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ABSTRACT: A simple X-ray imaging system using off-the-shelf electronics and simple recon-
struction algorithms aiming a spatial resolution of 1.7 mm (∼ 3% of the detector length) is de-
scribed in this work. For this, two 100 cm2 Gas Electron Multiplier (GEM) foils with a thickness
of 100 µm (2-fold thicker than the standard ones) were immersed in a mixture of argon and car-
bon dioxide (70:30). The charge readout with 2D position determination was done with resistive
charge division.

Due to their higher thickness with respect to the standard GEMs, the 100 µm thick GEM foils
were found to be less prone to damage caused by the electrical discharges.

X-ray images are shown and some descriptions of the physical processes involved are pre-
sented. We describe the advantages of this method that allows counting each X-ray photon or
particle entering the detector, its interaction position, as well as measuring of its energy. The re-
sults of our present work show a position resolution below 2 mm, being limited by the gas mixture
used, and not the detecting system, with a very good cost effectiveness. Future work is being
carried out to optimize the present system for a medical application as a proton beam monitor.
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1 Introduction

The Gas Electron Multiplier (GEM) is a Micropattern Gaseous Detector (MPGD) that has been suc-
cessfully applied in Particle Physics and Medical Science, among other fields, for over a decade [1].
A standard GEM configuration consists of 50 µm Kapton thick foil which is copper clad on both
sides and perforated with 70 µm diameter holes in a 140 µm hexagonal pitch. By applying suitable
electrical fields across the holes with the foil immersed in suitable a gas mixture, it is possible to
multiply electrons from a primary ionization cloud and obtain a charge signal proportional to the
energy deposited in the detector. The GEM can be cascaded with a second or a third multiplication
stage until a satisfactory signal-to-noise ratio (SNR) is achieved. The two dimensional geometry of
this kind of structure offers a very good solution whenever there are demands of large detection ar-
eas, such as the cases of position sensitive detectors for X-rays, particle beam monitors and others.
In fact, the imaging capabilities of MPGDs have been well documented for GEMs [2], Micro-Hole
and Strip Plates [3] and other micropattern elements.

Most of the imaging applications with MPGDs have made use of discrete channel readout.
This approach provides very good spatial resolutions, of the order of hundreds of µm for areas as
large as 100cm2. However, it involves the use of a very large number of channels, and increases the
complexity of the electronic system. Whenever a spatial resolution of the order of mm is needed,
one can simplify the electronic readout and use resistive charge division, determining the position
of interaction through the algorithms of the center of mass. However, this solution is very much
dependent on obtaining a good signal-to-noise ratio. This means that the GEMs must operate at the
highest gains possible, eventually too close to the discharge limit. The inevitable consequence of
operating at such a regime is the higher probability of discharges resulting in permanent detector
damage. The non-standard 100 µm thick GEM-foils, which have a two-fold thicker kapton™ sug-
gest that a higher discharge power is needed to cause a short circuit accross the holes. This attribute
is clearly advantageous towards the construction of a robust detector.
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Figure 1. Scheme of the detector, with the drift, transfer and induction gaps. The gas mixture was Ar:CO2

(70:30) at 1 bar.

2 Experimental setup

GEM foils of 10×10cm2 and a thickness of 100 µm were used in this work, in a double cascade,
immersed in a mixture of argon:CO2 (70:30) at atmospheric pressure. The drift, transfer and induc-
tion gaps were 11 mm, 2.8 mm and 2 mm, respectively, as shown in figure 1. The entrance window
was in alluminized Mylar™ with a thickness of 25 µm.

The charge readout electrode, with an area of 50× 50mm2, was composed of two layers of
parallel strips with 200 µm pitch. The two layers were rotated by 90◦ with respect to each other.
The strips of each layer were interconnected by a resistive line and the signals were collected from
both ends. The resistive line has the effect of dividing the charge to be collected at both ends. The
ratio between the amount of charge reaching each side has information of the position of interaction
for each dimension. This approach provides information of the position and and energy of each
event produced in detector, making use of only four shaping/amplification channels.

