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1 Introduction

The blood pulse pressure waveform has long been known 
as a fundamental medical signal. Several non-invasive tech-
niques have been developed to detect cardiovascular pulsa-
tion, blood pressure and arterial pulse waveform [49]. The 
arterial stiffness, identified as the most important cardio-
vascular risk factor, is responsible for changes in mechani-
cal impedance of the arterial system [7, 58], which affects 
the artery compliance and, therefore, the distension profile. 
Several hemodynamic parameters can be extracted from 
the APW analysis that allows the assessment of the arterial 
stiffness and cardiac function [11].

Current commercial devices dedicated to non-invasive 
measurement of the APW show great limitations inher-
ent to the used methods (e.g. arterial applanation tonom-
etry, ultrasound and plethysmography) that require direct 
contact with the patient skin at the artery site using small 
amounts of compression over the artery that lead to the 
distortion of the pulse waveform [20, 13]. Optical sensors 
are an attractive instrumental solution for APW assess-
ment due to their truly non-contact nature that allows the 
measurement of the skin surface vibrations at the carotid 
artery site [40, 42, 44, 45]. A new laboratory research pro-
totype, based on optical sensors, was developed and tested 
in several volunteers which proved to be a reliable method 
to the arterial distension waveform detection [44]; how-
ever, the accuracy of APW detection is dependent on the 
operator’s skills and experience [46]. An automatic method 
to select the APW will standardize the analysis and objec-
tify APW identification. The variability between operators 
is introduced by the subjective criteria in the selection the 
pulse segment to be analysed. This subjective influence is 
responsible for systematic differences amongst the opera-
tors (interoperator reproducibility) and deviations of a 
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particular operator’s score on a particular patient (intraop-
erator reproducibility). The automatic method developed 
will be implemented in order to exclude the operator from 
the task of APW selection, and it will reduce the variabil-
ity of measurement. The optical system is not compatible 
with clinical use if it requires a review of all data in order 
to select the APW by the operator. For this reason, an auto-
matic method to reduce the time and the requirements for 
the operator was developed.

The main goal of this work was to develop an algorithm 
based on a classifier that could distinguish valid data (part 
containing APW) from non-relevant information acquired 
during a clinical examination by the optical system. A great 
potential in clinical applications for a system that assesses 
the APW by combining the non-contact optical probe and 
advanced machine-learning techniques for automatic signal 
detection is expected. With this combination, the system 
could be used in clinical routine, with simple use, with-
out subjective influence on the signal selection and con-
sequently less variability that allows the monitoring of the 
hemodynamic parameters and assessment cardiovascular 
condition.

The study of features and classification of pulse pressure 
waveform is a recent and interdisciplinary field of com-
puter science and clinical interpretation [48]. This work 
combines an extensive study of features from pulse pres-
sure waveform with the state-of-the-art classification tech-
niques and feature selection method. A global methodol-
ogy to determine the APW and an important advance in the 
study of APW features were described. Several other works 
tried to develop a methodology that allows identifying the 
normal APW [4, 19]. Previous studies mainly focused on 
wavelet analysis that demonstrated its capability to extract 
useful features for automated waveform classification [14, 
39, 60]. Amplitude features also received close attention 
in other studies [37, 38], while less importance was given 
to frequency features [35]. However, other studies that 
analyse biosignals were focused on limited subset which 
comprises a reduced number of features [2, 38]. This work 
represents a wide study of APW features, covering the rec-
ognized important features and many others that never have 
been studied for this type of medical signal. Several meth-
odologies were implemented, and the performance was 
evaluated in order to choose the most important. This work 
contributes to boosting the feature study of pulse pressure 
waveform.

