992; Arnott et al., 1991; Arnott and Rowse, 1999; 2009; Calthrop et al., 2000; Anderson and de Palma,

2004; Arnott and Inci, 2006) and cruising for parking (e.g. Shoup, 2006; Gallo et al., 2011; Geroliminis,

2015). Comprehensive reviews of the literature of economics of parking can be found in Marsden (2006),

Fosgerau and De Palma (2013) and Inci (2015)

Although considered as a second best measure to solve traffic congestion (Verhoef et al., 1995; Calth-

rop et al., 2000), parking fees are a good substitute to road pricing schemes (Schade et al., 2000; Calthrop

et al., 2000; Jaensirisak et al., 2005; Ison and Rye, 2005) with a straightforward implementation and a gre-

ater acceptance by drivers, who are willing to pay a higher parking fee instead of paying a road-pricing

tolls (Albert and Mahalel, 2006; Dueker et al., 1998; Shoup, 2005; Albert and Mahalel, 2006; Marsden,

2006). As a result, parking fees can be considered as an important factor in reducing car use, changing

parking type and location, and also affecting travel frequency, modal split, car occupancy, travel time

and route (Higgins, 1992; Simićević et al., 2013; Kelly and Clinch, 2006; Glazer and Niskanen, 1992). The-

refore, parking fees will be used as the car pricing policy in the integration of transit and parking features

to minimize the deficits of the former.

1.2 Research Objectives

The general objective of this thesis is to provide models to assist local transport authorities (LTA) in

the integration of transit and parking policies to manage the transit deficits, either indirectly by increa-

sing the number of transit riders or directly by optimizing prices. These integrated transport planning
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models3 derive from two different strategies: physical integration and pricing integration.

The first objective concerns the physical integration of transit and parking through park-and-ride

facilities. An optimization model capable of determining the best places to build park-and-ride facilities

is developed, so that the minimization of the total traveled distance performed by car in the inner zone

of the city occurs while complying to a budget constraint.

The second and third objectives of this thesis concern the integration of transit and parking through

pricing policies schemes to circumvent transit financial problems. To the best of our knowledge, the

integration of transit and parking through pricing features has not been addressed in the literature. Besi-

des, the applicability of most of the models developed in the literature is hampered by the lack of spatial

considerations about the urban area, especially the ones developed with micro-economic features, even

though the conclusions previously summarized help at providing insights towards expectable results and

users’ behavior when changes on mode pricing occurs. Qualitative studies that assess the influence of

parking in the transit usage, in terms of availability and/or pricing (Hess, 2001; Farag and Lyons, 2012),

support our choice of integrating transit and parking through pricing schemes. The aim of providing mo-

dels suitable to be applied in real-world case studies is guaranteed by embracing an operation research

approach.

The second objective concerns the development of optimization models that determine the optima

prices for a regulated market. In these models, it is ensured that an acceptable level of mobility is pro-

vided to the population. We also aim to assess how the optimization of parking fee values influence the

modal shares and the expected joint revenues.

The third objective is related to the extreme scenario of deregulated market. The main goal is to

develop a framework capable of analyzing what would occur if the transit operator and the parking ope-

rator were competing to improve their own revenues, without any concern of the effect of their actions

towards the other operator’s outcome. We also aim to include and study long-term and short-term deci-

sions (such as supply and pricing, respectively), without any welfare-related constraints.

The objectives will be pursued by developing and applying optimization methods to real world cities.

However, despite the efforts made in having access to real-world information to represent the problems

as realistically as possible, there was the need in some cases to resort to hypothetical cities that were

inspired in real-world data.

3The expression ‘integrated transport’ was firstly used in the 1981 BBC Television political comedy Yes Minister, in an episode
entitled ‘The Bed of Nails’ (Lynn and Jay, 1991). Sixteen years later, the UK government specified integration as an objective
of its transport policy, with the election of a Labour Government that firmly shifted from realms of fiction to fact the phrase
‘Integrated Transport Policy’ (UK Round Table, 1997).
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1.3 Outline

This thesis is divided into 7 chapters, where Chapters 1 and 7 are the introduction and the conclu-

sion of the thesis, respectively. The main chapters, from Chapter 2 to Chapter 6, are all written in the

format of scientific papers, allowing their reading to be successive or independent (although not all the

chapters have been submitted yet, we aim to publish them as soon as possible). For this reason, there are

some repetitions in concepts and information throughout the thesis that cannot be avoided. Although

independent, the chapters of this thesis are not merely a collection of papers because there is a logical

relation between then, as explained in the previous subsection.

Chapter 2 comprehends the physical integration of transit and parking, with recource to an opti-

mization framework that aims at selecting the optimal places to install park-and-tide facilities. In this

chapter, we present a study carried out for the city of Coimbra, aiming at determining the best possible

locations for a given number of park-and-ride facilities under the objective of minimizing the kilome-

ters traveled by car in the city center. This alternative to reduce the car usage in the city center is then

compared to several alternative measures, such as decreasing bus fares, increasing parking fees and/or

increasing bus commercial speeds.

Chapter 3 and 4 approaches the integration of transit and parking through pricing schemes in a re-

gulated market. The methodologies used to address this issue are based on optimization models.

In Chapter 3, the integration of transit and parking is accomplished by optimizing the transit fares

and the parking fees so that the maximization of the joint profit of the transit operator and the parking

operator occurs, or at least the deficits of the transit operator can be minimized using the parking opera-

tor’s profit to fund it. The demand assigned to each alternative (car and bus) reacts to changes on these

prices, where the possibility of not making the trip if those prices are excessively costly in the users’ vi-

ewpoints is also considered. This model is applied to the city of Coimbra, aiming at providing the best

pricing schemes so that the main goal of minimizing the deficits of the transit operator is met. This ap-

proach also analyzes the importance of optimizing transit fares along with parking fees to help reducing

the deficits of the transit system.

This model is then improved in Chapter 4 to take into account traffic conditions in the network. In

this sense, the previous optimization framework is improved by embedding it with macroscopic funda-

mental diagrams techniques. These techniques account for the relationship between network space-

mean vehicle density and flow in urban areas with small spatial heterogeneity by including the number

of vehicles (accumulation) in the network, the average speed per traffic direction and the congestion

conditions in the traffic network. This model was applied to a case study inspired by the municipality of

Coimbra.

Due to the complexity and extremely high computation time of the optimization model developed
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in Chapter 4, we developed a simulated annealing algorithm to solve and to provide good solutions (ho-

pefully, optimum solutions) for the detailed model. However, the computation time that this heuristic

required to solve the optimization framework was still too high. To overcome this problem, a cross-

entropy procedure was introduced in the simulated-annealing algorithm to avoid spending too much

effort in the evaluation of solutions of poor quality. This was still not enough to solve the complex mo-

del detailed in Chapter 4, but it seemed to be a good improvement to what has been developed in the

literature in terms of hybrid algorithms, and also a good algorithm to solve facility location problems.

Therefore, we decided to include this approach as the Chapter 5 of this thesis.

The third main objective of this thesis is addressed in Chapter 6. Here, a game-theoretic model of

the interactions between transit and parking decisions is developed in order to provide insights of what

would happen in the extreme scenario of deregulated markets. This model accounts for long-term and

short-term decisions under competition between transit and parking operators, where these operators

are profit maximizers with decisions depending on each other’s decisions, attempting at optimizing their

supply and their prices (long term and short-term decisions, respectively). We use the theoretical con-

cept of Nash equilibrium to solve a two-stage game. We developed a case study setup inspired on real-

world features and generated instances of cities to apply our framework and to draw conclusions about

deregulated markets’ options.

Finally, Chapter 7 summarizes the work presented in this thesis and the main conclusions withdrawn

from it.

1.4 Dissemination

Most of the research upon which this thesis is based has been presented and discussed in several

international and national conferences between 2014 and 2017. These are listed in Table 1.1.

Table 1.1: Conference Presentation.

Title Authors Conference (Date and Location)

Optimization-based park and ride facility

planning

Joana Cavadas

António Pais Antunes

Optimization 2014

(July 28-30, 2014

Guimarães, Portugal)

Optimization-based study on park-and-ride

facility location for Coimbra (Portugal)

Joana Cavadas

António Pais Antunes

12º Encontro do Grupo de

Estudos em Transportes (12º GET)

(January 5-6, 2015

Tomar, Portugal)

Setting supply and pricing policies for a transit

network: An optimization approach

Joana Cavadas

António Pais Antunes

CREATE Symposium on Future Mobility

(July 8-9, 2015

Singapore)
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Optimization approach to transit funding

through parking fees

Joana Cavadas

António Pais Antunes

18th Euro Working Group on Transportation

(18th EWGT)

(July 14-16, 2015

Delft, Netherlands)

An integration of an aggregated dynamic traffic

model with advanced optimization techniques

for strategic transit-parking planning

Joana Cavadas

António Pais Antunes

Nikolas Geroliminis

5th Symposium of the European Association for

Research in Transportation (hEART 2016)

(September 13-16, 2016

Delft, Netherlands)

Optimization Models for the Integration of

Transit and Parking Policies

Joana Cavadas

António Pais Antunes

Nikolas Geroliminis

Mathematics of Complex Systems: from

precision medicine to smart cities CoLaB

Workshop

(December 5-6, 2016

Coimbra, Portugal)

An integration of an aggregated dynamic traffic

model with advanced optimization techniques

for strategic transit-parking planning

Joana Cavadas

António Pais Antunes

Nikolas Geroliminis

14º Encontro do Grupo de Estudos em

Transportes (14º GET)

(February 20-21, 2017

Fátima, Portugal)

Computational study of a hybrid

simulated-annealing cross-entropy algorithms

for facility location problems

Joana Cavadas

António Pais Antunes

2017 Learning and Intelligent Optimization

Conference

(June 19-21, 2017

Nizhny Novgorod, Russia)

Integration of an Aggregated Dynamic Traffic

Model with Advanced Optimization Techniques

for Strategic Transit-Parking Planning

Joana Cavadas António Pais

Antunes

Nikolas Geroliminis

First Triennial Conference - INFORMS

Transportation and Logistics Society (TSL2017)

(July 26-29

2017, Chicago, USA)

Game theoretic Approach to transit and parking

planning under competition

Joana Cavadas

Vikrant Vaze

António Pais Antunes

Optimization 2017

(September 6-8, 2017

Lisbon, Portugal)

As previously mentioned, this thesis is organized as a collection of papers. Therefore, we refer in

Table 1.2, to where we submitted them, as it is the case of the second Chapter, or to where we aim to

submit. Chapter 2 not been altered in any aspect, with the exception of some layout-specific issues.

Hence, some notation may differ from chapter to chapter of the thesis.

Table 1.2: Journal Articles.

Chapter Title Authors Journal

2
Optimization-based study on the location

of park-and-ride facilities

Joana Cavadas

António Pais Antunes

Transportation Planning and

Technology

3
An optimization approach to integrated

transit-parking planning

Joana Cavadas

António Pais Antunes
Transportation Research - part E
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4

Integration of an aggregated dynamic

traffic model with optimization techniques

for strategic transit-parking planning

Joana Cavadas

António Pais Antunes

Nikolas Geroliminis

Transportation Research - part B

5

Computational study of a hybrid

simulated-annealing cross-entropy

algorithms for facility location problems

Joana Cavadas

António Pais Antunes
Journal of Heuristics

6
Game-theoretic Approach to Transit and

Parking Planning under Competition

Joana Cavadas

Vikrant Vaze

António Pais Antunes

Transportation Science
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Chapter 2

Optimization-based study on the location of

park-and-ride facilities

2.1 Introduction

Park-and-ride facilities are parking lots located in the periphery of cities aimed to intercept trips

made by car with origin in the suburbs and transfer them to the transit system (Noel, 1988). Facilities

of this type were first implemented in the United States in the 1950s and in the United Kingdom in the

1960s (Meek et al., 2008; Dijk and Montalvo, 2011), with the purpose of decreasing car use in urban areas,

therefore contributing to mitigating the undesirable effects of the automobile with respect to traffic con-

gestion and air pollution. On the negative side, park-and-ride is generally considered to favor car trips

in suburban areas (Parkhurst, 1995; 2000), causing ridership losses in thin transit routes that may even-

tually be abandoned, with serious consequences for people in those areas that do not own a car, cannot

afford to pay a taxi, and are left with virtually no option to travel to urban areas.

The positive and negative impacts of park-and-ride facilities critically depend on where they are lo-

cated. The study we describe in this paper was carried out to shed light on the impacts of installing a

park-and-ride network in the city of Coimbra, central Portugal (Figure 2.1). This city has a population

of just over 60,000 inhabitants, but has always played a major role in the country because of the high-

level services it offers notably in the administrative, education and health care sectors. Such services

are spread across Coimbra’s urban area generating a large number of trips particularly from and to its

outskirts, where approximately 80,000 people live. Despite the dense public transit system of bus and

a few trolley lines available in the municipality of Coimbra (city plus suburbs), these trips are predomi-

nantly made by car, provoking traffic congestion and air pollution problems especially in the historic city

center. The fact that this part of the city was recently classified as UNESCO World Heritage is strongly

contributing to make these problems more visible and urgent, and park-and-ride is being seen as a pos-

sible solution to attenuate them. At present, Coimbra does not have any true park-and-ride facilities. In
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contrast, parking capacity is abundant inside the urban area, especially in the historic city center, either

for free or at rather low fees, which obviously is an important factor for the supremacy of car in the mu-

nicipality. The study was carried out in the framework of a long-standing collaboration in the transport

domain between the University of Coimbra and the municipal council.

Figure 2.1: Urban and suburban areas (left) and historic city center (right) of the municipality of Coimbra.

The essential ingredient of the study was an optimization model aimed to determine the best pos-

sible locations for a given number of park-and-ride facilities in the periphery of a city, given a set of

possible locations, under the objective of minimizing car use in its urban areas (and, concurrently, ma-

ximizing transit use). Based on the outcomes of the model, it is possible to assess thoroughly the impact

of implementing the park-and-ride facility network (including the decrease in suburban transit use that

many authors point out to be the most negative feature of park-and-ride). The model is, in particular,

useful to compare the efficiency of park-and-ride solutions with respect to capturing car trips from the

suburbs to the city and diverting them to transit against other measures that could be put forward with

the same endeavor (e.g., increasing parking fees in urban areas).

Within the relatively meager literature on park-and-ride facility planning, two streams were of inte-

rest to our work. One of them focuses on location principles and guidelines for these facilities. Amongst

the sometimes contradictory and confusing empirical indications that come out of this literature, there

is consensus on two points: first, park-and-ride facilities should be located close to major highways and

placed next to the sections where congestion starts to be felt, as this enhances their visibility and at-

tractiveness (Burns, 1979; O’Flaherty, 1997; Spillar, 1997); second, park-and-ride facilities are unlikely
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to entice drivers if they need to deviate significantly from their usual routes (Lam et al., 2001; Bos et al.,

2004). These and other desirable features of park-and-ride facilities are also highlighted in a recent paper

by Cornejo et al. (2014), where a comprehensive approach to individually evaluate potential park-and-

ride facilities is presented. The other literature stream relates to park-and-ride facility location models

and tools. There are several early contributions to this stream (e.g. Schneider et al., 1976; Schoon, 1980;

Sargious and Janarthanan, 1983), but the most interesting ones are relatively recent. One of them is due

to Faghri et al. (2002) and consists in a hybrid knowledge-based expert system GIS tool to assist planners

in determining the location for park-and-ride facilities. Another one is the optimization model appeared

in Wang et al. (2004). This model, later improved by Liu et al. (2009), applies to a stylized, linear mono-

centric city, aims at determining the best location and parking fee for one park-and-ride facility, and as-

sumes that mode choice is deterministic (the least-cost mode is used). The types of trips considered are

car, rail and park-and-ride. Two alternative objectives are dealt with: profit maximization for a company

that jointly operates the rail service and the park-and-ride facility; and social cost minimization. Models

sought for real cities were proposed in Horner and Groves (2007) and Farhan and Murray (2008). The

former paper introduces a linear flow-capturing model to determine the locations for a given number

of park-and-ride facilities that minimize the distance traveled by car in a monocentric city (this setting

was extended to a polycentric city by Khakbaz et al. (2013)). The Farhan and Murray (2008) location-

allocation model considers three objectives, namely maximizing the trips intercepted by park-and-ride

facilities, minimizing travel time between facilities and major highways, and maximizing the utilization

of existing park-and-ride facilities. A feature common to all these models is that they do not address

(properly) mode/route competition issues. The only model we know of where such issues are suitably

taken into account is due to Aros-Vera et al. (2013). This model maximizes the car trips intercepted by

a given number of park-and-ride facilities assuming that the choice between car and park-and-ride is

made according to a logit function (Ben-Akiva and Lerman, 1985; Ortúzar and Willumsen, 2011), and

its application is exemplified for a hypothetical city. The inclusion of the logit function in the Aros-Vera

et al. (2013) model returns a mixed-integer nonlinear model that was linearized by the authors with an

approach similar to the one developed by Haase (2009). In Haase and Müller (2014) it is shown that

this linearization approach is efficient when compared to possible alternatives. The work developed by

Chen et al. (2016) also considers a logit function to represent mode choice, with the options being ‘dri-

ving’ or ‘not driving’. The combined nonlinear mode split and traffic assignment model proposed by

these authors to optimally locate and size rail-based park-and-ride facilities aims to maximize the num-

ber of public transport riders in a city and its suburbs. The model is solved through a genetic algorithm

and applied to the location of rail-based park-and-ride facilities in the city of Melbourne.

The optimization model we developed for the Coimbra study integrates an objective that we believe

is more relevant than the ones accounted in the literature referred to above. Our goal is the minimiza-
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tion of the person-kilometer (pkm) distance traveled by car in urban areas, assuming that travelers have

three different alternatives to make their trip (car, bus and a combination of both modes through a park-

and-ride facility). Our model captures the behavior of drivers that use park-and-ride facilities, which

typically do not deviate significantly from their least-cost route. These are significant improvements to

the existing models. Other innovative features of our work are the sensitivity analysis of model results (to

changes in important parameters, namely sensitiveness of travelers to cost differences and propensity

of drivers to route deviations) and the computational study on model solving. Finally, we compare the

implications of implementing the park-and-ride facilities with those of implementing other measures

aimed to achieve the same goal (e.g., increasing parking fees in central areas or decreasing bus fares).

The remainder of this article is structured as follows. In the next section, we provide a detailed des-

cription of the problem dealt with in the Coimbra study. This is followed by the presentation of the

optimization model we propose to represent park-and-ride location problems and the explanation of

how it behaves for a hypothetical application example. Afterward, we describe the data we used in the

application of the optimization model to Coimbra and the results we obtained through it. Finally, in the

last section, we summarize the main conclusions of the study and indicate some directions for further

work on this topic.

2.2 Problem Description

As stated in the introductory section, the problem dealt in this chapter consisted in determining loca-

tions for installing park-and-ride facilities in the municipality of Coimbra, with the purpose of diverting

trips originated in the suburbs from car to bus in the urban area.

The essential information for our study was taken from a recent mobility survey (2009), for which the

municipality of Coimbra was divided into 157 trip generation zones, 51 located in the urban area and 106

in the suburban area (Figure 2.1). According to this survey, an average of 250,400 trips was made daily

in the municipality, of which 108,500 (43%) connected the city with the outskirts in both directions. The

number of city inbound and outbound trips were approximately the same, but their distribution across

the day was naturally different – as depicted in Figure 2.2, the former prevailed until 9 AM and by 2 PM

(people returning home after spending the morning in the city), and the latter in the rest of the day with

a peak at 5 PM. The main origin-destination trip flows are shown in Figure 2.3. The survey also revealed

that car was clearly the dominant mode for trips between the city and the outskirts with a modal share

of 71%, followed by bus with a modal share of 28% (the trips captured by other modes, namely train,

motorcycle and bicycle, were negligible). Approximately 25% of these trips are unlikely to change mode,

notably because some travelers need a car during their stay in the city, or because they do not own or

cannot drive a car.
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Figure 2.2: Distribution of inbound and outbound trips across the day in the municipality of Coimbra.

Figure 2.3: Main origin-destination trip flows between urban and suburban zones in the municipality of Coimbra.

Taking into account the fact that Coimbra’s population, as well as its geographic distribution, is ex-

pected to remain practically unchanged at least in the near future (the land available in the municipality

to accommodate significant urban developments is scarce, which contributes to explain why its popula-

tion grew on average only 0.1% annually over the last 30 years), the problem we had to address consisted

therefore in determining how many of the 28,600 car trips that are currently made between the suburbs

and the city (in this direction) by travelers who may change mode could be diverted to park-and-ride fa-

cilities, thus becoming bus trips in the urban area, by installing such facilities in the best possible places.

In order to select possible locations for the park-and-ride facilities, we conducted a detailed map
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analysis of land availability next to city entrances complemented with local visits, and ended up by pin-

pointing the seven sites marked on Figure 2.4. The sites we have selected meet the guidelines for the

location of individual park-and-ride facilities recommended in the literature (see e.g. Spillar, 1997; Cor-

nejo et al., 2014). In fact, they are positioned along Coimbra’s ring road and, in general, intercept a large

number of trips between the city and the outskirts (notably those corresponding to the main origin-

destination pairs identified in Figure 2.3. Moreover, all the sites are located in highly visible places im-

mediately before the first sections where congestion typically occurs. Another advantage of the sites

selected is the fact that they are already served by the existing bus network, thus not requiring an update

of this network at least in terms of route design.

With our study, in addition to knowing where to install park-and-ride facilities in the periphery of

Coimbra, we wanted to compare the impacts of such measure with those of other measures that could

be put forward with the same objective, namely decreasing bus fares, increasing parking fees and/or

increasing bus operating speed.

Figure 2.4: Possible sites for the location of park-and-ride facilities in the municipality of Coimbra.

2.3 Optimization Model

The problem described in the previous section could be handled through an enumeration approach.

Indeed, since we considered only 7 possible locations for the park-and-ride facilities, there are only 127

possible configurations for the park-and-ride facility network (from just one facility in one of the loca-

tions to facilities in all 7 locations). However, we decided to handle it through an optimization model.

The main reason was because, though our present focus was Coimbra, we are looking forward to appli-

cations to larger cities, like Lisbon and Oporto, where the number of possible facility locations is much

larger. Moreover, in the case of these and many other cities, the demographic evolution is much more
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uncertain than that of Coimbra. In these conditions, the problem involved in the determination of the

best configuration for a park-and-ride facility network would certainly be very difficult, if not impossible,

to tackle efficiently without resorting to (robust) optimization models.

Below, we present the formulation of the optimization model we developed to represent Coimbra’s

park-and-ride location problem, illustrate the results it can provide through a small application example,

and discuss methods for its resolution.

2.3.1 Model Formulation

The optimization model designed to represent Coimbra’s park-and-ride facility location problem

comprises the following features:

- The city and its suburbs are divided in two sets of trip generation zones, ZC and ZS , respectively,

connected by a road network.

- The total number of trips between any pair of zones i ∈ ZS and j ∈ ZC is known and equal to T j k .

- The trips can be made by car (mode a), by bus (b) or by a combination of car and bus through a

set of N routes that include a mode change in a park-and-ride facility.

- The travel distance corresponding to the least-cost path between any pair of zones i and j for

trips made through mode/route k ∈M is equal to Di j k . Part of this distance, DS
i j k , is made in the

suburbs (outside the city), and the other part, DC
i j k , is made inside the city.

- The trips between any pair of zones i and j only include a given park-and-ride facility if the corres-

ponding route involves a shortest travel distance that does not exceed in a given percentage, δ%,

the shortest travel distance by car, Di j a (δ therefore represents the propensity of drivers to route

deviations). The set of possible modes/routes for zone pair ij is therefore Mi j (δ) = {a,b}∪Ni j (δ),

where Ni j (δ) = {r ∈ N : Di j r ≤ (1+δ)Di j a}.

- The proportion of trips made through mode/route k between any pair of zones i and j , xi j k , is

assumed to be given by a logit function in terms of the least (generalized) travel costs for the mo-

des/routes in competition, Ci j k , and of a parameter expressing the sensitiveness of travelers to

cost differences, β.

- The objective is to minimize the travel distance made by car inside the city, DC
a , for a given maxi-

mum number of park-and-ride facilities to install in the municipality, P ≤ N (P is a proxy for the

costs involved in the construction and operation of the facilities, and also in the expansion of bus

services that is expected to accompany the implementation of the park-and-ride facility network).
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- The key decisions to be made are the locations for the facilities to include in the park-and-ride

facility network. They are represented by binary variables yn , n ∈ N , which are equal to one if

a facility is installed in location n, and otherwise are equal to zero. These decisions determine

the proportions of trips made by the various modes/routes, xi j k , thus the distance traveled by car

inside the city.

Using the notation introduced above, the optimization model can be formulated as follows:

Max Dc
a = ∑

i∈ZS

∑
j∈ZC

Dc
i j a ·Ti j · xi j a (2.1)

subject to

xi j k = e−βci j k

e−βci j a +e−βci j b +∑
n∈Ni j (δ) yn ·e−βci j n

, ∀i ∈ ZS , j ∈ ZC ,k ∈ a,b (2.2)

xi j k = yk ·e−βci j k

e−βci j a +e−βci j b +∑
n∈Ni j (δ) yn ·e−βci j n

, ∀i ∈ ZS , j ∈ ZC ,k ∈ Ni j (δ) (2.3)

∑
n∈N

y≤P (2.4)

xi j k > 0, ∀i ∈ Z, j ∈ ZC ,k ∈Mi j (δ) (2.5)

yn ∈ {0,1}, ∀n ∈ N (2.6)

The objective-function (2.1) of this optimization model minimizes the distance traveled by car inside

the city, which is obtained by multiplying the number of trips between each pair of zones (one subur-

ban and the other urban) by the proportion of trips made by car and by the travel distance for the trips

through the least-cost path, and then adding the results for all zone pairs. The proportion of trips made

by car is calculated in parallel with the proportion of trips made by the other modes/routes through

constraints (2.2) and (2.3), the former corresponding to the car and bus modes and the latter to the

combination of both modes with a mode change at a park-and-ride facility. They describe modal split

according to a logit function, but this function does not appear in the usual form because the impedance

terms corresponding to the park-and-ride routes (e−βCi j k ) are multiplied by the location variables (yn)

to ensure that only the routes involving installed facilities are taken into account in the computation of

modal shares. Constraint (2.4) specifies the maximum number of park-and-ride facilities to be installed

(at most P variables yn may be equal to one). Finally, constraints (2.5) and (2.6) specify the domain of

the decision variables.

The optimization model presented above is integer and nonlinear, because decision variables yn are

binary and appear in the denominator of constraints (2.2) and (2.3). This could be a problem because

nonlinear combinatorial optimization models are generally rather difficult to solve. However, using the

linearization approach proposed by Haase (2009), in the case of this optimization model it is possible to

replace the nonlinear constraints by the equivalent linear constraints (2.7) to (2.10), thus converting the
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initial nonlinear formulation into the following linear formulation:

Max Dc
a = ∑

i∈ZS

∑
j∈ZC

Dc
i j a ·Ti j · xi j a (2.1)

subject to

xi j k ≤ yk , ∀i ∈ ZS , j ∈ ZC ,k ∈Mi j (2.7)∑
k∈Mi j (δ)

xi j k = 1, ∀i ∈ ZS , j ∈ ZC (2.8)

xi j k ≤ e−β·Ci j k

e−β·ci j l
+ (1− yl ), ∀i ∈ ZS , j ∈ ZC ,k ∈Mi j (δ), l ∈ Ni j (δ),k 6= l (2.9)

xi j k ≤ e−β·Ci j k

e−β·ci j l
, ∀i ∈ ZS , j ∈ ZC k ∈Mi j (δ), l ∈ Ni j (δ),k 6= l (2.10)∑

n∈N
yn ≤ P (2.4)

xi j k > 0, ∀i ∈ ZS , j ∈ ZC ,k ∈Mi j (δ) (2.5)

yn ∈ {0,1}, ∀n ∈ N (2.6)

Both this model and the equivalent nonlinear one can be classified as (uncapacitated) p-hub location

models of the multiple-allocation and non-strict hubbing type (Alumur and Kara, 2008; Daskin, 2013).

Indeed, there are a given number of hubs (park-and ride facilities) to locate and, unlike for the more wi-

despread p-median models (Daskin, 2013), demands (trips) are associated with origin-destination pairs

and not with nodes. They are classified as multiple-allocation and non-strict hubbing because trips with

a given origin may be made through more than one hub or without going through a hub. However, the

models are different from typical p-hub location models because trips are distributed across routes de-

pending on the travel costs associated with the routes (according to a logit function), instead of being

made through the least-cost route.

Although we believe that the assumptions upon which this optimization model is based are quite

reasonable, at least four of them may be contested. First, the model only considers the car and bus

modes. The reason for this is because car and bus are the only relevant modes in Coimbra, but extending

the model to encompass other modes is straightforward. Second, the model assumes car and bus trips

to be made through least-cost paths (at current travel speeds). This is more questionable, but it would be

possible to split trips across several routes as a function of their costs (according e.g. to a logit function)

at the expenses of an increase in model size. Third, the model considers that travel speeds do not change

as a function of traffic. We acknowledge this would be a weakness of the model if the traffic changes

provoked by the implementation of the park-and-ride facility network were substantial. However, it is

implausible that changes related only to trips between the city and its outskirts have a substantial overall

impact on travel conditions in an urban area (though they may have in some road segments). Fourth

and final, the model disregards the uncertainty inherent to the evolution of travel demand. The reason
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for this is because, as mentioned before, Coimbra changed very little in the past and is unlikely to change

much in the next years to come. But we recognize that in other contexts this may be a major issue and,

as stated in the concluding section, we plan to address it in the future.

2.3.2 Application Example

In order to explain the behavior of the optimization model described above and illustrate the results

it can provide, we present and discuss in the sequel the results of its application to the hypothetical

radio-centric city depicted in Figure 2.5. It is a city with a population of about 100,000 distributed across

9 zones (neighborhoods) connected by four radial roads and by a ring road that separates the inner zones

(5 to 9) from the outer zones (1 to 4). The average number of daily trips from the outer zones to the inner

zones is shown in Table 2.1. The values of parametersβ (sensitiveness of travelers to cost differences) and

δ (propensity of drivers to route deviations) are assumed to be 1.0 and 0.25, respectively. These values

and the generalized travel costs in this city are the same as the ones we used for Coimbra (see Section

2.4). At present, 49.8×103 pkm are traveled daily by car in the inner city. The objective is to decrease this

traffic as much as possible by installing two park-and-ride facilities next to the four intersections of the

radial roads with the ring road (sites A to D).

Figure 2.5: Configuration of the hypothetical city.

Table 2.1: Average number of daily trips between the outer zones and the inner zones of the hypothetical city.

Trips

Outer Zone
Inner Zone

5 6 7 8 9

1 2795.5 2795.5 993.9 751.7 1490.9

2 3106.1 4472.7 1503.4 883.5 1987.9

3 1104.4 1503.4 1118.2 537.3 993.9

4 626.4 662.6 402.9 372.7 497.0

We applied the model to the hypothetical city, and the result was that the best locations for the park-

and-ride facilities would be sites A and B. Choosing these locations would allow reducing car use in the
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inner city by 15.5%, from 49.8 to 42.1×103 pkm (Table 2.2). Park-and-ride would capture 16% of the trips.

Only trips starting in both zones 1 and 2 would use both of these facilities, since they are the closest ones

to that departure zones. For instance, as displayed in Figure 2.6, 11% of the trips from zone 1 to zone

9 would use facility A, which is on the least-cost path between both zones, and 7% would use facility B,

which is not so conveniently located but still attracts some drivers (their travel distance would exceed the

length of least-cost path by less than 25%). On the contrary, for trips from zone 3 to zone 9, the facilities

would be too far off the least-cost path and would capture no trips.

Table 2.2: Optimum solution features for the park-and-ride network of the hypothetical city (β=1.0 and δ=0.25).

Park-and-ride network - {A,B}

Distance traveled by car in the inner city (103pkm) 49.8 42.1

Modal share (%)

Car 74 62

Bus 26 22

Park-and-ride - 16

Figure 2.6: Optimum routes and modal shares for trips from zones 1 and 3 to zone 9 of the hypothetical city (β=1.0 and δ=0.25).

The behavior of the model can be further appraised by looking at the best alternative to the optimum

solution, which consists in placing the park-and-ride facilities in sites B and C (instead of A and B). As

shown in Table 2.3, this second-best solution would be clearly worse than the first-best one, as it would

lead to a decrease of car use in the inner city by just 12.7%. This means that only about 80% of the gains

made possible by the introduction of the parking-and-ride facility network would be realized. The use of

park-and-ride facilities would change considerably. For instance, 11% of the trips from zone 3 to zone 9

would be captured by the facility located at C, which is on the least-cost path between both zones (Figure

2.7). However, the fact that there would be no facility at A would make park-and-ride less attractive to

drivers in zones 1 and 2. In particular, only 8% of the trips from zone 1 to one 9 would resort to park-and-

ride (against 18 % if the first-best solution were implemented).
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Table 2.3: Second-best solution features for the park-and-ride network of the hypothetical city (β=1.0 and δ=0.25).

Park-and-ride network {B,C}
Optimum

{A,B}

Distance traveled by car in the inner city (103pkm) 43.5 42.1

Modal share (%)

Car 64 62

Bus 23 22

Park-and-ride 13 16

Figure 2.7: Second-best routes and modal shares for trips from zones 1 and 3 to zone 9 of the hypothetical city (β=1.0 and
δ=0.25).

Additional insights on the behavior of the model can be gained by analyzing how the optimum so-

lution changes in response to variations in the values of parameters δ (propensity of drivers to route

deviations) and β (sensitivity of travelers to travel costs).

With respect to the first parameter, we considered two extreme cases (in addition to δ= 0.25): δ= 0,

meaning that drivers will only use park-and-ride facilities if they are right on the least-cost path to their

destinations; and δ = inf, meaning that drivers will use park-and-ride facilities no matter how far they

are off their least-cost path (but increasingly less as travel costs grow). Our conclusion was that, in both

cases, the optimum locations for the park-and-ride facilities would remain the same (that is, sites A and

B), but the modal share of park-and-ride, which was 16% for δ= 0.25, would be 15% and 18% respectively

for δ = 0 and δ = inf (Table 2.4). Using the example of trips from zone 1 to zone 9, the relatively low

modal share in the former case can be explained by the fact that there would be no trips captured by the

park-and-ride facility located at B, because it is not on the least-cost path between both neighborhoods

(Figure 2.8). The high modal share in the latter case can be illustrated by the trips from zone 3 to zone

9, which would not exist if δ = 0.25 and are now in part (8%) made through the park-and-ride facilities

despite the fact that, for using these facilities, drivers would have to deviate considerably from their

least-cost path.
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Table 2.4: Optimum solution features for the park-and-ride network of the hypothetical city under different values of δ (β=1.0).

δ 0 0.25 ∞

Park-and-ride network {A,B} {A,B} {A,B}

Distance traveled by car in the inner city (103pkm) 42.8 42.1 40.9

Modal share (%)

Car 63 62 60

Bus 22 22 22

Park-and-ride 15 16 18

Figure 2.8: Optimum routes and modal shares for trips from zones 1 and 3 to zone 9 of the hypothetical city (β=1.0): δ=0 (left)
and δ=∞ (right).

Regarding the other parameter under consideration, we considered the cases of β=0.5 and β= 2.0 (in

addition to β=1.0). Again in these cases the optimum locations for the park-and-ride facilities would be

A and B (it is not surprising that these locations do not change because, as seen before, they would be

clearly better than any alternatives). In contrast, as shown in Table 2.5, car use in the inner city would

vary considerably as the value of β increases, from 31.7×103 pkm when β=0.5 to 57.0×103 pkm (79.8%

more) when β=2.0. This happens because higher values of β signify a stronger preference for the least-

cost mode, which is car in this example. For any pair of zones, the travel modes would not change with

changes in the value of β, but their shares would change. For instance, and as displayed in Figure 2.9, the

number of trips from zone 1 to zone 9 made through the park-and-ride facilities would raise from 2% to

18% with the increase of β from 0.5 to 2.0, but, similarly to what happens when β=1.0, no trips from zone

3 to zone 9 would be made through such facilities.

Table 2.5: Optimum solution features for the park-and-ride network of the hypothetical city under different values of δ (β=1.0).

β 1 0.5 2

Park-and-ride network {A,B} {A,B} {A,B}

Distance traveled by car in the inner city (103pkm) 42.1 31.7 57

Modal share (%)

Car 62 47 84

Bus 22 28 11

Park-and-ride 16 25 5
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Figure 2.9: Optimum routes and modal shares for trips from zones 1 and 3 to zone 9 of the hypothetical city (δ=0.25): β=0.5
(left) and β=2.0 (right).

2.3.3 Model Solving

The fact that it is possible to cast the park-and-ride facility location problem into a linear combinato-

rial formulation has profound implications with respect to model solving. Indeed, in general, nonlinear

combinatorial optimization models remain generally quite challenging to cope with (Burer and Letch-

ford, 2012; Hemmecke et al., 2010). This was the situation also for linear models until the 1990s. However,

thanks to the vast progresses accomplished since then, large instances of our model should be possible

to solve today to exact optimality within very reasonable computational effort using branch-and-cut ap-

proaches and respective software implementations.

We used one of the top-quality software packages available – XPRESS Version 7.7 (FICO, 2014) – to

solve the optimization model, starting with the resolution of the application example presented in the

previous subsection. Without surprise, in this case solutions were obtained instantaneously. Then, we

solved a collection of randomly generated instances involving cities with the same radiocentric shape as

in the application example but with up to 160 zones and 20 possible sites for installing up to 20 park-

and-ride facilities. The results we obtained can be summarized by stating that instances involving 8, 12,

16 and 20 possible sites (the key feature with respect to computational effort) took at most 7 minutes, 55

minutes, 7 hours and 30 hours to solve. The time consumed in the resolution of the 16-site and especially

the 20-site instances was certainly rather long, but infrastructure planning problems like the one we are

dealing with have a long-term nature and normally do not require quick answers. Moreover, only very

big cities will have more than 20 entrances where to install park-and-ride facilities. Therefore, it can be

said that, in general, it will not be necessary to resort to specialized or heuristics methods to solve our

model, but this cannot be excluded in applications to the largest metropolitan areas.
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2.4 Model Data

In order to apply the optimization model presented in the previous section to the park-and-ride

facility location problem faced by the city of Coimbra, we first had to prepare the data needed to run it:

origin-destination trips (designated by T in the model); generalized travel costs (C ); travel distances (D);

and mode/route choice parameters (β and δ). In this section, we provide detailed information on how

these data were obtained.

Origin/destination trips

The number of origin-destination trips between the urban and suburban zones of Coimbra was taken

directly from the mobility survey carried out in the municipality in 2009. Since the population of the

municipality, as well as its spatial distribution, almost remained unchanged in recent years and probably

will not change much at least in the near future, we assumed that the park-and-ride facility network of

Coimbra could be designed considering that number of trips.

Generalized travel costs

The generalized travel costs for trips made by car or bus comprise components that depend on the

mode. In the case of car, the components are vehicle costs, parking costs and time costs, and in the case

of bus they are fare costs, time costs and discomfort costs (expressing the relative lack of comfort that

characterizes bus trips when compared to car trips).

For the municipality of Coimbra, the following reference values were considered:

a) Car mode

- Vehicle costs - the average costs of owning and using a car are 0.30e/km considering vehicle

depreciation, fuel, maintenance, insurance and taxes.

- Parking costs - the average fee for a parking space in the 9 zones where parking is paid is

1.0 e (this average reflects the fact that the parking fee in these zones is 0.5 e/hour, that the

average parking time is 4 hours, and that approximately 50% of car users have access to free

parking).

- Time costs - the average value of travel time is 8.0 e/hour (80% of the hourly disposable

income), which is equivalent to 0.20e/km given the average speed for car trips of 40 km/h.

b) Bus mode

- Fare costs - the average flat rate for any trip is 1.0 e (this average reflects the substantial

discounts offered to frequent users, seniors, disabled persons and students).
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- Time costs - the average value of travel time was taken to be the same as for car users (8.0

e/hour), which is equivalent to 0.40e/km considering the average operating speed of buses

of 20 km/h.

- Discomfort costs - the value of these costs was estimated to be 0.30 e/km (this value was

estimated together with β; see explanations below under the heading mode/route choice

parameters).

Therefore, the current car (Ca) and bus (Cb) generalized travel costs in the municipality of Coimbra

can be expressed as a function of distance (Da and Db) in the following manner:

Ca = 0.5×Da +1, (Ca ine,Da in km) (2.11)

Cb = 0.7×Db +1, (Cb ine,Db in km) (2.12)

If the park-and-ride facility network is implemented in the same cost conditions and it is assumed

that the mode change has a discomfort cost of 1.0 e (approximately equal to the current cost for a bus

transfer), the generalized travel cost for a park-and-ride route (Cr ) could be expressed as a function of

the distances covered by car (Da) and bus (Db) in this manner:

Cr = 0.5×Da +0.7×Db +2, (Cr ine,Da ,Db in km) (2.13)

Travel distances

The travel distances between the different urban and suburban zones of Coimbra were calculated

within the Geographic Information System we have developed in ArcGIS 10.2 to organize and process

data for Coimbra’s transport network. Specifically, we determined distances through the least-cost route

for three types of trips: by car, by bus, and by both modes through each park-and-ride facility. The

calculations were performed using the Shortest Path command available in the Network Analyst toolbar

of ArcGIS 10.2.

