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A method that enables the automated mapping and characterization of dune fields on Mars is described. Using
CTX imagemosaics, the introduced Object-based Dune Analysis (OBDA) technique produces an objective and re-
produciblemapping of dunemorphologies over extensive areas. The data set thus obtained integrates a large va-
riety of data, allowing a simple cross-analysis of dune patterns, spectral and morphometric information, and
mesoscale wind models.
Two dune fields, located in Gale crater and Ganges Chasma, were used to test and validate the methodology. The
segmentation of dune-relatedmorphologies is highly efficient, reaching overall accuracies of 95%. In addition, we
show that the automated segmentation of slipface traces is also possible with expected accuracies of 85–90%.
A qualitative and quantitative comparison of the final outputs with photointerpretations is performed, and the
precision of the directional characterization of the dune patterns is evaluated.We demonstrate a good agreement
between the OBDA outputs and the photointerpreted dune morphologies, with local trend deviations below 45°
for 80–95% of the mapped areas. Because the developed algorithm is tuned for the recognition of linear features
from the imagery, the slipfaces of small barchans can be preferentially overlooked owing to their small extent at
the spatial resolution of the CTX mosaics. Dune types composed of longer linear morphologies are much better
represented, including correct mapping of secondary structures. Having proved the effectiveness and accuracy
of the mapping procedure, we discuss its future applications for the improvement of dune catalogs on Mars.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Dune fields are good indicators of past and present aeolian transport
regimes (Kocurek and Ewing, 2005; Beveridge et al., 2006). OnEarth, re-
mote sensing data gives a wider perspective and provides context for
local field observations of aeolian processes (Elbelrhiti et al., 2008),
showing the relationship between regional sediment transport trends
and atmospheric circulation patterns (du Pont et al., 2014; Fenton
et al., 2014a). The relationship between bedforms and atmospheric cir-
culation patterns is particularly important for other planets, where di-
rect measurements of wind velocities and trends are not typically
available. For instance on Mars, mapping yardangs, wind streaks, and
dune fields is critical for inferring large-scale atmospheric dynamics
(Ward et al., 1985; Fenton et al., 2005; Hayward et al., 2009; Silvestro
et al., 2010; Gardin et al., 2012; Sefton-Nash et al., 2014).

The more complete source of information about Martian dune fields
is theMars Global Digital Dune Database (MGD3) (Hayward et al., 2007,
2014). It is a digital compilation of the location and characteristics of the
Geofísico e Astronómico da
bra, Portugal.
main dunefields onMars. Parameters such as intracrater dunefield cen-
troids with respect to crater centroids, dune slipface orientations, and
inferred wind directions were mapped (Fig. 1C), providing a unique
global view of the interplay between the atmosphere and sedimentary
dynamics on the planet.

The dune fields in theMGD3weremapped and characterizedmanu-
ally through the photointerpretation of 100 m/pixel THEMIS (THermal
EMission Imaging System) imagery. The perimeters of the dune fields
were digitized and slipface orientations were mapped in selected
areas. These features are used to estimate the trends of the prevailing
winds at the surface. Because the data coverage of the Context Camera
(CTX) imagery (Malin et al., 2007) that we used in our study is nearly
global at a spatial resolution of b10 m/pixel, this data set will certainly
provide a more detailed view of the dune fields, complementing the
existing information for each dune field. Because it would be very diffi-
cult and costly to do such mapping manually for all the dune fields on
the planet, automation is required in order to maximize the extraction
of valuable geomorphological information from the imagery.

Dune slipfaces, crestlines, and other morphological features are tra-
ditionally manually digitized and later analyzed using different sets of
statistical and spatial techniques (Greeley and Thompson, 2003;
Ewing et al., 2006; Silvestro et al., 2010; Fenton et al., 2014a, 2014b).
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Fig. 1. Location and overview of the two analyzed areas. (A) MOLA topographic mapwith the location of the study areas on the planet; (B) Ganges Chasma dune field; (C) Gale crater CTX
mosaic showing the availableMars Global Digital DuneDatabase (MGD3) data for the area (Hayward et al., 2007, 2014); (D) Gale crater CTXmosaic showing the areawhere the algorithm
was applied.
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However, the mapping and discretization of aeolian features from re-
mote sensing data is a task that involves some degree of user bias
(Hugenholtz et al., 2012), whichmay constitute an obstacle to the inte-
gration and standardization of observations.

