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Abstract

The porous medium equation

ut − div
(
mum−1∇u

)
= f

is one of the most relevant parabolic equations of degenerate type. The modulus of

ellipticity of its principal part vanishes at points where u = 0 and the pde looses

its uniform parabolic nature. Despite this fact, some of the regularity properties of

its solutions survive, like, for example, their Hölder continuity. This is a celebrated

result mainly due, in its most general form, to DiBenedetto and Friedman.

On the other hand, the quest for precise, quantitative derivations of the Hölder

exponent has hitherto eluded the community, the only exception being the one-

dimensional case. This type of quantitative information, apart from its own intrinsic

value, plays an important role in the analysis of a number of qualitative issues for

parabolic pdes, such as blow-up analysis, Liouville type results, free boundary prob-

lems, and so forth.

In this thesis, we first revisit the local Hölder continuity of weak solutions of the

porous medium equation using the method of intrinsic scaling. The continuity of

a solution at a point follows from measuring its oscillation in a sequence of nested

and shrinking cylinders, with vertex at that point, and showing that the oscillation

converges to zero as the cylinders shrink to the point. The idea behind the method of

intrinsic scaling is to perform this iterative process in cylinders that reflect the struc-

ture of the equation. Although the results are well-known, the proofs are scattered

in the literature and we provide here a self-contained approach to the issue.

Most importantly, on the second part of the thesis, we show that locally bounded

solutions of the inhomogeneous porous medium equation are locally Hölder continu-

ous, with precise exponent

γ = min

{
α−0
m
,

[(2q − n)r − 2q]

q[(mr − (m− 1)]

}
,
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where α0 denotes the optimal Hölder exponent for solutions of the homogeneous

case. The proof relies on an approximation lemma and geometric iteration in the

appropriate intrinsic scaling.

Although regularity estimates for degenerate evolution equations have been suc-

cessfully obtained in great generality, explicit expressions for the Hölder exponent of

continuity for weak solutions have only been known in the linear setting. For nonlin-

ear equations, the classical tools from harmonic analysis, such as singular integrals,

are precluded from being used and an entirely new approach is needed. The estimates

we obtain are striking in their simplicity and follow by applying a method based on

the notion of geometric tangential equations, which explores the intrinsic scaling of

the operator and the integrability of the forcing term.

Keywords: degenerate parabolic equations, porous medium equation, sharp

Hölder regularity, intrinsic scaling.
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Resumo

A equação dos meios porosos

ut − div
(
mum−1∇u

)
= f

é uma das mais importantes equações parabólicas de tipo degenerado. O módulo

de elipticidade da sua parte principal anula-se em pontos onde u = 0 e a equação

perde a sua natureza parabólica uniforme. Apesar disso, algumas das propriedades de

regularidade das suas soluções sobrevivem como, por exemplo, a continuidade Hölde-

riana. Este é um resultado célebre devido, na sua forma mais geral, a DiBenedetto e

Friedman.

Por outro lado, a procura de uma expressão quantitativa precisa para o expoente

de Hölder permaneceu um problema em aberto, sendo a única excepção o caso unidi-

mensional. Este tipo de informação quantitativa, além do seu próprio valor intŕınseco,

desempenha um papel importante na análise de uma série de questões qualitativas

para equações com derivadas parciais parabólicas, como a análise de explosão, resul-

tados do tipo Liouville e problemas com fronteira livre, entre outros.

Nesta tese, revisitamos a continuidade Hölderiana local das soluções fracas da

equação dos meios porosos usando o método da mudança intŕınseca de escala. A

continuidade de uma solução num ponto obtém-se medindo a sua oscilação numa

sucessão de cilindros encaixados, com vértice nesse ponto, e mostrando que a oscilação

converge para zero à medida que os cilindros colapsam no ponto. A idéia por detrás do

método da mudança intŕınseca de escala é realizar este processo iterativo em cilindros

que refletem a estrutura da equação. Embora os resultados sejam bem conhecidos,

as demonstrações estão espalhadas na literatura e fornecemos aqui uma abordagem

auto-contida do problema.

Na segunda parte da tese, obtemos o principal resultado, que consiste em mostrar

que soluções localmente limitadas da equação não-homogénea dos meios porosos são

localmente cont́ınuas à Hölder, com expoente exactamente igual a

γ = min

{
α−0
m
,

[(2q − n)r − 2q]

q[(mr − (m− 1)]

}
,
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onde α0 é o expoente de Hölder óptimo para soluções do caso homogéneo. A prova

é baseada num lema de aproximação e num processo geométrico iterativo usando a

escala intŕınseca apropriada.

Embora as estimativas de regularidade para as equações de evolução degener-

adas tenham sido obtidas com sucesso em grande generalidade, expressões expĺıcitas

para o expoente de continuidade Hölderiana para soluções fracas só eram conheci-

das no caso linear. Para equações não-lineares, as ferramentas clássicas da análise

harmónica, tais como os integrais singulares, não podem ser utilizadas e é necessária

uma abordagem totalmente nova. As estimativas que obtemos são surpreendentes na

sua simplicidade e resultam da aplicação de um método baseado na noção geométrica

de equação tangencial, que explora a mudança intŕınseca de escala para o operador e

a integrabilidade do termo fonte.

Palavras-chave: equações parabólicas degeneradas, equação dos meios porosos,

regularidade Hölder óptima, escalonamento intŕınseco.
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Notation

(x, t) = (x1, ..., xN , t) generic point in RN+1

|A| Lebesgue measure of a set A

χA characteristic function of a set A

a.e in A holds everywhere except on a subset of
A with Lebesgue measure zero

|u| =
√∑N

i=1 u
2
i Euclidian norm of u

ut,
∂
∂t
u partial derivative of u with respect to t

uxi ,
∂
∂xi
u partial derivative of u with respect to

xi, i = 1, ..., N

∇u gradient of u

div u divergent of u

∆u = div(∇u) Laplacian of u

∆pu = div (|∇u|p−2∇u) p- Laplacian of u

E bounded open subset of RN

∂E boundary of E

ET = E × (0, T ] cylindrical space-time domain

Σ = ∂E × (0, T ) lateral boundary of ET

∂pET = Σ ∪ (E × {0}) parabolic boundary of ET

supp (f) support of a function f

f+, f− max (f, 0), max (−f, 0)

f ∧ g, f ∨ g inf (f, g), sup (f, g)

Br(x) ball in RN of centre x and radius r

→ strong convergence

⇀ weak convergence
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1.1.2 Convergence and Hölder spaces . . . . . . . . . . . . . . . . . 9

1.2 Equations of porous medium type . . . . . . . . . . . . . . . . . . . . 11

1.2.1 Motivation and physical background . . . . . . . . . . . . . . 12

1.2.2 The porous medium equation . . . . . . . . . . . . . . . . . . 13

1.2.3 Weak solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 Energy estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4 Estimates for local solutions of degenerate parabolic equations . . . . 18

1.5 Sharp regularity for solutions of the PME in the one-dimensional case 28

2 Regularity C0,β for solutions of the PME in the N-dimensional case 33

2.1 Intrinsic scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.1.1 Local energy and logarithmic estimates . . . . . . . . . . . . . 35

2.1.2 Reduction of the oscillation . . . . . . . . . . . . . . . . . . . 41

2.2 Hölder continuity of weak solutions of the PME . . . . . . . . . . . . 59

3 Sharp regularity for the porous medium equation with m > 1 65

3.1 Approximation by homogeneous functions . . . . . . . . . . . . . . . 66

3.2 Geometric iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.3 Sharp regularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Final Considerations 77

Bibliography 79

xi



xii



Introduction

The quest for obtaining sharp, optimal regularity results is one of the most ex-

citing current trends in the study of nonlinear pdes. Degenerate parabolic equa-

tions are known to have Hölder continuous solutions (cf. [19, 51]) under quite ge-

neral structure assumptions, corresponding to the archetypal p-Laplace equation,

ut−div (|∇u|p−2∇u) = 0, and porous medium equation (PME), ut−div (mum−1∇u) =

0. The main difference between these two extensively studied pdes is that the first de-

generates at points where the gradient of a solution vanishes and the second at points

where this happens for the solution itself. The regularity theory for both equations

has evolved in parallel and results for one normally have a counterpart for the other.

Recently, in [50], the sharp Hölder exponent

(pq − n)r − pq
q[(p− 1)r − (p− 2)]

for weak solutions of the inhomogeneous p-Laplace equation was determined precisely

only in terms of p, the space dimension n and the Lq,r-integrability of the source.

Inspired by the recent breakthroughs in [4, 5, 6], our goal in this thesis is to do the

same for the porous medium equation (cf. [54]).

Let U ⊂ Rn be open and bounded, T > 0 and UT = U × (0, T ). We consider the

prototype inhomogeneous equation

ut − div
(
mum−1∇u

)
= f, m > 1, (0.1)

with a source term f ∈ Lq,r(UT ) ≡ Lr(0, T ;Lq(U)), where

1

r
+
n

2q
< 1, (0.2)

which is the standard minimal integrability condition that guarantees the existence

of bounded weak solutions and their Hölder regularity.

We will show that bounded weak solutions of (0.1) are locally of class C0,γ in

space, with

γ =
α

m
, α = min

{
α−0 ,

m[(2q − n)r − 2q]

q[mr − (m− 1)]

}
,
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where 0 < α0 ≤ 1 denotes the optimal Hölder exponent for solutions of (0.1) with

f ≡ 0. The regularity class is to be interpreted in the following sense: if

m[(2q − n)r − 2q]

q[mr − (m− 1)]
< α0,

then solutions are in C0,γ, with

γ =
(2q − n)r − 2q

q[mr − (m− 1)]
;

if, alternatively,
m[(2q − n)r − 2q]

q[mr − (m− 1)]
≥ α0,

then solutions are in C0,γ, for any 0 < γ < α0

m
.

We also obtain the C0, γ
θ regularity in time, where

θ = 2−
(

1− 1

m

)
α = α

(
1 +

1

m

)
+ (1− α) 2

is the α−interpolation between 1 + 1
m

and 2. It is worth stressing that, as in the

case of the p-Laplace equation, the integrability in time (respectively, in space) of the

source affects the regularity in space (respectively, in time) of the solution.

We remark that for m = 1 we obtain

γ = 1−
(

2

r
+
n

q
− 1

)
and θ = 2,

recovering the optimal Hölder regularity for the non-homogeneous heat equation, in

accordance with estimates obtained by energy considerations.

For n = 1, it is proven in [9] that

α0 = min

{
1,

1

m− 1

}
,

but this is not the case in higher dimensions as corroborated by the celebrated counter-

example in [10]. The question of the sharp regularity for the homogeneous PME was

recently addressed in [30], where it is shown that in the case m ≥ 2 (see also [35]

for 1 < m < 2) a solution achieves the optimal modulus of continuity C0, 1
m−1 of the

Barenblatt fundamental solution after a precise time lag, which is quantified in the

paper. This optimal regularity issue is strongly intertwined with the regularity of the

free boundary (cf. [15]).

2



Observe that

m[(2q − n)r − 2q]

q[mr − (m− 1)]
=

2m

(
1− 1

r
− n

2q

)
m

(
1− 1

r

)
+

1

r

> 0

and so indeed γ > 0. Note also that

m[(2q − n)r − 2q]

q[mr − (m− 1)]
> 1

if (
1 +

1

m

)
1

r
+
n

q
< 1,

and, as q, r →∞,
m[(2q − n)r − 2q]

q[mr − (m− 1)]
−→ 2,

which means that after a certain integrability threshold it is the optimal regularity

exponent of the homogeneous case that prevails, with

α = α−0 and γ <
α0

m
< 1.

The relevance of the porous medium equations and degenerate partial differential

equations in general stems from their central role in the modeling of a host of nonli-

near phenomena, such as thin film dynamics, non-Newtonian fluid mechanics, flow in

porous media, heat transfer, population dynamics, plasma radiation, biomathematics

and biophysics. Some of these applications can be found in [11, 44, 52, 53].

Outline of the thesis

The 1st chapter deals with the presentation of the porous medium equation

(PME). We will present the theory and the fundamental results that will be crucial

for the understanding of the research developed in this work. We will start by recall-

ing some definitions and properties of function spaces, classical results of convergence

and compactness. Then we will present Hölder spaces, with some characterizations

of Hölder continuity. Next, we will present the formulation of the equation in its

inhomogeneous parabolic version, which is the version used in this work, and the

precise definition of weak solution is introduced for the model problem. Then, we

present another version of the fundamental energy estimate, and some estimates for

local solutions of degenerate parabolic equations. In the final part of the chapter

we will present the theory of sharp regularity developed in the literature on Hölder

3



continuity for the solutions of PME, established by Aronson in [7] (see also [9]) for

the case in one dimension.

In chapter 2 we will present the intrinsic scaling method ([23], [51]), which analyzes

the equation in a geometry given by its singular/degenerate structure to the study of

regularity of solutions of quasi-linear equations of type ut−div a(x, t, u,∇u) = 0. This

method allows us, in a heuristic way, to say that the equation ut−div(mum−1∇u) =

0 behaves, in its own geometry, as the Heat Equation. Next, we will present the

celebrated result obtained by DiBenedetto and Friedman, which establishes Hölder

continuity of nonnegative solutions of the PME using cylinders suitably scaled to

reflect in a precise quantitative way the power-like degeneracy of the equation, which

is the approach provided by the intrinsic scaling method.

Chapter 3 will be divided into three parts. The first part will be dedicated to the

presentation of an approximation technique, specifically, we will develop a new ap-

proximation result by homogeneous functions for the solutions of the porous medium

equation, which is similar to p-caloric approximation. In the second part we start

our fine regularity analysis by fixing the intrinsic geometric setting for our problem.

Next, we will construct a geometric iteration using the theory of approximation by

functions developed in the first part of the chapter, and the fact that the solutions

of the porous medium equation are Cα0
x ∩ C

α0/2
t , for 0 < α0 < 1. Lastly, we will

conclude the chapter using the geometric iteration constructed in the appropriate

intrinsic scaling and the characterization of Hölder continuity to establish a new esti-

mate for determination of the exact Hölder exponent for the solutions of the porous

medium equation considered in this work, which is the main goal of the thesis.

4



1. The porous medium equation

Contents
1.1 Auxiliary results . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.1 Basic notions . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.2 Convergence and Hölder spaces . . . . . . . . . . . . . . . . 9

1.2 Equations of porous medium type . . . . . . . . . . . . . 11

1.2.1 Motivation and physical background . . . . . . . . . . . . . 12

1.2.2 The porous medium equation . . . . . . . . . . . . . . . . . 13

1.2.3 Weak solution . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 Energy estimate . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4 Estimates for local solutions of degenerate parabolic equa-
tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.5 Sharp regularity for solutions of the PME in the one-
dimensional case . . . . . . . . . . . . . . . . . . . . . . . . 28

In this chapter, we start with the background and the auxiliary results needed

for the understanding of the research developed in the thesis, specifically, definitions

and properties of function spaces, results of convergence and compactness, Hölder

spaces. Next, we introduce a formulation of the porous medium equation in its

inhomogeneous parabolic version, emphasizing its properties, exhibiting the concept

of weak solution, and presenting another version of the fundamental energy estimate,

which is commonly known as Cacciopoli estimate. Then, we present L∞loc estimates

for local solutions. At last, we present one result of great relevance in the regularity

theory of solutions for PME, which is the sharp regularity for solutions of PME in

the one-dimensional case due to Aronson [7]. The results that we do not demonstrate

will contain references to where the proofs may be found. Standard references for the

material presented here are [8, 19, 22, 54].
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1.1 Auxiliary results

In this section, we recall some definitions and properties of function spaces, clas-

sical results of convergence, an auxiliary lemma of fast geometric convergence and a

classical result of compactness. Next, we will present a brief introduction of Hölder

spaces, the definition of locally Hölder continuity and some characterizations of Hölder

continuity.

1.1.1 Basic notions

We start by presenting some basic concepts that will be used in the course of our

work, emphasizing the function space that we will use.

Given a point x0 ∈ RN and a real number ρ > 0, we define the open ball with

center x0 and radius ρ by

Bρ(x0) := {x ∈ RN : |x− x0| < ρ} (1.1)

and cube with centre at x0 and wedge 2ρ by

Kρ(x0) :=

{
x ∈ RN : max

1≤i≤N
|xi − x0i | < ρ

}
. (1.2)

Given a point (x0, t0) ∈ RN we define the cylinder of radius ρ and height τ > 0

with vertex at (x0, t0) by

(x0, t0) +Q(τ, ρ) := Kρ(x0)× (t0 − τ, t0). (1.3)

Let u be a function defined on (x0, t0) +Q(τ, ρ); for t ∈ (t0 − τ, t0), we define the

sets

A±k,ρ := {x ∈ Kρ(x0) : u(x, t) ≶ k} . (1.4)

Given a continuous function u : E → R and two real numbers k1, k2, we define

[u > k2] := {x ∈ E | u(x) > k2},

[u < k1] := {x ∈ E | u(x) < k1},

[k1 < u < k2] := {x ∈ E | k1 < u(x) < k2}.

Now we introduce a logarithmic function for which we obtain additional local

estimates in the next chapter.

Given constants a, b, c, with 0 < c < a, define the nonnegative function

6



ψ±{a,b,c}(s) :=

(
ln

{
a

(a+ c)− (s− b)±

})
+

=

{
ln
{

a
(a+c)±(b−s)

}
if b± c ≶ s ≶ b± (a+ c)

0 if s ≶ b± c,

whose first derivative is(
ψ±{a,b,c}

)′
(s) =

{
ln
{

a
(a+c)±(b−s)

}
if b± c ≶ s ≶ b± (a+ c)

0 if s ≶ b± c
S 0,

and second derivative, off s = b± c, is(
ψ±{a,b,c}

)′′
=

{(
ψ±{a,b,c}

)′}2

≥ 0.

Let E be a bounded domain in RN with boundary ∂E. For 1 ≤ p ≤ ∞, we denote

by Lp(E) the space of Lebesgue measurable functions u : E → R such that, if p <∞,

‖u‖Lp(E) = ‖u‖p =

(ˆ
E

|u|pdx
)1/p

<∞,

and, for p =∞,

‖u‖L∞(E) = ‖u‖∞ = ess sup
E
|u| <∞.

We recall that, for 1 < p < ∞, the dual space of Lp(E) is identified with Lp
′
(E),

where p′ = p
p−1

is the conjugate of p.

Let us denote by Lploc(E) the space of Lebesgue measurable functions u such that

‖u‖Lp(K) < ∞, for all compact subsets K ⊂ E. For u ∈ C1(E), denote by ∂u
∂xi

(or

simply uxi), its partial derivative and by ∇u = (ux1 , · · · , uxN ) its gradient.

Let C∞c denote the space of infinitely differentiable functions φ : E → R, with

compact support in E. We will sometimes call a function φ belonging to C∞c as a

test function.

