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Abstract

This paper presents a review on the application of neural networks for the estimation, forecasting,

monitoring, and classification of exogenous environmental variables that affect the performance,

salubrity, and security of cities, buildings, and infrastructures. The forecast of these variables

allows to explore renewable energy and water resources, to prevent potentially hazardous construc-

tion locations, and to find the healthiest places, thus promoting a more sustainable future. Five

research themes are covered—solar, atmospheric, hydrologic, geologic, and climate change. The

solar section comprises solar radiation, direct and diffuse radiation, infrared and ultraviolet radia-

tion, clearness index, and sky luminance and luminous efficacy. The atmospheric section reviews

wind, temperature, humidity, cloud classification, and storm prediction. The hydrologic section

focuses on precipitation, rainfall-runoff, hail, snow, drought, flood, tides, water levels, and other

variables. The geologic section covers works on landslides, earthquakes, liquefaction, erosion, soil

classification, soil mechanics, and other properties. Finally, climate change forecasting and down-

scaling of climate models are reviewed. This work demonstrates the wide range of applications of

these methods in different research fields. Some research gaps and interdisciplinary research oppor-

tunities are identified for future development of comprehensive forecast and evaluation approaches

regarding the estimation of renewable energy and built environment-related variables.
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1. Introduction

This paper presents a review on the application of neural networks for the estimation, fore-

casting, monitoring, and classification of renewable energy and other environment-related variables

that affect the built environment. Contrarily to other reviews on these methods, the purpose of this

work was not to complete an in-depth literature review of a particular application topic (e.g. HVAC

systems, building energy consumption, or solar radiation) but rather to carry out a transversal re-

view on their application in different fields that are relevant to a sustainable built environment.

The main purpose of this approach is to interrelate topics that are naturally connected, such as

solar and atmospheric, or hydrologic and geologic, but that are typically addressed in literature as

isolated subjects.

Besides the estimation of energy-related variables allowing to plan and explore renewable energy

resources—i.e., by predicting the solar potential of a region, prevailing winds and speed, stream

flows, reservoir levels, tide levels, biomass distribution on land, and geothermal potential—and the

forecast of water-related variables that allow to manage the water resources—i.e., by estimating fu-
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ture precipitation, reservoir levels, groundwater levels, snow depth and land cover, and droughts—,

a sustainable built environment is dependent, among other factors, on guaranteeing the safety and

quality of the natural resources and land use. Therefore, other environment-related variables were

also covered, such as the occurrence of storms and their severity, flash floods, seashore water levels,

water quality (sediments concentration and salinity levels), stability of soils (landslide susceptibil-

ity, liquefaction of soils, subsurface cavities, soil mechanics), soil erosion process estimation, soil

classification, and determination of organic matter.

Some variables have an impact on the sustainability of the built environment and should not

be analyzed autonomously. For instance, estimating the solar radiation on buildings surfaces and

simultaneously predicting cloud cover and classification allows an accurate dimensioning of renew-

able solar devices (i.e., photovoltaics and thermal collectors) and the development of smart energy

management systems. Whenever wind speed and direction profiles are added to the estimation

process, hybrid systems can be considered as well. The accurate prediction of sky clearness and

luminance allows the satisfaction of indoor visual comfort in buildings, thus reducing the con-

sumption of electric energy by artificial lighting. Other atmospheric variables, such as ambient

temperature and relative humidity, have impact on the thermal comfort in buildings, thus their

accurate forecast may help in designing more energy efficient buildings and managing renewable

energy according to the occurrence of heat waves or other extreme weather events. Additionally,

the prediction of future climate change scenarios allows the design of more robust buildings and

cities. Therefore, the objectives of this study were: to analyze and review the most important

works that cover a wide range of environment-related variables that are exogenous to the built-

environment but affect the performance, safety, and salubrity of cities, buildings, energy systems

and infrastructures; to identify future opportunities and gaps for interdisciplinary research for

the development of comprehensive forecast and evaluation approaches that take into account the

various interrelated elements of the environment.

As expected, the number of articles published is vast. For this reason, a document selection

methodology was used. The first step entailed the exhaustive collection of papers published in

international journals and/or conference proceedings. From these, a total of 1658 documents

(including review papers) were selected and classified into distinct groups according to the learning

algorithm output variables. For each document, the number of citations was determined and in

each group the documents were ranked by citations. The articles with the highest number of

citations published after 1999 were selected.

After this introductory section, the Neural Network section provides the reader with the basic

information on the modeling, terminology, and estimation accuracy indicators of the models. In

the Applications section, five main themes are analyzed. The first four themes are related to
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solar (covers 14 % of total documents), atmospheric (14 %), hydrologic (53 %), and geologic (17 %)

problems. The fifth is related to the forecast of climate changes (2 %). Each theme is divided

into groups according to the estimated variables. The number of documents and percentage per

group are listed in Table 1. Evidently, some groups emerge as the main research topic within each

theme, such as solar radiation, wind speed, precipitation and runoff, and soil mechanics for solar,

atmospheric, hydrologic, and geologic-related themes, respectively. Even though the topic division

may seem clearly delineated, assigning some of the groups within each theme was not as easy, as

their boundaries are not clearly defined (e.g. should precipitation prediction be included in the

hydrologic or the atmospheric subsection?). Ultimately, the documents were assigned according to

the estimated phenomena. Lastly, a discussion on the articles analyzed is presented, followed by

the conclusions.

2. Neural Network

Since the 1950s, when Turing [1] idealized that machines could learn, learning algorithms have

been developed and applied in several problems. One of those is the artificial neural network, which

consists of interconnected units called neurons, nodes, or perceptrons [2]. The perceptrons were

formulated by Rosenblatt [3] as being capable of containing information in the connections and,

therefore, possess the capability to memorize and recognize patterns. In a network, the neuron has

as input the output values of the preceding neurons. The incoming weighted values are summed and

an activation function is applied to the total—logistic sigmoid, hyperbolic tangent, tan-sigmoid,

wavelet, Gaussian, softmax, threshold, and identity functions, just to mention a few—to limit the

amplitude of the neuron output.

There are several types of neural networks [4]. For instance, the simplest one is the linear

network (LN), which comprises just two layers for input and output variables, or more complex

and popular multi-layer perceptron network (MLP), which may have one or more hidden layers

with different number of neurons. The selection of the activation function depends on the kind of

modeling data and scale of values.

However, for the neural network to work properly, the network weights must be optimized.

This process is called calibration or training. Two of the most common training algorithms are the

standard back-propagation [5] and the Levenberg-Marquardt [6], which change the network weights

in the direction of minimizing the differences between the model’s predicted values and the aimed

values. Recently, population-based evolutionary algorithms have also been used, such as genetic

algorithms (GA), differential evolution, and particle swarm optimization (PSO) techniques. After

the training phase, the models must be validated and tested against unseen data—usually a part of

the original dataset. To assess their accuracy, statistical performance indicators are used. However,
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different analysis is required depending on the type of model, whether it is a regression—it fits

a set of estimated values with observed ones—or if it is a classification problem—identifying the

class the input fits into. For regression problems, the indicators are usually the correlation coeffi-

cient, coefficient of determination, residual sum of squares, mean square error, root mean square

error, coefficient of variation, mean bias error, mean percent error, mean absolute error, and mean

absolute percentage error. If time series are estimated, the indicator may be the autocorrelation

coefficient. When dealing with classification problems, the common performance indicators are

the probability of detection, probability of false detection, false alarm rate, Kuipers skill score,

and Odds ratio. For further details on statistical performance indicators, please see Haykin [4]

and Wilks [7].

Other neural network types are the radial basis function network (RBF) [8], general regression

neural network (GRNN) [9], recurrent neural networks (RNN), adaptive neuro-fuzzy inference

system (ANFIS) [10], support vector machine (SVM) [11], probabilistic neural network (PNN) [12],

self-organizing feature maps (SOFM) [13], neural network ensembles [14], and extreme learning

machines (ELM) [15]. Neural networks acronyms and abbreviations are presented in Table 2.

3. Applications

3.1. Solar-related

Solar-related estimations allow engineers, architects, urban planners, and other decision makers

to plan, design, and create systems to explore and manage renewable resources, design more energy

efficient buildings, and to build cities with better environmental quality. Global solar radiation

estimation, as also its direct and diffuse components, allows to determine the solar energy potential

of a specific region and to predict the upcoming solar energy production variation. This is also

important to determine the solar availability in buildings and how the energy consumption for

heating and cooling will vary in the near future. When estimated over tilted surfaces, renewable

energy systems can be accurately dimensioned to match the energy demand. Lastly, sky clearness,

sky luminance and luminous efficacy forecasts contribute to design passive measures in buildings to

prevent the unnecessary use of artificial light or prevent indoor visual discomfort, thus promoting

energy efficiency in buildings.

The accurate prediction of solar radiation for a specific location is dependent on several factors,

such as the sky conditions and time of the day. As locally measured data is not always available,

forecasting and estimation models are the most cost-effective solutions. These can be empirical

models, statistical methods, satellite-based methods, and artificial intelligence models.

The Ångström approach, and its variations, is the most used empirical model and correlates

the global radiation to the clear-sky radiation, or to the extraterrestrial radiation on the horizontal
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surface, and the sunshine duration fraction. However, these models are dependent on location,

thus limiting their applicability in other regions [16]. When the sunshine duration is not available,

the models can use the ambient temperature and the relative humidity instead, which is especially

useful in humid and coastal regions. The statistical methods use past local information to predict

the future solar radiation. Despite being easy to model and presenting good short-term accuracy,

the statistical methods fail as the prediction period increases. The satellite-based methods use

regression equations to correlate information, such as the cloud cover, obtained from the satellite

imagery with the clear sky index. The benefit of satellite-based approaches is that they cover

large areas at different wavelengths and provide more accurate information than interpolation

techniques [17].

Artificial intelligence models are particularly suitable for local scale and short-term predictions

due to their nonlinear mapping capability between input and output variables. However, for these

models to work properly, and in order to be applicable in practice, the model type and structure,

as well as the type of input variables, have to be correctly determined. For instance, Yadav

et al. [18] studied the selection of the most relevant meteorological and geographical parameters

to be used as input variables by testing three neural networks. The work focused on 26 Indian

locations with different climatic conditions and the most relevant input variables were altitude

above mean sea level, temperature, maximum and minimum temperature, and sunshine hours.

Latitude and longitude had minimum influence on solar radiation prediction. Amrouche and Le

Pivert [19] developed a neural network approach to forecast the global horizontal irradiance for

locations with no available measured data on records. This type of approach was developed taking

into consideration the applicability of the method; thus the input variables, which were tested at

the same time, were the global horizontal radiations and forecasted ambient temperatures. The

authors tested several model structure topologies, with the same computation burden in training,

and concluded that ambient temperatures, contrarily to what was previously assumed, do not bring

much more additional information. According to the authors, the uniqueness of the approach is

the ability to continuously learn and acquire knowledge from the measurements of neighboring

locations, despite the weak initial training.

As the topology of the models affect the accuracy performance, several authors are currently

studying new approaches, for example by hybridizing SVM with a radial basis function [20], a

firefly algorithm [21], or a wavelet transform algorithm [22]. Mohammadi et al. [22] combined a

wavelet transform algorithm to decompose time series into different components thus enhancing

the capacity of the model to capture the information at different levels. Despite the importance of

the topology, the authors refer that the right choice of input variables was important, thus they

selected relative sunshine duration, difference between air temperatures, relative humidity, average
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temperature, and extraterrestrial solar radiation. For the long-term forecast in a particular day of

the year, Mohammadi et al. [23] implemented an ANFIS approach that had a single input variable

and a single output variable (the day’s horizontal global solar radiation). The advantage of this

approach was that no meteorological data or pre-calculation analysis was required. Lately, ELM

have been used to predict horizontal global solar radiation [24], as these require lesser time to

train and have shown to have better accuracy prediction than SVM and Artificial Neural Networks

(ANN).

Neural networks have been used since the 1990s to estimate solar-related variables [25–27], and

the growing interest has led several researchers to review past contributions [28–38].

In this first subsection, forecasting/estimation of global solar radiation, solar radiation on tilted

surface, diffuse and direct radiation, infrared and ultraviolet radiation, clearness index, and sky

luminance and luminous efficacy are addressed in detail. Tables 3 and 4 summarize the papers

analyzed in this subsection by listing the authors, model type, input variables, output variables,

location, and statistical accuracy of the models.

3.1.1. Solar radiation

Mellit and Pavan [39] modeled an MLP to forecast next day 24-hour solar irradiance in Trieste,

Italy. The input variables were the day of the year, mean air temperature, and mean solar irradiance

of that day. The MLP had two hidden layers with 11 and 17 neurons. The output variables were

24, each corresponding to one hour of the next day. The model was trained using the Levenberg-

Marquardt algorithm with K-fold cross-validation (K=10). The training dataset consisted of the

hourly data from July 1st 2008 to May 23rd 2009 and from November 23rd 2009 to January 24th

2010. The authors concluded that the model predicts well for short-term sunny days but only

presents acceptable results for cloudy ones.

Sfetsos and Coonick [40] modeled and compared different neural networks and traditional linear

methods for a single step ahead forecasting of hourly solar radiation for the island of Corsica,

France. The neural networks were the LN, two MLP networks trained with different algorithms,

the RBF network, Elman RNN, and an ANFIS. The training data consisted of 984 h and the

testing data of 312 h of measured meteorological information. The learning algorithm with the

best performance was the MLP trained by the Levenberg-Marquardt algorithm. The activation

function was a logistic function. The MLP consisted of 5 input variables—time, wind direction, and

the values t−1, t−2, and t−24. A single hidden layer was used with 4 neurons. As the prediction

included night time, thus incorporating non-continuity in the data, the authors concluded that

MLP dealt better with these problems. They also stated that the MLP and ANFIS forecasting

methods benefit from having the wind direction in the input variables.
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Tymvios et al. [41] compared the capability of seven MLPs and three Ångström regressions

in estimating the global solar radiation in Cyprus. The MLP models differed in the number of

hidden layers (one or two) and in the number and type of variables in the input layer. The MLP

with the best result had three input variables—theoretical daily sunshine duration, measured daily

sunshine duration, and daily maximum temperature—and consisted of two hidden layers with 46

and 23 neurons. The neurons were activated with the hyperbolic tangent function. The training

data consisted of 1858 days of a total of 2090 days of measured solar radiation and the training

algorithm was the back-propagation. Cross-validation was used to determine the model convergence

with 232 days of the remaining data. The authors then concluded that the MLP performance was

comparable to the best Ångström models, thus could easily substitute the latter ones, which were

more demanding of input data and difficult to use by non-experts.

Reddy and Ranjan [42] built an MLP for estimation of monthly mean daily and hourly values

of solar global radiation in New Delhi and Mangalore, India. The model structure had 9 input

variables—latitude, longitude, altitude, month, hour, air temperature, relative humidity, wind

speed, and rainfall. Two hidden layers were used with 8 and 7 neurons, while the output variable

was the hourly global radiation. The training algorithm was the back-propagation with the weight

of the neurons optimized using the generalized delta rule. The activation function was the sigmoid

function. The data consisted of the measured meteorological information of 11 locations, from

which two locations were used for testing the model. The authors compared this with other re-

gression models, such as the Ångström, Hargreeves, and Supit models, and the MLP outperformed

all. The authors then concluded that the neural network was more suitable for solar radiation

prediction.