Previous examples of automatic characterization of aeolian features
from remote sensing data include the monitoring of dune migration
(Vermeesch and Drake, 2008; Necsoiu et al., 2009), detection and de-
limitation of dunes on Mars Orbiter Camera (MOC) data (Bandeira
et al., 2011), and mapping and characterization of ripple patterns on
Mars using HiRISE (High Resolution Imaging Science Experiment) data
(Silvestro et al., 2013; Vaz and Silvestro, 2014). With the purpose of
mapping automatically the crests of linear dunes from Landsat imagery,
Telfer et al. (2015) used a Sobel operator for performing edge detection.
Using SAR data, the trends of dune fields on Titanwere surveyed using a
linear segment detection algorithm (von Gioi et al., 2012; Lucas et al.,
2014). This last example shows how the application of image processing
techniques can be a powerful tool for the characterization of dune pat-
terns at a global scale. More recently, the same linear segment detection
technique was tested on Mars for mapping aeolian landforms using a
CTX image (Fernandez-Cascales et al., 2015).

In this paper, we will introduce a new way to analyze the dune pat-
terns onMars using the dune fieldswithinGanges Chasma andGale cra-
ter (Fig. 1) to test and validate the technique. We call this methodology
Object-based Dune Analysis (OBDA), and it enables the automated
mapping and characterization of aeolian dune morphologies over
large areas, allowing a future update of the existing Martian dune
catalogs.

2. Data and study areas

2.1. Data

The data sets used to identify and map the dune morphologies are
CTX mosaics obtained using ISIS (Integrated Software for Imagers and
Spectrometers) software. To reduce illumination variations, the images
used to produce themosaics were geometrically corrected and normal-
ized. The spatial resolution of the Gale crater and Ganges Chasma mo-
saics used in this work was 6 and 7 m/pixel, respectively. For the
characterization of the mapped morphologies, other auxiliary data
sets were used: MOLA (Mars Orbiter Laser Altimeter) and HRSC (High
Resolution Stereo Color imager) digital terrain models (DTMs), as well
as day and night infrared THEMIS mosaics (Edwards et al., 2011).

The validation data sets correspond to the dune morphologies (es-
sentially lines representing dune crests and slipfaces) mapped through
manual photointerpretation of the CTX mosaics using ArcGIS. For the
Ganges Chasma area we use the same data set mapped and discussed



Fig. 3. Illustration of themain steps of the proposed algorithm. (A) CTXmosaic of the Ganges Ch
blue and red, respectively); (C) binarized objects (blue and red colors correspond to themdark

shown; (D) vectorized objects showing the average grayscale level (digital number, or DN), not
for instance) and how slipfaces are well represented.

Fig. 2. Flowchart with the main steps of the OBDA mapping technique.
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by Fenton et al. (2014b). Sediment transport vectors inferred from the
dune morphologies were collected for the Gale crater area by adapting
and complementing the data presented by Hobbs et al. (2010).

Modeled mesoscale wind fields for Gale crater were used for com-
parison with the trends of the automatically mapped surface features.
The mesoscale atmospheric model used in this work was MRAMS
(Mars Regional Atmospheric Modeling System), which was first de-
scribed in Rafkin et al. (2001) and with further updates in Michaels
and Rafkin (2008). This is a nonhydrostatic, fully compressible, regional
(i.e., not global) model that uses multiple telescoping computational
grids to estimate/predict the atmospheric conditions on Mars at rela-
tively high resolution. A set of four MRAMS runs targeting Gale crater
at representative seasons (corresponding to solar longitudes Ls ~ 30,
120, 210, and 300°)wasperformed. The surface aerodynamic roughness
length (z0) was set to a constant value (0.03m) over the entire MRAMS
domain, as a result of the lack of z0 spatial distribution data for Mars.
The terrain and surface characteristics for these MRAMS simulations
were based on 1/128° gridded MOLA topography (Smith et al., 2001)
and 1/20° gridded TES (Thermal Emission Spectrometer) albedo and
nighttime thermal inertia (Putzig and Mellon, 2007). The nested grid
asma area (see Fig. 1B for location); (B) object markermatrices (dark and bright subsets in
and mbright data sets obtained according to Eq. (1)), the boundary of the mapped region is
e the large number of objects that correspond to non-aeolian features (bedrock structures



Fig. 4. Examples of object descriptor parameters. (A) average entropy computed from the input mosaic; (B) mean slopes overlaid on the HRSC andMOLA DTMs; (C) average values com-
puted for each object using the mosaic shown in (D); (D) THEMIS nighttime mosaic, note the coarser resolution and the clear thermophysical signature of the aeolian deposits.
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used for the analysis reported here has a grid spacing of ~2 km, provid-
ing a satisfactory number of samples over the targeted dune field.
MRAMS output from the first Mars-day of each run was not analyzed,
as model spin-up is still occurring then. The ratio between themodeled
instantaneous aerodynamic surface stress and the aerodynamic stress
threshold for saltation initiation (Greeley and Iversen, 1985) is used as
a proxy for the amount of mobilized sediment.