The Sobolev space W 1,p(E), with 1 ≤ p ≤ ∞, is the space of functions u ∈ Lp(E),

whose generalized derivatives or derivatives in the distribution sense uxi belong to

Lp(E) for all i = 1, · · · , N , namely ∇u ∈ (Lp(E))N , endowed with the natural norm

‖u‖W 1,p(E) = ‖u‖1,p = ‖u‖Lp(E) + ‖∇u‖Lp(E).

W 1,p
0 (E) denotes the closure of C∞0 (E) under this norm. A function u belongs to

W 1,p
loc (E) if ‖u‖W 1,p(K) <∞, for every compact subset K ⊂ E.

A basic result of Sobolev’s space theory is the following lemma.

7



Lemma 1.1.1. (De Giorgi) Let v ∈ W 1,1(Bρ(x0)) ∩ C(Bρ(x0)), with ρ > 0 and

x0 ∈ RN , and let k1 < k2 ∈ R. There exists a constant C, depending only on N (and

thus independent of ρ, x0, v, k1 and k2), such that

(k2 − k1)|[v > k2]| ≤ C
ρN+1

|[v < k1]|

ˆ
[k1<v<k2]

|∇v|dx.

Proof. See [16].

Remark 1.1.2. The conclusion of the lemma continues to hold for functions v ∈
W 1,1(E) ∩ C(E) provided that E is convex.

We recall the following Sobolev embedding for functions in W 1,p
0 , 1 ≤ p < N .

Let V p
0 (ET ) denote the space

V p
0 (ET ) = L∞(0, T ;Lp(E)) ∩ Lp(0, T ;W 1,p

0 (Ω))

endowed with the norm

||u||pV p(ET ) = ess sup
0≤t≤T

||u(·, t)||pp,E + ||∇u||pp,ET .

The following embedding theorem holds.

Theorem 1.1.3. Let p > 1. There exists a constant γ, depending only on N and p,

such that for every v ∈ V p
0 (ET ),

||v||pp,ET ≤ γ | |v| > 0 |
p

N+p ||v||pV p(ET ).

Proof. See [19, Chapter 1-Section 1.3].

For 0 < T <∞, let us denote by ET the cylindrical domain E × (0, T ]. Also let,

Σ = ∂E × (0, T ) and ∂pET = Σ ∪ (E × {0})

denote the lateral boundary and the parabolic boundary of ET respectively. The

space Lr(0, T ;Lq(E)) for r, q ≥ 1 is the collection of functions u(x, t) defined and

measurable in ET such that for almost every t, 0 < t < T , the function u belongs to

Lq(E) and

‖u‖r,q,ET =

(ˆ T

0

(ˆ
E

|u(x, t)|qdx
)r/q

dt

)1/r

<∞.
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Also, u belongs to Lrloc(0, T ;Lqloc(E)) if for every compact subset K ⊂ E and every

subinterval [t1, t2] ⊂ (0, T ], we have

ˆ t2

t1

(ˆ
K

|u|qdx
)r/q

dt <∞.

Whenever r = q, we set

Lq(0, T ;Lq(E)) = Lq(ET ), Lqloc(0, T ;Lqloc(E)) = Lqloc(ET )

and ‖u‖q,q,Et = ‖u‖q,Et . These definitions are extended in the obvious way when

either q or r are infinity.

From now on we shall denote

Lq,r(ET ) := Lr(0, T ;Lq(E)).

The parabolic Sobolev space Lr(0, T ;W 1,p(E)) for r, p ≥ 1 is the space of functions

u(x, t), such that for almost every t, 0 < t < T , the functions u belongs to W 1,p(E)

and ˆ T

0

(ˆ
E

|u|p + |∇u|p
)r/p

dt <∞.

The space C(0, T ;Lp(E)) is defined as the space of all measurable functions u on

ET such that for all t ∈ [0, T ], u(t, ·) ∈ Lp(E) and u(t, ·) is a continuous function from

[0, T ] to Lq(E), that is

lim
h→0
‖u(t+ h, ·)− u(t, ·)‖p,E = 0.

1.1.2 Convergence and Hölder spaces

In this section we present an auxiliary lemma of geometric convergence and the

Steklov average, that will be used in the local energy and logarithmic estimates devel-

oped in the next chapter. At last, we will present a classical result, the Arzelà-Ascoli

theorem, and we will also make a brief presentation of Hölder spaces.

The following lemma concerns the geometric convergence of sequences and it is

instrumental in the iterative schemes that will be derived along the proofs in chapter

2.

Lemma 1.1.4. Let (Xn) for n = 0, 1, 2, ..., be a sequence of positive real numbers

satisfying the recurrence relation

Xn+1 ≤ CbnX1+α
n , (1.5)
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where C, b > 1 and α > 0 are given numbers. If

X0 ≤ Cb−1/αb−1/α2

, (1.6)

then

(Xn)→ 0 as n→∞.

Proof. By direct verification by applying (1.6) recursively.

Now, we will present the Steklov average and a result from the theory of Lp spaces,

which will be used to reformulate the definition of a weak solution.

Let v ∈ L1(ET ) and let 0 < h < T. The Steklov average vh(·, t) is defined by

vh :=

{
1
h

´ t+h
t

v(·, τ)dτ, if t ∈ (0, T − h],

0 if t ∈ (T − h, T ].
(1.7)

Proposition 1.1.5. Let v ∈ Lq,r(ET ). Then, as h → 0, vh → vinLq,r(ET−ε) for

every ε ∈ (0, T ). If v ∈ C(0, T ;Lq(E)), then vh(·, t) → v(·, t) in Lq(E) for every

t ∈ (0, T − ε) for all ε ∈ (0, T ).

Proof. See [29, Chapter 1-Section 1.4].

Theorem 1.1.6. (Arzelà-Ascoli)If a sequence {fn} in C(X) is bounded and equicon-

tinuous then it has a uniformly convergent subsequence.

In this statement,

(a) ”F ⊂ C(X) is bounded” means that there exists a positive constant M < ∞
such that |f(x)| ≤M for each x ∈ X and each f ∈ F , and

(b) ”F ⊂ C(X) is equicontinuous” means that: for every ε > 0 there exists δ > 0

(which depends only on ε) such that for x, y ∈ X:

d(x, y) < δ ⇒ |f(x)− f(y)| < ε ∀f ∈ F .

Proof. See [46, Appendix A].

Now, we will make a brief introduction of Hölder spaces. We will start by defining

Hölder continuous functions with the exponent α.

Definition 1.1.7. Let 0 < α < 1. A function u : E → R is said to be Hölder

continuous with exponent α at a point x0 if there exists a constant C > 0 such that

|u(x)− u(x0)| ≤ c|x− x0|α,

for all x ∈ E, x 6= x0. If this property is satisfied for every point x0 ∈ E we say that

u is Hölder continuous with exponent α in E, and we write u ∈ Cα(E).
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Definition 1.1.8. The spaces Ck,α(E) are subspaces Cα(E) consisting of functions

whose partial derivatives up to the order k are Hölder continuous with exponent α in

E, that is,

Ck,α(E) =
{
u ∈ Ck(E) : Dβu ∈ Cα(E) forall |β| ≤ k

}
.

We also define Ck,α(E) as the space given by all the functions u ∈ Ck(E) for

which the norm

‖u‖Ck,α(E) :=
∑
|β|≤k

‖Dβu‖C(E) +
∑
|β|=k

‖Dβu‖C0,α(E)

is finite, where

[u]C0,α := sup
x,y∈E
x 6=y

{
|u(x)− u(y)|
|x− y|α

}
.

Now, we will present locally Hölder continuity in ET .

Definition 1.1.9. A function u is locally Hölder continuous in ET if there exist

constants C and β ∈ (0, 1), depending only on the data, such that, for every compact

subset K of ET ,

|u(x1, t1)− u(x2, t2)| ≤ C

(
|x1 − x2|+ |t1 − t2|

1
2

dist(K; ∂pET )

)β

,

for every pair of points (xi, ti) ∈ K, i = 1, 2, where

dist(K; ∂pET ) := inf
(x,y)∈K

(y,s)∈∂pET

(
|x− y|+ |t− s|

1
2

)
is the degenerate intrinsic parabolic distance from a compact set K ⊂ ET to ∂pET .

1.2 Equations of porous medium type

In this section, we will present the formulation of the equation of porous media

of the parabolic type, which will be the main goal of this work. Next, the precise

definition of weak solution is introduced for the model problem.
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1.2.1 Motivation and physical background

The porous media equation stands out not only for its mathematical theory, but

also due to the set of applications in physics theory. Taking this into account we

will deduce the porous medium equation through a problem of the theory of fluid

mechanics.

Let an ideal gas flowing in a homogeneous porous medium. The flow is governed

by the following three laws [40].

(I) Equation of state:

p = p0η
β, (1.8)

where η is the density of the gas at any point, p the pressure, and p0 a constant.

If the flow is isothermic then β = 1, while if it is adiabatic then β > 1.

(II) Conservation of mass:

div ηv = −ρ∂η
∂t
, (1.9)

where v is the velocity vector and ρ is the porosity of the medium (i.e., the

volume fraction available to the gas).

III Darcy’s Law:

v = −κ
µ
∇p, (1.10)

where µ is the viscosity of the gas and κ is the permeability of the medium.

If we combine the above equations, we obtain

ρηt = −div(ηv) = div

(
κ

µ
η∇p

)
= div

(
κ

µ
η∇p0η

β

)
=

kp0

µ
div(η∇ηβ)

=
kβp0

µ(β + 1)
∆(ηβ+1).

Thus,

ηt = c∆ηm,

with exponent m = 1 + β and

c =
kβp0

ρµ(β + 1)
.
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The constant c can be scaled out(define for instance a new time t′ = ct). Now,

adapting the notation, we will use the letter u instead of η and so we get the equation

ut = ∆um,

that is commonly known as the classical porous medium equation (PME). Note that

if we use the letter v for the pressure, we have the following expression

v =
m

m− 1
um−1.

1.2.2 The porous medium equation

Let E be an open set in RN and for T > 0 let ET denote the cylindrical domain

E × (0, T ]. Consider nonlinear, degenerate or singular parabolic partial differential

equations of the form

ut − divA(x, t, u,∇u) = B(x, t, u,∇u) weakly in ET (1.11)

where the functions A : ET × RN+1 → RN and B : ET × RN+1 → RN are only

assumed to be measurable and subject to the structure conditions


A(x, t, u,∇u) · ∇u ≥ C0m|u|m−1|∇u|2 − C2|u|m+1

|A(x, t, u,∇u)| ≤ C1m|u|m−1|∇u|+ C|u|m a.e. in ET

|B(x, t, u,∇u)| ≤ Cm|u|m−1|∇u|+ C2|u|m,
(1.12)

where m > 0, C0 and C1 are given positive constants, and C is a given nonnegative

constant. When C = 0 the equation is homogeneous.

The inhomogeneous prototype of this class of parabolic equations that we will

consider is

ut − div(mum−1∇u) = f, m > 1, weakly in ET , (1.13)

with a source term f ∈ Lq,r(UT ) ≡ Lr(0, T ;Lq(U)) satisfying

1

r
+
n

2q
< 1, (1.14)

which is the standard minimal integrability condition that guarantees the existence

of bounded weak solutions and their Hölder continuity regularity.

The first two estimates of the structural conditions presented in (1.12) originate

from Moser’s work [39] when in the mid-1960 he sought to extend the results of Hölder
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continuity of weak solutions of De Giorgi’s [16] to parabolic equations and proved that

the weak solutions of

ut − (aij(x, t)uxj)xi = 0 (1.15)

are locally Hölder continuous in ET , with bounded and measurable coefficients aij.

The third structural condition becomes necessary when we are working with an in-

homogeneous equation. The structural conditions of (1.12), in addition to a scaling

method that we will present in the next chapter, have allowed DiBenedetto in [21] to

show that the solutions of general quasilinear equations of the type (1.11) are locally

Hölder continuous, the main result of the next chapter. Such structural conditions

have a strong role in the development of energy estimates. The conditions presented

here follow the proposed version in [22] considering the case in which we have a forcing

term.

The partial differential equation (1.11) is degenerate when m > 1 and singular

when m < 1, since the modulus of ellipticity |u|m−1 respectively tends to 0 or to ∞
as |u| → 0.

When m = 1, the equation is nondegenerate, and becomes the heat equation.

The importance of these classes of degenerate partial differential equations stems

from their intrinsic mathematical interest and its various applications, especially,

their central role in the modeling of a host of nonlinear phenomena, such as non-

Newtonian fluid mechanics, flow in porous media, heat transfer, population dynamics,

biomathematics and biophysics. For example, Barenblatt and Pattle independently

found an explicit formula for the solution of

ut = ∆um (1.16)

beginning from a delta function of integral Γ (positive constant) at the origin:

u(|x|, t) = max

{
0, t−α

[
Γ− α(m− 1)

2nm

|x|2

t2α/n

]1/(m−1)
}
, (1.17)

where n is the number of space dimensions and α = (m− 1 + 2/n)−1. This solutions

is radially symmetric and has compact support. The figures below give an idea of a

typical spreading drop in one and two dimensions, respectively.
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Figure 1.1: 1D Barenblatt-Pattle solution (Γ = 0.2,m = 2)

Figure 1.2: 2D Barenblatt-Pattle solution (t = 2,Γ = 0.2,m = 2)

1.2.3 Weak solution

In this section we will present the concept of weak solution for (1.13). Next, using

the Steklov average, we will present another formulation of weak solution.

Definition 1.2.1. (Weak solution.) A nonnegative locally bounded function

u ∈ Cloc(0, T ;L2
loc(U)), u

m+1
2 ∈ L2

loc(0, T ;W 1,2
loc (U))

is a local weak solution of (1.13) if, for every compact set K ⊂ E and every subinterval

[t1, t2] ⊂ (0, T ], we have
ˆ
K

uϕdx
∣∣∣t2
t1

+

ˆ t2

t1

ˆ
K

{−uϕt +mum−1∇u.∇ϕ}dxdt =

ˆ t2

t1

ˆ
K

fϕdxdt (1.18)

for all nonnegative test functions

ϕ ∈ W 1,2
loc (0, T ;L2(K)) ∩ L2

loc(0, T ;W 1,2
0 (K)). (1.19)

It is clear that all integrals in the above definition are convergent, interpreting the

symbol ∇u in the sense of the following definition:

∇u :=
2

m+ 1
u

1−m
2 ∇u

m+1
2
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and the gradient term as

um−1∇u :=
2

m+ 1
u
m−1

2 ∇u
m+1

2 .

It would be technically convenient to have a formulation of weak solutions that

involves ut. Unfortunately, weak solutions to (1.13), whenever they exist, possess a

modest degree of regularity in the time variable and, in general, ut has a meaning

only in the sense of distributions. Therefore, an alternative definition makes use of

the Steklov average of a function v ∈ L1(ET ).

Definition 1.2.2. (Weak solution-Steklov average)A nonnegative locally bounded func-

tion

u ∈ Cloc(0, T ;L2
loc(U)), u

m+1
2 ∈ L2

loc(0, T ;W 1,2
loc (U))

is a local weak solution of (1.13) if, for every compact set K ⊂ E and every 0 < t <

T − h, we have

ˆ
K×{t}

{(uh)tϕ+ (mum−1∇u)h.∇ϕ}dx =

ˆ t2

t1

ˆ
K×t

fhϕdx (1.20)

and all nonnegative ϕ ∈ W 1,2
0 .

Remark 1.2.3. Note that the definition of local weak solution previously introduced

is equivalent to the definition given above. First, fix a subinterval [t1, t2] ⊂ (0, T ),

and then choose h sufficiently small such that t2 + h ≤ T , and in (1.20) take a test

function as in (1.19). Such a choice is admissible, since the test functions in (1.20) are

independent of the variable τ ∈ (t, t+h) but may be dependent on t. Thus, integrating

over [t1, t2] and letting h→ 0 using the proposition 1.1.5 follows the equivalence.

Remark 1.2.4. The porous medium equation has a number of different notions of

solutions proposed in the literature. A general overview and comparison among the

different definitions can be found in [54].

1.3 Energy estimate

Now we introduce a fundamental energy estimate for weak solutions of (1.13),

commonly known as Cacciopoli estimate. A presentation of this estimate in its most

general form can be found in [22, Chapter 3; Section 6].
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Proposition 1.3.1. Let u be a local weak solution to (1.13) and K × [t1, t2] ⊂ U ×
[0, T ]. There exists a constant C, depending only on n,m,K × [t1, t2], such that

sup
t1<t<t2

ˆ
K

u2ξ2dx+

ˆ t2

t1

ˆ
K

um−1|∇u|2ξ2dxdt ≤ C

ˆ t2

t1

ˆ
K

u2ξ|ξt|dxdt

+

ˆ t2

t1

ˆ
K

um+1|∇ξ|2dxdt+ C‖f‖2
Lq,r

for all ξ ∈ C∞0 (K × (t1, t2)) such that ξ ∈ [0, 1].

Proof. In (1.20) take the test function

ϕ = uhξ
2

over K × (t1, t) for t ∈ (t1, t2). This gives, after integrating in time,

ˆ t

t1

ˆ
K

(uh)tuhξ
2dxdτ +

ˆ t

t1

ˆ
K

(mum−1∇u)h · ∇uhξ2dxdτ

+ 2

ˆ t

t1

ˆ
K

uh(mu
m−1∇u)h · ∇ξξdxdτ

=

ˆ t

t1

ˆ
K

fhuhξ
2dxdτ.

Transform and estimate these integrals, to get

ˆ t

t1

ˆ
K

(uh)tuhξ
2dxdτ =

1

2

ˆ t

t1

ˆ
K

(u2
h)tξ

2dxdτ

−→ 1

2

ˆ
K

(u2)ξ2(x, t)dx

− 1

2

ˆ
K

(u2)ξ2(x, t1)dx

−
ˆ t

t1

ˆ
K

(u2)ξξtdxdτ,

after integrating by parts and passing to the limit in h→ 0 (using the Lemma 1.1.5).

In relation to the other term, letting first h→ 0, we obtain

ˆ t

t1

ˆ
K

(mum−1∇u)h · ∇uhξ2dxdτ −→
ˆ t

t1

ˆ
K

mum−1∇u · ∇uξ2dxdτ

= m

ˆ t

t1

ˆ
K

|u|m−1|∇u|2ξ2dxdτ.
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In the third term, letting first h→ 0 and using Youngs inequality it follows that

2
∣∣∣ˆ t

t1

ˆ
K

uh(mu
m−1∇u)h · ∇ξξdxdτ

∣∣∣ −→ 2
∣∣∣ ˆ t

t1

ˆ
K

u(mum−1∇u) · ∇ξξdxdτ
∣∣∣

≤ 2m

ˆ t

t1

ˆ
K

|u|m−1|∇u|ξu|∇ξ|dxdτ

≤ m

ˆ t

t1

ˆ
K

|u|m−1|∇u|2ξ2dxdτ

+ m

ˆ t

t1

ˆ
K

|u|m+1|∇ξ|2dxdτ.