Machine-learning techniques have been successfully 
employed in automatic classification of several physiologi-
cal signals [10, 25, 31, 36, 16], including those related to 
cardiovascular diseases [1]. Two classifiers were imple-
mented: k-nearest neighbours and support vector machine, 
in order to provide a comparison of performance results. 
This paper aims at establishing a systematic approach to 

the automatic APW detection, with the focus placed on fea-
ture study and pattern classification. This study represents 
one important application for the optical system developed. 
The identification of abnormalities in the waveform opens 
the way for a range of applications. The pulse pressure 
waveform suffers changes according to modifications in the 
cardiovascular condition and several other pathologies that 
could be studied and identified with the extensive features 
determined in this study [12]. The APW is one of the most 
important vital signals used in clinical environment; how-
ever, the information contained in this signal is still poorly 
explored. The APW results in several phenomena of inter-
action of cardiac function, cardiovascular condition, res-
piration cycle, etc., and contains clinical information that 
could be explored in order to diagnose and for monitoring 
the disease states [5]. This work contributes to study and 
progress of this development line to assess the clinical con-
dition using the pulse pressure waveform in a non-invasive 
way.

2  Methods

2.1  Measurement system

The signal with clinical interest is detected in peripheral 
arteries like the carotid, as the pressure wave travels from 
the heart across the arterial tree in a compliant way, forcing 
blood vessels to distend elastically according to the pres-
sure wave profile and causing an external distension effect. 
This distension can be used to produce an optical signal 
which is correlated with the passing pressure wave. Sev-
eral studies have shown that the distension and the pressure 
waveforms have an analogous wave contour and, therefore, 
can reciprocally be used for pulse wave analysis [9, 28, 47].

The functional structure of the optical system is repre-
sented in Fig. 1. The probe includes an illumination source, 
provided by monochromatic light emitting diodes (LED), 
and a planar photodiode (PD) acting as photodetector. The 
developed system is capable of emitting a constant inten-
sity beam of light while, simultaneously, acquiring the 
reflected light. When the pressure wave travels underneath 
a deformable surface, like the skin, the distension of the 
artery, close to the skin surface, will alter the direction of 
the light reflection and thus the intensity of the detected 
signal.

The optical probe is enclosure in a plastic box, in an ergo-
nomic configuration, ensuring a non-contact signal acquisi-
tion at the artery site, by keeping a 3-mm distance between 
the probe and the skin surface. The contact between the 
box probe and tissues was done in the surround area of the 
arterial vessel that allows the non-contact in the measure-
ment site. Signals were digitized with a 16 bits National 
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Instruments, USB6210® (DAQ represented in Fig. 1). The 
sampling frequency of the data acquisition is of 20 kHz; the 
cut-off frequency for the DAQ is 250 kHz. The signals were 
stored for offline analysis by MATLAB® [41, 43].

Previously, a comparison test was carried out between 
an ultrasound image system GE Vivid e® (30 Hz of sam-
pling rate), as source of reference data, and the optical sys-
tem with higher-resolution acquisition signals (20 kHz), 
adequate to feed feature extraction algorithms [40]. A large 
study was performed in 131 young subjects, and the results 
showed that the use of this new technique is a trustworthy 
method to determine pulse wave velocity (PWV) and for 
pulse waveform analysis [44, 45]. The PWV is defined as 
the speed at which the pulse pressure propagates along 
the arterial tree. It is known that PWV increases with age, 
blood pressure and arterial stiffness [22, 54].

2.2  Data collection

In the first stage, the pulse waveforms were collected using 
the optical system. The data set used in this work was 

obtained during the acquisitions in 213 patients and con-
tains parts with PWA and noise, segmented in 1752 pieces 
(1096 are labelled as APW, and 656 are noise). The study 
protocol was approved by the Ethical Committee of the 
Centro Hospitalar e Universitário de Coimbra (CHUC), 
Portugal, and all the subjects were volunteers and gave a 
written informed consent.

The 1752 acquisitions represent segments of acquisition 
with noise or arterial pulse pressure waveform detected by 
the optical system. The signals were previously labelled 
by physicians as noise or APW. The physician is an expe-
rienced operator of this type of devices and trained to iden-
tify and classify the data. This work studied the relation of 
each feature and patterns with valid information and those 
with no information (noise).