2.2. Aeolian settings

The two selected areas (Fig. 1A) were chosen because they present a
large diversity of dune types, trends, and morphologies. The same Gan-
ges Chasma dune field (7.7°S, 45.25°W) that was used to test the appli-
cation of the inverse maximum gross bedform-normal transport
formalism (Fenton et al., 2014b) is used in this study to test and validate
the mapping procedure (Fig. 1B). This dune field is located near the
northern wall of the ~5-km-deep Chasma depression, and the dunes
span an area of ~500 km2. The several overlapping sets of differently ori-
ented dunes that exist in this area seem to be coeval, indicating a com-
plex wind regimewithmainwind flows trending ESE, NE, SW, and NW.
The location of the dune field corresponds approximately to the
convergence point of theseflows. Present day activitywas also reported,
indicating that at least some of the dunes are activelymigrating (Fenton
et al., 2014b).

Gale crater is located in the Aeolis quadrangle near the boundary be-
tween the northern lowlands of Elysium Planitia and the southern high-
lands of Terra Cimmeria (5.4°S, 137.7°E) and presents a complex array
of dune fields surrounding Mt. Sharp, a ~5.5-km-high mountain on
the central crater floor (Fig. 1C, D). Hobbs et al. (2010) mapped the
dune fields and presented the general transport trends, showing that
they are largely influenced by the central mountain topography. Bar-
chan, barchanoid, dome, reverse, and transverse dunes are present,
and their spatial distribution is consistent with predominant regional
winds blowing from N–NW, which are accelerated and deflected by
the crater topography.

Using HiRISE data, evidence of present-day aeolian activity was
identified (Silvestro et al., 2013; Vaz and Silvestro, 2014), proving that
the dunes in northern Gale crater are active and migrating. A limitation
of this type of high-resolution analysis is that because of the incomplete
data coverage, it fails to provide a continuous perspective of the sedi-
ment transport processes. Thus, a fast and efficient way to map dune
morphology and identify sediment transport paths, such as the one
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introduced in this work, would also be useful to evaluate current dune
activity and migration on Mars.
3. Methods

The proposed methodology is based on an object-based image
analysis (OBIA) approach, also referred to as GEOBIA (geographic
object-based image analysis; Hay and Castilla, 2008). It consists of
the application of image segmentation techniques in order to ex-
tract image objects (sets of pixels) whose descriptors (parameters
that characterize those objects) can be used to implement higher-
level classification and analysis (Blaschke, 2010). In comparison
with classic per-pixel spectral classification techniques, OBIA can
produce more accurate results (Myint et al., 2011; Whiteside et al.,
2011).

The same generic technique was successfully applied on Mars to
map and analyze tectonic structures from DTMs (Vaz, 2011; Vaz et al.,
2012, 2014) and aeolian ripples from HiRISE imagery (Silvestro et al.,
2011, 2013; Vaz and Silvestro, 2014). The common point in these exam-
ples is that image recognition techniques can be used to identify linear
objects with a single well-constrained geomorphological meaning.
These objects can then be used to characterize the geological processes
responsible for their formation/evolution.

Fig. 2 shows the flowchart of the proposed algorithm. Linear bright
and dark ridges are first segmented from the CTXmosaic; the segment-
ed objects are then vectorized and characterized by collecting geomet-
ric, textural, morphometric, and spectral descriptors. Finally, the
mapped linear objects are used for the implementation of a supervised
classification scheme in order to remove non-aeolian objects (mainly
bedrock features) and to segment the population of objects that corre-
spond to slipfaces.
Fig. 5. Gale crater classification example (see Fig. 1D for location). (A) CTX mosaic;
(B) training data set with the color code representing the three classes used for object-
based classification; (C) output classified objects, those classified as non-aeolian were re-
moved and the features that correspond to slipfaces are shown; (D) dune morphologies
mapped by photointerpretation, where the displayed classes correspond to the
interpreted dune types. See Table 1 for a quantitative overview of the classification stage.
3.1. Object segmentation and characterization

Dune morphologies are commonly mapped and discretized
using line segments. Dune slipfaces and crests are the basic mor-
phologies typically mapped by photointerpretation. In the CTX mo-
saics these morphologies correspond to linear bright or dark ridges,
depending on the relation between the illumination setting (sub
solar azimuth) and the trends and types of dunes. Longitudinal,
transverse, reverse, or star dunes tend to form longer linear struc-
tures, making them more easily recognizable in contrast with
small barchans, whose slipfaces are sometimes difficult to identify
(Fig. 3).