Moreover, by Hölder inequality, we have

ˆ
K

|fhuhξ2|dx ≤ ‖uhξ2‖ q
q−1

,K‖fh‖q,K

≤ C (K, q) ‖uhξ2‖2,K‖fh‖q,K

≤ C (K, q)

(ˆ
K

u2
hξ

2dx

) 1
2

‖fh‖q,K , (1.21)

using in the last inequality that ξ4 ≤ ξ2. Thus, integrating (1.21) and passing to the

limit in h→ 0 we estimate

ˆ t

t1

ˆ
K

|fuξ2|dxdτ ≤ |t− t1|1−
1
rC (K, q)

(ˆ
K

u2
hξ

2dx

) 1
2

‖fh‖Lq,r .

Finally, using the Youngs inequality, we obtain∣∣∣∣ˆ t

t1

ˆ
K

fuξ2dxdτ

∣∣∣∣ ≤ 1

2

ˆ
K

u2
hξ

2dx+ C (t1, t,K, q, r) ‖f‖2
Lq,r .

Combining these estimates, and taking the supremum over t ∈ (t1, t2] the proposition

is proved.

1.4 Estimates for local solutions of degenerate pa-

rabolic equations

Now, we present some L∞loc estimates for local solutions of degenerate parabolic

equations. The estimates will be used in the geometric interaction constructed in the

last chapter of this thesis.

There are several local estimates for local solutions of degenerate parabolic equa-

tions, but generally involving dependence on the initial and boundary data. The next
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estimate is a very interesting result, because Daniele Andreucci presented in [1] local

estimates that do not involve any dependence on the initial and boundary data, but

rather, provide a bound for the solution in a given domain, only in terms of some

integral norm of the solution in a larger domain.

Let φ : [0,∞)→ [0,∞) be a locally absolutely continuous function satisfying, for

some Γ > 1,

1 <
φ′(s)s

φ(s)
≤ Γ a.e. s > 0, (1.22)

and consider

Φ(s) = φ(s)s−1, s > 0;

Q∞ = Bρ(x0)×
(
t

2
, t

)
;

Q0 = B(1+σ)ρ(x0)×
(
t

2
− σ

2
t, t

)
,

where ρ, t > 0, σ ∈ (0, 1), x0 ∈ RN are given.

We will consider nonnegative local subsolutions of the equation

ut − divA(x, t, u,∇φ(u)) = 0, (1.23)

assuming that the function

(x, t)→ A(x, t, u(x, t),∇φ(u(x, t))) (1.24)

is measurable and satisfies{
A(x, t, u,∇φ(u)) · ∇u ≥ Γ−1Φ(u)|∇u|2

|A(x, t, u,∇φ(u))| ≤ ΓΦ(u)|∇u|.
(1.25)

Let us define a local subsolution u to (1.23) in Q0 as a function

u ∈ C(t0, t;L
1((B1+σ)ρ)), t0 ≡

t

2
− σ

2
t, ∇φ(u) ∈ L2(Q0),

satisfying

ut − divA(x, t, u,∇φ(u)) ≤ 0, (1.26)

in the usual weak sense in Q0.

We will use the following notation

−
ˆ
−
ˆ
Q0

fdxdt = |Q0|−1

ˆ ˆ
Q0

fdxdt.
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Note that from (1.22) we have

1

s
<
φ′(s)s

φ(s)
≤ Γ

s
.

Taking φ(s) = sm,m > 1, we obtain the following inequalities

hΓsm ≤ (hs)m ≤ hsm, s > 0 h ∈ (0, 1), (1.27)

hΓ−1sm−1 ≤ (hs)m−1 ≤ sm−1, s > 0 h ∈ (0, 1) (1.28)

Lemma 1.4.1. Let z, z0 ≥ 0, and α > 2 such that

F (z, z0) =

(ˆ z

z0

(ˆ r

z0

smα−2ds

)
+

dr

)1/2

.

Then we have for all z > 0, z 6= z0,

zmα−2 ≥ c

∣∣∣∣∂F∂z (z, z0)

∣∣∣∣2 , (1.29)

where c = c(α,Γ).

Proof. If z > z0, we have

∣∣∣∣∂F∂z (z, z0)

∣∣∣∣2 =

(´ z
z0
smα−2ds

)2

4
(´ z

z0
dr
´ r
z0
smα−2ds

) =

(
zmα−1−zmα−1

0

mα−1

)2

4
(´ z

z0
dr
´ r
z0
smα−2ds

) . (1.30)

Define g(t) = tmα−1, t ∈ [z0, z], as

g(z)− g(z0)

z − z0

= g′(z̃), z̃ ∈ [z0, z]

= z̃mα−2(mα− 1).

Thus, (
g(z)− g(z0)

mα− 1

)2

= z̃mα−2(mα− 1)(z − z0)2

≤ z2mαz−4(z − z0)2,

since mα− 2 > 0 and z̃ ≤ z.

Using the last inequality in (1.30) , obtain

4

∣∣∣∣∂F∂z (z, z0)

∣∣∣∣2 ≤ z2mαz−4(z − z0)2

(
z−2

ˆ z

z0

dr

ˆ r

z0

smαds

)−1

.

We will now analyze two cases
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1. z0 ≥ z/2
ˆ z

z0

dr

ˆ r

z0

smαds ≥
ˆ z

z0

dr

ˆ r

z0

(z
2

)mα
ds

≥ 2−Γα−1zmα(z − z0)2.

2. z0 < z/2
ˆ z

z0

dr

ˆ r

z0

smαds ≥
ˆ z

z0

dr

ˆ r

z/

(z
2

)mα
ds

≥ 2−Γα−3zmα+2.

In the two above cases we use the fact that sm and smα−2 are increasing functions of

s and the inequality (1.27). Thus, taking c = 2−Γα−1 the result follows.

Note that (1.29) implies that F (z, ) is nonincreasing on R+. Given all of the above

considerations we have Andreucci’s estimate.

Theorem 1.4.2. Let u be a bounded nonnegative local subsolution of 1.23 in Q0.

Then for all η, ε > 0

φ(‖u‖∞,Q∞) ≤ γ

(
t

ρ2

)1/ε(
1 +

1

η

)(N+2)/2ε(
−
ˆ
−
ˆ
Q0

Φ(u)φ(u)εdxdτ

)1/ε

+ η
ρ2

t
Φ−1

(
η
ρ2

t

)
,

where γ = γ(ε, σ,Γ, N) : γ becomes unbounded as ε (or σ, or Γ−1) tends to zero.

Proof. See [1].

Remark 1.4.3. The inequality shown in the above theorem is also valid for any

nonnegative subsolution which can be approximated locally by bounded subsolutions.

Andreucci’s estimate has the following corollaries. The proof of the next corollary

will be given succinctly prioritizing the main steps, for more details see [1, 2].

Corollary 1.4.4. If φ(u) = um,m > 1, taking ε = λ/m, λ > 0 the inequality shown

in the above theorem becomes

‖u‖∞,Q∞ ≤ γ

(
t

ρ2

)1/λ(
1 +

1

η

)(N+2)/2λ(
−
ˆ
−
ˆ
Q0

um−1+λdxdτ

)1/λ

+

(
η
ρ2

t

)1/(m−1)

, (1.31)

for all η, λ > 0.
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Proof. Let ρ, t > 0, σ ∈ (0, 1) be fixed. Consider for all n ≥ 0 the sequences

tn =
t

2
− σt

2n+1
, ρn = ρ+

σ

2n
ρ, kn = k − k

2n+1
k > 0,

and let

Bn = Bρn , Qn = Bρn × (tn, t), Bn(τ) = Bn × {τ}.

Now, consider a cutoff function ξn sucht that

ξn(x, τ) = 0, (x, τ) /∈ Qn, ξn(x, τ) = 1, (x, τ) ∈ Qn+1,

|∇ξn| ≤
2n+1

σρ
, 0 ≤ ξnτ ≤

2n+2

σt
,

and in the weak formulation of (1.26) take the test function

fn(x, τ) =

(ˆ u(x,τ)

kn+1

smα−2ds

)
+

ξn(x, τ)2, α > 2.

By standard calculations similar to section 1.3 and using the fact that

F (z, z0)−2

(ˆ z)

z0

smα−2ds

)2

= 4

∣∣∣∣∂F∂z0

(z, z0)

∣∣∣∣2 ,
using also that u ≥ kn+1 > k0 = k/2, and (1.28) we obtain

sup
tn≤τ≤t

ˆ
Bn(τ)

F (u, kn+1)2ξ2
ndx+ km−1

ˆ ˆ
Qn

|∇F (u, kn+1)ξn|2dxdτ

≤ γ1
22n

σ2t

(
1 +

t

ρ2
(‖u‖∞,Q0)

m−1

) ˆ ˆ
Qn

F (u, kn)2dxdτ, (1.32)

with γ1 = 220αΓ. Then fix η > 0, and consider the case

µ :=
t

ρ2
(‖u‖∞,Q0)

m−1 ≥ η.

Thus, (1.32) becomes

sup
tn≤τ≤t

ˆ
Bn(τ)

F (u, kn+1)2ξ2
ndx+ km−1

ˆ ˆ
Qn

|∇F (u, kn+1)ξn|2dxdτ

≤ γ1
22n

σ2t

(
1 +

1

η

)
µ

ˆ ˆ
Qn

F (u, kn)2dxdτ. (1.33)
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Now, we will see that
´ ´

Qn
F (u, kn)2dxdτ → 0 as n→∞. First, note that

ˆ ˆ
Qn

F (u, kn)2dxdτ ≥ |An+1|
ˆ kn+1

kn

dr

ˆ r

kn

smα−2

≥ |An+1|kmα−2
n

(kn+1)− kn)2

2
≥ 2−αΓ(n+2)|An+1|kmα, (1.34)

where

|An+1| = meas{(x, τ) ∈ Qn|u(x, τ) > kn+1}.

By the standard results of embedding in [38] (see pp. 74 − 75; (3.1)) applied to the

last two inequalities, we getˆ ˆ
Qn+1

F (u, kn+1)2dxdτ ≤
ˆ ˆ

Qn

F (u, kn+1)2ξ2
ndxdτ

≤ |An+1|2/(N+2)

(ˆ ˆ
Qn

[
F (u, kn+1)2ξ2

n

](N+2)/N
dxdτ

)N/(N+2)

≤ C(N)|An+1|2/(N+2)

(ˆ ˆ
Qn

|∇F (u, kn+1)ξ|2dxdτ
)N/(N+2)

·
(
sup
tn≤τ≤t

ˆ
Bn(τ)

F (u, kn+1)2ξ2
ndx

)2/(N+2)

≤ DBn

(
1 +

1

η

)
µ(σ2t)−1k−mα(2/(N+2))k(m−1)(−N/(N+2))

·
(ˆ ˆ

Q0

F (u, kn)dxdτ

)1+(2/N+2)

≤ DBn

(
1 +

1

η

)
µ(σ2t)−1k−mα(2/(N+2))−(m−1)(N/(N+2))

·
(ˆ ˆ

Q0

F (u, kn)2dxdτ

)1+(2/N+2)

, (1.35)

with

D = C(N)225αΓ, B = 22αΓ,

where C(N) is a constant depending only on N .

Now, if k is such thatˆ ˆ
Q0

F (u, k0)2dxdτ ≤
ˆ ˆ

Q0

F (u, 0)2dxdτ

= D−(N+2)/2B−((N+2)/2)2
[(

1 +
1

η

)
µ(σ2t)−1

]−(N+2)/2

kmα+(m−1)(N/2),
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we have (by Lemma 1.1.4) that
´ ´

Qn
F (u, kn)2dxdτ → 0 as n→∞.

Then, using that

F (u, 0)2 ≤ umα, Φ(u) = um−1 and µ =
t

ρ2
(‖u‖∞,Q0)

m−1,

we get

(‖u‖∞,Q∞)m(α+(N/2))(‖u‖∞,Q∞)−(N/2) ≤ γ2(σρ)−(2+N)

(
1 +

1

η

)(N+2)/2

(‖u‖∞,Q0)
m(α+(N/2)−ε)

· (‖u‖∞,Q0)
−1−(N/2)

ˆ ˆ
Q0

um(1+ε)dxdτ,

with γ2 = C(N)260αΓN2
and consequently

(‖u‖∞,Q∞)m(α+(N/2)) ≤ γ2(σρ)−(2+N)

(
1 +

1

η

)(N+2)/2

(‖u‖∞,Q0)
m(α+(N/2)−ε)

·
ˆ ˆ

Q0

u(m−1)+mεdxdτ. (1.36)

Now, consider

β = 1− ε

α + (N/2)

Q(s, τ) + {(x, θ)
∣∣|x− x0 < s, τ < θ < t}

U(s, τ) = (‖u‖∞,Q(s,τ)
)m(α+(N/2)).

Then applying Young’s inequality to (1.36) and an iteration process considering

s0 = ρ; si+1 − si = (1− σ)σi(σρ)

τ0 = ρ; τi − τi+1 = (1− σ)σi(σ
t

2
)

we get

U(s0, τ0) ≤ δnU(sn, τn) + γ3((1− σ)σρ)−(N+2)/(1−β)M0

n∑
i=0

[δσ−(N+2)/(1−β)]i,

for any δ ∈ (0, 1), where

M0 = δβ/(1−β)

(
1 +

1

η

)(N+2)/2(1−β)(ˆ ˆ
Q0

u(m−1)+mεdxdτ

)1/(1−β)

.
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Lastly, we choose δ = 1
2
σ(N+2)/(1−β) and let n→∞. Then, taking the (α + (N/2))th

root of both sides of the inequality and taking ε = λ/m, we obtain

‖u‖∞,Q∞ ≤ γ

(
t

ρ2

)1/λ(
1 +

1

η

)(N+2)/2λ(
−
ˆ
−
ˆ
Q0

um−1+λdxdτ

)1/λ

.

On the other hand, if µ ≤ η, we have

‖u‖∞,Q∞ ≤
(
η
ρ2

t

)1/(m−1)

.

Combining the last two inequalities we get

‖u‖∞,Q∞ ≤ γ

(
t

ρ2

)1/λ(
1 +

1

η

)(N+2)/2λ(
−
ˆ
−
ˆ
Q0

um−1+λdxdτ

)1/λ

+

(
η
ρ2

t

)1/(m−1)

.

For a solution ut −∆um = 0 we have

‖u‖∞,Q∞ ≤

[
1 +

(
γ

(
t

ρ2

)1/λ(
1 +

1

η

)(N+2)/2λ
1

|Q0|1/λ
‖u‖

m−1+λ
λ

Lm−1+λ

)/(
η
ρ2

t

)1/(m−1)
]

·
(
η
ρ2

t

)1/(m−1)

. (1.37)

We shall now prove that we can not substitute the norm ‖u‖Lm−1+λ
for a norm

‖u‖Lp with p > m − 1 + λ. In this sense, the estimate (1.37) is sharp in the norm

Lm−1+λ on the right side of (1.37). In fact,

V (x, t) = α|x|2/m−1

(
1− t

T ∗

)−1/(m−1)

t ∈ (0, T ∗), x ∈ Rn,

is solution and satisfies

‖v‖∞,Q∞ ≤ c

(
ρ2

t

)1/(m−1)

, for all t ∈
(

0,
T ∗

2

)
.

Now suppose that (1.37) holds for some p > m − 1 + λ (in place of m − 1 + λ).

So, for the estimate to work, we must have

c ≥
γ
(
t
ρ2

)1/λ (
1 + 1

η

)(N+2)/2λ (
1

|Q0|1/λ
‖v‖

p
λ
Lp

)
(
η ρ

2

t

)1/(m−1)
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where c does not depend on t and ρ. In fact,

ˆ ˆ
Q0

vpdxdt = α

ˆ ˆ
Q0

|x|
2p

(m−1)

(
1− t

T ∗

) −p
m−1

dxdt

=

(ˆ
Bρ(1+σ)

|x|
2p

(m−1)dx

)
·

(ˆ t

t
2

(1−σ)

(
1− t

T ∗

) −p
m−1

dt

)
,

where ˆ
Bρ(1+σ)

|x|
2p

(m−1)dx =

ˆ ρ(1+σ)

0

(ˆ
B1

r
2p

(m−1) rn−1dx

)
dr

= |B1|
ˆ ρ(1+σ)

0

r
2p

(m−1)
+n−1dr

= |B1|
1

2p
(m−1)

+ n
[ρ(1 + σ)]

2p
(m−1)

+n ,

and taking µ = 1− t
T ∗

ˆ t

t
2

(1−σ)

(
1− t

T ∗

) −p
(m−1)

dt = (−T ∗)
ˆ 1− t

T∗

1− t
2

(1−σ) 1
T∗

µ
−p

(m−1)dµ

= T ∗
ˆ 1− t

2
(1−σ) 1

T∗

1− t
T∗

µ
−p

(m−1)dµ

=

[(
1− t

2
(1− σ)

1

T ∗

) −p
m−1

+1

−
(

1− t

T ∗

) −p
m−1

+1
]

· T ∗
(
−p

m− 1
+ 1

)−1

.

Define g(z) = z
−p
m−1

+1, z ∈
[
1− t

T ∗
, 1− t

2
(1− σ) 1

T ∗

]
. Thus, we have by the mean

value theorem(
−p

m− 1
+ 1

)−1 [
g

(
1− t

2
(1− σ)

1

T ∗

)
− g

(
1− t

T ∗

)]
= g′(z̃) · t · c

(
−p

m− 1
+ 1

)−1

=

(
−p

m− 1
+ 1

)1−1

(z̃)
−p
m−1 tc

−p
m−1

<0

≤
(

1− t

T ∗

) −p
m−1

tc

1− t
T∗≥

t
T∗

≤ (T ∗)
p

m−1 c(t)
−p
m−1

+1,

where c = c(T ∗, σ), and consequently

ˆ t

t
2

(1−σ)

(
1− t

T ∗

) −p
(m−1)

dt ≤ c(T ∗, σ)t
−p
m−1

+1.
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Thus, we obtain

1

|Q0|1/λ
‖v‖p/λLp

≤
[
c(λ, p,m, n, σ) · ρ( 2p

m−1) 1
λ

]
· [c(T ∗, σ)] t

−p
m−1

1
λ .

Therefore, we find the following estimate(
t

ρ2

)1/λ(
1

|Q0|1/λ
‖v‖p/λLp(Q0)

)
≤ C(λ,m, n, γ, T ∗, p)

[
ρ( 2p

(m−1)
−2) 1

λ

]
·
[
t(

−p
(m−1)

+1) 1
λ

]
.