2.3  Feature creation

The signals were parameterized by means of 37 pulse fea-
tures divided in the following subsets: amplitude features 
(reflection point; full width at half maximum), time domain 
statistics (mean; median; standard deviation; variance; 
interquartile range; skewness; kurtosis; root mean square; 
entropy), cross-correlation features (maximum of cross-
correlation with template waveform), wavelet features (rela-
tive power at six levels of wavelets for two mother wave-
lets, Haar and Db4) and frequency domain statistics (first- to 
fourth-order moments in the frequency domain; median 
frequency; spectral entropy; total spectral power and peak 
amplitude in frequency band) [3, 15, 29, 37]. Most of these 
features are summarized in Table 1. The signal x_i represent 
the segments of data, for i = 1,…,1752 in Table 1.

For the amplitude feature creation, a low-pass filter 
(with a cut-off frequency of 30 Hz) was used for noise fil-
tering, improving the signal differentiation that is essential 
to detect the waveform inflection points [44]. The reflec-
tion point represents the amplitude of the inflection point in 
APW that corresponds to the arrival of the reflected com-
ponent added to the incident wave. The full width at half 
maximum is determined by the difference between the two 
values at which amplitude is equal to half of its maximum 
value [17].

In the time domain statistics: mean and median quan-
titatively represent the magnitude of each signal, whereas 
standard deviation, variance and interquartile represent its 
variability. Skewness and kurtosis reflect the shape of the 
amplitude distribution [29, 37], while the root mean square 
measures the magnitude of a varying quantify [15]. The 
skewness quantifies how symmetrical the distribution is, 
and Kurtosis quantifies whether the shape of the data dis-
tribution matches the Gaussian distribution. These features 
allow exploring the differences in the distribution of sam-
ple and deviations from a normal distribution.

Fig. 1  Overview of the optical system for hemodynamic multi-
parameter assessment
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A cross-correlation between the signal segments and an 
APW template was performed. Its maximum is a measure-
ment of the coupling between these two time series. Dif-
ferences in the structure of APW indicate an alteration of 
cardiovascular system, and four types of pulse pressure 
profile are described with pathology processes [14, 58]. 
The APW templates, used for the cross-correlation tests, 
belong to four waveform groups classified as A, B, C and 
D, which represent the most clinical-relevant APW types 
[14]. The arterial pulse pressure waveforms detected in the 
volunteers with specific features of each type of waveform 
described in the literature were used as a template. Four 
types of carotid pressure waveforms have been identified: 
type A, where systolic peak appears after the maximum 
wave; type B, which corresponds to cases of pronounced 
artery stiffness where the systolic peak appears after the 
inflection point (although the difference between them is 
very close to zero); type C waveforms, where the systolic 
peak appears before the inflection point (commonly seen in 
healthy individuals that have low arterial stiffness and high 
elasticity); and type D, whose waves are similar to type 
A waveforms, but the inflection point cannot be identified 
[14].

The wavelet features capture relative energies in dif-
ferent spectral bands. Two mother wavelets (Haar and 
Db4) were tested, and the relative power of the recon-
structed signal detail (one to four) was determined [14, 

26, 39]. The choice of the mother wavelet depends on the 
application, and, generally, a wavelet similar in shape to 
the analysed signal is considered appropriate. The mother 
wavelet function Daubechies 4 is most commonly used 
for the APW analysis [14, 39, 60]. Although the Haar 
function does not feature an excellent time–frequency 
localization, it is more suitable for analysis that requires 
peak detections [19, 23], which in this case could be an 
advantage for detection of typical inflection point in the 
APW.

First- to fourth-order frequency moments represent the 
amplitude of the power spectral density (PSD) at each sin-
gle spectral component. The median frequency is defined 
as the spectral component which comprises 50 % of the 
signal power, with higher values corresponding to signals 
with significant spectral components at higher frequencies. 
The spectral entropy is a disorder quantifier related to the 
flatness of the spectrum. The total spectral power is com-
puted as the total area under the PSD. The peak amplitude 
is the local maximum of the spectral content in the fre-
quency range [9, 19].

Due to the differences in the characteristics (amplitude 
and variation) of the feature components, a normalization 
procedure is required. This task has a strong impact on 
KNN and SVM classification algorithms and consists in 
subtracting the mean over all training values and dividing 
by the corresponding standard deviation [9].