To obtain marker matrices for the bright and dark linear ridges, we
employ a set of mathematical morphological operators (for a compre-
hensive review of mathematical morphology image processing refer to
Soille, 2002). A mean filter with a 3 × 3 kernel is first applied to smooth
the input mosaic (g) and remove high-frequency noise. Morphological
orientation fields are then computed using linear structuring elements
with a size of 19 pixels and angular intervals of 10°. The difference be-
tween the field strengths computed by opening (gdirλγ(f)) and clos-
ing (gdirλϕ(f)) (Soille, 2002) provides the primary marker for the
bright structures, whereas the difference gdirλ

ϕ(f)−gdirλ
γ(f) marks

the location of the dark structures. The watershed transform (WS)
is applied and the extracted watershed lines (Beucher and Meyer,
1992) are multiplied by the computed field strength differences.
For the bright structures, the watershed is computed in the f
image, whereas the complementary image is used for the dark
structures. This operation generates thin lines that incorporate the
strength of the directional fields.

Fig. 3B shows thefinalmarkermatrices. A hysteresis threshold (dou-
ble threshold, DBLT) is applied producing two binary marker images
(mdark and mbright; Fig. 3C). The described segmentation procedure is
summarized in Eq. (1):

mbright ¼ DBLT t1bt2btma½ � WS fð Þ � gdirϕλ fð Þ−gdirγλ fð Þ
h in o

mdark ¼ DBLT t1bt2btma½ � WS f c
� �� gdirγλ fð Þ−gdirϕλ fð Þ

h in o
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The same vectorization procedure described in Vaz (2011) is follow-
ed. It includes: (i) skeletonization and pruning of small line segments;
(ii) vectorization using Freeman chain coding; and (iii) object splitting
usingwaveletmultiscale shape analysis followed by sequentialmerging
using trend and distance thresholds (for details see Vaz, 2011).

Finally, a database containing several object descriptors is created.
For each object, several types of parameters are computed:
(i) geodesic measurements (trend, length, sinuosity); (ii) summary
spectral parameters (note that because blending, normalization, and
bandpass fusion algorithmswere used to produce themosaics, the com-
puted parameters are not absolute reflectance values); (iii) image sum-
mary textural parameters (local entropy, morphological directional
field azimuths and strengths, width of the binary objects); (iv)
THEMIS IR thermophysical data (Edwards et al., 2011); and
(v)morphometric parameters (slope, aspect angle, profile curvature, el-
evation, and longitudinal attitude of the objects). Minimum, maximum,
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mean, and standard deviation are the statistics computed for all scalar
parameters; while mean vector azimuth, magnitude, and circular stan-
dard deviation are computed for angular/directional parameters.

Figs. 3D and 4 show some of these parameters in map view. One of
the most important advantages of this method is that it enables the in-
tegration of different data sources, with different characteristics and
spatial resolutions in objects whose geomorphological meaning will
be better discussed in Section 4. First, it must be noted that a large num-
ber of mapped objects do not correspond to dune morphologies. Many
bedrock features and small secondary objects are present, complicating
subsequent analysis of the dune morphologies. To solve this issue, a su-
pervised classificationmethod is applied in order to segment the objects
that actually correspond to dune morphologies.
3.2. Object classification

The compiled object descriptors are used as input to a supervised
classification using artificial neural network (ANNs) classifiers. To
avoid any potential directional bias caused by the normal clustering of
dune trends in a given area, we decided not to use any of the directional
parameters mentioned in the previous section (azimuth, longitudinal
dip direction, mean aspect angle, and directional fields). This makes
the classification process independent of the trend of the mapped ob-
jects, making it more robust for application in other areas where prefer-
ential trends may be different.

The input feature space is obtained by scaling all the input descrip-
tors to the [−1,1] interval. A feedforward ANN architecture with one
input layer (42 nodes), two hidden (30 and 15 nodes), and one output
layer (2 nodes) is used. Hyperbolic tangent functions are used as
Fig. 6. Example of the procedure used to estimate and characterize the modes of the circular d
axis; this example corresponds to the set of morphologies shown in the lower left map; (B)MR
crater area (see Fig. 1D for location) andmorphologies used in this example; compare with the
phologies (each object was weighted using its length) overlain by the automatically derived p
transfer functions, and the conjugate gradient backpropagation algo-
rithm (Moller, 1993) is used for training.

Training data sets were created for the two areas bymanual classifi-
cation of 15% of the recognized objects (Fig. 5). Classification is per-
formed in two steps: (i) non-dune and dune-related morphologies are
initially segmented; and (ii) the objects previously classified as dune
morphologies are again segmented in order to identify those that corre-
spond to slipface traces. Overall, this corresponds to a classificationwith
three output classes. However, by dividing the procedure into two se-
quential classification steps, higher classification accuracies are obtain-
ed. The intent is to exclude all the non-dune morphologies from any
subsequent data classification/analysis.

The ANNs trained in one area were applied in that same area, but a
combined training data set (including the training data sets of both
areas) was also used to evaluate the robustness and scalability of the
procedure. Having a classifier that can be used on a different area, for
which training data sets may not be available, is key to extending this
mapping approach to a regional or even global scale.