Mellit et al. [43] modeled a wavelet-network (WN) with an impulse infinite-response filter to

predict the daily total solar-radiation from time series data in Algeria. Several model structures

were tested and compared. The structure that presented the best performance had an input layer

with 5 variables, one hidden layer with 10 neurons, and a single output variable. The five input

variables were the 5 preceding values of total solar radiation of the one being estimated, which

makes it suitable for short-term prediction. The Morlet’s function was used as the activation

function. The steepest descent algorithm was used in the training process. The training data was

19 years of measured data, extending from 1981 to 2000, gathered from a meteorological station in

Algeria. Measured data from 2001 was used to test the performance of the model. The structure

found in second place consisted of 25 input variables, one hidden layer with 10 neurons, and 5

output variables in the output layer. The input variables were the first 25 total daily radiation

values and the output variables were the following 5 values. The authors concluded that the model

was suitable to fill missing data and the main advantage in comparison to other neural networks
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was the speed of convergence of the technique.

Paoli et al. [44] developed an MLP network to predict time-series of daily solar radiation for

Ajaccio in the Corsica Island, France. The authors pre-processed the meteorological data before

using it to model the neural network. According to the authors, this strategy helps to improve the

accuracy of the model. The ad hoc time series pre-processing had 3 steps. In the first step, the

dataset had removed the measuring errors (substituted by the hourly average of the 19 years for the

given day), and in steps two and three the clear sky was corrected and the extraterrestrial values

were normalized, respectively. The training dataset was measured from the year 1971 to 1987.

The testing data were collected between 1988 and 1989. The structure of the MLP was 8 input

variables—the 8 previous values of solar radiation (t− 1, · · · , t− 8)—and one hidden layer with 2

neurons. The activation function for the hidden layers was the Gaussian function. When compared

with other methods, such as Naive predictor, the Markov Chain, Bayes, and other autoregressive

methods, the model outperformed them all. The authors concluded that pre-processing of the data

improved the neural network accuracy by reducing the error margin by 5 % to 6 %.

Rehman and Mohandes [45] modeled three MLPs with different input variables for the estima-

tion of global solar radiation. The comparison of the three models showed that the best one had

three input variables—time, day of the year, daily mean air temperature, and relative humidity.

A single hidden layer was used with 24 neurons. A single output variable was used for the estima-

tion of global solar radiation, and the activation function was the sigmoid function. The training

algorithm was the back-propagation algorithm. The training dataset was 1462 days (from year

1998 to 2001) and testing dataset was 240 days (2002) of measured information from the Abha

city in Saudi Arabia. The authors stated that the model could be used in locations where only

temperature and humidity were available.

Sözen et al. [46] developed nine feedforward neural networks (FNN) with biases trained by

different algorithms to generate monthly solar maps of Turkey. To achieve this, the authors used

the same 6 input variables—latitude, longitude, altitude, month, mean sunshine duration, and

mean temperature—and a single output variable corresponding to the estimated solar radiation.

However, the number of hidden layers and neurons in each layer varied. The activation function

was a sigmoid function. The training algorithms used were Scale Conjugate Gradient, Levenberg-

Marquardt, and Pola-Ribiere Conjugate Gradient. The training and testing datasets consisted

of meteorological data measured between the years 2000 and 2002 obtained from 17 stations (11

stations for training and 6 for testing). The authors concluded that the models had enough accuracy

for scientists to locate and design solar energy systems in Turkey.
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3.1.2. Solar radiation on tilted surface

Mehleri et al. [47] built an RBF model for the prediction of the mean solar irradiance on inclined

surfaces in Athens, Greece. Meteorological information from a weather station for the full year of

2004 was used as a dataset. The input variables were the tilt angle and orientation. The model

was trained using a fuzzy-means algorithm (10 fuzzy sets showed the best results) to minimize the

deviation between the measured and predicted values by automatically optimizing the number of

neurons in the hidden layer, their center, and output weights. The meteorological data was divided

into 75 % for training and 25 % for testing. The authors observed that the RBF showed better

accuracy than the linear model that was also tested.

3.1.3. Direct and diffuse radiation

Marquez and Coimbra [48] developed four FNNs to estimate the direct solar irradiance in

California’s Central Valley, USA. Eleven input variables were employed—maximum temperature,

temperature, minimum temperature, dew point temperature, relative humidity, sky cover, wind

speed, wind direction, probability of precipitation, cosine of the solar zenith angle, and the nor-

malized hour angle. A GA was used to select which variables to use in each FNN model. The

first model (FNN3) consisted of three input variables—sky cover, minimum temperature, and nor-

malized hour angle. The second model (FNN6) had three additional input variables—maximum

temperature, dew point temperature, and probability of precipitation. The third model (FNN8)

had two more—temperature and wind speed. The last model (FNN11) had all variables. The

output variables were the direct normal irradiance for the same-day, 1, 3, and 5-days ahead. The

training algorithm was the Levenberg-Marquardt algorithm. The modeling dataset consisted of

collected data between November 1, 2008, and November 30, 2009, from the National Digital

Forecast Database and measured data from the solar observatory of the University of California

Merced. The training dataset consisted of 80 % randomly selected points and the remaining ones

were used for testing. The authors concluded that the prediction of direct solar irradiance was

more difficult to obtain than global solar radiance and that the models’ accuracy decreased with

the increase of the forecasting horizon. However, the accuracy in summer months did not decrease

so sharply. The inclusion of normalized hour angles improved the models’ accuracy.

Soares et al. [49] modeled and compared three MLP networks to predict hourly diffuse solar

radiation in São Paulo city, Brazil. The model was trained and tested using meteorological data—

global solar radiation, diffuse solar radiation, long-wave atmospheric emission, air temperature,

relative humidity, and atmospheric pressure—measured between 1998 and 2002. The difference

between the models consisted in having the long-wave atmospheric emission as input variable and

a pattern selection mechanism to pre-process the data. Every hourly interval vector of input
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variables was a pattern. The sigmoid function was used as the activation function. The MLP was

trained by the back-propagation algorithm, and the testing phase used data from the year 2002.

The best model had the long-wave atmospheric emission in the input variables—the remaining

inputs were the theoretical solar radiation at the atmosphere top, global solar radiation, relative

humidity, partial pressure of the water vapor, theoretical solar azimuth angle, and theoretical zenith

angle. According to the authors, the fact that this model incorporated the long-wave radiation

improved its accuracy and may be used as surrogate for the cloud cover variable.

López et al. [50] developed an MLP, with a Bayesian framework of automatic relevance de-

termination, to predict the direct solar radiation at Desert Rock, USA, between 1998 and 1999.

The Bayesian approach allows determining the relevance of every input variable and controls the

weights connecting each input variable to the hidden layer. Thus, this approach can turn off vari-

ables that are not relevant for the estimation. The input layer had 9 variables to be studied—cosine

of solar zenith angle, relative optical air mass, clearness index, air temperature, dew point tem-

perature, relative humidity, precipitable water, wind speed, and pressure. A single hidden layer

was used and two models were built, one with two neurons and the other with ten. The neurons

in the hidden layer were activated by the hyperbolic tangent function and the output layer by the

identity function. The authors observed that from all input variables, the clearness index was the

most relevant one, followed by the relative optical air mass. Relative humidity showed to be a

minor input variable. Wind speed, pressure, precipitable water, and dew point temperature were

irrelevant when compared to the clearness index. The authors concluded that the model with less

hidden neurons was more suitable to identify the relevant variables.

Elminir et al. [51] developed two MLP networks for the prediction of the hourly diffuse radiation—

for Aswan, South-Valley, and Cairo in Egypt—and the daily diffuse radiation—for Aswan only. The

hourly prediction model was trained with measured data from between 1999 and 2002 and eval-

uated with data from 2003. The daily prediction model was trained with data from the years

1999 to 2001 and tested with data from 2002. The data was preprocessed to remove inconsistent

measurements or unverified pyrometer data. The hourly MLP had 5 input variables—normalized

values of month of the year, day of the month, hour of the day, hourly value of global radiation, and

hourly value of the extraterrestrial irradiation. The structure of the second model, the daily MLP

model, only had 3 input variables—daily global radiation, daily extraterrestrial irradiation, and

sunshine fraction. Both models had a single hidden layer with 40 neurons that were activated by a

logistic sigmoid function. The models were trained using back-propagation algorithm. The authors

compared these results with others obtained from regression models for diffuse solar radiation and

concluded these were more accurate and faster in the prediction.

Mellit et al. [52] developed and compared an FNN and an adaptive model for predicting global,
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direct, and diffuse hourly solar irradiance in Jeddah, Saudi Arabia. The neural network had four

input variables—air temperature, sunshine duration, relative humidity, and the previously esti-

mated output variable—single output value. Three versions were created; each version estimated a

different variable—the global irradiance, direct irradiance, or diffuse irradiance—and had a differ-

ent number of hidden neurons—17, 12, and 15 neurons in a single layer, respectively. The neurons

were activated by the sigmoid function. The FNN was trained by the Levenberg-Marquardt algo-

rithm using 8000 points of measured data and tested using 765 points for each parameter obtained

between 1998 and 2002 (sunshine duration was synthesized by the authors). The adaptive model

(α-model) was based on techniques used in finance and stock exchange applications. The authors

concluded that despite obtaining better results from the FNN models, the α-model was easier and

more flexible if there was a need to add or remove parameters.

3.1.4. Infrared and ultraviolet radiation

Elminir et al. [53] built an ANN for the prediction of the solar radiation components—infrared

radiation, ultraviolet radiation, and global insolation—for the region of Helwan and Aswan, Egypt.

The six variables in the input layer were the wind speed, wind direction, ambient air temperature,

relative humidity, cloud cover, and water vapor. The activation function in the single hidden layer

with 10 hidden neurons was a logistic sigmoid function. The output layer had 3 variables. The

ANN was trained using the back-propagation algorithm. The training set was recorded at the

Helwan site during 2001 (full year) and 2002. The evaluation of the performance was carried out

for the measured data for Aswan from January to November 2002. The authors concluded that

the model had high accuracy in unseen data; however, they recognized the necessity to extend the

model to other regions.

Jacovides et al. [54] developed and compared several FNN models to estimate the spectral

global ultraviolet, global photosynthetic photon flux density, and broadband global radiant flux.

The input variables resulted from the combination of several parameters—sunshine fraction, air

temperature, predictable water, extraterrestrial radiation, relative humidity, air mass, and ozone

amount. All models had only one hidden layer. The training and testing data were collected for the

semi-urban Athalassa site, Cyprus, between 2004 and 2006. Two-year data were used for training

and one-year data for testing. The training algorithm was the Levenberg-Marquardt algorithm.

The authors concluded that sunshine duration played an important role in the models’ accuracy

and some other parameters were able to negatively influence the performance of the model.

3.1.5. Clearness index

Dorvlo et al. [55] modeled and compared an MLP and an RBF network to predict the clearness

index in Oman. Both models had the same input variables—month of the year, latitude, longitude,
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altitude, and sunshine ratio. The number of hidden layers in the MLP models varied between 1

and 3. The single output variable was the clearness index, which is the ratio between the total solar

radiation on the surface and the extraterrestrial solar radiation. The training and testing of the

models were carried out with average data from eight stations collected in ten years (1986-1998).

Data from two of those stations were used in testing. The MLP used the logistic sigmoid function

as the activation function while the RBF used the Gaussian function. The MLP was trained using

the Bayesian regulation back-propagation algorithm. The RBF was trained by optimizing the

Gaussian function nodes center, width, and weight. These were initially calculated and computed

using multiple linear regression techniques. Despite not having significant differences between the

two models, the authors recommend the RBF as it requires less computation power.

Mellit et al. [56] developed an ANFIS for the estimation of sequences of mean monthly clearness

index data in Algeria. The input variables were the geographical coordinates of the site—altitude,

longitude, and latitude. The output variables were the 12-month values of clearness index. The

database used in the ANFIS system consisted of 12 sets of monthly solar radiation collected in 60

sites. The training method was a combination of back-propagation, gradient-descent, and a least-

squares algorithm in a two-pass process over a number of epochs. The ANFIS had better accuracy

than prediction maps from B-spline function. The authors concluded that the main advantages of

this model were the capability to predict the clearness index just from geographical parameters,

while requiring a lower computation time in the training process.

3.1.6. Sky luminance

Janjai and Plaon [57] developed an MLP model to predict the sky luminance in the tropical

climate of Thailand. The input variables were solar zenith angle, zenith angle of the sky element,

and angular distance between the sky element and the sun. The output variable was the relative

sky luminance. The training and testing of the model were carried out using scanned sky data from

Nakhon Pathom and Songkhla solar stations, Thailand. The training set corresponded to two years

of measurements (2007 to 2008) at Nakhon Pathom. The model was tested to predict one year of

measurements (2009) at Nakhon Pathom and at Songkhla. The training was carried out using the

back-propagation algorithm. Three sky types were tested for the two locations—clear sky, partly

cloudy, and overcast. When comparing the results with the ones from the Centre International

d’Eclairage model, the authors concluded that the MLP outperformed in all cases except in the

partly cloudy sky type.

3.1.7. Luminous efficacy

López and Gueymard [58] developed several MLP models for the estimation of luminous efficacy

of direct, diffused, and global solar radiation under cloudless conditions. The input layer included a
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combination of several parameters—diffuse fraction, direct transmittance, precipitable water, and

solar zenith angle. The number of neurons in the hidden layer varied between 3 and 22. The

output layer had 3 variables for the corresponding luminous efficacy components. The activation

function for the hidden layer was the hyperbolic tangent transform while for the output layer it was

the identity function. A synthetic dataset was used to train and test the model using a spectral

radiative transfer model for cloudless atmospheres. The training algorithm was a Gauss-Newton

based Levenberg-Marquartd algorithm. From all the modeled neural networks, the one with the

best performance had 22 hidden neurons; however, the authors preferred the model with 10 hidden

neurons to reduce model complexity without significant loss of accuracy. The authors observed

that relative errors were larger than 5 % when solar elevation, irradiance, and illuminance were

very low.

3.2. Atmospheric-related

The prediction of atmospheric-related phenomena is important not only to plan and design re-

newable energy systems but also to predict outdoor environment conditions that affect the buildings

performance, thus allowing to design passive and active mechanisms to control indoor environment.

The wind variables—speed and direction—and the temperature/humidity-related variables—dry

bulb temperature, wet-bulb temperature, and relative humidity—indicate some of the outside con-

ditions that affect the buildings performance and, consequently, influence the occupants’ behavior.

Knowing how these factors will vary in the near future helps to predict the increase in the energy

demand. However, this information can also be used to predict the amount of renewable energy

that can be produced from wind energy, which is relevant in the context of integrated manage-

ment of energy resources in the realm of smart grids, namely to deal with the intermittency of

this energy source. The cloud cover classification, fog and storm prediction allow to determine the

impact on the solar availability in buildings, thus anticipating the increase of energy consumption.

However, weather exhibits strong variations and fluctuations that make forecasting very difficult

and uncertain with large deviations from the real values.

In addition to artificial intelligence models, there are other prediction models, such as the

persistence method, physical methods, statistical methods, and spatial correlation models [59–62].

In the persistence method, the future wind speed is assumed to remain the same, thus being

simple and prone to error approach, as time span increases. Usually, this method only works for

ultra-short-term forecasts (from minutes to 1-hour ahead). The physical methods were developed

for large scale weather prediction areas, which use ambient temperature, air pressure, surface

roughness and landscape obstacles information to have a detailed description of the atmosphere

phenomena. Statistical methods use the historical data of a site to perform short-term predictions.
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Some common techniques are the autoregressive (AR), autoregressive moving average (ARMA),

and Bayesian approaches. The spatial correlation models predict a variable behavior at a specific

site from the measurements on the surrounding locations.