Finally, we get(
t
ρ2

)1/λ (
1

|Q0|1/λ
‖v‖

p
λ
Lp

)
(
η ρ

2

t

)1/(m−1)
≤ C(η, λ,m, σ, T ∗, p, n)

·
[
ρ( 2p

(m−1)
−2) 1

λ
− 2

(m−1)

]
·
[
t(

−p
(m−1)

+1) 1
λ

+ 1
(m−1)

]
,

and to get the desired bounded we must have(
2p

(m− 1)
− 2

)
1

λ
− 2

(m− 1)
≥ 0 (1.38)

and (
−p

(m− 1)
+ 1

)
1

λ
+

1

(m− 1)
≥ 0, (1.39)

that is,

p ≥ m− 1 + λ e p ≤ m− 1 + λ.

Therefore,

p = m− 1 + λ

is the best choice, that is, the sharp choice.

Corollary 1.4.5. In the linear case φ(u) = u,Φ ≡ 1, we can take η = t/ρ2, so that

our estimate takes the form

‖u‖∞,Q∞ ≤ γ1

(
t

ρ2

)1/ε(
1 +

1

η

)(N+2)/2ε(
−
ˆ
−
ˆ
Q0

uεdxdτ

)1/ε

, (1.40)

γ1 = γ1(ε, σ,Γ, N), which in turn reduces to Moser’s sup-estimate presented in [39].
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1.5 Sharp regularity for solutions of the PME in

the one-dimensional case

The main objective of this work is to study the optimal regularity for the porous

medium equation solutions in the n-dimensional case. However, the whole theory

behind this problem for the n = 1 case was completely established in [43, 7]. In

this section, we will address the sharp regularity for solutions of PME in the one-

dimensional case, through the results developed by Aronson in [7]. Due to its technical

nature, complexity and the fact that the tools used in this case are completely different

from those used in our case, we will approach the main results superficially, and some

statements will be omitted. The main objective of this section is to present the

case complementary to the one developed in our work, so that the reader has an

understanding and knowledge of all cases.

We will study the regularity properties of a class of generalized solutions of the

Cauchy problem for (1.16). We will see that with respect to the space variables, the

velocity potential is Lipschitz continuous, the flux is continuous, and the density is

Hölder continuous with exponent

α = min
{

1,
1

m− 1

}
.

Furthermore, we will see that this exponent is the best possible.

Let S := (−∞,+∞) × (0, T ] in the two-dimensional x, t−space for some fixed

T > 0 and consider the Cauchy problem{
(um)xx = ut, for (x, t) ∈ S, m > 1

u(x, 0) = u0(x) for −∞ < x <∞,
(1.41)

where u0 is a given bounded, continuous, nonnegative function on the real line.

Now, consider u be a smooth positive classical solution of

(um)xx = ut (1.42)

in a rectangle

R = (a, b)× (0, T ],

and take M = max
R

u. Note that if v = um−1(velocity potential), then v satisfies the

nonlinear degenerate parabolic equation

vt = mvvxx +
m

m− 1
v2
x (1.43)

in R.
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Remark 1.5.1. With the expression smooth we mean at least u ∈ C2(R) ∩ C0(R)

and uxxx ∈ C0(R).

Now, we will present a result in which |vx| is independent of the lower bound for

u.

Lemma 1.5.2. Let u be a smooth positive classical solution of (1.42) in R and let

R∗ = (a1, b1)× (τ, T ]

be any proper subrectangle of R. Then

|vx(x, t)| ≤ C

in R
∗
, where C is a positive constant which depends only on m,M, a1 − a, b− b1 and

τ .

Proof. See [7].

Remark 1.5.3. In the lemma above, if

M1 = max
[a,b]

∣∣∣∣∣ ∂∂xum−1(x, 0)

∣∣∣∣∣ <∞
then the same conclusion holds for

R∗ = (a1, b1)× (0, T ],

where now C depends on M1 instead of τ .

Remark 1.5.4. The weak solution u of de Cauchy problem is the pointwise limit of

a decreasing sequence of positive functions (wn). This result was shown in [42].

Note that given any rectangle R, if n is sufficiently large, then the wn satisfy the

hypothesis of the lemma in R. Besides that,

wn ≤ 1 + supu0

for n at every point of S.

Given the above considerations we have the following result:

Theorem 1.5.5. Let u be the weak solution of the Cauchy problem (1.41) in S, where

it is assumed that um0 is Lipschitz continuous.
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(i) If τ > 0, then

|um−1(x1, t)− um−1(x2, t)| ≤ C1|x2 − x1| (1.44)

and

|u(x1, t)− u(x2, t)| ≤ C2|x1 − x2|ν (1.45)

hold for all (x1, t), (x2, t) ∈ (−∞,∞)× [τ, T ] where ν = min{1, (m− 1)−1} and

the Ci are positive constants which depend only on m, τ and supu0 If um−1 is

Lipschitz continuous, then the same conclusions hold for all (x1, t), (x2, t) ∈ S
where now the Ci depend on the Lipschitz constant for um−1

0 instead of τ .

(ii) The derivate ∂um/∂x exists and is continuous as a function of x everywhere in

S, and, in particular,

∂um(x, t)/∂x = 0 if u(x, t) = 0.

(iii) If 1 < m < 2, then ∂u/∂x exists and is continuous as a function of x everywhere

in S, and, in particular,

∂u(x, t)/∂x = 0 if u(x, t) = 0.

Proof. First, we will present the proof for item (i) and we also will give a sketch for

item item (ii) and item (iii).

In fact, applying the previous lemma to wm−1
n and using the convergence of wm−1

n

to um−1 we get the estimate (1.44). In the case m > 2, we have that (1.45) is a

consequence of (1.44) and the observation that

|u(x1, t)− u(x2, t)|m−1 ≤ |um−1(x1, t)− um−1(x2, t)|.

Now suppose m ≤ 2. Since

∂

∂x
wm−1
n = (m− 1)wm−2

n

∂

∂x
wn

and

0 < wn ≤ 1 + supu0 = M1,
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then it follows from the previous lemma that∣∣∣∣∣∂wn∂x

∣∣∣∣∣ ≤ M2−m
1

m− 1
C = C

′
.

Therefore,

|wn(x1, t)− wn(x2, t)|

∣∣∣∣∣ ∂∂xwn(ξ, t)dξ

∣∣∣∣∣ ≤ C
′|x1 − x2|

and letting n→∞ it follows the result.

To prove the items (ii) and (iii), first consider u(x, t) > 0 and t > 0, using the

results established by Kalashnikov in [42] we have that ∂u/∂x exists and is continuous

in a neighborhood of (x, t) and the same is true for ∂um/∂x , then to complete the

proof, we need to verify only in the points (x, t0) for which u(x, t0) = 0 (This part is

completely developed in [7]).

Now, through an example of explicit solution due to Pattle[43] of (1.42) we will

see that

α = min
{

1,
1

m− 1

}
is the best possible exponent for Hölder continuity of u.

Consider

λ(t) =

{
2m(m+ 1)

m− 1
(t+ 1)

}1/(m+1)

, t ≥ 0.

Thus,

u(x, t) =


1
λ(t)

[
1−

(
x
λ(t)

)2
]1/(m−1)

for |x| ≤ λ(t), t ≥ 0,

0 for |x| > λ(t), t ≥ 0,

(1.46)

is a weak solution of the Cauchy problem (1.41) with initial data

u0(x) =


1

λ(0)

[
1−

(
x
λ(0)

)2
]1/(m−1)

for |x| ≤ λ(0),

0 for |x| > λ(0).

(1.47)

Note that in x = ±λ(t) the ∂um−1/∂x is discontinuous. Then the Lipschitz continuity

of um−1 is the best possible global result. Furthermore, since

u(x, t)− u(λ(t), t) = (λ(t))(m+1)/(1−m)[(λ(t) + x)(λ(t) + x)]1/(m−1)
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the exponent

min
{

1,
1

m− 1

}
in (1.45) cannot be increased.

Remark 1.5.6. These are several examples of explicit solutions of (1.42) can be found

in the works of Oleinik [41] and Kalashnikov [42].

The reading of the article discussed above is necessary in the first contact with

the theory of regularity for the porous medium equation, and can be seen as the first

motivation. However we will see in the next chapters that the approach used here is

not repeated in the case n-dimensional, with n > 1, one of the main reasons being

that we do not have examples of explicit solutions like Pattle’s[43] in our case, where

we can do a similar analysis. However, the theory for our case begun to be developed

by Cafarelli and Friedman in the study of the continuity of the density/and regularity

of the free boundary of a gas flow in an n-dimensional porous medium[13, 14]. The

main approach is based on an idea using scaling (or similarity of transformation) of

solutions. These results, in addition to [20], culminate in the famous result proposed

by DiBenedetto and Friedman in [21] and will be the focus of our next chapter.
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2. Regularity C0,β for solutions of
the PME in the N-dimensional case

Contents
2.1 Intrinsic scaling . . . . . . . . . . . . . . . . . . . . . . . . 34

2.1.1 Local energy and logarithmic estimates . . . . . . . . . . . 35

2.1.2 Reduction of the oscillation . . . . . . . . . . . . . . . . . . 41

2.2 Hölder continuity of weak solutions of the PME . . . . 59

In this chapter we will present the celebrated result obtained by DiBenedetto

and Friedman in [21] about the Hölder continuity for the N-dimensional case of the

homogeneous porous medium equation. First, we will present the method of intrinsic

scaling, more precisely we will see that the results on the continuity of solutions,

at a point (x0, t0), can be obtained by measuring the oscilation of the solution in a

sequence of nested and shrinking cylinders with vertex at that point (see Figure 3.1),

Figure 2.1: (x0, t0) := vertex; ρ := radius; τ := height; a0 :=scaling factor
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and in showing that the essential oscillation of the solution in those cylinders converges

to zero as the cylinders shrink to the point. In this regard, it is usual to prove that

the oscillation is reduced by a factor σ ∈ (0, 1) in each iteration, i.e., ωn+1 ≤ σωn,

where ω is the oscilation in the nth cylinder, which is a method called reduction

of oscillation. Lastly, through the approach mentioned above we establishes Hölder

continuity of nonnegative solutions of the degenerate parabolic equation, PME. The

results that we do not demonstrate will contain references where the proofs may be

found. Standard references for the material presented here are [21], [45] and [51].

2.1 Intrinsic scaling

In the late 1950′s, De Giorgi [16] developed a method to study the regularity of

uniformly elliptic linear equations, which late was adapted by the Russian school in

[36] and [37] to study the regularity in the linear parabolic case. It was only in the

mid 1980′s that DiBenedetto [21], generalizing the method developed by De Giorgi,

introduced the Intrinsic Scaling Method to the study of regularity of solutions of

quasi-linear equations of type

ut − div a(x, t, u,∇u) = 0.

We will consider in this section the equation

ut − div(mum−1∇u) = 0, m > 1. (2.1)

The equation above is the homogeneous prototype of the porous medium equation,

and its modulus of ellipticity is um−1. If m > 1 such a modulus vanishes whenever

u = 0 and at such points the equation is degenerate. Note that in the case m < 1 the

modulus of ellipticity becomes infinity whenever u = 0 and the equation is singular

at these points.

The idea behind the method of intrinsic scaling is to perform this iterative process

in cylinders that reflect the structure of the equation. That is to say, we consider

cylinders presenting a change of scale, with respect to the standard parabolic cylin-

ders, that are redefined in terms of scaling factors that take into account the nature

of the degeneracy or singularity, and depend on the oscillation of the solution itself

(thus, the term intrinsic). This method allows us to show the Hölder continuity of

the weak solutions of the equation.
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2.1.1 Local energy and logarithmic estimates

In this subsection we will consider the equation (2.1), which is the homogeneous

prototype of the porous medium equation presented in the previous chapter (section

2.2), and then deduce the local energy and logarithmic estimates. The main goal

with these estimates, which we should do in the next subsection, is to show that

every bounded weak solution of the equation is locally Hölder continuous in ET . This

is a consequence of the following fact:

If, for every (x0, t0) ∈ ET , it is possible to define a decreasing sequence of nested

cylinders (x0, t0) +Q(τn, ρn) such that the central oscillation ωn of the weak solution

tends to zero in the cylinders when the cylinders converge to (x0, t0), then the function

(x, t) 7→ u(x, t) can be modified in a set with measure zero in such a way that we can

take a continuous representative in the equivalence class.

We start by making some considerations.

Let u be a bounded weak solution in ET and let

M := ‖u‖L∞(ET ).

For (x0, t0) ∈ ET , we consider the cylinder

(x0, t0) +Q(τ, ρ)

where τ and ρ are chosen in such a way that

(x0, t0) +Q(τ, ρ) ⊂ ET

and denote the cylinders with vertex at the origin (0, 0) by

Q(τ, ρ) := (0, 0) +Q(τ, ρ),

and put Kρ := Kρ(0). Let 0 ≤ ξ ≤ 1 be a piecewise smooth cutoff function in Q(τ, ρ)

such that

|∇ξ| <∞ and ξ(x, t) = 0, x ∈ Kρ. (2.2)

We use the usual notations for the positive and negative parts of a function:

f+ = max (f, 0) and f− = max (−f, 0),

and we will consider the auxiliary function ul± = ±min{±u,±l}.
From the above considerations, we have the following estimate.
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Proposition 2.1.1. Let u be a local weak solution of (2.1) in ET and k, l ∈ R+.

There exists a constant C ≡ C(m) > 0 such that, for every cylinder Q(τ, ρ) ⊂ ET ,

ess sup
−τ<t<0

ˆ
Kρ×{t}

(ul± − k)2
±ξ

2dx

+

ˆ 0

−τ

ˆ
Kρ

(ul±)m−1|∇(ul± − k)±ξ|2dxdt

≤ C

ˆ 0

−τ

ˆ
Kρ

(ul±)m−1(ul± − k)2
±|∇ξ|2dxdt

+ 2

ˆ 0

−τ

ˆ
Kρ

(
(ul± − k)2

± + 2(l − k)±(u− l)±
)
ξξtdxdt

+ C(l − k)±

ˆ 0

−τ

ˆ
Kρ

(ˆ u

l

sm−1ds

)
(|∇ξ|2 + ξ∆ξ)χ[uTl]dxdt. (2.3)

Proof. Firstly, consider

φ = ±((ul±)h − k)±ξ
2

in (1.20) and integrate in time over (−τ, t), for t ∈ (−τ, 0). Then in the first term of

(1.20) we obtain

ˆ t

−τ

ˆ
Kρ

±(uh)t((u
l
±)h − k)±ξ

2dxdθ =

ˆ t

−τ

ˆ
Kρ

±(uh)t((u
l
±)h − k)±ξ

2χ[ul±=u]dxdθ

+

ˆ t

−τ

ˆ
Kρ

±(uh)t((u
l
±)h − k)±ξ

2χ[ul±=l]dxdθ

=: A+B.

Now, to evaluate the termA of the above equality, we define Sh± = supp(uh−k)±.Then,

note that in Sh±, ((uh − k)±)t = (uh)t, and outside the integrand function is 0. Thus,

ˆ t

−τ

ˆ
Kρ

1

2

(
((ul±)h − k)2

±
)
t
ξ2χ[ul±=u]dxdθ =

ˆ t

−τ

ˆ
Kρ

1

2

(
((ul±)h − k)2

±
)
t
ξ2dxdθ

and so
ˆ t

−τ

ˆ
Kρ

±(uh)t((u
l
±)h − k)±ξ

2dxdθ → 1

2

ˆ
Kρ×{t}

(ul± − k)2
±ξ

2dx

−
ˆ 0

−τ

ˆ
Kρ

(ul± − k)2
±ξξtdxdt,

after integrating by parts and passing to the limit in h → 0(by Lemma 1.1.5). Note

that just one term related to the boundary appears because ξ = 0 in Kρ × {−τ} by

definition.
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For the term B, we have that

ˆ t

−τ

ˆ
Kρ

±(uh)t((u
l
±)h − k)±ξ

2χ[ul±=l]dxdθ = (l − k)±

ˆ t

−τ

ˆ
Kρ

((uh − l)±)tξ
2dxdθ

since

uhχ[ul±=l] = uhχ[ul±Tl]
= ±(uh − l)± + lχ[ul±=l].

Thus, integrating by parts and passing to the limit in h→ 0 again, we get that

ˆ t

−τ

ˆ
Kρ

±(uh)t((u
l
±)h − k)±ξ

2χ[ul±=l]dxdθ

→ (l − k)±

ˆ
Kρ×{t}

(u− l)±ξ2dx− 2(l − k)±

ˆ 0

−τ

ˆ
Kρ

(u− l)±ξξtdxdt

≥ −2(l − k)±

ˆ 0

−τ

ˆ
Kρ

(u− l)±ξξtdxdt.

Now, we evaluate the second term of (1.20), we first let h→ 0 and the we divide

it in two integrals as before,

mD +mE = m

ˆ t

−τ

ˆ
Kρ

±um−1∇u · (∇(ul± − k)±ξ
2 + 2(ul± − k)±ξ∇ξ)χ[ul±=u]dxdθ

+ m

ˆ t

−τ

ˆ
Kρ

±um−1∇u · (∇(ul± − k)±ξ
2 + 2(ul± − k)±ξ∇ξ)χ[ul±=l]dxdθ.

Now, to evaluate the term D, we note that ∇u = ∇(u− k) = ±∇(u− k)±, in S± =

supp(u− k)± , and we use Cauchy-Schwarz and Young’s inequality (ab ≤ a2/4 + b2),

for a = |∇(ul± − k)±|ξ and b = (ul± − k)±|∇ξ|. Thus, we get

D =

ˆ t

−τ

ˆ
Kρ

um−1∇(u− k)± · (∇(ul± − k)±ξ
2 + 2(ul± − k)±ξ∇ξ)χ[ul±=u]dxdθ

≥
ˆ t

−τ

ˆ
Kρ

(ul±)m−1|∇(ul± − k)±|2ξ2

− 2

ˆ t

−τ

ˆ
Kρ

(ul±)m−1|∇(ul± − k)±|(ul± − k)±ξ|∇ξ|dxdθ

≥
ˆ t

−τ

ˆ
Kρ

(ul±)m−1|∇(ul± − k)±ξ|2

− 2

ˆ t

−τ

ˆ
Kρ

(ul±)m−1

(
|∇(ul± − k)±ξ|2

4
+ (ul± − k)2

±|∇ξ|2
)
dxdθ

=
1

2

ˆ t

−τ

ˆ
Kρ

(ul±)m−1|∇(ul± − k)±ξ|2 − 2

ˆ t

−τ

ˆ
Kρ

(ul±)m−1(ul± − k)2
±|∇ξ|2dxdθ.
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For the term E, we have that

E = ±
ˆ t

−τ

ˆ
Kρ

um−1∇u · (∇(ul± − k)±ξ
2 + 2(ul± − k)±ξ∇ξ)χ[ul±=l]dxdθ

= ±2(l − k)±

ˆ t

−τ

ˆ
Kρ

∇
(ˆ u

l

sm−1ds

)
· ξ∇ξχ[uTl]dxdθ

since

∇
(ˆ u

l

sm−1ds

)
χ[u≥l] = um−1∇uχ[u≥l]

and

∇
(ˆ u

l

sm−1ds

)
χ[u≤l] = −∇

(ˆ l

u

sm−1ds

)
χ[u≤l] = um−1∇uχ[u≤l].