3.3. Generalization of dune pattern descriptive parameters

As will be shown in the following sections, the mapped objects can
provide a valid discretization of the dune morphologies. Here we
show how they can be used for pattern analysis, laying the foundations
for future work and allowing the evaluation of errors associated with
the OBDA technique.

In this analysis, we only include objects that were classified as dune
morphologies using the ANN classifiers trained on the same area of
analysis. Global average dune trends of large areas can probably be use-
ful to define large-scale circulation patterns, but they obviously fail to
istributions. (A) Kernel cumulative frequency curve and modes of the dune morphologies
AMS stress ratio kernel cumulative frequency curve andmodes for the same area; (C) Gale
modal trends identified in the upper left plot; (D) circular histogram of the mapped mor-
rimary and secondary axes (for the morphologies) and vectors (for the MRAMS output).



Fig. 8.Overviewof a scattered sand sheetwhere only a reduced number of subtlemorphologies are discernible. (A) Stretched view of the CTXmosaic; (B) OBDAmapped features, note the
high number of bedrock linear features correctly segmented; (C) features obtained by photointerpretation, compare with (B).

Fig. 7. Examples illustrating the differences and similarities between themapping results: the top row shows the raw images, while themiddle and bottom rows show the manual inter-
pretations and theOBDAoutputs, respectively. (A,B,C) Note howbarchan slipfaces are not always correctly recognized, although the generalmain trendswerewell identified; (D,E,F)main
dune crests and slipfaces arewell recognized, and the automateddata set also includesmany secondary structures; (G,H,I) a complex patternwith two sets of slipfaces iswell recognized in
this case, comparewith the segmentation of themapped slipfaces from other dunemorphologies; (J,K,L) areawhere the imagemosaic presents a noticeable difference in the illumination
conditions, this long-wavelength mosaic defect does not influence the mapping results.
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Table 2
Summary statistics for the twomapped data sets (themanual data set corresponds to the
photointerpretations, while the OBDA data set corresponds to the data sets obtained after
the removal of non-dune morphologies)a.

Area Data set σ (°) L (m) V ν (°) N

Ganges Chasma Manual 11.9 227.6 0.41 59.2 1196
OBDA 6.7 161.1 0.50 67.3 3161

Gale crater Manual 12.8 157.9 0.67 84.7 2725
OBDA 8.2 117.8 0.57 74.4 12,058

a Themean vector azimuth (σ), mean length (L), circular variance (V), circular standard
deviation (ν), and the total number of mapped lineaments (N) are the presented param-
eters. See text for discussion and Fig. 9 for the corresponding length-weighted circular
distributions.

Table 1
Overall accuracies (oa) and k index (k) computed from the confusionmatrices for the two
classification stepsa.

Gale Ganges Total

Step 1 oa 95.23 92.73 94.92
k 0.77 0.76 0.76

Step 2 oa 85.32 89.62 85.32
k 0.71 0.77 0.71

Step 1 + 2 oa 93.85 91.13 93.52
k 0.71 0.73 0.70
N 216,303 24,942 241,245
Nt 29,192 5818 35,010

a The results of the supervised classification are shown for each area (Gale crater and
Ganges Chasma), while the results of using a combined training data set are shown in the
last column. N and Nt are the total number of classified objects and the number of objects
in the training/validation data set.
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address the diversity of dune types and the complex relations between
the trends of dune morphologies and the prevailing directions of winds
and sediment transport. It is beyond the scope of this paper to discuss
those relations in depth, but the future use of the OBDA output for this
purpose is dependent on the correct identification of the main trends
at a local scale and in complex dune settings. To evaluate if this will be
feasible in the future, we have created a sampling grid (with a distance
between nodes of 2 km, the same resolution of theMRAMS output com-
puted for Gale crater) for which objects' zonal circular statistics were
collected (using a sampling radius of 1.5 km). Besides computing the
mean axis trend, magnitude, and angular dispersion, we have imple-
mented a kernel analysis of the circular distributions that is described
in the following section.

We will only discuss the directional analysis of the dune morphol-
ogies, but other object descriptors (morphometric, spectral, textural,
etc.) can also be added to this grid, providing a unique sparse represen-
tation of the dune patterns. The described procedure can be seen as the
creation of another level of objects, ideal for the integration and cross-
analysis of dune pattern parameters and mesoscale wind models.
3.3.1. Estimating and characterizing circular modes
When analyzing the circular distribution of directional or axial data,

mean vector azimuth and magnitude, circular variance, and standard
deviations are the preferred statistical parameters used for exploratory
data analysis (Mardia and Jupp, 2000). However, these parameters do
not provide any insight into the modality of the circular distribution.
This is commonly accomplished by visual analysis of rose diagrams,
Fig. 9. Comparison of the length-weighted circular distributions for the data sets obtained by ph
butions for theGanges Chasma area; (B) circular distributions for theGale crater area. Note the g
of the circular statistics.
which in our case would render impossible a concise analysis of the
results.