However, to overcome the difficulties in dealing with non-linearity and complexity of atmo-

spheric prediction, researchers studied the use of artificial intelligence models, such as neural net-

works, as surrogate methods to traditional methods. Early studies applied these soft techniques

to cloud classification [63–66], wind speed forecast [67–69], and storm prediction [70, 71].

Researchers are now focusing their work on hybridizing the prediction models [72–77], which

may combine one or several methods at different stages of the forecast process to select the best in-

put variables, to filter or to identify data with the right information, and to optimize the parameters

of the model.

As in all kinds of prediction problems, the model type, topology, and input variables contribute

significantly to the accuracy of the model. For instance, recently, Ren et al. [78] developed an

approach to find the optimal input parameters in back-propagation neural network model opti-

mized by a particle swarm optimization technique. The input variables were selected using the

lateral data selection method and the longitudinal data selection. By selecting the appropriate

input parameters, the proposed approach clearly outperformed common back-propagation neural

networks. Instead of decomposing the data, Azad et al. [79] incorporated a pattern recognition

mechanism into a hybrid ensemble of ANNs and statistical models to predict a year ahead over

the identified patterns of the previous years. Another approach is to prepare data using an image

recognition algorithm. Liu et al. [80] applied an adaptive boosting algorithm before the forecast

was carried out with an ensemble of MLPs.

The use of optimization techniques to enhance the forecast performance of the neural networks

were tested by Liu et al. [81], who used a GA to improve an SVM to ensure the generalization

capabilities of the model. The authors also used selection methods for the input data by using

deep quantitative analysis and wavelet transformation to decompose the input data signal into the

required components. Instead of GA, Meng et al. [82] used a crisscross optimization algorithm

to improve ANN capabilities. Liu et al. [83] applied a secondary decomposition algorithm to the

original wind data before using an Elman RNN model that already used a wavelet packet and a fast

ensemble empirical mode decomposition. Chen and Yu [84] combined an SVM and an unscented

Kalman filter to predict short-term capabilities. The SVM was used to formulate a nonlinear state-

space model before the Kalman filter was used to perform dynamic state estimation. According to

the authors, the proposed method has much better performance than other tested approaches.

Past reviews on atmospheric forecast models using artificial intelligence can be found in refs. [35,

36, 59–62, 85–89].
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In this second subsection, the review on the atmospheric-related variables is divided into wind

speed, wind direction, dry bulb temperature, wet-bulb temperature, dew point temperature, rel-

ative humidity, water vapor, cloud classification, fog prediction, and the forecasting of thunder-

storms. Tables 5, 6, and 7 summarize the analyzed works.

3.2.1. Wind speed

Mohandes et al. [90] modeled one SVM and one MLP to predict the wind speed in Medina

city, Saudi Arabia. The input variables were a set of values of wind speed from previous days.

The values tested varied between 1 and 11. For the MLP model, the number of hidden neurons

ranged between 2 and 100 and neurons were activated by the tan-sigmoid function. The training

and testing data of wind speed measurements covers a period of 12 years between 1970 and 1982.

Two thousand days were used for training, 1500 days for cross-validation, and 728 days for testing.

The MLP was trained using the Levenberg-Marquardt algorithm. For both models, the number of

input variables was the same, corresponding to the 11 previous days of wind speed. The authors

concluded that SVM outperforms MLP in all cases.

Sfetsos [91] built and compared the performance of eight neural networks—LN, two MLPs

trained by different algorithms, RBF, Elman RNN, ANFIS, and two neural logic networks (NLN)

with and without logic rules—for the prediction of time-series of mean hourly wind speed in Odigi-

tria, Greece. The models used the measured data from March 1996 (a total of 744 h). The LN was

trained using Widrow-Hoff rule. The MLP models were trained by the back-propagation (MLP-

BP) or by the Levenberg-Marquardt algorithm (MLP-LM). The MLP-BP had 6 hidden neurons

and the MLP-LM had 4. The RBF used the Gaussian density function to activate the 35 hidden

neurons. The ANFIS had five layers and nine rules. The NLN had no hidden neurons, and the

RNN had three hidden neurons as well as the remaining NLN with logic rules (NLN-LR). Despite

the MLP-LM and NLN-LR having similar accuracy, the MLP-LM only required 5 s of computation

time, as opposed to the 141 s verified for the NLN-LR model.

Barbounis et al. [92] developed three neural networks, with internal feedback paths, to produce

four nodes—North (N), East (E), South (S), and West (W)—for online 72-hours ahead time-series

of wind forecast in Crete, Greece. The first model was an infinite impulse response MLP (IIR-

MLP), the second a local activation feedback multi-layer network (LAF-MLN), and the final one

was a diagonal RNN. The seven input variables were wind speed and direction, for the N, E, and

W nodes, and an input index. The IIR-MLP and LAF-MLN models had two hidden layers with 7

and 8 neurons, respectively. The diagonal RNN had only one hidden layer with 32 self-recurrent

neurons. The activation function was the hyperbolic tangent. The neural networks were trained by

a proposed algorithm called global recursive prediction error. The training and testing data were
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arranged in batches of 72-hour node predictions for wind speed measurements composed of 3264

patterns and 960 patterns, respectively. When compared to other models, such as the static MLP

and finite impulse neural network, the authors concluded that the three models outperformed the

static ones and had a good forecast capability.

More and Deo [93] built two neural network types to forecast time-series of wind speed in the

Colaba coastal region, Mumbai, India. The first type was an FNN trained by two methods—the

back-propagation (FNN-BP) and cascade correlation algorithms (FNN-CC). The second type was

a Jordan RNN. Each network type was modeled three times, each per time period—monthly (FNN-

BPm, FNN-CCm, and RNNm), weekly (FNN-BPw, FNN-CCw, and RNNw), and daily (FNN-BPd,

FNN-CCd, and RNNd). The models had past wind speed values as input variables (t−1, · · · , t−n)

and for the output variable the wind speed at time t. A dataset for training and testing of daily

average values of wind speeds measured over 12 years between 1989 and 2000 was used. The first

10 years served to train the models and the last 2 years to test. The best model for monthly

prediction was the RNNm with a structure of 4 input variables, three hidden layers with 6, 7, and

6 neurons. The authors concluded that the proposed models were able to capture the rising and

falling trends of the observed wind speed time-series.

Li and Shi [94] modeled and compared the performance of three neural networks for time-series

forecast of wind speed in Hannaford and Kulm, North Dakota, USA. The first model was an MLP,

the second one was an RBF, and the last one was an adaptive linear element (ADALINE) neural

networks. A different number of input variables and training rates were tested to determine the

best models. The output of all the models was the next hourly average wind speed. The training

and testing data was measured with some anemometers at fixed positions having different heights.

One-year (2002) of data was collected and the hourly values were averaged. The authors concluded

that determining the best-performance model was difficult, as the structure and learning rates

produced differences in accuracy. Therefore, they recommend the development of a more robust

method of combining forecasts from different ANN models.

3.2.2. Wind speed profile

Mohandes et al. [95] developed an ANFIS model to estimate the wind speed profile up to 100 m,

based on 10, 20, 30, and 40 m, in Juaymah city, Saudi Arabia. The model had lower altitude wind

speed values as inputs, 10 Gaussian membership functions, 5 fuzzy rules, and a single output

variable—wind speed. The training and testing dataset was comprised of measurements taken

at 10, 20, 30, and 40 m above ground level for a period of 17 months between July 1, 2006 and

November 30, 2007. The model was trained using wind speed values at three heights and asked to

estimate the following height. For example, the model used 10, 20, and 30 m wind speed values to
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predict the wind speed at 40 m. Three scenarios were built; for each, a 10 min wind speed average

value, a 10 min average over 1 month, and daily average values over the entire data collection were

used. The authors concluded that the model was capable of estimating wind speeds at higher

altitudes using values from the lower ones.

3.2.3. Wind direction

Potter and Negnevitsky [96] implemented an ANFIS for the forecast of 2.5 min ahead time-series

of wind vectors in Tasmania, Australia. The membership function was the Gaussian function. The

learning algorithms were the least-squares estimator and the gradient descent method. The training

and testing used data from a 21-month time series in steps of 2.5 min. When compared with a

persistence model, which was used by the wind power generation industry for short-term prediction,

the ANFIS obtained a much better result.

Tagliaferri et al. [97] developed an SVM and an MLP model for the prediction of wind direction

for very short-time periods. Both models had a wind direction vector (in degrees) of past data as

input variables. As output variables, the models used a vector of wind directions averaged over

1 min ahead and averaged between 1 min and 2 min ahead. The input vector length, number of

hidden layers, and number of hidden neurons were optimized to find the best structure. The MLP

was activated by the hyperbolic tangent function. The dataset used to train and test the models

were registered during the 34th America’s Cup in 2013, San Francisco, for 34 days. Wind speed

and direction were measured from moving and fixed positions at a frequency of 5 Hz. The models

were tested using the last 100 min of recorded data. The authors concluded that the SVM allowed

for a better accuracy in forecast and computation time. However, if more computation power was

available, the MLP model could have obtained better results.

3.2.4. Dry bulb temperature

Tasadduq and Rehman [98] developed an MLP model to predict the hourly ambient temperature

of the next day at a determined time for the coastal region of Jeddah, Saudi Arabia. The input

variable was a single ambient temperature value at a specific time. The output variable was the

ambient temperature in the following day at the same time. A single hidden layer with four neurons

was used. The back-propagation algorithm trained the model with one year of hourly temperature

values. The testing dataset corresponded to three years of measured data different from the one

used in training. The authors concluded that the model was a valuable tool for hourly temperature

prediction.

Hayati and Mohebi [99] built an MLP model to forecast short-term dry temperature for Ker-

manshah city, Iran. The input variables were wet bulb temperature, dry bulb temperature, wind

speed, relative humidity, pressure, sunshine, and solar radiation. The output was the next day dry
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bulb temperature. A single hidden layer was used with 6 neurons. The tan-sigmoid transfer func-

tion was used for the hidden neurons and the linear function for the output variables. The training

method was the scaled conjugate gradient algorithm. The model was trained and tested using 10

years of meteorological data (1996 to 2006). The authors concluded that the model presented good

performance and reasonable prediction accuracy.

Smith et al. [100] modeled several ANNs for the prediction of air temperature 1 to 12-hours

ahead in Georgia, USA. The training dataset was collected from 9 meteorological sites between

the years 1997 and 2000 (1.25 million patterns). The selection dataset was gathered from 2001

to 2003 (1.25 million patterns) from 13 other locations to determine the best ANN structure.

The evaluation dataset corresponded to the years 2004 and 2005 (800 thousand patterns). The

models’ structure consisted of three layers having only a single hidden layer with 120 neurons

organized in three equally sized slabs activated by different functions. The training algorithm was

the back-propagation. The input vector, which reached 258 variables, ranged from past previous

air temperature, solar radiation, wind speed, humidity, and rainfall. The authors concluded that a

4, 8, and 12-hours horizon displayed unanticipated cooling events, which were the greatest obstacle.

Thus, the authors recognized that accurate cloud-cover predictions might aid the associated cooling

effect, especially during summer.

Altan Dombaycı and Gölcü [101] developed an MLP model for the estimation of daily mean tem-

perature in Denizli, Turkey. The authors tested different model structures, transfer functions, and

training algorithms. The models were trained using measured values between the years 2003 and

2005, and the testing used the measured data from 2006. The best model had 3 input variables—

month of the year, day of the month, and mean temperature of the previous day (t− 1). A single

hidden layer with 6 neurons was activated by the hyperbolic tangent sigmoid function. The output

was a single variable, and the MLP was trained by the Levenberg-Marquardt algorithm.

3.2.5. Wet-bulb temperature

Mittal and Zhang [102] developed two ANNs to predict psychrometric variables in real-time.

For the first model five versions were built to determine the number of hidden neurons in each

of the three slabs in the hidden layer—15, 20, 25, 30, and 35. Each slab was activated with

different transfer functions—Gaussian, Gaussian complement, and hyperbolic tangent functions.

All versions had two input variables—dry bulb temperature and relative humidity—and predicted

5 variables—wet-bulb temperature, dew point temperature, enthalpy, humidity ratio, and specific

volume. For the second model four versions were built. All models had two input variables—

dry bulb temperature and dew point temperature—and wet-bulb temperature, relative humidity,

enthalpy, humidity ratio, and specific volume as output variables. The difference was in the number
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of neurons in each of the three slabs—25, 30, 35, and 40. The activation functions in each slab were

the same as in the previous models. The training and testing datasets were generated (totaling

12 544 sets) from psychrometric equations. From those, 80 % were used to train the models and

20 % to test. The authors considered these models to have reasonable accuracy in real-time use

and practical applications such as agricultural drying of food materials and ventilation of farm

buildings.

3.2.6. Dew point temperature

Shank et al. [103] developed several ANN models for the short-term forecast of dew point

temperature from previous values in Georgia, USA. In addition to dew point temperature values

ranging from 6 to 30-hours, the input variables were also relative humidity, solar radiation, air

temperature, wind speed, and vapor pressure. The hidden layer had 60 neurons that were activated

with different functions—Gaussian, Gaussian complement, and hyperbolic tangent. The output

variables were 1, 4, 8, and 12-hour predictions activated by a logistic function. The training and

testing dataset combined three years of measured meteorological data from 40 weather stations.

Twenty of those stations were used to test the model. The models were trained using a back-

propagation algorithm. Despite being possible to use these models elsewhere, the authors concluded

that these models might prove inaccurate as these were not trained with the data of other regions.

Kişi et al. [104] built a GRNN, SOFM, ANFIS with sub-clustering identification (ANFIS-SCI),

and an ANFIS with grid partitioning identification (ANFIS-GPI) for the estimation of daily dew

point temperature in three locations in South Korea—Daego, Phang, and Ulsan. The input vari-

ables and their best combination were mean air temperature, sunshine duration, relative humidity,

saturation vapor pressure, and wind speed. The output was a single variable for dew point tem-

perature. The GRNN had a structure of four layers. The first hidden layer had 5 neurons and the

following hidden layer had two nodes—one for summation and another for division. The SOFM

had four layers with the first hidden layer, the Kohonen layer, with a 5 by 5 matrix. The second

hidden layer had 5 nodes. The models were trained using meteorological data from weather stations

from those three locations. Data collected between 1985 and 1990 were used to train and test the

models (4384 and 2192 patterns, respectively). The models were validated using data measured

between 1991 and 1992 (2192 patterns). The results showed that two input variables sufficed—

mean air temperature and relative humidity. Even though, the models with a greater number of

input variables had a slightly better performance, the authors considered that such improvement

did not justify the increase of the models’ complexity.

3.2.7. Relative humidity

Maqsood et al. [105] developed an ensemble of neural networks to forecast 24-hour ahead relative
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humidity, temperature, and wind speed in Saskatchewan, Canada. The ensemble model was built

from four networks—an MLP, Elman RNN, RBF, and Hopfield network (HN). The ensemble

weights were dynamically determined and proportional to the certainty of the network output.

The input variables for each network were 24 values of the weather parameters. A single hidden

layer was used in the MLP and RNN with 72 neurons while the RBF network had two hidden layers

with 180 neurons. The hidden neurons were activated by a logistic sigmoid function in the MLP

model. In the RNN model, the hidden neurons were activated by the hyperbolic tangent function.

The RBF network used the Gaussian activation function for the hidden units. Meteorological data,

collected at the Regina Airport during 2001, was used for training and testing, and was split into

four parts—winter, spring, summer, and fall. Typical days of the dataset—February 26, May 6,

August 7, and November 10—were selected for testing. In comparison to the networks’ independent

prediction accuracy, the authors concluded that the ensemble model learned and generalized better.