Table 1  Feature subsets and expressions

Group Feature Expression

Amplitude features Reflection point (RP) x′ (RP) = 0 but is not the absolute maximum (x′ is the first 
derivative)

Time domain statistics Mean (M) M =
1
n

∑n
i=1 xi (n is the number of elements in the sample)

Standard deviation (σ)
σ =

((

1
n−1

)

∑n
i=1 (xi −M)2

)
1
2
 (where M is the mean of x)

Variance (Var) Var = E[(x − M)2] (E represents the expected value)

Skewness (s) s =
E(x−M)3

σ 3  (where σ is the standard deviation of x)

Kurtosis (k) k =
E(x−M)4

σ 4

Root mean square (RMS) RMS =

√

1
n

∑n
i=1 x

2
i

Entropy (H) H = −
∑n

i=1 p(xi)log10p(xi) (where p(xi) is a probability of x)

Cross-correlation features Cross-correlation (CC) CC = max
∑

∞

m=−∞
x[n+ m]y ∗ [m] (y is the signal template; 

y* denotes the complex conjugated of y)

Wavelet features Relative power for each decomposition 
detail (Pj)

Pj =
∫

D2
j dt (Dj is the reconstructed signal detail at the jth 

level)

Frequency domain statistics Moments in the frequency
(M1f)

M1f =
∑L

l=1 flPSD(fl) (where L is the length of FFT and f 
representing the frequency component)

Median frequency (MF) MF = 0.5
∑

PSD (f)

Spectral entropy (SE) SE = −
∑

pjln(pj) (pj is the normalized value of PSD at each 
frequency)

Total spectral power (PT) PT =
∑

PSD (f )

Peak amplitude (PA) PA = max (PSD (f))
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2.4  Feature selection

The choice of the most relevant features reduces the com-
putational cost and avoids the inclusion of redundant infor-
mation, which could compromise classification perfor-
mance, on the training model. In an initial stage of a pattern 
recognition project, it is desirable to discard features with 
no significant contribution. There are methods that gener-
ate new features from the existing ones, which retain the 
most meaningful attributes, as is a process called feature 
extraction. An example is the principal component analysis 
(PCA) algorithm. On the contrary, feature selection algo-
rithms preserve the most significant features contained in 
the original feature vector [30]. PCA must be applied for 
feature extraction with caution because there are some dis-
advantages related to its use. This method could discard 
components with negligible contribution to the overall vari-
ance, which may nevertheless provide a crucial contribu-
tion to pattern discrimination and, inadvertently, impair the 
classification accuracy [34].

Feature selection algorithms are divided into two types: fil-
ter methods and wrapper methods. The first one is based on 
indirect measurements, for example, with distances, reflect-
ing segregation between classes. Wrapper methods, on the 
contrary, select a subset of features based on the classification 
accuracy, which means they are dependent on the used clas-
sifier. The support vector machine recursive feature elimina-
tion (SVM RFE) algorithm is a wrapper method based on a 
recursive process of feature elimination. Starting with all 
available features in the original data, it determines each fea-
ture’s contribution in terms of the classification performance. 
The algorithm eliminates the feature with the least impact on 
the classification accuracy until a stopping criterion, indicating 
that a good solution has been found, is reached [55]. At the 
end of process, the algorithm returns a feature ranking, sorted 
by order of significance in terms of the classification accuracy 
[33]. In this work, a linear kernel function in SVM RFE was 
used. This type of kernel is the most simple of the kernel func-
tions, ensuring a smaller computational cost and complexity in 
comparison with the other kernel types more commonly used. 
Only the regularization constant (RC) has to be tuned, and it 
has been demonstrated that very low values can improve the 
performance of SVM RFE [6]. The recursive feature elimi-
nation techniques have been successfully applied to physi-
ological signals, with the aim to find feature subsets with high 
diagnostic relevance [3, 55]. The SVM RFE algorithm was 
adopted in the current project, and the SPIDER toolbox for 
MATLAB® was used to perform the feature selection [24].