In fact, a preliminary analysis of the OBDA outputs revealed that
mapped dune morphologies are rarely unimodal at a local scale (see
the example in Fig. 6C). In additionwe also needed to analyze and com-
pare axial data (the trends of themappedmorphologies) and direction-
al data (the MRAMS modeled winds, normalized by the saltation
threshold). To achieve all these purposes we have: (i) generated cumu-
lative distributions by computing a kernel sum of the input vectors
(Fig. 6A and B); (ii) segmented the distribution peaks by applying a
top-hat morphological operator (Soille, 2002); (iii) computed for each
segmented distribution peak the maximum location and kernel fre-
quency; and (iv) computed a kernel frequency ratio between the sec-
ondary and primary modes quantifying the bimodality of the circular
distribution (when only one peak is segmented the value of this ratio
is zero, indicating a unimodal distribution).

Because data are circular, the wrapping of the distribution is consid-
eredwhen computing the cumulative kernel densities. For axial data all
computations are done after doubling the angles, and in the end the ob-
tained modal trends are halved. This is the same procedure usually ap-
plied for the statistical analysis of axial data (Mardia and Jupp, 2000).
The angular kernel bandwidth used in all examples was 30°. The same
value is used to define the size of the linear structuring element used
to segment the modal maxima. Fig. 6 illustrates the described proce-
dure. The input axis/vectors trends and magnitudes (length of the
mapped morphologies or MRAMS stress ratio) are used to compute a
kernel cumulative curve. This curve is then used to segment the
modal peaks, from which the location/trend of the modes is computed.

The trends, kernel modal frequencies, and themodal ratio that gives
the degree of bimodality for a certain distribution are computed locally
otointerpretation and by the OBDA technique introduced in this work. (A) Circular distri-
ood agreement between the circular distributions in both areas; see Table 2 for a summary



Fig. 10. Local comparison of the mapped trends with the MRAMS output. (A) Length-weighted mean axis computed for the manual and OBDA data sets; (B) MRAMS kernel modes and
circular standard deviations (individual modeled vectors were weighted using the ratio between the modeled aerodynamic surface stress and the aerodynamic stress threshold for sal-
tation initiation; Greeley and Iversen, 1985); (C) MRAMS mean vectors compared with the average wind trends inferred from the dune morphologies (adapted from Hobbs et al.,
2010); (D) kernel modes for the manual data set; (E) kernel modes for the OBDA outputs, compare with the modes computed from the manual data set and from the MRAMS output.
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for each grid node. In order to assess the local accuracy of the OBDA ap-
proach, we have integrated in the same sampling grid the MRAMS out-
put as well as the same directional parameters computed from the
manually mapped data sets.
4. Results and validation

Themapping results are comparedwith the photointerpretations of the
two analyzed areas. To validate and estimate the accuracy of the technique,
a quantitative assessmentmainly focused on the comparison of the circular
statistics of the mapped features is presented. A qualitative comparison of
the results highlights the differences between the manually mapped mor-
phologies and those mapped automatically by the OBDA approach.

4.1. Qualitative comparison

In Figs. 5 and 7 clearly many of the identified objects/structures do
not correspond to slipfaces, nonetheless in many cases they correspond
to other linear dune morphologies such as dune crests, limbs, horns,
ridges, etc. This is themain reason for implementing the supervised seg-
mentation of slipfaces. These are the geomorphologic features preferen-
tially mapped and analyzed because they can be directly linked to bulk
sediment transport andwinds. Even so, the proposedmethod allows for
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recognition of other structures that can contribute to a more complete
characterization of dune fields.

The comparative examples shown in Fig. 7 highlight the output ob-
tained for different dune types and trends. Small barchan dunes
(Fig. 7A, B, C) are the type of dunes where the OBDAmapped structures
differmost from themanuallymapped data set. In this case, slipfaces are
not always correctly mapped. The spatial resolution of the mosaic is
commonly not sufficient to allow the definition of objects representing
barchan slipfaces, which in map view can correspond to areas of only 7
by 2 pixels. In this case, barchan horns and limbs are preferentially
mapped, as they represent linear features with a largermap expression.

Other dune types such as barchanoid ridges (Fig. 5B), reversing, and
star dunes (Fig. 7F), are better represented because they are composed
of larger-scale linear features. Besides the slipfaces, other secondary
morphologic structures are also recognized. In cases where dune mor-
phologies are multimodal (Fig. 7I), all modal trends are also correctly
recognized.