Mode/route choice parameters

The mode/route choice parameters were determined in two different ways. We will focus first on β

and then on δ.

The value for parameter β was obtained through the calibration of a logit function using the data for

origin-destination trips by mode and generalized travel costs available for Coimbra. The calibration of

a logit function is not straightforward when it is necessary to take into account three or more transport

modes; see e.g. Ben-Akiva and Lerman (1985) and Train (2009). However, as explained in Ortúzar and

Willumsen (2011, Subsection 6.5.4 Calibration of Binary Logit Models), it can be performed by simple
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regression analysis after a suitable transformation of variables if, as is the case in Coimbra, only two

modes are at stake. Moreover, an additional parameter can be included in the logit function to capture

costs other than the ones that can be measured objectively. These costs are typically associated with

(relative) discomfort costs. We applied this type of analysis and obtained, after rounding, β=1.0 and γ

(bus discomfort costs) = 0.30e/km (the value we used earlier in this section to calculate bus generalized

travel costs). The fitness between observed values and modeled values (through the logit function) was

not particularly high (R2=0.65), but both β and γ were very significantly different from zero (t-test>>2).

Therefore we decided to rely on these parameter values for our study.

The value for parameter δ was defined based on a user survey carried out for Coimbra’s ECOVIA

park-and-ride service (Seco et al., 1999). This service was introduced in Coimbra in the mid 1990s and

discontinued ten years later mainly because the areas where the three parking facilities were located

changed considerably (the main park was placed near the stadium, in a part of the city that was fully

renovated for the 2004 European Football Championship) and/or were too close to the city center. The

user survey made it clear that very rare drivers had extended the length of their trip by more than 25% to

take advantage of the park-and-ride service. Based on this information, we decided to consider δ = 0.25

in our study.

2.5 Study Results

The goal of the study described in this chapter was to identify locations for a set of park-and-ride

facilities to install in the municipality of Coimbra such that car use in its urban area could be reduced as

much as possible.

For analyzing the impact of this measure, our base scenario was that parking fees and bus fares would

remain the same as today, and that the (average) operating speed of buses would not change as well.

Then, to deepen the analysis, we considered seven alternative scenarios, involving changes in parking

fees, bus fares and/or bus operating speeds, as follows:

I. Moderate increase (10%) of parking fees in the paid parking zones.

II. Moderate decrease (10%) of bus fares.

III. Substantial increase (25%) of parking fees in the paid parking zones.

IV. Substantial decrease (25%) of bus fares.

V. Substantial increase (25%) of parking fees in the paid parking zones coupled with the introduction

of parking fees (0.3e/hour) in the remaining urban area.

VI. Substantial increase (25%) of bus operating speed.
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VII. Combination of measures IV, V and VI.

Below, we first present and discuss the results obtained for the base scenario, and then compare them

with the results obtained for the alternative scenarios.

2.5.1 Base Scenario

One of the main results we have obtained for the base scenario of our study was that, on its own, the

implementation of a park-and-ride facility network would allow reducing car use in the city of Coimbra

by as much as 29.0%, from 81.1 to 57.6×103 pkm (Figure 2.10 and Table 2.6). Another relevant result was

that park-and-ride could attract up to a modal share of 26% in the municipality.

The previous outcomes could only be achieved if facilities were built in all the 7 sites selected for

possible park-and-ride facility location. However, even if only 3 facilities were built, it would already be

possible to decrease car use in the city by 19.1% (from 81.1 to 65.6×103 pkm) and achieve a park-and-

ride share of 17%. As shown in Figure 2.11, these facilities should be located at sites A, B and D, and

would intercept 2162, 1965 and 1713 daily trips, respectively (based on this number of trips and taken

essentially into account their distribution over the day it would not be difficult to set suitable sizes for the

park-and-ride facilities). Installing a fourth facility would reduce car use in the city by an extra 4.0% and

increase the park-and-ride share by the same percentage, but the contribution of the additional facilities

would be relatively small (6.1% and 5% in total, respectively).

It is worth noting that, as the number of park-and-ride facilities increases, the configuration of the

network changes smoothly, always by the addition of a facility to the ones that were already included in

the network. Indeed, if only one facility were to be built, than it should be located at site A; if the network

were to comprise two facilities, one should be in that same site (A) and the other in site B; if it were to

comprise three facilities, two should be in those same sites (A and B) and the other in site D; and so forth.

It is also worth noting that the optimal locations of park-and-ride facilities almost do not change

when the propensity of drivers to route deviations, δ, varies 0.15 around the reference value of 0.25 (that

is, when δ ∈ [0.10,0.40]). Indeed, the only change we observed was for P=3 and δ≤ 1.5. In this case, the

optimal locations are A, D and G (instead of A, B and D in all other cases).
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Figure 2.10: Distance traveled in the urban area of the municipality of Coimbra as a function of the number of park-and-ride
facilities.

Table 2.6: Optimum solution features for the park-and-ride network of the hypothetical city under different values of δ (β=1.0).

Number of facilities 0 1 2 3 4 5 6 7

Optimum park-and-ride network - {A} {A,D} {A,B,D} {A,B,D,G} {A,B,C,D,G} {A,B,C,D,E,G} {A,B,C,D,E,F,G}

Distance traveled in Car 81.1 74.8 69.5 65.6 62.4 60.1 58.6 57.6

the urban area Bus 13.5 19.9 23.5 27 30.6 31.7 33.6 35.1

(103pkm) Total 94.6 94.7 93 92.6 93 91.8 92.2 92.7

Distance traveled Car 131.3 134.4 138.1 141.3 142.7 145.1 145.5 145.5

in the suburban area Bus 16.3 14.7 14 13.1 12.3 11.9 11.6 11.5

(103pkm) Total 147.6 149.1 152.1 154.4 155 157 157.1 157

Distance traveled Car 212.4 209.2 207.6 206.9 205.1 205.2 204.1 203.1

in the municipality Bus 29.8 34.6 37.5 40.1 42.9 43.6 45.2 46.6

(103pkm) Total 242.2 243.8 245.1 247 248 248.8 249.3 249.7

Modal share (%)

Car 84 78 73 69 66 64 63 62

Bus 16 15 14 14 13 13 12 12

Park-and-ride - 7 13 17 21 23 25 26

Figure 2.11: Optimum locations for three park-and-ride facilities in the municipality of Coimbra (figures in brackets represent
the number of trips intercepted by each facility).
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In line with one of the main arguments against park-and-ride, the more facilities would be included

in the park-and-ride facility network the larger would be the total distance traveled in the municipality.

However, it should be mentioned here that, even if 7 facilities were built, this distance would just increase

from 242.2 to 249.7×103 pkm (3.1%). This growth of travel distance would be the outcome of a decrease

in the use of car (from 212.4 to 203.1×103 pkm if 7 park-and-ride facilities were built) combined with an

increase in the use of bus (from 29.8 to 46.6×103 pkm).

With respect to the previous results, it is important to underline that it is not enough to look at the

costs of building and operating the facilities (for which the number of facilities is a proxy) when planning

the development of a park-and-ride facility network. Probably more relevant are the costs of providing

additional bus services – the distance traveled by bus in the municipality of Coimbra would increase by

34.6% (from 29.8 to 40.1×103 pkm) even if only 3 park-and-ride facilities were installed, and this would

certainly entail more costs for Coimbra’s bus company (SMTUC) and an aggravation of their already

serious deficits.

As could be expected, the increase of bus use in the municipality would only occur in the urban

area. For instance, the distance traveled by this mode in the city would double if a 3-facility park-and-

ride network were implemented, from the current 13.5×103 pkm to 27.0×103 pkm, and would further

increase to 35.1×103 pkm if 7 facilities were built. In contrast, for this number of facilities, bus use in

the suburbs would decrease from 16.3 to 11.5×103 pkm (29.4%). Even if only 3 facilities were built, the

decrease would still be of 19.6%, thus significant enough to put routes that are already rather thin today

under additional pressure, eventually leading to their abandonment. Subsequently, car could become

the only alternative to travel to the city from some suburbs. This could be another detrimental effect of

implementing a park-and-ride facility network in Coimbra.

To conclude the presentation and discussion of the results we obtained for the base scenario, we

comment here on the shape of the catchment areas of park-and-ride facilities (the catchment area of

a given park-and-ride facility is defined as the set of trip generation zones that resort to that particu-

lar facility more than to any other park-and-ride facilities). As illustrated in Figure 2.12 for Coimbra’s

optimum park-and-ride facility network with P=3, such catchment areas can be extremely irregular (as

noted e.g. by Horner and Grubesic 2001). Among several other factors, the reason for this irregularity

has to do with the competition between park-and-ride facilities and with the different patterns of origin-

destination trips for different trip generation zones. Therefore, it does not seem reasonable to assume,

like some authors do, that the catchment area of a park-and-ride facility has a given pre-specified shape

(parabolic or other).
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2.5.2 Other Scenarios

In order to analyze whether measures involving changes on parking fees, bus fares and/or bus ope-

rating speeds would be a good alternative to the implementation of a park-and-ride facility network in

the municipality of Coimbra with respect to diverting trips between the suburbs and the city from car to

bus in the urban area, we compared the results obtained for scenarios I to VII with P=0 (the current si-

tuation, i.e., no park-and-ride facility network) with the results obtained for the base scenario with P=3.

We performed the comparison considering a network of 3 facilities because, as seen before, the corres-

ponding solutions would represent a well-balanced compromise between car use reduction in the city

and the effort to be made by the municipal council to build and operate the facilities and increase the

level of bus services.

Figure 2.12: Shape of the catchment areas for the three optimum park-and-ride facilities in the municipality of Coimbra.

The results we obtained show that the weaker measures (corresponding to scenarios I and II) would

fall very short of matching the impacts of implementing the park-and-ride facility network with respect

to the distance traveled by car in the urban area, and even the stronger measures taken separately (sce-

narios III to VI) would not be enough for that purpose. As a matter of fact, and as shown in Figure 2.13,

even the most effective of the latter measures, increasing bus commercial speed by 25%, would only lead

to a 9% decrease reduction of car use in the city, against the 19% achieved through a 3-facility park-and-

ride network. For equaling the impact of this measure (and indeed surpassing it by 5%), it would be

necessary to combine the stronger measures together, which would certainly be very difficult both tech-

nically and politically (increasing bus commercial speed by 25% would inevitably require major changes

in traffic organization, generalizing paid parking in the city would certainly motivate harsh protests).
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Figure 2.13: Distance traveled in the urban area of the municipality of Coimbra by car and bus for the base scenario with 3
park-and-ride facilities and the 7 alternative scenarios.

In addition to assessing the impacts of the measures under consideration when applied as an alter-

native to the development of a 3-facility park-and-ride network, we also evaluated their effects if they

were carried out as a complement to the network’s implementation. In line with the previous results,

and as shown in Figure 2.14, only for scenario VII the implications of the additional measures would be

very significant, as they would lead to a decrease of the distance traveled by car in the urban area for trips

originated in the outskirts by 47% (against 19% for the base scenario, i.e., if no complementary measu-

res were applied). Any other scenarios would be much less effective, though the ones corresponding to

the moderate measures (increasing parking prices and decreasing bus fares by 10%) could be interesting

because they would enhance the impact of the park-and-ride facility network (by 2 or 3%, respectively)

and should be relatively easily accepted by residents.

Figure 2.14: Distance traveled in the urban area of the municipality of Coimbra by car and bus for the base scenario with 3
park-and-ride facilities and the 7 complementary scenarios.

2.6 Conclusion

Park-and-ride solutions have long been seen as capable of giving a significant contribution to miti-

gate the traffic congestion and pollution problems faced by cities, and the results of the study we descri-

bed in this chapter clearly confirmed this idea. Indeed, the introduction of a park-and-ride network with
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only three facilities in Coimbra could reduce car use in its urban areas by 19.1% (and increase bus use in

the municipality by 34.7%). For achieving the same outcome with respect to diverting trips from the su-

burbs to the city by decreasing bus fares, increasing parking fees and increasing bus commercial speeds,

the combination of measures required would be rather difficult to implement, both from the technical

and the political point of view. We also confirmed that the development of the park-and-ride facility

network would lead to a decrease of bus use in suburban areas (by 19.6%), which could put pressure on

the abandonment of some bus routes there and, if no action were taken, have harmful consequences for

the mobility of the residents of those areas.

One of the study features that deserves to be underlined is the fact that it was based on an optimiza-

tion model that takes into account mode/route competition effects (through a logit function). Despite

the fact that park-and-ride solutions are quite widespread and that their effectiveness critically depends

on the locations of the park-and-ride facilities, only a few optimization models have been proposed in

the literature for the purpose at hand. The model we used improves on this model notably because its

objective is to minimize car use in urban areas, whereas the previous model was built around a cove-

ring objective (intercepting as much car trips as possible, no matter the distance they would travel until

reaching their destinations).

As is shown in this chapter, our model, in its current form, can already provide useful insights on

where to install park-and-ride facilities in the periphery of a city and on their implications regarding the

use of car and bus (and other modes, if relevant). However, we recognize that the model still has a num-

ber of limitations. For instance, as already mentioned in the section where the model was presented, it

does not take into account the changes in traffic patterns caused by the implementation of the park-and-

ride facility network, as well as any uncertainty issues. A limitation of the model that we did not allude

to before has to do with capacity constraints. In many cases these constraints will not be so important

because park-and-ride facilities are located in the periphery of cities and, as it happens in Coimbra, it

will not be too difficult to find there vacant land where to install them, but in other cases conditions may

be different. In order to overcome these limitations, the changes that need to be performed in the model

would undoubtedly make it more complex and much more difficult to solve than it is at present.

In the future, we expect to work on the improvements required to overcome the limitations of the

model. But we plan to do this only in the medium term. Indeed, in the short run and continuing to focus

on Coimbra, our priority will be to analyze how the park-and-ride facility network should develop if a

light rail system were built in the municipality. Such system should already be in place, but its imple-

mentation had to be postponed because of the serious debt crisis that is affecting Portugal since 2010.

Now that the worst austerity days seem to be over, there are some chances that the light rail project is

resumed, and, given its expected impact, any other initiatives relating to transport in Coimbra need to

take it into account.
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Chapter 3

An optimization approach to integrated

transit-parking planning

3.1 Introduction

Urban transit plays a crucial role with respect to the pursuit of sustainable development goals in

several dimensions. As a matter of fact, by helping to reduce fuel consumption, pollutant emissions and

traffic congestion in relation to car, transit is clearly advantageous from the environmental and economic

standpoints (Kennedy, 2002; Schiller et al., 2010; Miller, 2014). In addition to this, it performs a key social

function by providing people who cannot own or drive a car with acceptable levels of mobility (Lucas

et al., 2001; Preston and Rajé, 2007; Lucas, 2012).

These settings explain why, notably in the European Union and in the United States, local and some-

times central governments are strongly involved in the provision of urban transit either producing this

type of service or subsidizing private companies to do so. In cities like Brussels, Rome and Stockholm,

recovery ratios (i.e. the percentage of operating costs funded by transit revenues) are only about 35%,

and in Cleveland and Detroit they are below 25% (Figure 3.1). This leads to the aggravation of public

deficits that are already very harmful in countries affected by debt crises, like most Southern European

countries. For this reason, transit in these countries is being put under great pressure. In less developed

countries, transit is generally assured by private companies that either are not subsidized or, when they

are, the subsidies they receive are rather low. However, this often leads to strong and occasionally violent

public protests against high transit fares such as the ones happened in Brazil in recent years, which will

eventually lead (and are already leading) to a stronger involvement of the public sector in the supply of

urban transit.
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Figure 3.1: Recovery ratio of public transport for some European countries and USA states – between 2007 and 2016.

Despite the support they get from the public sector, the truth is that there is a long-term trend for

transit modes to have low market share both in European Union countries (EU-28) and in the United

States (USA). In fact, the use of transit systems remained stable in the past 17 years on both EU-28

and USA, with average transit modal shares around 18.2% and 7.8%, respectively. A slight increase of

around 1% in the transit modal share has occurred in the USA between 2000 and 2015, against a decre-

ase of 0.2% in the EU-28 during the same period. These conclusions are drawn taking into account the

data displayed in Figure 3.2, where the transit modal shares were assessed based on the total number of

passenger-kilometers made in both urban and non-urban trips.

Figure 3.2: Transit market share for the European Union 27 and USA between 1995 and 2009. [Source: European Commission
and US Bureau of Transportation Statistics].

As one could expect considering the role of transit in the promotion of a more sustainable urban

mobility, the scientific community has devoted a great deal of attention to the subject, and in particular

to transit planning models. This attention has essentially consubstantiated in two literature streams.

The first stream of transit planning models is based on microeconomic analysis approaches, and

focuses on the establishment of optimal transit pricing, supply and subsidization rules in stylized cities

(e.g. monocentric cities). Examples of contributions to this stream include Mohring (1972), Vickrey

(1980), Small et al. (2007), Van Reeven (2008) and Basso and Jara-Díaz (2010, 2012).

The other stream relies on operations research approaches. It focuses on real cities, but as the con-
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tents of authoritative textbooks like Ceder (2007) and Vuchic (2005) make clear, transit fares, and the-

refore transit demand, are taken as given (that is, the interaction between supply and demand is not

taken into account). Recent reviews of this literature stream appear in Desaulniers and Hickman (2007),

Guihaire and Hao (2008), Kepaptsoglou and Karlaftis (2009) and Ibarra-Rojas et al. (2015).

According to the analysis conducted by the International Association of Public Transport (of Pu-

blic Transport, 2015), managing urban transit either by pricing and/or supply measures might not be

enough to decrease transit operating deficits or to increase transit’s modal share. As a matter of fact,

and in line with Figure 3.2, issues related to private vehicles should also be considered so that problems

such as congestion and fuel consumption can be addressed. According to the literature, road congestion

pricing and parking fees are advocated as potential solutions to these problems (Vickrey, 1963; Eliasson

et al., 2009; Beirão and Cabral, 2007; Dueker et al., 1998; Shoup, 2005).

Road pricing schemes are vastly explored in the transport economics literature upon the claim of

being an efficient policy to relieve congestion. A revision of this literature is presented in Tsekeris and

Voß (2009), where the authors highlight the scarce number of studies that relate road pricing with other

network management measures. In what concerns the integration of road pricing with transit fares,

its main focus is in micro-economic approaches with the goal of minimizing the total social costs of

a competitive transit/highway system (Tabuchi, 1993; Huang, 2000; 2002; Danielis and Marcucci, 2002;

Mirabel and Reymond, 2011), without any consideration of the cost of the pricing scheme or its practical

implementation. Indeed, real-world applications of this type of measure are rare (Santos and Fraser,

2006; Noordegraaf et al., 2014; Börjesson et al., 2014), mainly due to their unpopularity and/or difficulty

of implementation (Schlag and Schade, 2000; Jaensirisak et al., 2005; Ison and Rye, 2005; Eliasson, 2014;

Börjesson et al., 2014).

Parking fees are an attractive alternative to road pricing, not only because they are more easily accep-

ted by users but also because they are more straightforward to implement (Dueker et al., 1998; Shoup,

2005; Albert and Mahalel, 2006; Marsden, 2006; Beirão and Cabral, 2007), even though they are a second-

best measure for solving traffic congestion problems (Verhoef et al., 1995; Calthrop et al., 2000). Similar

to what is expected from road pricing schemes, parking fees are also capable of influencing transit ri-

dership and driving behavior with respect to, for instance, chosen route or departure time (Balcombe

et al., 2004; Simićević et al., 2013). However, to the best of our knowledge, few studies explore the re-

lationship between parking and transit systems (Inci, 2015), and the integration of transit and parking

through pricing schemes has not been addressed in the literature.

The model we propose in this chapter intends to fill the gap in the literature concerning the inte-

gration of transit and parking systems through pricing schemes using an operations research approach.

Our goal is to develop an approach for assisting city councils (local governments) in the development

of integrated transit-parking policies with the objective of optimizing the financial performance of these
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policies while ensuring given minimum levels of (motorized) mobility in a city. Each one of the two tran-

sit and parking systems is managed by an operator that answer to or is controlled by the city council. The

key decision variables are transit fares and parking fees. Our model can be classified as strategic, since

it does not look into the detailed configuration of transit networks – the idea is that it will serve to iden-

tify and pre-assess transit-parking policy solutions for subsequent in-depth analyses possibly through

simulation approaches.

This chapter is organized as follows. In the next section, we present the ingredients and formulation

of our planning model, which is analyzed and discussed for a small-scale hypothetical city in Section 3.3.

The computational effort involved in solving the model is examined in Section 3.4. This is followed by a

real-world application to Coimbra, a municipality in central Portugal with a population of approximately

150,000. In the final section of this chapter, we provide a summary of conclusions and indicate directions

for further research.

3.2 Optimization Model

The integrated transit-parking planning model introduced in this chapter is applied to a city divided

into Z trip-generation zones. The set of trip(-generation) zones is Z = {1, . . . , Z }.

Trips can be done by transit (B) or by car (A). For the sake of making explanations easier, we limit the

presentation of the model to two modes, but its extension to a larger number is rather straightforward.

The total number of trips between two zones, Qi j , corresponds to having free transit and parking sys-

tems. The number of trips made by transit and car are qi j B and qi j A , i , j ∈ Z, respectively. If transit

and/or parking are paid, some trips will not be made. We call them lost trips (O), and designate their

number by qi jO . It is assumed that, for each trip zone pair, the number of trips by each mode, as well

as the number of lost trips, can be described by logit functions of the generalized travel costs for the

two modes, Ci j B and Ci j A , as given by equations (3.1)-(3.3), where θ and β are statistical calibration

parameters that capture the sensitivity of travelers to travel costs.

qi j B = e−θ·Ci j B

e−θ·Ci j A +e−θCi j B +e−β
·Qi j , i , j ∈ Z (3.1)

qi j A = e−θ·Ci j A

e−θ·Ci j A +e−θ·Ci j B +e−β
·Qi j , i , j ∈ Z (3.2)

qi jO = e−β

e−θ·Ci j A +e−θ·Ci j B +e−β
·Qi j , i , j ∈ Z (3.3)

Transit generalized travel costs (Ci j B ) comprise time costs, discomfort costs (the latter express the

relative lack of comfort of transit trips when compared to car trips) and transit fares. The time and dis-

comfort costs are assumed to be proportional to the transit travel distance, Di j B . Transit fares are as-

sumed to vary across trip zone pairs according to transit zones defined a priori. Each trip zone pair, i j ,
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belongs to a transit zone r ∈ R, where R represents the set of transit zones. The transit fare for this trip

zone is denoted as pr B . Therefore, the transit generalized travel costs can be expressed by equation (3.4),

where CB represents the time and discomfort costs per unit of distance and Li j r is a binary parameter

equal to one if trip zone pair i j belongs to transit zone r , and equal to zero otherwise.

Ci j B =CB ·Di j B + ∑
r∈R

pr B ·Li j r , i , j ∈ Z (3.4)

Car generalized travel costs (Ci j A) comprise vehicle costs (depreciation, fuel, maintenance, insu-

rance, taxes), time costs and parking fees in the destination zones. The total vehicle and time costs are

obtained by multiplying the vehicle and time costs per unit of distance, C A , by the car travel distance,

Di j A . The parking fee in zone j is denoted by p j A . Because these costs are defined per car trip and the

demand is measured in person-trips, we use the average car occupancy rate, τ, to convert car trips into

person-trips. The car generalized travel costs are given by equation (3.5).

Ci j A = C A ·Di j A +p j A

τ
, i , j ∈ Z (3.5)

Two different possibilities are considered to set the parking fees (p j A): one that assumes parking fees

as known, and another that takes parking fees as decision variables.

In the case of unknown parking fees, it is considered that their value is given by the model as the

result of optimizing a fixed number of different parking fee levels. In this case, the model assigns each

trip zone to a parking fee level. The set of trip zones assigned with the same parking fee level is called a

parking zone.

Let U be the set of parking fee levels and p̂u A be the decision variable that describes the parking fee

assigned to each parking fee level u of set U. To link the parking fee levels to the parking fee applied to

a given trip zone, the binary decision variable w j u is considered. This binary decision variable takes 1 if

the parking fee level u, given by p̂u A , is charged to each car that parks at j , and zero otherwise. Each trip

zone will have one and only one parking fee level. Each trip zone has a known and fixed parking capacity

S j , and it is assumed that the assignment of a parking fee level to a trip zone depends on the number

of car users willing to park at that same trip zone. Let x j be a binary decision variable that takes 1 if the

number of car users willing to park at j exceeds by ψ% the parking capacity S j of trip zone j , and zero

otherwise, where ψ is the parking demand coverage ratio.

The parking fee charged in each trip zone j , p j A , is expressed by equation (3.6), which relates the

parking fee levels p̂u A and the binary decision variable w j u . We ensure that only a single parking fee

level is assigned to a trip zone through constraints (3.7). The relationships between parking fee levels

and parking capacities are given by equations (3.8) and (3.9), where M is a sufficiently large bound. If

equation (3.8) holds, the number of car users willing to park at zone j does not exceedψ% of the parking
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capacity and constraint (3.9) sets the binary variable x j to take the value 0 and parking is free in the trip

zone j . In the case of being equation (3.9) the one that is active, the number of car users willing to park

at zone j exceeds ψ% of this trip zone parking capacity, constraint (3.8) ensures that x j takes the value 1

and this trip zone should be assigned to a parking fee level p j A .

p j A = ∑
u∈U

p̄u A ·w j u , (3.6)

∑
u∈U

w j u = x j , j ∈ Z (3.7)

∑
i∈Z

qi j A ·Qi j ≤ τ ·ψ ·S j +M · y j , j ∈ Z (3.8)

∑
i∈Z

qi j A ·Qi j ≥ τ ·ψ ·S j −M · (1− y j ), j ∈ Z (3.9)

As mentioned in the introduction, the management of each transit system and parking system is

made by two different operators, named transit operator and parking operator, respectively. These two

entities answer to or are controlled by the city council.

The objective of this integrated approach is to minimize the joint operating deficit of both transit

and parking operators. We opt for this objective because it corresponds to a critical concern of policy-

makers. By focusing on a deficit minimization objective (while ensuring a minimum mobility goal), we

believe to be closer to the way policy-makers look at transit and parking systems planning.

The transit operator deficits are the difference between the costs of operating the transit system and

the revenues collected by the transit fares (i.e.,
∑

i , j∈Z qi j B ·∑r∈R pBr ·Li j r ). Those costs comprise a varia-

ble component, obtained by multiplying the number of trips and the distance for each trip by a unit cost

MV
B , and a fix component, M F

B . Hence, the transit operating deficits, RB , can be calculated as described

by equation (3.10).

RB = MV
B · ∑

i , j∈Z
qi j B ·Di j B +M F

B − ∑
i , j∈Z

qi j B · ∑
r∈R

pBr ·Li j r (3.10)

The parking operator deficits are the difference between the costs of operating the parking system

and the revenues it makes from the parking fees (i.e.,
∑

i , j∈Z qi j A · p j A

τ ). The operating costs include a

variable component, obtained by multiplying the number of cars parked in each zone by a unit cost MV
A ,

and a fix component, M F
A . These operating costs only exist in trip zones where parking is paid (i.e., zones

for which x j = 1). Therefore, the parking operator deficits, RA , are given by equation (3.11).

RA = MV
A · ∑

i , j∈Z

qi j A

τ
· x j +M F

A − ∑
i , j∈Z

qi j A · p j A

τ
(3.11)

The decisions to be made for achieving the joint deficit minimization objective have been introduced

before in this section, but we repeat them here:
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- qi j A - number of car trips made between trip zones i and j

- qi j B - number of transit trips made between trip zones i and j

- qi jO - number of lost trips between trip zones i and j

- pr B - transit fare for transit zone r

- p j A- parking fee for trip zone j

- x j = 1 if parking is paid in trip zone j (x j = 0 otherwise).

Under these settings, the optimization model to solve is as follows:

Min

MV
B · ∑

i , j∈Z
qi j B ·Di j B +M F

B +MV
A · ∑

i , j∈Z

qi j A

τ
· y j +M F

A−

− ∑
i , j∈Z

qi j B · ∑
r∈R

pr B ·Li j r −
∑

i , j∈Z
qi j A · p j A

τ

(3.12)

qi j B = e−θ·Ci j B

e−θ·Ci j A +e−θ·Ci j B +e−β
·Qi j , i , j ∈ Z (3.1)

qi j A = e−θ·Ci j A

e−θ·Ci j A +e−θ·Ci j B +e−β
·Qi j , i , j ∈ Z (3.2)

qi jO = e−β

e−θ·Ci j A +e−θ·Ci j B +e−β
·Qi j , i , j ∈ Z (3.3)

p j A = ∑
u∈U

p̄u A ·w j u , (3.6)

∑
u∈U

w j u = x j , j ∈ Z (3.7)

∑
i∈Z

qi j A ·Qi j ≤ τ ·ψ ·S j +M · y j , j ∈ Z (3.8)

∑
i∈Z

qi j A ·Qi j ≥ τ ·ψ ·S j −M · (1− y j ), j ∈ Z (3.9)

∑
i , j∈Z

qi jO ≤Qmin (3.13)

∑
i∈Z

qi j A ≤ τ · (S j + z j ), j ∈ Z (3.14)

pr B ∈R, r ∈ R (3.15)

p̄u A ∈R, u ∈ U (3.16)

w j u , x j ∈ {0,1}, j ∈ Z,u ∈ U (3.17)

The objective function (3.12) of this model expresses the minimization of the joint operating deficits.

Constraints (3.1)-(3.3) define the logit function setting the demand for each mode according to its costs.

Constraints (3.6)-(3.7) account for the links between parking fee levels and the parking fee charged in

each trip zone, whereas the relationships between parking fee levels and trip zone parking capacities are

given by constraints (3.8)-(3.9). The minimum mobility goal is defined by setting a maximum value for
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the trips that are not made due to their costs, i.e., by setting the upper bound Qmin for lost trips (3.13).

Constrains (3.14) guarantee that the parking capacity is not exceeded. Constraints (3.15)-(3.17) set the

decision variables domain.

The optimization model presented above is, in our opinion, a valuable tool for assisting local admi-

nistrations in the design of integrated transit-parking plans. Despite this, we would like to acknowledge

here one of its possible limitations. In our model, travel times and distances for transit and car (and the-

refore part of the respective generalized travel costs) are implicitly assumed to remain unchanged with

variations in the number of trips for each mode. This assumption is obviously unacceptable in a city

severely affected by traffic congestion, where modal share variations will certainly affect the dynamics

of traffic (e.g., speed and route choices). Indeed, in these conditions, if 50% of the car trips are diverted

to transit, a substantial decrease in car travel times will certainly occur. Hence, our model should be ap-

plied only in cities that are not severely affected by traffic congestion (except, possibly, in relatively short

periods of the day) or only if changes in transit and parking prices are small and expected to have little

impact on travel times and distances. This limitation of our model will be handled by us in the future, as

stated in the concluding section of this chapter.

3.3 Application Example

We now present an example of the application of the proposed optimization model to a small hy-

pothetical city, in order to illustrate the behavior of the model and the benefits of integrating transit and

parking systems. The features of this city are detailed in a first subsection, which is followed by two sub-

sections that account for two different cases. In the first case, we assume that transit and parking systems

are managed separately, i.e., the parking fees charged by the parking operator are kept constant, whereas

the transit fares are optimized. The second case analyzes the integration of the two systems, where both

transit fares and parking fees are optimized so that the joint operating deficits of the transit operator and

the parking operator are minimized.

3.3.1 Hypothetical City Features

The hypothetical city we will use to provide insights into the model’s behavior was generated partly at

random based on features of real-world cities. The total population of this city is 75,300, a value that was

randomly generated taking into account the population range for small-sized cities as listed in a recent

OECD report (OECD, 2016). The city is divided in six trip-generation zones classified as inner zones (A

and B), the ones where most productive activities are concentrated, and outer zones (C to F), the ones

where residential uses are dominant (Figure 3.3). The number of people living and working in each zone

is presented in Table 3.1.
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Figure 3.3: Configuration of the hypothetical city.

The potential number of trips between two zones, shown in Table 3.2, was calculated assuming that,

on average, people make at most 1.5 (inter-zonal) trips per day, and that trips originating in a given

zone are distributed by the other zones proportionally to the employment in these zones and inversely

proportionally to the travel costs between them. These trips can be made by car or transit. The total

parking capacity in the inner city is 8,800 places in zone A and 9,900 in zone B. In every zone of the outer

city, parking capacity largely exceeds demand.

Table 3.1: Population and employment of each zone.

Trip Zones A B C D E F

Population (103) 3.7 6.5 20.3 18.6 14.7 11.5

Employment (103) 15.9 14.7 1.2 3.2 2.4 0.25

Table 3.2: Number of potential trips (demand) between each OD pair.

Trips (103)

Origin
Destination

A B C D E F

A 0 2.78 0.72 1.61 1.02 0.42

B 3.93 0 1.41 1.28 2.13 1.19

C 4.01 5.59 0 2.3 1.58 1.83

D 6.42 3.63 1.65 0 1.14 0.62

E 3.89 5.73 1.07 1.08 0 1.34

F 2.68 5.36 2.09 0.99 2.24 0

Transit and parking services are provided by two different operators, which are controlled by the city

council. At present, the same fare of 0.6e is paid in every transit trip made in the city, and the same

parking fee of 1.2e (per parking) is applied in the two inner city zones. Parking is free in the outer city

zones. The unit travel costs included in expressions (3.4) and (3.5) are 0.7e/km and 0.5e/km for transit

and car respectively.

Under these conditions, the total number of (inter-zonal) daily trips made in the city is 54.9×103,
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with a modal share of 58% for car and 42% for transit (Table 3.3). The lost trips in the city amount to

16.8×103, per day (23% of the potential trips). The parking occupation rate is 91% in the inner zones,

and the parking fee paid there is 1 and below 60% in the outer zones (i.e., outer zones).

The parking demand coverage ratio was assumed to be 60% (ψ= 0.6).

For the number of trips and transit fares referred to above, the operating deficit of the transit operator

is 13.5×103e/day, with daily operating costs of a total of 27.2×103e/day and revenues of around 50%

of this value (13.7×103e/day). The parking operator makes a revenue of 7.4×103e/day, and its costs

represent 57% of the revenues achieved through the parking fees. These values are shown in Table 3.3.

In the same table, we present the social cost (SC) corresponding to the transit and parking systems

of the city, which is a simplified way of expressing the costs of these systems to the society. This cost is

obtained by summing the generalized travel costs of users with the operating deficits of the two opera-

tors without including the costs/revenues paid/collected by transit fares and parking fees, as detailed in

equation (3.18). In the current situation, this calculation yields to a social cost of 41.24×106e/year.

Table 3.3: Current situation.

Transit fare (e) 0.6

Parking fee (e) 1.2

Operating deficit (106 e/year)

Transit 3.67

Parking -2.01

Total 1.66

Social cost (106 e/year) 41.24

Number of trips (103/day)

Transit 22.9 (42%)

Parking 32 (58%)

Total 54.9

Parking occupation (%)
Zone 1 91

Zone 2 91

N SC = MV
B · ∑

i , j∈Z
qi j B ·Di j B +M F

B +MV
A · ∑

i , j∈Z

qi j A

τ
· x j +M F

A+

+ ∑
i , j∈Z

qi j B · (CB ·Di j B
)+ ∑

i , j∈Z
qi j A ·

(
C A ·Di j A

τ

)
+ ∑

i , j∈Z
qi jO ·β

(3.18)

3.3.2 Separate transit-parking policy

In this subsection, we analyze which transit fares should be charged by the transit operator to mini-

mize the joint operating deficits while keeping fixed the parking fees to their current value (i.e., 1.2e per

44



3.3

parking place in zones 1 and 2, and free parking in the remaining zones).

This analysis was developed by optimizing the transit fares so that the transit operator minimizes

its operating deficits, considering three (policy) scenarios. The maximum mobility loss represents the

proportion of the current number of lost trips that is incremented to this amount, which defines the

value of Qmin considered in equation (3.13):

Scenario S1: a single transit fare for every transit trip, with infinite maximum mobility loss;

Scenario S2: a single transit fare for every transit trip, with 5% of maximum mobility loss;

Scenario S3: two different transit fares, one for the set of trips with origin and destination in the

city center (Region 1) and another for the remaining trips, assuming that the value assigned to the

former is smaller than the value of the later. The maximum mobility lost is set to 5%.

A transit fare of 0.98e is the result of applying the model to Scenario S1, corresponding to a transit

modal-share of 35% and a transit operator operating deficit of 6.9×103e (Table 3.4). When comparing

these results with the current situation previously detailed, an increase on the transit fare is observed,

justifying the decrease on the transit modal share. The joint operating deficits change from its current

value of 3.67×106e/day to 1.91×106e/day (Table 3.3 and 3.4, respectively). Similar conclusions can

be drawn for the social cost of this scenario, improving from its current value of 41.24×106e/year to

40.64×106e/year (Table 3.3 and Table 3.4, respectively).

In Scenario S2, where the number of lost trips is bounded to a maximum increase of 5% of its current

value (i.e., increasing 5% of the current lost trips of 16.8×103, which is equal to 17.6×103), the optimum

transit fare becomes 0.83e and the transit modal-share increases 3% when comparing this Scenario S2

to Scenario S1. The operating deficits increase from 1.91×106e/year on Scenario S1 to 2.52×106e/year

on Scenario S2 (Table 3.4). This trend is observed when comparing the social costs, where a change from

40.64×106e/year to 40.87×106e/year occurs.

Table 3.4: Optimum solution features for Scenarios S1 and S2.

Scenario S1 S2

Maximum mobility loss (%) ∞ 5

Transit fare (e) 0.98 0.83

Parking fee (e) 1.2 1.2

Operating deficit (106 e /year)

Transit 1.91 2.52

Parking -2.37 -2.23

Total -0.46 0.29
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Social costs (106 e/year) 40.64 40.87

Number of trips (103/day)

Transit 19 (35%) 20.5 (38%)

Parking 34.6 (65%) 33.6 (62%)

Total 53.6 54.1

Parking occupation (%)
Zone 1 99 96

Zone 2 100 96

Adding the possibility of having two different transit fares according to the transit zones r1,r2 ∈ R,

the results shown in Table 3.5 are obtained for Scenario S3. It must be highlighted the similarity between

these results and the ones obtained for Scenario S2. In fact, the transit fare of Scenario S2 was optimized

to take the value 0.83e, which is close to the transit fares obtained in Scenario S3 (0.79e and 0.84e for

transit zones 1 and 2, respectively). The possibility of having two different transit fares slightly increases

the transit operator’s operating deficits when compared to the Scenario S2, but the differences on the

modal-shares of the two scenarios can be neglected due to being minimal.

Table 3.5: Optimum solution features for Scenario S3.

Scenario S3

Maximum mobility loss (%) 5

Transit fare (e)
Transit zone 1 0.79

Transit zone 2 0.84

Parking fee (e) 1.2

Operating deficit (106 e /year)

Transit 2.5

Parking -2.23

Total 0.27

Social costs (106 e/year) 40.85

Number of trips (103/day)

Transit 20.5 (38%)

Parking 33.6 (62%)

Total 54.1

Parking occupation (%)
Zone 1 96

Zone 2 96
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Figure 3.4: Operating deficit features for different transit fares without bounding the number of trips that lost.

As expected, if the transit fare is increased, the deficit of the transit system decreases as well as the

trips that are made by transit or by car. For instance, to achieve a balanced transit structure, where no

profit or deficit occurs, the transit fare must be increased from the current 0.6e to 0.89e. This incre-

ase leads to an increment of 6% in the number of trips that are not made for being unaffordable in the

passengers’ perspective.

These results make possible to verify the existence of an extreme point solution as a result of par-

king capacity constraints, because the increase of transit fares increases the transit generalized costs,

which increases the number of car trips. This increase origins parking capacity problems, where parking

demand is higher than the parking supply, leading to infeasible solutions. This is observed by the infea-

sibility of the solutions achieved if the transit fare is higher than 0.98e (the maximum value achieved in

Figure 3.4), even when the constraint regarding the maximum value of lost trips is dropped.

3.3.3 Integrated transit-parking planning

We will now focus on how the integration of parking and transit systems in the hypothetical city im-

pacts the financial performance of both systems. This was developed by optimizing the transit fares and

the parking fees, attempting at reducing the subsidization level of the transit operator by incorporating

the parking operator revenues as transit funds, while keeping fixed the levels of supply provided by the

two operators (i.e., transit supply and parking capacity). This analysis considers the following 3 scena-

rios for the pricing configurations, with an upper bound for the trips that are lost (i.e., Qmin) equal to a

maximum increase of 5% of the current number of lost trips in equation (3.13):

Scenario I1: single transit fare and a single parking fee;

Scenario I2: single transit fare and two parking fee levels;

Scenario I3: two different transit fares - one for the set of trips with origin and destination in the

city center (Region 1) and another for the remaining trips, assuming that the value assigned to the

former is smaller than the value of the later - and two parking fee levels;
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We start by analyzing Scenario I1, where it is assumed a single transit fare and a single parking fee

level to be optimized so that the number of lost trips remains below 5% of its current value, as previously

considered. The results achieved by the model are displayed in Table 3.6.