Thus,

E = ∓2(l − k)±

ˆ t

−τ

ˆ
Kρ

(ˆ u

l

sm−1ds

)
(|∇ξ|2 + ξ∆ξ)χ[uTl]dxdθ

after integrating by parts.

Since t ∈ (τ, 0) is arbitrary, we can combine estimates A,B,D and E to obtain

1

2

ˆ
Kρ×{t}

(ul± − k)2
±ξ

2dx−
ˆ 0

−τ

ˆ
Kρ

(ul± − k)2
±ξξtdxdt

− 2(l − k)±

ˆ 0

−τ

ˆ
Kρ

(u− l)±ξξtdxdt+
m

2

ˆ t

−τ

ˆ
Kρ

(ul±)m−1|∇(ul± − k)±ξ|2

− 2m

ˆ t

−τ

ˆ
Kρ

(ul±)m−1(ul± − k)2
±|∇ξ|2dxdθ

∓ 2(l − k)±

ˆ t

−τ

ˆ
Kρ

(ˆ u

l

sm−1ds

)
(|∇ξ|2 + ξ∆ξ)χ[uTl]dxdθ,

and, from this, follows (2.3).

Remark 2.1.2. Note that there is a certain difference between the energy estimates

presented in [19, 51] and the estimate presented in our work, where the term ul±

appears. This follows from the regularity proof requiring a double truncation, above

and below certain levels. This is due to the fact that the equation is degenerate at

points where u = 0, which does not happen for the p-Laplacian, where the degeneracy

is at the points where the gradient cancels out and not where the function vanishes.
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Now we will present the logarithmic estimates in cylinders Q(τ, ρ) with vertex at

the origin.

Let u be a bounded function in a cylinder and a number k, define the constant

H±u,k := ess sup
Q(τ,ρ)

|(u− k)±|.

Now consider the following function

Ψ±
(
H±u,k, (u− k)±, c

)
≡ ψH±u,k,k,c

(u), 0 < c < H±u,k, (2.4)

where ψH±u,k,k,c
is the logarithmic function introduced in the section 1.1. For simplify

the notation of the function in (2.4) we will write from now on such function as ψ±(u).

Let ξ be a time-independent cutoff function in Kρ satisfying (2.2).

From the above considerations, we have the following logarithmic estimate.

Proposition 2.1.3. Let u be a local weak solution of 2.1 and k ∈ R. There exists a

constant C ≡ C(m) > 0 such that, for every cylinder Q(τ, ρ) ⊂ ET ,

sup
−τ≤t≤0

ˆ
Kρ×{t}

[
ψ±(u)

]2
ξ2dx ≤

ˆ
Kρ×{−τ}

[
ψ±(u)

]2
ξ2dx

+ C

ˆ 0

−τ

ˆ
Kρ

um−1ψ±(u)|∇ξ|2dxdt. (2.5)

Proof. Firstly, consider

φ = 2ψ±(uh)
[
(ψ±)′(uh)

]
ξ2

in (1.20) and integrate in time over (−τ, t), for t ∈ (−τ, 0). Since ξt ≡ 0, then in the

first term of (1.20) we obtain
ˆ t

−τ

ˆ
Kρ

(uh)tϕdxdθ =

ˆ t

−τ

ˆ
Kρ

(uh)t2ψ
±(uh)

[
(ψ±)′(uh)

]
ξ2dxdθ

=

ˆ t

−τ

ˆ
Kρ

(uh)t

([
ψ±(uh)

]2)′
ξ2dxdθ

=

ˆ t

−τ

ˆ
Kρ

([
ψ±(uh)

]2)
t
ξ2dxdθ

=

ˆ
Kρ×{t}

[
ψ±(uh)

]2
ξ2 −

ˆ
Kρ×{−τ}

[
ψ±(uh)

]2
ξ2dx.

From this, letting h→ 0,
ˆ t

−τ

ˆ
Kρ

(uh)tϕdxdθ =

ˆ t

−τ

ˆ
Kρ

(uh)t2ψ
±(uh)

[
(ψ±)′(uh)

]
ξ2dxdθ

→
ˆ
Kρ×{t}

[
ψ±(u)

]2
ξ2 −

ˆ
Kρ×{−τ}

[
ψ±(u)

]2
ξ2.
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We now will estimate the second term, we first let h→ 0, and then we use Cauchy

Schwarz,

m

ˆ t

−τ

ˆ
Kρ

um−1∇u · ∇(2ψ±(u)
[
(ψ±)′(u)

]
ξ2)dxdθ

= m

ˆ t

−τ

ˆ
Kρ

um−1∇u · ∇u2
([

(ψ±)′(u)
]2

+ ψ±(u)
[
(ψ±)′(u)

]2)
ξ2dxdθ

+ m

ˆ t

−τ

ˆ
Kρ

um−1∇u · 4ψ±(u)
[
(ψ±)′(u)

]
ξ∇ξdxdθ

≥ m

ˆ t

−τ

ˆ
Kρ

um−1|∇u|2
(

2(1 + ψ±(u))
[
(ψ±)′(u)

]2
ξ2
)

− 2m

ˆ t

−τ

ˆ
Kρ

um−1|∇u||∇ξ|2ψ±(u)|(ψ±)′(u)|ξdxdθ

≥ m

ˆ t

−τ

ˆ
Kρ

um−1|∇u|2
(

2(1 + ψ±(u)− ψ±(u))
[
(ψ±)′(u)

]2
ξ2
)
dxdθ

− m

ˆ t

−τ

ˆ
Kρ

um−1ψ±(u)|∇ξ|2dxdθ.

In the last inequality, the Young’s inequality was used,

ab ≤ a2

2
+
b2

2
,

with a = |∇ξ||(ψ±)′(u)|−1, and b = |∇uξ|.
Combining the estimates for the two terms and using that um−1 ≥ 0 we obtainˆ

Kρ×{t}

[
ψ±(u)

]2
ξ2dx −

ˆ
Kρ×{−τ}

[
ψ±(u)

]2
ξ2dx

− m

ˆ t

−τ

ˆ
Kρ

um−1ψ±(u)|∇ξ|2dxdθ

≤ 0.

Therefore,

sup
−τ<t<0

ˆ
Kρ×{t}

[
ψ±(u)

]2
ξ2dx ≤

ˆ
Kρ×{−τ}

[
ψ±(u)

]2
ξ2dx

+ C

ˆ 0

−τ

ˆ
Kρ

um−1ψ±(u)|∇ξ|2dxdt,

where C = C(m) > 0.

Remark 2.1.4. The function (2.4) has been used as a recurrent tool in the proof of

results concerning the local behaviour of solutions of degenerate and singular equations

for more details on this feature see [18], work on which it was presented for the first

time.
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Remark 2.1.5. We admit during the results presented in this section that the solution

u is non negative, but this restriction is not necessary. In the case where we do

not require this restriction for solution, we have the so-called signed PME, and the

energy and logarithmic estimates are still valid considering the constants l and k,

possibly negative and by changing (ul±)m−1 to |(ul±)|m−1 in energy estimate, and um−1

to |u|m−1 in logarithmic estimate.

2.1.2 Reduction of the oscillation

In this subsection, we present the Intrinsic Scaling Method for the degenerate case.

This method allows us, in a heuristic way, to say that the equation (2.1) behaves, in

its own geometry, as the Heat Equation.

The standard parabolic cylinders

(x0, t0) +Q
(
R2, R

)
reflect the natural homogeneity between the space and time variables for the heat

equation,

ut −∆u = 0.

In fact, if u(x, t) is a solution, then u(λx, λ2t), λ ∈ R, is also a solution, i.e., the equa-

tion remains invariant through a similarity transformation of the space-time variables

that leaves constant the ratio
|x|2

t
.

For solutions of most degenerate or singular equations, the energy and logarithmic

estimates are not homogeneous because they involve integral norms corresponding to

different powers, namely um−1, in our case. For overcome about this difficulty, the

equation has to be analyzed in a geometry dictated by its own degenerate structure.

This amounts to rescale the standard parabolic cylinders by a factor that depends on

the oscillation of the solution. This procedure of intrinsic scaling, which can be seen

as an accommodation of the degeneracy, allows for the restoration of the homogeneity

in the energy estimates, when written over the rescaled cylinders. Let’s make this

idea precise.

Remark 2.1.6. Note that we can recast the equation,

ut −∆um = 0,

in the form
u1−m

m
ut −∆u = 0, u > 0.
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Basically, this equation is saying to us that it is possible, by using a scaling factor, to

recover the homogeneity of the function. Although this scaling factor is dependent of

the solution itself, we still have an idea of how to construct the rescaled cylinders.

Firstly, we fix a point (x0, t0) ∈ ET , without loss of generality we will take (x0, t0) =

(0, 0), as was assumed before, and consider the cylinder

Q
(
4R2−ε, 2R

)
⊂ ET , 0 < ε < 1,

where 0 < R < 1 is taken such that the inclusion holds, and define the essential

oscillation of the solution u within this cylinder

ω := ess osc
Q(4R2−ε,2R)

u = µ+ − µ−,

where

µ+ := ess sup
Q(4R2−ε,2R)

u and µ− := ess inf
Q(4R2−ε,2R)

u.

Next, construct the rescaled cylinder

Q
(
ω1−mR2, R

)
= KR(0)× (−ω1−mR2, 0), (2.6)

we will assume, without loss of generality, that

ωm−1 > Rε, (2.7)

which implies the inclusion of cylinders

Q
(
ω1−mR2, R

)
⊂ Q

(
4R2−ε, 2R

)
and the relation

ess osc
Q(ω1−mR2,R)

u ≤ ω. (2.8)

Remark 2.1.7. Note that if (2.7) does not hold, i.e.,

ω ≤ R
ε

m−1

then, there is nothing to prove since the oscillation is comparable to the radius.

Remark 2.1.8. In the case m = 1, i.e., in the non-degenerate case, these are the

standard parabolic cylinders reflecting the natural homogeneity between the space and

time variables.

42



Figure 2.2: 0 < R < 1; 0 < ε < 1; ωm−1 > Rε

Remark 2.1.9. We note that we could have introduced a scaling with different pa-

rameters in the space and the time variables, that is to say that the geometry chosen

is not the only possible one.

Now, we will prove the reduction of oscillation, for this will be necessary to consider

two alternatives, precisely, the proof will be divided in two complementary cases: In

the first case, u is essentially away from its infimum in Q (ω1−mR2, R), or in second

case, u is essentially away from its supremum. We state this in a precise way.

For a constant ν0 ∈ (0, 1), that will be determined later, either

The First Alternative:

|{(x, t) ∈ Q (ω1−mR2, R) : u(x, t) < µ− + ω
2
}|

|Q (ω1−mR2, R) |
≤ ν0 (2.9)

or this does not hold, i.e,

|{(x, t) ∈ Q (ω1−mR2, R) : u(x, t) ≥ µ− + ω
2
}|

|Q (ω1−mR2, R) |
< 1− ν0.

Then, since µ+ − ω
2

= µ− + ω
2
, it holds

The Second Alternative:

|{(x, t) ∈ Q (ω1−mR2, R) : u(x, t) > µ+ − ω
2
}|

|Q (ω1−mR2, R) |
< 1− ν0. (2.10)

We start the analysis assuming the first alternative holds.
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Proposition 2.1.10. Assume

µ− <
ω

4

is true. If the first alternative (2.9) holds, then

u(x, t) > µ− +
ω

4
a.e. in Q

(
ω1−m

(
R

2

)2

,
R

2

)
. (2.11)

Proof. First, consider the sequence

Rn =
R

2
+

R

2n+1
, n = 0, 1, ..., (2.12)

that converges to R/2, and construct the family of nested and shrinking cylinders

Q (ω1−mR2
n, Rn). Next, take piecewise smooth cutoff functions 0 ≤ ξn ≤ 1, defined in

these cylinders, and satisfying the following set of assumptions:

ξn = 1 in Q
(
ω1−mR2

n+1, Rn+1

)
; ξn = 0 on ∂Q

(
ω1−mR2

n, Rn

)
;

|∇ξn| ≤
2n−1

R
; 0 ≤ (ξn)t ≤

22n−2

R2
ωm−1; ∆ξn ≤

22n−2

R2
.

Now, we will write the energy inequality, developed in the previous section, over

the cylinders Q (ω1−mR2
n, Rn), for functions (ul− − kn)−, with

l = µ− +
ω

4
, kn = µ− +

ω

4
+

ω

2n+2
, n = 0, 1, ...,

and ξ = ξn. Since

ul− = max
{
u, µ− +

ω

4

}
≥ µ− +

ω

4
≥ ω

4
,

and the following properties

(i) 0 ≤ µ− ≤ ω
4
, so u ≤ 5ω

4
and l ≤ ω

2
, which implies that ul− ≤ 5ω

4
;

(ii) l = µ− + ω
4
< kn, so χ[u≤l] ≤ χ[u<kn] = χ[(u−kn)−>0];

(iii) Where ul− = u, we have χ[(u−kn)−>0] = χ[(ul−−kn)−>0], but even when ul− = l,

i.e., u ≤ l < kn, the same result holds: χ[(u−kn)−>0] = 0 = χ[(l−kn)−>0]. Then, we

have that χ[(u−kn)−>0] = χ[(ul−−kn)−>0] for all (x, t);

(iv) (l − kn)− = ω
2n+2 ≤ ω

2
, (ul− − kn)− ≤ ω

2n+2 ≤ ω
2

and (u− l)− ≤ ω
4

are satisfied for our functions and constants, with χE denotes the characteristic func-

tion of the set E, then, using the energy estimate with the above considerations, we

obtain the following inequalities
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(I)

ess sup
− R2

n
ωm−1<t<0

ˆ
KRn×{t}

(ul− − kn)2
−ξ

2
ndx

+

ˆ 0

− R2
n

ωm−1

ˆ
KRn

(ul−)m−1|∇(ul− − kn)−ξn|2dxdt

≥ 41−m
(

ess sup
− R2

n
ωm−1<t<0

ˆ
KRn×{t}

(ul− − kn)2
−ξ

2
ndx

+ ωm−1

ˆ 0

− R2
n

ωm−1

ˆ
KRn

|∇(ul− − kn)−ξn|2dxdt
)

;

(II)

ˆ 0

− R2
n

ωm−1

ˆ
KRn

(ul−)m−1(ul− − kn)2
−|∇ξn|2dxdt

≤ Cωm−1
(ω

2

)2 22n−2

R2

ˆ 0

− R2
n

ωm−1

ˆ
KRn

χ[(ul−−kn)−>0]dxdt;

(III)

2

ˆ 0

− R2
n

ωm−1

ˆ
KRn

((
ul− − kn

)2

− + 2 (l − kn)− (u− l)−
)
ξn(ξn)tdxdt

≤ Cωm−1
(ω

2

)2 22n−2

R2

ˆ 0

− R2
n

ωm−1

ˆ
KRn

χ[(ul−−kn)−>0]dxdt;

(IV)

−C(l − kn)−

ˆ 0

− R2
n

ωm−1

ˆ
KRn

(ˆ u

l

sm−1ds

)(
|∇ξn|2 + ξn∆ξn

)
χ[u≤l]dxdt

≤ Cωm−1
(ω

2

)2 22n−1

R2

ˆ 0

− R2
n

ωm−1

ˆ
KRn

χ[(ul−−kn)−>0]dxdt.

Now, joining the above estimates, we obtain

ess sup
− R2

n
ωm−1<t<0

ˆ
KRn×{t}

(ul− − kn)2
−ξ

2
ndx+ ωm−1

ˆ 0

− R2
n

ωm−1

ˆ
KRn

|∇(ul− − k)−ξn|2dxdt

≤ ωm−1
(ω

2

)2
(
C

22n−2

R2
+

22n−2

R2
+ C

22n−1

R2

) ˆ 0

− R2
n

ωm−1

ˆ
KRn

χ[(ul−−kn)−>0]dxdt

≤ Cωm−1
(ω

2

)2 22n

R2

ˆ 0

− R2
n

ωm−1

ˆ
KRn

χ[(ul−−kn)−>0]dxdt.
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In the sequel, putting t = ωm−1t, and defining

ul−(·, t) := ul−(·, t), ξn(·, t) := ξn(·, t), (2.13)

we perform a change in the time variable, where the intrinsic geometric framework

place an important rule.

Now, define, for each n

An :=

ˆ 0

−R2
n

ˆ
KRn

χ[(ul−−kn)−>0]dxdt.

Thus, due to (2.13) we obtain the last simplified inequality

‖(ul− − kn)−ξn‖2
V 2(Q(R2

n,Rn)) ≤ C
22n

R2

(ω
2

)2

An. (2.14)

Furthermore,
1

22(n+2)

(ω
2

)2

An+1 ≤ C
22n

R2

(ω
2

)2

A
1+ 2

N+2
n . (2.15)

Indeed, from the definition of An, the fact that kn+1 < kn and of the Theorem 1.1.3

(for p = 2), we have that

1

22(n+2)

(ω
2

)2

An+1 ≤ |kn − kn+1|2An+1

=

ˆ
−R2

n+1

ˆ
KRn+1

(kn − kn+1)2χ[(ul−−kn+1)−>0]dxdt

≤
ˆ
−R2

n+1

ˆ
KRn+1

(kn − ul−)2χ[(ul−−kn)−>0]dxdt

≤ ‖(ul− − kn)−‖2
2,Q(R2

n+1,Rn+1)

≤ ‖(ul− − kn)−ξn‖2
2,Q(R2

n,Rn)

≤ C‖(ul− − kn)−ξn‖2
V 2(Q(R2

n,Rn))A
2

N+2
n

≤ C
22n

R2

(ω
2

)2

A
1+ 2

N+2
n ,

the last equality is due to (2.14).