2.5  Classifiers

In biomedical data classification systems are frequently 
applied classifier that is not suitable for the given data set 

[32]. The most important literature in this area empathizes 
the application of KNN and SVM to solve problems related 
to cardiac signals [57]; for that reason, those classifiers were 
compared in order to confirm the higher performance of 
SVM [48, 53]. SVM is defined as a classifier that can be 
linear or nonlinear. When applied to data, it can distinguish 
two different types of classes by finding a separating hyper-
plane with the maximal margin between two classes [32]. 
SVMs are defined by two general attributes: C, a hyper-
parameter that controls the trade-off between having large 
normalized margin and having less constraint violation; 
and kernel, a function that maps training data into a higher-
dimensional space [30]. The kernel function is used to train 
the SVM, and, usually, the most common kernel types are 
the linear and the Gaussian radial basis function (RBF) [30]. 
In this study, the last one was adopted because the Gaussian 
kernel is considered the best option on the biological con-
text [1, 18]. By using SVMs with this type of mapping func-
tion, a third parameter must be optimized: sigma, the width 
of the Gaussian function. Therefore, it is always necessary 
to define the best combination of the two hyper-parameters, 
C and sigma, that define the kernel RBF model.

Contrary to SVM, KNN does not make any assump-
tions about the underlying data pattern distributions. It is an 
algorithm used for object classification based on the closest 
training examples in the problem space [34]. The object is 
then assigned to the most common class amongst its k near-
est neighbours. KNN is considered the simplest algorithm of 
all machine-learning techniques, where the function used is 
only approximated locally [48]. Generally, the performance 
of SVM classifier is better than KNN, but a comparing study 
between them was made in order to select the best model. 
The Statistical Pattern Recognition Toolbox for MATLAB® 
was used to design both the KNN and SVM classifiers [52].

2.6  Performance evaluation

A set of tests is usually performed in order to assess the 
performance of each classifier. Performance analysis is 
conducted under accuracy (A), specificity (SP), sensitivity 
(SE) and F-Measure (F-M). In general, the performance of 
a binary classifier as the ones analysed here can be evalu-
ated taking into account the following quantities: true posi-
tives (TP), true negatives (TN), false positives (FP) and 
false negatives (FN). In the context of the analysed data set, 
a ‘positive’ denotes a part of the signal classified as having 
a waveform profile and ‘negative’ denotes noise. Conse-
quently, a TP is a portion of the signal which was correctly 
classified as having a waveform profile, and a FP is a por-
tion of the signal with noise which was wrongly classified 
as having a waveform profile.

A classifier is considered as having a good perfor-
mance if it simultaneously has a high sensitivity and a high 
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specificity [34]. F-Measure reflects indirectly the sensitivity 
and the specificity of the method. The performance evalua-
tion task allows the determination of method that ensures 
the highest accuracy and F-Measure values. To select a 
good classifier from a set of classifiers (model selection), 
it is necessary to adopt an accuracy estimation method. 
Its implementation is important to predict the classifier’s 
future prediction accuracy and to calculate the above per-
formance measures. Cross-validation is one of the most 
common methods [27]. In this method, the whole data set 
is randomly split into n different subsets (folds). Usually, 
fivefold or tenfold cross-validation displays lower variance. 
Cross-validation ensures nearly unbiased estimate of the 
prediction error rate and avoids overlapping test sets [59].

3  Results

This section contains the results obtained after a thorough 
test of the two classifiers, for several values of the param-
eters. These values are represented in Tables 2 and 3.

Different combinations of input parameters were tested 
for each classifier to find out the one which ensured the 
best classification performance in the cross-validation. 
The KNN classifier was tested for 1–50 nearest neighbours 
and fivefold to tenfold in cross-validation method [1, 50, 
51]. For the SVM classifier tests were used the values of 
a constraint factor between 0.01 and 200, the sigma from 
0.01 to 100 and cross-validation with fivefold to tenfold. 
In the SVM RFE, three values for small RC were tested: 
1 × 10−7, 5 × 10−7 and 1 × 10−6, and combined with dif-
ferent feature numbers. The best performance of classifiers 
was found for the lower values of RC. Similar results were 
also described in another study that used very low values 
for the RC in order to improve the performance of SVM 
RFE [6, 21].