Table 3.6: Optimum solution features for Scenario I1.

Scenario I1

Maximum mobility loss (%) 5

Transit fare (e) 0.88

Parking fee (e) 1.14

Operating deficit (106 e/year)

Transit 2.33

Parking -2.11

Total 0.22

Social cost (106 e/year) 40.73

Number of trips (103/day)

Transit 19 (35%)

Parking 34.6 (65%)

Total 53.6

Parking occupation (%)
Zone 1 99

Zone 2 100

A decrease in the parking fee to 1.14e is observed for this Scenario I1, when compared to the current

price of 1.2e, together with an increase on the transit fare from the current 0.6e to 0.88e. These changes

affect the modal shares, with transit losing 5% of its current ridership to car (Table 3.3 and Table 3.6,

respectively). Although the total operating deficit remains positive (0.22×106e/year), there is a decrease

of 36% on the transit operating deficits (from the current 3.67×106e/year to 2.33×106e/year, see Table

3.3 and Table 3.6, respectively). On the parking side, a decrease on the operating deficits is reached,

changing from the current -2.01×106e/year to -2.11×106e/year (Table 3.3 and Table 3.6, respectively).

Comparing the results for Scenario I1 (Table 3.6) with the results achieved for Scenario S2, where only

the transit fare is optimized (Table 3.4), an increase in the transit fare is observed as well as an expectable

loss of passengers of 1 %, and a decrease of the parking fee. This new set of prices decreases the generalize

cost of car and increases the generalized cots of transit, which justifies the changes on the modal-shares.

As expected, changes on the joint operating deficits are also observed, decreasing from 0.29×106e/year

to 0.22×106e/year. This is a direct consequence of decreasing by 7.5% the transit operating deficits

(from 2.52×106e/year to 2.33×106e/year), as opposite to increasing the operating deficits of the parking

operator from -2.23×106e/year to -2.11×106e /year (Table 3.5 and 3.6, respectively). This increase is

mainly justified by the decrease of parking fees (from 1.20e to 1.14e), since the number of car trips

increasing from 33.6 thousand to 34.3 thousand is not enough to accommodate the difference on the

parking operator’s gains achieved by collecting parking fees. Note that the parking capacity limits are
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almost met in the two inner zones in this first Scenario (Table 3.6).

We proceed by analyzing scenarios I2 and I3, with results shown in Table 3.7. By increasing the num-

ber of parking fees to two instead of one (Scenarios I2 and I1, respectively), a slight impact on the single

transit fare’s optimum value occurs and it changes from 0.88e to 0.87e, while the parking fee changes

from 1.14e to 1.11e and 1.20e (zones 1 and 2, respectively). A similar trend is observed in Scenario I3,

where the transit fares are 0.86e and 0.89e for transit zones 1 and 2 (see Figure 3.6), respectively, and

parking fees for zones 1 and 2 are equal to 1.12e and 1.15e, respectively. These two scenarios generate

modal-shares and joint operating deficits similar to the ones generated by scenario I1. The transit share

of 35% in Scenario I1 is increased to 37% and 36% for Scenarios I2 and I3, respectively, whereas the joint

operating deficits change from 0.22×106e/year to 0.21×106e/year for Scenarios I2 and I3.

Table 3.7: Optimum solution fea1tures for Scenarios I2 and I3.

Scenario I2 I3

Maximum mobility loss (%) 5 5

Transit fare (e)
Transit zone 1

0.87
0.86

Transit zone 2 0.89

Parking fee (e)
Parking zone 1 1.11 1.12

Parking zone 2 1.2 1.15

Operating deficit (106 e/year)

Transit 2.36 2.31

Parking -2.14 -2.10

Total 0.22 0.21

Social costs (106 e/year) 40.76 40.71

Number of trips (103/day)

Transit 20 (37%) 19.7 (36%)

Parking 34.1 (63%) 34.3 (64%)

Total 54.1 54

Parking occupation (%)
Zone 1 100 100

Zone 2 97 99

These analyses were developed with a maximum value for the mobility that is loss by the popula-

tion, which is defined by setting an upper bound equal to adding 5% on the number of lost trips in the

current scenario. We now aim to identify the trade-off between the collected operating deficits and the

number of lost trips. This analysis is developed by fixing the transit fare values between 0.6e and 2.8e

and optimizing the parking fee levels without considering any restrictions towards the number of lost

trips. These results are displayed in Figure 3.5, where the lost trip proportions represent the proportion

of trips that are lost towards their current value of 16.8×103/day (Table 3.3). E.g., when the transit fare

is set to 0.7e, the optimization model returns that the optimum parking fee value is 2.31e and a loss

of 19.07×103/day that corresponds to an increase of 13.5% of the lost trips, which is the value shown in

Figure 3.5.
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Figure 3.5: Optimal solutions features for a single parking fee and lost trips while varying the values of the single transit fares.

As previously pointed out, there is a strong relationship between having a self-financing system and

the social responsibility of offering an affordable service. This is shown in Figure 3.5, where by setting

the transit fare to 0.6e and the parking fee to 2.24e the system collects near zero joint operating deficits.

In this case, an increase of 13.5% of the current lost trips is achieved, which corresponds to about 26.5%

of the total trips (in the current pricing situation, this loss is about 23%). This increase on the number of

lost trips is more reasonable than the increase required to achieve a transit system that is able to cover

its own expenses (Figure 3.4).

The relationship between the total number of trips that are made and the values of both transit fares

and parking fees, which is also shown in Figure 3.5, highlight the main reason why this lost trip “mode”

was added into the demand logit model. In fact, if prices are too high, some potential trips will not be

made because the trip’s utility does not worth its total generalized cost.

It is worth noting that, even in extreme cases with increases of prices of more about 150% towards

the current pricing (e.g., a transit fare of 1.5e and a parking fee of 2.79e), the share of lost trips is 33.5%

against the current 23.4%. This smooth change is related to the generalized travel costs included in the

logit function. Transit fares and parking fees are only a fraction of those costs, therefore increasing them

does not necessary mean that the generalized travel costs will increase in the same proportion. By way

of example, let us consider a car trip with a generalized cost of 5e, where 1.2e correspond to parking

fees and 3.8e to the remaining costs. If an increase of 170% occurs in the parking fee (to around 3.3e),

the total generalized cost of the trip will increase to 7.1e, which corresponds to a 40% increase over the

original generalized cost.
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3.4 Model Solving

The developed optimization model results in a combinatorial-nonlinear formulation. These charac-

teristics are generally quite challenging to cope with (Burer and Letchford, 2012; Hemmecke et al., 2010),

and there a few software systems able to handle these types of formulations. According to the literature,

BARON (Tawarmalani and Sahinidis, 2005) is one of the most suitable such systems (Burer and Letchford,

2012; Bussieck and Vigerske, 2014). This software implements a global optimization approach based on

polyhedral branch-and-cut algorithms (Kesavan and Barton, 2000).

To get some insights on the computation effort of BARON software, we developed a computational

study that related the size of problem instances (i.e., the number of zones) with the computation time

that BARON software took at finding the optimum combination of prices. This study was developed

considering 10 randomly-generated instances for each considered size of problem instances (between 6

and 30 zones), and the pricing schemes for two scenarios:

# 1) a single transit fare and a single parking fee level;

# 2) a single transit fare and two parking fee levels.

The average computation times of the solving the model for the randomly generated problem ins-

tance according to their size are shown in Figures 3.6 and 3.6 for scenarios #1) and #2), respectively.

Figure 3.6: Computational effort for Scenario # 1).

Figure 3.7: Computational effort for Scenario # 2).
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As expected, if the size of the problem increases, the time required to find the optimal set of prices

also increases due to increase of the model’s complexity. This conclusion is observed regardless the

pricing configuration. However, if two parking fee levels are considered, the effort is strongly higher than

if a single parking fee level is considered, even in instances with smaller sizes. E.g., for instances with

15 zones, the average computation time with a single parking fee level, i.e. scenario #1, is close to zero

hours (Figure 3.6) while this value increase to around 13 hours if two parking fee levels are considered,

i.e. scenario #2 (Figure 3.7). This substantial growth is not only justified by adding a parking fee level

but also by requiring the assignment of each parking fee level to each one of the 15 zones while ensuring

that the parking capacity restrictions are met. When the size of the problem instances is increased to 24

zones, a substantial rise is observed on the computation time of scenario #1 when compared to smaller

problem instances. This is why the size of the space of solutions for problem instances with size greater

or equal 24 zones was decreased when optimizing the prices for scenario #2. However, this change was

not enough to deal with problem instances with 30 zones in a reasonable amount of computation time

(Figure 3.7).

Considering these results, we argue the need of developing a heuristic to find the optimal solutions

for large problem instances, with and without single transit fares and single parking fee levels. This

consideration will be address in our future work.

3.5 Case Study: Coimbra

In this section, we explore and analyze the application of the developed optimization model to the

municipality of Coimbra. We start by detailing the settings of the municipality taking into account the

data of a mobility survey conducted in Coimbra during 2009. This is followed by analyzing the possibility

of the transit system to exclude the need of subsidization by adjusting the transit fares and parking fees,

where the revenues of the parking operator cover the deficits of the transit operator.

3.5.1 Settings

The municipality of Coimbra has 156,000 inhabitants with a total area of 316.8 km2, which was divi-

ded into 25 zones (Figure 3.8). This zonation was based on the geographic boundaries of the 18 parishes

that compound the municipality of Coimbra, and their division considering the similarities of the social

characteristics of the population observed through the data gathered by the mobility survey. For sim-

plicity, it was assumed that all trips had their starting and their ending in a centroid designed in each

zone, while the effort required to reach this geographic place from any other geographic place in the

zone is negligible. The centroid of each zone was designed as the geographic location closest to all de-

partures and arrivals trip’s locations in each zone. The 25 zones are also grouped into 2 main regions, as
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shown in Figure 3.9, where Region 1 represents the center of the municipality and Region 2 represents

the periphery.

Figure 3.8: Division of the municipality of Coimbra in 25 zones.

The transit operator that manages the transit system running in Coimbra charges an average of 0.6e

per transit trip, according to the accounting reports made by that same operator (SMTUC, 2013). The

parking fees charged to parking users are estimated based on the data collected by the mobility survey,

leading to 4 parking fee levels ({0.01,0.02,0.14,0.17}) distributed across the 25 zones of the municipality

as displayed in Figure 3.9. These values are the result of dividing the total number of cars parked in a

zone by the total parking fee revenue collected in that same zone.

Figure 3.9: Current average parking fees per zone.
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According to the survey conducted in Coimbra, an average of 153,200 daily trips are done by car and

by transit in the municipality between all the OD pairs and excluding the trips with the same origin and

destination. These trips are split between transit trips (25%) and car trips (75%), with a car occupancy

rate equal to τ= 1.2 passenger per vehicle. The total number of trips that would be done if both transit

fares and parking fees were zero was estimated with an extrapolation of the surveys’ data. This procedure

yielded a total of 157,400 potential trips during a regular day if both parking fees and transit fares were

set to zero.

The unit travel costs per travelled km of transit was estimated to be 0.7e/km, whereas the unit cost

per travelled km by car was estimated to be 0.5e/km. These values were projected based on the survey’s

data, the reports of the transit operator SMTUC and by the Portuguese Statistical Institute (INE, 2015).

The average speed for each mode in Coimbra was set to 35 km/h and 17 km/h for car and transit, respec-

tively; the unit cost of time was set to 8e/h, the discomfort cost of transit was considered to be 0.23e/km

and the vehicle costs linked to car were set to 0.324e/km. Finally, the parameters of the logit function

were estimated based on the insights provided by the survey, taking the values θ = 0.7 and β= 5.5.

We estimated that the transit operator had a deficit of 6.31×106e/year (SMTUC, 2013), which inclu-

des the necessary adjustments in what concerns the trips reported by the transit operator and the trips

included in this analysis. With these reports it was also stated the relationship between the revenues and

the operational costs of the transit operator, where the latter is the double of the former in their absolute

values, and the relationship between the fixed and the variable operating costs. In this sense, it was es-

timated that the unitary variable operating cost was 0.1e/pax·km (i.e., MV
B = 0.1). In what concerns the

estimation of the operating deficits of the parking systems, we took into consideration that the operating

costs of the parking systems are half of revenues collected by the parking operator. In this sense, it was

acknowledge a negative operating deficit of 0.52×106e/year, which was estimated by having a variable

operating cost of 0.01e/pax (assuming that 70% of the operating costs are fixed).

Table ?? summarizes the current situation for the municipality of Coimbra taking into account the

required adjustments. We highlight that the deficits of the transit operator are currently subsidize by the

city council and that the profit collected by the parking operator is not enough to cover the amount that

is subsidized, i.e., the joint operating deficits remain positive.

Table 3.8: Current situation.

Transit Fare (e/trip) 0.6

Parking fee (e/parking) {0.01,0.02,0.14,0.17}

Operating deficit (106 e/year)

Transit 6.31

Parking -0.52
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Total 5.79

Number of trips (103/day)

Transit 38.6 (25%)

Parking 114.6 (75%)

Total 153.2

3.5.2 Integrated transit-parking planning solutions

We aim at providing insights to infer if the integration of transit and parking is a good option to

decrease the subsidize levels required by the transit operator in Coimbra (as shown in Table ??). To such

end, the following 3 scenarios are considered:

Scenario C1: a single transit fare and a single parking fee;

Scenario C2: a single transit fare and two parking fee levels;

Scenario C3: a single transit fare and a single parking fee such that the joint operating deficits are

as close as possible to zero.

The optimal pricing schemes for each one of these 3 scenarios are shown in Table 3.9, along with the

main features achieved by setting the optimal pricing schemes for each scenario. The distribution of the

parking fee levels achieved in Scenario C2 for each zone is detailed in Figure 3.10.

Table 3.9: Optimum solution features for each scenario.

Scenario C1 C2 C3

Transit fare (e) 2.3 2.3 0.2

Parking fee (e) 1.9 1.5, 2.1 0.8

Operating deficit (106 e/year)

Transit -7.78 -8.24 11.29

Parking -35.17 -35.47 -11.29

Total -42.95 -43.71 0

Number of trips (103/day)

Transit 31.1 (21%) 31.9 (21%) 57.6 (38%)

Parking 118.3 (79%) 117.4 (79%) 95.0 (62%)

Total 149.4 149.3 152.6
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Figure 3.10: Optimum parking prices according to zones for Single optimum Transit fares and two optimal parking fees.

Transit fares change from 0.6e/trip to 2.3e/trip on both Scenarios C1 and C2, and the parking fees

are increased to 1.9e/parking, and 1.5e/parking and 2.1e/parking on Scenarios C1 and C2, respecti-

vely. These changes on prices lead to a number of trips that are not made higher than in the current

situation (Table 3.9 and ??, respectively), and a decrease on the transit modal share from its current

proportion of 25% to 21% in both Scenarios C1 and C2. The integration of transit and parking lead to

highly profitable transit and parking systems, if no restrictions are considered for the operating deficit

(as in Scenario C3), where the joint deficits are decreased from the current value of 5.79 ×106e/year to

-42.95×106e/year and -43.71×106e/year in Scenarios C1 and C2, respectively. In the case of the ope-

rating deficits of the transit operator, the values change from 6.31×106e/year to -7.78×106e/year and

-8.24×106e/year in Scenario C1 and C2, respectively. The difference between the joint operating de-

ficits of the parking operator is almost negligible for these two scenarios, decreasing from the current

operating deficits of -0.,52×106e/year to -35.17×106e/year in Scenarios C1 and C2.

The results achieved for Scenario C3 are softer towards the current situation (Table 3.8) than the

results of Scenario C1 and C2. If on one hand, a decrease occurs in the transit (from 0.6e to 0.2e), on

the other the parking fee is increased from the current values (Figure 3.10) to 0.8e. It is intended with

this scenario to create awareness regarding the difference between determining prices that minimize the

operating deficits, as it was aimed in Scenario C1 and C2, and determining prices that create closest to

zero operating deficits. As expected, this Scenario C3 improves the transit modal-share while it decreases

the proportion of car trips. In general, the total number of trips that are made is increased in Scenario

C3 when compared to Scenario C1 and C2, even though the total number of trips that are made remain

below the number of trips currently done (Table 3.9 and 3.8, respectively).

It must be noted that the model considers only the average values of the transit fare and parking fees.
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As before, the value added to the current transit fare may be split among several transit fares possibilities

in a way that minimizes the public reaction this average increase. In the case of parking, these average

parking fees do not reflect that parking will be more expensive for those already paying for this good. In

fact, it might induced a decrease on both personal parking costs while increasing the number of paid

parking spots.

In summary, the solutions of these three scenarios allow the municipality to stop subsidizing the

transit operator, either because the transit operator collects enough revenue to cover its operational costs

(Scenarios C1 and C2) and no further funding forms are needed, either because the parking operator

collects the revenues needed to cover the deficits of the transit operator (Scenario C3).

3.6 Conclusion

This chapter presented an optimization model to assist local governments in the implementation

of integrated transit-parking policies, where transit fares and parking fees are optimized so that transit

systems’ deficits are minimized by using the revenues collected by parking operators as transit operators’

source of funding.

We started by analyzing the results of applying the model to an hypothetical city, where it was asses-

sed the improvements of jointly managing the prices of both transit and parking systems when compared

to only managing the prices of the transit operator (i.e., transit fares). This was followed by applying the

model to the municipality of Coimbra, showing how transit and parking systems can became highly pro-

fitable by optimizing their transit fares and parking fees. These results were detailed taking into account

three different scenarios, showing that transit systems can became self-sufficient in a financial stand

point if, for instance, their transit fares are increased from current value of 0.6e to 2.3eper trip along

with an increase on the parking fees from their current value to 1.9e, as detailed in the first scenario

explored in subsection 3.5.2. These substantial increases on the prices applied by each operator might

not be not be well accepted by the users. Taking this into account, the transit fares and parking fees were

optimized to achieve a non-profit and without deficit integrated transit and parking system, resulting on

smother changes on the prices and having the parking operator as the only funding source to cover the

transit deficits.

Based on these results, it might be advocate an excessive emphasis on the deficit perspective. To

overcome this, and as future work, changes on the objective function might be considered, e.g. the ma-

ximization of social welfare or transit share, given a threshold for the operating deficit; or adding additio-

nal social welfare measures to the optimization model. Furthermore, transit supplies considerations and

the parking capacity adjustments should also be consider, so that operating costs can also be optimize

from a supply point of view. The need to develop an efficient heuristic to solve the model for larger cities
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should also be considered, where the existence of having exact solutions for midsize cities should to as-

sess the quality of the solutions provided by the heuristic that will be developed. Finally, the accuracy of

the model regarding speed and congestion variations and their inter-dependency towards modal-shares

has been address by embedding macroscopic fundamental diagrams in an optimization model capable

of handling pricing schemes so that the joint deficits are minimize, as detailed in the following chapter.
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Chapter 4

Integration of an aggregated dynamic traffic model

with optimization techniques for strategic

transit-parking planning

4.1 Introduction

The role of transit (public transport) as essential for the mobility in urban areas is well recognized

and world-wide promoted. As a matter of fact, public transport systems are characterized as attractive

solutions to overcome the current environmental drawbacks linked to transport (e.g., fossil fuel con-

sumption, pollutant emissions, and traffic congestion) without constraining people’s mobility (Schiller

et al., 2010; Miller, 2014). Additionally, transit systems are expected to be affordable, reliable and safe.

These expectations of users towards the service provided by transit operators usually lead to severe fi-

nancial problems, because the costs of providing such service are usually not fully recovered by the reve-

nues collected (mostly in the form of fares) (APTA, 2003). Therefore, government and/or public agencies

intervene to balance deficits, playing the important role of being the source of transit funding through

subsidization (Vuchic, 2005).

To balance these deficits and to decrease transit’s dependency on subsidies, we introduce an appro-

ach where transit and parking operators cooperate by using parking fees to fund transit deficits. Having

this purpose in mind, an optimization model is developed for assisting local governments to establish

pricing policies for the transit networks and the parking areas under their control, directly or indirectly

(through concessions). This optimization model has a mixed-integer nonlinear formulation and embeds

a network level based on the macroscopic fundamental diagram (MFD), which we called MFD model,

with the aim of maximize the joint profit of both transit and parking operators by optimizing their res-

pective transit fares and parking fees. This MFD model provides insights into the speed and congestion

conditions in the road network (Geroliminis and Daganzo, 2008). We assumed the division of a city into

zones with known dynamic demand between each two zones. Recently different clustering techniques

59



Chapter 4 Integration of an aggregated dynamic traffic model with optimization techniques for TPP

have been developed to partition a city in homogeneous clusters with well-defined MFDs (see for exam-

ple Ji et al., 2014; Saeedmanesh and Geroliminis, 2016; Lopez, 2017). Each trip in these zones can be

made by car (when available) or by transit, or not made if the (generalized) travel costs are considered

too high by the traveler. These modal choices are described by two logit models of the generalized cost

of each alternative, to distinguish the behavior of users when car is or is not available.

To the best of our knowledge, the integration of transit and parking through pricing features has

been addressed relatively rarely in the literature. In general, this integration is approached through road

pricing schemes (e.g. Tsekeris and Voß, 2009), and is usually analyzed in the light of micro-economic

models, with the main concern of maximizing social welfare features of competitive transit/highway

systems (e.g. Tabuchi, 1993; Huang, 2000; 2002; Danielis and Marcucci, 2002; Mirabel and Reymond,

2011; Gonzales and Daganzo, 2012). However, road pricing schemes are rarely applied in the real world

due to their unpopularity and to their difficult implementation (Schlag and Schade, 2000; Jaensirisak

et al., 2005; Ison and Rye, 2005; Santos and Fraser, 2006). This is one of the reasons why we decided

to use parking fees instead of road pricing schemes to help dealing with transit deficits. Despite being

considered “imperfect” substitutes of first-best pricing strategies (Verhoef et al., 1995), parking fees have

been proven to be a good alternative to road pricing schemes (Inci, 2015). This is justified not only by

their capability of influencing transit ridership and city dynamics, but also by being more easily accepted

by users and more straightforward to implement (Dueker et al., 1998; Shoup, 2005; Balcombe et al., 2004;

Albert and Mahalel, 2006; Marsden, 2006; Beirão and Cabral, 2007).

The optimization model presented in this chapter is the first optimization model in the literature that

embed MFD features, at least to the best of our knowledge. This is also the first work that integrates this

relationship between flow and density in a model that optimizes the transit fares and the parking fees,

so that the deficits of the transit operator can be minimized by jointly maximizing the profits of tran-

sit and parking operators. Other distinctive features of our work is the inclusion of traffic directions in

the MFD model, which not only influences the traffic network conditions but also the generalized costs

of each alternative; the inclusion of cruising for parking, either in the MFD model either by including

its cost into the car generalized cost, which influences the mode-choice; and the possibility of having

different routes for different time periods, which are mainly dependent on the generalized cost of each

alternative. Due to the complexity of having a mixed-integer-non-linear optimization model embedded

with an MFD model, a greedy algorithm was developed to solve the optimization model. This algorithm

also includes a traffic-equilibrium algorithm that defines the relationship between traffic dynamics and

the modal-choices for known transit fares and parking fees. The capability of this optimization mo-

del to accommodate the reality is provided by application to the case study inspired in the Portuguese

medium-sized city of Coimbra, where the lack of real-world applicability is usually a short come of the

models that attempt at solving the financial problems of transit systems, as previously mentioned.
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This chapter is organized as follows. Section 4.2 presents the modeling framework, where a detailed

explanation of the optimization model is developed. The solving method, which comprehends a traffic-

equilibrium algorithm and a greedy algorithm developed in the light of the benign configuration of the

model’s feasible region, is detailed in Section 4.3. The case study inspired in Coimbra, a medium-sized

city in Portugal, is presented in Section 4.4. Insights towards the MFD model, the application of the

developed optimization model, and conclusions regarding the developed solution method are presented

in Section 4.5 for the detailed case study. A discussion on the suitability of this approach to decrease the

subsidize levels of transit systems and further conclusions are developed at the end of the chapter.

4.2 Modeling Framework

The main goal of this work is to develop an optimization model for managing transit and parking

systems in an integrated way, where transit fares and parking fees are optimized to maximize the joint

profits of transit and parking operators. This optimization model has a mixed integer nonlinear formula-

tion and includes an MFD model that provides a relationship between vehicle density and traffic flow in

urban areas with small spatial density heterogeneity considering the number of vehicles (accumulation)

in the traffic network (Geroliminis and Daganzo, 2008). MFD modeling has been integrated in a few traf-

fic management frameworks, such as perimeter control (see for example Kouvelas et al., 2017; Ramezani

et al., 2015; Haddad, 2015), congestion pricing (Simoni et al., 2015; Zheng and Geroliminis, 2016; Zheng

et al., 2016), network design (Knoop et al., 2014; Ortigosa et al., 2015), and route guidance (Sirmatel and

Geroliminis, 2017; Yildirimoglu et al., 2015; Leclercq et al., 2015).

Trips between each pair of zones can be made either by car (by people who can use this mode) or

by transit, or not made at all if (generalized) travel costs are considered too high by the traveler. Modal

choice in the city is described by two logit models. The first one describes the behavior of people who

cannot use a car, and distinguishes the transit and the non-travel alternative. The second one applies to

people who can use a car, and differentiates between transit, car and the non-travel alternative. For both

logit models, choices depend on the modes’ travel costs. In the case of transit, time costs, access costs,

discomfort costs and transit fares are considered. In the case of car, these costs consist of in-vehicle time,

vehicle depreciation, fuel and maintenance, cruising for parking costs and parking fees.

The optimization model has the objective of maximizing the joint profit of both transit and parking

operators, considering transit fares and parking fees as decision variables of the model. The transit fares

are defined according to transit zones, which are zones grouped by OD-pairs; that is, the amount paid

by transit users depend on the origin and destination of their trips. With respect to parking fee struc-

ture, we consider that parking fees are applied considering parking zones that have different parking fee

levels. The parking zones configuration is determined within the model. A detailed explanation of the
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ingredients and the formulation of the optimization model are given in subsection 4.2.1.

The MFD model that is embedded in the optimization model is detailed in subsection 4.2.2. The

MFD provides a relationship between network space-mean vehicle density and flow in urban areas with

small spatial density heterogeneity. The MFD model integrates the traffic dynamics of car and transit

together with route choice. While the traffic dynamics have been studied before in the MFD literature,

their integration in an optimization framework with iterative procedure for equilibrium conditions is

new. For example, multi-region car-only MFD traffic is modeled in Ramezani et al. (2015), route choice is

modeled in Yildirimoglu et al. (2015), and transit-car interactions are modelled in Zheng and Geroliminis

(2013; 2016).

For simplicity, only car travel demand is included as exogenous factor at contributing to the number

of vehicles (accumulation) in each zone. For the same reason, a unimodal, continuous and concave MFD

function is estimated for each region, considering characteristics of the road network (such as free flow

speed, jam density and congested wave speed) and the utilization of part of the road capacity by transit

vehicles. The MFD model we use is directional, i.e, it accounts for the accumulation observed for the two

different directions of the road network. In this sense, the expected average speed to travel from a point

A to a point B might be different from the estimated average speed to travel in the opposite direction

(i.e., from B to A). This is included in the model by considering that accumulation depends on the traffic

direction, that are dependent on the trip routes. As we will show, this influences the distribution of

congestion in the city compared to a non-directional model.

We considered two different time frames to acknowledge that mode choices are more stable than

speed changes over time. Therefore, one wider time frame is used to update the modal shares according

to their generalized travel costs and the routes followed by car users for each OD-pair. This time frame is

discretized and it is used to set the different speeds, congestion levels and cruising for parking effects in

the MFD model.

These constituents are explained in detail in the following subsections. We start by exploring the op-

timization model that determines the transit fare and parking fee values that maximize the joint profits.

The MFD model is explained afterwards, together with its embedding into the optimization model.

4.2.1 Optimization model

In this subsection, we present the formulation of the optimization model by describing the model

structure, notation and assumptions.

Let Z be the set of trip zones, whose elements are connected by an oriented road network, and the

set of time periods T1. The demand, or the number of potential travelers that intend to make a given

trip, from an origin o to a destination d with departure time during period t1, assuming that transit fares

and parking fees are zero, and it is denoted by Q̂od (t1). These demand values are then split according to
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users having car as a potential travel mode or not. In this sense, the demand that has car as alternative

is denoted by Qod (t1), while the demand that do not have car as an option is represented by Q̃od (t1).

Travelers have the possibility of choosing to do their trip by car (A), transit (B), or not making the trip,

which is expressed as no-travel alternative (O).

The mode choice is described by two logit models of the generalized travel costs to distinguish the

cases where car is or is not an alternative. The first logit model is given by equations (4.1) and accounts

for the behavior of those to whom the car alternative is available, distinguishing between demand for

transit trips (qodB (t1)), car trips (qod A(t1)) and no-travel (qodO(t1)). The second logit model is given by

equations (4.2) and expresses the behavior of those who cannot chose to travel by car, distinguishing

between transit trips (q̃odB (t1)) and no-travel (q̃odO(t1)). These equations (4.1) and (4.2) account for

the generalized cost of each alternative m (Codm(t1)) and the sensitivity of potential travelers to these

generalized costs, which is dependent on the possibility of choosing car or not (θand θ̃, respectively).

qodm(t1) = e−θ·Codm (t1)

e−θ·Cod A (t1) +e−θ·CodB (t1) +e−θ·CodO (t1)
·Qod (t1), m ∈ {B , A,O},o,d ∈ Z, t1 ∈T1 (4.1)

q̃odm(t1) = e−θ̃·Codm (t1)

e−θ̃·CodB (t1) +e−θ̃·CodO (t1)
·Q̃od (t1), m ∈ {B ,O},o,d ∈ Z, t1 ∈T1 (4.2)

The generalized cost of traveling from o to go to d departing during period t1 using transit is given by

equation (4.3). This cost is the result of summing the in-vehicle time cost (C T · ∑
m∈RodB (t1)

(D t1
mB (H RodB (t1)

m )

/V t1
mB (H RodB (t1)

m ))), the access cost ACod (t1), the discomfort cost DCod (t1), and the transit fare podB .

CodB (t1) =C T · ∑
m∈RodB (t1)

(
D t1

mB (H RodB (t1)
m )

V t1
mB (H RodB (t1)

m )

)
+ ACod (t1)+DCod (t1)+podB , o,d ∈ Z, t1 ∈T1 (4.3)

The in-vehicle time cost is calculated by multiplying the unit time cost C T with the total in-vehicle

time that is needed to go from zone o to zone d (
∑

m∈RodB (t1)(D t1
mB (H RodB (t1)

m )/V t1
mB (H RodB (t1)

m ))). This to-

tal in-vehicle time is equal to summing the total in-vehicle time spent in each zone m, while departing

at period t1 from o to d along the shortest-time path using the transit network. This path is given by

the ordered set of zones RodB (t1) crossed in the trip and by the direction followed in each zone m of

this shortest path, which is designated by H RodB (t1)
m from the set {1,2}. The distance travelled in a zone

m of this shortest time path depends on the traffic direction and is given by D t1
mB (H RodB (t1)

m ). In parti-

cular, D t1
mB (H RodB (t1)

m ) = 0 if the selected least-cost path does not pass through zone m. Finally, the in-

vehicle time spent in a given zone m that belongs to the shortest path RodB (t1) with direction H RodB (t1)
m

is obtained by dividing the distance travelled in that zone D t1
mB (H RodB (t1)

m ) by the average transit speed

V t1
mB (H RodB (t1)

m ), which is estimated by the MFD model.

The transit network results from grouping all the transit routes, i.e., all the paths followed by a transit

vehicle that serves a defined and known sequence of zones. Typically, a transit route is made a certain

number of times per period according to a pre-defined and fixed schedule (frequency). The frequency
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of transit route during period t1 is Fk (t1). T̂ is the set of transit routes. The relationship between the

shortest path selected by the user and the transit network is specified by the binary variable Nodl k (t1),

which takes the value 1 if the shortest path from o to d with departure time period t1 includes transit

route k and passes through zone l . Otherwise, it takes the value zero. The user’s transit frequency is the

minimum frequency across all transit routes included in the user’s path, i.e. mink∈T̂ ,l∈Z:Nodl k=1{Fk (t1)}.

This value will be useful to estimate the access costs and the discomfort costs assigned by users to a

transit trip.

The access cost is the cost associated with the walking time to/from transit stops and the waiting

time at the first transit stop. The first component of the access cost function given by equation (4.4) cor-

responds to the cost of the average walking time to and from the transit stop. This value is calculated by

multiplying the unit walking time cost C W with the average walking time DW
odB . For the calculation of

the waiting time, we followed the approach adopted by Tirachini et al. (2010), but assuming the pers-

pective of time losses instead of time savings. The average waiting time cost at the transit stop and the

schedule delay (i.e., the difference between the actual and the preferred transit departure time) are cap-

tured in parameter SW . It is also considered that the average waiting time is half of the headway (time

between vehicles doing the same route in a transit system), if the headway is constant. Finally, if none

of the transit departures scheduled by the transit operator occurs at the user’s most preferred time, then

this SW parameter also accounts for the schedule displacement penalty, which increases with increasing

headway. Knowing that headways are inversely proportional to frequency, the total average waiting time

is estimated by the second component of equation (4.4).

ACod (t1) =C W ·DW
odB + SW

mink∈T̂ ,l∈Z:Nodl k=1{Fk (t1)}
(4.4)

The discomfort cost is the extra travel cost that users assign to transit travel time due to their different

time perception when traveling by transit compared to traveling by car. The estimation of this cost is

based on Corporation (1996), and its value is intrinsically related to the level of crowdedness of the transit

vehicles. This level, for a given time period (say, t1) is estimated by the transit occupation rate, i.e., the

number of transit riders per zone m belonging to each transit routes k (i.e.,
(
qi j B (t1)+ q̃i j B (t1)

) ·Ni j mk ,

i , j ∈ Z) divided by the transit capacity provided by that route (SB · Fk (t1)). Therefore, the difference

between the perceived in-vehicle time of transit and car increases with the number of passengers using

transit. The discomfort cost is then the result of multiplying the total in-vehicle time with the transit

occupation rate calibrated by parameters ψB and ρB , as shown in equation (4.5). For simplicity, we do

not explicitly consider the number of transit riders that travel inside the vehicle more than one period,

even though they should be included in the number of passengers contributing to increase the level

of crowdedness felt in a transit vehicle. Instead, we calibrate the parameters ψB and ρB so that this

additional discomfort is included.
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DCod (t1) =ψB ·C T · ∑
m∈RodB (t1)

(
D t1

mB (H RodB (t1)
m )

v t1
mB (H RodB (t1)

m )

)
·


∑

i , j∈Z

(
qi j B (t1)+ q̃i j B

) ·Ni j mk

SB ·Fk (t1)


ρB

,o,d ∈ Z, t1 ∈T1 (4.5)

The costs of traveling by car are dependent on the route followed by the driver, which we take to be

the same for each OD pair and departure time. However, two drivers going from the same origin to the

same destination can follow different routes if their departure time is different. It is assumed that drivers

follow the least-cost route. Let Rod A(t1) be the route selected by drivers to go from o to d in period t1.

The car speed and the travel distance are dependent on the route and the traffic direction. In this sense,

the direction followed in zone m ∈ Rod A(t1) is given by H Rod A (t1)
m . The traffic direction variables take the

values 1 or 2, in line with the transit traffic directions. Let D t1
m A(H Rod A (t1)

m ) and V t1
m A(H Rod A (t1)

m ) be the travel

distance and the average car speed for zone m ∈ Rod A(t1), respectively. Like the average transit speed,

the car speed V t1
m A(H Rod A (t1)

m ) is a function of the vehicle density in each zone and is determined by the

MFD model. The unit time cost is given by C T and the cost related to vehicle depreciation, fuel and

maintenance is given by C D . Let C Pd (t1) be the costs of cruising for parking, i.e., the costs for drivers

of, after arriving to their destination, looking for a parking place, and pd A be the parking fee. Then the

generalized costs of driving a car from o to d with departure time t1 (Cod A(t1)) include the time costs, the

vehicle depreciation, fuel and maintenance costs, the cruising-for-parking costs and the parking fees, as

expressed by equation (4.6).

Cod A(t1) =C T · ∑
m∈Rod A (t1)

(
D t1

m A(H Rod A (t1)
m )

V t1
m A(H Rod A (t1)

m )

)
+C D · ∑

m∈Rod A(t1)

(
D t1

m A(H Rod A (t1)
m )

τod

)
+C Pd (t1)+ pd A

τod
,o,d ∈ Z, t1 ∈T1

(4.6)

While the time costs (C T ·∑m∈Rod A (t1)

(
D t1

m A(H Rod A (t1)
m )/V t1

m A(H Rod A (t1)
m )

)
) and the cruising-for-parking

costs (C Pd (t1)) are passenger related, the costs linked to vehicle depreciation, fuel and maintenance are

vehicle dependent (C T ·∑m∈Rod A (t1)

(
D t1

m A(H Rod A (t1)
m )/τod

)
), which justifies the normalization of these cost

by the average number of people in a car including the driver, which is given by parameter τod .

The cruising-for-parking cost is a function of parking occupation and is expressed by equation (4.7)

(Gallo et al., 2011). In this equation α1 and α2 are calibration parameters, S A
d is the parking capacity of

trip zone d and Vd (t1) is the average number of free parking places in zone d during period t1 ∈T1. This

last value Vd (t1) is dynamically determined by the MFD model.

C Pd (t1) =α1 ·
(

S A
d −Vd (t1)

S A
d

)α2

, d ∈ Z, t1 ∈T1 (4.7)

Finally, the generalized cost of not traveling (CodO(t1)) accounts for the sensitivity of users towards

changes on transit fares and parking fees, attempting to capture the maximum average value that users
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are willing to spent to do a given trip.

The objective function is expressed in equation (4.8), and accounts for the joint profit collected by

the transit operator and the parking operator. In this expression, the revenue collected by the transit

operator is the result of the collected transit fares. The revenue of the parking operator is computed

by the product between the number of car trips and the parking fee paid by each car. The depreciation,

maintenance and operating costs of the transit system, MB , and of the parking system, MA , are assumed

to be fixed (i.e., independent of the actual utilization of each system).

OF = ∑
t1∈T1

( ∑
o,d∈Z

(
qodB (t1)+ q̃odB (t1)

) ·podB + ∑
o,d∈Z

qod A(t1) ·pd A

)
−MB −MA (4.8)

We assume that transit fares vary according to pre-defined transit zones. Each OD pair is assigned to

exactly one transit zone r from the set of known transit zones R̂, whereas each transit zone may corres-

pond to multiple OD pairs. Let P̃odr be a binary variable that is equal to 1 if od belongs to transit zone r ,

and equal to zero 0 otherwise, and let p̂r B be the transit fare for transit zone r . The transit fare from trip

zone o to trip zone d (podB ) is given by equation (4.9).

podB = ∑
r∈R̂

P̃odr · p̂r B , o,d ∈ Z (4.9)

The parking operator can charge a fixed number of different parking fee levels. The number of diffe-

rent parking fee levels |P̂ A| is assumed to be fixed whereas the parking fee level value p̂u A corresponding

to a level u ∈ P̂ A is optimized by the model. We also define the binary decision variable wud that takes

value 1 if the parking fee level d is assigned by the model to trip zone d , and zero otherwise. A trip zone

will be assigned with a parking fee level if and only Yd = 1, otherwise users will park for free in that zone

and this variable will be equal to zero (Yd = 0). These features are included in the optimization model

through constraints (4.10) and (4.11).

pd A = ∑
u∈P̂ A

p̂u A ·wud , d ∈ Z (4.10)

∑
u∈P̂ A

wud = Yd , d ∈ Z (4.11)

Equations (4.12) ensure that the seating capacity of transit vehicles is not exceeded in the zones cros-

sed by the transit routes. Equation (4.13) guarantees that a certain level of transit supply is provided to

the users by setting an upper bound U0 for the potential trips that are not made. This constraint also

accounts for the need of providing affordable transit to those who do not have car as an alternative. Pa-

rameters ψ and ψ̃ ensure that this concern is addressed by the model, and the value of U0 should be set

accordingly to these parameters.