To conclude, define the numbers

Xn =
An

|Q(R2
n, Rn)|

. (2.16)

Then, dividing (2.15) by |Q(R2
n+1, Rn+1)|, |Q(R2

n+1, Rn+1)| = RN+2
n+1 < RN+2, we
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obtain

An+1

|Q(R2
n+1, Rn+1)|

≤ C
24n+4

R2
|Q(R2

n+1, Rn+1)|
2

N+2

(
An

|Q(R2
n+1, Rn+1)|

)1+ 2
N+2

≤ C
24n+4

R2
R2

(
|Q(R2

n, Rn)|
|Q(R2

n+1, Rn+1)|
An

|Q(R2
n, Rn)|

)1+ 2
N+2

≤ C42n

(
An

|Q(R2
n, Rn)|

)1+ 2
N+2

,

and therefore, we have the following recursive relation (by (2.16))

Xn+1 ≤ C42nX
1+ 2

N+2
n ,

for a constant C depending only upon N and m. If,

X0 ≤ C−
N+2

2 4−
(N+2)2

2 := ν0, (2.17)

we have by the Lemma 1.1.4 on fast geometric convergence that

Xn → 0. (2.18)

But (2.17) is precisely our hypothesis (2.9), for the indicated choice of ν0, and from

(2.18) we immediately obtain, returning to the original variables,∣∣∣∣∣
{

(x, t) ∈ Q

(
ω1−m

(
R

2

)2

,
R

2

)
: ul−(x, t) ≤ µ− +

ω

4

}∣∣∣∣∣ = 0

which is equivalent to

ul− > µ− +
ω

4
a.e. in Q

(
ω1−m

(
R

2

)2

,
R

2

)
. (2.19)

Note that if ul− > µ− + ω
4
, then, ul− = u, and thus follows the result.

Remark 2.1.11. The constant ν0, that appears in the formulation of the alternative,

is now fixed by (2.17).

We finally reach the conclusion of the first alternative, namely the reduction of

the oscillation.

Corollary 2.1.12. Assume

µ− <
ω

4
is true. If the first alternative (2.9) holds, then there exists a constant σ0 ∈ (0, 1),

depending only on the data, such that

ess osc
Q
(
ω1−m(R2 )

2
,R
2

)u ≤ σ0ω. (2.20)
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Proof. By Proposition 2.1.10,

ess inf
Q
(
ω1−m(R2 )

2
,R
2

)u ≥ µ− +
ω

4
,

and thus

ess osc
Q
(
ω1−m(R2 )

2
,R
2

)
)

u = ess sup
Q
(
ω1−m(R2 )

2
,R
2

)u− ess inf
Q
(
ω1−m(R2 )

2
,R
2

)u

≤ µ+ − µ− − ω

4

=
3

4
ω.

This way, the corollary follows with

σ0 =
3

4
.

Now, we will make an analysis to the case in which the second alternative happens.

The second alternative is somehow the unfavorable case but we will show that a

conclusion similar to the corollary 2.1.12 can still be reached. Recall that the constant

ν0 has already been quantitatively determined by (2.17), and it is now fixed.

First, note that, if (2.10) holds, i.e.,

|{(x, t) ∈ Q (ω1−mR2, R) : u(x, t) > µ+ − ω
2
}|

|Q (ω1−mR2, R) |
< 1− ν0. (2.21)

Then there exists a time level

t0 ∈
[
−ω1−mR2,−ν0

2
ω1−mR2

]
such that ∣∣∣∣∣

{
x ∈ KR : u(x, t0) > µ+ − ω

2

}∣∣∣∣∣ ≤
(

1− ν0

1− ν0/2

)
|KR|. (2.22)

Otherwise, for all t ∈
[
−ω1−mR2,−ν0

2
ω1−mR2

]
, we would have∣∣∣∣∣

{
(x, t) ∈ Q

(
ω1−mR2, R

)
: u(x, t) > µ+ − ω

2

}∣∣∣∣∣
≥
ˆ − ν0

2
R2

ωm−1

− R2

ωm−1

∣∣∣∣∣
{
x ∈ KR : u(x, τ) > µ+ − ω

2

}∣∣∣∣∣dτ
>

(
−ν0

2

R2

ωm−1
+

R2

ωm−1

)(
1− ν0

1− ν0/2

)
|KR|

= (1− ν0)|Q
(
ω1−mR2, R

)
|,
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which contradicts (2.10).

Now, we will present a lemma that extends what was observed above, specifically

asserts that the set where u(·, t) is close to its supremum is small, not only at the

specific time level t0, but in
[
−ν0

2
ω1−mR2, 0

]
.

Lemma 2.1.13. Assume (2.10) and suppose that

µ− <
ω

4

holds. There exists s ∈ R, depending only on the data, such that∣∣∣∣∣
{
x ∈ KR : u(x, t) > µ+ − ω

2q

}∣∣∣∣∣ ≤
(

1−
(ν0

2

)2
)
|KR|,

for all t ∈
[
−ν0

2
ω1−mR2, 0

]
.

Proof. The proof this lemma consists in using the logarithmic inequalities (2.5) ap-

plied to the function (u− k)+ in the cylinder Q(−t0, R), with

k = µ+ − ω

2
and c =

ω

2n+1
,

where n ∈ N will be chosen later. Since we can assume that

H+
u,k := ess sup

x∈Q(R,t0)

∣∣∣∣(u− µ+ +
ω

2

)
+

∣∣∣∣ > w

4
≥ ω

2n+1
;

we can apply the logarithmic estimate with this constants. Otherwise, by choosing

q = 2, the lemma would be trivial.

Now, note that by the logarithmic inequality (2.5) we have

sup
t0≤t≤0

ˆ
KR×{t}

[ψ+(u)]2ξ2dx ≤
ˆ
KR×{t0}

[ψ+(u)]2ξ2dx

+ C

ˆ 0

t0

ˆ
KR

ωm−1ψ+(u)|∇ξ|2dxdt, (2.23)

since u ≤ 5
4
ω.

Let us now recall that ψ+(u) is defined in the whole cylinder Q(−t0, R), and it is

given by

ψ+

{H+
u,k,k,

ω
2n+1 }

(u) =

ln

(
H+
u,k

H+
u,k−u+k+ ω

2n+1

)
if u > k + ω

2n+1 ,

0 if u ≤ k + ω
2n+1 .

Moreover, in this cylinder, we have that we have that

u− k ≤ H+
u,k ≤

ω

2
, (2.24)
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which implies that

ψ+ ≤ ln

(
H+
u,k

H+
u,k − u+ k + ω

2n+1

)

≤ ln

( ω
2
ω

2n+1

)
= n ln(2). (2.25)

To conclude, we will choose our cutoff function 0 ≤ ξ(x) ≤ 1 defined in KR such

that, for some δ ∈ (0, 1),

ξ(x) = 1, for x ∈ K(1−δ)R and |∇ξ| ≤ (δR)−1.

Given the above considerations, we will now to bound the terms on the right side

of inequality(2.23). The first term of the right hand side can be bounded above using

(2.22) and taking into account that ψ+(u) = 0 on the set{
x ∈ KR : u(x, ·) ≤ µ+ − ω

2

}
.

This gives, using also (2.25),which first term is bounded by

ˆ
KR×{t0}

[ψ+]2ξ2dx ≤ n2 ln(2)2

(
1− ν0

1− ν0/2

)
|KR|.

To bound the second term of the right hand side we use the fact that −t0 ≤ R2

ωm−1

and (2.25),then, we obtain

C

ˆ 0

t0

ˆ
KR

ωm−1ψ+(u)|∇ξ|2dxdt ≤ Cn ln(2)ωm−1(δR)−2(−t0)|KR|

≤ Cnωm−1 1

δ2R2

R2

ωm−1
|KR|

≤ Cn
1

δ2
|KR|.

The left hand side of the inequality is estimated below by integrating over the

smaller set,

St =
{
x ∈ K(1−δ)R : u(x, t) > µ+ − ω

2n+1

}
⊂ KR, t ∈ (t0, 0).

In this set, we have that ξ = 1 and, since

−u+ k +
ω

2n+1
<

ω

2n+1
− ω

2
+

ω

2n+1
< 0,
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we have that
H+
u,k

H+
u,k − u+ k + ω

2n+1

is a decreasing function of H+
u,k. Thus, from (2.24),

H+
u,k

H+
u,k − u+ k + ω

2n+1

≥
ω
2

ω
2
− u+ k + ω

2n+1

>
ω
2

ω
2n+1 + ω

2n+1

= 2n−1.

Thus, in St,

[ψ+(u)]2 ≥ [ln(2n−1)]2 = (n− 1)2(ln(2))2,

and, from this,

sup
t0≤t≤0

ˆ
KR×{t}

[ψ+]2ξ2dx ≥ (n− 1)2(ln(2))2|St|.

Combining these three estimates, we arrive at

|St| ≤
(

n

n− 1

)2(
1− ν0

1− ν0/2

)
|KR|+ C

n

(n− 1)2

1

δ2
|KR|

≤

((
n

n− 1

)2(
1− ν0

1− ν0/2

)
+ C

1

nδ2

)
|KR|.

On the other hand,∣∣∣{x ∈ KR : u(x, t) > µ+ − ω

2n+1

}∣∣∣ ≤ |St|+ |KR\K(1−δ)R|

= |St|+ 1− (1− δ)N |KR|,

and therefore ∣∣∣{x ∈ KR : u(x, t) > µ+ − ω

2n+1

}∣∣∣
≤

((
n

n− 1

)2(
1− ν0

1− ν0/2

)
+ C

1

nδ2
+ 1− (1− δ)N

)
|KR|,

for all t ∈ (t0, 0) ⊃ [−ν0
2
ω1−mR2, 0]. Lastly, if we choose Nδ ≤ 3

8
ν2

0 and n so large

that (
n

n− 1

)2

≤
(

1− ν0

2

)
(1 + ν0) and

C

nδ2
≤ 3

8
ν2

0 ,

our lemma follows with q = n+ 1.
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In fact, we would also state that u is strictly bellow its supremum in a smaller

cylinder, Q
(
ν0
2
ω1−m (R

2

)2
, R

2

)
.

The next result is equivalent to the proposition (2.1.10) for the second alternative.

Proposition 2.1.14. Assume

µ− <
ω

4

is true. If the second alternative (2.10) holds, then there exists a number s0 > 1,

independent of ω, such that

u(x, t) ≤ µ+ − ω

2s0
∀(x, t) ∈ Q

(
ν0

2
ω1−m

(
R

2

)2

,
R

2

)
. (2.26)

Proof. We start by defining a sequence

Rn =
R

2
+

R

2n+1
, n = 0, 1, 2, ...,

and to construct the family of nested and shrinking cylinders Q(ω1−mR2
n, Rn). Next,

consider piecewise smooth cutoff functions 0 ≤ ξn ≤ 1 defined in these cylinders, and

satisfying the following set of assumptions:

ξn = 1 in Q

(
ν0

R2
n+1

2ωm−1
, Rn+1

)
; ξn = 0 on ∂Q

(
ν0

R2
n

2ωm−1
, Rn

)
;

|∇ξn| ≤
2n−1

R
; 0 ≤ (ξn)t ≤

22n−2

R2
ωm−1; ∆ξn ≤

22n−2

R2
.

Similarly to the proof of the first alternative, we will write the energy inequality,

developed in the previous section, over the cylinders Q
(
ν0

R2

2ωm−1 , Rn

)
for functions

(ul+ − kn)+, with

l = µ+ − ω

2s0
, kn = µ+ − ω

2s0
− ω

2s0+n
,

and ξ = ξn, where s0 will be determined later in the proof.

Since

ul+ > kn ≥ µ+ − ω

2
≥ ω − ω

2
=
ω

2
,

and the following properties

(i) 0 ≤ µ− ≤ ω
4
, so u ≤ 5ω

4
and consequently ul+ = min{u, l} ≤ 5ω

4
;

(ii) l = µ+ − ω
2s0

> kn, so χ[u≥l] ≤ χ[u>kn] = χ[(u−kn)+>0];

(iii) χ[(u−kn)+>0] = χ[(ul+−kn)+>0] for all (x, t);
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(iv) (l − kn)+ = ω
2s0+n

≤ ω
2s0−1 , (ul+ − kn)+ ≤ ω

2s0+n
≤ ω

2s0−1 and (u− l)+ ≤ ω
2s0−1 ,

are satisfied for our functions and constants, with χE denotes the characteristic func-

tion of the set E, then, using the energy estimate with the above considerations, we

obtain the following inequalities

(I)

ess sup
− ν0R

2
n

2ωm−1<t<0

ˆ
KRn×{t}

(ul+ − kn)2
+ξ

2
ndx

+

ˆ 0

− ν0R
2
n

2ωm−1

ˆ
KRn

(ul+)m−1|∇(ul+ − kn)+ξn|2dxdt

≥ 21−m
(

ess sup
− ν0R

2
n

2ωm−1<t<0

ˆ
KRn×{t}

(ul+ − kn)2
+ξ

2
ndx

+ ωm−1

ˆ 0

− ν0R
2
n

2ωm−1

ˆ
KRn

|∇(ul+ − kn)+ξn|2dxdt
)

;

(II)

ˆ 0

− R2
n

ωm−1

ˆ
KRn

(ul+)m−1(ul+ − kn)2
+|∇ξn|2dxdt

≤ Cωm−1
( ω

2s0−1

)2 22n−2

R2

ˆ 0

− R2
n

ωm−1

ˆ
KRn

χ[(ul+−kn)+>0]dxdt;

(III)

2

ˆ 0

− R2
n

ωm−1

ˆ
KRn

((
ul+ − kn

)2

+
+ 2 (l − kn)+ (u− l)+

)
ξn(ξn)tdxdt

≤ Cωm−1
( ω

2s0−1

)2 22n−2

R2

ˆ 0

− R2
n

ωm−1

ˆ
KRn

χ[(ul+−kn)+>0]dxdt;

(IV)

C(l − kn)+

ˆ 0

− R2
n

ωm−1

ˆ
KRn

(ˆ u

l

sm−1ds

)(
|∇ξn|2 + ξn∆ξn

)
χ[u≥l]dxdt

≤ Cωm−1
( ω

2s0−1

)2 22n−1

R2

ˆ 0

− R2
n

ωm−1

ˆ
KRn

χ[(ul+−kn)+>0]dxdt.
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Now, joining the above estimates, we obtain

ess sup
− R2

n
ωm−1<t<0

ˆ
KRn×{t}

(ul+ − kn)2
+ξ

2
ndx+ ωm−1

ˆ 0

− R2
n

ωm−1

ˆ
KRn

|∇(ul+ − k)+ξn|2dxdt

≤ Cωm−1
( ω

2s0−1

)2 22n

R2

ˆ 0

− R2
n

ωm−1

ˆ
KRn

χ[(ul+−kn)+>0]dxdt.

Next, perform a change in the time variable, putting

t =
2ωm−1

ν0

t

and defining

ul+(·, t) := ul+(·, t), ξn(·, t) := ξn(·, t). (2.27)

Then, the last inequality can be rewritten as

ess sup
−R2

n<t<0

ˆ
KRn×{t}

(ul+ − kn)2
+ξn

2
dx+

ν0

2

ˆ 0

−R2
n

ˆ
KRn

|∇(ul+ − k)+ξn|2dxdt

≤ C
ν0

2

( ω

2s0−1

)2 22n

R2

ˆ 0

−R2
n

ˆ
KRn

χ[(ul+−kn)+>0]dxdt. (2.28)

Now, define, for each n

An :=

ˆ 0

−R2
n

ˆ
KRn

χ[(ul+−kn)−>0]dxdt.

Thus, if we multiply the inequality (2.28) by 2
ν0
> 1 we obtain

‖(ul+ − kn)−ξn‖V 2(Q(R2
n,Rn)) ≤ C

22n

R2

( ω

2s0−1

)2

An. (2.29)

As before, we use definition of An, the fact that kn < kn+1, ξn = 1inQ(R2
n+1, Rn+1)

and the Theorem 1.1.3 (for p = 2) to obtain that

1

22(n+2)

( ω

2s0−1

)2

An+1 ≤ |kn+1 − kn|2An+1 (2.30)

≤ ‖(ul+ − kn)+‖2
2,Q(R2

n+1,Rn+1)

≤ ‖(ul+ − kn)+ξn‖2
2,Q(R2

n,Rn)

≤ C‖(ul+ − kn)+ξn‖2
V 2(Q(R2

n,Rn))A
2

N+2
n

≤ C
22n

R2

( ω

2s0−1

)2

A
1+ 2

N+2
n , (2.31)

the last equality is due to (2.29).
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To conclude, define the numbers

Xn =
An

|Q(R2
n, Rn)|

.

Next, divide (2.30) by |Q(R2
n+1, Rn+1)|, then, we obtain the recursive relation

Xn+1 ≤ C42nX
1+ 2

N+2
n ,

for a constant C depending only upon N and m. If,

X0 ≤ C−
N+2

2 4−
(N+2)2

2 := ν∗0 , (2.32)

we have by the Lemma 1.1.4 on fast geometric convergence that

Xn → 0, (2.33)

which implies that∣∣∣∣∣
{

(x, t) ∈ Q

(
ν0

2ωm−1

(
R

2

)2

,
R

2

)
: ul+(x, t) > µ+ − ω

2s0

}∣∣∣∣∣ = 0.

Similarly to the proof of the first alternative, since ul+ ≤ µ+− ω
2s0

= l implies that

ul+ = u, the final result follows immediately. So to complete this proof, it just remain

to prove (2.32).

To prove (2.32), we begin by simplifying the notation by introducing the sets

Bσ(t) =
{
x ∈ KR : u(x, t) > µ+ − ω

2σ

}
and

Bσ =
{

(x, t) ∈ Q
( ν0

2ωm−1
R2, R

)
: u(x, t) > µ+ − ω

2σ

}
.

Thus, with this notation, (2.32) reads

A0 ≤ |Bs0−1| ≤ ν∗0

∣∣∣Q( ν0

2ωm−1
R2, R

)∣∣∣ . (2.34)

The inequality (2.34) means that the subset of the cylinder Q
(

ν0
2ωm−1R

2, R
)

where

u is close to its supremum µ+ can be made arbitrarily small. To check this, first

consider the energy estimate (2.3) for the function (ul+ − k)+ = (u − k)+ in the

cylinders Q
(

ν0
ωm−1R

2, 2R
)

with

k = µ+ − ω

2s
,
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where s will be chosen later satisfying q < s < s0, recall that q was chosen in

Lemma (2.1.13). Take a piecewise smooth cutoff function 0 ≤ ξ ≤ 1 is defined in

Q
(

ν0
ωm−1R

2, 2R
)

with the following assumptions,

ξ = 1 in Q
( ν0

2ωm−1
R2, R

)
, ξ = 0 on ∂Q

( ν0

ωm−1
R2, 2R

)
,

|∇ξ| ≤ 1

R
, 0 ≤ ξt ≤

ωm−1

R2
.

Disregarding the first term on the left hand side of the energy estimate (2.3), because

it is nonnegative, and integrate the second one in a smaller set, Q
(

ν0
2ωm−1R

2, R
)
. Next,

repeating the same argument, when |∇(u − k)+ξ| 6= 0, u > k = µ+ − ω
2s
> ω

2
, we

arrive at(ω
2

)m−1
ˆ 0

− ν0R
2

2ωm−1

ˆ
KR

|∇(u− k)+ξ|2dxdt ≤ ess sup
− ν0R

2
n

ωm−1<t<0

ˆ
K2R×{t}

(u− k)2
+ξ

2dx

+

ˆ 0

− ν0R
2

ωm−1

ˆ
K2R

um−1|∇(u− k)+ξ|2dxdt.