Mosaic defects, such as uneven illumination conditions, do not greatly
influence the results (Fig. 7F). Even so, smooth linear structures that prob-
ably correspond to largewavelength undulations on the sandbeds are not
completely recognized. Note that in this case, the relationship between il-
lumination settings and the trendof the structures canenhance or conceal
them. This directional bias is not easily quantifiable, however, and may
also affect photointerpretations (Smith and Wise, 2007).

In areas where large-scale dune morphologies are absent, or are not
recognizable at the resolution of the imagery used, the OBDA output is
still roughly consistent with photointerpretations. See for instance
Fig. 8, which shows an example of a patchy sand sheet with elongated
structures. Although large ridges or slipfaces are not evident, the main
trends of the aeolian deposits are still correctly identified — namely
the set of EW to NW–SE longitudinal morphologies. A secondary set
trending NNE–SSW is present in the eastern region where it marks
the accumulation of sediments in the leeward of topographic obstacles.
Many of these dark-shadowed areas were misclassified as slipfaces.
Even so, the vast majority of bedrock features were correctly assigned
to the non-dune class, while the identified dunemorphologies still por-
tray the main axis of sediment transport and accumulation.

There are also considerable differences in the style of mapping be-
tween the two techniques. Sinuous and continuous long lines are gener-
ally the result of photointerpretation (Fig. 7E), while OBDA objects
usually present a larger degree of segmentation. Depending on the type
of dunes under analysis, photointerpretation is more focused in themap-
ping of one specific type of morphology; see for instance Fig. 7H where
only crestlines were mapped. The OBDA results in this case are far more
complete, with the correct identification of slipfaces and other
Fig. 11. Cumulative frequencies for the angular differences computed locally between the OBDA
axis trends for all the OBDA-mapped dune morphologies (ALL) and for the subset of those clas
morphologies. Despite these differences, the OBDA results are able to cor-
rectly identify the main geomorphologic trends. A quantitative assess-
ment of the degree of directional agreement is presented in the
following section.

4.2. Quantitative assessment

To start with, we will evaluate the performance of the classification
procedure. This processing step enables the elimination of objects that
do not correspond to dune morphologies and the segmentation of
slipfaces. The overall accuracy (oa) and k index ðkÞ are the parameters
computed from the confusion matrices (Tso andMather, 2001) to eval-
uate the classification results. The overall accuracy ranges from 0 to
100%, with 100% denoting perfect agreement; while k ranges from 0
to 1, with 1 denoting perfect agreement and 0 a randomnon-agreement
case.

For the first classification stage, we obtained overall accuracies be-
tween 93 and 95% and a k of 0.76 (Table 1). These numbers prove that
the segmentation of dune-related morphologies is highly accurate.
The success rate of the second stage of classification is lower (85–90%
and 0.71–0.77), but the values of k still indicate a substantial degree of
agreement (Landis and Koch, 1977) between the validation and output
classified data sets. When all stages are analyzed together (considering
three classes), similar values are obtained (91–94% and 0.7). The classi-
fication process seems to be equally robust for the dune fields within
Gale crater andGanges Chasma, and the performance is not seriously af-
fected by the use of training data sets from other areas. In summary, the
classification stage enables the removal of the large majority of objects
that do not correspond to dunemorphologies and the efficient segmen-
tation of those that correspond to slipfaces.

The global length-weighted circular distributions for each area and
for the two compared data sets are shown in Fig. 9; the agreement be-
tween the global trends of the mapped structures is apparent. Table 2
summarizes the circular statistics for each population, and it shows
that for all cases themaximum angular difference between the comput-
ed mean axis is 5°. The circular standard deviations differ as much as
10°, but the OBDA estimates also point to a higher dispersion of trends
in the Gale crater dune field. The major difference is that OBDA gener-
ates a larger number of smaller lines, as previously discussed.

An example of the local grid used to generalize the pattern trends is
shown in Fig. 10. The example covers the dune field located in thewest-
ern region of Gale and displays several directional parameters. MRAMS
output (Fig. 10B and C) shows primary winds blowing from the NNE,
which are particularly relevant in the northern section of the dune
field. In the east and southeast a significant secondary S–SSW trend is
andmanuallymapped dune pattern trends. It includes the analysis of themean andmodal
sified as slipfaces (SF).
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present, while in the western central section secondary winds blowing
from WNW are in agreement with the inferred sediment transport
trends (Fig. 10C) derived from the barchan dunes shown in Fig. 5D.
The predicted dispersion of the winds is larger on the SE quadrant of
the dune field, but modeled winds are never unimodal (Fig. 10B). This
implies that the mean vectors computed from the MRAMS outputs do
notmatch the transport trends inferred from themorphologies. Instead,
inmost of the cases these trends bestmatch one of the computed kernel
modes.