Bia lobrzewski [106] implemented an MLP model to predict time-series of relative humidity in

the city of Olztyn, Poland. The MLP had 10 input variables—t− 1, · · · , t− 10—corresponding to

10 past relative humidity values. The interval step was 3 h. A single output variable was chosen.

Two hidden layers were used—the first with 3 neurons and the second only 1 neuron. In the first

hidden layer the neurons were activated by a non-linear function and the second one by a linear

function. The model was trained by a Bayesian regularization back-propagation algorithm. The

training and testing data were collected over 100 days, in the year 1988, totaling 823 measurements.

From these, 807 were used in the training process and the remaining ones for evaluation.

3.2.8. Water vapor and cloud liquid water path

Aires et al. [107] developed two MLP, which used first-guess, to retrieve integrated water vapor

content, cloud liquid water path, surface temperature, and microwave surface emissivity over land

(ranging between 19 Hz and 85 Hz) from satellite imagery. The first network was used to estimate in

clear sky (MLP-1) and the remaining one in cloudy conditions (MLP-2). The MLP-1 model had 17

input variables—7 satellite observations and first-guess vector (surface temperature, temperature

of the lowest layer of the atmosphere, water vapor content, and 7 surface emissivity values). The

MLP-2 had the cloud top temperature as additional input. Both models had 30 neurons in a single

hidden layer activated using logistic sigmoid function. Both models had the surface temperature,

the water vapor content, and the 7 surface emissivity values as the output variables. The MLP-2

model had the liquid water path value as an additional output variable. The models were trained

using the back-propagation algorithm. The training dataset was synthesized from a radiative

transfer model, a global collection of coincident surface and atmospheric parameters, and emissivity

atlases. The authors concluded that the results of the models were encouraging, especially for the
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microwave land surface temperature retrieval as a complement to infra-red estimations in cloudy

conditions.

3.2.9. Cloud classification

Cazorla et al. [108] developed an imager system with the analysis of an MLP for the estimation

and characterization of the sky dome cloud cover in Granada, Spain. A GA was used to optimize

the MLP by pruning the unnecessary input variables. The initial input variables of the MLP were

the pixels’ parameters extracted from the image by using 1 and 9-pixel windows. Over one pixel,

the 9-pixel window was centered and the surrounding eight pixels were measured. The parameters

were the RGB (red, green, and blue) and gray signals, mean and variance of the RGB and gray

values of the surrounding pixels, and the center pixel R/G, R/B, G/R, G/B, B/R, and B/G ratios.

Thus, the MLP had 18 input variables, and the output ones were three cloud cover classifications—

opaque cloud, thin cloud, and clear sky. A single hidden layer with 18 neurons was used. The

hidden and output layers were activated by the logistic sigmoid transfer function. The MLP was

trained by the resilient back-propagation algorithm. After the GA optimization process, the MLP

input variables were reduced to three—mean of the pixel and the surrounding pixels in the red

and blue channels and the variance of the pixel and its surrounding pixels in the red channel.

The MLP was tested in a pixel and image-based evaluation. In the first case, the training and

testing data were 50 captured images, which resulted in a total of 1000 samples. This set was

equally and randomly divided for training and testing. The authors concluded that the use of an

MLP permitted the removal of the observers’ subjectivity in the cloud classification evaluation and

presented good results in light of the measured records. The main weakness of the system was in

the circumsolar area of the captured images due to the ultraviolet enhancement effect.

Instead of ground-based estimations, Christodoulou et al. [109] used a satellite imagery-based

neural network SOFM to classify cloud images. The data was the thermal infrared channel collected

from the METEOSAT7 geostationary satellite, orbiting at 36 000 km. A total of 366 samples from

98 images were classified by expert meteorologists into six cloud types—altocumulus-altostratus,

cumulonimbus, cirrus-cirrostratus, cumulus-stratocumulus, stratus, and clear conditions. Fifty-two

features were then extracted from these samples using nine types of methods—statistical features,

spatial gray-level dependence matrices, gray-level difference statistics, neighborhood gray tone dif-

ference matrix, statistical feature matrix, laws texture energy measures, fractal dimension texture

analysis, and Fourier power spectrum. The SOFM was trained unsupervised—the classification la-

bels were not revealed—with the 366 samples. After the training, each known pattern was assigned

to the output nodes of the 12 × 12 matrix based on the similarity of the pattern. The Euclidean

distance was used. Similar patterns were assigned to the same or surrounding nodes, which had
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lower weight. The SOFM ran three times and the tested results averaged. The SOFM underper-

formed when compared with k-nearest neighbor (kNN) classifier. The authors concluded that these

models might facilitate the automated objective interpretation of satellite image classification.

3.2.10. Fog prediction

Pasini et al. [110] developed two MLP models to predict (MLP-p) and classify (MLP-c) the

fog visibility in a 1 and 2-hour range in Milan, Italy. A model-independent bivariate and pruning

analysis was carried out to determine the most important variables. The ten selected input variables

were hour of the day (in the form of two variables), visibility, visibility time derivative with respect

to the previous hour, sky covering, height of the lowest cloud layer, air temperature, dew point

temperature, pressure, and horizontal wind speed. A single hidden layer with 10 neurons activated

by a sigmoid function was used. The output variable for MLP-p was visibility in a 1 and 2-

hour horizon measured in meters. The MLP-c classified the existence, or not, of a fog event at

1000 m distance visibility threshold. The training method consisted of a moving window of two

months updated every hour. According to the authors, this approach allowed better results than

traditional train and test approaches. The MLP-p model presented good accuracy with a weighted

generalization coefficient WGC=0.9706 and 0.9592 for 1-hour and 2-hour horizons, respectively.

The authors compared these results with persistence and climatology scores and their models

outperformed them.

Fabbian et al. [111] built an MLP model for the prediction of the occurrence of fog in 3,

6, 12, and 18-hours horizon in Sydney, Australia. The model had 8 input variables—dry bulb

temperature, dew point temperature, wind speed, wind direction, mean sea pressure, cloud cover,

surface visibility, and rainfall. Two hidden layers with the number of neurons varying between 3

and 20 nodes, activated by a tan-sigmoid function, were tested. The binary output variable was

employed to detect the existence, or not, of fog. The data for training and testing were collected

from two databases. The first corresponded to 43 years of 3-hourly observations between 1960 and

2003. The second meteorological dataset referred to the period 1985-2003. The authors concluded

that their model had good forecast capability in any of the time horizon predictions studied.

3.2.11. Thunderstorm prediction

Manzato [112] described two sound-derived ANNs, in operation since 2001, to estimate the

probability and intensity of thunderstorms in the Friuli Venezia Giulia region, Italy. The training

data were obtained between 1995 and 2002 and the test data between 2003 and 2004. After initial

weather conditions were confirmed and the World Meteorological code 16044 was given, the first

model (ANN-c) classified the thunderstorm after three confirmed cloud-to-ground lighting strikes.

The ANN-c had two output classes—event with convective activity and event without. From 55
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potential variables, the author selected the proper ones by using a forward selection algorithm. The

best ANN-c structure had 9 input variables—activity of the previous case, bulk Richardson number,

maximum cap, temperature difference at 500 hPa, synoptic hour of the sounding, low-level wind V

component, mean relative humidity, mean water vapor v horizontal flux, and standard deviation

of radiosonde vertical velocity—a single hidden layer with 6 neurons, and one output variable.

The hidden neurons were activated by a logistic function. After confirmation of the event by the

previous model, a second model (ANN-r) determined the intensity of the thunderstorm. This

model estimated the calculated convective activity in 6 h, which takes into account the number

of lightning strikes, rainfall, and maximum wind gust. There were seven input variables: activity

of the previous case, mean buoyancy acceleration of the lowest 250 hPa, convective inhibition,

synoptic hour of the sounding, mean relative humidity, maximum buoyancy, and wind shear in the

lowest 3 km. The activation function was linear. The author concluded that the results can be

strongly related to the region’s orography, thus further testing in other regions is required.

Wang et al. [113] developed an MLP optimized by a cuckoo search algorithm to forecast light-

ning strikes from sounding-derived indices in Nanjing, China. The sound-derived indices were

preprocessed using singular spectrum analysis. Four input variables were determined from several

indices—convective available potential energy, K index, Jefferson index, and severe weather threat

index. The hidden layer had 2 neurons. The output was a single variable that represented fair

weather (0) and thunderstorms (1) classes. Both hidden and output layers were activated by a

sigmoid function. The training data were obtained from measured data between 2007-2010 and

the testing data between 2011-2012. After comparison with other models, the authors stated that

the proposed approach was the most efficient and a useful tool to predict lightning.

3.3. Hydrologic-related

The forecast of hydrologic resources and processes allows to adequately manage water resources

and predict the potential of renewable energy production from the river flows, waves, and tides.

These allow to plan and to manage the renewable energy generation and to prevent hazardous events

to the built environment from extreme weather conditions, such as the ones that may result from

flash floods, storms (fall of snow, hail, and precipitation), sea rise, and droughts. From a sustainable

environment perspective, the water quality monitoring and estimation is fundamental to determine

the amount of available drinking water (lake level, groundwater level, and reservoir inflow) and to

prevent undrinkable water events (salinity and sediments concentration). Also, the proliferation

of micro-organisms (due to water temperature variation) that disturb the watercourses ecosystem,

which, ultimately, may affect the human health when consumed untreated, can be avoided.

The hydrological forecasting is distinguished by the dynamics of water patterns and complex-
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ity. As the physical models are laborious, statistical models and artificial intelligence models are

showing potential and becoming promising solutions. These seek to find relations between the

input and desired output variables, independently of knowing the physical process that describes

the phenomena. Contrary to the statistical models, artificial intelligence is particularly suitable for

hydrologic forecasting, as they are able to deal with the non-stationarity, non-linearity, and data

noise in the forecast problems. Therefore, the quantity of information in the modeling process

is important in order to have an accurate model. Valipour [114] studied the impact of the time

length of the training dataset and observed that, in temperate and semi-arid climates, 60 data

observations were sufficient for the model to predict next year rainfall forecasting. However, in

arid and humid climates, the accuracy increased at the same rate that the size of the observation

data increased.

The neural networks, and these have been applied in hydrology forecast since the 1990s. As an

example, some authors focused on precipitation forecasting [115], rainfall-runoff prediction [116–

122], river flow estimation [123–125], flood prediction [126], reservoir inflow [127], and river sedi-

ments estimation [128]. Due to the non-linearity of the hydrological forecasts, Valipour [129] used

a non-linear autoregressive neural network (NARNN), non-linear input-output, and NARNN with

exogenous input. However, according to the author, the number of hidden neurons needed to be

optimized in order to improve the network accuracy to detect drought and wet years. The selection

of input variables is also a critical part of the modeling process and for that, Taormina and Chau

[130] developed an input variable selection scheme with binary-coded discrete fully informed par-

ticle swarm optimization (FIPS) and ELM model. The results of the proposed model have proven

to be particularly accurate in rainfall-runoff applications. The same authors [131] also trained the

neural network using a cross-validation multi-objective optimization using a FIPS algorithm, as

the use of global search methods in the training process of the learning algorithm is important to

prevent the model from being stuck in local optima. Another approach consists in pre-determining

the impact in the forecast variable. For instance, Tehrany et al. [132] implemented a weights-

of-evidence model to firstly determine the impact of classes of input variables on an SVM model

to predict flood occurrences. The authors tested several kernels (linear, polynomial, radial basis

function, and sigmoid) and found that the radial basis function kernel was the most suitable. The

hybridization of the traditional methods has enhanced the predictability of the models and these

are now capable of better capturing the hydrological patterns [133–135].

Other literature reviews on water resources, hydrologic processes, and applied methods may be

found in refs. [35, 134–145]. This subsection covers research works on precipitation, rainfall-runoff

process, hail, snowfall, snow cover, snow depth and snow water equivalent, evapotranspiration,

drought, streamflow, flood, waves, tides, groundwater level, lake level, reservoir inflow, sediments,
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salinity, and water temperature. Tables 8 and 9 summarize these analyzed works.

3.3.1. Precipitation

Toth et al. [146] compared an ANN, a linear stochastic autoregressive moving-average (ARMA),

and a kNN for 1 h to 6 h short-term rainfall forecast in the Apennines mountains, Italy. The ANN

had 3 input variables from t to t−2 and a single hidden layer with 3 neurons. The number of output

variables varied between t + 1 to t + 6. The model was trained using the Levenberg–Marquardt

algorithm. For the same model, two variations were created during training. In the first training,

ANNs, the measured data was divided into two parts, with the training set having two-thirds of the

sample. In the second training, ANNa, the model was adaptive and trained in an online fashion.

The dataset comprised hourly rainfall depths at 12 rain gauges in the basin of the site between 1992

and 1996. The authors concluded that the ANNs was more suitable for longer lead-time periods

predictions and that neural networks underperformed in low rainfall scenarios.

Hong et al. [147] developed a satellite-based rainfall estimation algorithm by extracting cloud

infrared features (10.7µm) imagery with a resolution of 0.04° every 30 min in Las Vegas, Nevada,

USA. The algorithm identified cloud patches, extracted cloud features, clustered the cloud patches,

and calibrated cloud-top temperature and rainfall for the classification of clouds. The classification

model was a SOFM with 23 input variables—cloud patch coldness, geometry, and five brightness

temperature texture features. The training of the SOFM was carried out in two stages: in the first

stage, an unsupervised clustering was carried out that resulted in 400 groups; in the second stage,

an unsupervised clustering was carried out, which resulted in 400 groups. In the second stage, the

rainfall was assigned to the classified groups, thus adding an extra linear output layer. The authors

concluded that they successfully dealt with the problem of previous works, which only considered

local features, when incorporating cloud patch scales.

3.3.2. Rainfall-runoff

Sudheer et al. [148] developed an RBF model for the rainfall-runoff estimation of the Baitarani

river basin in India, with a statistical pre-processing to determine the appropriate input variables

vector. The statistical analysis using a cross-correlation and autocorrelation function, allowed to

find the lags of data that had a significant influence on the predicted flow. Nine input variables were

determined for the input vector—a 4-day lag runoff and a 5-day lag rainfall. The model was trained

using the minimum description length algorithm to determine the significant basis functions and

connection weights. The data was collected over 23 years, between 1972 to 1994, the daily values

of rainfall and runoff for the monsoon season. When compared with ARMA and MLR, the RBF

outperformed all. The authors affirmed that the statistical pre-processing allowed to reduce the

computation time by using smaller networks and it also reduced the model’s development effort.
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Tokar and Markus [149] developed three ANN models for the estimation of the daily rainfall-

runoff in the basins of the Fraser river in Colorado (ANNf ), Raccoon Creek in Iowa (ANNr), and

Little Patuxent river in Maryland (ANNl), USA. The ANNf had five input variables—streamflow

at time t − 1, precipitation at time t − 1, snow water equivalent at time t − 1 and t − 2, and

air temperature at time t − 1. The time step was one month. A single layer with two neurons

was activated by a sigmoid transfer function. The training and testing datasets comprised the

measured data from the Fraser river watershed in the periods between 1951-83 and 1987-93. The

training dataset corresponded to the months of May, June, and July for the years 1951 to 1980. The

remaining years were used for testing. The ANNr had 5 input variables—precipitation at time t−1,

t−2, and t−3, air temperature at time t, and streamflow at time t−1. The time step was in days.