Now, we estimate the two terms on the right hand side of the energy estimate

(2.3). First, note that the third term is now 0, because χ{u≥µ+} = 0. For the others

terms, using similar properties, we can obtain the following upper bounds:

1st term:
ˆ 0

− ν0R
2

ωm−1

ˆ
K2R

um−1(u− k)2
+|∇ξ|2dxdt ≤ Cωm−1

( ω
2s

)2 1

R2

∣∣∣Q( ν0

ωm−1
R2, 2R

)∣∣∣ ;
2nd term:

2

ˆ 0

− ν0R
2

ωm−1

ˆ
K2R

(
(u− k)2

+ + 2(µ+ − k)+(u− µ+)+

)
ξξtdxdt

≤ Cωm−1
( ω

2s

)2 1

R2

∣∣∣Q( ν0

ωm−1
R2, 2R

)∣∣∣ .
Next, joining these inequalities obtained for the terms of the energy estimate(2.3)

and multiplying both sides by
(
ω
2

)1−m
, we conclude that

ˆ 0

− ν0R
2

2ωm−1

ˆ
KR

|∇(u− k)+ξ|2dxdt ≤
C

R2

( ω
2s

)2 ∣∣∣Q( ν0

ωm−1
R2, 2R

)∣∣∣ .
In addition, we also have that∣∣∣Q( ν0

ωm−1
R2, 2R

)∣∣∣ = 2N+1
∣∣∣Q( ν0

2ωm−1
R2, R

)∣∣∣ ,
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and ξ = 1 in Q
(

ν0
2ωm−1R

2, R
)
, therefore

ˆ 0

− ν0R
2

2ωm−1

ˆ
KR

|∇(u− k)+|2dxdt ≤
C

R2

( ω
2s

)2 ∣∣∣Q( ν0

2ωm−1
R2, R

)∣∣∣ .
Now, note that Bs ⊂ Q

(
ν0

2ωm−1R
2, R

)
and, that in Bs we have

|∇(u− k)+| = |∇(u− k)| = |∇u|,

and consequently

ˆ ˆ
Bs

|∇u|2dxdt ≤ C

R2

(
ω

2s

)2 ∣∣∣Q( ν0

2ωm−1
R2, R

)∣∣∣ . (2.35)

We next apply Lemma (1.1.1) to the function u(·, t), for all t ∈
(
− ν0R2

2ωm−1 , 0
)
, and

with

k1 = µ+ − ω

2s
, k2 = µ+ − ω

2s+1
.

So the lemma gives us

ω

2s+1

∣∣∣[u(., t) > µ+ − ω

2s+1

]∣∣∣ ≤ C
RN+1∣∣∣[u(., t) < µ+ − ω

2s

]∣∣∣
ˆ

[− ω
2s
<u(.,t)−µ+<− ω

2s+1 ]

|∇u|dx.

(2.36)

In addition, since q ≤ s− 1, by the Lemma (2.1.13) we have that

|Bs−1(t)| ≤ |Bq(t)| ≤
(

1−
(ν0

2

)2
)
|KR|, (2.37)

for all t ∈ (− ν0
2ωm−1 , 0). Using (2.37) we deduce that∣∣∣{x ∈ KR : u(x, t) < µ+ − ω

2s

}∣∣∣ ≥ ∣∣∣{x ∈ KR : u(x, t) ≤ µ+ − ω

2s−1

}∣∣∣
= |KR| − |Bs−1(t)| ≥ |KR| − |Bq(t)| ≥

(ν0

2

)2

|KR|.

Thus, using our notation in (2.36), we obtain

ω

2s+1

∣∣Bs+1(t)
∣∣ ≤ CRN+1

ν2
0 |KR|

ˆ
Bs(t)\Bs+1(t)

|∇u|dx,

for t ∈
[
− ν0R2

2ωm−1 , 0
]
. Integrating over this interval, and use (2.35),we conclude that

ω

2s+1

∣∣Bs+1(t)
∣∣ ≤ CR

ν2
0

ˆ ˆ
Bs\Bs+1

|∇u|dxdt

≤ CR

ν2
0

(ˆ ˆ
Bs\Bs+1

|∇u|2dxdt
) 1

2 |Bs \Bs+1|
1
2

≤ CR

ν2
0

(ˆ ˆ
Bs

|∇u|2dxdt
) 1

2 |Bs \Bs+1|
1
2

≤ C

ν2
0

ω

2s

∣∣∣Q( ν0

2ωm−1
R2, R

) ∣∣∣ 12 |Bs \Bs+1|
1
2 .
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Simplifying and taking the 2 power, we obtain

|Bs+1|2 ≤
C

ν4
0

∣∣∣Q( ν0

2ωm−1
R2, R

) ∣∣∣|Bs \Bs+1|.

Since the above inequality is valid for q < s < s0, we can add them for

s = q + 1, q + 2, ..., s0 − 2,

i.e.,
s0−2∑
s=q+1

|Bs+1| ≤
C

ν4
0

∣∣∣Q( ν0

2ωm−1
R2, R

) ∣∣∣ s0−2∑
s=q+1

|Bs \Bs+1|.

Then, as
s0−2∑
s=q+1

|Bs \Bs+1| ≤
∣∣∣Q( ν0

2ωm−1
R2, R

) ∣∣∣,
and Bs0−1 ⊂ Bs+1 for s = q + 1, q + 2, ..., s0 − 2, we deduce that

(s0 − q)|Bs0−1|2 ≤
C

ν4
0

∣∣∣Q( ν0

2ωm−1
R2, R

) ∣∣∣2,
that is,

|Bs0−1| ≤
C

ν2
0(s0 − q)1/2

∣∣∣Q( ν0

2ωm−1
R2, R

) ∣∣∣.
If we choose s0 so large that

C

ν2
0(s0 − q)1/2

< ν∗0

we prove (2.32) and consequently we conclude the proof of the proposition.

Now, using the previous proposition, we obtain again the reduction of the oscilla-

tion, in the case where the second alternative happens.

Corollary 2.1.15. Assume

µ− <
ω

4

is true. If the second alternative (2.10) holds, then there exists a constant σ1 ∈ (0, 1),

depending only on the data, such that

ess osc
Q
(
ν0
2
ω1−m(R2 )

2
,R
2

)u ≤ σ1ω. (2.38)
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Proof. By Proposition 2.1.14, there exists s0 ∈ N such that

ess sup
Q
(
ν0
2
ω1−m(R2 )

2
,R
2

)u ≤ µ+ − ω

2s0
,

and thus

ess osc
Q
(
ω1−m(R2 )

2
,R
2

)u = ess sup
Q
(
ω1−m(R2 )

2
,R
2

)u− ess inf
Q
(
ω1−m(R2 )

2
,R
2

)u

≤ µ+ − ω

2s0
− µ−

=

(
1− 1

2s0

)
ω.

This way, the corollary follows with

σ1 =

(
1− 1

2s0

)
.

2.2 Hölder continuity of weak solutions of the

PME

The purpose of this part of the chapter is to present the celebrated result obtained

by DiBenedetto and Friedman developed in [21], which establishes Hölder continuity

of nonnegative solutions of the degenerate parabolic equation

∂

∂t
u− ∂

∂xk

(
ak,l(x, t,∇u)

∂

∂xl
um
)

= f(x, t, u,∇u), (2.39)

where m > 1 and 
ak,lξkξl ≥ c0|ξ|2

|ak,l| ≤ c1

f(x, t, u,∇u) ≤ c2|∇um|+ c3 ,

(2.40)

where ci are positive constants. Let’s make this idea precise.

The above result was obtained by working on cylinders suitably scaled to reflect

in a precise quantitative way the power-like degeneracy of the equation, i.e., precisely

using the approach presented in the previous section.

Remark 2.2.1. To describe the main idea of proof of the well-celebrated result due to

DiBenedetto and Friedman, we restrict ourselves in the previous section and in this

section to a particular case of PME and, as the proof is based on integral estimates

and not on special form, the general case follows similarly.
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We begin the process to prove the Hölder continuity of weak solutions of the porous

media equation presenting an immediate consequence of Corollaries 2.1.12 and 2.1.15

which is the following.

Proposition 2.2.2. There exists a constant σ ∈ (0, 1), that depends only on the data,

such that

ess osc
Q
(
ν0
2
ω1−m(R2 )

2
,R
2

)u ≤ σω. (2.41)

Proof. Assume

µ− <
ω

4

is true. Since ν0/2 < 1,

Q

(
ν0

2
ω1−m

(
R

2

)2

,
R

2

)
⊂ Q

(
ω1−m

(
R

2

)2

,
R

2

)
,

and then, by Corollaries 2.1.12 and 2.1.15,

ess osc
Q
(
ν0
2
ω1−m(R2 )

2
,R
2

)
)

u ≤ σω,

where σ = max{σ0, σ1}.

The second step of the process is through an iterative scheme designed from all

previous results.

Lemma 2.2.3. There exist constants η > 1 and β ∈ (0, 1), that can be determined a

priori in terms of the data, such that for all the cylinders

Q
(
ω1−mr2, r

)
, with 0 < r ≤ R,

ess osc
Q(ω1−mr2,r)

u ≤ ηω
( r
R

)β
.

Proof. We start by defining

Rk = ck0R, c0 =
1

2

(ν0

2

) 1
2
<

1

2
,

for k ∈ N, where σ is given by Proposition 2.2.2 and ν0 is the constant defined in

Proposition 2.1.10 Since we are assuming that

ωm−1 > Rε,
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for k = 0, we have that our initial condition

ess osc
Q(ω1−mR2

0,R0)
u ≤ ess osc

Q(R2−ε
0 ,R0)

u

≤ ω

is verified.

For k = 1, by (2.41), we have

ess osc
Q(ω1−mR2

1,R1)
u ≤ ess osc

Q(ω1−mR2
1,
R
2

)
u

≤ σω

= ω1.

Repeating the process again starting in Q(ω1−mR2
1, R1), with ω1 = σω, we can,

inductively, deduce that

ess osc
Q(ω1−mR2

k,Rk)
u ≤ ωk

= σkω,

for all k = 0, 1, 2 . . . .

Moreover, for 0 < r ≤ R, there exists some k such that

Rc
(k+1)
0 ≤ r ≤ Rck0.

Then, choosing β =
log σ

log c0

> 0, we get

σk+1 ≤
( r
R

)β
,

which means that

ess osc
Q(ω1−mr2,r)

u ≤ ess osc
Q(ω1−mR2

k,Rk

u

≤ σkω

≤ ηω
( r
R

)β
,

with η = σ−1.

We can suppose, without loss of generality, that σ > 1
2
. Hence, β ∈ (0, 1).

Now we are able to prove the first part of the main theorem.
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Theorem 2.2.4. Let u be a bounded local weak solution of (2.1) in ET and M =

||u||∞,ET . Then u is locally Hölder continuous in ET , i.e., there exist constants η > 1

and β ∈ (0, 1), depending only on the data, such that, for every compact subset K of

ET ,

|u(x1, t1)− u(x2, t2)| ≤ ηM

(
|x1 − x2|+ |t1 − t2|

1
2

dist(K; ∂pET )

)β

,

for every pair of points (xi, ti) ∈ K, i = 1, 2.

Proof. We start by fixing (x, ti) ∈ K, i = 1, 2, with t2 > t1 and constructing the

cylinder

S = (x, t2) +Q(R2, R).

There exists a constant l such that dist(K; ∂pET ) < l for every compact set K.

Then, if we choose

R =
1

2l
dist(K; ∂pET ),

we have that S ⊂ ET and R < 1.

Also, supposing that

t2 − t1 < R2,

it is possible to choose

r = |t2 − t1|
1
2 ∈ (0, R).

Hence, we can apply Lemma 2.2.3 to

(x, t2) +Q(ω1−mr2, r)

and conclude that

|u(x, t1)− u(x, t2)| ≤ ηω(2l)β

(
|t2 − t1|

1
2

dist(K; ∂pET )

)β

= C

(
|t2 − t1|

1
2

dist(K; ∂pET )

)β

.

On the other hand, if t2 − t1 ≥ R2, then we have

2l|t2 − t1|
1
2

dist(K; ∂pET )
≥ 1,
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which leads us to conclude that

|u(x, t1)− u(x, t2)| ≤ 2M

≤ 2M(2l)β

(
|t2 − t1|

1
2

dist(K; ∂pET )

)β

= C

(
|t2 − t1|

1
2

dist(K; ∂pET )

)β

.

Similarly, we can prove the Hölder continuity in the space variables, i.e., for all (xi, t) ∈
K, i = 1, 2, we get

|u(x1, t)− u(x2, t)| ≤ C

(
|x2 − x1|

dist(K; ∂pET )

)β
.

Now, using both inequalities, we get that

|u(x1, t1)− u(x2, t2)| = |u(x1, t1)− u(x2, t1) + u(x2, t1)− u(x2, t2)|

≤ C

( |x2 − x1|
dist(K; ∂pET )

)β
+

(
|t2 − t1|

1
2

dist(K; ∂pET )

)β


≤ C

(
|x2 − x1|+ |t2 − t1|

1
2

dist(K; ∂pET )

)β

,

for all (xi, t) ∈ K, i = 1, 2.

Remark 2.2.5. We admit in the previous results that

µ− <
ω

4
.

In the case where the infimum is not comparatively small, i. e,

µ− ≥ ω

4
,

since, ωm−1 > Rε, we then have

inf
Q(4R2−ε,2R)

v ≥ 1

4
R

ε
m−1 , with v = um.

We may then rescale the equation in the x or t direction so as to obtain a uniformly

parabolic operator, to which we may apply standard local estimates. Going back to the

original coordinates we easily get the dimensional form

|v(x1, t1)− v(x2, t2)| ≤ C

(
|x2 − x1|+ |t2 − t1|

1
2

dist (K; ∂pET )

)β

for suitable σ > 0 and β > 0.
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3. Sharp regularity for the porous
medium equation with m > 1

Contents
3.1 Approximation by homogeneous functions . . . . . . . . 66

3.2 Geometric iteration . . . . . . . . . . . . . . . . . . . . . . 68

3.3 Sharp regularity . . . . . . . . . . . . . . . . . . . . . . . . 72

In this chapter we will establish a new result in the regularity theory for solutions

of the porous medium equation looking for sharp regularity. First, we will construct

a geometric iteration, more precisely by means of the approximation lemma obtained

in the first part of the chapter, which is a mechanism linking solutions of the inhomo-

geneous PME and solutions of the homogeneous equation, and the celebrated result

obtained by DiBenedetto and Friedman (cf. Chapter 3 and [21]), the Hölder conti-

nuity for the n-dimensional case, we get the first step of the iterative process, then

iterating the result obtained we conclude the process of geometric iteration. Next,

we show that the smallness regime required in the iterative process is not restrictive.

Finally, we will present the main result of this work, that bounded weak solutions of

(1.13) are locally of class C0,γ in space, with

γ =
α

m
, α = min

{
α−0 ,

m[(2q − n)r − 2q]

q[mr − (m− 1)]

}
,

where 0 < α0 ≤ 1 denotes the optimal Hölder exponent for solutions of (1.13) with

f ≡ 0. The regularity class is to be interpreted in the following sense: if

m[(2q − n)r − 2q]

q[mr − (m− 1)]
< α0

then solutions are in C0,γ, with

γ =
(2q − n)r − 2q

q[mr − (m− 1)]
;
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if, alternatively,
m[(2q − n)r − 2q]

q[mr − (m− 1)]
≥ α0,

then solutions are in C0,γ, for any 0 < γ < α0

m
.

We also obtain the C0, γ
θ regularity in time, where

θ = 2−
(

1− 1

m

)
α = α

(
1 +

1

m

)
+ (1− α) 2

is the α−interpolation between 1 + 1
m

and 2.

3.1 Approximation by homogeneous functions

We will start fixing the intrinsic geometric setting for our problem. Then we

will use the available compactness to derive a mechanism linking solutions of the

inhomogeneous PME and solutions of the homogeneous equation. This result will be

fundamental to construct the geometric iteration that will allow us to approach the

optimal regularity theory for the porous medium equation.

Given, 0 < α < 1, let

θ := 2−

(
1− 1

m

)
α. (3.1)

which clearly satisfies the bounds

1 +
1

m
< θ < 2.

For such θ, define the intrinsic θ-parabolic cylinder

Gρ := (−ρθ, 0)×Bρ(0), ρ > 0.

Now, we present the result of approximation for the equation (1.13); this result is

to be compared with a similar statement for the p-Laplace equation in [50] (see also

[25, 12]).

Lemma 3.1.1. (Approximation by homogeneous functions). Given δ > 0, there exists

0 < ε� 1 such that if ‖f‖Lq,r(G1) ≤ ε and u is a local weak solution of (1.13) in G1,

with ‖u‖∞,G1 ≤ 1, then there exists φ such that

φt − div
(
mφm−1∇φ

)
= 0 in G1/2 (3.2)

and

‖u− φ‖∞,G1/2
≤ δ.
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Proof. Suppose, for the sake of contradiction, that, for some δ0 > 0, there exist

sequences (uj)j and (f j)j, with

uj ∈ Cloc

(
−1, 0;L2

loc(B1)
)
, (uj)

m+1
2 ∈ L2

loc

(
−1, 0;W 1,2

loc (B1)
)

and f j ∈ Lq,r(G1), such that

ujt − div
(
m(uj)m−1∇uj

)
= f j in G1 (3.3)

‖uj‖∞,G1 ≤ 1, (3.4)

‖f j‖Lq,r(G1) ≤ 1/j, (3.5)

but still, for any j and any solution φ of the homogeneous equation in G1/2,

‖uj − φ‖∞,G1/2
> δ0. (3.6)

Consider a cutoff function ξ ∈ C∞0 (G1) such that ξ ∈ [0, 1], ξ ≡ 1 in G1/2 and

ξ ≡ 0 near ∂pG1. Thus, since uj is a solution of (1.13), we can apply the Caccioppoli

estimate of Proposition 1.3.1 to get

ˆ 0

−1

ˆ
B1

(uj)m−1|∇uj|2ξ2 ≤ sup
−1<t<0

ˆ
B1

(uj)2ξ2 +

ˆ 0

−1

ˆ
B1

(uj)m−1|∇uj|2ξ2

≤ C

ˆ 0

−1

ˆ
B1

(uj)2ξ|ξt|+
ˆ 0

−1

ˆ
B1

(uj)m+1|∇ξ|2 + C‖f j‖2
Lq,r

≤ c‖u‖2
2,G1

+ c′‖u‖m+1
m+1,G1

+ c′′
1

j

≤ c̃, (3.7)

using (3.4) and (3.5).