The values of Table 2 show that the overall accuracy is 
higher than 0.9, for both classifiers. For the KNN, the higher 
accuracy (0.933) was achieved for four nearest neighbours 
using fivefold cross-validation scheme. In the SVM clas-
sifier with the cross-validation method, the best value of 
accuracy was 0.952, and the best combination of parameters 

Table 2  Overall KNN and SVM accuracy for different parameters in the SVM RFE (N represents number of features and the RC the regulariza-
tion constant)

The higher values are marked in bold

RC 1 × 10−7 5 × 10−7 1 × 10−6

N 5 10 19 25 30 5 10 19 25 30 5 10 19 25 30

KNN 0.921 0.919 0.925 0.919 0.926 0.932 0.933 0.931 0.930 0.924 0.923 0.923 0.928 0.924 0.923

SVM 0.947 0.948 0.949 0.952 0.948 0.942 0.949 0.947 0.947 0.949 0.946 0.950 0.949 0.949 0.948

Table 3  Validation results for 
KNN and SVM classifiers for 
different parameters of SVM 
RFE

The higher values are marked in bold

RC N features KNN SVM

SP SE F-M SP SE F-M

1 × 10−7 5 0.9018 0.9290 0.9347 0.9259 0.9623 0.9560

10 0.9018 0.9337 0.9339 0.9203 0.9672 0.9569

19 0.8836 0.9977 0.9387 0.9208 0.9672 0.9571

25 0.8992 0.9337 0.9336 0.9312 0.9665 0.9600

30 0.8619 0.9743 0.9395 0.9253 0.9640 0.9568

5 × 10−7 5 0.8942 0.9624 0.9432 0.9115 0.9624 0.9515

10 0.8921 0.9658 0.9446 0.9221 0.9668 0.9572

19 0.9254 0.9506 0.9434 0.9179 0.9676 0.9563

25 0.9054 0.9629 0.9426 0.9221 0.9644 0.9559

30 0.8649 0.9583 0.9369 0.9214 0.9672 0.9573

1 × 10−6 5 0.8500 0.9748 0.9372 0.9183 0.9647 0.9549

10 0.8953 0.9355 0.9370 0.9297 0.9648 0.9585

19 0.8898 0.9645 0.9409 0.9214 0.9672 0.9573

25 0.8325 0.9747 0.9381 0.9253 0.9648 0.9572

30 0.8943 0.9471 0.9371 0.9253 0.9640 0.9568
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for the SVM RFE results in a small RC (1 × 10−7) and 25 
selected features out of 37. The number of final selected fea-
tures, 25, was found for the best accuracy obtained by test-
ing several combinations of parameters.

The evolution of the accuracy results corresponds to the 
combination of sigma and constraint values in the SVM 
classifier, and it is represented in Fig. 2. The highest value 
occurs using the values mentioned above, for a C = 180 
and σ = 0.1 with fivefold cross-validation scheme. For 
sigma values higher than 2, there is a great decay of the 
accuracy results, and from σ = 4, it stabilizes at a low per-
formance. Very small values of sigma keep a high score of 
performance for a wide range of constraint values.

From Table 2, it was possible to identify the best accu-
racy value, for each classifier, regarding the number of fea-
tures tested. In Table 3, the best results are highlighted and 
it can be observed that all the algorithms achieved a good 
performance, since the overall results for SP, SE and F-M 
are extremely high, however, with lower results for KNN 
classifier when compared to SVM.

A good performance of a classifier can be considered 
when its values of SP and SE have some balance between 
them, i.e. the combination of higher values for SP and SE 
that could be expressed by the higher value of F-M. The 
best values of specificity and sensitivity were selected for 
each algorithm. In all cases, the SE value is higher than 0.9 
which corresponds to a small false-negative rate. The high 
values of SP ensure that a small number of waveforms are 
classified as noise, and this affords an important character-
istic of the classifier for this type of problem, ensuring that 
good waveform segments are not disposed.

The parameters that lead to the best accuracy were 
selected for a more detailed testing of the implemented 

algorithm. For these parameters, the graphic illustrated 
in Fig. 3 shows for the two different classifiers under 
study the evolution of accuracy with the number of fea-
tures chosen from SVM RFE. The best values of accu-
racy were obtained for the SVM algorithms, which con-
firms that KNN has a weaker behaviour. Besides that, 
this illustration gives important information about the 
number of features that should be selected from SVM 
RFE.