The hyperbolic tangent activation function was used for the hidden layer with 24 neurons. The

calibration dataset was obtained from measurements between 1978 and 1993. ANNl had 3 input

variables—precipitation at time t and t− 1, and air temperature at time t. A single hidden layer

with 10 neurons activated by a hyperbolic tangent function was implemented. The training dataset

was obtained from measured data in 1979, 1980, and 1984. The testing dataset was collected from

1989, 1991, and 1992. All models were trained using the back-propagation algorithm. Not only did

the authors concluded that the models were more accurate than conceptual models, but they also

stated that those models allowed a systematic approach and shortened the time spent on training.

3.3.3. Hail

Marzban and Witt [150] developed two Bayesian neural network (BNN) models for the pre-

diction and classification of severe hail in the USA. The input vector had the same nine variables

for both models—cell-based vertically integrated liquid, severe-hail index, storm-top divergence,

mid-altitude rotational velocity, height of the wet-bulb zero, height of the melting level, vertically

integrated wet-bulb temperature, wind speed at the equilibrium level, and storm-relative flow at

−20 ◦C level. The first model (BNNr) determined the hail size and therefore had only one output

variable. A single hidden layer was employed and activated by a logistic function. The second

model (BNNc) classified the hail into three classes—coin, golfball, and baseball sizes. The output

layer had three variables, each corresponding to each class with the probability of occurrence of

that hail size. The number of hidden neurons in both models was determined via bootstrapping

with four sets. The training and testing of both models comprised 386 samples (250 for train-

ing and the remaining for testing) collected from 81 storm cases in different regions of the USA.

The BNNc presented high quality forecasts in term of reliability, refinement, and discrimination

diagrams, with the exception of the second class, which displayed no statistically significant skill.

According to the authors, this was due to the difficulty in discriminating non-extreme events.

27



3.3.4. Snowfall

Roebber et al. [151] developed a 10-member ensemble of MLPs to classify snowfall ratio in

the USA. Seven input variables were used—month index, low to mid-level temperature and rel-

ative humidity, mid to upper-level temperature, upper-level relative humidity, mid-level relative

humidity, and external compaction. The ensemble predicted three classes—heavy, average, and

light. Two types of neural networks were used: the first type was a three-layered MLP that cor-

responded to half of the ensemble members, with a hidden layer of 40 neurons; the second type

was a four-layered MLP with two hidden layers having seven neurons in the first hidden layer and

four in the second layer. The hidden neurons in all of the networks were activated by a hyperbolic

tangent function. The output layer in all of the networks had three variables, each for every class,

and these were activated by a softmax activation function. The modeling data from 28 radiosonde

sites were extracted from the National Climatic Data Center/Forecast Systems Laboratory and the

new-snow amounts were obtained from the United States Air Force DATSAV2 Surface Climatic

database. The total dataset comprised 1650 events ranging from 1973 to 1994. Sixty percent of

the data were used for training, 20 % for cross-validation, and 20 % for testing. When compared to

other approaches, the model significantly outperformed in any of the three snowfall ratio classes.

3.3.5. Snow cover

Simpson and McIntire [152] developed an FNN and a RNN for the classification of areal extent

of snow cover from satellite images. The FNN classifies individual images and the RNN classifies

sequence of images. Images were preprocessed to ensure data quality prior to texture modeling and

formation of the input vectors. For the FNN model, the input variables were from the Advanced

Very High Resolution Radiometer channel 2 albedo, channel 4 brightness temperature, channel

3 data calibrated radiance, ratio between channel 2 and channel 1 albedos, homogeneity texture

of channel 2 albedo, and, finally, entropy texture of channel 2 albedo. A single hidden layer was

used with 10 neurons. Three output variables for each class—clear, cloud, and snow—defined

the multiband percentage composition of the map. Both the hidden layer and output layer were

activated by the sigmoid function. For the RNN model, there were nine input variables—spectral

and texture information from the current image (ratio between channel 2 and channel 1 albedo

was substituted by the homogeneity texture difference of the current and previous image) and

the output result of the previous image t − 1 values. The back-propagation algorithm was used

for training in both models. The training set was created from 20 images covering the western

half of the USA. A total of 3430 samples were classified for training the FNN and 2457 for the

RNN model. The validation of the models was carried out by ground-based information via snow

telemetry data. The authors noted that the classification bias error was much smaller for the RNN
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than the FNN due to cloud shadow and cloud edge pixels and that post-processing was able to

reduce those errors.

3.3.6. Snow depth and snow water equivalent

Tedesco et al. [153] developed an MLP model for the retrieval of snow depth and snow water

equivalent by inverting special sensor microwave imager brightness temperatures in Finland. Four

input variables were used—19 GHz and 37 GHz vertical and horizontal brightness temperatures.

A single hidden layer was used but the number of hidden neurons depended on each of the 12

test sites, being these activated by a sigmoid transfer function. The output variable was the snow

depth or the snow water equivalent. The MLP training was carried out using simulated or ground

measured brightness temperatures and it was tested with a dataset of ground measurements over

Finland gathered between 1997 and 1999. When trained with measured data, the model presented

best performance than when using simulation data; in both cases, still better than the spectral

polarization difference algorithm, HUT model-based iterative inversion, or Chang’s algorithm. The

authors concluded that the model was able to retrieve the spatial or temporal variations of the

unknown data, especially when trained with on test sites data.

3.3.7. Evapotranspiration

Kumar et al. [154] compared several ANN model architectures to determine the best one to es-

timate the evapotranspiration in Davis, California, USA. The best model had six input variables—

solar radiation, maximum and minimum temperature, maximum and minimum relative humidity,

and wind speed. The only hidden layer had 4 neurons activated by a sigmoid function. The

output variable was the evapotranspiration value. The model was trained using the standard

back-propagation algorithm. The climatic data measured at the Davis California Irrigation Man-

agement Information System station for the period January 1, 1990 to June 30, 2000 were used

for training and testing. The evapotranspiration values for modeling were calculated using the

Penman-Monteith method. A second set of data were also used in the modeling process with daily

lysimeter measurements of grass evapotranspiration from January 1, 1960 to December 31, 1963.

These results were better than the estimations given by the Penman-Monteith method. The au-

thors then concluded that the ANN was a better model for estimating evapotranspiration for the

Davis site.

3.3.8. Drought severity index

Kim and Valdés [155] developed an MLP combined with dyadic wavelet transforms to fore-

cast time-series of drought severity index in the Conchos river basin in Mexico. Different model

architectures with different input variables and neurons in a single hidden layer were tested to
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determine which had the best performance. The output variable was the Palmer drought severity

index. Four models were used to forecast t + 1 (MLP1), t + 3 (MLP3), t + 6 (MLP6), and t + 12

(MLP12) months ahead. The best models for MLP1 and MLP12 had three input variables and 3

hidden neurons and for MLP3 and MLP6 there were four input variables and four hidden neurons.

The models were trained using the back-propagation algorithm. The calculated data were used

for training (years ranging from 1955 to 1990) and validation (between 1991 and 2000). When

compared with a conventional ANN, the MLP1, MLP3, and MLP6 displayed better accuracy, but

the MLP12 underperformed. When compared to traditional climatology models, the MLP models

performed better between 7.3 % and 60 %.

3.3.9. River flow

Nayak et al. [156] developed an ANFIS model to forecast river flow time-series in the Baitarani

river, Orissa state, India. The input variables were the antecedent river flows t − 1 and t − 2.

The model was trained with four if-then rules that used the fuzzy intersection operator. The

output variable was the river flow. The model was trained using transformed flow series for the

period 1972-1989 and validated with data from the period 1990-1995, and by using cross-validation

technique with four sets. When compared with conventional ANNs, the ANFIS had a compara-

ble performance and outperformed the ARMA model. The ANFIS also presented better errors

distribution and simpler structure.

3.3.10. Flood

Chau [157] developed an MLP model for the prediction of the water level of the Shing Mun

river in Hong Kong, China. A single input variable was used with the current day water level.

The hidden layer had 3 neurons. The output variable predicted one of the time ahead values—

t + 1 (MLP1), t + 2 (MLP2), or t + 7 (MLP7). The time step was in days. Instead of using the

back-propagation algorithm—according to the authors, the algorithm converges slowly and can be

easily entrapped in a local minimum—the model was trained by a particle swarm optimization

method. The modeling dataset comprised measurements from the river tributaries of Fo Tan and

Tin Sam for three years starting in 1999. The two first years were used for training and the last one

for testing. When compared with the same model trained using back-propagation, the proposed

approach presented better results.

3.3.11. Wave height

Deo et al. [158] implemented a three-layered MLP model for the forecast of wave height and

average period in the Arabian sea in the west coast of India. The model had wind data as input and

wave data as output. The model was trained using a cascade correlation and conjugate gradient
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algorithms. Three locations were tested; in the first one, 3-hourly values of wave height and average

zero cross period data were collected from a rider buoy offshore of Karwar, India, at 16 m deep

water. The wind speed was measured at a shore-based station from March to July 1988 and from

December 1988 to May 1989. This comprised a total of 900 sets of data. The model for this location

had two input variables—wind speed at time t and t − 1. The hidden layer had 4 neurons. The

authors justify the low prediction accuracy of the model due to different wave and wind measuring

places. In the second location, the wave and wind data were measured in the same place and at a

lower water depth of 75 m. A dataset of 140 patterns was collected and 20 % were used for testing.

In this case, the model increased its accuracy. In the last location, weekly mean wind speed and

significant wave heights measured by a radar altimeter via the TOPEX satellite were collected from

some locations off-shore the coast of India. The data covered 42 months from October 1992 to

March 1996. The model had 4 input variables—weekly wind speeds in a month. The output had

4 variables—weekly wave height in a month. Authors concluded that despite satisfactory results,

short-term predictions might be difficult due to the rapid variations of wind measurements.

3.3.12. Tide level

Lee [159] developed an MLP model for the prediction of long-term tides at Taichung Harbor

in Taiwan. The three-layered MLP had 7 hidden neurons activated by the sigmoid function. Five

input variables were defined—luni-solar semi-diurnal, principal solar, larger lunar elliptic, luni-solar

diurnal, and principal lunar diurnal tidal constituents. The output was a single variable for the tide

level. The back-propagation training algorithm was used. The modeling dataset was collected from

hourly tide levels measurements during the years 1995 to 1998, and the training set corresponded

to 15 days from 12 to 26 of April 1996. The authors concluded that the results were satisfactory.

3.3.13. Groundwater level

Daliakopoulos et al. [160] developed and compared seven ANN models to forecast groundwater

level up to 18-month ahead in Messara Valley in Crete, Greece. The input layer had 20 variables—

time lag t to t− 4 for precipitation, temperature, streamflow, and groundwater level. The output

was the well level at time step t+1. The time step was in months. The model that presented the best

performance was an MLP trained by the Levenberg-Marquardt algorithm. A single hidden layer was

used with 3 neurons. The modeling dataset consisted of measured hydrologic and meteorological

data ranging from 1988 to 2002. The training data corresponded to the years between 1988 and

1998, the calibration data comprised the years 1998 to 2000, and the remaining data were used

for testing. In addition to 1-month ahead, the models were also analyzed for 6, 12, and 18-month

ahead. According to the authors, the MLP displayed the most accurate predictions of all seven

models.
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3.3.14. Lake level

Khan and Coulibaly [161] compared SVM and MLP models to predict water level up to 12-

month ahead in Erie Lake, Great Lakes, USA. The input vector for both models was the past

2-month water level values and the corresponding months identified in 12 binary variables corre-

sponding to the month the water level input was for. A single output variable was used to predict

t + 1 to t + 12 water level ahead. The SVM used the radial basis kernel function and the MLP

had five hidden neurons and a single output variable activated by the hyperbolic tangent function.

The training algorithm was the back-propagation for the MLP model. The training of the models

comprised data from 1918 to 1989 and the testing data from 1990 to 2001. The authors noted that

the SVM presented the best accuracy and required the lowest number of parameters.

3.3.15. Reservoir inflow

Coulibaly et al. [162] implemented an MLP model for real-time forecasting of reservoir inflow in

Chute-du-Diable watershed, Quebec, Canada. An early stopped training approach was used, which

took advantage of both the Levenberg-Marquardt algorithm and cross-validation technique. The

input had 14 variables—water inflow at time t − 1, maximum, minimum, and mean temperature

at time t, and precipitation and snowmelt at time t− 4 to t. The number of neurons in the single

hidden layer was 24. The output was a single variable for 1 to 7-days ahead forecasting. The

modeling dataset consisted of 32 years of daily natural inflows, precipitation, estimated snowmelt,

and daily temperature ranging from 1964 to 1995. The years from 1964 to 1980 were used for

training and data from 1981 to 1992 for testing. When compared with conventional models, the

proposed model had better performance for 2 to 7-days ahead. However, the ARMA with an

exogenous inputs model was the best approach for 1-day ahead. The authors concluded that the

MLP with early stopped training provided better and reliable generalization performance than

neural networks with back-propagation training algorithms and substantially better predictions

than conventional models.

3.3.16. Sediments concentration

Nagy et al. [163] developed an MLP model to predict sediment load concentration in several

rivers in the USA. Six input variables were defined—tractive shear stress, suspension parameter,

water depth ratio, Froude number, Reynolds number, and stream width ratio. A single hidden layer

with 12 neurons activated by a sigmoid function was used. The output variable was the sediment

concentration. The MLP was modeled with two datasets; the first one was a group of 161 obser-

vations from the rivers Niobrara, Middle Loup, Hii, and Small Streams. Two equal sized datasets

were randomly created for training and testing. The second modeling dataset was comprised of

486 observations for the testing phase, which were collected from the Rio Grande, Mississippi, and
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Sacramento rivers. When authors compared their results with conventional models found in litera-

ture, the MLP only displayed good accuracy on datasets where observations had similar sediment

concentrations to the training dataset. Otherwise, it had similar or better performance.

3.3.17. Salinity

Huang and Foo [164] implemented an MLP model for the estimation of salinity in the Apalachicola

river, Florida, USA. The model had three layers. Models with different number of hidden neurons

were tested. The final model had 16 hidden neurons activated by a logistic sigmoid function. The

input variables were tide level, wind speed and direction, and river flow. The output was the river

salinity concentration. The model was trained by the conjugate descent algorithm. The modeling

dataset consisted of hourly salinity time-series measured at a station in the lower portion of the

river, river flow from USGS data, and tidal data from National Ocean Survey. Two datasets were

built for training and testing for measured data in July 1993. The authors considered the model

to be a cost-effective and easy-to-use tool.

3.3.18. Water temperature

Sahoo et al. [165] developed a four-layered MLP model to forecast 3-day time lag of stream water

temperature in Incline Creek, Glenbrook Creek, Upper Truckee river, and Trout Creek streams at

Lake Tahoe, USA. Six input variables were used—air temperatures and short-wave radiations at

time t to t − 3. The output was the water temperature variable. The model was trained using a

micro-GA. Daily time series data from January 1999 to the end of September 2002 for the four

streams were used for training (2000-2001), validation (1999), and testing (2002). The proposed

model presented higher prediction accuracy than a three-layered MLP and an RBF model, also

tested by the authors.

3.4. Geologic-related

The forecasting and estimation of geologic-related variables is important to adequately plan

and design the built environment, to prevent hazardous events, and to generate renewable energy.

Knowing the soil types and how these are distributed over the land helps to quantify the amount

of available biomass that can be used to produce energy and by determining the organic matter

helps identifying the most suitable lands for agriculture. Also, knowing the variation of ground

temperature according to the depth assists to determine the potential of using geothermal energy.

Besides renewable energy-related estimations, a sustainable built environment is also dependent of

the safety of its built structures. This obliges planners and decision-makers to choose the best places

for construction, which also depends on estimating the susceptibility of landslides and liquefaction

due to earthquakes (estimate and classify according to their magnitude), soil subsurface stability,
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and the future erosion of soils, as well as other aspects of soil mechanics. Therefore, a sustainable

built environment is dependent of a comprehensive analysis and estimation of the resources and

land use.