In each of these four channels, the charge pulses were integrated by a charge sensitive pream-
plifier with a rise time of 10 µs, and digitized by a CAEN VME1728 digital pulse processor, where
the shaping and amplification was done. The amplitude and the time stamp, with a resolution of
10 ns, of each pulse were recorded in all the four electronic channels. In a first step of data pro-
cessing to reconstruct the image, the pulses were arranged in groups of four, one in each channel,
occurring within a time window of a few ns. Whenever this condition was not met, the pulses were
discarded. The output of this first step was a collection of (x,y,E) events, which composed the
reconstructed image.

A copper X-ray tube was placed at a distance of about 2 m from the detector window and
several masks made with stainless steel or lead were used to project the images in the detector. The
X-ray tube was filtered with a 1.5 mm stainless steel sheet and the X-rays in the range 10–25 keV
were used in the image reconstruction.

The drift and transfer fields were optimized by measuring the contrast of an array of slits
with known pitch. To measure the contrast, the profile of an image of the slits was made and
equation (2.1) was used:

C =
p− v

p
, (2.1)

where p is the average height of the three peaks and v was the average height of the two valleys. The
example in figure 2 illustrates the procedure used to determine the contrast. This simple method
does not correct for non-uniformities of the GEM foils and of the space between them, which
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Figure 2. Example of the determination of the contrast. The image on the right is the profile of the region
marked in the image on the left. The average height of the peaks and the valleys is used to calculate the
contrast of the image.

Figure 3. Variation of the image contrast as a function of the drift and transfer electric fields (Ed and Et,
respectively). Left: 0.17 lp/mm slits. Right: 0.33 lp/mm slits.

causes fluctuations in the transfer and induction fields. The contrast is determined for a specific
region of the detector.

Figure 3 shows the behavior of the contrast for different drift and transfer electric fields (Ed

and Et, respectively). To obtain this data, whenever one of the fields were scanned, the other was
kept at 3 kV/cm (note the supperimposed data points at this value). For fields under 3 kV/cm, slits
of 0.17 lp/mm (line pairs per mm) were used and for the higher values, 0.33 lp/mm were used. The
drift field becomes optimal already at low values, as expected. It is also expected that, when the
drift field is too high, some field lines intersect the copper surface of the GEM, between the holes.
Consequently, some electrons from the primary do not cross the holes and are lost to the surface of
the copper layer. The point at 3.6 kV/cm suggests that this limmit is about to be reached.

In the transfer gap, the field must be above 3 kV/cm to achieve the best contrast. This means
that for lower fields, some electrons emerging from the first GEM are lost to the bottom electrode
and do not reach the second GEM, resulting in a loss of signal and therefore decreasing the signal-
to-noise ratio. The drift, transfer and induction fields used throughout this work were 3, 3 and
4 kV/cm, respectively.

3 Results and discussion

To evaluate the point spread function (PSF) of the system at one dimension, a stainless steel mask
with a 1 mm wide slit was imaged. This one dimensional approach of the PSF — the line spread
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Figure 4. Image of a 1 mm slit. Its width is 1.78 mm and gives an idea of the position resolution of the
system.

Figure 5. The image of a stainless steel caliper with an aperture of 20 mm. The region marked can be used
to determine the Edge Spread Function.

function (LSF) — is very convenient, because it is easier to image a slit than a pin-hole. The pixels/mm

value of the system was determined by imaging a caliper with an aperture of 20 mm (figure 5) and
measuring the number of pixels between the two edges of the profile.

The profile obtained for the 1 mm slit is shown in figure 4. The width of the distribution is
1.78 mm. This image is the convolution of the LSF with a rectangle with a width of 1 mm, which
is the slit. The contribution of the width of the slit to this profile tends to vanish as it becomes
narrower. The fact that it appears wider in the image shows that the resolution of the system is
above 1 mm. To deconvolute the contribution of the slit and the LSF in this image equation (3.1) is
used [4]:

σx = wo×
3

√(
wi

wo

)3

−1, (3.1)

where σx is the width of the LSF, wo is the width of the slit and wi is the width of the image. It is
shown that the minimum width possible to image with this system is then 1.67 mm.