It is clearly visible that accuracy has a strong increase 
until three features, but from that point the accuracy results 
not suffer substantial changes, which indicates that extract-
ing a higher number of features will not affect the classi-
fiers’ performance. However, few more features were intro-
duced in the classifier in order to ensure that it always has 
a good performance (such as described in the plateau of 
curve); for this reason five features were selected. Through 
this analysis, it can be concluded that the first selected 
features, from SVM RFE, will have enough information 
to make a correct and safe distinction between APW and 
noisy signals. This point has important practical conse-
quences for the classifier implementation, since being only 
five features necessary processing can be much faster.

The most important features identified by the SVM 
RFE procedure are: RMS; cross-correlation with signal 
template C and D; relative power for the first two levels 
of decomposition in the wavelet analysis using the mother 
wavelet function Haar. These five features are sufficient 
for the classifier to distinguish between APW and noise 
segments. Figure 4 shows the scatter plots between fea-
tures from waveforms and noise acquisitions and almost 
distinguishable.

4  Discussion

A novel algorithm was developed for the detection of APW 
in the data acquired by the optical system.

Fig. 2  Grid search showing the accuracy of SVM classifier for a 
wide range of σ and C for data set, and the colour code represents the 
accuracy result (colour figure online)

Fig. 3  Accuracy values corresponding to both SVM and KNN clas-
sifiers, for different numbers of features selected from the original set
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The extensive study of feature creation for APW has 
generated 37 features which allow the data characteriza-
tion. This work represents a wide study in feature creation 
for APW. Several features used in this work have never 
been used with this kind of biomedical signal and therefore 
not have a physiological interpretation. This work opens, 
however, the opportunity to study these types of signals 
more broadly. Other features are well studied, such as the 
wavelet analysis. The arterial pulse pressure signals are the 
result of several biological processes (cardiac activity and 
arterial function) that correspond to different time and fre-
quency scales in the analysed signal. The wavelet analysis 
represents one standard technique for PWA and provides 
the decomposition of a signal into different scales. Several 
hemodynamic parameters that allow the assessment of the 
arterial stiffness and cardiac function can be extracted from 
the APW analysis. Currently, the most accepted clinical 
parameters are determined by the mathematical relations 
in the time and amplitude features, such as the augmenta-
tion index (ratio between the amplitude of systolic peak 
and the amplitude of reflected waveform). This study was 
focused on the method that allows the selection of the APW 
that could be used for assessing relevant clinical parame-
ters. The features used in this work were chosen in order 

to develop a classifier that could be able to correctly select 
the waveforms. However, not all the features which were 
selected as the most significant ones have a clinical inter-
pretation. Nevertheless, the results obtained in this study 
suggest that probably there are other features which clinical 
interpretation would be interesting and important to study 
for clinical assessment.

The SVM RFE was used to reduce the computational 
complexity and to improve the classifier’s performance.

Two classifier architectures, KNN and SVM, were tested 
and compared to find which one guarantees the highest 
classification performance. The best method was an SVM 
classifier (constraint factor of 180 and sigma of 0.1) with an 
A (0.952), with a SP of 0.9312, and SE of 0.9665 and F-M 
of 0.9600. The implementation of the automatic method 
to select the APW in the optical system will decrease the 
influence of the operator and greatly improve data collec-
tion efficiency for the system based on the optical probe.

By varying the number of features, it was possible to 
determine the optimal feature number to get the best per-
formance of the classifier. It was concluded that five fea-
tures are enough for the classifier to distinguish between 
waveforms and noise with high accuracy. The main five 
features are: RMS; cross-correlation with signal templates 