Traditional techniques involve field and laboratory tests that are costly, time consuming, and

sometimes destructive of the sample analyzed. For these reasons, indirect estimation methods

such as neural networks gain interest. In the 1990s, the use of neural networks to predict geologic

phenomena and soil properties raised interest in the research community due to their fast implemen-

tation, robustness, and accuracy. Several approaches laid the background to future contributions,

such as in earthquake prediction [166], soil liquefaction [167], soil structure estimation [168], soil

mechanics [169, 170], hydraulic properties [171], and soil water retention [172]. However, in the

last three years, researchers’ attention has fallen upon the determination of the best model types

and adequate input variables for the prediction of landslide susceptibility [173–177], specifically in

pre-evaluating the input variables [173, 174], determining the accuracy performance of each model

type [175, 176], and comparing the alternative models against common neural networks [177]. The

use of optimization algorithms with global search capabilities or the hybridization of the learning

models are not so commonly used as in the atmospheric or hydrologic fields. However, some papers

may be found on the prediction of geologic-related variables [178–180]. As an example, Gordan

et al. [180] used particle swarm intelligence to optimize an ANN to estimate the seismic slope

stability. The reason for the reduced use of enhanced approaches may be found in the stability and

linearity of most of the geologic-related problems. Past literature reviews, on the application of

neural networks, cover rock parameters estimation [181], geotechnical engineering [182, 183], rock

engineering [184], and earthquake prediction [185].

This subsection covers landslide susceptibility mapping, earthquake classification, liquefaction

prediction, erosion estimation, soil classification, structure, soil mechanics, soil organic matter and

carbon content, ground temperature, thermal conductivity and resistivity, electric resistivity, and

hydraulic properties. Tables 10 and 11 summarize the analyzed works.

3.4.1. Landslide susceptibility

Lee et al. [186] developed an ANN to determine the weights of seven landslide parameters used

in a probabilistic method. A weighting method was then used to produce landslide susceptibility

maps from the Yongin area, Korea. The ANN used topographic (slope and vertical curvature),

soil (texture, thickness, and drainage), and vegetation (trunk diameter and wood age) as input

variables. A single hidden layer was used with 15 neurons activated by a sigmoid function. The

output layer had two variables to classify the existence or not of a landslide. The model was trained

using the back-propagation algorithm. The information from topographic, soil, and wood thematic
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maps, as well aerial photograph and field surveys of landslides, were used to build the modeling

datasets. The training dataset was made up of 400 random points. The process was repeated

10 times with random locations and the results were averaged for each landslide factor. These

were then normalized, according to the topography curvature, and used to calculate the landslide

susceptibility index of the region map. The maps were finally compared and verified. The model

presented satisfactory agreement with the observed data.

Yesilnacar and Topal [187] built an MLP model to determine a landslide susceptibility map

in Hendek region, Turkey. The input layer had 19 variables—fault density, distance to fault,

elevation, slope, slope length, profile curvature, plan curvature, distance to roads, road density,

drainage density, distance to drainage, land cover, distance to ridges, geology, surface area ratio,

topographic wetness index, stream power index, sub-watershed basins, and aspect. Thirteen hidden

neurons, in a single layer, were activated by a sigmoid function. The output variable classified the

input variables in very low, low, high, and very high landslide susceptibility. The training was

carried out by the back-propagation algorithm. The training dataset consisted of 12 036 samples

(65 % of the total data). The validation and testing datasets were 2407 (13 %) and 4000 (22 %)

samples, respectively. The MLP showed better accuracy than the logistic regression model, also

developed by the authors, especially in high and very high zones. The authors concluded that the

MLP was more realistic, as it was more in agreement with field observations.

3.4.2. Earthquake classification

Adeli and Panakkat [188] implemented a PNN for the prediction of earthquake magnitude in

southern California, USA. Eight input variables were used—the time elapsed during a particular

number of seismic events in the previous month, the slope and the mean square deviation of the

Gutenberg-Richter inverse power law curve, the average magnitude, the difference between observed

maximum magnitude and the expected from the Gutenberg-Richter relationship, the rate of square

root of seismic energy, the mean time between characteristic events, and the coefficient of variation

of the mean time. The PNN had two hidden layers—the pattern and summation layers. The first

hidden layer had as many nodes as input vectors and the second hidden layer had the number

of classes as neurons—in this case seven classes of earthquake magnitude with 0.5 Richter range.

The Gaussian function was used as a window function, where each node computed the Euclidean

distance between the input vector and the training input vector. The training dataset was made up

of historical earthquakes between 1st January 1950 and 13th December 1990 (997 input vectors).

For the testing dataset, the historical record between 1st January 1990 and 24th September 2005

was used. The model only showed good accuracy for earthquakes of magnitude between 4.5 and

6.0. Lastly, the authors state that in a preceding work [189], an RNN presented better accuracy
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for earthquakes with a magnitude higher than 6.0 Richter.

Scarpetta et al. [190] implemented an MLP model for the classification of seismic signals at

Mount Vesuvius Volcano, Italy. The method was helpful as it discriminated between natural and

artificial signals. The input variables were extracted from signal spectral features and waveform

that were obtained using linear prediction coding and waveform parameterization techniques. The

single hidden layer was activated by a hyperbolic tangent function and the output variable by

a logistic function. The output variable classified the signal as earthquake or not. Two alter-

native models were tested with different training algorithms—quasi-Newton algorithm (MLP-qN)

and scaled conjugate gradient algorithm (MLP-SCG). The training and test datasets consisted of

recorded data from four stations totaling 550 and 331 samples, respectively. Despite similar per-

formance, the MLP-qN was significantly more demanding computationally. The approach showed

good results in both artificial false events (quarry and sea-side explosions) and natural false events

(thunder).

3.4.3. Liquefaction prediction

Goh [191] developed two PNNs for the estimation of the seismic liquefaction potential from

cone penetration test data (PNN-c) and shear wave velocity data (PNN-v). The models had four

layers. The PNN-c input layer had 6 variables—earthquake magnitude, the peak acceleration at

the ground surface, the total vertical overburden stress, the effective vertical overburden stress,

the measured cone perforation test tip resistance, and the mean grain size. The PNN-v also had

6 input variables but instead of the last two variables, it had the measured shear wave velocity

and the soil type number as input. In both models, the pattern layer had the number nodes equal

to the training samples. The summation layer had two neurons. The binary output classified the

input vector as occurrence or non-occurrence of liquefaction, and a GA was used for training. For

PNN-c and PNN-v, the training consisted of two thirds of 170 and 186 samples, respectively. The

remaining one third was used for testing. The author stated that these significantly outperformed

conventional methods.

Pal [192] implemented two SVM models for the prediction of earthquake liquefaction potential

from standard penetration test data (SVM-s) and cone penetration test data (SVM-c). From a

combination of several input variables, SVM-s had seven inputs selected—standard penetration

test value, mean grain size, total stress, effective stress, earthquake magnitude, fines content, and

normalized horizontal acceleration at ground surface. In the case of SVM-c, five input variables were

chosen—cone resistance, mean grain size, effective stress, earthquake magnitude, and normalized

horizontal acceleration at ground surface. The models’ output was the classification of occurrence

and non-occurrence of liquefaction. For SVM-s, the modeling datasets were collected from previous
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works and consisted of 59 and 26 records (training and testing, respectively) obtained between the

years 1891 and 1980 in different world regions. Similarly, for SVM-c, the training and testing

datasets were obtained between 1964 and 1983 and consisted of 74 and 35 records, respectively.

The authors stated that SVM models presented better results than preceding studies.

3.4.4. Erosion estimation

Licznar and Nearing [193] developed an FNN model for the prediction of soil erosion in eight

locations in eastern USA. Several alternative model structures were tested and the one with best re-

sults had 10 input variables—precipitation, duration of precipitation, canopy cover, inter-rill cover,

effective hydraulic conductivity, adjusted inter-rill soil erodibility, adjusted baseline rill erodibility,

number of days since last disturbance, slope steepness, and slope length. A single hidden layer

with 10 neurons activated by a tan-sigmoid function was employed. The output layer had two

variables—soil loss and runoff. The training algorithm was the Levenberg-Marquardt algorithm.

The training (50 % of the total data), validation (25 %), and testing (25 %) datasets were measured

in eight locations in eastern USA. An alternative model with just a single output for soil loss and

40 hidden neurons showed lesser accuracy. Despite good accuracy, the authors affirm that a major

limitation of the widespread use of these models was the lack of physical concepts and relations,

which may lead to the abnormal understanding of the results due to the complex functioning of

the erosional system.

3.4.5. Soil classification

Chang and Islam [194] developed a SOFM and an MLP models to infer soil texture classes in

a dry-down process using remotely sensed data and soil properties in Little Washita watershed,

Oklahoma, USA. Two input vectors were tested—brightness temperature (SOFMb3 and MLPb3) or

soil moisture (SOFMm3 and MLPm3)—for both models to classify soil types. The SOFM models

classified the soils into three groups—coarse, medium, and fine soil—as function of ratio of sand

to percent of clay. The MLP models had a single hidden layer, which was activated by a binary

sigmoid function. The output layer classified the input vector into the same three classes as SOFM

models. The MLP models were trained using the Levenberg-Marquardt algorithm. The authors

also tested the MLP to classify data into six groups—sand, loamy fine sand, fine sandy loam, loam,

silt loam, and silty clay loam/clay loam. The output was an integer corresponding to each class.

The authors concluded that the SOFM models presented reasonable accuracy for the cases where

soil properties were not available; however, the MLP models had better results. These models

only work well if no other physical attribute is present in neighboring grid points, such as rainfall

variability, lateral flow, topography, etc.
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Zhao et al. [195] developed an ANN model to generate high-resolution maps of soil texture

distribution (clay, silt, and sand contents) from soil attributes in Black Brook watershed, New

Brunswick, Canada. The model had 6 input variables—clay content, sand content, soil terrain

factor, drainage, sediment delivery ratio, and vertical slope position. A single hidden layer was

used with 25 neurons activated by a sigmoid function. The output was the clay and sand contents.

The silt content was calculated by subtracting the predicted values. The Levenberg-Marquardt

algorithm was used for training. The training (14 196 samples) and testing (12 957 samples) datasets

were gathered from 46 polygons of detailed quantitative soil texture data. These were re-sampled

into a grid with 10 m resolution. The model presented a good predictive capability according to

the authors.

3.4.6. Subsurface cavities

Elawadi et al. [196] implemented an approach to determine the depth and radius of subsurface

cavities at the Medford cave site, Florida, USA. The depth to the cavity center was estimated

using an MLP model, the horizontal location was determined from picking the minimum gravity

anomaly, and the radius of the cavity was calculated from density difference between host rock

and cavity filling materials. The input layer had 21 variables of gravity measurements, 5 neurons

in the hidden layer, and a single variable in the output layer. The training set of 15 samples was

synthetically generated with different depths ranging from 1 m to 8 m. The model was tested with

14 samples of synthetic data for cylindrical and spherical cavities. The back-propagation algorithm

was used, and a field test was carried out at Medford cave site. The authors noticed that data

agreed well with the drilling tests thus concluded that it provided fast and robust determination

in working field scenarios.

3.4.7. Soil mechanics

Sonmez et al. [197] developed an MLP model to predict the elastic modulus of intact rock. The

input variables were uniaxial compressive strength and unit weight. A single hidden layer was used

with 2 neurons, which were activated by a sigmoid function. The output was the elastic modulus

of intact rock. The model was trained using the back-propagation algorithm using 487 randomly

selected samples of a total of 609 from more than 35 rock types. The remaining subset was used

for testing. The dataset was compiled from published data in the literature and laboratory tests

on greywacke and agglomerate core samples. The results allowed building a prediction chart of

elastic modulus of intact rocks, which showed a strong prediction capability and could be used for

practical purposes.

Singh et al. [198] implemented an ANFIS model for the prediction of the deformation modulus

of rocks, also known as Young’s modulus. Three input variables were used—point load, density,
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and water absorption. A Gaussian membership function and three fuzzy if-then rules were used.

The output was a single variable to determine the deformation modulus. The model was trained

using the back-propagation algorithm with a dataset of 85 samples and it was tested using 10

samples. The authors stated that ANFIS showed good predictive capability using vague and

imprecise information.

Yilmaz and Kaynar [199] compared an MLP, an RBF, and an ANFIS for the prediction of

the swell percent of soil. The input variables were the liquid limit, activity, and cation exchange

capacity. The MLP and RBF models had a single hidden layer. The MLP had 2 neurons and the

RBF had 16 neurons. Both models had their layers activated by tan-sigmoid activation function.

The MLP was trained by the back-propagation algorithm, while RBF was optimized using a least

mean square algorithm. The ANFIS had 5 layers and was trained using a combination of gradient

descent and least-squares method. The training (60 %), testing (20 %), and verification (20 %)

datasets were built from 215 soil test samples. The authors concluded that RBF exhibited the

most reliable predictions and the main advantage was a greater degree of robustness and fault

tolerance in comparison to traditional statistical models.

Lee et al. [200] developed ANN models and a hyperbolic formulation for the prediction of

unsaturated soil shear strength. The ANN would determine the apparent cohesion parameter

of the saturated soils shear strength formulation, which also includes two other parameters—the

internal friction angle and the effective soil cohesion. Four ANN models were tested. The first

model (ANNI) had six input variables—sand fraction, clay and silt fraction, void ratio, compacted

water content, cohesion, and friction angle. The remaining models only had 5 input variables. The

second model excluded the friction angle (ANNII), the third excluded the void ratio (ANNIII),

and the last one excluded the compacted water content (ANNIV ). For all models, a single hidden

layer was used with two neurons activated by a logistic sigmoid function. The output variable

was the apparent cohesion. The back-propagation algorithm was used to train the model with a

Bayesian regularization technique to guarantee generalization. The training dataset was made up

of 20 samples. The testing dataset consisted of 7 samples. ANNIV presented the best accuracy.

Neural networks were also used to determine other soil properties. For example, in estimat-

ing the shear modulus and damping ratio [201], stress-strain behavior [202], angle of shearing

resistance [203], compressive strength [204], soil compaction and permeability [205], preconsolida-

tion pressure [206], deviatoric stress and volumetric strain [207], effective stress [208], and bulk

density [209].

3.4.8. Soil organic matter

Fidêncio et al. [210] developed an RBF network to determine the organic matter in soils. The
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input variables were the first eight non-normalized scores of the principal component analysis of

the soil data samples (which explains 97 % of the data variance). The model outperformed the

MLP model, also developed by the authors. The authors concluded that the RBF model is fast,

clean and reliable and can be used as a tool to determine organic matter content in soils, as the

errors were acceptable for soil laboratories.

3.4.9. Soil organic carbon

Were et al. [211] developed and compared an SVM and an MLP models to predict soil organic

carbon in the Eastern Mau Forest Reserve, Kenya. The models were used to create prediction

maps. The tested input variables were rainfall, land cover, aspect, slope, curvature, TWI, NDVI,

PC1, sand, silt, magnesium, calcium, potassium, phosphorus, nitrogen, and pH. The training and

testing soil data were randomly split into 176 samples for training and 44 samples for testing.

The authors observed that all models overestimated the organic carbon stocks and had equivalent

accuracy performance.