∑
o,d∈Z

(
qodB (t1)+ q̃odB (t1)

) ·Nodl k ≤ SB ·Fk (t1), l ∈ Z,k ∈ t̂ , t1 ∈T1 (4.12)
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∑
t1∈T1

∑
o,d∈Z

(
ψ ·qodB (t1)+ ψ̃ · q̃odB (t1)

)≤U0 (4.13)

Finally, constraints (4.14) ensure that each trip zone with paid parking is linked to a parking fee level

while constraints (4.15) state that transit fares and parking fees are non-negative.

wud ∈ {0,1},u ∈ P̃ A ,d ∈ Z (4.14)

p̂r B , p̂u A ∈ R̂+
0 ,r ∈ P̃B ,u ∈ P̃ A (4.15)

The optimization model for this integrated transit-parking planning problem allows determining the

values of decision variables p̂r B and p̂u A that maximize the joint profit of transit and parking operators

(4.8) while ensuring that constraints (4.1)-(4.2) and (4.9)-(4.15) are satisfied. The traffic dynamics in the

city is embedded in this model through the MDF model explained in the following subsection, which

defines the variables related to transit and car average speeds for each zone, traffic direction and time

period (V t1
mB (H RodB (t1)

m and V t1
m A(H Rod A(t1)

m ), respectively) and the average number of free parking spaces in

each trip zone and time period (Vd (t1)).

4.2.2 Macroscopic Fundamental Diagram model (MFD model)

The MFD model embedded in the optimization model described in the previous subsection con-

siders two geographical levels of analysis - zones and regions (Z and R)-, and three levels of car traffic

analysis. The first level (route level) determines car accumulations and traffic flows based on the routes

chosen by drivers for the different trip OD pairs and departure time periods. In the second level, de-

signated as zone level, the accumulations and flows at the route level are summed up for the different

trip zones. This allows estimating the level of cruising for parking in each zone as a function of par-

king occupation rates. The average car speed is estimated at the region level. This third level relates the

MFD function for each region with the car traffic flow and car accumulation in that same region, which

are determined by summing the flows and accumulations for the zones included in each region. The

interaction between these three levels is detailed in flow chart shown in Figure 4.1.
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Figure 4.1: Flow chart of the MFD model.

The following relationships are the results of having two time frames, T1 and T2, which discretized

one another (i.e., T2 is a discretization of T1). The total demand for a period t1 ∈ T1 (i.e. Qod (t1), or

Q̃od (t1)) is obtained by summing the demand for the periods t2 ∈T2 (Q∗
od (t2) or Q̃∗

od (t2)) that discretize

t1 ∈T2 , i.e., Qod (t1) =∑
t2:t2∈t1

Q∗
od (t2). The number of car trips included as inputs of the MFD model for

a period t2 ∈T2 results from the product of the logit proportion for the period in T1that includes t2 ∈T2

by the total demand estimated for time period t2 ∈ T2. This connection is described in equation (4.16).

The route followed to travel from o to d with departure at period t2 is assumed to be the same as the

route chosen in the correspondent period t1, i.e., Rod A(t2) = Rod A(t1) if and only if t2 ∈ t1. The same is

assumed for the traffic directions H Rod A (t1)
m .

q∗
od A(t2) = e−θ·Cod A (t1)

e−θ·Cod A (t1) +e−θ·CodB (t1) +e−θ·CodO (t1)
·Q∗

od (t1), o,d ∈ Z, t2 ∈T2 : t2 ∈ t1, t1 ∈T1 (4.16)

4.2.2.1 Route level

The first level of traffic analysis is the route level. Let n
od t ′2
r (t2) be the accumulation of cars in zone

r during time period t2 ∈ T2 with the origin of their trip at o and destination at d with departure time

during time period t ′2, and let m
od t ′2
r (t2) and m

od t ′2
r− (t2) respectively be the outgoing flow from zone r to

the next zone and from the zone before r (i.e., r−) to r in the sequence of zones that describe the route

Rod A(t2).

The car accumulation is estimated by equations (4.17), which ensure the conservation of traffic flow

in each route (similar to Zheng and Geroliminis, 2013 , 2016). If the zone and period under analysis

match the origin and departure time of the trip, then the accumulation of this first level is equal to the
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number of car trips that start during the period under analysis (i.e.,
q2

od A (t2)
τod

), while if time period t2 is after

the departure time period t ′2 (i.e., t ′2 < t2), the accumulation results from excluding the flow that comes

from this zone to the following zone in the route Rod A(t ′2) during the previous time period (m
od t ′2
r (t2−1))

from the accumulation on this zone provided by the trips from o to d that started during t ′2. If is some

other zone rather than the origin o, the route-based accumulation is equal to summing the accumula-

tion on the previous time period (n
od t ′2
r (t2 −1)) with the flow received by the previous zone in the route

Rod A(t ′2) during the previous time period (m
od t ′2
r− (t2 −1)) and excluding the accumulation sent to the fol-

lowing zone (m
od t ′2
r (t2 −1)).

n
od t ′2
r (t2) =



q∗
od A (t2)
τod

if r = o and t ′2 = t2

n
od t ′2
r (t2 −1)−m

od t ′2
r (t2 −1), if r = o and t ′2 < t2

n
od t ′2
r (t2 −1)+m

od t ′2
r− (t2 −1)−m

od t ′2
r (t2 −1), if r 6= o and t ′2 < t2

0, if r 6= o and t ′2 > t2

,

r ∈ Rod A(t ′2)

t ′2, t2 ∈T2

o,d ∈ Z

(4.17)

The outgoing flow m
od t ′2
r (t2 −1) depends on whether zone r is the destination d or not. In the case

it is, the outgoing flow is equal to the number of vehicles that reach the destination, where this flow is

afterwards transferred to cruising for parking (as explained in the details in the following subsection). If

it is not, the outgoing flow is the minimum between two terms: (1) the proportion of outgoing flow of

this route towards the total outgoing flow of the zone under analysis, and (2) the boundary capacity of

next zone r+ of the route Rod A(t ′2) (i.e., BC
od t ′2
r+ (t2)). The outgoing flow is described by equations (4.18),

where N H
Rod A (t ′2)
r (t2)

r (t2) and M H
Rod A (t ′2)
r

r (t2) are the accumulation and the outgoing flow for the zone-based

level, respectively, which are detailed in the following subsection (subsection 4.2.2.2).

m
od t ′2
r (t2) =


min

{
n

od t ′2
r (t2)

N
H

Rod A (t ′2)
r

r (t2)

·M H
Rod A (t ′2)
r

r ,BC
od t ′2
r+ (t2)

}
, if r 6= d

n
od t ′2
r (t2), if r = d

,
r ∈ Rod A(t ′2)

t ′2, t2 ∈T2, o,d ∈ Z

(4.18)

We assumed that the relationship between route flows and zone flows follows a FIFO logic (“first-

in-first-out”). In this sense, the travelers that first initiate their trip are the first ones to arrive to the

following zone and the first ones to depart to the next zone, independently of their origin. For the sake

of simplification, we do not explicitly write this assumption in expressions (4.17) and (4.18).

4.2.2.2 Zone level

The zone level is the second level of traffic analysis. In this level, the car accumulation and the out-

going flow are the result of summing the route level considering the zones that belong to each route and
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the traffic direction followed in these zones according to the chosen route (i.e., Rod A(t ′2) and H
Rod A (t ′2)
r ,

respectively). In this sense, the traffic flow conservation in a zone r is given by equations (4.19). There,

C Pr (t2) denotes the number of cars cruising for parking in zone r during period t2, αi
r represents the

contribution of these vehicles to the accumulation in zone r and I
i=H

Rod A (t ′2)
r

is a binary variable that ta-

kes value 1 if i = H
Rod A (t ′2)
r and zero otherwise.

N i
r (t2) = ∑

o∈Z

∑
d∈Z
d 6=r

∑
t ′2≤t2

t ′2∈T2

I
i=H

Rod A (t ′2)
r

·n
od t ′2
r (t2)+αi

r ·C Pr (t2), r ∈ Z, t2 ∈T2, i ∈ {1,2} (4.19)

We assume that parking occurs in the end of a period whereas cruising for parking starts in the begin-

ning of a period. This assumption signifies that drivers will be cruising for parking, at least, one period,

which corresponds to the time necessary to find an available parking space and to do the parking ma-

neuver. Parking spaces are assumed to become available in the beginning of a period. Taking this into

account, the number of vehicles cruising for parking in a zone r during period t2 is given by equations

(4.20). This formulation includes the number of car trips that reach their destination d (
∑

t ′2≤t2

t ′2∈T2

n
od t ′2
r (t2)),

the number of free parking spaces Ed (t2) that will be occupied in the end of time period t2, and the

number of vehicles that were already cruising in the previous time period (C Pd (t2 −1)). The number of

parking spaces that will be occupied is expressed by equation (4.21), where Vd (t2) represents the total

number of free parking spaces during period t2. This value depends on the number of free parking spa-

ces available in the previous period (Vd (t2−1)), the number of car trips that are started in the destination

(
∑

k∈Z
q∗dk A(t2)

τdk
) and the number of occupied parking spaces in the previous time period (Ed (t2 −1)), as

expressed in equation (4.22).

C Pd (t2) = ∑
o∈Z

∑
t ′2≤t2

t ′2∈T2

n
od t ′2
r (t2)−Ed (t2 −1)+C Pd (t2 −1), d ∈ Z, t2 ∈T2 (4.20)

Ed (t2) =

C Pd (t2 −1), if Vd (t2) ≥C Pd (t2 −1)

Vd (t2), otherwise

, d ∈ Z, t2 ∈T2 (4.21)

Vd (t2) =Vd (t2 −1)+ ∑
k∈Z

q∗
dk A(t2)

τdk
−Ed (t2 −1), d ∈ Z, t2 ∈T2 (4.22)

Let Li
r be the average trip length done by car in zone r with direction i , which is OD independent,

and v i
r A(t2) be the average car speed in zone r during period t2. The internal trip completion rate fol-

lows as expressed in equation (4.23), where the outgoing follow (which is the same as the internal trip

completion rate) is equal to the number of vehicles per average trip length times the speed or equal to

the total accumulation. These two options depend on the quotient between the accumulation and the

average trip length exceeding the accumulation of car in the zone, to ensure that the number of outgoing
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vehicles is at maximum equal to the number of accumulation cars .

M i
r (t2) =


v i

r A(t2) · N i
r (t2)
Li

r
, if v i

r A · N i
r (t2)
Li

r
≤ N i

r (t2)

N i
r (t2), otherwise

(4.23)

4.2.2.3 Region level

The third level concerns the region-based level where the average speed is estimated. Following the

same logic as before, the accumulation of vehicles in a region is equal to sum of the accumulations of

the zones that belong to that region. In this sense, the accumulation per region is determined as shown

in equations (4.24), for the two traffic directions. Let P̂r̂ (·) be the production of region r̂ , i.e., the product

of average flow and network length, which is a function of the region accumulation N̂ I
r̂ (t2). The average

speed in traffic direction i is estimated for a region r̂ as expressed by equations (4.25).

N̂ i
r̂ (t2) = ∑

r∈Z,
r∈r̂

N i
r (t2), r̂ ∈ R, t2 ∈T2, i ∈ {1,2} (4.24)

v̂ i
r̂ (t2) = P̂r̂ (N̂ i

r̂ (t2))

N̂ i
r̂ (t2)

, r̂ ∈ R, t2 ∈T2, i ∈ {1,2} (4.25)

We assume that the average speed v̂ i
r̂ (t2) estimated for a given region r during period t2 sets the

average speed for the zones that belong to region r , i.e., v̂ i
m A(t2) = v̂ i

r̂ A(t2) if zone m is part of region

r̂ . These average car speeds will define the average transit and car speed values for each zone that are

included in routes considered in the generalized costs of each mode (4.3) and (4.6). This relationship is

given by v i
m A(t1) =∑

t2∈t1

v̂ i
m A (t2)

t 1_2
, where t 1_2 is the number of time periods from time frameT2 that belong

to t1. The value of the transit speed v i
mB (t1) is determined by the product between the average car speed

v i
m A(t1) and the parameter γi

m .

4.3 Solution Method

In this section, we present an algorithm capable of finding near-optimal (or even optimal) values

for transit fares and parking fees so that the joint profits of both transit and parking operators are ma-

ximized. This solution method is justified by the high complexity of solving the optimization model.

This algorithm includes the following components: (1) a traffic equilibrium algorithm that calculates

the equilibrium for known transit fares and parking fees, and (2) a greedy algorithm to wisely find good

(close-to-optimum or even optimum) solutions for both transit fares and parking fees so that the maxi-

mization of the joint profits takes place.
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4.3.1 Traffic-Equilibrium algorithm

The traffic-equilibrium algorithm finds the traffic equilibrium in the city for given transit fares and

parking fees. If on one hand, the number of car trips (car demand-share) implies that all the generalized

costs are known (transit fares and parking fees included) to choose between the different alternatives; on

the other hand, being aware of these generalized costs also requires that the average car speed is known,

which is determined by the MFD model that needs the number of car trips as exogenous traffic flow

demand.

This method assumes that transit fares and parking fees are known, as well as the initial values for

average transit and car speeds, transit and car routes and the generalized costs of each alternative, which

are estimated for the time frame T1 according to equations (4.1)-(4.2) and their ingredients. With these

values, the number of car trips for time frame T2 are calculated and the MFD model is applied using

these new car trip values as exogenous traffic flow demand (see Figure 4.1). The generalized costs of

each alternative are updated by the new average transit and car speeds estimated by the MFD model,

and compared to the ones used in the first place. If the maximum difference between the oldest and the

newest generalized costs is lower than a given value ε, this component of the solving method ends and

the equilibrium is assumed to be found, otherwise the new modal shares are re-estimated considering

the average between the oldest and the new generalized costs. This solution method is repeated until

a convergence condition is met. A schematic flowchart of this traffic-equilibrium algorithm is shown in

Figure 4.2.

♣
{

Transit Fares;
Parking Fees.

Generalized Costs:

- Car trips;

- Transit trips.

Modal-Shares.

MFD function.Average speed.

Joint Profit
of integrating transit

and parking operators

System Dynamics for pricing scheme ♣

Traffic flow
(Expectable number

of vehicles)

Figure 4.2: Traffic-Equilibrium algorithm flow chart.
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4.3.2 Greedy Algorithm

The second component of the solving method is a greedy algorithm. This choice lies not only on the

easy-to-implement characteristics of this algorithm, but also on the benign configuration of the feasible

region of the model exemplified in Figure 4.3. This feasible region was achieved for the small-sized city,

and a similar behavior was found for the case study detailed in the following section (Figure 4.10).

Figure 4.3: Solution values as a function of parking fees and transit fares (results developed for a 10-zone city), where the black
lines are the threshold of the share of trips that are not made.

By simplification, we assume that each price will be defined within a limited number of decimal pla-

ces, leading to a discrete searching space. This assumption is compatible with a real-world application,

since prices are necessarily defined within a maximum of 2 decimal places. It is worth noting that this as-

sumption does not simplify the complexity of the optimization model, or whatsoever replaces the need

to develop a heuristic.

In general terms, the greedy algorithm consists on jumping from the best solution so far to the fol-

lowing best solution until no further improvements are possible. This approach consists on the fol-

lowing. We start by selecting initial values for the transit fares and the parking fees (x0B and x0A) and

assess the initial objective function value OF 0 considering the solution method previously described

(subsection 4.3.1). For each one of the two pricing schemes, a set of incremental parameters (δB and δA

for transit and parking, respectively) and proportional parameters lower than 1 ($B and $A for transit

and parking, respectively) are defined. With these sets, the new set of candidate solutions is selected and

each new solution is analyzed, creating a stage of the greedy algorithm. The best solution of each stage is

selected and a new set of candidate solutions is created based on this new best solution, leading to a new

stage. In the process of building a new set of candidate solutions, we consider two different approaches

according to the following criterion. If the best solution found so far results from the previous stage, the
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following set of solutions will be build based on the incremental parameters’ set; otherwise the new set of

solutions will be created using a new set of incremental parameters, which are generated by multiplying

the elements of this old set by the proportional parameters $B and $A . This prevents the algorithm to

get stuck in a local minimum and to search in a smart-way the space of solutions by taking advantage

of its configuration (Figure 4.3). This iterative mechanism will end when the best solutions found in k̃

sequential stages are the same and the elements from the incremental set are lower than ε̃. A pseudo

code of this greedy algorithm is schematically shown in Figure 4.4.

This implementation requires an efficient mechanism to generate the candidate solutions in step

5a., which is as follows.

Let x t−1B be the best solution found so far for the transit fares, which satisfies x t−1B = (
p1B , p2B , . . . , pnB

)
, where n represents the number of transit fare levels. The first solution that is generated results from

adding to p̂1B the first element of δB , while keeping the remaining transit fares at their current value.

The second is equal at adding the second element of δB to p1B . This logic is kept until all the possible

combinations between x t−1B and δB are generated. To this set, it is also added the solutions that result

from having all transit fares equal to adding each single value of x tB with each element of δB . In this

sense, X tB is compound by all the distinct elements reached by these two procedures. This procedure is

schematically explained in the pseudo code shown in Figure 4.4.

To generate the parking fees the logic is slightly different, because besides selecting the optimum

pricing fee levels, we also need to select the zones to which this same parking fee level will be assig-

ned to. In this sense, let x t−1A be the best parking fee values found so far for each zone, i.e., x t−1A =(
p1A , p2A , . . . , p#A

)
. The first solution that is generated results from adding to p1A the first element of δA .

If by changing the value of p1A to p1A +δA(1), we keep the number of different parking fees below the

number of parking fee levels |P̃ A|, we proceed to generate the second solution. Otherwise, all the pk A

equal to p1A will have their value changed to p1A +δA(1) while the remaining values are kept. The same

approach will be considered for the remaining elements of the incremental set δA , and this procedure

will be developed for all the elements of x t−1A . The pseudo-code of this procedure of generating parking

fee solutions is detailed in Figure 4.4. This set is complemented by the set of generated solutions achie-

ved by considering the result of having equal parking tariffs for every charged zone. This is the result of

adding to each unique element of x t−1A , each different element of δA and assigned it to pt A ,∀t . Finally,

X t A is compound by all the distinct generated solutions achieved by these two procedures.
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A. Greedy Algorithm

1. Choose initial parking fees and transit fares values (x0B and x0A);

2. Choose initial elements for the incremental parameters (δB and δA) and proportional parameters ($B

and $A);

3. Update the values of the best solution found so far, i.e. x0B ← x0B and x0A ← x0A ;

4. Set the stage number to 1 (t ← 1) and the value of the stop condition to zero (stop ← 0)

5. While (stop 6= 1)

a. Define the new set of prices schemes X tB = {xt1B , . . . , xtn′B } and X t A = {xt1 A , . . . , xtn′ A} for stage t
by taking into account the incremental parameters δB and δA and the best solution found so far
(x t−1B , x t−1A);

b Compute all the possible combinations of element of sets X tB and X t A , excluding repetitions.
For each element resultant from this procedure, verify if this combination was previously analy-
zed. If it was, continue for the following combination, otherwise compute the solution method
explained in subsection 4.3.1;

c. Compute the objective function value OF (xtl B , xtl ′ A) and the penalization for not satisfying cons-
traints (4.12) and (4.13) C S(xtl B , xtl ′ A), for each element of xtl B , xtl ′ A ∈ X t ;

d. Set the best objective function value OF t as expressed by equation (4.26);

OF t = max{OF t−1, {OF (xtl B , xtl ′ A)−C S(xtl B , xtl ′ A) : xtl B , xtl ′ A ∈ X t }} (4.26)

e. Update the best solution values x tB and x t A according to equation (4.27).

(x tB , x t A) = {(xtl B , xtl ′ A) : OF (xtl B , xtl ′ A)−C S(xtl B , xtl ′ A) =OF t } (4.27)

f. If OF t = OF t−1 = . . . = OF t−k then multiply all the incremental parameters of set δB and δA by
the proportional parameters $B and $A , respectively.

g. If the absolute value of all elements of sets δB and δA are lower than ε and OF t = OF t−1 = . . . =
OF t−k then stop = 1 and OF t and (x tB , x t A) are returned;

f. t ← t +1

6. End

B. Generate transit fare solutions:

1. k ← 1

2. For j = 1, . . . ,#Z do

a. For i = 1, . . . ,#δB do

i. y ← x t−1B (xt−1B :
best solution found so far);

ii. p j B ← p j B +δB (i );

iii. xtk A ← y

iv. k ← k +1

End-For

End-For

C. Generate parking fee solutions:

1. k ← 1

2. For j = 1, . . . ,#Z do

a. For i = 1, . . . ,#δA do

i. y ← x t−1A (xt−1A : best solution found
so far);

ii. p j A ← p j A +δA(i );

iii. if #unique(p1A , . . . , p j A . . . , p#Z A) >
|P̃ A | then

pt A ← p j A iff pt A == p j A −δA(i )

iv. xtk A ← y

v. k ← k +1

End-For

End-For

Figure 4.4: Pseudo code of the greedy-algorithm, of the generation of transit fare solutions and of the generation of parking fee
solutions.
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4.4 Case Study

A case study inspired in the municipality of Coimbra in central Portugal is designed to illustrate the

behavior of the optimization model. This example is used instead of the real city due to the lack of data

to calibrate and estimate all the ingredients involved in the model. This case study was developed to

be as close as possible to the reality observed in the municipality of Coimbra. In fact, whenever it was

possible, the calibration of the generated data and of the parameters was based on: 1) the data collected

by a mobility survey conducted in Coimbra during 2009, 2) the road network data, and 3) the existent

public transport network.

The case study has a total of 156 000 inhabitants and it is divided into 25 zones (Figure 4.5) with a

density of about 450 inhabitants/km2. Each one of these 25 zones has a correspondent zone in Coimbra,

which was also divided into 25 zones according to the geographic boundaries and social similarities

observed on the mobility survey data conducted in 2009. 7 out of the 25 zones are considered as city

center zones (Figure 4.5), with an estimated average number of 10600 employees and 9100 inhabitants.

An average of 5150 people live in each one of the remaining 18 zones, which is substantial higher than

the average number of 1780 people working on these zones. These values were achieved by considering

the inhabitants and employers estimated for the municipality of Coimbra. In this city, two regions are

considered for the MFD model: a Region 1 that is compound by the city center zones and a Region 2 that

correspond to the residential zones, as displayed in Figure 4.5.

Figure 4.5: Zoning for the city inspired in Coimbra.

A centroid is built in each zone intending at representing the geographic location on each zone with

main social activities, which also considered the correspondent centroid estimated for the municipality

of Coimbra (Figure 4.5). We assumed that all zones are connected by a road network that accounts for the

co-existence of car and transit, although some connections might not be possible by transit to reproduce
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the Coimbra’s transit network. This assumption requires a slight change of the logit model that includes

the car alternative, considering that some destinations can be reached only by car, where the transit

mode is omitted from the logit expression (equation (4.1)).

The number of trips made between OD pairs is estimated for the morning period (between 7.30 a.m.

and 12.30 p.m.). We start by identifying the number of trips that people would do if the transit fare and

the parking fee were set to zero during this morning period. This value was estimated to be 0.49, leading

to a total of 76862 trips. These trips were distributed across all OD pairs based on the proportional distri-

butions estimated through the mobility survey. The method used to estimate the number of trips if both

prices were set to zero is detailed the Appendix.

We proceed by smoothly distributing the number of trips between OD pairs across time by using the

time distribution observed for the municipality of Coimbra. This distribution was estimated considering

the equivalent regions for the municipality as the ones displayed in Figure 4.5 and assuming that time

frame T2 is composed by the 5-minutes intervals between 7.30 a.m. and 12.30 p.m., whereas T1 consi-

ders the correspondent intervals of 30-minutes. These functions are drawn in Figure 4.6., and they were

considered as the distribution of the trips between each OD pair across time by relating the OD zones

with the regions to whom they belong to. Finally, these trips were split between those that could be made

by car (Qod and Q∗
od ) and those who cannot (Q̃od and Q̃∗

od ) based on the Coimbra’s reality, which leads

to a proportional relationship of 75%-25%, respectively.

Figure 4.6: Proportional distribution of trips across time based on Coimbra and the inner and outer regions.

The transit system was designed in the model under the assumption that to go from one zone to

another it would be necessary at most one transfer. The transit network is the result of merging all the

transit routes, and coincides with the road network on the links included in the transit routes. The fre-

quency of each designed route is generated between 1 and 6 for each period of T1, which is based on

the expectable demand variation during the morning period. Because transit routes require grater travel
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distances than the ones determined by a simple Euclidean distance, the transit distance for a zone m

with direction i is also multiplied by a random number generated from the interval [1.5,2.5]. The va-

lues of variables D t1
mB (H RodB (t1)

m ), RodB (t1), H RodB (t1)
m and Nodl k are determined based on the shortest path

criterion and on the routes that were designed inspired on the transit network system of Coimbra. The

capacity of each transit vehicle was set to 60 pax/veh.

The average car distance between two adjacent zones was calculated by multiplying the Euclidean

distance between the two centroids, by crossing the mid-point of the boundary, with a factor in the

interval [1,2] that was chosen so that these distances would be as close as possible to the ones observed

for the municipality of Coimbra. We opt for this approach instead of using the true values determined

by the road network of Coimbra for the sake of ensuring congruence among the several ingredients of

the model (e.g., car and transit distances, road network topology or the MFD function included into the

MFD model). The road network direction to go from a zone o to an adjacent d is randomly selected from

the set {1,2}. As expected, if the direction to go from o to d is 1, then the direction of going from d to o

will be assigned to 2.

The route selected by car users to go from each origin to each destination (Rod A) is estimated based

on the fastest path, which requires the average car speeds assessed by the MFD model. The parking

capacity of each zone is inspired on the municipality of Coimbra, leading to a proportion towards the

total expected demand for each zone between 0.1 and 4. These proportions account for the parking

spaces that are occupied during the whole morning period.

The parameters θ and θ̃ that capture the sensitivity of travelers towards the generalized cost are set to

0.86 and 0.25, respectively, based on the municipality of Coimbra towards traveling costs. These values

are the result of an attempt at reproducing the reality observed for Coimbra in what concerns the modals-

shares determined based on the generalized costs of each mode (see equations (4.1) and (4.2)), detailed

as below, accounting for those who have and those who do not have the car alternative to do their trip.

The cost of time was based on the Portuguese reality (INE, 2015) with a unit cost of C T = 8 e/h. By

assuming that people live mainly in the area near the centroid of each zone, we support our choice of

estimating the walking distance to and from a transit stop as a randomly percentage between 5% and

25% of the average distance between the centroid and the mid-point of every side border. The average

walking speed was estimated to be 5 km/h (Mohler et al., 2007). The parameters used to estimate the dis-

comfort cost linked to ride a transit were set to 1.5 and 2.6 (ψB = 1.5 and ρB = 2.6). Based the Coimbra’s

public transport scheduling, we set the parameter included on the access to take 5 (SW = 5). The unit

maintenance cost of a car was estimated to be 0.324e/km (Association, 2016; Litman, 2009). The para-

meters included into the cruising for parking cost function are set to 9 and 42 for α1 and α2 respectively,

allowing at varying the cruising of parking cost between 0e to 9e depending on the parking saturation

(Gallo et al., 2011). The car occupation rate was estimated to be 1.2 pax/veh according to the mobility
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survey conducted in Coimbra.

The relationship between car average speed and transit average speed given by parameter γi
m for

a zone m with direction i is estimated based on the municipality of Coimbra. In this sense, the ave-

rage transit commercial speed for the city center zones is on average 57% of the average car speed for

these zones, whereas for the residential zones this value increases to 68%. These values were achieved

by comparing the average transit commercial speed in each region with the average car speed. The ave-

rage transit commercial speed was determined by analysing the annual reports of the transit operator

that manages the transit system in Coimbra, whereas the average car speed was based on the survey

conducted in Coimbra.

In what regards the dynamic features, one MFD function is estimated for each one of the two regions.

It is assumed the same MFD function for both directions in the same region. Based on the road network

existent in Coimbra, the road network topology has a total of 185 km and 590 km in each direction of

the road network that belongs to the city center and to the residential zones, respectively. Two unimodal

fundamental diagrams for each road link were designed considering the road network characteristic of

Coimbra and the average road capacity occupied by buses. Note that these average speeds account for

the contributing of the number of vehicles cruising for parking towards the accumulation of cars in each

zone. In this sense, we assumed that each cruising vehicle was equal to 1.5 vehicles that are not cruising,

and this amount was therefore divided between the two road directions (αi
r = 0.75, i ∈ {1,2},r ∈ Z). The

trip length of each zone is the average distance travelled by each car user inside the zone based on the

followed road direction.

We assume that travelling by transit will have a fixed cost of 0.5 e, independently of the OD pairs,

and parking in the city center will require a payment of 2e per parking, whereas parking in residential

zones will remain free as it is in the prevalent scenario.

The operating costs assigned to each system, MB and MA , are determined based on real world ope-

rating costs for the two services, mixing the reality of Coimbra with the average farebox recovery ratio

(Guerra, 2011; Lindquist et al., 2009; Litman, 2010).

We proceed with the implementation of the solution method to have insights on the dynamics,

modal-shares and financial features of the case study. This solution method took 225 seconds, which

sustains the need to use a heuristic capable of finding near-optimal solutions with the lowest number

of explored solutions possible for the sake of having good results within a reasonable computation time.

With these features, the prevalent financial and modal-shares achieved for each one of the two operators

are described on Table 4.1.
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Table 4.1: Financial features for both transit and parking operators, for the morning period (M.P.).

Transit fare (e/trip) 0.5

Parking fee (e/parking) 2

Profit (103 e/ M.P.)

Transit -15.3

Parking 13.8

Total -1.5

Number of trips (103 /M.P.)

Transit 21.09 (29%)

Car 52.16 (71%)

Total 73.25

The transit system reveals a deficit during the morning period of 15.3×103e/day. This value is in

line with what has been observed world-wide, corresponding to the levels of subsidization required by

the transit operator that operates the transit system of Coimbra. The revenue collected by the transit

operator covers around 41% of the operating costs of the transit system operating in this city inspired in

Coimbra. A different scenario occurs for the parking operator that collects more 27% in revenues than

the operating costs of the parking lots.

The dominance of car use is noticeable on the current modal-shares. In fact, from a total of around

73.25×103 trips made during the morning period (M.P.), 71% are made by car. Furthermore, being aware

that 25% of the trips only have the option of travelling by transit, we can realize that a greater part of the

transit trips is made by those to whom car is not available. This highlight the importance of constraint

(4.13) and why we decided to set the parameters ψ and ψ̃ to take the values 0.5 and 1.5, respectively. In

this sense, we will try to ensure that the new transit fares will remain affordable to those who do not have

other transport alternative. The value of U0 was set accordingly, taking 7220, which truly corresponds to

a maximum of 9607 trips that are not made and correspond to increase the prevalent 5% to 12.5% for the

non-travel alternative.

Finally, the average car speed values of each region estimated for the morning period are displayed

on Figure 4.7. These values result from the application of the solution method with the the ingredients

previously detailed. Observing Figure 4.7, we can conclude that this city does not present high levels

of congestion, where the lowest average speed value is mainly observed for the time periods between

8a.m. and 9a.m., which is in line with Coimbra’s reality. Furthermore, the directions followed by each

car user in the network influence the observed speed, showing that this improvement of the classical

accumulation-based MFD approach is an important asset to be included in the model.
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Figure 4.7: Average car speed values for each region.

In the following section, we assess the traffic dynamics of this case study (see subsection 4.5.1), and

the implementation of the optimization model using the solution method detailed in Section 4.3. In-

sights towards the algorithm performance and further conclusions regarding how the integrated appro-

ach influences the finances of both transit and parking operators, how the configurations of both transit

fee and parking fees are helpful at mitigating the public transport deficits and how this integration im-

pacts the whole dynamic of the city are also provide.

4.5 Study Results

In this section, we first present the results for both the MFD model, where the effects of changing the

transit fares and parking fees are assessed along with the importance of including cruising for parking

features. This is followed by exploring the solutions given by the optimization model and the capability

of this approach at minimizing the transit deficits.

4.5.1 MFD model

Numerical studies are now presented to assess the traffic dynamics of the case study. The first one

analyses the impact of transit fares and parking fee towards the road network dynamics. It is followed

by the insights on how the total demand and the cruising for parking features included into the MFD

dynamic model impact the traffic dynamic and the user behavior.

Considering the prevalent transit fare and parking fee values charged by each operator, i.e., 0.5e and

2e, respectively (Table 4.1), the average speed as shown in Figure 4.7 is achieved and it corresponds

to the MFDs displayed in Figure 4.8 for Region 1 with direction 1 (similar conclusions can be taken for

Region 1 with direction 2).

To understand the impact of transit fares and parking fee towards the dynamics of the city, we mixed

and match the values 0.5e and 4e for the single transit fare and 2e and 8e for the single parking fee
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charged in the city center zones (Table 4.2). Computing the solution method, the average speed values

and the estimated MFD are as shown in Figure 4.8 for Region 1 with direction 1, considering the cor-

respondent modal-shares expressed in Table 4.2. Note that the MFD dynamic model is only influenced

by the car traffic but the estimation of the MFD function accounts for the transit contribution to the

accumulation versus flow relationship.

Figure 4.8: (a) Average Speed and (b) MFD Function with different transit fares and parking fees, for Region 1 with direction 1.

Table 4.2: Financial features for both transit and parking operators, for the morning period (M.P.) with different transit fares
and parking fees.

Transit fare (e/trip) 0.5 0.5 4 4

Parking fee (e/parking) 2 8 2 8

Number of trips (103 /M.P.)

Transit 21.09 (29%) 24.2 (34%) 17.29 (24%) 18.96 (27%)

Car 52.16 (71%) 46.96 (66%) 54.21 (76%) 51.22 (73%)

Total 73.25 71.16 71.51 70.18

The first major conclusion taken from these results is that the total accumulation observed in Figure

4.8 has its maximum for each pricing combination in line with the number of car trips made (Table 4.2).

This is an expectable result that ensures that the MFD dynamic model changes with changes on the car

demand values. Comparing the number of trips made with the pricing applied by each operator, it is

possible to conclude that the higher the parking fee, the greater the number of users that decide to make

their trip by transit instead of car. The same is observed when the transit fares are increased while kee-

ping constant the parking fee. When the prices are increased significantly (e.g., 4e/trip and 8e/parking

for transit fares and parking fees, respectively), the total number of trips decrease, revealing the impor-

tance of considering a no-travel alternative. Finally, it is possible to conclude that higher accumulation

leads to lower average speed, which supports the suitability of the estimated expression for the MFD

function. However, in none of these results the significant levels of congestion were achieved. In fact, we

conclude that low levels of congestion are observed due to the average speed values and the maximum

accumulation observed in the MFD plot.
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To draw conclusions about the reactions of the dynamic dealt by the MFD model with higher levels

of demand, in particular car demand, we proceed with the implementation of the solution method with

double values of the total number of trips, aiming at analyzing how this change influences the dynamic

of the city (Scenario I). No further adjustments are made on the traffic network and on the transit supply.

This analysis is then extended to go over the influence of the number of vehicles cruising for parking on

the total flow assessed by the MFD model. This is developed by considering two different approaches

besides the doubled demand values: (1) setting to zero the parameters that introduces the number of

vehicles cruising for parking effect into the MFD dynamic model (denominated as Scenario II); and (2)

defining the parking capacity of each zone sufficiently high exclude the existence of cruising for parking

(denominated as Scenario III). These scenarios were computed using the solution method and assuming

the prevalent values for both transit fares (0.5e/trip) and parking fees (2e/parking). Figure 4.9 shows

the final average speeds and the MFD function for Region 1 with direction 1. Table 4.3. summarizes the

modal-shares for each described scenario.

Figure 4.9: (a) Average Speed and (b) MFD Function for the 3 scenarios, for Region 1 with direction 1.

Table 4.3: Number of trips per mode for the morning period (M.P.) for the 3 scenarios, for Region 1 with direction 1.

Scenario Prevalent I II III

Number of trips (103 /M.P.)

Transit 21.09 (29%) 26.45 (19.5%) 27.72 (20.2%) 28.05 (20.2%)

Car 52.16 (71%) 109.49 (80.5%) 109.19 (79.8%) 110.47 (79.8%)

Total 73.25 135.93 136.91 138.51

As observed in the previous results, the scenario with the curve with higher accumulation values,

and therefore the lowest average speed values, is also the one with the higher number of car trips (scena-

rio I). This is followed by scenario II that excludes the consideration of cruising for parking in the MFD

model. The importance of including the number of vehicles cruising for parking is highlighted by these

results. In fact, when the parameter that sets the contribution of one cruising vehicle to the road network

accumulation is set to zero (Scenario II), the levels of congestion are significantly decreased and the cri-
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tical part of the MFD function for this region is not reached. This is also observed on the average speed

and on the number of trips made by car. Note that improving the average car speed also improves the

average transit speed, which justifies the increase on the number of transit riders when comparing Sce-

nario I and II. Furthermore, although the effect of cruising for parking has been excluded from the MFD

dynamic model (Scenario II), the cruising cost remains on the user’s generalized cost, which justifies the

small change on the number of car users when comparing these two scenarios.

When the parking capacity is set to values high enough to accommodate all the potential parking de-

mand (Scenario III), an expectable increase on the number of car trips is observed (Table 4.3) along with

an increase on the number of transit riders. The peaks of the average speed curve are coincident with

the shape of the demand across the morning period (Figure 4.6), which highlights that the congestion

observed at 10.30 am in Scenario I is a result of having vehicles cruising for parking because the parking

capacity is not enough to accommodate all the parking demand. However, we recall that users stick to

their choice of using the car over transit because the transit capacity was not improved and the transit

speed is lower than the average car speed. By excluding the problems raised by having a lack of parking

capacity, we recall the importance of including the cruising effect into the MFD dynamic model, together

with scenario II.

These scenarios allowed to assess the impact of different demand values (either due to varying the

transit fares and/or parking fee values, either by changing the demand values and the features related to

cruising effects) into the MFD model and how this model is a suitable approach to determined dynamic

speeds for a given time period. In the following subsection, we explore how to improve the finances of

the transit operator by optimizing the transit fares and parking fees. These pricing changes will have an

influence on the modal-choice and on the dynamic of the case study, which is assessed by embedding

the MFD model into the optimization model, as shown in Figure 4.8 and in Table 4.2.

4.5.2 Optimization Model

In this subsection, insights that can help at inferring the suitability of the integration of transit and

parking operators to decrease the subsidize levels required by the transit operator (as shown in Table 4.1)

are provided. A small analysis about the greedy algorithm is also detailed, including its performance and

capability of providing optimal or near-optimal solutions within a reasonable computation time.

The results shown in this subsection are the ones achieved by the greedy algorithm detailed in sub-

section 4.3.2. We considered that the two set of incremental parameters were equal toδB = δA =−10,0,10

and the proportional parameters were set to 0.5 (i.e., $B =$A = 0.5). For simplification, we assume that

the elements resultant by multiplying the incremental set by the proportion parameters should be mul-

tipliers of 0.25. In the case of achieving a value that is not a multiple of 0.25, this value is replaced by the

closest value multiple of 0.25, and the algorithm continues.

84



4.5

The first approach aims at finding the optimal combination of a single transit fare and a single par-

king fee. These new prices for the transit fare and parking fee, 3.25e and 7e, respectively, are the global

optimum of the optimization model, with the features described in Table 4.4. We ensure the optimality

of these values through the feasible region (similar to the one displayed in Figure 4.1), which was develo-

ped through an exhaustive search procedure that explored the values shown in Figure 4.10 and took the

computation time shown in Table 4.4. In Figure 4.10, the red square corresponds to the optimum value

achieved by this procedure, which matches to the transit fare of 3.25e and the parking fee of 7e. The

transit fares and parking fees analyzed during this procedure are multiple of 0.25, to ensure congruency

between the exhaustive search and the greedy algorithm results.

As expected, the number of solutions analyzed by the greedy algorithm are significantly lower than

the ones analyzed by the exhaustive procedure. This reveal the suitability of the greedy algorithm not

only at achieving the optimum solution in a small amount of time, but also that the analysis was develo-

ped in a smart way, which lead to mainly assess potential good solutions instead of poor ones. Note that

both approaches analyze infeasible solutions. Furthermore, the inclusion of a mechanism that verifies

if a solution has already been analyzed by the solution method decreases significantly the computation

time required by the greedy algorithm. This small detailed will be extremely important when non-single

transit fares and/or parking fees are considered. However, it is worth noting that for these scenarios, the

exhaustive procedure will not be conducted due to its extremely high computation time requirements

(e.g., we will need to analyze a total of 27 combinations for each 2 different parking fee levels and 1 transit

fare level, assuming that each solution requires an average of 4 minutes, we will need almost 8 hours to

assess two different parking fee levels and one transit fare).

Table 4.4: Optimum solution features for a single transit fare and a single parking tariff (Scenario I).

Transit fare (e/trip) 3.25

Parking fee (e/parking) 7

Profit (103 e/ M.P.)

Transit 37.68

Parking 132.12

Total 169.8

Number of trips (103 /M.P.)

Transit 19.53 (27.5%)

Car 51.38 (72.5%)

Total 70.91

Computation time (min)
Greedy algorithm 207

Exhaustive procedure 2954

Number of generated solutions
Greedy algorithm 120

Exhaustive procedure 768

Number of analyzed solutions
Greedy algorithm 49

Exhaustive procedure 768
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Figure 4.10: Solutions analyzed by the exhaustive search procedure for Scenario I.