Fig. 4  Scatter plot matrix of the five variables distinguished by class; 
signals are marked in red and noise with black. The diagonal plots 
show the histogram of each feature. List of features: RMS; Cross-C C 
represents cross-correlation with signal template C; Cross-C D rep-

resents cross-correlation with signal template D; P1 is the relative 
power for the first level and P2 second level of decomposition with 
mother wavelet function Haar (colour figure online)
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C and D; relative power for the first two levels of decom-
position in the wavelet analysis using the mother wavelet 
function Haar. The higher relevance of the results from 
cross-correlation with template C and D reveals that data 
sample used as the test set was composed by the waveforms 
from healthy subjects (type C) and subjects with pathologic 
alterations in the cardiovascular condition originated by the 
arterial stiffness (type D). In fact, this set was acquired at 
the hospital and therefore was comprised of signals pro-
vided from both patients and healthy subjects. The relevant 
results obtained using wavelet features confirm which was 
concluded in previous studies [14, 26, 39]. The wavelet 
decomposition allows the study of the detailed waveform 
structure [14]. The RMS feature is correlated with the pulse 
area and waveform amplitude. This parameter reflects the 
cardiac and valve closure force [8].

The introduction of the correlated parameters’ stand-
ard deviation and variance in the decision function could 
introduce redundant information, leading to impairment in 
classification performance. However, a feature selection 
method to raw data was applied, before the classification 
task, in order to select the feature set which retained the 
most relevant information. Therefore, if certain features are 
highly correlated between them, this algorithm selects only 
the most relevant ones. Taking into account that standard 
deviation and variance were similar features, the feature 
selection algorithm has discarded one of them.

The method developed for the automatic detection of 
APW showed higher accuracy values in comparison with 
other studies that also use machine-learning techniques to 
identify the APW, which only ensure accuracy results less 
than 92 % [4, 48, 56]. The feature set used in this work 
combined with the optimal classifier parameters represents 
an improvement in the methodologies applied so far for the 
automatic APW detection. However, other features might 
be created and tested, in order to improve the accuracy of 
APW estimation.

5  Conclusions

In this paper, a novel method to classify the data obtained 
by the optical system in pulse pressure waveform or noise 
segments was described. This study provides a review of 
emerging solutions to identify the APW and integrate the 
features from several domains to improve patient diagno-
sis by using collection and feature extraction in arterial 
waveforms by machine-learning algorithms. An imple-
mentation of one automatic method is extremely impor-
tant to decrease the variability in the selection process 
and the time-consumed in the clinical examination. One 
experienced operator could be almost perfect, and for this 
reason, each sample of the database used in this work was 

previously labelled by physicians as noise or APW. How-
ever, two of the most important requirements of a clinical 
system for daily use in the hospital are: easy to use and 
with effective application. The optical system is not com-
patible with clinical use if it requires that after the acquisi-
tion, the physicians need to review all data in order to select 
the APW. The automatic method developed will be imple-
mented in order to exclude the operator from the task of 
APW selection and will reduce the variability of measure-
ment and the time of clinical examination.

The algorithm developed was based on the SVM RFE 
to determine the most relevant feature and the SVM clas-
sifier to identify the pulse pressure signals and noise seg-
ments from the data obtained with non-contact optical sys-
tem in the carotid site. An optimal feature subset was found 
by SVM RFE from one original extensive feature set com-
posed by amplitude, cross-correlation, wavelet-based, time 
and frequency domain statistics-derived features. The set 
comprised of the most significant features was found, and 
it was composed by five features. The developed method 
showed high classification performances, achieving a maxi-
mal accuracy of 95.2 %.

This APW automatic detection method was developed to 
be applied at the end of each acquisition for processing the 
data detected by the optical system. Therefore, at the end 
of each clinical acquisition, each sample of the acquired 
signal will be classified as an APW or a noisy sample. 
However, a real-time solution could be implemented with 
the developed method and used in systems for real-time, 
beat-to-beat and continuous classification of pulse pressure 
waveform in dynamic clinical scenarios.

As future directions, it is the improvement of the classifi-
cation algorithm to make it be able to discriminate not only 
between an APW and a noisy segment, but also between 
the different classes of APWs (from A to D). The automatic 
identification of APW type will be an important charac-
teristic for the clinical implementation of the non-invasive 
optical system proposed. In addition, other types of classifi-
ers could be tested for comparing the results using a differ-
ent classification approach with the ones obtained with the 
SVM classifier, in order to verify whether other classifier 
would be more suitable to solve the proposed problem.
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