– 4 –
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Figure 6. The Modulation Transfer Function of one of the edges of figure 5

Figure 7. The image of a wooden dummy that has a metallic spring as ‘skeleton’. Both the wooden body
(in tones of green) and the metallic spring (in tones of blue - less X-ray trasmission) can be distinguished.

Figure 5, can also be used to further evaluate the imaging capabilities of this detector. The
edge spread function (ESF) of the region marked with a red rectangle has enough information to
determine the behavior of the system. By deriving the ESF, one obtains the LSF and its discrete
Fourier transform is the modulation transfer function (MTF). The MTF shows the behavior of the
imaging system as a function of the imaged objects. Its value is the contrast for line pairs with the
corresponding frequency. In the case of figure 6, the 10 % value of the MTF is 0.54 lp/mm, which
corresponds to two distinguishable slits at 1.85 mm from each other. For the 3 % limit of the MTF,
the position resolution improves to 1.67 mm.

Finally, to test the dynamic range of the imaging system, an articulated wooden dummy, with
a metallic spring inside as ‘skeleton’ was imaged. As seen in figure 7, both the metallic spring
and the dummy’s wooden body can be distinguished. This contrast can be changed by selecting
different energy ranges. This is one major advantage of this kind of imaging approach, since for
each event has its position recorded as well as its energy.

The position resolution improves with increasing photon energy up to 14 keV. This is con-
sistent with the increase of the SNR. In fact, if the value of the 10 % limit of the MTF is plotted
as a function of the X-ray energy range used to build it, it is evident that the position resolution
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Figure 8. The position resolution as a function of the energy (brown squares). The energy spectrum is drawn
for reference (the copper peak is seen, strongly attenuated by the 1.5 stainless steel sheet). The magenta line
is the photo-electron range in argon as a function of the incoming X-ray energy, from calculated data [5].

keeps improving, as shown in figure 8. However, the resolution is also influenced by the range of
the photo-electrons in the gas mixture (magenta line in the figure). The energy of the K-edge of
argon is 3.2keV, meaning that a 15keV X-ray gives origin to a 11.8keV photo-electron, which has
a range just below 2 mm [5]. This range has a direct influence on the position resolution and keeps
increasing with the energy of the incoming X-rays. The figure shows that for X-ray energies above
around 12keV, the position resolution limitation is related to the gas mixture that was used.

To improve the position resolution, one must increase the SNR to use the lower energies of the
spectrum (< 8keV). Although the noise cannot be reduced ad infinitum due to the use of resistive
charge division, there is still room for improvements, by better matching of the input capacitances
of the charge sensitive preamplifiers.

4 Conclusion

An imaging system used in a double GEM configuration with resistive readout has been success-
fully built, leading to position resolutions of 1.7 mm for an active area of 5× 5cm2. The charge
readout by resistive charge division allowed using more cost effective electronics, with only two
charge readout channels for each dimension. The position resolution achieved is in agreement with
the expected range of the photo-electrons in argon mixtures for 10keV X-rays. Developments for
reduction of the signal-to-noise ratio are ongoing, which will allow to use the lower energies of the
spectrum, with a subsequent improvement of the position resolution.

The fact that a higher frequency of discharge is not damaging the detector allows us to operate
at gains close to the sparking limit is also helping to achieve better results. While testing the
detector, some acquisitions were done with the spark rate as high as 0.2 Hz, with a fast recovery
time (∼ 1s), during several minutes. Under such circumstances, we observed no gain instabilities.
A systematic study on the spark behavior of these GEMs will be described in a separate work.
Nevertheless, this work has already demonstrated their robustness, being able to withstand many
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discharges without damage. Studies using a 10× 10cm2 readout, exploiting the full area of the
GEMs are also foreseen.
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