Comparing the results achieved by implementing the optimal single transit fares and single parking

fee, a significant improvement of the transit operator profit is achieved. In fact, by increasing the tran-

sit fare to 3.25e along with charging 7e per parking in the city center, the prevalent transit deficit of

15.3×103e/day is transformed to a positive profit of 37.68×103e/day. In this sense, the parking opera-

tor do not need to cover the transit losses, because they do not exist with this new pricing scheme. The

parking operator also improves its profit, from the prevalent 13.8×103e/day to 132.12×103e/day. As

expected, these new prices also influence the number of trips assigned to each alternative, leading to a

decrease on both transit and car trips when compared to the prevalent number of trips of each mode.

In order to analyze how different pricing configurations might influence the finances of both ope-

rators and the number of trips assigned to each mode, we proceed this analysis by considering the fol-

lowing 5 scenarios:

(II) single transit fares and two parking tariffs;

(III) single transit and three parking tariffs;

(IV) two transit fares and single parking tariff;

(V) two transit fares and two parking tariffs;

(VI) two transit fares and three parking tariffs.

For the scenarios with two transit fares (IV, V, VI), it is assumed that the trips with origin and desti-

nation in Region 1 will have a lowest transit fare whereas the remaining transit trips will have a higher

transit fare. This assumption is plausible with what has been observed in the Portuguese reality.

The results for each one of these scenarios are shown in Table 4.5, while the parking fees charged

in each zone are displayed in Figure 4.11 for Scenarios II, III, V and VI. These values were achieved by
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computing the greedy algorithm using the prevalent values of transit fares and parking fees as initial

solutions of the algorithm.

Table 4.5: Optimal solution features for each Scenario.

Scenario II III IV V VI

Transit fare (e/trip)
R1 - R1

3.25 3.25
1.75 1.75 1.75

Remaining 6.5 6.5 6.5

Parking fee (e/parking)

Level 1 7 7

7.25

7.25 7.25

Level 2
7.25

7.25
7.5

7.5

Level 3 7.25 7.5

Profit (103 e/ M.P.)

Transit 37.75 37.75 65.11 65.12 65.12

Parking 133.78 133.78 132.7 132.99 132.99

Total 171.53 171.53 197.81 198.11 198.11

Number of trips (103 /M.P.)

Transit 19.55 (27.6%) 19.55 (27.6%) 20.35 (28.6%) 20.36 (28.6%) 20.36 (28.6%)

Car 51.33 (72.4%) 51.33 (72.4%) 50.85 (71.4%) 50.82 (71.4%) 50.82 (71.4%)

Total 70.88 70.88 71.2 71.18 71.18

Computation time (min) Greedy algorithm 1712.8 2567.4 1013.8 6060.7 8484.2

Number of generated solutions 744 1153 523 3212 4504

Number of analyzed solutions 374 575 215 1513 2149

Figure 4.11: Solutions analyzed by the exhaustive search procedure: (a) one transit fare – Scenario I and II; (b) two transit fares
– Scenario IV and V.

The results shown in Table 4.5 highlight the good performance of the developed greedy algorithm.

In fact, the results of scenario II are better than the results shown for scenario I in Table 4.4, because the

joint profits are increased. It can be considered that scenario I set a lower bound for all the scenarios

under analyzes, in particular for scenario II and IV. The concept behind this lower bound characteristic

assigned to some scenarios is as follows. If one scenario results from another scenario by increasing the

number of transit zones and/or increasing the number of parking fee levels, the simplest scenario sets
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the lower bound for the scenario with higher pricing complexity. In other words, the worst case for the

scenario with higher pricing complexity is to be equal to the scenario with simplest pricing schemes.

This boundary allows to ensure that these are good results, even though an exhaustive search has not

been made to prove that these solutions are optimal or near-optimal. Comparing scenarios II and III

and scenarios V and VI, we observe that even though a different pricing configuration is possible, the

results are the same. In fact, scenario II can set a lower bound for scenario III, whereas scenarios III and

V define the lower bounds for scenario VI.

As expected, the computation times are proportional to the number of solutions that are analyzed.

Moreover, the number of solutions, generated and analyzed, increases with the complexity inferred to

the pricing schemes. However, the number of solutions also vary depending on the complexity being

assigned to the transit fares or to the parking fees. This is an expected result because while the confi-

guration of the transit zones is known, the parking zones configuration is also optimized by the model.

This justifies why the computation times of scenarios II and IV are different, being higher for the former.

Since the distribution of the prices are known in advance for scenario IV, it is expectable (and verified in

Table 4.5) that the number of solutions that are generated and analyzed to be lower than these values for

scenario II, which leads to the computation times’ relationship. It is also observed that the proportion

of solutions that are generated and the solutions that are analyzed is quite similar across the several sce-

narios, showing the importance of verifying if a generated solution was or not analyzed by the solution

method because this procedure is less time consuming than the solution method.

The influence of the pricing configurations towards the profits collected by each operator is mainly

observed when the transit operator considers two different transit fares instead of a single transit fare

(e.g., scenarios I and IV). The profits of the parking operator are almost the same for all scenarios,

showing that the small changes observed in the parking operator’s profit results from minor adjustments

of the parking fee configurations, instead of being the result of changes on transit fare pricing values and

configuration defined by the transit operator. Similar conclusions are taken for the transit operator in

what concerns the effect of parking fees on the profits collected by the transit operator.

The number of trips assigned to each mode are quite similar for all the six scenarios. However, the

number of transit riders increases when 2 transit fares are considered instead of having a single transit

fare. We recall that the transit zones assumed that shortest trips (trips with origin and destination in the

city center) would have cheapest transit fares than the remaining trips. The scenarios with the transit fare

values with this configuration, i.e., 1.75e and 6.5e for trips with origin and destination in the city center

and for the remaining OD pairs, respectively, are the ones with the highest number of transit users when

the prices are optimized. In this sense, users are willing to pay more for longer transit trips, whereas for

shortest transit trips the transit fare should be decrease so that users can chose transit even when car is

an alternative.
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We conclude that the best option among the 6 scenarios analyzed is the one with 2 different transit

fares, 1.75e for inner city-center trips and 6.5e for the remaining one, and two parking fee levels, 7.25e

and 7.5e, assigned to each trip zone as shown in Figure 4.11-b). This scenario improves the transit

deficit from its prevalent losses of 15.3×103e/M.P. to a positive profit of 65.12×103e/M.P, which repre-

sents a gain of around 40% when compared to having an optimized single transit fare (e.g., scenario I).

Furthermore, if two parking fares are considered instead of a single one, the number of transit riders is

the highest one among all scenarios and the closest one to the number of riders in the prevalent scena-

rio. (see the results for the prevalent scenario, scenario I, and scenario V). Similar conclusions cannot

be made for the parking operator, whose profits are slightly smaller in this scenario V than for scena-

rios with a single transit fare and at least two levels of parking fees (scenario II and III). However, this

is the scenario with the best joint profit, which sustains our choice. Furthermore, if the two operators

agree that two different transit fares should be applied, this scenario reveals to be the best option for the

parking operator.

These scenarios allow to end the subsidization of transit systems, showing that transit systems can

be profitable and self-sufficient in a financial perspective when their management is integrated with the

management of parking systems.

4.6 Conclusion

This chapter has presented an optimization model to circumvent transit financial problems by ma-

naging transit systems and parking systems in an integrated manner, using parking fees to fund transit

deficits, if needed. This model includes a network level aggregate traffic model based on the macroscopic

fundamental diagram (MFD), which was designated as MFD model. Due to the complexity of the opti-

mization model, which has a combinatorial and nonlinear formulation, we developed a solution method

to deal with the dynamics embedded into the optimization by the MFD model and a greedy algorithm to

solve the optimization model.

This model was applied to a case study inspired in the municipality of Coimbra, a medium-size city

in the center of Portugal, showing the suitability of the model to deal with the financial problems of tran-

sit systems. The influence of demand towards the road dynamic, which is assessed by the MFD model,

is shown by the changes on speed along with the demand variations. This case study also provides in-

sights for the role of cruising for parking in the average speed of the road network, and the importance

of decreasing such externality. The suitability of the solution method at solving the optimization mo-

del was demonstrated in this example, along with the analysis of how different pricing configurations

might affect the mode-choice and the joint profits of the two operators. In the end, insights into how an

unlucrative transit system can become profitable by only managing transit fares and parking fees while
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ensuring reasonable levels of service were provided.

Based on the case study’s results, we can advocate that an excessive emphasis on the deficit perspec-

tive has been made. To overcome this feature, and as future work, some changes regarding the objective

function should be considered, e.g. the maximization of social welfare or transit share, given a limit for

the operating deficit. Furthermore, adjustments to the supply of each system, such as transit frequencies

and/or parking capacity, should also be addressed as well as the consideration of dynamic parking fees.

The inclusion of a more detailed cruising for parking model (e.g. Geroliminis, 2015) into the MFD model

is also another research priority.

Appendix

Let CodB and Cod A respectively be the generalized costs of taking a trip from to using transit and car,

as given by equations (4.3) and (4.6), respectively, without any time concerns. To estimate these costs, we

attempt at reproducing in an aggregated way what was observed for Coimbra, by considering the prices

charged by each operator, the ingredients included on these generalized costs as displayed on (4.3) and

(4.6), respectively. The average daily speed for both transit and car modes was estimated considering

the data collected by the survey, as well as the discomfort costs (4.5) and the cruising for parking cost

(4.7). The method that estimates this demand is based on the classical gravity model formulation so that

plausible number of trips can be ensured.

A first estimation for the number of trips between a pair of zones od is assigned to T̃od through

expression (4.28), where the parameters αGM , µGM , εGM and θ are estimated according to the reality

observed for Coimbra. PCo and ECd are the inhabitants and employers for zones o and d , respectively.

T̃od =αGM ·
PCµGM

o ·ECεGM

d

exp
(
θ · CodB+Cod A

2

) , o,d ∈ Z (4.28)

To estimate the total number of trips that would be done if both transit fares and parking fees were

zero (T̂od ), new generalized costs are estimated for trips done by transit or by car. In this sense, the values

of ĈodB and Ĉod A are equal to C̃odB −p0
odB and C̃od A −p0

od A , respectively, where p0
odB and p0

od A are the

transit fare and parking fee values implemented by each operator. By replacing the values of CodB and

Cod A with these new generalized costs into expression (4.28), a new number of trips T̂od is determined.

This amount includes the trips that are not done due to the costs of transit fares and parking fee. Let L̃T od

be the number of trips that are not done by people due to these costs, which is equal to L̃T od = T̂od −Tod .

The estimation of the cost of not making the trip, C̃odO , is displayed in equation (4.29), and the final

number of trips that are lost by the system LTod due to the pricing of transit and parking are estimated

as expressed by equation (4.30).
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L̃T od =αGM ·
PCµGM

O ·ECεGM

d

exp
(
θ · C̃odO

) ⇒ C̃odO =
ln

(
αGM · PC

µGM
O ·EC

εGM
d

L̃T od

)
θ

, o,d ∈ Z (4.29)

LT od =αGM ·
PCµGM

O ·ECεGM

d

exp
(
θ · C̃odO

) , o,d ∈ Z (4.30)

Finally, the total demand for a OD pair is given by Q̂od = Tod +LTod . To accommodate further pricing

changes and to include inclusion of cruising for parking and discomfort costs, the cost C̃odO is disturbed

by a random variable with values between 1 and 3, which leads to the values CodO for each OD pair

included in the model. Note that this procedure was conducted due to the lack of information on the

users’ elasticities towards transit fares and parking fee.
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Chapter 5

Computational study of a hybrid

simulated-annealing cross-entropy algorithms for

facility location problems

5.1 Introduction

Simulated Annealing (SA) algorithms have been shown to provide near-optimal or even optimal so-

lutions to many optimization models. These algorithms have become especially attractive due to their

well-known global optimum convergence properties (Kirkpatrick et al., 1983; Lundy and Mees, 1986; Lo-

catelli, 2002). If properly designed, SA algorithms have the capability of escaping from local optima and

finding a global optimum by uphill and downhill moves. Otherwise, their performance may be weak,

either because they return low-quality solutions or because the computation time taken to find good so-

lutions is excessively long. The reason for this to happen may be because they spend too much effort in

the evaluation of solutions of poor quality. If each iteration can be performed very quickly, this may not

be a problem. In contrast, if each iteration is time-consuming, then the computational effort necessary

to run the algorithm may become prohibitive in the case of large model instances.

The study we present in this chapter was performed with the purpose of finding a heuristic that

could substantially reduce the number of iterations required to complete the execution of a SA algorithm,

while at the same time, increasing – or, at the least, not decreasing – the quality of the best solution

that is returned. This decrease on the number of analyzed solutions is truly important when solving

problems with time consuming objective functions, which are the main motivation to develop this word.

Specifically, what we did was to hybridize the SA algorithm with the Cross Entropy (CE) algorithm so that

the probability of selecting a low-quality solution in each iteration is decreased (without being zero);

i.e., the elements typically presented in good solutions have a higher probability of being chosen than

elements that rarely belong to good solutions. CE algorithms have been proposed by Rubinstein (1999,

2001) as a generic Monte Carlo technique for solving complicated simulation and optimization problems
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(see, e.g., De Boer et al., 2005; Rubinstein and Kroese, 2013).

Several efforts are reported in the literature concerning the hybridization of SA algorithms with other

global and local heuristics. Examples of algorithms that have been hybridized with SA algorithms in-

clude greedy algorithms (Geng et al., 2011; Leung et al., 2012), tabu search (Osman, 1993; Mousavi and

Tavakkoli-Moghaddam, 2013; Küçükoğlu and Öztürk, 2015; Lin et al., 2016) and genetic algorithms (Wong,

2001; Ganesh and Punniyamoorthy, 2005; Casas-Ramírez and Camacho-Vallejo, 2017). However, to the

best of our knowledge, the hybridization of SA algorithm with CE algorithm has not been addressed in

the literature.

The optimization model we have selected for testing the proposed hybrid SA-CE algorithm and for

comparing the performance of this algorithm with the classic SA algorithm is a facility location model.

This type of optimization model is amongst the most studied in the literature since the 1960s, and has

been dealt with in fields such as operational research, supply chain management and regional science

(see, e.g., Drezner and Hamacher, 2001; ReVelle and Eiselt, 2005; Melo et al., 2009; Teye et al., 2017; Amin

and Baki, 2017). One of the best-known facility location models represents the following problem: given

a set of potential sites for locating facilities, a set of demand centers with known demand values for the

services provided in the facilities, and the distances between the sites and the demand centers, the aim is

to determine where p facilities should be open so that the sum of the distances from facility users to their

closest open facilities is minimized (Hakimi, 1964; 1965; ReVelle and Swain, 1970). Exact and heuristic

methods have been proposed in the literature to solve the classic p-median model, as well as its multiple

extensions (for a comprehensive review see, e.g., Mladenović et al. (2007)). In this work, we considered

the Capacitated p-median model with single and Closest Assignment constraints (CPM-CA), which is

an extension of the classical p-median model for which the facilities are required to comply with given

capacity limits and the demand centers are required to be fully served by the closest open facility. The

decision of tackling this extension of the p-median model was because of its practical relevance (Gerrard

and Church, 1996) and because this model is much harder to solve than the classical p-median model.

The organization of this chapter is as follows. In the next two sections, we present the mathematical

formulation of the CPM-CA model (Section 5.2) and the stages of the methodological approach followed

in this study (Section 5.3). This is proceed by a detailed explanation of the classical SA algorithm in

Section 5.4 and of the hybrid SA-CE algorithm in Section 5.5. The instances that have been generated,

partly at random, for testing the performance of the algorithms are presented in Section 5.6, and the

set of indicators used for assessing and comparing the performance of the two detailed algorithms are

described in Section 5.7. In Section 5.8 we explain how the parameters of the algorithms were calibrated.

The results obtained in the comparison of the algorithms are presented in section 5.9. Further insights

into the performance of the hybrid algorithm are provided in Section 5.10. A summary of our main

conclusions is presented in the final section.
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5.2 Optimization model

We present in this section the mathematical formulation of the Capacitated p-Median Model with

Closest Assignment Constraints (CPM-CA).

The notation we will use is as follows:

Sets:

I - set of potential users (demand centers);

J - set of m sites where facilities can be located (potential facility locations).

Parameters:

B mi n
j and B max

j - minimum and maximum capacity values for the facilities if located in j ∈ J;

Ci j - total travel cost for serving all the users from demand centers i ∈ I at site j ∈ J, which is given

by Ui ·Di j ;

Di j - distance between center i ∈ I and site j ∈ J;

P – total number of located facilities;

Ui - total number of users for demand center i ∈ I.

Decision variables:

xi j - binary variable that takes 1 if the demand center i ∈ I is fully served by the facility located at

j ∈ J, and zero otherwise;

y j - binary decision variable that takes 1 if a facility is located at site j ∈ J, and zero otherwise.

Given this notation, the formulation of the CPM-CA is as follows:

Max C =∑
i∈I

∑
j∈J

Ci j · xi j (5.1)

subject to ∑
j∈J

xi j = 1, ,∀i ∈ I (5.2)

xi j ≤ y j , ,∀i ∈ I, j ∈ J (5.3)∑
j∈J

y j = P (5.4)

∑
i∈I

Ui · xi j ≤ B max
j · y j , ,∀i ∈ I (5.5)
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∑
i∈I

Ui · xi j ≥ B min
j · y j , ,∀i ∈ I (5.6)

∑
k∈J:di k≤di j

xi k ≥ y j , ,∀i ∈ I, j ∈ J (5.7)

xi j ∈ {0,1} ,∀i ∈ I, j ∈ J (5.8)

y j ∈ {0,1} ,∀ j ∈ J (5.9)

The objective function (5.1) minimizes the total travel costs. Constraints (5.2) and (5.3) state that all

demand centers have to be fully served by open or located facilities, respectively. The total number of

facilities that are open is set to P by constraint (5.4). The minimum and maximum capacity constraints

are expressed by (5.5) and (5.6), respectively. The closest and single assignment properties required from

the solutions are enforced by constraints (5.7) and (5.8).

Extensive analyses of alternative formulations for the closest assignment constraints were conducted

by Cánovas et al. (2007) and Espejo et al. (2012). The former authors have shown that constraints (5.7)

are mathematically dominated by constraints (5.10). However, after comparing the computation times

for both formulations on the test instances described in the following section, we concluded that the

model performs faster with constraints (5.7) than with constraints (5.10), which justifies our formulation

choice.

∑
k∈J:di k≤di j

xi k +
∑

k∈J:di k≤di j ,dak>da j

xak + y j ≤ 1, ,∀i , a ∈ I I, j ∈ J (5.10)

5.3 Methodological Approach

We developed an approach consisting of seven steps to assess and draw conclusions regarding the

introduction of features of the CE algorithm to speed-up the SA algorithm.

We start by adjusting the classical SA algorithm to be suitable to solve the CMP-CA model, as detailed

in Section 5.4. This procedure enables to exemplify the capability of the SA algorithm to handle facility

location problems and also to draw conclusions about the implementation in what concerns the quality

of the solutions and the computation effort required to achieved those same solutions.

This is followed by explaining how to implement the CE algorithm in order to provide guidance to

the solutions assessed by the SA algorithm, i.e., how the hybridization takes place and how this new algo-

rithm should be adjusted to be suitable to solve CPM-SA models (Section 5.5). As before, the capability

of this new model to handle facility location problems will also be assessed, along with the achieved

solutions and their computational effort.

As in any other heuristic, both algorithms have parameters that, for the sake of finding good solutions

with the lowest computational effort possible, should be calibrated. Therefore, and to provide insight

regarding the quality of the solutions and their computational effort, not only test instances should be
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generated but also performance indicators should be established.

The generation of test instances takes into account the data included in the CPM-CA model, and

ensures the existence of feasible solutions (see Section 5.6 for details). Two different sets are generated,

one with several medium sized test instances (100 sites and 100 centers) and another set with variable si-

zed test instances (number of sites and centers randomly selected from set {100,150,200,250,300}). The

sets consider instances with variable capacity limits and variable demand, and fulfill different purposes.

While the set with medium sized test instances serves to calibrate the two algorithms and to draw con-

clusions regarding the quality of their solutions and their computational effort following the established

performance indicators, the second set is used to improve the analysis of the algorithm that provides

better values for the identified performance indicators, which are detailed in Section 5.7.

In other words, after drawing conclusions regarding the calibration of the parameters of each al-

gorithm (as detailed in Section 5.8), the comparison of the two algorithms takes place, which allow to

conclude which one of the two algorithms had the best performance. This comparison is based on the

results achieved for the performance indicators, as explored in Section 5.9.

To provide further details for the algorithm with the better performance indicators, a final analysis

is developed. This analysis considers the second set of test instances, where different sizes are analyzed,

with its main focus on large sized instances. This final analysis contributes to improve the insight for

potential applications of the algorithm, such as its potential suitability to efficiently solve problems with

time consuming objective functions with parameters calibrated for smaller test instances.

5.4 Simulated Annealing

A SA algorithm is a local search method inspired by the physical annealing process studied in sta-

tistical mechanics, where a solid material is heated until melting and then chilled till getting the lowest

energy level according to an appropriate scheduling.

This algorithm starts by selecting an initial solution, which plays the role of being the current solu-

tion. A set of configurations or perturbations are defined to obtain candidate solutions from the current

one, and the current solution’s neighborhood is defined. If one generated candidate solution is better

than the current one, then the current solution is replaced by the candidate one. In the opposite scena-

rio, the change of the current solution by the candidate one occurs with some probability that depends

on a parameter θ, called temperature. The lowest the temperature, the lowest the probability of repla-

cing the current solution by a worse candidate solution. The implementation of this algorithm to solve

the CPM-CA model is as follows.

It begins with an initial solution Y 1
1 and an initial temperature (θI ), which is the “high temperature”.

A solution, either candidate y j
i t either current y∗

i t , is characterized by the neighborhood (N (y j
i t ) and
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N (y∗
i t )), the objective function value (Si t

j and S∗
i t ) and the penalty term that accounts for the level of

infeasibility of the solution in respect to the set of constraints of the CPM-CA model (5.2)-(5.9) (T i t
j and

T ∗
j ).

Each iteration i t of the SA algorithm analyzes at least N S candidate solutions at the same tempera-

ture ( j = 1, . . . , N S). A candidate solution is accepted according to the following criteria: (1) it improves

the value of the objective function added with the penalty term or (2) the difference between the ob-

jective function with the penalty factor of the two solutions satisfies the probability condition defined

according to the Boltzmann distribution. This second acceptance condition of candidate solutions is

influenced by the degree of degradation of the objective function with the penalty factor (the smaller the

degradation, the greater the acceptance probability) and the temperature (θ). By including the tempe-

rature as a parameter of the Boltzmann distribution, which sets the probability of changing the current

solution by a candidate solution, the algorithm becomes more selective at accepting worse solutions by

progressively decreasing the temperature (Kirkpatrick et al., 1983).

The temperature parameter changes according to the improvement of solutions from one iteration

to the following one. This change of the temperature results from multiplying its current value θ by

the cooling rate φ, occurring if neither the current solution is changed in two successive iterations nor

the average objective function of the candidate solution of following iteration is better than the average

objective function value of the former candidate solutions. The cooling rate is known to be critical to the

efficiency of SA.

With this procedure, the implementation of SA ends by setting a stop condition that, for instance, is

defined by a minimum value for the temperature (i.e., a final temperature θF ). This adaptation of the

general SA algorithm to solve the CPM-SA problem explored in this chapter is detailed in the pseudo

code of Figure 5.1, where the role of the set of parameters N S, θI , θF and φ (i.e., number of candidate

solutions explored in an iteration, initial temperature, final temperature and cooling rate) is specified,

along with the penalty factor T i t
j that affects the objective function if the candidate solution is unfeasible.
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(0) Determine the initial binary solution Y 1
1 and the set of parameters {θI ,θF ,φ, N S};

(1) i t ← 0; θi t ← θI and Impr ovi ng ← 0

(2) While θi t ≥ θF do

(2.1) The following operations are executed for j ← 1, ..., N S:

i. The solution y j
i t is randomly chosen from the neighborhood N (y∗

i t ) as follows:

A) Randomly select an opened facility from y∗
i t , and close it;

B) Randomly select an closed facility from y∗
i t , and open it;

ii. Determine the objective function value Si t
j , which includes a penalization factor T i t

j that de-

pends on the unfeasibility of the solution.

iii. Choose p ∈ [0,1]

iv. If p ≤ min

{
1,

exp(S∗
i t−Si t

j )

θi t

}
then:

A) S∗
i t ← Si t

j ;

B) y∗
i t ← y i t

j ;

End-if

(2.2) S∗
i t ← min

j {Si t
j } and y∗

i t ← {ym
i t : Sm

i t = y∗
i t ,m = 1, . . . , N S}

(2.3) If S∗
i t < S∗ then

i. S∗ ← S∗
i t

ii. y∗ ← y∗
i j

iii. Impr ovi ng ← 1

End-if

(2.4) If the average value of {Si t
j } > average value of {Si t−1

j } > and Impr ovi ng == 0 then

i. θi t+1 ← θi t ·φ
End-if

(2.5) Pass to the next iteration (i t ← i t +1)

End-While

Figure 5.1: Pseudo code of the applied SA algorithm.

5.5 Hybrid Simulated-Annealing Cross-Entropy Algorithm

In this section, we present how the hybridization of the SA with features of the CE algorithm was

made, in order to decrease the number of poor candidate solutions that are tested while running the SA

algorithm. In this sense, features of the CE algorithm are introduced in the SA algorithm to help guiding

the generation of candidate solutions.

The CE algorithm was developed as an adaptive technique for estimating probabilities in the con-

text of rare events in complex stochastic networks. As explained by De Boer et al. (2005), the main

idea behind the CE algorithm is to solve the transformation of an original optimization model into an

associated stochastic model, which is afterwards efficiently tackled by an adaptive algorithm. This al-

lows to construct random sequences of solutions that will probabilistically converge to the optimal or

near-optimal solution of the original model. The two phases that are explored by the CE algorithm after

99



Chapter 5 Computational study of a hybrid SA-CE algorithms for facility location problems

defining the associated stochastic model, are the following (De Boer et al., 2005):

1. Generate a random data sample (trajectories, vectors, etc.) according to a specified mechanism.

2. Update the parameters of the random mechanism based on the data to produce a “better” sample

in the next iteration.

Based on the explanations of De Boer et al. (2005), we developed a procedure to guide the process of

choosing a new candidate solution in the SA algorithm (see Section 5.4). To such end, we start by defining

the probability distribution linked to each facility to be open in a given site. Let W = [P1,P2, . . . ,PW ] be

this probability, which is assessed based on a proportionγ of the best candidate solutions analyzed so far,

allowing at generating new candidate solutions. In this sense, the guidance provided by the CE algorithm

is divided into two different stages: (1) the estimation of a new solution y j
i t , and (2) the update of the

probability distribution. These two stages will take place in step i. and in step (2.2) of the SA pseudo

code shown in Figure 5.1, respectively. The pseudo code for these two stages are detailed in Figure 5.2,

where the role of the parameters W and γ , the probability distribution and the proportion of the best

candidate solutions, respectively, are specified.

Stage 1.

i. The solution y j
i t is randomly chosen from the neighborhood N (y∗

i t ) as follows:

A. Select an opened facility from y∗
i t and close it, according to the probability distribution generated

by normalizing the opposite probability of all open facilities;

B. 2. Select a closed facility from y∗
i t and open it, according to the probability distribution generated

by normalizing the opposite probability of all close facilities;

Stage 2.

(2.2) S∗
i t ← min

j {Si t
j } and y∗

i t ← {ym
i t : Sm

i t = y∗
i t ,m = 1, . . . , N S} and update the probability scores of each site as

follows:

i. Define the vector O with the ascending order all the objective functions Si t
j ,∀ j , i t ;

ii. Select the first γ% elements of set i.;

iii. Determine the number of times that a given site of y is open according to the set defined in ii.;

iv. Assign the minimum and maximum scores P1 and Pw to the minimum and maximum values
found in iii. for the number of times that a facility is opened;

v. Assign an element of W to each site according to its rank in the number of times that a facility is
opened in the set selected in ii., taking into account the boundaries P1 and Pw , as defined in iv..

Figure 5.2: Pseudo code of the changes introduced on the SA algorithm by embedding characteristics of the CE algorithm.

5.6 Test Instances

We now describe how the test instances considered in this study were generated and how we use

them in our experimental analysis. As explained in the methodological approach (Section 5.3), the deve-
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lopment of test instances is required to calibrate and assess the performance of the algorithms detailed

in this chapter.

A first set of 10 instances is set up for a total of 100 sites and 100 centers to calibrate both the SA

algorithm and the hybrid algorithm, as well as drawing conclusions regarding their performance. The

calibration of the parameters included in each algorithm is needed due to their influence on both the

quality of the returned solutions and on the computational effort required to find those solutions.

A second set of 25 instances is generated considering different sizes for the total number of sites and

centers (5 test instances for each one of the following sizes {100,150,200,250,300}). This second set of

test instances will be used to assess the robustness and the performance of the algorithm that have the

best results for the first set of test instances, for both the quality of the returned solutions and the effort

of computing them.

After setting the number of sites (m), we proceed by defining the number of facilities P that must be

located. This value is uniformly generated between 10% and 30% of the total number of sites. The site

coordinates are uniformly generated within a square with side m. Assuming that sites and centers are

placed coincidently, the Euclidian distance between them is determined (i.e., Di j ). Demands Ui for each

center are randomly generated in the interval [1, 100].

The capacity limits of the facilities are generated as follows for all sites. An element of the set {0.2,0.25,

0.3,0.35,0.4,0.45,0.5} is randomly selected and subtracted/added to one, this value is then multiplied by

the quotient
∑

I∈I
Ui
P , which sets the minimum/maximum capacity limits for each site.

The existence of feasible solutions for each generated instance should be ensured. To such end, we

used one of the top-quality software packages available – XPRESS Version 7.7 (FICO, 2014) – to solve the

CPM-CA optimization models for each generated test instance. Note that even though the existence of

feasible solutions for the generated instances is guaranteed, it does not mean that the SA and the hybrid

algorithms will find a feasible solution.

5.7 Performance Indicators

The assessment and comparison of the performance of the algorithms, as well as the calibration of

their parameters, took into consideration the performance indicators that follows.

The first performance indicator (#1) is the number of feasible solutions returned by the algorithms

when a set of test instances with similar characteristics are computed. Note that even though the exis-

tence of an optimum solution is ensured while generating the test instances, the capability of an algo-

rithm to find a feasible solution depends mainly on the values that are selected for the algorithm’s para-

meters and the quality of the candidate solutions that are generated, which highlights the importance of

assessing this performance indicator.
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The second performance indicator (#2) accounts for the objective function of the returned solution,

if this solution is feasible. The returned solution is the current solution of the algorithm when the run of

an algorithm ends.

The third performance indicator (#3) concerns the computation time needed to solve a test instance

taking into account a set of parameters. It is aimed with this indicator to provide insights about the

performance of the algorithms for different sets of parameters in what concerns the computation time

required to return a good feasible solution. With this indicator, we are also aware of the cost of using a

SA algorithm and the cost of adding features of the CE algorithm to the SA algorithm.

Finally, to evaluate and compare these algorithms in what concerns their utility and capability of

solving problems when a single solution is extremely time consuming, four performance indicators are

also considered: (#4) number of iterations needed to find the solution returned; (#5) number of different

solutions analyzed; (#6) the iteration where the returned solution is examined for the first time; and (#7)

the computation time needed to achieve the returned solution. These performance indicators also help

at assessing the robustness of the algorithm in what concerns the random ingredients that are included

in their implementation.

These detailed seven performance indicators are summarized in Table 5.1.

Table 5.1: Summary of the most important parameters used for the computational experiments.

Indicator Definition

#1 Returned solution is feasible.

#2 Objective function of the returned solution (if feasible).

#3 Computational time of the returned solution (if feasible).

#4 Number of iterations needed to find the returned solution.

#5 Number of different solutions analyzed by the algorithm.

#6 Number of iterations needed to analyzed for the first time the returned solution.

#7 Computation time to analyze for the first time the returned solution.

5.8 Algorithms Calibration

Appropriate calibration of the algorithms’ parameters is essential to have good algorithms’ perfor-

mances, guarantying the quality of the returned solutions within reasonable computational effort. This

process, as well as the remaining analysis developed through this chapter, was coded in Matlab R2015a

on a computer with a 3.5 GHz i7 processor with 32 GB RAM, and a Windows 10 64-bit operating system.

5.8.1 Simulated Annealing

The SA algorithm requires the calibration of 4 parameters: the initial temperature θI , the penalty

factor TY ′ the number of candidate solutions analyzed in the same temperature N S and the cooling rate
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φ. The final temperature θF is fixed and equal to 1E-04.

The calculation of the initial temperature is as follows. A value from the set α ∈ {0.05,0.1,0.2,0.3,0.4}

is randomly selected and an initial candidate solution Y ′ is randomly generated. Assessing the objective

function value SY ′ and the penalty factor TY ′ as explain below, the initial temperature is given by θI =∥∥∥SY ′+TY ′
log (α)

∥∥∥.

Considering a random element selected from the set β ∈ {1,2,3,4,5,10}, the maxima travel distances

Di j , the average demand U =
∑

I∈I
P and the number of constraints that are unsatisfied, let us say UCY ′ the

calculation of the penalty factor TY ′ is given by maxi∈I. j∈J{Di j ,0} ·U ·UCY ′ ·β.

The number of candidate solutions explored in an iteration, i.e. N S, is the result of multiplying the

number of sites (m) by a randomly chosen element from the set {2,4,5,7,10}, whereas the cooling rate φ

is randomly selected from the set {0.5,0.6,0.7,0.8,0.9}.

Taking this into account, the calibration of the SA algorithm takes place by considering the genera-

tion of 100 different combinations of these 4 parameters. The algorithm was run considering each one

of the 100 parameters’ set for the first 10 test instances detailed in Section 5.6, with 100 sites and 100

centers. The performance indicator #1 (returning a feasible solution), and the average and standard de-

viation of the performance indicators #2 and #3 (objective function and computation time, respectively),

are determined for each set of parameters taking into the 10 test instances, as displayed in Table 5.2 for

some sets.

The first performance indicator and the average and standard deviation values of the remaining two

performance indicators across the 10 test instances are used to select the best values for the 4 parameters

under consideration. This selection was as follows. We started by selecting select the set of parameters

with at least 9 returned feasible solutions from the total 10 (performance indicator #1). This led to 8

out of the 100 analyzed set of parameters. From these 8 sets, the first 4 sets displayed in Table 5.2 were

selected by considering the best averages for parameter #2. These 4 set of parameters will be used from

now on in all the analysis developed considering the SA algorithm. In Table 5.2 we also show the 10

best set of parameters, which include the 4 selected sets, and the worst 10 sets of parameters, along with

the performance indicator #1 and the average and standard deviation (std. dev.) values of performance

indicators #2 and #3 used to choose the set of parameters included in the following applications of the

SA algorithm.

Table 5.2: Set of parameters selected to calibrate the SA algorithm.

Set of parameters θ N S α β Indicator #1
Avg indicator #2 (103)

(std. dev. 103)

Avg indicator #3 (103)

(std. dev. 103)

1 0.9 2 0.4 10 1 41.38 (12.45) 46.44 (1.88)

2 0.9 4 0.4 5 1 41.4 (10.91) 144.56 (4.47)
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3 0.9 7 0.05 1 1 41.71 (11.85) 151.77 (6.16)

4 0.9 7 0.4 1 0 41.86 (12.87) 90.64 (4.79)

5 (Not Selected) 0.9 10 0.1 2 1 42.2 (11.25) 208.02 (7.75)

6 (Not Selected) 0.9 5 0.4 2 1 42.32 (11.3) 116.01 (5.57)

7 (Not Selected) 0.8 5 0.4 2 1 43.01 (12.17) 55.23 (3.22)

8 (Not Selected) 0.8 4 0.3 10 0 43.33 (10.47) 43.47 (2.54)

9 (Not Selected) 0.9 7 0.2 10 2 40.97 (11.32) 158.65 (11.64)

10 (Not Selected) 0.9 7 0.4 10 2 41.1 (11.01) 159.73 (12.45)

...

91 (Not Selected) 0.6 2 0.2 1 7 43.21 (9.97) 8.85 (0.64)

92 (Not Selected) 0.5 5 0.2 2 7 44.09 (13.35) 16.73 (1.16)

93 (Not Selected) 0.5 7 0.2 4 8 44.29 (13.85) 25.51 (2.36)

94 (Not Selected) 0.6 10 0.05 10 8 45.59 (13.39) 48.44 (4.34)

95 (Not Selected) 0.5 7 0.1 5 7 45.74 (12.83) 25.82 (3.46)

96 (Not Selected) 0.6 2 0.2 10 6 45.87 (12.5) 9.82 (0.64)

97 (Not Selected) 0.5 7 0.3 2 8 45.97 (13.06) 24.11 (2.17)

98 (Not Selected) 0.6 2 0.05 2 7 46.34 (13.13) 8.9 (1)

99 (Not Selected) 0.5 10 0.3 5 7 46.45 (15.74) 38.27 (3.28)

100 (Not Selected) 0.6 2 0.1 4 7 47.87 (15.6) 9.18 (0.82)

5.8.2 Hybrid Algorithm

In what concerns the calibration of the hybrid algorithm, the parameters also calibrated in the SA

algorithm were kept within the ranges previously detailed, i.e. the initial temperature θI , penalty factor

TY ′ the number of candidate solutions analyzed in the same temperature N S and the cooling rate φ

(see subsection 5.8.1 for details). The two additional parameters required for the guidance process of

generating new solutions, i.e. the set of probabilities W and the proportion of solutions γ used to set

these probabilities, were calculated as follows.

The set of probabilities W was defined with 3 different scores: low, medium and high. The medium

score was assigned to probability 0.5, because a given site with the characteristics of being half open in

the γ proportion of solutions and the remaining half times closed, has 50/50 chances to belong to the op-

timum solution. The highest and lowest scores are set together considering the same distance to the ave-

rage value. Therefore, the set of values {0.1/0.9;0.2/0.8;0.25/0.75;0.3/0.7;0.4/0.6} for the lowest/highest
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scores are considered.

The parameter γ that defines the proportion of elements analyzed to define the guidance of the al-

gorithm is randomly selected from the set {0.05,0.1,0.15,0.2,0.25}.

The calibration procedure for this hybrid approach is similar to the one developed for the calibration

of the SA algorithm. I.e., 100 combinations of the 6 parameters introduced in this hybrid algorithm are

randomly selected. The algorithm is then applied to each one of the 10 test instances. The three perfor-

mance indicators (#1, #2 and #3) are then determined for each set of parameters and test instances and

the final sets of parameters are selected. The final values of performance indicator #1 and the average

and standard deviation of parameters #2 and #3 are displayed for some sets of parameters in Table 5.3.

As to the calculation of the parameters of the SA algorithm, the set of parameters with at least 9

feasible returned solutions from a total of 10 possibilities was selected. This led to 97 out of the 100

analyzed set of parameters, which is a significant improvement when comparing the results achieved

by the SA algorithm without introducing the CE guidance (8 out of the 100 analyzed set of parameters,

see Table 5.2 for further details). Due to this high number of 97 set of parameters with at least 9 out of

10 feasible solutions, we decided to pick representative sets in terms of both parameters and indicators

values, taking into account the following criteria. The first two sets were selected considering being the

best ones in the average of the second performance indicator (objective function values) with an average

computation time below 1000 seconds (sets 1 and 2, shown in Table 5.3). The set of parameters 3 and

4 displayed in Table 5.3 were selected because they were the best ones for the second criteria with an

average computation time below 50 seconds.

Table 5.3: Set of parameters selected to calibrate the hybrid algorithm application.

Set of parameters θ N S α β γ Probabilities W Indicator #1
Avg indicator #2 (103)

(std. dev. 103)

Avg indicator #3 (103)

(std. dev. 103)

1 0.7 2 0.05 10 0.1 [0.4,0.5,0.6] 0 36.08 (10.51) 447.7 (17.43)

2 0.9 10 0.4 4 0.25 [0.3,0.5,0.7] 0 36.17 (10.53) 215.87 (18.35)

3 0.8 4 0.1 1 0.1 [0.2,0.5,0.8] 0 36.38 (10.44) 45.1 (4.57)

4 0.6 5 0.2 2 0.05 [0.25,0.5,0.75] 0 36.45 (10.26) 14.14 (1.15)

5 (Not Selected) 0.7 10 0.3 2 0.15 [0.4,0.5,0.6] 0 36.1 (10.55) 5073.08 (325.51)

6 (Not Selected) 0.5 7 0.3 5 0.15 [0.25,0.5,0.75] 0 36.15 (10.52) 2947.49 (133.19)

7 (Not Selected) 0.9 5 0.05 4 0.25 [0.2,0.5,0.8] 0 36.2 (10.71) 329.4 (14.4)

8 (Not Selected) 0.8 2 0.4 5 0.05 [0.25,0.5,0.75] 0 36.27 (10.44) 200.85 (10.27)

9 (Not Selected) 0.9 4 0.4 2 0.1 [0.4,0.5,0.6] 0 36.32 (10.25) 276.89 (8.42)

10 (Not Selected) 0.5 10 0.4 4 0.1 [0.25,0.5,0.75] 0 36.32 (10.33) 291.82 (17.18)
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...