3.4.10. Ground temperature

Kalogirou et al. [212] developed an ANN model for the generation of 10 km grid geothermal

maps of ground temperature at 20, 50, and 100 m in Cyprus. The 9 input variables were lithology

class (22 types), elevation, minimum, mean, and maximum annual ambient temperature, rainfall, x

and y-coordinates, and depth. Three slabs in a single hidden layer, with 5 neurons each, were used

and activated with different functions—Gaussian, Gaussian complement, and hyperbolic tangent

functions. The output layer had a single neuron activated by a logistic function. The back-

propagation algorithm trained the model. The training and testing datasets were obtained from

recorded data from 41 boreholes. After eliminating incomplete measurements, the total data

represented 112 patterns; from these, 90 patterns were used for training and 22 for testing. The

authors considered the model to be suitable for engineers in design of geothermal systems.

3.4.11. Thermal resistivity

Erzin et al. [213] implemented an MLP model for the prediction of the thermal resistivity of

clay, silt, silty, fine and coarse-sands. Six input variables were the water content, soil dry unit

weight, and particle diameter finer than 10 %, 30 %, 50 %, and 70 %. The hidden layer had 8

neurons. The output variable was the soil thermal resistivity. Both hidden and output layers were

activated by a logistic sigmoid transfer function. The Levenberg-Marquardt algorithm was used for

training. The training and testing datasets were gathered from different soil measurements with a

thermal probe.
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3.4.12. Thermal conductivity

Kalogirou et al. [214] implemented an ANN, similar to a previous study [212], for the estimation

of ground thermal conductivity in Cyprus. The estimated information was then used to generate

geothermal maps for conductivity for the first 100 m in dry soil. 8 input variables were used—

lithology class (22 types), elevation, minimum, mean, and maximum annual ambient temperature,

rainfall, and x and y-coordinates. In a single hidden layer, with three slabs having 3 neurons

each, which was activated by Gaussian, Gaussian complement, and hyperbolic tangent functions.

A single output variable activated by a logistic function was used to predict thermal conductivity.

The model was trained using the back-propagation algorithm. The datasets used for training and

testing of the model were measurements recorded from 41 boreholes. From those, 33 were used for

training and 8 for testing. The geothermal map was created by determining the conductivity in a

10 km interval grip.

3.4.13. Electric resistivity

Erzin et al. [215] developed an ANN model for the prediction of the soil electric resistivity. From

several tested structures, the one with the best performance had three input variables—thermal

resistivity, soil type, and saturation. A single hidden layer had 7 neurons that were activated by the

sigmoid function. The single output variable was the thermal resistivity. The Levenberg-Marquardt

algorithm was used in training. The training, testing, and validation datasets were in total 236 soil

samples, which were divided into 132, 57, and 47 samples, respectively. The authors compared the

ANN to two multiple regression analysis models and the former outperformed all. They concluded

that this approach was an inexpensive and efficient substitute to laboratory testing.

3.4.14. Hydraulic properties

Schaap et al. [216] developed a computer program (ROSETTA) comprising a set of five hier-

archical pedotransfer functions, based on 60 to 100 neural networks combined with the bootstrap

method, for the estimation of water retention and hydraulic conductivity of soils. The training

of the models was carried out using 2134 soil samples of water retention and 1541 samples for

hydraulic conductivity. The authors noticed that ROSETTA program performed reasonably well

when several predictors are used (texture, bulk density, one or more retention points) and, despite

lower accuracy otherwise (textural classes only), the models were still useful in cases of missing

measured data.

Minasny and McBratney [217] implemented an FNN model to predict van Genutchen pedo-

transfer function parameters for soil water retention. The process consisted in fitting the predicted

parameters with the measured data, instead of training the network to fit the estimated parameters.

Two models were built with different number of input variables—three (FNN3) and four inputs
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(FNN4). The FNN3 had clay, silt, and sand percentage as input variables. The FNN4 includes a

fourth variable, the bulk density. Both models had a single hidden layer with 4 neurons activated

by the hyperbolic tangent function. The output variables were four vector parameters—residual

and saturated water content, and scaling and curve shape factors. The training was carried out

by the Levenberg-Marquardt algorithm. The modeling datasets were collected from previous pub-

lished works on Australian soil properties and water retention (484 and 378 samples for training

and testing, respectively), and GRIZZLY database of soil samples in different countries (660 sam-

ples for testing). When compared with other approaches, the authors realized that the proposed

models outperformed other neural network models, such as ROSETTA [216], at least by 5 % and

13 % accuracy for FNN3 and FNN4, respectively.

3.5. Climate change

Neural networks started to be used to estimate climate change scenarios since the late 1990s [218–

220]. Forecasting long-term climate behavior was complex and had a central problem with great

uncertainties associated with the projections. Important parameters for the climate models were

also poorly constrained. In addition to these issues, the calculation of probability density functions

required a large number of simulations, which were limited by computation time. To respond to

these issues, Knutti et al. [221] developed an MLP model trained with synthetic data from cli-

mate simulations as a surrogate model to a climate change ensemble method. The neural network

model consisted of 10 input variables and 10 neurons in the hidden layer. The input variables were

randomly selected and their prediction capability was tested. The output variables depended on

the number of predicted values. The training procedure used the Levenberg-Marquardt algorithm.

The training dataset consisted of 500 simulations. The authors concluded that the MLP was two

to three orders of magnitude faster than the simulation model and allowed to dramatically improve

the efficiency of the ensemble method. The accuracy of the model fell below the error margin of

the simulation model, thus being negligible.

Another aspect to consider in climate change predictions is the resolution of the simulated

maps. These maps are usually grids containing hundreds of kilometers and are unable to present

local sub-grid features and dynamics. To overcome the issue, Tripathi et al. [222] implemented

a least square SVM model for statistical downscaling of precipitation at a monthly scale for 29

subdivision stations in India. The input variables were determined using principal component

analysis for each meteorological station. The output variable of the model was precipitation. The

model was trained using a multifold cross-validation procedure. The total dataset was divided into

70 % for training and 30 % for testing. The modeling datasets were extracted from the National

Center for Environmental Prediction in USA. The data spans over January 1948 to December
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2002. Monthly area weighted rainfall data was extracted from the Indian Institute of Tropical

Meteorology for the 29 stations. The simulated monthly climate data for the IPCC scenario IS92a,

which ranged from January 1948 to December 2100, was obtained from the Canadian Center for

Climate Modeling and Analysis. The data was interpolated into a grid with a 2.5° interval using

a linear inverse square interpolation procedure. Five scenarios of precipitation were projected—

2000-2019, 2020-2039, 2040-2059, 2060-2079, and 2080-2099. The results showed an increase in

precipitation in several coastal and northern regions of India and a drop in the precipitation for

Kerala and East Madhya Pradesh. When the authors compared the results with conventional

ANNs, they concluded that the SVM provided a promising alternative due to its generalization

capabilities and lower complexity.

4. Discussion

This paper makes a thorough overview of a set of topics, which are generally treated in different

research fields but whose interrelations are relevant to be exploited in the quest for a more sus-

tainable built environment, with strong applicability in the planning of cities, design of buildings,

and exploration of renewable energy resources. The reviewed methods for estimating, forecasting,

classification, and monitoring of renewable energy and environment-related variables allow to iden-

tify possible interdisciplinary research opportunities for the development of comprehensive tools to

address those issues.

By combining solar, atmospheric, geologic, and hydrologic variables, in a multi-criteria decision

aiding process, the forecasting and estimation capabilities of the models could contribute to better

planning sustainable cities and infra-structures, to avoid hazardous locations, to minimize environ-

mental impacts, and to optimally manage water and renewable energy resources. As an example,

the forecast of extreme atmospheric and hydrologic events, such as high precipitation and river

floods, combined with landslide classification, can help to determine which areas are safer to build

on; to make use of the forecasted wind speed and direction as input variables for other models that

estimate wave level in coastal areas; or, to identify ideal land surface areas that maximize solar

radiation availability and avoid soil erosion and liquefaction.

Another example can be drawn from the field of building design. It is frequent to assess a

building’s thermal performance using dynamic simulation programs. These require weather data

from the building’s location to produce accurate analysis. However, not all locations have complete,

or sometimes not even partial weather data available, due to the cost of setting up and operating a

meteorological station. Weather data includes atmospheric, solar, and hydric values, such as hourly

air temperature, precipitation, wind speed and direction, direct and diffuse solar radiation, among

others. Neural networks may be a sound alternative approach to produce the missing data or even

43



generate a full dataset by interpolation from other weather data stations located in surrounding

regions. The idea can even be pushed along further by aiming to predict a building’s performance

using weather data that was forecasted for a future climate change scenario.

In power generation, the use of different prediction variables may help to find opportunities to

conjugate renewable energy production from different sources, such as solar, wind, hydro, geother-

mal, and biomass for a specific region or urban area. The combined use of different models may

be used to estimate sharable renewable energy sources at an urban quarter or building scale. The

accurate prediction of weather variables may also allow determining future energy consumption,

which is important in energy management in a smart grid scenario.

However, the advantages of neural networks in producing fast and accurate forecasts are de-

pendent on the quality of training and testing datasets. The model type and structure also exert

great influence in the prediction capability of the model and it is dependent on the nature of the

application problem. The type and number of input variables and the model structure strongly

influence the algorithm accuracy; therefore, preprocessing methods are required to determine the

adequate variables for each model. Nonetheless, neural networks are powerful tools due to their

generalization capabilities and robustness.

5. Conclusion

This paper offers a comprehensive, integrated review of the application of neural networks to

predict solar, atmospheric, hydrologic, and geologic-related variables, which have influence in the

performance, salubrity, and security of cities, buildings, and infrastructures. It collects a diversified

number of applications and identifies a wide range of output variables that are important to promote

sustainable built environments, thus providing a thorough and insightful view on the use of this

kind of machine learning techniques.

The prediction of those variables is helpful in urban planning, resource management and power

generation, and to better design buildings and other constructions, as these can be combined to

develop multi-criteria decision tools that empowers the decision maker by integrating multiple,

conflicting and incommensurate evaluations aspects to assess the merits of potential solutions in

a vast range of decision settings. These methodological approaches and decision support tools are

potentially helpful for urban planners, architects, and engineers; e.g., to determine the renewable

energy potential of a region, develop new technological systems that combine renewable energy

resources, optimally manage energy and water resources, avoid hazardous locations for new con-

structions, reduce the environmental impact of cities and buildings, design more energy efficient

buildings and healthier cities, and guarantee the quality and availability of renewable energy and

water.
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Additionally, the neural networks contribution, as a surrogate method to simulation models and

downscaling techniques, on climate change scenarios was also reviewed. It was found that neural

networks can be used to estimate missing weather data, interpolate data from information of other

locations, and even to build future weather scenarios to test building’s performance robustness to

different climate change scenarios.

Several of the variables reviewed are very hard to predict due to the uncertainty of the weather

phenomena, especially in longer time spans, such as solar radiation, cloud cover, wind speed and

direction, precipitation, wave and tide levels, and extreme weather events, or due to suddenness of

geologic phenomena like earthquakes. Although there are other variables that are easier to predict

due to their stability (lower variation over time), such as land cover classification and erosion,

neural networks may still be useful as surrogate methods to destructive testing or costly methods,

particularly the ones related to soil characterization. The accuracy of their predictions is generally

sufficient for early planning and design stages.

However, for a proficient usage of these techniques, developers should take into consideration

that the performance of neural networks models is greatly dependent on the quality of the training

set, the model type and structure, and the mechanisms that enhance the model performance

(input selection algorithms, filtering, pattern recognition, optimization of the model parameters,

etc.). Therefore, there are still research avenues that should be pursued to increase the accuracy of

neural networks to determine environment-related variables. Some of the most promising research

avenues are:

• selecting the best input variables or developing appropriate variable selection mechanisms;

• developing models more adapted to the requirements and characteristics of real-world prob-

lems;

• determining the effectiveness of artificial intelligence in comparison with traditional methods;

• performing systematic comparisons of different artificial intelligence models;

• developing evolutionary approaches capable of continuous learning and adaptive behavior;

• applying filtering and pattern recognition mechanisms to the data; and,

• hybridizing models with other algorithms, namely optimization approaches, to improve over-

all robustness, accuracy, and reliability.
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vector machine–firefly algorithm-based model for global solar radiation prediction. Solar Energy 2015;115:632–

644. doi:10.1016/j.solener.2015.03.015.

[22] Mohammadi, K., Shamshirband, S., Tong, C.W., Arif, M., Petković, D., Sudheer, C.. A new hybrid
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Intelligence models in hydrology: A review. Journal of Hydrology 2014;514:358–377. doi:10.1016/j.jhydrol.

2014.03.057.

[135] Cuadra, L., Salcedo-Sanz, S., Nieto-Borge, J.C., Alexandre, E., Rodŕıguez, G.. Computational intelligence in
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Soil organic carbon 2 0.74 %

Ground temperature 5 1.84 %
Thermal resistivity 2 0.74 %

Thermal conductivity 1 0.37 %
Electric resistivity 7 2.57 %

Hydraulic properties 37 13.60 %

Climate change 36 2.28 %

n – number of documents; % – group percentage
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Table 2: Neural networks acronyms and abbreviations.

Description

ADALINE adaptive linear element
ANFIS adaptive neuro-fuzzy inference system

ANN artificial neural network
BNN Bayesian neural network
ELM extreme learning machine
FNN feedforward neural network

GRNN general regression neural network
HN Hopfield network

LAF-MLN local activation feedback multi-layer network
LN linear neural network

MLP multi-layer perceptron network
NARNN non-linear autoregressive neural network

NLN neural logic network
PNN probabilistic neural network
RBF radial basis function network
RNN recurrent neural network

SOFM self-organizing feature map
SVM support vector machine
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w
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ra
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w
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ra
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=
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w
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ra
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=
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b
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b
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p
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p
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=
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b
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d
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d
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p
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b
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p
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b
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p
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p
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p
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=
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=
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p
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h
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p
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p
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p
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ra
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p
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=
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r
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=
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cü
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p
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p
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p
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=
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p
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-b
u
lb

te
m

p
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=
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=
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p
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p
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p
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ra
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et
al

.
[1

09
]

S
O

F
M

52
fe

at
u
re

s
ex

tr
ac

te
d

fr
om

im
ag

es

cl
ou

d
ty

p
e:

al
to

cu
m

u
lu

s-
al

to
st

ra
tu

s,
cu

m
u
lo

n
im

b
u
s,

ci
rr

u
s-

ci
rr

os
tr

at
u
s,

cu
m

u
lu

s-
st

ra
to

cu
m

u
lu

s,
st

ra
tu

s,
cl

ea
r

co
n
d
it

io
n
s

–
4
4
.7

%
co

rr
ec

tl
y

cl
a
ss

ifi
ed

im
a
g
es
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T
a
b
le

7
:

A
tm

o
sp

h
er

ic
-r

el
a
te

d
m

o
d
el

s
(p

a
rt

3
/
3
).