Let us now define vj := (uj)
m+1

2 . Observing that

|∇vj|2 =

(
m+ 1

2

)2

(uj)m−1|∇uj|2,

we obtain, due to (3.7),

‖∇vj‖2
2,G1/2

≤
ˆ 0

−1

ˆ
B1

|∇vj|2ξ2dxdt

≤
(
m+ 1

2

)2

c̃

and then, for a subsequence,

∇vj ⇀ ψ
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weakly in L2(G1/2).

Moreover, owing to Hölder continuity of the solutions of PME (chapter 2; for more

details cf. [21, 19]), the equibounded sequence (uj)j is also equicontinuous and, by

Arzelà–Ascoli theorem 1.1.6,

uj −→ φ

uniformly in G1/2, for yet another (relabelled) subsequence. Since we also have the

pointwise convergence

vj := (uj)
m+1

2 −→ φ
m+1

2 =: v,

we can identify ψ = ∇v.

Passing to the limit in (3.3), we find that φ solves (3.2) which contradicts (3.6)

for j � 1.

3.2 Geometric iteration

We now set up a geometric iteration, exploring the intrinsic scaling of the PME

that will be crucial in obtaining the sharp Hölder exponent. The next result is the

first step in this iteration. Let α0 denote the sharp Hölder continuity exponent for

solutions of (1.13) in the homogeneous case and

γ =
α

m
,

with

0 < α = min

{
α−0 ,

m[(2q − n)r − 2q]

q[mr − (m− 1)]

}
< α0 ≤ min

{
1,

1

m− 1

}
≤ 1. (3.8)

Lemma 3.2.1. There exists ε > 0, and 0 < λ � 1/2, depending only on m,n and

α, such that if ‖f‖Lq,r(G1) ≤ ε and u is a local weak solution of (1.13) in G1, with

‖u‖∞,G1 ≤ 1, then

‖u‖∞,Gλ ≤ λγ

provided

|u(0, 0)| ≤ 1

4
λγ.

Proof. Take 0 < δ < 1, to be chosen later, and apply Lemma 3.1.1 to obtain 0 < ε� 1

and a solution φ of (3.2) in G1/2 such that

‖u− φ‖∞,G1/2
≤ δ.
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Since φ solves (3.2), it follows from the available regularity theory (chapter 2; for

more details cf. [21]) that φ is locally Cα0
x ∩ C

α0/2
t , for 0 < α0 < 1. Thus we obtain

sup
(x,t)∈Gλ

|φ(x, t)− φ(0, 0)| ≤ Cλ
α0
m ,

for λ� 1, to be chosen soon, and C > 1 universal. In fact, for (x, t) ∈ Gλ,

|φ(x, t)− φ(0, 0)| ≤ |φ(x, t)− φ(0, t)|+ |φ(0, t)− φ(0, 0)|

≤ c1|x− 0|α0 + c2|t− 0|α0/2

≤ c1λ
α0 + c2λ

θ
2
α0

≤ c1λ
α0
m + c2λ

α0
m

≤ Cλ
α0
m

since θ ≥ 1 + 1
m
> 2

m
. We can therefore estimate

sup
Gλ

|u| ≤ sup
G1/2

|u− φ|+ sup
Gλ

|φ| (3.9)

≤ sup
G1/2

|u− φ|+ sup
Gλ

|φ− φ(0, 0)|+ |φ(0, 0)| (3.10)

≤ sup
G1/2

|u− φ|+ sup
Gλ

|φ− φ(0, 0)|+ |φ(0, 0)− u(0, 0)|+ |u(0, 0)|

≤ 2δ + Cλ
α0
m +

1

4
λγ. (3.11)

Note that we will choose λ� 1/2 and thus

Gλ := (−λθ, 0)×Bλ ⊂ (−(1/2)θ, 0)×B1/2 = G1/2.

We finally fix the constants, choosing

λ =

(
1

4C

) m
α0−α

and δ =
1

4
λγ,

and fixing also ε > 0, through Lemma 3.1.1. The result follows from estimate (3.11)

with the indicated choices.

We now iterate the previous result in the appropriate geometric setting.

Theorem 3.2.2. There exists ε > 0, and 0 < λ� 1/2, depending only on m,n and

α, such that if ‖f‖Lq,r(G1) ≤ ε and u is a local weak solution of (1.13) in G1, with

‖u‖∞,G1 ≤ 1, then

‖u‖∞,G
λk
≤ (λk)γ (3.12)

provided

|u(0, 0)| ≤ 1

4

(
λk
)γ
.
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Proof. The proof is by induction on k ∈ N. If k = 1, (3.12) holds due to Lemma

3.2.1. Now suppose the conclusion holds for k and let’s show it also holds for k + 1.

Consider the function v : G1 → R defined by

v(x, t) =
u(λkx, λkθt)

λγk
.

We have

vt(x, t) = λkθ−γkut(λ
kx, λkθt),

∇v(x, t) = λk−γk∇u(λkx, λkθt)

and,

mvm−1∇v(x, t) = m[ λ−
α
m
k(u(λkx, λkθt)) ]m−1λk−

α
m
k∇u(λkx, λkθt)

= λk(1−α)m[u(λkx, λkθt) ]m−1∇u(λkx, λkθt).

Thus,

div
(
m(v(x, t))m−1∇v(x, t)

)
= λk(2−α)div

(
m(u(λkx, λkθt))m−1∇u(λkx, λkθt)

)
.

Recalling (3.1), we conclude, since u is a local weak solution of (1.13) in G1, that

vt − div
(
mvm−1∇v

)
= λk(2−α)f(λkx, λkθt) = f̃(x, t).

We now compute

‖f̃‖rLq,r(G1) =

ˆ 0

−1

(ˆ
B1

∣∣∣f̃(x, t)
∣∣∣q dx)r/q dt

=

ˆ 0

−1

(ˆ
B1

λk(2−α)q
∣∣f(λkx, λkθt)

∣∣q dx)r/q dt
=

ˆ 0

−1

(ˆ
B
λk

λk(2−α)q−kn ∣∣f(x, λkθt)
∣∣q dx)r/q

dt

= λ[k(2−α)q−kn] r
q

ˆ 0

−1

(ˆ
B
λk

∣∣f(x, λkθt)
∣∣q dx)r/q

dt

= λ[k(2−α)q−kn] r
q
−kθ
ˆ 0

−λkθ

(ˆ
B
λk

|f(x, t)|q dx

)r/q

dt.
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Because of the crucial and optimal choice of α in (3.8), we have

[k(2− α)q − kn]
r

q
− kθ ≥ 0

and thus

‖f̃‖Lq,r(G1) ≤ ‖f‖Lq,r((−λθk,0)×B
λk

) ≤ ‖f‖Lq,r(G1) ≤ ε,

which entitles v to Lemma 3.2.1. Note that ‖v‖∞,G1 ≤ 1, due to the induction

hypothesis, i.e.,

sup
G1

|v| = sup
G
λk

|u(λkx, λkθt)|
λγk

≤ λγk

λγk

= 1

and

|v(0, 0)| =

∣∣∣∣u(0, 0)

(λk)γ

∣∣∣∣
≤

∣∣∣∣∣ 1
4

(
λk+1

)γ
(λk)γ

∣∣∣∣∣
≤ 1

4
λγ.

It then follows that

‖v‖∞,Gλ ≤ λγ,

and, therefore,

sup
(x,t)∈G

λk+1

|u(x, t)|
λ
α
m
k

≤ sup
(x,t)∈Gλ

|u(λkx, λkθt)|
λ
α
m
k

= sup
(x,t)∈Gλ

|v(x, t)|

≤ λ
α
m .

which is the same as

‖u‖∞,G
λk+1
≤ λγ(k+1).

The induction is complete.
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3.3 Sharp regularity

In this section we will present the main result of this work, a new result about

sharp regularity theory for the solutions of the porous medium equation in the n-

dimensional case.

We next show the smallness regime required in the previous theorem is not re-

strictive and generalize it to cover the case of any small radius.

Theorem 3.3.1. If u is a local weak solution of (1.13) in G1 then, for every 0 < r <

λ, we have

‖u‖∞,Gr ≤ C rγ

provided

|u(0, 0)| ≤ 1

4
rγ.

Proof. Take

v(x, t) = ρu
(
ρax, ρ(m−1)+2at

)
with ρ, a to be fixed, which solves

vt − div(mvm−1∇v) = ρm+2af(ρax, ρ(m−1)+2a)t) = f̃(x, t).

In fact, let

v(x, t) = ρu(ρax, ρbt)

We have

vt(x, t) = ρ1+but(ρ
ax, ρbt)

and

∂xiv(x, t) = ρ1+auxi(ρ
ax, ρbt).

Since

∇v(x, t) = ρ1+a∇u(ρax, ρbt)

and

mvm−1∇v(x, t) = m[ρu(ρax, ρbt)]m−1ρ1+a∇u(ρax, ρbt)

= ρ(m−1)+1+am[u(ρax, ρbt)]m−1∇u(ρax, ρbt).
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we obtain

div(mvm−1∇v(x, t)) = ρ(m−1)+1+2adiv(m(u(ρax, ρbt))m−1∇u(ρax, ρbt)).

Now we choose b such that

1 + b = m+ 2a.

Therefore, we have

vt − div(mvm−1∇v) = ρ(m+2a)ut(ρ
ax, ρ(m−1)+2at))

− ρ(m+2a)div(m(u(ρax, ρ(m−1)+2a)t))m−1∇u(ρax, ρ(m−1)+2at)

= ρ(m+2a)f(ρax, ρ(m−1)+2a)t) = f̃(x, t).

Furthermore, we have

‖v‖∞,G1 ≤ ρ‖u‖∞,G1 , (3.13)

due to the definition of v, and

‖f̃‖rLq,r(G1) = ρ(m+2a)r−a(n r
q

+2)−(m−1)‖f‖rLq,r(G1). (3.14)

In fact,

‖f̃‖rLq,r(G1) =

ˆ 0

−1

(ˆ
B1

|f̃(x, t)|qdx
)r/q

dt

=

ˆ 0

−1

( ˆ
B1

ρ(m+2a)q|f(ρax, ρ(m−1)+2at)|qdx
)r/q

dt

=

ˆ 0

−1

( ˆ
Bρa

ρ(m+2a)q−an|f(x, ρ(m−1)+2at)|qdx
)r/q

dt

= ρ[(m+2a)q−an] r
q

ˆ 0

−1

( ˆ
Bρa

|f(x, ρ(m−1)+2at)|qdx
)r/q

dt

= ρ[(m+2a)q−an] r
q
−[(m−1)+2a]

ˆ 0

−ρ(m−1)+2a

( ˆ
Bρa

|f(x, t)|qdx
)r/q

dt

= ρ(m+2a)r−a(n r
q

+2)−(m−1)‖f‖rLq,r(G1)

Now, choosing a > 0 such that

(m+ 2a)r − a
(
nr

q
+ 2

)
− (m− 1) > 0,
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which is always possible (observe that the condition holds for a = 0, so by continuity

with respect to a there is a neighborhood of zero where the condition is still valid),

and 0 < ρ� 1, we enter the smallness regime required by Theorem 3.2.2, i.e.,

‖v‖∞,G1 ≤ 1 and ‖f̃‖Lq,r(G1) ≤ ε.

Now, given 0 < r < λ, there exists k ∈ N such that

λk+1 < r ≤ λk.

Since

|u(0, 0)| ≤ 1

4
rγ ≤ 1

4
(λk)γ,

it follows from Theorem 3.2.2 that

‖u‖∞,G
λk
≤ (λk)γ.

Then, for C = λ−γ,

‖u‖∞,Gr ≤ ‖u‖∞,Gλk ≤ (λk)γ <
( r
λ

)γ
= C rγ.

We now complete our study, with the main result of the thesis.

Theorem 3.3.2. Let u be a locally bounded weak solution of (1.13) in G1, with

f ∈ Lq,r satisfying (1.14). Then u is locally of class C0,γ in space and C0, γ
θ in time,

with

γ =
α

m
, α = min

{
α−0 ,

m[(2q − n)r − 2q]

q[mr − (m− 1)]

}
.

Here 0 < α0 ≤ 1 denotes the optimal Hölder exponent for solutions of the homoge-

neous case and θ is given in (3.1).

Proof. We study the Hölder continuity at the origin, proving there is a uniform con-

stant K such that

‖u− u(0, 0)‖∞,Gr ≤ Krγ. (3.15)

We know, a priori, that u is continuous so we can define

µ := (4|u(0, 0)|)−γ ≥ 0.

Take any radius 0 < r < λ. We analyse three alternative cases, exhausting all

possibilities.
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• If µ ≤ r < λ then, by Theorem 3.3.1,

sup
Gr

|u(x, t)− u(0, 0)| ≤ C rγ + |u(0, 0)| ≤
(
C +

1

4

)
rγ. (3.16)

• If 0 < r < µ, we consider the function

w(x, t) :=
u(µx, µθt)

µγ
.

Note that,

|w(0, 0)| =
u(0, 0)

µγ
(3.17)

=
1

4
, (3.18)

since µ = (4|u(0, 0)|)−γ, and w solves in G1 the PME

wt − div
(
mwm−1∇w

)
= µ2−αf(µx, µθt).

Indeed, we have that

wt(x, t) = µθ−
α
mut(µx, µ

θt),

∇w(x, t) = µ1− α
m∇u(µx, µθt)

and,

mwm−1∇w(x, t) = m[ µ−
α
m (u(µx, µθt)) ]m−1µ1− α

m∇u(µx, µθt)

= µ(1−α)m[u(µx, µθt) ]m−1∇u(µx, µθt).

Thus,

div
(
m(w(x, t))m−1∇w(x, t)

)
= µ2−αdiv

(
m(u(µx, µθt))m−1∇u(µx, µθt)

)
,

and, then,

wt − div
(
mwm−1∇w

)
= µ2−αf(µx, µθt) = f̃(x, t).

Moreover, again using Theorem 3.3.1, it follows that

‖w‖∞,G1 = µ−γ‖u‖∞,Gµ ≤ C,
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since |u(0, 0)| = 1
4
µγ. With this uniform estimate in hand, and using local C0,α

regularity estimates (cf. section 1.3 and for more details [1]), we find that there

exists a radius ρ0, depending only on the data, such that

|w(x, t)| ≥ 1

8
, ∀ (x, t) ∈ Gρ0 .

This implies that, in Gρ0 , w solves a uniformly parabolic equation of the form

wt − div (a(x, t)∇w) = f ∈ Lq,r,

with continuous coefficients satisfying the bounds 0 < c1 ≤ a(x, t) ≤ c2. In

particular, we have (see [50])

w ∈ C0,β(Gρ0), with β = 1−
(

2

r
+
n

q
− 1

)
> γ,

which is the optimal Hölder regularity for solutions of the heat equation with a

source in Lq,r, for exponents satisfying (1.14). As an immediate consequence,

sup
(x,t)∈Gr

|w(x, t)− w(0, 0)| ≤ C rβ, ∀ 0 < r <
ρ0

2
,

which, in terms of u, reads

sup
(x,t)∈Gr

∣∣∣∣u(µx, µθt)

µγ
− u(0, 0)

µγ

∣∣∣∣ ≤ C rβ, ∀ 0 < r <
ρ0

2
.

Since γ < β, we conclude

sup
(x,t)∈Gµr

|u(x, t)− u(0, 0)| ≤ C (µr)γ, ∀ 0 < µr < µ
ρ0

2
,

and, relabelling, we obtain

sup
(x,t)∈Gr

|u(x, t)− u(0, 0)| ≤ C rγ, ∀ 0 < r < µ
ρ0

2
. (3.19)

• Finally, for µρ0
2
≤ r < µ, we have

sup
(x,t)∈Gr

|u(x, t)− u(0, 0)| ≤ sup
(x,t)∈Gµ

|u(x, t)− u(0, 0)|

≤ C µγ ≤ C

(
2r

ρ0

)γ
= C̃rγ. (3.20)

Putting K = max
{
C + 1

4
, C̃
}

and combining (3.16)–(3.20), we obtain (3.15), for

every 0 < r < λ, and the proof is complete.
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Final Considerations

In this thesis we investigate the optimal regularity for the porous medium equa-

tion(PME) and a new result is established on the optimal Hölder continuity for so-

lutions of the non-homogeneous parabolic equation ut − div(mum−1∇u) = f , when

m > 1, via a new version of Caccioppoli estimate for weak solutions of the PME in

the non-homogeneous case, which was used together with some results of functional

analysis to develop the approximation lemma, and a geometric iteration using the

intrinsic scaling method.

The research developed in this work is a finding in the regularity theory of PME

and a contribution in determining the exact Hölder exponent for the solutions of the

PME in any dimension, a problem of certain relevance in the literature. The tech-

niques (approximation theory, intrinsic scaling and the iterative geometric process)

which were used in this thesis are a recent and innovative approach in the study of

the regularity theory for parabolic equations that explores the degenerate structure of

the operator. Although some of these tools are well used in the theory of regularity in

previous works, the approach used here followed the construction developed in [50].

The proofs can be adapted to more general degenerate parabolic equations of type

ut − div A(x, t, u,∇u) = f ∈ Lr,q

satisfying the usual structure assumptions similar to those adopted in this thesis. In

the background, the heuristic is to interpret the homogeneous problem as the geo-

metric tangential equation of its inhomogeneous counterpart, for small perturbations

in f ∈ Lr,q, ‖f‖r,q < 1. However, it is important to emphasize that every equation

has its own identity, and that the techniques are just a direction toward the study of

the Hölder exponent, and the adaptations are the most crucial and complex part in

determining the exponent. This is clearly seen when we compare the approach used

to study the p-Laplacian equation in [50] with that of the porous media developed in

our work.

The results developed here have become an article [3], which was submitted re-

cently.
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For possible future work in this theory, it would be interesting, through the same

tools and techniques used in the thesis, to develop the research established here for

the doubly nonlinear degenerate parabolic equation

(up−1)t −∇ · (|∇u|p−2∇u) = f ∈ Lq,r, p ≥ 2.

It would also be interesting to use the results obtained on the optimal regularity in

[50] and here to study the equivalence between the two popular models of nonlinear

diffusion, the porous medium equation and the p-Laplacian equation, and thus extend

the equivalence presented by Iagar and Vázquez in [34]. They have established exact

correspondence formulas between these solutions, showing precisely that for 0 < n < 2

the radially symmetric solutions u and ũ of the porous medium equation and the p-

Laplacian equation are related through the following transformation:

ũr̃(r̃, t) = D1r
2n−2
m+1 u(r, t), D1 =

(
(mn− n+ 2)2

m(m+ 1)2

) 1
m−1

, p = m+ 1.

If we succeed in this generalization, we would be establishing an unprecedented ap-

proach, in which we could find the optimal regularity of the porous medium equation

directly from the p-Laplacian equation. For more details on this equivalence and its

progress see ([32, 33, 49]).
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