91 (Not Selected) 0.9 4 0.2 5 0.1 [0.3,0.5,0.7] 1 37.42 (9.82) 55.09 (4.05)

92 (Not Selected) 0.9 7 0.2 5 0.05 [0.1,0.5,0.9] 1 37.44 (9.85) 9.24 (0.98)

93 (Not Selected) 0.8 2 0.05 1 0.25 [0.1,0.5,0.9] 0 37.49 (10.15) 55.14 (3.76)

94 (Not Selected) 0.7 10 0.4 10 0.15 [0.3,0.5,0.7] 1 37.7 (11.77) 11.71 (0.82)

95 (Not Selected) 0.9 4 0.1 2 0.1 [0.2,0.5,0.8] 1 37.74 (11.34) 10.1 (0.6)

96 (Not Selected) 0.6 10 0.1 4 0.2 [0.2,0.5,0.8] 0 37.84 (9.47) 10.87 (0.76)

97 (Not Selected) 0.6 4 0.4 5 0.2 [0.2,0.5,0.8] 0 37.87 (11.7) 9.55 (0.86)

98 (Not Selected) 0.8 4 0.4 4 0.2 [0.1,0.5,0.9] 2 37.72 (11.78) 10.06 (1.03)

99 (Not Selected) 0.7 10 0.2 10 0.1 [0.3,0.5,0.7] 2 36.77 (10.35) 9.12 (0.75)

100 (Not Selected) 0.5 4 0.3 1 0.25 [0.4,0.5,0.6] 2 37.02 (11.09) 11.97 (1.37)

5.9 Comparative Results

We now aim at comparing the two algorithms and drawing conclusions regarding the potential im-

provements of introducing the CE guidance into the SA algorithm.

At first, the robustness of each algorithm is analyzed by considering their 4 best sets of parameters

(see Section 5.8 for further details). By robustness it is understood the sensitiveness of each algorithm

towards their random components, and it is assessed by the performance indicators #4, #5, #6 and #7.

This analysis was conducted by running the algorithms 5 times in order to solve the 10 instances used in

the calibration procedure and the final 4 sets of parameters detailed in Table 5.2 and Table 5.3, for the SA

algorithm and the hybrid algorithm, respectively.

These results were also used in a second analysis to draw conclusions about which model is more

suitable at providing good solutions for problems with time consuming objective functions within a re-

asonable amount of computation time.

We start the comparison of the two algorithm by exploring the average and standard deviation of the

performance indicator #2 and the box plot drawn for the results achieve for the performance indicator

#3, which concern the objective function values and the computation time. These values are shown in

Table 5.4 and Figure 5.3, respectively. Note that the red line presented in each boxplot displayed in Figure

5.3 represents the average of performance indicator #3, and the blue structure accounts for the disper-

sion of the computation time values around their average values.
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Table 5.4: Performance indicator #2 for the SA algorithm and the Hybrid algorithm.

Set of Parameters SA algorithm: Hybrid algorithm

1 44.13 (10.08) 38.2 (10.36)

2 45.27 (11.7) 36.44 (9.98)

3 43.45 (10.85) 36.88 (10.08)

4 44.6 (11.7) 36.95 (10.00)

Figure 5.3: Performance indicator #3 for the (a) SA algorithm and the (b) Hybrid algorithm.

In general, the guidance provided by the CE algorithm to the SA algorithm (hybrid algorithm) im-

proves significantly the quality of the solutions (Table 5.4). However, a trade-off between the quality of

the solutions and the computation times is highlighted when these results are crossed with their com-

putation times (Figure 5.3). This is specially observed in the results of the hybrid algorithm with the

calibration of the set of parameters 2. Excluding this set of parameters for the hybrid algorithm analy-

sis, we also conclude that the hybrid algorithm reveals a less time consuming performance than the SA

algorithm.

However, none of these analyses provided insight capable of drawing conclusions about which al-

gorithm was more appropriate at solving problems with time consuming objective functions. In the

light of assessing our suspicions about the improvement provided by the hybridization, the average and

standard deviation of the four performance indicators linked to the algorithms’ robustness were consi-

dered (i.e., #4, #5, #6 and #7). As before, these average and standard deviation values were calculated

concerning each set of parameters and taking into account the 5 experiences for each one of the 10 test

instances under consideration (Table 5.5).

The performance indicator #4 determines the number of analyzed solutions by each algorithm. This

indicator is complemented by the performance indicator #5, since this last one does not allow the coun-
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ting of repeated solutions. The analysis of performance indicator #5 is motivated by the fact that in time

consuming objective function problems, it might be sometimes preferable to verify if a solution was pre-

viously analyzed than re-analyzing its contribution to the problem. This statement supports the idea

that the best approach is the one that consumes less time. However, this issue is not put at stake in the

CPM-CA case, where all solutions were systematically analyzed. Finally, to improve the insight regarding

which part of the algorithm is costlier, the procedure of looking for a good solution or to ensure that a

good solution is actually good or even optimal, the final two performance indicators explained in Section

5.7 are considered. Therefore, the average and standard deviation of the iterations where the returned

solution was examined for the first time (performance indicator #6) are considered along with the ave-

rage and standard deviation of the computation time needed to achieve such solutions (performance

indicator #7). The average and standard values of the 4 performance indicators are displayed in Table

5.5.

Table 5.5: Performance indicators for each algorithm considering its best calibration parameters set.

Algorithm Set Parameters Avg indicator #4 (std. dev.) Avg indicator #5 (std. dev.) Avg indicator #6 (std. dev.) Avg indicator #7 (std. dev.)

SA

1 86.44 (3.59) 27.22 (3.9) 64.8 (14.68) 34.6 (6.75)

2 268.49 (7.44) 58.93 (7.34) 189.99 (48.54) 112.4 (22.48)

3 284.76 (8.35) 76.65 (7.56) 191.56 (55.02) 110.52 (26.26)

4 167.92 (5.8) 46.74 (6.92) 124.13 (29.95) 69.93 (14.66)

Hybrid

1 27.72 (1.99) 12.68 (3.04) 14.05 (4.02) 8.14 (2.39)

2 432.54 (18.88) 158.42 (20.56) 168.78 (27.05) 95.75 (15.46)

3 80.18 (3.89) 30.13 (4.8) 33.02 (6.14) 18.64 (3.67)

4 50.65 (4.3) 24.37 (4.84) 26.68 (5.81) 15.23 (3.71)

The analysis of these results is as follows. In general, the SA algorithm analyzes (Table 5.5) more so-

lutions than the hybrid algorithm, even though the final solutions returned by the former are worse than

the ones returned by the later (Table 5.4). This conclusion is especially relevant when the performance

indicator #5 is analyzed. In fact, the hybrid algorithm analyzes fewer number of solutions (#4) with a

smaller number of repetitions (#5). These conclusions reveal that the purpose of introducing the CE al-

gorithm as guidance mechanism for SA algorithms is met. The standard deviations calculated for these

two performance indicators show that SA algorithm results are generally more subjected to the calibra-

tion procedure than the hybrid algorithm. This is a central issue when the analysis of each solution is

extremely time consuming, because the calibration mechanism requires the running of the algorithm

several times.

The two last performance indicators stress the following. SA algorithm puts more effort on the search

procedure than in closing the gap that ensures that the solution final solution is in fact good (in average,

the returned solution is reached after about 70% of solutions have been analyzed). This suggests the

reliance of the solutions on the parameters included and calibrated on the SA algorithm, which is in
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accordance with the results shown in Table 5.4, where the SA solutions are quite far from the optimal

solutions.

The opposite is observed in the solutions achieved by the hybrid algorithm, highlighting the suita-

bility of this algorithm to deal with the problems with time consuming objective functions. In fact, the

hybrid algorithm is faster at finding good solutions than the SA algorithm. In average, the returned solu-

tion is achieved by the hybrid algorithm in the first half of the analyzed solutions, while the same is not

stated in the performance indicators drawn for the SA algorithm (Table 5.5). This suggests that in cases

where the computation time is more important than achieving the optimum solution, the calibration

procedure might be developed so that an earlier stop condition can be integrated in the algorithm.

These conclusions are sustained by the candidate solutions analyzed by both algorithms, using the

3rd set of parameters, which were applied to solve the CPM-SA problem for one of the 10 generated cities.

In Figure 5.4, the objective function value of each analyzed solution is shown for the two algorithms,

along with the solutions accepted by the Boltzmann distribution. By comparing the candidate solutions

generated for each algorithm, it is observed that the SA algorithm accepts worst solutions than the hybrid

algorithm (the higher the objective function value of the grey dots, the worst the candidate solution is).

In what concerns the best solutions found by each algorithm, the hybrid algorithm reveals a smoother

search than the SA algorithm. This ensures that the inclusion of features of the CE algorithm into the SA

algorithm serves the purpose of guiding the search procedure, corroborating the conclusions drawn for

the relationship between the time that each algorithm spends on analyzing a neighborhood of a good

solution or pursuing to find a good solution.

Figure 5.4: Solutions explored for each one of the two algorithms: (a) SA and (b) Hybrid.

Summing up the conclusions drawn so far, the hybrid algorithm seems to be more efficient than the

SA algorithm into solving optimization models, with and without time-consuming objective functions.

It is also safe to argue that the introduction of a guidance procedure will not jeopardize the SA algorithm,
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leading to an algorithm that is at least as good as the classical one.

5.10 Computational Study

The hybrid algorithm incorporates the good characteristics of SA algorithms and attempts to im-

prove its short comes in what concerns the generation of candidate solutions. As it was shown, the

guided generation of candidate solutions has revealed to be a good option at improving the quality of

the candidate solutions explored by the SA algorithm. To improve our knowledge about the designed

hybrid algorithm, we solve the CPM-CA model with the second set of randomly generated test instan-

ces (see Section 5.6). This set of new instances includes 5 different instances for each element of the set

{100,150,200,250,300}.

The use of the hybrid algorithm includes the four sets of parameters estimated in subsection 5.8.2

(see Table 5.3) to solve each one of the 25 problems. Although these parameters were the result of a

calibration procedure that took place for test instances with size 100, we also want to assess if parameters

estimated for smaller instances are suitable at solving larger instances. This conclusion along with the

capability of the algorithm at finding good solutions for problems with different sizes are the main focus

of this section.

We start our analysis by considering the performance indicator #1, which is displayed by way of pro-

portion in Figure 5.5. This performance indicator reveals that the calibration procedure is suitable until

a certain extent of the relationship between the size of the problems used to do the calibration of the

parameters and the size of the problems being solved by that same calibrated parameters. Analyzing

these results, a maximum of 95% of the solutions returned by the set of parameters 2 and 4 for the ins-

tances with size 250 were feasible. However, observing the solutions returned for 300 sized-instances, it

is possible to conclude that all the solutions returned by these two sets of parameters were feasible. In

this sense, no further conclusions can be drawn by using this performance indicator due to the fact of

the results do not reveal a pattern, which require the analysis of the remaining performance indicators.

Figure 5.5: Proportion of the number of feasible solutions returned by the SA-CE algorithm for each instance and set of
parameters.
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To raise awareness regarding the quality of the feasible solutions, the performance indicators #2 and

#3 were estimated. These two performance indicators are displayed in Figure 5.6 for each set of para-

meters and each test instance size, where a boxplot was drawn for each case. The red line presented in

each boxplot represents the average of each performance indicator, and the blue structure accounts for

the dispersion of the objective function values and the computation time values around their average

values.

Figure 5.6: Performance indicators #2 and #3 for each test instance and set of parameters.
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Analyzing the results shown in Figure 5.6, we conclude that average solutions achieved by the algo-

rithm are quite similar across the sets of parameters under consideration for the test instance with size

not higher than 200. For the remaining 2 test instances, although smooth, the objective function values

achieved by the set of parameters 2 and 3 revealed better results when compared to the remaining para-

meters set. However, the same cannot be argued for the computation times, where the set of parameters

2 revealed higher computation times than the remaining set of parameters. This trade-off between the

quality of the solution and the computation time should be carefully analyzed while applying this heu-

ristic.

We also provide the outcomes for the average and standard deviation of the remaining four perfor-

mance indicators to raise awareness in what concerns the applicability of this hybrid algorithm at solving

problems with time-consuming objective functions and to provide insight towards the trade-off previ-

ously mentioned regarding the solution’s quality and the computation time. These results are shown in

Figure 5.7.

As before, the set of parameters 2 is the one that analyzes more solutions, either in total (#4) or unique

(#5). The set of parameters 1 is the one with less computational time in what concerns the generation

and analysis of the returned solutions and the one that analysis fewer solutions. This may give clues

about the suitability of this set of parameters to solve our problem. If the purpose of solving the time-

consuming objective function problem is to find a good solution in a short amount of time, the use of

this set of parameters might be a good option. Furthermore, the calibration procedure can be performed

for simpler problems (whatever this might mean in a particular context of time-consuming objective

function problems), and then used to solve more complex problems. For instance, smaller problems

might be used to calibrate the heuristics, and the resultant parameters used to solve larger problems.

These conclusions are in line with the conclusions taken so far.

As we expected, the size of the problem influences the number of solutions that were analyzed as

well as the time needed to find and return the final solution (Figures 5.6 and 5.7). I.e., the greater the size

of the problem, the higher the amount of potential solutions are analyzed and the more time consuming

the algorithm is.

We recall that the calibration procedures were conducted for problems with the size of the smal-

ler test instance (100), even though they seem to be suitable at solving problems with double of their

calibration problems’ size. A re-calibration of the parameters that account for larger problems might

also be developed. in order to assess the quality of the solutions achieved by the parameters resultant

from the calibration of smaller instances are good. The presented results reveal evidence pointing in

this direction. However, this procedure will be developed and assessed in our future work, because it is

beyond the scope of this work, which mainly concerns the comparison of the classical SA algorithm with

a hybridization of the classical SA algorithm with a guidance mechanism inspired on the CE algorithm.
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Figure 5.7: Average robustness performance indicators for the 4 set of parameters set.

5.11 Conclusion

In this chapter, we presented a guided procedure to help the classical Simulated Annealing algorithm

at choosing good candidate solutions instead of blindly generated poor ones to be analyzed. This gui-

dance is developed by introducing ingredients from the classical Cross Entropy algorithm into the SA

algorithm, leading to a hybrid Simulated-Annealing-Cross-Entropy algorithm. The motivation of this

hybridization is to develop a good solving method for problems where the analysis of the objective func-

tion is extremely time consuming, which usually are harder to be optimally solved within reasonable

computational times. To provide details and take conclusions about the introduction of this guidance

procedure, we opted to implement the two algorithms in the light of a capacitated p-Median problem

with closest assignment constraints.

We started our study by explaining in detail the two algorithms. We proceed by developing a proce-

dure capable of randomly generate test instances for the CMP-CA problem and by selecting meaningful

performance indicators. This is followed by properly calibrating the two algorithms, so that a meaningful

and adequate comparison could be properly conducted. This is the context of what followed, where the

comparison of the two algorithms’ performance and suitability for a specific size of CMP-CA problems

was developed in the light of the all the explained ingredients. This analysis led to the conclusion that

introducing a guidance procedure improves the SA performance, and that the inclusion of features of

the CE algorithm were a good guidance mechanism. In fact, these improvements were observed on the

quality of the solution, in the computation times and on the total number of solutions that were analy-
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zed. This last outcome is especially important when it comes to solving problems with time-consuming

objective functions, which are the main motivation of this work. Furthermore, the small reliance of the

hybrid algorithm on the calibration procedure when compared to the SA algorithm was also highlighted.

Our final concern was to provide understanding on the suitability of this hybrid algorithm at finding good

results for larger problems, even when the calibrated parameters were the result of a calibration method

for smaller instances. A broader analysis should be conducted for further analysis regarding these results,

where the solutions of the algorithm using the sets of calibrated parameters for each problem size should

be compared and assessed against the parameters resultant from a calibration procedure conducted for

smaller instances of the problem.
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Chapter 6

Game-theoretic Approach to Transit and Parking

Planning under Competition

6.1 Introduction

Transit systems (or public transport systems) are often advocated as a good alternative to automobi-

les. They are characterized as attractive solutions to overcome the current environmental issues linked

to transport networks (e.g., fossil fuel consumption, pollutant emissions, and traffic congestion) without

constraining people’s mobility (Schiller et al., 2010; Miller, 2014). The expectations from transit systems

to be reliable, affordable and safe often led to a high degree of government regulation of transit systems

in many parts of the world. However, these regulations often caused severe financial problems for these

systems, primarily because the costs of providing such high level of service were not fully recovered by

the fare revenues collected by the transit operators (Vuchic, 2005).

This situation raises the question of what would happen if a transit system makes profitability as

the main objective. In this chapter, we explore this extreme opposite scenario where pricing and sup-

ply of the transit system are managed purely on profit-maximization objectives. That is, we attempt to

characterize the scenario where these systems are fully deregulated, without any social welfare-related

constraints on prices and service levels.

A review of the existing literature aimed at solving the financial problems of transit systems indicates

that the societal importance of these systems plays a central role in these studies. The approaches ta-

ken by these previous studies can be classified into two main streams: microeconomic approaches and

operations research approaches. The first stream is usually more focused on establishing the optimal

transit pricing and subsidization rules for stylized cities (e.g. Mohring, 1972; Vickrey, 1980; Small et al.,

2007; Van Reeven, 2008; Basso and Jara-Díaz, 2010; 2012). Studies in the second stream often focus on

real-world scenarios, but the interactions between prices and demands, and between transit and other

transportation alternatives, are not explicitly taken into account. For further details on this transit litera-
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ture stream, we suggest the reviews by Guihaire and Hao (2008), Kepaptsoglou and Karlaftis (2009), and

Ibarra-Rojas et al. ( 2015).

In this chapter, we introduce a modeling and algorithmic framework capable of analyzing what

would happen in the extreme scenario of fully deregulated transit systems. Furthermore, we also intend

to provide a versatile framework that could be quickly adjusted by the city planners to accommodate any

other concerns regarding the desired characteristics of the transit systems or any population needs. For

example, the framework is flexible enough to easily add extra constraints related to minimum frequency

or maximum fare on certain routes, etc. In this sense, any number of intermediate scenarios between

the two extremes (a fully government-controlled welfare-oriented system and a fully privatized profit-

maximizing system) can also be handled by the approach presented in this chapter. Given that driving

(and subsequently parking) personal vehicles is the main alternative to using transit in many cities, es-

pecially for daily commuting needs, our approach consists in a game-theoretic model of the interactions

between the decisions of the transit and parking operators. Under this approach, transit operator and

parking operator are both modeled as profit maximizers whose optimal decisions depend on each other’s

decisions.

To the best of our knowledge, the topic of interactions between transit and parking planning under

competition has not been explored in the existing literature. However, game-theoretic concepts have

been broadly used in other transportation literature to deal with multiple decision makers whose objec-

tives might be at odds with each other’s, either fully or partially (Hollander and Prashker, 2006; Zhang

et al., 2010). In these approaches, certain variants and refinements of the pure strategy Nash equilibrium

(Nash, 1951) have been shown to be good solution concepts to solve non-cooperative transportation

problems (e.g. Zhang et al., 2008; Martín and Román, 2003; Adler, 2001; 2005; Arnott, 2006; Vaze and Bar-

nhart, 2012; 2015; Harder and Vaze, 2017). In particular, they have been used to analyze the impacts of

pricing and transit network design on transit systems (e.g. Zhou et al., 2005; Sun and Gao, 2007).

We propose a two-stage game-theoretic framework where both operators optimize their capacity

decisions in the first stage and their pricing decisions in the second stage. The first stage of our game

deals with decisions regarding the level of supply by each operator. In the case of the parking operator,

the parking capacity offered in each paid parking lot is the decision made in the first stage. In the case of

the transit operator, the frequency value for each transit route and the corresponding adjustments to the

fleet size are decided in the first stage while assuming that all remaining components of transit network

design (e.g., network structure or set of routes) are fixed. The second stage addresses decisions made over

a shorter time horizon. Each operator maximizes its own profit by adjusting its own prices (i.e., the transit

fares or the parking fees) for a given set of prices of the other operator. We will use the solution concept

called subgame perfect pure strategy Nash equilibrium (SPPSNE) for solving this problem. This solution

concept offers multiple advantages. First, it is a more intuitive refinement of the general notion of a
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pure strategy Nash equilibrium (PSNE) for extensive form (i.e., multi-stage) games. Second, in a recent

study involving transportation capacity and pricing competition, this solution concept has been shown

to have promising mathematical, computational and empirical properties (Harder and Vaze, 2017).

This chapter makes four major contributions. First, ours is the first study to model the competi-

tion between transit and parking operators using a game-theoretic model, and we do so by developing a

two-stage game involving capacity decisions in the first stage and pricing decisions in the second stage.

Second, under simplifying assumptions, we provide theoretical proofs of the existence of a PSNE for

our game. The unicity of the pure Nash equilibrium is shown through numerical experiments for some

case-studies, because the analytical proof was extremely hard to compute given the complexity of the

analytical expressions. These experiments provided results that corroborate our assumption regarding

the uniqueness of the pursued Nash equilibria. Third, we develop a new semi-approximate approach

for solving the two-stage transit-parking game to a SPPSNE in a computationally efficient manner. Fi-

nally, we perform a thorough evaluation of our modelling and solution approach using a series of case

studies that are inspired by real-world data. Our results show the suitability of our approach to model

the extreme scenario of fully deregulated profit-maximizing transit systems, assuming a competitive en-

vironment between transit and parking operators. We highlight that this approach is also capable of

accommodating additional constraints to assess solutions corresponding to intermediate states of regu-

lation, without jeopardizing the effectiveness of the solution method or the Nash equilibrium’s existence

and its potential uniqueness properties.

This chapter is organized as follows. In Section 6.2, the game-theoretic models are described. In

Section 6.3, we explore the proof for the existence of a PSNE at each of the two stages of the game under

certain simplifications and assumptions made to the payoff functions, along with the numerical experi-

ments developed to assess the uniqueness of the PSNE. The method developed for solving the two-stage

game is detailed in Section 6.4. Section 6.5 presents the process of designing our computational expe-

riments based on actual characteristics of real-world cities. This computational framework is then used

to design case studies to evaluate the performance of the model and the solution approach. These com-

putational results are presented in Section 6.6, while Section 6.7 details the insights obtained from our

framework in terms of the main effects of the fully deregulated solutions for three different cities. Finally,

in Section 6.8, a summary of our main conclusions and the directions for further research are provided.

6.2 Decision Models

Since the main focus is to improve the financial performance of the fully deregulated transit operator,

we model it as a profit maximizing agent. However, changes in transit capacity and fares can affect the

passengers’ trip decisions, which in turn influence the financial performance of the parking operator as
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well. So, the parking operator is expected to respond to these changes by adjusting its own capacity and

pricing decisions. Thus, the overall financial performances of both operators are dependent on these

interrelated decisions, which we aim to model with the following game-theoretic approach.

We use a two-stage game-theoretic framework. The first stage incorporates a long-term (e.g., months

or even years before operations) perspective. In the first stage, the parking operator decides its parking

capacity in terms of the number of parking spots in various paid parking locations. On the other hand,

the transit operator, in the first stage, decides its frequency of service on each transit route and the cor-

responding fleet size needed to provide that frequency. In the second stage, pricing decisions are made

by each operator over a short-term horizon (e.g., days or hours before operations). The SPPSNE is used

as the solution concept for this game. Due to the extremely large size of the operators’ overall deci-

sion spaces, we develop a semi-approximate solution approach. It consists in: 1) finding a PSNE of the

second-stage game, 2) approximating the second-stage game’s equilibrium payoffs using more tractable

functions of the first-stage decisions, and 3) using these second-stage payoff approximations to find the

first-stage game’s PSNE.

The structure, notation and assumptions of the short-term and the long-term decision models are

explained in subsections 6.2.1 and 6.2.1 respectively. In these subsections, the units of all variables and

parameters are provided in square brackets immediately following the variable or parameter notation.

6.2.1 Short-Term Pricing Decisions

In this subsection, we describe the model structure, notation, and assumptions for the short-term

pricing decisions that constitute the second stage. Let Z be the set of trip zones into which the city is

divided. Travel demand within the city is assumed to be aggregated at the level of zone pairs as origin-

destination pairs. This unconstrained demand between each ordered pair of zones (i , j ) is denoted by

Qi j [passengers]. Each user can select any one of the three alternatives, namely, traveling by car (A),

traveling by transit (B), or not making the trip at all, which is also known as the no-travel alternative (O).

The mode choice is described by a logit model of the generalized travel costs. Thus, the number of

users that travel from origin zone i to destination zone j using mode m (qi j m ,∀i , j ∈ Z,m ∈ {A,B ,O}) is

given by equation (6.1), where Ci j m [€] is the generalized cost of alternative m, and parameter θ captures

the sensitivity of travelers to this generalized travel cost.

qi j m = e−θ·Ci j m

e−θ·Ci j A +e−θ·Ci j B +e−θ·Ci jO
·Qi j , i , j ∈ Z,m ∈ {A,B ,O} (6.1)

The generalized cost of travelling from origin i to destination j using transit is given by equation (6.2).

This cost is the sum of the in-vehicle time cost C T ·DT
i j B , the transit fare pi j B [€/trip], the accessibility

cost ACi j , and the discomfort cost DCi j .
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Ci j B =C T ·DT
i j B +pi j B + ACi j +DCi j , i , j ∈ Z (6.2)

The in-vehicle time cost is obtained by multiplying the unit time cost C T [€/h] and the total in-vehicle

time that users need to spend to go from zone i to zone j by transit (DT
i j B [h]). This total in-vehicle time

is given by DT
i j B = ∑

l∈Z DT
i j lB , where DT

i j lB equals the amount of time spent in zone l while traveling

from zone i to zone j along the shortest path using the transit network. DT
i j lB = 0 if the shortest path

from zone i to zone j using the transit network does not pass through zone l . Thus the in-vehicle time

calculation assumes that the transit users will always take the shortest path (defined as the one with the

minimum travel time) from their origins to their destinations along the transit network. Such a shortest

path may involve some transfers among different transit routes. Here, a transit route is defined as the

sequence of stops served by a transit vehicle (such as a bus). Typically, a particular transit route will

be served multiple times a day. The transit network can be thought of as a collection of all such transit

routes. We denote the set of transit routes by T̂ .

The frequency fk [veh/h] of a transit route is defined as the average number of transit vehicle trips

per unit time serving a transit route k ∈ T̂ . Binary parameter Ni j lk takes value 1 if any part of route k

is used in the shortest path from i to j and if that part of route k passes through zone l . Otherwise it

takes value 0. Then the transit frequency from the perspective of a transit user with origin at zone i and

destination at zone j is given by mink∈T̂ ,l∈Z:Ni j lk=1{ fk }, which corresponds to the minimum frequency

across all transit routes used by the user’s shortest path.

The accessibility cost is the sum of the costs associated with the walking time to and from the transit

stop, and the total waiting time at the transit stop. It is given by equation (6.3). The first component of this

accessibility cost function corresponds to the average walking time cost, which is the product of the cost

per unit walking time, C W [€/h], and the average walking time, DW
i j B [h]. Average walking time is the sum

of the average walking time to the origin transit stop from the user’s actual origin and the average walking

time from the destination transit stop to the user’s actual destination. The second component of the

accessibility cost function in equation (6.3) is inspired by the total waiting time formulation developed

by Tirachini et al. (2010). In their work, the authors expressed this value as time savings, whereas we

simplified their expression to account for time losses. Parameter SW is estimated to account for: (1) the

average waiting time at the transit stops, and (2) the average cost to the user due to the transit departure

times being different from the one that a user prefers the most. As explained by Tirachini et al. (2010),

if the headway (time between vehicles in a transit system) is constant, then the average waiting time

is half of the headway. If none of the departures are scheduled at the user’s most preferred time, then

this parameter SW also accounts for the schedule displacement penalty (sometimes called the schedule
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delay cost) that also increases with increasing headway. Since the headways are inversely proportional

to the frequency, the total average waiting time is as expressed by the second component of equation

(6.3).

ACi j =C W ·DW
i j B + SW

mink∈T̂ ,l∈Z:Ni j lk=1{ fk }
, i , j ∈ Z (6.3)

The discomfort cost represents the extra cost assigned by users to transit travel time because of their

different time perceptions of traveling by transit when compared to car. This cost is dependent on the

crowding of the transit vehicles, which is an increasing function of the number of passengers using tran-

sit and a decreasing function of the transit frequency. Our approach to calculate the discomfort cost is

given by equation (6.4), and it is inspired by the one proposed by Corporation (1996). Here, ψB and ρB

are constant positive parameters and SB is the passenger carrying capacity per transit vehicle.

DCi j =
∑
l∈Z

∑
k∈T̂

DT
i j lB ·C T ·ψB ·

(∑
o,d∈ZqodB ·Nodl k

SB · fk

)ρB

, i , j ∈ Z (6.4)

Let DT
i j A [h] be the car travel time. Let DK

i j A [km] be the total distance traveled by car to go from zone

i to zone j , and C K [e/km] be the vehicle depreciation, fuel and maintenance costs per unit distance.

Also, let C P j A [e] be the cost of cruising for parking and p j A [e] be the parking fee. Here, the term

“cruising” refers to the process of drivers driving around on roads in certain parts of the city or driving

through a large parking garage looking for vacant parking spots. Then the generalized cost (Ci j A) of

driving a car from i to j includes the vehicle depreciation, fuel and maintenance costs, travel time costs,

cruising time costs, and parking fees, as expressed in equation (6.5).

Ci j A =C T ·DT
i j A +

C K ·DK
i j A

τi j
+C P j A +p j A , i , j ∈ Z (6.5)

Here τi j [trips/veh] is the car occupancy rate that links car-trips and person-trips, and is estimated

as the average number of people in a car including the driver. The cruising cost is a function of par-

king saturation and is as expressed in equation (6.6) (Gallo et al., 2011). In this equation α1 and α1 are

constant positive parameters and s A
j [veh] is the parking capacity of zone j . The numerator inside the

parentheses (
∑

i , j∈Z
qi j A

τi j
) is a measure of the total number of cars using a parking location in trip zone j

and the denominator s A
j is the number of parking spots in zone j .

C P j A =α1

∑
i∈Z

qi j A

τi j

S A
j

α2

i , j ∈ Z (6.6)

The generalized cost of not making the trip is estimated as a function of the generalized cost of ma-

king the trip by transit or by car. This cost is determined so as to account for the sensitivity of users

toward not making the trip due to large increases in transit fares and parking fees. We assume this cost
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to be OD dependent so that, similar to the generalized costs of making the trip by transit or car, the

generalized cost of not making the trip is also an increasing function of the OD distance.

Short-term pricing decisions made by each operator in Stage II of the game are modelled by a PSNE

which assumes that each operator maximizes its own profits (or minimizes its own losses). Expression

(6.7) computes the revenue (OF SS
m ) of an operator m in the form of transit fares and parking fees. Since

the total system ownership, maintenance, and operating costs are assumed to be independent of the ac-

tual number of passengers using either system, costs are not affected by the Stage II decisions. Therefore,

maximizing profit in Stage II is equivalent to maximizing revenues, and hence revenue is the objective

function for each operator when making the Stage II decisions. Note that we ignore the per-user variable

costs (if any) to both the operators.

OF SS
m = ∑

i , j∈Z
qi j m ·pi j m (6.7)

Transit fares are assumed to vary according to pre-defined transit zones (not to be confused with trip

zones described earlier in this subsection). This assumption is general enough to include the possibili-

ties of implementing both flat and non-flat transit fares, which have been explored in the literature and

applied in real-world transit systems (e.g. Farber et al., 2014; El-Geneidy et al., 2016). Each OD pair i j

is assumed to belong to exactly one transit zone r , while each transit zone may correspond to multiple

OD pairs. The transit fare for passengers in all OD pairs belonging to the same transit zone is assumed

to be the same. We will assume that the assignment of an OD pair to a transit zone is fixed. Optimizing

this assignment may bring additional benefits to the transit operator, but that is left as a future research

direction. R is the set of all transit zones. So the transit fare from trip zone i to trip zone j (pi j B ) is given

by equation (6.8). Li j r is a binary parameter that is equal to 1 if the OD pair i j belongs to the transit zone

r , and equal to 0 otherwise. p̂r B [e/trip] is the transit fare for transit zone r .

pi j B = ∑
r∈R

p̂r B ·Li j r i , j ∈ Z (6.8)

The parking operator is allowed to charge a fixed number of different parking fee levels in the zones

where the parking is operated by it. These zones are identified by setting the binary constant parameter

γ j ,∀ j ∈ Z to take the value 1, and 0 otherwise. For zones j ∈ Z such that γ j = 0, we assume that suf-

ficient supply of free parking is available and that this parking is not operated by the parking operator.

Let PL be the set of distinct parking fee levels. The number of different parking feel levels (|PL|) is as-

sumed to be fixed whereas the fee (pld A [e/veh]) corresponding to each parking level d as well as the

assignment of the trip zones to different parking fee levels can be optimized by the parking operator. A

parking zone is defined as the set of all trip zones corresponding to the same parking fee level. The as-

signment of trip zones to parking zones is optimized through the parking operator’s profit maximization
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problem. The binary decision variable w j d is set to 1 if a trip zone j belongs to parking zone d , and is 0

otherwise. Equations (6.9) and (6.10) describe the relationships between parking decision variables w j d ,

p j A [e/trip] and pld A , and constant parameters γ j .

p j A = ∑
d∈PL

pld A ·w j d

τi j
, j ∈ Z (6.9)

∑
d∈PL

w j d = γ j , j ∈ Z (6.10)

Equation (6.11) is the parking capacity constraint for each trip zone, while equation (6.12) is the

transit vehicle seating capacity constraint for each transit route within each trip zone through which the

transit route passes.

∑
i∈Z

qi j A

τi j
≤ s A

j , j ∈ Z (6.11)

∑
i , j∈Z

qi j B ·Ni j lk ≤ SB · fk , l ∈ Z,k ∈ T̂ (6.12)

Finally, constraints (6.13) and (6.14) enforce lower and upper limits on the allowable transit fares and

parking fees. The lower limit of 0 ensures non-negativity of prices while the upper limits (pl max
d A ,∀d ∈ PL,

and pmax
r B ,∀r ∈ R) ensure that arbitrarily large prices cannot be charged by the transit and parking ope-

rators. Having upper limits on operator prices is practically reasonable because arbitrarily large prices

are not practical for such applications.

0 ≤ pld A ≤ PLmax
d A , d ∈ PL (6.13)

0 ≤ pr B ≤ P max
r B , r ∈ R,k ∈ T̂ (6.14)

Below is a summary of all the decision variables within the Stage II model.

qi j A – number of car trips made from trip zone i to j . This is a variable affected by both operators’

Stage II decisions.

qi j B – number of transit trips made from trip zone i to j .. This is a variable affected by both ope-

rators’ Stage II decisions.

qi jO – number of trips belonging to the no-travel alternative from trip zone i to j .. This is a variable

affected by both operators’ Stage II decisions.

pr B – transit fare for transit zone r. This is a variable affected by only the transit operator’s Stage II

decisions.

p j A – parking fee for trip zone j . This is a variable affected by only the parking operator’s Stage II

decisions.
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pld A – parking fee for parking zone d . This is a variable affected by only the parking operator’s

Stage II decisions.

w j d – binary variable indicating whether the trip zone j belongs to parking zone d . This variable is

affected by only the parking operator’s Stage II decisions.

C P j A – cruising cost. This is a variable affected by both operators’ Stage II decisions.

DCi j – transit discomfort cost. This is a variable affected by both operators’ Stage II decisions.

Solving for the Stage II PSNE corresponds to optimizing over these decision variables for simultane-

ous solution of the optimization problems of the two operators. Each optimization problem corresponds

to maximizing the revenue expressed by equation (6.7) while satisfying constraints (6.1) to (6.6), and (6.8)

to (6.14).

6.2.2 Long-Term Capacity Decisions

In this section, we describe the model structure, notation, and assumptions for the long-term capa-

city decisions that constitute Stage I of our game-theoretic model. The long-term decisions are related to

the supply side for each operator. For the transit operator, Stage I decisions include the transit frequency

on each transit route and the transit vehicle fleet size, while the parking operator’s Stage I decisions in-

clude the number of parking spots in each trip zone with paid parking.

6.2.2.1 Transit Operator

In this first stage of our game, the transit operator intends to maximize its profit for the known and

fixed transit network by adjusting the route frequencies and by purchasing or selling vehicles in the tran-

sit fleet. For a given set of Stage I decisions by both operators, the transit revenues are obtained from the

Stage II PSNE. Let OF SS
B denote the revenue of the transit operator corresponding to this Stage II PSNE.

It is a function of 1) transit frequency ( f EV
k ) on each route k ∈ T̂ using the transit operator’s existing fleet

of vehicles, 2) transit frequency ( f PV
k ) on each route k ∈ T̂ using the transit operator’s additionally pur-

chased fleet of vehicles, and 3) parking capacity (s A
j ) allocated in each trip zone j ∈ Z with paid parking.

When calculating the costs, the model accounts for the possibility that the ownership, maintenance

and operating costs of existing and newly purchased vehicles in the fleet could be different, for example

due to improved technology in the newer vehicles. Let M S
B be the ownership and maintenance cost per

day of operation that is saved by selling a transit vehicle from the existing fleet. Similarly, let M P
B be the

additional cost of ownership and maintenance per day of a newly purchased transit vehicle. The transit

operating cost per day includes two components: a fixed component per service frequency and a varia-

ble component that is proportional to the distance travelled. The variable component corresponding to
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each transit route is the product of the route frequency ( f EV
k using the existing fleet and f PV

k using the

newly purchased fleet), the distance travelled for each route k ∈ T̂ (D̂K
kB ), and the operating cost per unit

distance (M EV
B for the existing fleet and M PV

B for the newly purchased fleet). So the variable component

of the operating cost is equal to M EV
B ·∑k∈T̂

(
f EV

k · D̂K
kB

)+M PV
B ·∑k∈T̂

(
fk PV · D̂K

kB

)
. The fixed component

of the operating cost is simply the product of a unit cost per trip (M EV F
B for the existing fleet and M PV F

B

for the newly purchased fleet) and the number of trips per day. So, the total fixed component of the

operating cost is given by M EV F
B ·∑k∈T̂ f EV

k +M PV F
B ·∑k∈T̂ f PV

k .

Then the transit operator’s overall profit per day is given by equation (6.15), where vPV and V SV

respectively represent the number of vehicles that are purchased and sold.

OF F S
B =OF

SS
B

(
[ fk ]k∈T̂ , [s A

j ] j∈Z

)
−M EV

B · ∑
k∈t̂

F EV
K · D̂K

kB −M PV
B · ∑

k∈T̂

f PV
k · D̂K

kB

−M EV F
B · ∑

k∈T̂

f EV
k −M PV F

B · ∑
k∈T̂

f PV
k −M PV

B · vPV +M SV
B · vSV

(6.15)

Stage I objective function of the transit operator is to maximize daily profits. For this optimization

problem, the set of constraints is given by (6.16)-(6.21). Transit vehicles cannot be used entire day to

perform transit trips due to vehicle maintenance, cleaning, and refueling time requirements, drivers’

rest requirements, and lack of demand (e.g., late at night). Let µ denote that fraction of a day for which

a vehicle is actually available to make transit trips. This is sometimes called the maximum allowable

usage intensity for the transit vehicle. Let V 0 denote the existing number of vehicles in the fleet. Then

constraints (6.16) and (6.17), respectively, ensure that the number of vehicles in the newly purchased

and the existing fleets are sufficient to provide their corresponding frequencies across all transit routes.

Constraint (6.18) ensures that the number of vehicles to be sold does not exceed the number of vehicles

in the existing fleet, and the frequency for each route is defined by constraint (6.19). Constraints (6.20)

and (6.21) ensure that the frequencies and number of vehicles take only non-negative integer values.

Finally, constraints (6.22) and (6.23) enforce any upper and lower limits on the main decision variables.

If there are no upper limits to be enforced, then we can use sufficiently large positive integers instead. If

there are no lower limits to be enforced, then we can use zeros as lower limits.

vPV ·µ≥ ∑
k∈T̂

f PV
k · D̂K

kB (6.16)

(V 0 − vSV ) ·µ≥ ∑
k∈T̂

f EV
k · D̂k

kB (6.17)

vSV ≤V 0 (6.18)

fk = f EV
k + f PV

k , k ∈ T̂ (6.19)

vV N , v N ∈Z+
0 (6.20)

fk , f EV
k , f PV

k ∈ ΓB ,k ∈ T̂ (6.21)
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V PV
mi n ≤ vPV ≤V PV

max , V SV
mi n ≤ vSV ≤V SV

max (6.22)

Fk,mi n ≤ fk ≤ Fk,max , F EV
k,mi n ≤ f EV

k ≤ F EV
k,max ,F PV

k,mi n ≤ f PV
k ≤ F PV

k,max , k ∈ T̂ (6.23)

The Stage I optimization problem for the transit operator thus consists of obtaining the optimal va-

lues of decision variables vPV , vSV and f EV
k , f PV

k ∀k ∈ T̂ to maximize the transit operator profit given by

equation (6.15) while ensuring that the constraints (6.16)-(6.23) are satisfied.