A
u
th

o
r(
s)

M
o
d
e
l

In
p
u
ts

O
u
tp

u
ts

L
o
c
a
ti
o
n

A
c
c
u
ra

c
y

P
as

in
i

et
al

.
[1

10
]

M
L

P
-p

h
ou

r
of

th
e

d
ay

(i
n

th
e

fo
rm

of
tw

o
va

ri
ab

le
s)

,
v
is

-
ib

il
it

y,
v
is

ib
il
it

y
ti

m
e

d
er

iv
at

iv
e

w
it

h
re

sp
ec

t
to

th
e

p
re

v
io

u
s

h
ou

r,
sk

y
co

v
er

in
g,

h
ei

gh
t

of
th

e
lo

w
es

t
cl

ou
d

la
ye

r,
ai

r
te

m
p

er
at

u
re

,
d
ew

p
oi

n
t

te
m

p
er

at
u
re

,
p
re

s-
su

re
,

h
or

iz
on

ta
l

w
in

d
sp

ee
d

v
is

ib
il
it

y
in

1-
an

d
2-

h
ou

r
ah

ea
d

M
il
a
n
,

It
al

y
1
-h

o
u
r

a
h
ea

d
:

W
G

C
=

0
.9

7
0
6
;

2
-h

o
u
r

a
h
ea

d
:

W
G

C
=

0
.9

5
9
2

M
L

P
-c

h
ou

r
of

th
e

d
ay

(i
n

th
e

fo
rm

of
tw

o
va

ri
ab

le
s)

,
v
is

-
ib

il
it

y,
v
is

ib
il
it

y
ti

m
e

d
er

iv
at

iv
e

w
it

h
re

sp
ec

t
to

th
e

p
re

v
io

u
s

h
ou

r,
sk

y
co

v
er

in
g,

h
ei

gh
t

of
th

e
lo

w
es

t
cl

ou
d

la
ye

r,
ai

r
te

m
p

er
at

u
re

,
d
ew

p
oi

n
t

te
m

p
er

at
u
re

,
p
re

s-
su

re
,

h
or

iz
on

ta
l

w
in

d
sp

ee
d

fo
g

ev
en

t
at

10
00

m
M

il
a
n
,

It
al

y
1
-h

o
u
r

a
h
ea

d
:

P
O

D
=

0
.9

3
6
4

a
n
d

F
A

R
=

0
.0

6
3
6
;
2
-h

o
u
r

a
h
ea

d
P

O
D

=
0
.8

9
2
4

a
n
d

F
A

R
=

0
.1

0
7
6

M
an

za
to

[1
12

]

A
N

N
-c

ac
ti

v
it

y
of

th
e

p
re

v
io

u
s

ca
se

,
b
u
lk

R
ic

h
ar

d
so

n
n
u
m

-
b

er
,
m

ax
im

u
m

ca
p
,
te

m
p

er
at

u
re

d
iff

er
en

ce
at

50
0

h
P

a,
sy

n
op

ti
c

h
ou

r
of

th
e

so
u
n
d
in

g,
lo

w
-l

ev
el

w
in

d
V

co
m

-
p

on
en

t,
m

ea
n

re
la

ti
ve

h
u
m

id
it

y,
m

ea
n

w
at

er
va

p
or
v

h
or

iz
on

ta
l

fl
u
x
,

st
an

d
ar

d
d
ev

ia
ti

on
of

ra
d
io

so
n
d
e

v
er

-
ti

ca
l

v
el

o
ci

ty

th
u
n
d
er

st
or

m
ev

en
t

w
it

h
co

n
ve

c-
ti

ve
ac

ti
v
it

y
an

d
ev

en
t

w
it

h
ou

t
F

ri
u
li

V
en

ez
ia

G
iu

li
a,

It
al

y
F
A

R
=

0
.6

0
,

P
O

D
=

0
.8

9
,

P
O

F
D

=
0
.2

1

A
N

N
-r

ac
ti

v
it

y
of

th
e

p
re

v
io

u
s

ca
se

,
m

ea
n

b
u
oy

an
cy

ac
ce

le
ra

-
ti

on
of

th
e

lo
w

es
t

25
0

h
P

a,
co

n
v
ec

ti
ve

in
h
ib

it
io

n
,

sy
n
-

op
ti

c
h
ou

r
of

th
e

so
u
n
d
in

g,
m

ea
n

re
la

ti
ve

h
u
m

id
it

y,
m

ax
im

u
m

b
u
oy

an
cy

,
w

in
d

sh
ea

r
in

th
e

lo
w

es
t

3
k
m

in
te

n
si

ty
of

th
e

th
u
n
d
er

st
or

m
F

ri
u
li

V
en

ez
ia

G
iu

li
a,

It
a
ly

r=
0
.4

9
a
n
d

M
S
E

=
0
.0

2
8
9

W
an

g
et

al
.

[1
13

]
M

L
P

co
n
ve

ct
iv

e
av

ai
la

b
le

p
ot

en
ti

al
en

er
gy

,
K

in
d
ex

,
J
eff

er
-

so
n

in
d
ex

,
se

ve
re

w
ea

th
er

th
re

at
in

d
ex

li
gh

tn
in

g
st

ri
k
es

N
a
n
ji

n
g
,

C
h
in

a
F
A

R
=

0
.1

7
,

P
O

D
=

0
.8

7
,

P
O

F
D

=
0
.1

5
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T
a
b
le

8
:

H
y
d
ro

lo
g
ic

-r
el

a
te

d
m

o
d
el

s
(p

a
rt

1
/
2
).

A
u
th

o
r(
s)

M
o
d
e
l

In
p
u
ts

O
u
tp

u
ts

L
o
c
a
ti
o
n

A
c
c
u
ra

c
y

T
ot

h
et

al
.

[1
46

]
A

N
N

s
ra

in
fa

ll
(t

to
t
−

2)
ra

in
fa

ll
(t

+
1

to
t+

6)
A

p
en

n
in

es
m

ou
n
ta

in
s,

It
a
ly

r=
0
.4

3
7

A
N

N
a

ra
in

fa
ll

(t
to
t
−

2)
ra

in
fa

ll
(t

+
1

to
t+

6)
A

p
en

n
in

es
m

ou
n
ta

in
s,

It
a
ly

r=
0
.2

5
5

H
on

g
et

al
.

[1
47

]
S
O

F
M

23
in

p
u
t

va
ri

ab
le

s—
cl

ou
d

p
at

ch
co

ld
n
es

s,
ge

om
et

ry
,

an
d

fi
ve

b
ri

gh
tn

es
s

te
m

p
er

at
u
re

te
x
tu

re
fe

at
u
re

s

h
ou

rl
y

ra
in

fa
ll

L
as

V
eg

as
,

N
ev

ad
a
,

U
S
A

0
.0

4
°

g
ri

d
si

ze
r=

0
.4

5
;

0
.2

5
°

g
ri

d
si

ze
r=

0
.5

9
d
ai

ly
ra

in
fa

ll
L

a
s

V
eg

as
,

N
ev

ad
a,

U
S
A

co
ld

se
a
so

n
r=

0
.5

7
;

w
a
rm

se
a
so

n
r=

0
.6

3

cl
u
st

er
in

g
ra

in
fa

ll
L

as
V

eg
a
s,

N
ev

ad
a,

U
S
A

co
ld

se
a
so

n
P

O
D

=
0
.6

3
,

F
A

R
=

0
.3

5
;

w
a
rm

se
a
so

n
P

O
R

=
0
.6

5
,

F
A

R
=

0
.2

8

S
u
d
h
ee

r
et

al
.

[1
48

]
R

B
F

4
d
ay

s
la

g
ru

n
off

an
d

5
d
ay

s
la

g
ra

in
fa

ll
ra

in
fa

ll
-r

u
n
off

B
a
it

ar
an

i
ri

ve
r,

In
d
ia

r=
0
.9

6
,

R
M

S
E

=
8
0
.6

3

T
ok

ar
an

d
M

ar
k
u
s

[1
49

]

A
N

N
f

st
re

am
fl
ow

(t
−

1)
,

p
re

ci
p
it

at
io

n
(t
−

1)
,

sn
ow

w
at

er
eq

u
iv

al
en

t
(t
−

1,
t
−

2)
,

ai
r

te
m

p
er

at
u
re

(t
−

1)
m

on
th

ly
ra

in
fa

ll
-

ru
n
off

F
ra

se
r

ri
ve

r,
C

ol
or

a
d
o,

U
S
A

R
2
=

0
.5

8

A
N

N
r

p
re

ci
p
it

at
io

n
(t
−

1
to
t
−

3)
,

ai
r

te
m

p
er

at
u
re

(t
),

st
re

am
fl
ow

(t
−

1)
d
ai

ly
ra

in
fa

ll
-r

u
n
off

R
ac

co
on

C
re

ek
ri

ve
r,

Io
w

a
,

U
S
A

R
2
=

0
.7

7

A
N

N
l

p
re

ci
p
it

at
io

n
(t

,
t
−

1)
,

ai
r

te
m

p
er

at
u
re

(t
)

d
ai

ly
ra

in
fa

ll
-r

u
n
o
ff

L
it

tl
e

P
at

u
x
en

t
ri

ve
r,

M
a
ry

-
la

n
d
,

U
S
A

R
2
=

0
.8

5

M
ar

zb
an

an
d

W
it

t
[1

50
]

B
N

N
r

ce
ll
-b

as
ed

ve
rt

ic
al

ly
in

te
gr

at
ed

li
q
u
id

,
se

ve
re

-h
ai

l
in

d
ex

,
st

or
m

-t
op

d
iv

er
ge

n
ce

,
m

id
-a

lt
it

u
d
e

ro
ta

ti
on

al
ve

lo
ci

ty
,

h
ei

gh
t

of
th

e
w

et
-b

u
lb

ze
ro

,
h
ei

gh
t

of
th

e
m

el
ti

n
g

le
ve

l,
v
er

ti
ca

ll
y

in
te

gr
at

ed
w

et
-b

u
lb

te
m

p
er

a
tu

re
,

w
in

d
sp

ee
d

at
th

e
eq

u
il
ib

ri
u
m

le
ve

l,
st

or
m

-r
el

at
iv

e
fl
ow

at
-2

0
°C

le
v
el

h
ai

l
si

ze
U

S
A

R
2
=

0
.5

1

B
N

N
c

ce
ll
-b

as
ed

ve
rt

ic
al

ly
in

te
gr

at
ed

li
q
u
id

,
se

ve
re

-h
ai

l
in

d
ex

,
st

or
m

-t
op

d
iv

er
ge

n
ce

,
m

id
-a

lt
it

u
d
e

ro
ta

ti
on

al
ve

lo
ci

ty
,

h
ei

gh
t

of
th

e
w

et
-b

u
lb

ze
ro

,
h
ei

gh
t

of
th

e
m

el
ti

n
g

le
ve

l,
v
er

ti
ca

ll
y

in
te

gr
at

ed
w

et
-b

u
lb

te
m

p
er

at
u
re

,
w

in
d

sp
ee

d
at

th
e

eq
u
il
ib

ri
u
m

le
ve

l,
st

or
m

-r
el

at
iv

e
fl
ow

at
-2

0
°C

le
v
el

th
re

e
h
a
il

si
ze

cl
as

se
s:

co
in

,
go

lf
-

b
al

l,
b
as

eb
al

l
si

ze
s

U
S
A

co
in

:
1
0
%

to
9
0
%

,
g
o
lf

b
a
ll
:

2
0
%

to
5
0
%

,
b
a
se

b
a
ll
:

1
0
0
%

R
o
eb

b
er

et
al

.
[1

51
]

E
n
se

m
b
le

of
M

L
P

m
on

th
in

d
ex

,
lo

w
to

m
id

-l
ev

el
te

m
p

er
at

u
re

an
d

re
la

ti
ve

h
u
m

id
it

y,
m

id
to

u
p
p

er
-l

ev
el

te
m

p
er

at
u
re

,
u
p
p

er
-l

ev
el

re
la

ti
v
e

h
u
m

id
it

y,
m

id
-l

ev
el

re
la

ti
ve

h
u
-

m
id

it
y,

ex
te

rn
al

co
m

p
ac

ti
on

h
ea

v
y,

av
er

a
ge

,
an

d
li
gh

t
sn

ow
fa

ll
ra

ti
o

cl
as

se
s

U
S
A

6
0
.4

%
;

h
ea

v
y

cl
a
ss

P
O

D
=

0
.6

1
,

F
A

R
=

0
.5

9
;

av
er

a
g
e

cl
a
ss

P
O

D
=

0
.5

7
,

F
A

R
=

0
.4

2
;

li
g
h
t

cl
a
ss

P
O

D
=

0
.6

3
,

F
A

R
=

0
.3

1

S
im

p
so

n
an

d
M

cI
n
ti

re
[1

52
]

F
N

N
A

V
H

R
R

ch
an

n
el

2
al

b
ed

o,
ch

an
n
el

4
b
ri

gh
tn

es
s

te
m

p
er

at
u
re

,
ch

an
n
el

3
d
a
ta

ca
li
b
ra

te
d

ra
d
ia

n
ce

,
ra

ti
o

b
et

w
ee

n
ch

an
n
el

2
an

d
ch

an
n
el

1
a
lb

ed
os

,
h
om

o-
ge

n
ei

ty
te

x
tu

re
of

ch
an

n
el

2
al

b
ed

o,
en

tr
op

y
te

x
tu

re
of

ch
an

n
el

2
al

b
ed

o

cl
ea

r,
cl

ou
d
,

a
n
d

sn
ow

cl
as

se
s

–
9
4
%

R
N

N

sp
ec

tr
al

an
d

te
x
tu

re
in

fo
rm

at
io

n
fr

om
th

e
cu

rr
en

t
im

ag
e

(r
at

io
b

et
w

ee
n

ch
an

-
n
el

2
an

d
ch

an
n
el

1
al

b
ed

o
w

as
su

b
st

it
u
te

d
b
y

th
e

h
om

og
en

ei
ty

te
x
tu

re
d
iff

er
-

en
ce

of
th

e
cu

rr
en

t
an

d
p
re

v
io

u
s

im
ag

e)
an

d
th

e
ou

tp
u
t

re
su

lt
of

th
e

p
re

v
io

u
s

im
ag

e
t
−

1
va

lu
es

cl
ea

r,
cl

o
u
d
,

an
d

sn
ow

cl
as

se
s

–
9
7
%

T
ed

es
co

et
al

.
[1

53
]

M
L

P
19

an
d

37
G

H
z

ve
rt

ic
al

an
d

h
or

iz
on

ta
l

b
ri

gh
tn

es
s

te
m

p
er

a
tu

re
s

sn
ow

d
ep

th
an

d
sn

ow
w

at
er

eq
u
iv

al
en

t
F

in
la

n
d

sn
ow

d
ep

th
r=

0
.9

7
5

a
n
d

R
M

S
E

=
1
4
.2

8
cm

,
sn

ow
w

a
-

te
r

eq
u
iv

a
le

n
t
r=

0
.9

3
8

a
n
d

R
M

S
E

=
1
9
.5

3
m

m

K
u
m

ar
et

al
.

[1
54

]
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N
N
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la

r
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d
ia

ti
on

,
m

ax
im

u
m
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d

m
in
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u
m
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m

p
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u
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,
m
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im

u
m

a
n
d

m
in

i-
m

u
m
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la

ti
ve

h
u
m
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it

y,
w

in
d
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d
ev
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ra
n
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n

D
av

is
,

C
a
li
fo

rn
ia

,
U

S
A

d
a
ta

se
t

1
W

S
E

E
=

0
.3

m
m

/
d
;

d
a
ta

se
t

2
W

S
E

E
=

0
.6

m
m

/
d

K
im

an
d

V
al

d
és
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]

M
L

P
1

P
al

m
er

d
ro

u
gh

t
se

ve
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ty
in

d
ex

(t
−

1
to
t
−

3)
m
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ly
P
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m
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d
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u
gh

t
se
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ri
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in

d
ex
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+
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C

o
n
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ri

ve
r,

M
ex
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o

R
M

S
E
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1
.0

5
2
4

M
L

P
3

P
al

m
er

d
ro

u
gh

t
se
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in

d
ex

(t
−
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to
t
−

4)
m
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th
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al
m

er
d
ro

u
gh

t
se

ve
ri

ty
in

d
ex

(t
+

3
)

C
on

ch
o
s
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ve

r,
M
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ic

o
R

M
S
E

=
1
.7

5
4
4

M
L

P
6

P
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