When visually compared, the mean vectors of the two compared
data sets (OBDA andmanually mapped data sets, Fig. 10A) present con-
siderable trend differences in certain areas. But a better perspective is
obtained when the trends of the kernel modes are compared (Fig. 10D
and E); and it becomes more evident that a much better match exists
for the primary mode trends, while secondary modes differ greatly in
trend and relative kernel strength. This fact is probably related to the
mapping of a large number of secondary features by the automated
technique (see the examples given in Fig. 7). Nevertheless, the good
agreement between theMRAMS primarymodal trends and the primary
modal axis of the OBDA output is evident, suggesting that the majority
of the mapped dune morphologies in this example are longitudinal or
oblique in nature.

The trends of the mean axis, primary and secondary modes of the
two compared data sets were used to compute the cumulative histo-
grams of the angular differences (the acute angle between the two
axes) (Fig. 11). This analysis was performed for the totality of the
mapped dune-related morphologies (the ‘ALL’ set) and for a subset cor-
responding to the features classified as slipfaces (‘SF’). Only grid nodes
that aggregate information of more than two objects are used in this
assessment.

From this comparative analysis we conclude that ~75% of OBDA
mean vectors deviate b20° from the average vectors computed from
the photointerpreted data set. By only considering the ‘SF’ subset, this
percentage rises to 80% for Gale crater. This demonstrates the impor-
tance and usefulness of the slipface trace segmentation, especially in
the analysis of large areas with considerable diversity of dune types.
The deviations in the primary modes are generally higher, with 65–
70% of the cases with deviations b20°, while for secondary modes this
percentage decreases to 35–45%. As discussed earlier, this can be related
to the large number of small secondary features correctly mapped by
the OBDA approach, which are usually not as well represented in
photointerpretation.

Taking into account that a maximum 45° variation may be accept-
able for regional studies (as it is still indicative of the directional quad-
rant), we conclude that the identified secondary modes are within
acceptable ranges on 65% of the mapped area, while mean and primary
modal axis were correctly recognized in 80–95% of the total area. These
are values that attest to the high level of agreement between the
mapped trends.

5. Discussion and future perspectives

So far we have validated and provided accuracy estimates for the in-
troduced automated dune mapping procedure. In order to test the ro-
bustness of the method, we used two areas with heterogeneous dune
types and complex dune spatial arrangements. As seen in the previous
section, the method performs better for dune types that in map view
are composed of long linear segments. When compared with photoin-
terpretations, slipfaces of smaller barchans are less well represented,
with the preferential mapping of the lateral flanks that in map view
present a larger linear signature.

In this work our major concern was to present the technique and
compare the results with the human-made photointerpretations. The
ability to quickly map and characterize dune patterns over large areas
using an objective, consistent, and reproducible technique is by itself a
major improvement. Furthermore, the mapped objects can naturally
integrate dune pattern characteristics, spectral and morphometric pa-
rameters as well as output from atmospheric models. The analysis of
such a data set will certainly require the use of multivariate statistical
methods, such as principal component analysis, clustering, or multivar-
iate correlations. Such techniquesmay be used to investigate the causes
of spatial variations of dune patterns on Mars or elsewhere. The inter-
play between winds and dune patterns, automated dune type recogni-
tion, or the mapping of sediment transport paths over vast areas are
some of the tasks that can be addressed in the future using the present-
ed method.

6. Conclusion

The described technique provides an automated method of detec-
tion and facilitates the measurement of relevant parameters that can
be used to characterize dunes on Mars. A meaningful and reproducible
analysis can now be performed for vast areas, using image mosaics
and with minimum human intervention. Despite that, verification and
editing of the obtained results by an experienced researcher can be nec-
essary to improve the results, particularly in areaswhere small barchans
dunes are present.

Object-based classification accuracies of 95% were attained for the
segmentation of objects that represent dune morphologies. From this
set, we were able to segment objects that correspond to slipface traces
with an accuracy of 85–90%. Global circular distributions of themapped
features are consistent with photointerpretations, with average axis
trend variations within 5°. From the local comparison of the directional
parameters, we conclude that themapping results are strongly correlat-
ed with the photointerpretations. This validation shows that average
and primary modal trends are within acceptable limits for 80–95% of
the total mapped area.

Rather than trying to analyze and explain any dunemorphology, this
study is only focused on their correct mapping and characterization
using an automated, objective and reproducible methodology. By gen-
erating and condensing an array of data that can be used to characterize
dune fields at regional or even global scale on Mars, this method will
surely contribute to the enrichment of global dune catalogs of the plan-
et. Vegetation and humanmade structures will probably complicate the
straightforward application of the same technique on the Earth. Howev-
er, because a global dune database for our planet does not exist, the ad-
aptation and application of the presented method would certainly
increase our knowledge of Earth's dune fields.
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