6.2.2.2 Parking Operator

The parking operator maximizes its overall profit by deciding the parking capacity across all trip zo-

nes with paid parking in Stage I of the game. Overall profit is obtained by subtracting the parking system

operating costs and the costs of capacity addition from the parking fee revenues. The parking fee reve-

nues are given by the Stage II PSNE. Let OF
SS
A denote the revenue of the parking operator corresponding

to this Stage II PSNE. Similar to the revenue (OF
SS
B ) of the transit operator described earlier in this sub-

section, OF
SS
A is also a function of 1) transit frequency ( fk ) on each route k ∈ T̂ , and 2) parking capacity

(s A
j ) allocated in each trip zone j ∈ Z with paid parking.

Let yU
j denote the number of parking spots added to parking capacity of trip zone j ∈ Z. Let yP

j be

a binary decision variable that equals 1 if the parking capacity of trip zone j ∈ Z is increased, and is 0

otherwise. Also, let x j be the number of parking spots removed from zone j ∈ Z. The operating costs

are obtained by multiplying the unit operating cost (MV
A ) per parking spot by the total parking capacity

managed by the parking operator (i.e., the number of parking spots in all trip zones with γ j = 1). The

cost of parking capacity addition has two components: a variable component obtained by multiplying

the number of added spots in each zone (yU
j ,∀ j ∈ Z) by the unit cost (EV

A ) per added spot, and a fixed

component (E F
A ) per trip zone for which the decision to expand capacity is made (that is, yP

j = 1). The

parking operator may also decide to decrease the parking capacity by x j spots for a given zone j . Such

decision does not entail any cost by itself, but helps in decreasing the operator’s operating expenses,

while also potentially reducing its parking revenues.

Then the parking operator’s overall profit per day is given by equation (6.24).

OF F S
A =OF

SS
A

(
[ fk ]k∈T̂ , [s A

j ] j∈Z

)
−MV

A · ∑
j∈Z

s A
j ·γ j −EV

A · ∑
j∈Z

yU
j −E F

A · ∑
j∈Z

yP
j (6.24)

The objective function of the parking operator is to maximize daily profit. For this optimization

problem, the set of constraints is given by (6.25)-(6.32). Let S A0
j be the existing parking capacity of trip

zone j ∈ Z. Constraints (6.25) relate the value for the decision variable s A
j , with the existing parking

capacity, the number of added parking spots and the number of removed parking spots in that zone.

Constraints (6.26) and (6.27) together ensure that decision variable yP
l is set to 1 if and only if decision
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variable yU
j is positive. Constraints (6.28) and (6.29) guarantee that only the zones where parking is

managed by the parking operator (i.e., the zones with γ j = 1) will have the possibility of having their

parking capacities adjusted. Constraints (6.30) ensure that the binary variables yP
l can only take a value

of 0 or 1, while constraints (6.31) ensure that the variables yU
j and x j related respectively to the addition

and removal of capacity can only take non-negative integer values. Finally, constraints (6.32) enforce any

upper and lower limits on the main decision variables. If there are no upper limits to be enforced, then

we can use sufficiently large positive integers instead. If there are no lower limits to be enforced, then we

can use zeros as lower limits.

s A
j = S A0

j + yU
j −x j , j ∈ Z (6.25)

yU
j ≤ M · yP

l , j ∈ Z (6.26)

yU
j ≥ yP

l , j ∈ Z (6.27)

yP
l ≤ γ j , j ∈ Z (6.28)

x j ≤ γ j , j ∈ Z (6.29)

yP
j ∈ {0,1}, j ∈ Z (6.30)

s A
j , yU

j , x j ∈Z+
0 , j ∈ Z (6.31)

S A
j ,min ≤ s A

j ≤ S A
j ,max,Y U

j ,min ≤ yU
j ≤ Y U

j ,max, X j ,min ≤ x j ≤ X j ,max, j ∈ Z (6.32)

Stage I optimization problem for the parking operator thus consists of obtaining the optimal values

of decision variables yP
j ∈ {0,1}, j ∈ Z and yU

j , x j ∈Z+
0 , j ∈ Z to maximize the parking operator profit given

by equation (6.24) while ensuring that the constraints (6.25)-(6.32) are satisfied. The upper and lower

bounds on the parking capacity variables ensure that the feasible space of the parking operator’s Stage I

optimization problem is a compact set. The values of the transit frequency ( fk ,k ∈ T̂ ) are held constant

in this problem.

6.3 Theoretical Properties

In this section, we describe the theoretical properties of our model. We use the SPPSNE as the solu-

tion concept to solve our two-stage game due to its common usage in literature and its intuitive practical

appeal. This solution concept requires the existence of a PSNE at each stage of the game. Moreover, if

there are multiple PSNE for either stage of the game then that often reduces the credibility of the solu-

tion concept for characterizing real-world game situations. Therefore, we need to verify the existence

and uniqueness properties of the PSNE at each stage.

Due to the complexity of our model, we are able to prove the existence of the PSNE only upon making

some additional simplifications. Specifically, we make two additional simplifications. First, we ignore the
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discomfort cost of transit and the cruising cost of parking, i.e., we set ψB = α1 = 0. Second, we assume

that, if we ignore the integer domain of the Stage I decision variables, then the Stage I payoff functions

of both operators are concave in their own decision variables and the corresponding second derivatives

exists. Note that we don’t need to relax the domain of the decision variables for the proofs to hold, we

simply need concave payoffs with well-defined second derivatives when ignoring the integer domain of

the variables.

The uniqueness of the PSNE at each stage is demonstrated through numerically experiments. A PSNE

is a set of decisions by all players such that each player’s decision is a best response to the decisions of

other players, as defined in Definition 6.1.

Definition 6.1. (Best-response): Let N = {1, . . . ,n} be the set of players. Let a = (a1, a2, . . . , an) ∈ A = A1 ×
A2 × . . .× An be a strategy profile (or an action profile) where Ai is the set of all possible actions of player

i . Let u = (u1,u2, . . . ,un) be the profile of utility functions with the player i ’s utility function given by

ui : A → R. Finally, for each player i , we denote by index −i , the set of all other players. Then, a∗
i ∈ Ai is a

best response to a−i ∈ A−i if ∀ai ∈ Ai ,ui (a∗
i , a−i ) ≥ ui (ai , a−i )

In our game model, the transit operator and the parking operator are the two players in each stage.

Player strategies for Stage II are their respective pricing decisions, whereas the Stage I strategies are the

transit frequencies and the parking capacities respectively. Finally, the Stage II payoff functions are given

by equation (6.7) for both players, and Stage I payoff functions are given by equations (6.15) and (6.24)

for transit and parking operator respectively. These functions relate the payoff of each player with both

players’ strategies.

We invoke the general theorem by Tian (2015) to prove the existence of a PSNE in each stage of our

game. In this work, the author establishes a single condition, called recursive diagonal transfer conti-

nuity, which is a necessary and sufficient condition for the existence of a PSNE in games with arbitrary

compact strategy spaces and arbitrary payoff functions. An upsetting relationship between two action

profiles x and y expressed by y Â x, is said to hold if and only if ∃i ∈ N s.t. ui (yi , x−i ) > ui (x). In that

case, strategy profile y is said to upset strategy profile x. Thus, x∗ ∈ A is a PSNE if and only if there does

not exist any strategy y ∈ A that upsets x∗. Let U : A × A → R be the aggregator function defined as

U (y, x) =∑
i∈N ui (yi , x−i ),∀(x, y) ∈ A× A. The property of recursive diagonal transfer continuity, which is

defined in Definition 6.3, is the necessary and sufficient condition to ensure the existence of a PSNE as

detailed in Theorem 6.1 (Tian, 2015). But before that, we define the term ‘recursively upset’, in Definition

6.2, because it is needed for the definition of recursive diagonal transfer continuity.

Definition 6.2. A strategy profile y0 ∈ A is said to be recursively upset by z ∈ A if and only if there exists

a finite set of deviation strategy profiles {y1, y2, . . . , ym−1, z} such that U (y1, y0) > U (y0, y0),U (y2, y1) >
U (y1, y1), . . . ,U (z, ym−1) >U (ym−1, ym−1).
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Definition 6.3. (Recursive diagonal transfer continuity, Tian (2015)): A game G = (Ai ,ui )i∈N is said to

have the recursive diagonal transfer continuity property iff, whenever U (y, x) >U (x, x) for x, y ∈ A, there

exists a strategy profile y0 ∈ A (possibly y0 = x) and a neighbourhood Vx ⊂ A of x such that U (z, x ′) >
U (x ′, x ′)∀x ′ ∈Vx for any z that recursively upsets y0.

Theorem 6.1. (Tian (2015)): Let A be a compact set and ui be arbitrary functions with codomain in R.

Then the game G = (Ai ,ui )I∈N possesses a PSNE if and only if it has the recursive diagonal transfer conti-

nuity property.

6.3.1 The existence of a Nash equilibrium for Stage II

We proceed by showing that, if we set ψB = α1 = 0, then our Stage II subgame has the recursive

diagonal transfer continuity property. With ψB = α1 = 0, the Stage II payoff functions simplify to those

shown in equations (6.33) and (6.34)) for the transit and parking operators, respectively.

SOF SS
B = ∑

i , j∈Z

e
−θ·

(
C T ·DT

i j B+pi j B+ACi j

)

e
−θ·

(
C T ·DT

i j B+pi j B+ACi j

)
+e

−θ·
(

C T ·DT
i j A+

C K ·DK
i j A

τi j
+p j A

)
+e−θ·Ci jO

·Qi j ·pi j B = ∑
i , j∈Z

πi j B (6.33)

SOF SS
A = ∑

i , j∈Z

e
−θ·

(
C T ·DT

i j A+
C K ·DK

i j A
τi j

+p j A

)

e
−θ·

(
C T ·DT

i j B+pi j B+ACi j

)
+e

−θ·
(

C T ·DT
i j A+

C K ·DK
i j A

τi j
+p j A

)
+e−θ·Ci jO

·Qi j ·pi j A = ∑
i , j∈Z

πi j A (6.34)

Here πi j B and πi j A are defined as follows:

πi j B = e
−θ·

(
C T ·DT

i j B+pi j B+ACi j

)

e
−θ·

(
C T ·DT

i j B+pi j B+ACi j

)
+e

−θ·
(

C T ·DT
i j A+

C K ·DK
i j A

τi j
+p j A

)
+e−θ·Ci jO

·Qi j ·pi j B (6.35)

πi j A = e
−θ·

(
C T ·DT

i j A+
C K ·DK

i j A
τi j

+p j A

)

e
−θ·

(
C T ·DT

i j B+pi j B+ACi j

)
+e

−θ·
(

C T ·DT
i j A+

C K ·DK
i j A

τi j
+p j A

)
+e−θ·Ci jO

·Qi j ·pi j A (6.36)

SOF SS
B and SOF SS

A are both continuous functions defined over compact sets. This guarantees the

existence of maximum and minimum values for these functions. Let p∗
B = (pi j B )i , j∈Z and p∗

A = (p j A) j∈Z

be the price vectors that maximize SOF SS
B and SOF SS

A , respectively. Appendix B, proves that the functi-

ons SOF SS
B and SOF SS

A are concave, sustaining the hypothesis that p∗
B and p∗

A are local maxima of each

payoff function SOF SS
B and SOF SS

A , respectively.

Let us now suppose that the aggregator function verifies U (x, y) > U (x, x) for some x = (x1, x2) and

y = (y1, y2) that satisfy constraints (6.13)-(6.14), where e.g. (x1, x2) = (
(pi j B )i , j∈Z, (p j A) j∈Z

)
. Let y0 =

(p∗
B , p∗

A) and Vx be a neighbourhood of x such that (p∗
B , p∗

A) is the unique local maximum in Vx . Since

U (y, y0) <U (y0, y0), for all y , it is impossible to find any securing strategy y1 (i.e., a strategy in the neigh-

borhood Vx with a strictly higher payoff) such that U (y1, y0) >U (y0, y0) . Hence the recursive diagonal
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transfer continuity holds. And, by Theorem 6.1, this subgame has a PSNE.

6.3.2 The existence of a Nash equilibrium for Stage I

We proceed by showing that by ignoring the assumptions of having non-negative integer domain of

the Stage I decision variables frequencies
(
[ f EV

k , f V P
k ]k∈T̂

)
and parking spaces a

(
[s A

j ] j∈Z

)
, we have con-

cave payoff functions in their own decision variables and that the second derivative exists. This is gua-

ranteed by defining the revenues OF SS
B

(
[ fk ]k∈T̂ , [s A

j ] j∈Z

)
and OF SS

A

(
[ fk ]k∈T̂ , [s A

j ] j∈Z

)
of the payoff functi-

ons (6.15) and (6.24), respectively, as concave functions with continues second derivatives. Note that the

second derivative of payoff functions (6.15) and (6.24), with compact sets of RT̂×#Z as domain, are equal

to the second derivative of the revenue functions OF SS
B

(
[ fk ]k∈T̂ , [s A

j ] j∈Z

)
and OF SS

A

(
[ fk ]k∈T̂ , [s A

j ] j∈Z

)
with

the same domains, respectively. The existence of local maxima values for f̃ EV
k , f̃ PV

k and s̃ A
j is ensured by

these assumptions.

Let f
EV
k , f

PV
k and s A

j be the non-negative integer frequencies and parking capacities values clo-

sest to f̃ EV
k , f̃ PV

k and s̃ A
j , respectively. Assuming that the aggregator function verifies U (x, y) > U (x, x)

for some x = (x1, x2) and y = (y1, y2) that satisfy constraints (6.23) and (6.32), where e.g. (x1, x2) =(
[ f EV

k , f PV
k ], [s A

j ] j∈Z

)
. Let y0 =

(
[ f

EV
k , f

PV
k ], s A

k

)
and Vx be a neighbourhood of x such that

(
[ f

EV
k , f

PV
k ], s A

k

)
is unique in Vx . Since U (y, y0) <U (y0, y0), for all y that satisfies constraints (6.23) and (6.28), it is impos-

sible to find any securing strategy y1 (i.e., a strategy in the neighborhood Vx with a strictly higher payoff)

such that U (y1, y0) >U (y0, y0). Hence the recursive diagonal transfer continuity holds. And, by Theorem

6.1, this subgame has a PSNE.

6.3.3 The uniqueness of a Nash equilibrium for Stage II and Stage I

The unicity of a Nash equilibrium is explored for the two stages by taking into account a numeri-

cal experiment, because it is quite challenging to analytical proven this characteristic for the previously

detailed functions with complex expressions.

These numerical experiments took into consideration features that are detailed in the following sec-

tion, and they were developed as follows:

1. Randomly generate a case study setup as detailed in Section 6.5;

2. Randomly select initial values for the following variables: transit fares and parking fees for Stage

II and transit frequencies and parking fees for Stage I;

3. For each initial values of each stage, apply an iterative response chain taking into account the

optimization models that integrate each stage. This chain considers that each player iteratively

optimizes its own payoff function by reacting to the other’s player decisions, and it ends when
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neither player is able to further improve its profit by changing its own decisions, achieving a PSNE.

In particular, the functions OF SS
B and OF SS

A are detailed for Stage I as explained on the second step

of the Solution Method developed in Section 6.4.

For simplicity, we considered the cities explored in Section 6.5 as the ones required by step 1 and

applied this 3-step small procedure to draw conclusions regarding the unicity of the Nash equilibrium.

By comparing the several returned PSNE, we conclude that the final combination of prices for the Stage

II and capacities for Stage I were systematically the same regardless the set starting point. Therefore, the

unicity of a Nash equilibrium in each one of the two stages of our model is confirmed.

It is worth highlighting that this procedure does not assumed any of the simplified considerations

made to show the existence of PSNE. In this sense, we showed that the inclusion of both discomfort cost

functions and cruising for parking cost functions into the payoff functions of Stage II do not jeopardize

the existence of a PSNE in the analyzed case-studies. In fact, this procedure shows that the use of PSNE

concepts is a suitable approach to solve the developed two stage game-theoretic model.

6.4 Solution Method

Due to the extremely large size of the players’ overall decision spaces and the complexity of their

profit functions, we develop an approximate solution method consisting of the following three steps:

1) Solve for a pure Nash equilibrium of Stage II for several randomly generated combinations of

the decisions made during Stage I by both operators;

2) Approximate revenues estimated for Stage II during Step 1 for each operator as functions of the

decisions made by each operator during Stage I;

3) Use these revenue approximations to find PSNE of Stage I.

Step 1 and 3 are quite similar, each one involving computationally finding a PSNE for a 2-player

game. This is performed via a sequential optimization heuristic, which is a standard method that has

been commonly used in prior transportation studies that use computational approaches to solve game-

theoretic models (e.g. Martín and Román, 2003; Adler, 2001; 2005; Harder and Vaze, 2017). The idea is to

implement an iterative response chain, where each player iteratively optimizes its own profit by reacting

to the other player’s decision. This response chain will stop when neither player is able to further improve

its profit by changing its own decision. This is when a PSNE is achieved.

Step 2 links the two stages of the model through a polynomial regression. Profit of each operator in

the Stage I game is a function of the capacity decisions of both operators. However, it is a complex func-

tion that manifests through a second stage PSNE, and does not have a closed form expression. So, in Step
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2, we approximate it using a closed form expression of the transit frequencies and parking capacities and

identify the best fit parameter estimates using a regression. The independent variables in this regression

are the decision variables of the first stage game and the dependent variable is the profit of each player

at the Stage II PSNE.

Step 1 and 3 requires repeatedly solving combinatorial and nonlinear optimization formulations.

These are very challenging optimization problems (Burer and Letchford, 2012; Hemmecke et al., 2010),

which only a few software products are capable of handling effectively. Baron Software (Tawarmalani

and Sahinidis, 2005) is one of the most suitable software products to deal with nonlinearities and combi-

natorial formulations (Burer and Letchford, 2012; Bussieck and Vigerske, 2014). It uses a global optimi-

zation approach based on polyhedral branch-and-cut algorithms (Kesavan and Barton, 2000). In Step 2,

we compared various candidate regression model specifications, and used a k-fold cross-validation ap-

proach to identify the best among all the specifications evaluated by us. More details on the regression

model specification, estimation and validation process are provided in Section 6.7.

6.5 Case Study Setup

In this section we present our computational framework to generate instances of cities inspired by

the real-world data. This framework uses real-world data in order to ensure that case studies match,

behavior as closely as possible, with the demand-supply dynamics of real cities and their users’.

6.5.1 City Configuration

The first step in creating a representative instance of a city is to determine its size and the number of

zones in it. For simplicity, we divided our cities into some number (Ncenter) of zones corresponding to the

city center and some number (Nsuburbs). The geographic configuration of real cities is often dependent

on, among other factors, the number of inhabitants (PC ), the number of employment opportunities

(EC ) and the population density of the city (DC ). We generated these three values for each city by taking

into account their ranges for medium-sized cities as listed in the recent reports from the Organization for

Economic Co-operation and Development (OECD, 2016). For simplicity, we assumed the city instances

to be square in shape with the length of each side given by LC =
√

PC
DC .

The coordinates, (xi , yi ),∀I ∈ Z, of each zone’s centroid are randomly generated as follows. For the

zones in the city center, the centroids are randomly generated within a smaller square at the center of

the city, with its length proportional to the city’s length (see Figure 6.1). For the suburban zones, the

centroids are randomly located within the city but outside the aforementioned smaller square. Once

the coordinates for the centroids of all zones are determined, the border of each zone is determined by

drawing Voronoy diagrams (Aurenhammer, 1991) around the centroids.
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The distance between two adjacent zones is calculated as the sum of the Euclidean distances from

each zones centroid to the mid-point of their shared border. This is exemplified by the lines showing

the distances between zones A and B, and zones B and C, in Figure 6.1. Using this process, all pairs

of adjacent zone centroids are connected. The distance between non-adjacent zones is calculated by

determining the shortest-path along this network of line segments. For example, the path between the

centroids of zones A and C passes through the centroid of zone B as shown in Figure 6.1.

Figure 6.1: Example of a randomly generated city with 20 zones.

Different zones in a city may have different characteristics. A zone is considered residential if hou-

sing, rather than commercial/industrial activity, dominates it. These characteristics identify if a zone is a

trip generator (residential) or a trip attractor (commercial/industrial). This assignment of zones to types

(residential versus commercial/industrial) is randomly performed while ensuring that the zones in the

city center have a greater probability of being commercial/industrial zones while those in the suburbs

have a greater probability of being residential zones. Using this rationale, the number of inhabitants

(PCi ) and the number of employment opportunities (ECi ) for a given zone i are randomly generated as

shown in equation (6.37), where µ[a,b] is a random value between a and b. The values of constants C1

and C2 are chosen so that
∑

i∈Z PCi = PC and
∑

i∈Z ECi = EC .

PCi =


µ[0.5,1] ·C1, if i is a residential zone

µ[0,0.5] ·C1, otherwise

ECi =


µ[0,0.25] ·C2, if i is a residential zone

µ[0.75,1] ·C2, otherwise

(6.37)
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The average distance by car for each OD pair is calculated by multiplying the Euclidean distance

between the origin and destination zone centroids with a uniform random number in the interval [1,2].

This accounts for the fact that cars often need to travel longer than the Euclidean distances to go from

one geographical location to another. The average travel time by car, DT
i j A , is estimated by the ratios of

the distance traveled in each zone to the average daily speed for that same zone, which is then summed

across all zones on the shortest path. These average daily speed values for each zone are generated

randomly within the interval [20,40] km/h (Table 6.1), which is in line with the average speeds observed

in 15 of the most congested European cities (Statista, 2008).

When designing the transit networks, we assumed the number of different routes in a city to be

known and that going from one zone to another requires at most one transfer between transit routes.

As explained in Section 6.6, we created and computationally tested multiple cities with varying number

of transit routes. This transit network is iteratively built as follows. From the set of zones Z, two zones are

randomly selected and the shortest path between them is calculated using the Dijkstra’s Algorithm over

the network of line segments joining zone centroids with the midpoints of their shared borders. This

path will define a transit route. Next, two other zones are randomly selected from the set of zones that

do not belong to any of the routes defined so far and the shortest path is obtained again. This procedure

will continue until all the zones belong to some route or if only one zone remains at the end (depending

on whether the city has odd or even number of zones). In the case of a single zone remaining at the

end, this zone will be added to the route that causes minimum change with this inclusion. To choose

this route it is assumed that some zone of the route is adjacent to the zone that will be added and that

this route is the one whose length is the closest to the length of the route without adding this left out

zone. If the number of routes generated by this process exceeds the pre-determined number of different

transit routes, a readjustment is performed by combining the routes with the highest number of over-

lapping connected zones. If the number of generated routes is lower than the predetermined number,

we selected the largest routes and split each of them into two routes at each route’s midpoint zone. Note

that these two adjustments are done while ensuring that at most one transfer is required for traveling

between each origin and each destination. The transit network is the set of all the transit routes genera-

ted through this process. The transit distance results from multiplying the shortest path distance along

the transit network by a random number in the interval [1.5,2.5]. This is intended to account for the fact

that a transit route usually requires greater travel distance than its Euclidean distance. If a transfer is ne-

eded, an additional of 10% transit distance is added to account for transfer times and additional waiting

times at the transfer. The transit travel times DT
i j B and DT

i j lB are calculated by taking into account the

transit distances and the average transit speed for each zone, with the latter randomly selected from the

interval [12,27] km/h (Neff and Dickens, 2013).

The average walking time to and from a transit stop is calculated using a walking distance equal to an
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uniform random percentage between 5% and 25% of the average distance between the zone centroid and

the mid-point of every side of the zone border, and an average walking speed of 5 km/h (Mohler et al.,

2007). This percentage range of walking distances is motivated by the assumption that the residential

locations of people in each zone are more concentrated in the area near the zone centroid.

6.5.2 Model Parameters

In this subsection, we describe the process used to simulate the various parameters used in the users’

utility expressions. Moreover, we also describe the process to simulate the prevalent values of transit

route frequencies, parking lot capacities, transit fares and parking fees. These values are assumed to

prevail in these simulated cities before the implementation of decision support tools based on our game-

theoretic models. These prevalent conditions thus serve as benchmarks for comparison to our results.

To keep the discussion simple, we defer the detailed explanation of the process used to simulate the

unconstrained demand values Qi j and the generalized cost of not making the trip Ci jO to Appendix A.

As before, all parameters and costs in this subsection are simulated such that the values are consistent

with the real-world ranges of these parameters. Table 6.1 summarizes the most important parameters

used in our computational experiments.

Table 6.1: Summary of the most important parameters used for the computational experiments.

Parameter Interval

Average car speed (per zone) [20, 40] km/h

Average transit speed (per zone) [12, 27] km/h

Average walking speed (per pair of zones) 5 km/h

Unit cost of time (C T ) [6,9]e/hour

Average number of trips per the day per person (π) [2, 4] trips/day

Car occupancy rate (τi j )(per pair of zones) [1.2, 2] pax/car

Vehicle depreciation, fuel and maintenance costs per driving distance (C K ) [0.3, 0.4]e/km

Transit capacity per vehicle (SB ) [50, 70] pax

Accessibility cost parameter (SW ) [12, 160]e

Transit fare (pi j B ) [0.5, 3]e/transit trip

Parking fee for non-residential zones (p j A ) [1,6]e/parking

The parameter θ that captures the sensitivity of travelers toward the generalized cost is randomly

generated in the interval [0.2,0.6] (Litman, 2004; Paulley et al., 2006; Sharaby and Shiftan, 2012).

The unit cost of travel time (C T ) is randomly generated in the interval [6,8] e/hour, following the
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actual values for Portugal (INE, 2015). The average number of daily trips π is randomly generated in the

range [2,4] for the generated city, according to the US and European trends (Santos et al., 2009; Pasaoglu,

2012). This parameter is used to estimate the unconstrained demand, as shown in Appendix A. The

capacity of a transit vehicle is generated as a uniform random number in [50,70] passengers (Vuchic,

2005; Group et al., 2013). The parameter SW included in the accessibility cost function is generated as a

uniform random number in [12,160]e/day (Wardman, 2004; Wardman et al., 2004; Vuchic, 2005; Psarros

et al., 2011).

The cost per unit distance travelled by cars is generated as a uniform random number in [0.3,0.4]

e/km and includes the costs related to vehicle depreciation, fuel and maintenance (Association, 2016;

Litman, 2009). The car occupancy rate is randomly generated uniformly in the interval [1.2,2] pax/veh

for each OD pair (Santos et al., 2011; Agency, 2010).

The prevalent transit fares on all routes are generated as uniform random numbers in the interval

[0.5,3]e/trip, while the prevalent parking fees in all zones are generated as uniform random numbers in

[1,6] e/parking (of Travel, 2010; Pasaoglu et al., 2012). The transit frequency for each route is randomly

generated within the interval [13,156] trips/day. The parking capacity of each zone is set as a proportion

of the total demand with that destination zone. In the case of a paid parking zone, this proportion is

randomly generated in the interval [0.4,0.6], and in case of a free parking zone, in the interval [0.7,0.9].

6.6 Computational Study

In this section, we describe the set of computational experiments conducted using our two-stage

game-theoretic model and highlight the major computational results. By applying our framework to

several simulated cities, we draw conclusions regarding the suitability of our modeling approach and

solution method. All computational experiments were conducted on a personal computer with a 3.5 GHz

i7 processor with 32 GB RAM, and a Windows 10 64-bit operating system. All optimization problems were

solved using the Baron Software (Tawarmalani and Sahinidis, 2005). We present a preliminary analysis

of the computational run-times, and a heuristic enhancement to expedite the computations. Using the

case study setup explained in Section 6.5, five cities (C1, C2, C3, C4, and C5) were designed, with the

number of trip zones equal to 5, 10, 15, 20, and 25 respectively. Table 6.2 lists the number of trip zones,

parking zones and transit routes for each city.

Table 6.2: Characteristics of each city’s parking and transit supply .

City C1 C2 C3 C4 C5

Number of Trip Zones 5 10 15 20 25

Number of Parking Zones 2 4 6 8 10

Number of Routes 2 3 4 5 5
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We perform preliminary computational analysis of these five cities by solving for the Stage II PSNE

using the iterative optimizations approach described in Section 6.4, for 20 different randomly generated

combinations of transit frequencies and parking capacities for each city. The transit frequencies were

varied between 13 and 156 daily trips, whereas the parking capacity in each trip zone with paid parking

was varied between 500 and 8,000 parking spots. A summary of computational run times for this Stage

II solution process is in Table 6.3.

Table 6.3: Computational run times for solving to Stage II PSNE directly using Baron Software.

City C1 C2 C3 C4 C5

Average (min) 460.0 50.3 952.7 851.1 1099.3

Standard Deviation (min) 415.1 97.0 578.3 750.1 837.8

Minimum (min) 23.0 2.0 105.2 14.6 99.4

Maximum (min) 1460.8 462.3 2066.1 2969.5 3082.0

Table 6.3 demonstrates that the Stage II solution step itself is extremely time consuming. Even for

small-sized cities like C1, across the 20 computational runs, it took between 23 and 1461 minutes to

solve this step. For cities with somewhat larger sizes, like C5, the Stage II run times ranged between 99

and 3082 minutes across the 20 computational runs. In general, run times of several hours, or even days,

are usually not a big issue when solving transportation planning problems that are strategic in nature.

However, as will be shown in the next subsection, the solution to the overall two-stage game model requi-

res repeating this solution process several hundred (or more) times for evaluating the operator revenues

as functions of Stage I decisions. Therefore, the overall computational run times for a single instance of

a city may take months and/or may require using several computers in parallel.

Upon further investigation, we find the main reason of these large computational times to be the

two-way dependency between the number of users choosing transit and driving (qi j m values given by

equation (6.1)) on the one hand, and the transit discomfort costs (DCi j values given by equation (6.4))

and the cruising costs for parking (C P j A values given by equation (6.6)) on the other hand. The values

of qi j m∀i , j ∈ Z,m ∈ {A,B} are affected by the values of DCi j , ∀i , j ∈ Z, and C P j A , ∀ j ∈ Z, through equa-

tion (6.1); and the values of DCi j , ∀i , j ∈ Z and C P j A , ∀ j ∈ Z are affected by those of qi j m , ∀i , j ∈ Z,

m ∈ {A,B} values through equations (6.4) and (6.6) respectively. Equations (6.1), (6.4) and (6.6) are all

highly non-linear. Thus, for any particular set of pricing decisions by the operators, the optimization

model needs to satisfy non-linear constraints with such two-way dependencies. By carefully observing

the performance of the optimization solution process, we find that it often reaches close to the eventual

optimal prices quickly, but then spends a large amount of additional time to make sure that equations

(6.1), (6.4) and (6.6) are satisfied by adjusting the passenger flows and mode shares. Therefore, we de-

veloped the following two-step heuristic procedure to decrease the computational times for the Stage II

solution step.
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A) First, we set a maximum computational time of 5 minutes for Baron Software for solving each

operator’s Stage II optimization problem and obtain a set of pricing decisions.

B) Now we fix prices at the levels obtained in Step A and again solve the Stage II optimization

problem for that same operator using Baron. In this step, we do not enforce any maximum com-

putational time restrictions.

We implemented this procedure to solve for the Stage II PSNE for the same five instances of cities

(C1 through C5) using the same inputs. Comparing the results of this two-step heuristic procedure with

those obtained by delegating the optimization problem directly to Baron, we found that the exact same

PSNE was maintained in each of the 20 computational instances for each of the five cities. The com-

putational times for the two-step heuristic shown in Table 6.4, when compared to those in Table ??,

show a significant decrease in run-times (shown in square brackets in Table 6.4,) ranging between 91%

and 97%. These results validate the use of this two-step heuristic as a much faster alternative solution

method. This faster heuristic approach was used for conducting all computational experiments presen-

ted in Section 6.7.

Table 6.4: Computational run times for solving to Stage II PSNE using the two-step heuristic approach.

City C1 C2 C3 C4 C5

Average (min) [% improvement] 13.1 [97] 4.3 [91] 46.3 [95] 52.2 [94] 89.9 [92]

Standard Deviation (min) 9.8 3.5 84.3 38.9 105.7

Maximum (min) [% improvement] 2.8 [88] 1.5 [25] 5.1 [95] 18.3 [-25] 29.7 [70]

Minimum (min) [% improvement] 35.3 [98] 17.7 [96] 347.2 [83] 157.6 [95] 452.4 [85]

6.7 Model Results

In this section, we present three different case studies generated by the case study setup detailed

in Section 6.5, with 25, 10 and 5 zones, respectively (Figure 6.2). Let us denote these three cities by MC

(for ‘Medium City’), SC (for ‘Small City’) and TC (for ‘Tiny City’), respectively. Subsection 6.7.1, provides a

summary of their most important parameters. Then, subsections 6.7.2, 6.7.3 and 6.7.4 present the model

results for MC, SC and TC respectively. For each city, we also present a series of results of sensitivity

analyses to the model parameters.

6.7.1 Test City Configurations

The number of inhabitants and the number of daily trips in each city depend on the number of trip

zones, which are shown in Figure 6.2. MC has 230,700 inhabitants, SC has 47,700, and TC has 27,770

inhabitants; while the number of daily trips equals 285,200, 71,900 and 50,700 respectively. We assumed
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that the probability of being a residential zone is 0% for a zone in the city center, and 100% for a suburban

zone. Thus, these three cities have all residential zones in the suburbs and all commercial/industrial

zones in the city center.

Figure 6.2: Trip zones in the three randomly-generated cities.

The average speeds of travel by cars and transit vehicles are 27.6 km/h and 17.4 km/h respectively for

MC, 29.7 km/h and 19.5 km/h respectively for SC, and 28.3 km/h and 19.3 km/h respectively for TC. The

hourly costs of time for MC, SC and TC are set to 6.4e, 6.1e and 7.4e, respectively.

The vehicles in the transit fleet in MC and TC are assumed to have a capacity of 63 pax/veh each,

while the capacity of the transit vehicles in SC is assumed to be 51 pax/veh. Parameter SW in the accessi-

bility cost function takes values of 36, 154 and 19 in MC, SC and TC respectively, while the discomfort cost

function parameter ψB takes values 1.9e, 2e and 1.6e respectively. This latter parameter indicates that

if the transit vehicle crowding is at its maximum, then an hour spent inside the transit vehicle is equiva-

lent, in terms of the associated discomfort, to 1+ψB hours spent inside a car. The power parameter of

this discomfort cost function is assumed to be the same, ρB = 2.6 , for the three cities.

The average cost per kilometer of traveling by car and the car occupancy rates are the same for the

three cities, taking values of 0.324 e/km and 1.2 pax/veh respectively. The parameters α1 and α2 of the

cruising cost function are also the same for the three cities, and are assumed to take values 9 and 42

respectively (Gallo et al., 2011). The average costs of not taking the trip are equal to 9.32e, 9.5e and 7.3e

for MC, SC and TC, respectively.

The parameter θ in the mode choice function (6.1) representing the travelers’ sensitivity to the ge-

neralized trip costs is assumed to take values of 0.42, 0.49 and 0.48 for MC, SC and TC respectively. The

transit routes are shown in Figures 6.3a, 6.3b and 6.3c, while the prevalent parking capacity for each trip

zone is shown in Figures 6.3d, 6.3e and 6.3f. As shown in these figures, the transit routes allow users to

travel from every origin trip zone to every destination trip zone with a maximum of one transfer. Each

transit route is symmetric in the sense that it is assumed to have the same frequency of service in either

direction. The prevalent frequency values in each direction are shown in Table 6.5.
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Figure 6.3: Transit routes (Figures 6.3a, 6.3b and 6.3c) and parking capacities (Figures 6.3d, 6.3e and 6.3f).

Table 6.5: Transit frequency per route and city.

City Route (one way) 1 2 3 4 5

MC (25 zones) 80 150 123 120 125

SC (10 zones) 80 128 122 - -

TC (5 zones) 135 106 - - -

The prevalent financial situation for each operator is described in Table 6.6. These values are inspired
by the real world values of operating costs and revenue-to-operating cost ratios (Guerra, 2011; Lindquist
et al., 2009; Litman, 2010).

Table 6.6: Summary of operator finances.

City MC SC TC

Transit fare (e/trip) 1.25 0.9 0.75

Parking fee (e/parking) 3.5 2.1 2.7
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Transit

operating

costs

Variable component Prevalent 1.31 1.45 1.5

(e/km) Purchased 1.11 1.16 1.2

Fixed component Prevalent 22.75 22.5 20

(e/trip) Purchased 19.34 16.88 17

Fleet: purchase cost (e/veh per day) 125 125 110

Fleet: selling price (e/veh per day) 15 20 10

Parking operating costs (e/parking space) 1.6 1.2 1.7

Parking Expansion Variable (e/space) 0.3 0.25 0.2

cost Fixed (e/expanded parking zone) 60 60 60

Profit Transit operator -14.96 -26.43 -3.27

(103 e/day) Parking operator 54.67 16.75 24.28

Number of trips

(103/day)

By transit 64.65 (33%) 16.01 (25%) 9.93 (38%)

By car 129.78 (67%) 47.54 (75%) 16.07 (62%)

Total 194.43 63.55 26.01

The numbers for the fixed and variable costs for transit are listed in Table 6.6 for the existing and

purchased fleet of transit vehicles. The purchased transit vehicle costs were randomly generated so that

variable and fixed costs are between 5% and 25% lower than those for the existing fleet of transit vehicles

(Hallmark et al., 2012). However, the purchase of each new vehicle adds an extra daily payment generated

as a uniform random number between 100e and 150e (Hallmark et al., 2012). Selling an existing vehicle

saves a daily value randomly generated between 10e and 20e. The randomly generated fixed cost of

parking capacity expansion varies between 50e/day and 70e/day while the additional variable cost per

added parking spot is set between 0.2 and 0.4e/day (Litman, 2009).

For each city, a regression model is estimated in Step 2 of the solution approach (described in Section

6.3). The predictor variables in the regression model include each transit route’s frequency and its square,

parking capacity of each trip zone with paid parking and its square, and interaction terms given by the

products of parking capacity of each trip zone with paid parking and the frequency of each transit route

which crosses that trip zone. An example of such interaction term would be the product of transit route

1’s frequency and parking capacity of the trip zone located in the north of the city center of city TC (see

Figure 6.3).

Note that the total number of possible combinations of transit route frequencies and parking capa-

cities for all trip zones with paid parking is very large. Hence solving Stage II game for even a tiny city

(like TC) is computationally very challenging. Therefore, our regression relies on a sample of all possible
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combinations. The sample size is determined by assuming a ratio of 15 data points per fitted parame-

ter. This ratio is often deemed to be a reasonable lower bound to ensure that the estimated parameters

are reliable. We varied the parking capacity in each trip zone with paid parking between 500 and 8,000

parking spots. Similarly, we varied the frequency for each transit route between 13 and 156 daily trips.

A k-fold cross validation approach (Kohavi et al., 1995) was used to validate the predictive ability of the

regression model. The overall sample was divided between a training/cross-validation dataset (with 80%

of all data points), and a testing dataset (with 20% of all data points). The training/cross-validation data-

set was divided into k=12, k=6 and k=3 folds for the cities MC, SC and TC respectively, and the k-fold cross

validation method was applied. Several specifications were compared for the multiple regression model,

and the best specification in terms of the highest out-of-sample goodness of fit (R2 values) was selected.

Appendix C reports the R2 values as evaluated on the testing dataset by using this best model specifica-

tion. Finally, this best model specification was applied to the entire dataset to estimate parameters that

were subsequently used for Step 3 of the solution process.

6.7.2 Medium city Instance

In this subsection, we present computational results based on city MC and analyze the sensitivity of

the results to the Stage I game parameters.

For our first analysis, the Stage II is solved to a PSNE for the prevalent values of transit frequencies

and parking capacities. Table 6.7 summarizes the results related to transit fare, parking fee, operator pro-

fits and number of passenger trips along with change from the prevalent values measured as percentage

of the absolute value of the prevalent values. Table 6.7 shows a substantial increase in transit fares and

parking fees. This leads to an operating profit of 56.46 e/day for the transit operator, which is a signifi-

cant improvement compared to the prevalent deficit of 14.96e/day. However, the transit passenger trips

decrease from 63.65/day to 38.67/day. The parking operator’s operating profit increases by 43%, while

the number of users choosing to travel by car increases slightly (by 0.5%). Mode share switches from 33%

transit and 67% car to 23% transit and 77% car.

Table 6.7: Stage II PSNE summary.

Value Change (%)

Transit fare (e/trip) 3.94 215

Parking fee (e/parking) 5.16 47

Profit (103 e/day)
Transit operator 56.46 477

Parking operator 81.98 50

Number of trips (103/day)

By transit 38.67 -40

By car 130.49 1

Total 169.16 -13
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For our second analysis, we solve the entire two-stage game model. This requires estimating the

regression model parameters. Following the solution method described in Section 6.4, the best regres-

sion models for the transit operator and for the parking operator have the R2 values of 0.98 and 0.93,

respectively.

Table 6.8 summarizes the Stage I decisions obtained by solving the two-stage game for five different

cost scenarios. Each scenario corresponds to different combinations of costs included in the operator

objective functions for Stage I. Note that the lower limits set for both transit frequencies and parking ca-

pacity can represent a regulation measure, showing that our framework can be easily adapted to include

intermediate regulation measures.

Table 6.8: Capacity decisions for city MC under the SPPSNE.

Scenario
Prevalent Capacities

with Stage II Competition

1 2 3 4 5

Purchased transit

fleet operating costs

Variable (e/km) - 0.98 1.11 1.24 0.98 1.24

Fixed (e/trip) - 17.06 19.34 21.67 17.06 21.67

Fleet: purchase cost (e/veh per day) - 100 125 150 100 150

Fleet: selling price (e/veh per day) - 20 15 10 20 10

Parking expansion

cost

Variable (e/space) - 0.2 0.3 0.4 0.4 0.2

Fixed (e/expanded parking zone) - 50 60 70 70 50

Parking

Capacity

Zone 1 6343 5720 5716 5713 5720 5713

Zone 2 7271 6060 6060 6060 6060 6060

Zone 3 5455 4737 4737 4737 4737 4737

Zone 5 6032 5075 5079 5082 5075 5082

Zone 7 6095 6078 6078 6078 6078 6078

Zone 8 5272 3889 3889 3889 3889 3889

Zone 9 1626 961 961 961 961 961

Zone 11 854 500 500 500 500 500

Zone 18 1524 1524 1524 1524 1524 1524

Zone 24 1139 2286 2156 2025 2025 2286

Transit

Frequency

(trips/day)

Route 1

Existing Fleet 80 74 75 75 74 75

New Fleet 0 0 0 0 0 0

Total 80 74 75 75 74 75
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Route 2

Existing Fleet 150 20 25 29 20 29

New Fleet 0 0 0 0 0 0

Total 150 20 25 29 20 29

Route 3

Existing Fleet 123 144 144 144 144 144

New Fleet 0 0 0 0 0 0

Total 123 144 144 144 144 144

Route 4

Existing Fleet 120 13 13 13 13 13

New Fleet 0 0 0 0 0 0

Total 120 13 13 13 13 13

Route 5

Existing Fleet 125 103 105 107 103 107

New Fleet 0 0 0 0 0 0

Total 125 103 105 107 103 107

Fleet (veh) 285 152 156 159 152 159

Profit Transit Operator 56.46 85.88 85.32 84.77 86.07 84.58

(103 e/day) Parking Operator 81.98 91.31 91.09 90.91 91.23 90.98

The first main observation from the results in Table 6.8 is the fact that the transit operator does not

purchase any vehicle under any of the five scenarios, but actually decreases its fleet size significantly. A

reduction in parking capacity and transit frequency is observed, but the variations of their values along

with the variations of the cost parameters are small, revealing the low sensitivity of the equilibrium re-

sults to cost changes. There is a 46% average decrease in transit fleet size across the five cost scenarios,

caused by a considerable reduction in transit frequencies on all routes except Route 3. For Route 3, the

frequency increases from 123 trips/day to 144 trips/day under all cost scenarios. Similar broad trends

hold for the parking capacity values. For all zones except zone 24, the parking capacity either decreases

or remains constant under all five cost scenarios. The transit frequency for route 4 and parking capacity

for zone 11 were assigned their lowest allowable values possible, suggesting their relative lack of profita-

bility from the respective operators’ perspectives.

These results highlight the interdependent nature of the transit and parking operators’ decisions.

For example, scenario I and scenario V have the same costs for the parking operator whereas the transit

operator has significantly different costs. Specifically, the transit vehicle selling price for scenario I is

twice that for scenario V, resulting in overall higher transit frequencies because of selling seven fewer

vehicles. In response, the parking capacity is slightly readjusted by the parking operator, by decreasing

zone 1 capacity by 7 parking spots and increasing zone 5 capacity by the same amount (and keeping
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all others the same under both scenarios). Note that while the transit operator’s costs have an indirect

effect on parking operator’s decisions, it is much smaller in magnitude than the direct effect on transit

operator’s decisions.

On the other hand, when the transit vehicle selling prices are the same (scenario III and scenario V),

the transit operator chooses the same frequencies across its entire route network. However, due to the

lower costs of parking capacity expansion in scenario V compared with scenario III, the parking operator

has 201 extra parking spots in zone 24. This shows an example where the changes in parking operator

costs fail to create any indirect effect on transit operator decisions, though there is a significant direct

effect on parking operator’s decisions.

In summary, these computational experiments using city MC provide three major takeaways. First,

equilibrium results are found to have low sensitivity to changes in various cost parameters, even when

they are varied over wide ranges. Second, compared to prevalent conditions, competition leads to lower

capacity and higher prices leading to reduced number of trips and higher profits, especially for transit.

Finally, the decisions of the two operators are shown to be highly interdependent, and changes in pa-

rameters of one operator may affect equilibrium decisions of both operators. Next, we will explore the

effects of different pricing configurations using the small city case study.

6.7.3 Small City Instance

In this subsection, city SC is used to analyze different transit fare structures and the parking fee struc-

tures. Specifically, we consider the following four scenarios.

I. 1 parking fee level and 1 transit zone;

II. 1 parking fee level and 2 transit zones;

III. 2 parking fee levels and 1 transit zone;

IV. 2 parking fee level and 2 transit zones.

In scenarios II and IV involving 2 transit zones, all OD pairs with both origin as well as destination in

the city center are considered to be belonging to the first transit zone while all other ODs are assumed to

belong to the second one. In scenarios III and IV involving 2 parking levels, one parking level corresponds

to trip zone 1 and the other corresponds to the remaining 3 trip zones with paid parking.

We again start by holding the transit frequencies, fleet size, and the parking capacities constant at

their prevalent levels and solving for a Stage II PSNE.
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Table 6.9: Stage II PSNE summary for each scenario.

Scenario I II III IV

Transit fare OD pairs in the city center
3.44

3.43
3.44

3.43

(e/trip) Remaining OD pairs 3.45 3.44

Parking fee Zone 1
5.02 5.02

4.7 4.7

(e/parking) Zones 2, 3 and 4 5.12 5.13

Profit Transit operator -4.65 -4.61 -4.73 -4.65

(103 e/day) Parking operator 50.5 50.5 50.56 50.64

Number of trips

(103/day)

By transit 10.52 (19%) 10.52 (19%) 10.5 (19%) 10.5 (19%)

By car 45.88 (81%) 45.88 (81%) 45.91 (81%) 45.91 (81%)

Total 56.4 56.4 56.41 56.41

Table 6.9 lists resultant prices, operator profits and numbers of trips under each scenario. Different

configurations are shown to result in quite similar overall profitability results, and none of them mitigates

the transit deficits. However, the transit losses are approximately 80% lower compared with the prevalent

conditions described in Table 6.6. Moreover, the total number of trips stays almost constant across the

four scenarios. Going from scenario I to scenario II, and from scenario III to IV, as the transit operator

is afforded more flexibility in setting its fares, the transit operator’s profit improves, while the parking

operator’s profit stays constant or increases. On the other hand, going from scenario II to IV, and from

scenario I to III, when the parking operator is afforded more flexibility in setting its fees, the parking

operator’s profit goes up while that of the transit operator is reduced.

As before, transit profit maximization leads to a decrease in transit ridership from the prevalent value

of 16,010 trips/day to an average of 10,510 trips/day across the four scenarios. This decrease is quite

stable across the scenarios and is a direct effect of the increase in the transit fares from 0.9 e/trip to an

average of 3.44e/trip.

Next, we solve the entire two-stage model to its SPPSNE using the three-step approach described in

Section 6.4. The Stage II payoff approximation step included the estimation of eight different regression

models, corresponding to the payoffs of the two operators across the four different scenarios. These best

performing regression model specifications included all linear, quadratic and interaction terms, with

average testing R2 values of about 0.950 and 0.945 for the transit operator and for the parking operator,

respectively. The full list of individual R2 values as evaluated on the testing datasets is shown in Appendix

C.
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Table 6.10: Capacity decisions for city SC under the SPPSNE.

Scenario Prevalent I II III IV

Parking Capacity

Zone 1 4800 4139 4221 4109 4080

Zone 2 6600 5295 5229 5277 5236

Zone 3 4500 4070 4034 3833 3870

Zone 4 3900 3763 3617 3658 3665

Transit

Frequency

(trips/day)

Route 1

Existing Fleet 80 116 109 114 116

New Fleet 0 0 0 0 0

Total 80 116 109 114 116

Route 2

Existing Fleet 128 119 106 114 119

New Fleet 0 0 0 0 0

Total 128 119 106 114 119

Route 3

Existing Fleet 122 29 13 17 29

New Fleet 0 0 0 0 0

Total 122 29 13 17 29

Fleet (veh) 101 82 71 76 82

Profit Transit Operator -26.43 11.81 11.74 11.4 11.66

(103 e/day) Parking Operator 16.75 52.08 53.68 53.41 52.59

Results listed in Table 6.10 show that the transit operator significantly modifies all the route frequen-

cies while also reducing its fleet size by selling many of the existing vehicles and not purchasing any new

vehicles. Although smaller in magnitude, the changes made by the parking operator lead to a decrease

in the parking capacity in all four zones under all four scenarios, but the drop in parking capacity in zone

2 is especially large.

Contrary to the previous observation based on fixed capacity scenarios, the transit operator’s profits

actually reduce going from scenario I to scenario II, while those of the parking operator increase. This

implies that, in two-stage competition, the extra flexibility afforded to the transit operator in setting the

fees might be exploited by the parking operator, hurting the profits collected by the parking operator.

The trend when going from scenario III to scenario IV is reversed, however, as this time the extra flexi-

bility afforded to transit helps transit by increasing its profit and hurts parking by decreasing its profit.

The effects of parking price flexibility are also similarly complicated. When going from scenario I to III,

transit profits decrease while parking profits increase. When going from scenario II to IV, both transit

and parking profits decrease.

These results are in line with what was claimed so far. I.e., competition leads to higher profits for both

operators, the decisions of the two operators are shown to be highly interdependent, and changes in one

operator’s pricing structure affects the profits of both operators. Flexibility helps an operator’s profits

when the capacity decisions are fixed. However, the two-stage model’s SPPSNE results do not necessarily
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suggest that more flexibility for an operator means higher profits for that operator or lower profits for its

competitor. An important takeaway is that the two-stage competitive interactions are complicated, and

flexible pricing structures may benefit or harm an operator depending on the setting.

6.7.4 Tiny City Instance

In this subsection, city TC is used to analyze the sensitivity of the results to the generalized cost

parameters, by evaluating eight different scenarios. These eight scenarios are created by considering

moderate changes in parameters θ, SW , α2 and ρB . The changes are made one parameter at a time

while holding all others fixed. The eight scenarios are as follows:

I. Moderate decrease in the users sensitivity to cost (θ = 0.35).

II. Moderate increase in the users sensitivity to cost (θ = 0.61).

III. Moderate decrease in the transit accessibility cost parameter (SW = 17).

IV. Moderate increase in the transit accessibility cost parameter (SW = 21).

V. Moderate decrease in the power in the cruising function (α2 = 22).

VI. Moderate increase in the power in the cruising function (α2 = 62).

VII. Moderate decrease in the power in the transit discomfort function (ρB = 1.6).

VIII. Moderate increase in the power in the transit discomfort function (ρB = 3.6).

The best performing linear regression model specifications estimated for each of these eight scena-

rios included all the linear, quadratic and interaction terms, having an average R2 of 0.977 and 0.986 for

the transit and parking operator, respectively.

Table 6.11: Summary of each operator finances for city TC under the prevalent conditions.

Scenario

With Default

Values of

All Parameters

I II III IV V VI VII VIII

Profit Transit Operator -3.27 -3.25 -3.3 -3.25 -3.31 -3.22 -3.29 -4.1 -2.82

(103 e/day) Parking Operator 24.28 24.25 24.33 22.09 25.92 23.99 24.38 24.81 23.54

Number of trips

(103/day)

Transit
9.93

(-38%)

9.96

(38%)

9.9

(38%)

9.96

(40%)

9.88

(37%)

10.01

(39%)

9.91

(38%)

8.83

(35%)

10.54

(40%)

Car
16.08

(62%)

16.07

(62%)

16.1

(62%)

15.11

(60%)

16.81

(63%)

15.95

(61%)

16.13

(62%)

16.32

(65%)

15.75

(60%)

Total 26.01 26.02 26 25.07 26.69 25.96 26.03 25.14 26.29

The prevalent values of profits and the number of trips by each mode are shown in Table 6.11, while

the results from calculation of the SPPSNE are provided in Table 6.12.
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Table 6.12: Capacity decisions for city TC under SPPSNE.

Scenario

With Default

Values of

All Parameters

I II III IV V VI VII VIII

Parking Zone 1 1540 2100 1406 1535 1544 1910 1369 1848 1357

Capacity Zone 2 3782 3533 3984 3780 3785 3837 3761 3919 3708

Transit

Frequency

(trips/day)

Route 1

Old Fleet 78 81 72 72 78 77 78 84 60

New Fleet 4 6 4 6 4 5 4 6 10

Total 82 87 76 78 82 82 82 90 70

Route 2

Old Fleet 0 0 0 0 0 0 0 0 0

New Fleet 103 101 103 101 103 102 103 115 97

Total 103 101 103 101 103 102 103 115 97

Fleet (veh) 15 15 14 14 15 15 15 16 13

Profits 13.90 13.90 18.03 11.58 14.04 13.77 13.94 13.92 10.20 15.67

(103 e/day) 21.93 21.93 23.77 20.87 22.01 21.96 21.11 22.26 23.01 21.32

Table 6.12 results show that changes in Stage II game parameters affect Stage I results.

The increase of user’s cost sensitivity (scenario II) leads to a decrease in transit operators’ fleet, due to

decreasing the frequency of Route 1 and maintaining the frequency in Route 2. The opposite is observed

for Route 1 when the user’s cost sensitivity is decreased, whereas the frequency in Route 2 is decreased,

as displayed by the results achieved for Scenario I. Similar trends also occur for the parking operator’s

supply, with exception of the parking capacity of zone 2 that is increased in scenario II instead of kept

unchanged. These changes are driven by the fact that when users are more sensitive to costs, it restricts

the operators’ ability to charge higher prices, which in turn makes it unprofitable to provide additional

capacity.

The results of the changes in the parameters related to transit trips (namely, scenarios III, IV, VII and

VIII) show that the transit parameters influence the equilibrium behavior of both operators. Specifically,

if the cost of travelling by transit decreases (namely, scenarios III and VIII), both operators reduce their

capacities. This is driven by the fact that such transit cost reduction allows transit operator to charge

higher fares and offer lower frequencies, which in turn leads to a reduction in parking capacity as well.

From scenarios V and VI, we see that the higher the value of the cruising cost function exponent,

the lower the capacity. In fact, the effect of cruising for parking is more relevant when the parameter is

increased than when it is decreased.
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These results highlight the importance of the features in the generalized costs besides the transit

fares and parking fees. Although both operators became highly profitable under a deregulated market

structure, these profits also depend on the importance assigned by users to features that the operators

can only control indirectly. E.g., cruising for parking is only excluded from the users’ generalized costs

if the parking operator provides extremely high amounts of capacity, which would be extremely costly.

On the other hand, smaller number of parking spaces might lead to higher parking fees and also higher

cruising for parking costs to the users, which probably will severely decrease the number of car trips

due to the lack of parking spaces and therefore the revenues collected by the parking operator will also

decrease. Similar concerns can be addressed to the choices linked to the frequencies provided by the

transit operator to decrease the discomfort of users when traveling by transit. In this sense, not only the

prices charged by the operator should be accounted when setting the offer that maximizes the profit,

but also the effects that these adjustment will have on features indirectly controlled by the operators.

This model provides meaningful insights towards these two-way dependencies, showing that even in

competition, without regulation and seeking to improve their own profits, the collateral effects of these

changes should be taken into account by the operators when it comes to adjust both prices and supply.

6.8 Conclusion

In this chapter we presented a game-theoretic approach to reduce transit deficits by modeling com-

petition between the transit operator and the parking operator. By managing the prices and the levels of

supply provided to the transportation network users, the two operators attempt to maximize their own

profits in a two-stage game. In the first stage, long-term decisions such as transit frequency, fleet, and

parking capacity are made, while the pricing decisions are made in the second stage.

The simulated cities inspired by real-world data provide examples of the real-world applications of

our approach. Through this small framework, 3 different cities were computed and the application of the

game-theoretic model was conducted. Through the results drawn for each one of these 3 different case

studies, it was shown that the extreme scenario of having a fully deregulated market can overcome the

financial problems that often characterize transit systems. Furthermore, by exploring different city cha-

racteristics, such as users’ sensitiveness towards congestion or transit occupation rate, the complexity

and interdependency of the relationship between transit and parking operators were highlighted.

The integration of transit and parking systems with competition between transit and car provided

a better understanding on how pricing schemes and the supply of each service influence not only the

short-term financial features, but also the potential supply adjustments and expected long-term profits,

without including any restriction or regulations for the service provided to users. Furthermore, the de-

regulation assumption managed through competition between transit operators and parking operators
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led to a significantly decreased on the supply that is offered when compared to the prevalent scenario,

which was usually designed with regulation market restrictions. Even though fully deregulation market

solutions might not be the best solutions in what concerns the social responsibility usually assigned to

transportation systems, this framework is easily adapted to accommodate intermediate regulation sta-

ges so that the knowledge towards the suitability of different market structures to solve the problems

raised by providing affordable transit systems with reasonable levels of service can be improved.

The chameleon characteristic of the developed framework to deal with intermediate stages of re-

gulations, or cases of having city planners with major concerns of social welfare policies over financial

ones, will be addressed in our future work. This future analysis will also explore the influence of different

definitions of transit zones and their resultant transit-shares and transit network traffic dynamics on the

profit-maximization goals. Another extend that will be asses in the future is the integration of the two

services in a deregulated market where transit will be financed by the revenues collected by the parking

operator. In other words, although aiming at maximizing their own profit, the crossed-effects between

transit and car will be taken to a next level where parking will subsidize transit by a proportion of its pro-

fits, without and with intermediate regulatory measures (e.g., minimum levels of service or lower bounds

for the number of made trips).

Appendix A

Let C 0
i j B and C 0

i j A respectively be the generalized costs of taking a trip from i to j using transit and

car, as given by equations (6.2) and (6.5), respectively. To estimate these costs, we assumed that a former

and non-competitive prevalent scenario exists for the city. As any city in the world, a prevalent behavior

exists that can be observed, analyzed and replicate. Due to the lack of data, we developed a framework

capable of randomly-generate cities that take into account real-world features (see Section 6.5). In this

sense, we consider that the cost of not making a trip depends on the prevalent costs that users are already

paying (note that this assumptions can be made for either a generated either for a real-world city). The

generalized costs C 0
i j B and C 0

i j A are therefore assessed by considering the prices charged by each opera-

tor, the ingredients included on these generalized costs as displayed on (6.2) and (6.5), respectively, and

the equilibrium required by these equations in what concerns the discomfort costs (6.4) and the cruising

for parking cost (6.6). It is based on this prevalent scenario that the cost of not making the trips is esti-

mated, in an attempt to analyze where the threshold between collecting higher fees with lower levels of

captured demand, or the other way around, is placed. In fact, the inclusion of these costs and the alter-

native related to them ensures that it would not be possible to charge extremely high fares and fees while

assuming that people would be willing to pay those irrational values. We include the constant multiplier

εi j > 1 so that the elasticity of users towards the change of transit fares and parking fees is included, as

150



6.8

a way to account for the extra cost that users are willing to pay to go from i to j . Then the expression for

the generalized cost of not making the trip is assumed to be Ci jO = εi j ·
(C 0

i j A+C 0
i j B )

2 , ensuring that none of

the two operator can infinitely increase their prices.

Our method to estimate the unconstrained demand is based on the classical gravity model formula-

tion so that plausible number of trips can be ensured for the generated case studies.

A first estimation for the number of trips between a pair of zones i j is assigned to T̃i j through ex-

pression (6.38). In this expression: αGM , µGM , and εGM are parameters randomly generated in [0,1]; θ is

generated as explained in subsection 6.5.2; T̃i j B and T̃i j A are simplified versions of expressions (6.2) and

(6.5), respectively, by setting the transit discomfort cost and the cruising cost for parking to zero while

considering the remaining ingredients of these costs as explained in Section 6.2.

T̃i j =αGM ·
PCµGM

i ·ECεGM

j

exp
(
θ · C̃i j A+C̃i j A

2

) , i , j ∈ Z (6.38)

Due to the fact that the total number of trips estimated through (A1) are not equal to the expected

number of trips done (i.e.,
∑

i , j∈Z T̃i j 6=π ·PC ) , we proceed with the normalization of the number of trips

estimated in (6.25) to meet the total number of daily trips (π ·PC ) as shown in (A2). The number of trips

done by each person is given by π, and this value is estimated as explained in subsection 6.5.2.

Ti j =αGM · π ·PC∑
i , j∈Z T̃i j

·
PCµGM

i ·ECεGM

j

exp
(
θ · C̃i j A+C̃i j A

2

) , i , j ∈ Z (6.39)

To estimate the total number of trips that would be done if both transit fares and parking fees were

zero (T̂i j ), new generalized costs are estimated for trips done by transit or by car. In this sense, the

values of Ĉi j B and Ĉi j A are equal to C̃i j B − p0
i j B and C̃i j A − p0

j B , respectively, where p0
i j B and p0

j A are

the transit fare and parking fee values implemented by each operator in the prevalent situation (without

the introduction of competition between the two operators) . By replacing the values of C̃i j B and C̃i j A

with these new generalized costs into expression (6.39), a new number of trips T̂i j is determined. This

amount includes the trips that are not done due to the costs of transit fares and parking fee. Let L̃T i j be

the number of trips that are not done by people due to these costs, which is equal to L̃T i j = T̂i j −Ti j .

The estimation of C̃i jO as displayed in equation (6.40), and the final number of trips that are lost by the

system Li j due to the pricing of transit and parking are estimated as expressed by equation (6.41).

L̃T i j = α̃GM · π ·PC∑
i , j∈Z T̃i j

·
PCµGM

i ·ECεGM

j

exp
(
θ · C̃i jO

) ⇒ C̃i jO =
ln

(
α̃GM · π·PC∑

i , j∈Z T̃i j
· PC

µGM
i ·EC

εGM
j

L̃T i j

)
θ

, i , j ∈ Z (6.40)

LT i j = α̃GM · π ·PC∑
i , j∈Z T̃i j

·
PCµGM

i ·ECεGM

j

exp
(
θ · C̃i jO

) , i , j ∈ Z (6.41)

Finally, the total autonomous demand for a OD pair i j is given by Qi j = Ti j +LTi j . To accommodate
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further pricing changes and also the inclusion of cruising for parking and discomfort costs, the cost C̃i jO

is disturbed by a random variable with values between 1 and 2, which leads to the values Ci jO for each

OD pair included in our model. In this sense, the parameter that estimates the extra cost that users are

willing to pay to go from i to j is calculated by εi j = 2·Ci jO

C 0
i j A+C 0

i j B
.

Appendix B

We now aim at proving the existence of values that maximize the functions SOF SS
B and SOF SS

A , p∗
B =

(pi j B )i , j∈Z and p∗
A = (p j A)i , j∈Z , and their uniqueness. For simplicity, let C̃i j m be the variable that re-

present all the costs included on the generalize cost of these functions besides (pi j B )i , j∈Z and p A =
(p j A)i , j∈Z, therefore a general expression for SOF SS

B and SOF SS
A is given by (6.42), where the decision

variables are respectively pi j B and p j A . In this sense, the values of p j A are fixed for SOF SS
B and pi j B is

fixed for SOF SS
A . Note that the assumption of setting ψB = α1 = 0 holds in this subsection, and that the

domains of SOF SS
B and SOF SS

A are compact sets of R(#Z)2
.

SOF SS
m = ∑

i , j∈Z

e−θ·
(
C̃i j m+pi j m

)
e−θ·

(
C̃i j A+p j A

)
+e−θ·

(
C̃i j B+pi j B

)
+e−θ·

(
C̃i jO

) ·Qi j ·pi j m , m ∈ {A,B} (6.42)

The first derivative of function (6.42) is defined by equation (6.43), where we represented

e−θ·(C̃i j m+pi j m)

e−θ·(C̃i j A+p j A)+e−θ·(C̃i j B +pi j B )+e−θ·(C̃i jO) by LF (pi j m) for the sake of simplifying the following expression. Let

p∗
B = (pi j B )i , j∈Z and p∗

A = (p j A) j∈Z be the inflection points satisfying
∂SOF SS

m
∂pi j m

(p∗
m) = 0.

∂SOF SS
m

∂pi j m
=Qi j ·LF (pi j m) · [1−θ ·pi j m · (−LF (pi j m)

)]
(6.43)

Since
∂SOF SS

m
∂pi j m

is class C∞ , the second derivative follows as shown in equation (6.44).

∂2SOF SS
m

∂p2
i j m

=Qi j ·θ ·
(
1−LF (pi j m

) · (LF (pi j m
)[−2+θ ·pi j m −2 ·θ ·pi j m · (LF (pi j m)

)]
(6.44)

By acknowledging that LF (pi j m) < 1 and that Qi j · θ · (1− LF (pi j m)) · (LF (pi j m)) ≥ 0, we conclude

that the second derivative is negative (i.e.,
∂2SOF SS

m

∂p2
i j m

≤ 0). The proof of this statement is developed assu-

ming that the second derivative is positive, which returns a contradiction. We recall that θ is a positive

parameter and that the values of pi j m should always be positive. The proof is as follows:

0 ≤ ∂2SOF SS
m

∂p2
i j m

⇒ 0 ≤=Qi j ·θ ·
(
1−LF (pi j m

) · (LF (pi j m
)[−2+θ ·pi j m −2 ·θ ·pi j m · (LF (pi j m)

)]
⇒ 0 ≤ [−2+θ ·pi j m −2 ·θ ·pi j m · (LF (pi j m)

)]≤ [−2−pi j mθ
]

⇒ −2

θ
≥ pi j m ⇒ pi j m ≤ 0∨θ ≤ 0 contradiction!

In particular,
∂2SOF SS

m
∂pi j m∂pklm

= 0, for i , j ,k, l ∈ Z. In this sense, the hessian matrix of
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SOF SS
m , i.e. , D2SOF SS

m

(
(pi j m)i , j∈Z)

)
, is a diagonal matrix, with

∂2SOF SS
m

∂p2
i j m

as diagonal elements and size

(#Z)2 × (#Z)2. Therefore, the hessian matrix is negative semidefinite 4(NSD), which is straightforward

conclusion from the definition of negative semidefinite.

Let p∗
B = (pi j B )i , j∈Z and p∗

A = (p j A) j∈Z be the inflection points satisfying
∂SOF SS

m
∂p∗

m
= 0 . Because the

hessian matrix D2SOF SS
M

(
(pi j m)I , j∈Z

)
is negative semidefinite, we conclude that these inflection points

are local maxima. Furthermore, SOF SS
M is a concave function (Theorem 6.1).

Theorem 6.1. The (twice continuously differentiable) function f : A ⊂ Rn ← R s convex if and only if

D2 f (x)is NSD for every A.

Appendix C

Table 6.13: R2 values for each used regression to compute the first stage of the game-theoretic approach.

City Scenario Mode R2

25 all
Transit 0.98

Car 0.93

10

I
Transit 0.99

Car 0.95

II
Transit 0.83

Car 0.92

III
Transit 0.98

Car 0.95

IV
Transit 0.99

Car 0.96

5

Prevalent
Transit 0.98

Car 0.99

I
Transit 0.97

Car 0.98
II

Transit 0.98

Car 0.99

III
Transit 0.98

Car 0.98

IV
Transit 0.98

4 A N ×N matrix M is negative semidefinite if ∀z ∈RN , zT ·M · z ≤ 0.
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Car 0.98

V
Transit 0.98

Car 0.99

VI
Transit 0.98

Car 0.98

VII
Transit 0.99

Car 0.99

VIII
Transit 0.96

Car 0.99
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Conclusion

Transit systems are acknowledged to be good alternatives to car use. However, because the revenues

collected by transit operator are usually not enough to cover the costs of providing affordable transit

systems with acceptable levels of service, the government and/or public agencies provide subsidies to

cover those deficits. In this thesis, we proposed the integration of both transit and parking systems in

order to decrease the extreme reliance of transit operators on these subsidies to maintain the operation

of transit systems. This integration comprehends two different perspectives, a physical integration and

a pricing scheme integration. The physical integration was developed by studying the best places to ins-

tall park-and-ride facilities so that the traffic congestion observed in the central areas of a city could be

decreased by introducing the possibility of users to switch from car to transit when achieving the pe-

riphery of the cities. In what concerns the pricing approach, two different standpoints are considered.

One where the market is regulated and it was assumed that parking operators’ revenues will help to mi-

tigate the subsidize levels provided to transit operators; and another where a fully deregulated market is

assumed, and profit-maximization goals are pursued by both transit and parking operators. The develo-

ped optimization models are useful or at helping local governments into selecting the best configuration

of park-and-ride facilities or into establishing the pricing policies for both transit and parking systems

under their control, directly or indirectly (e.g., through concessions) to solve the financial problems that

characterize transit systems.

This thesis pursued three main global objectives. The first one was related to developing an opti-

mization model capable of identifying the best places to install park-and-ride facilities. The other two

objectives derived from the integration of transit and parking through pricing schemes and consisted of

developing optimization models to bridge some gaps found in the literature. Therefore, we developed

new methodological approaches to optimize the prices charged to users by both transit and parking ope-

rators so that the deficits of the transit systems could be decreased by being covered with the revenues

collected by the parking operator, or by assuming a fully deregulated market where both transit and par-

king operators were competing to increase their own revenues. These objectives were fully accomplished
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by the developed research.

In chapter 2, we developed an optimization model that deals with the physical integration of the

transit system and the parking system. The developed mathematical model optimizes the best set of

places to install park-and-ride facilities in the periphery of the city so that the total person-kilometer dis-

tance traveled by car in the city center is minimized. Previously, other authors developed mathematical

models to address this facility location problem, but always in an incomplete way. For example, Faghri

et al. (2002) developed a knowledge-based GIS to place park-and-ride facilities that has the capability of

managing nonquantitative criteria via a designed expert system, but the final location solution did not

affect the prespecified demand. Horner and Groves (2007) and Farhan and Murray (2008) sought for real

world applications by minimizing the distance traveled by car in a monocentric city; and by maximizing

the trips intercepted by park-and-ride facilities along with the minimization of travel and the maximi-

zation of the utilization of existing park-and-ride facilities, respectively; without properly addressing the

users’ mode-choice. Aros-Vera et al. (2013) and Chen et al. (2016) dealt with this short come by inclu-

ding mode-choice decisions according to logit functions in an optimization model that maximizes the

number of car trips that are intercept by park-and-ride facilities, in the case of the former; and that maxi-

mize the number of rail-riders in a city, in the case of the later. Our model also addressed mode-choices

as a discrete choice given by logit functions, accounting for the behavior of users in what concerns the

deviations required to use a park-and-ride facility towards the least-cost route, and accounted for the

minimizing of the person-kilometer distance traveled by car in the city center. It was acknowledged that

by applying the developed model to the city of Coimbra, car use could be reduced by 19.1% with the

installation of only 3 park-and-ride facilities. Our final analysis comprehended the comparison of this

physical integration of transit and parking system towards the single improvements of these system ac-

cording to a user point of view, allowing at drawing conclusions about the efficiency of park-and-ride

facilities to decrease the number of kilometers travelled by car in the city center.

Although several improvements to the model might be advocated in what concerns the implemen-

tation of park-and-ride facilities and the features that should be considered while assessing the best

locations to install them, namely parking capacity restrictions or the inclusion of changes on the traffic

dynamic to account for the relieve on the congestion achieved by the use of the installed park-and-ride

facilities; we diverted our research to the integration of the two systems in what concerns setting pricing

schemes that minimizes the joint operating deficits (or maximize the joint profit) and leave the further

improvements of this facility location model as future work.

The two chapters that followed dealt with the integration of transit and parking systems in a regulated

market, whereas Chapter 6 introduced a framework that accounts for the opposite scenario (i.e., fully

deregulated market). As previously mentioned, and to the best of our knowledge, this is the first work that

addressed the integration of both transit and parking systems following a pricing scheme perspective.
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Chapter 3 presented the first optimization model that integrated transit and parking systems. This

model determines the transit fares and parking fees that minimize the joint operating deficits, i.e., the

difference between the total operating costs and the total revenues collected by both transit and parking

operators, while ensuring a reasonable level of service (by setting upper bounds to the number of poten-

tial trips that are not made). At first, this model was implemented to a hypothetical city where two cases

were analyzed. The first case focused on assessing the capability of the transit operator to decrease their

need of subsidization by only readjusting the transit fares (and by keeping unchanged the parking fees),

which included the influence of these changes on the number of car users and affecting the revenues

collected by the parking operator. The second step considered that both transit and parking operators

were able to change their prices so that their joint deficits were minimized, showing that transit systems

can be profitable if managed in an integrated manner. This second approach was also applied to the

municipality of Coimbra, attempting at solving the financial problems faced by the transit operator that

manages the transit system in this municipality. This implementation was developed considering three

different scenario. Two where only the number of parking fee levels were changed, and a third one that

optimized prices so that the joint operating deficits were as close as possible to zero. The first scenario

improved significantly the joint deficits from 5.79 ×106e/year to -42.95x106e/year, by setting the transit

fares from 0.6e to 2.3e and the parking fees to be 1.9e per parking in the center of the municipality. In

this scenario, as well as in the scenario with two parking fee levels that presented similar conclusions,

the transit operator was capable of improving its operating deficits until the point of being profitable.

However, this optimization model did not accounted for the relationship between demand and speed,

assuming that the values of speed remained unchanged while the number of car trips changed with the

optimization of transit fares and parking fees.

The short come of this model was improved on the mathematical model developed in Chapter 4

by including the variation of speed on the users’ generalized costs and its relationship with the modal-

share functions. This was accomplished by embedding traffic conditions of the network into the op-

timization model with resource to a network level aggregate traffic model based on the macroscopic

fundamental diagram (MFD). A solution method was developed to solve this model due to its com-

plexity, which included a traffic equilibrium algorithm that was incorporated in a greedy algorithm to

provide good-solutions in a reasonable amount of time. Further improvements were also included in

this optimization-dynamic model when compared to the static model developed in the Chapter 3. This

improvements were the inclusion of cruising for parking effects, the differentiation of the modal-share

functions to accommodate the division of the demand between those who can travel by car and those

who cannot travel by car, and the inclusion of different routes for the same OD pair depending on the

departure time. By applying this model to the morning period of a case study inspired in the municipa-

lity of Coimbra, we assessed the influence of the demand towards the road dynamic of the city, which is
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also affected by the pricing schemes that were optimized by the model. In fact, the joint operating defi-

cits growth from the current 1.5 x103e/M.P. to -169.8 x103e/M.P. if prices were updated from the current

0.6e and 1.2e to 3.25e and 7e, for the transit fare and parking fee respectively, leading to a profitable

transit system. This optimization model was solved by the developed solution method, whose capability

of finding good solutions was also explored along with insights on how to turn a deficit transit system

into a profitable one by only managing the transit fares and the parking fees under a regulated market

structure.

As previously mentioned, the optimization model developed in Chapter 4 was solved by a solution

method that included a greedy algorithm. However, this method was not our first attempt at developing

a heuristic capable of finding good solutions in a reasonable amount of time for the optimization model

detailed in Chapter 4. Our first approach was a hybrid simulated annealing-cross entropy algorithm,

which was studied in Chapter 5. This hybrid algorithm was replaced by the solution method with the

greedy algorithm due to the fact of not improving significantly the computation time when compared to

solving the optimization model with resource to an exhaustive search for smaller case studies with single

transit fares and single parking fees. Notwithstanding, the developed hybrid algorithm seemed to be a

good improvement to what has been developed in the literature, along with being a good algorithm to

solve problems with time-consuming objective functions. According to the literature, simulated annea-

ling algorithms (SA) are good options at finding near-optimal solutions for several optimization models,

where the properties of convergence are usually advocated as insurance due to the capability of the al-

gorithm of escaping local optima solutions. The solutions analyzed by the SA algorithm are randomly

generated, which allows the generation and analysis of poor quality solutions. This is not a problem if

the computation time required by the analysis is really small. As opposite, having solutions with high

time-consuming analysis will require excessively amounts of time to achieve a good and final solution

when using the classic SA algorithm. In this sense, we developed a hybrid algorithm, where the general

idea concerned the use of cross-entropy techniques to guide the procedure of finding good solutions

that were assessed by the simulated annealing algorithm. With this hybridization, the probability of se-

lecting a low-quality solution was decreased, because each element of the solution would have a higher

probability of taking the values that compound solutions with good objective function values than the

values that are linked to poor quality solutions. An improvement was clearly observed with the intro-

duction of CE algorithm into the classical SA algorithm. This conclusion was sustained by comparing

the solutions achieved by using randomly generated problems for a capacitated p-median with closest

assignment constraints problem (CPM-CA problem). Furthermore, the reliance of both algorithms on

the calibration was also analyzed, which lead to the conclusion that the SA algorithm solutions were

more dependent on having a good calibration for the parameters than the hybrid algorithm. This is a

relevant conclusion for cases where the analysis of a single solutions requires higher computation ti-
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mes because besides the time that the algorithm takes at finding near-optimal solutions, it also requires

higher computation times in the process of calibrating the parameters included in the algorithm.

Finally, the alternative of integrating transit and parking systems in a fully deregulated market was

considered in Chapter 6, where a two-stage game-theoretic model was developed along with a framework

capable of solving it. This model can also be quickly adjusted to accommodate further concerns regar-

ding the characteristics of the city under analysis, namely requirements that need to be fulfilled by the

transit system or characteristics linked to the population that need to be addressed, along with setting

the pricing schemes and capacities of both transit and parking systems. The first stage of the game dealt

with the optimization of the capacity provided by each operator in order to maximize the profit of each

operator. These long-term decisions accounted for the revenues that were managed in the second stage

of the game, where transit fares and parking fees were optimized in a short-term horizon to maximize

the revenues collected by operator. An approximate solution method was also developed to solve this

two-stage game, due to the extremely large size of the overall decisions that each operator can make and

the complexity of their objective functions. The two stage game was implemented using this solution

method on three different case studies, which were generated by a case study setup inspired in real-

world features that was also detailed in Chapter 6. The interaction between each operator and how their

decisions influence the other operator’s outcome were explored and assessed in this chapter.

Globally, the models presented in this thesis were able, at least in theoretical scenarios, to decrease

the congestion felt in the city center (in the case of Chapter 2) and to create transit systems without de-

ficits, or even profitable, by including or not parking revenues as funding source instead of subsidies (in

the case of Chapter 3, 4 and 6). Most of the research effort made in this thesis addressed the integration

of transit and parking systems considering different point of views. From these, we have concluded that:

(1) installing park-and-ride facilities can be a better option at decreasing the person-kilometers travelled

in the city center when compared to measures such as increasing parking fees, decreasing transit fares

or improving the transit service; (2) integrating the management of both transit and parking systems can

significantly improve the financial results of each operator; (3) including traffic dynamic features into

the users’ generalized costs helps at assessing how pricing schemes help at alleviating the congestion in

the city; and (4) assuming a deregulation of the market is an efficient solution to deal with the transit

deficits but might jeopardize the social role of this system in the society, if proper requirements of mini-

mum levels of service or further characteristics of the system pursued by transit users are excluded from

the analysis.

A general conclusion that can be drawn from the results achieved in Chapters 3, 4 and 6 is the ex-

cessive emphasis on solving the transit deficit without including any social welfare measure. This might

be solved by finding an equilibrium between the minimization of deficits (which is equivalent to profit

maximization objectives) and, e.g., the maximization of the social welfare. However, this is beyond the
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scope of the thesis and is left as future work. Furthermore, other principles to determine the zonation

for different transit fares and parking fees values should also be tested, the inclusion of time-dependent

pricing should also be addressed, as well as improving the realism presented in the treatment of cruising

for parking (in particular, for the models developed in Chapters 3 and 6).

Due to the lack of data, most of the conclusions were drawn based on the results achieved for case

studies inspired in real-word situations, where a great effort was made to design them or as close as

possible to the reality observed for the municipality of Coimbra or by mixing and matching features of

real-world data. Nevertheless, all the models described in this thesis should be useful to provide insights

in the integration of transit and parking systems or from a physical or from a financial point of view, in-

cluding regulated and deregulated markets, and should also be easily applied in practice in their current

form or with minor adjustments to accommodate smaller characteristics of the reality under analysis.

Despite this, we believe that the methodologies introduced and applied in this thesis represent a

notable contribution for the existing literature on facility location of park-and-ride facilities and on ful-

filling the gap in the literature in what concerns the integration of transit and parking system according

to financial stand points. The case studies, mostly inspired on real-world situations, clearly show the

contribution of integrating transit and parking to overcome the need of subsidizing transit systems due

to the deficits that characterized public transport services.
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