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Abstract

In this thesis, the structure and properties of elemental carbon clusters, notably C2, C3

and C4, are analyzed afresh from a purely theoretical perspective and using high-level

ab initio techniques. Special efforts are put into the characterization and computation of

their potential energy surfaces (PESs) by making use of state-of-the-art electronic struc-

ture calculations followed by analytic modeling using the double many-body expansion

method. Particular emphasis will be paid on C3 whose potential energy landscape shows

quite peculiar topographical attributes. For this system, rovibrational energy calculations

have also been performed.

The first part of this thesis addresses the theoretical background on which the current

research was based, namely the concept, the computation and the modeling of global

PESs, together with their use in the calculations of spectroscopic properties. The second

part though gathers the main scientific contributes of the present work. Thus, an accurate

PES for ground-state C3 will be initially obtained that obviously employs the diatomic

curve of C2 as two-body terms. Subsequently, a detailed study on the vibronic coupling

effects in carbon trimer will be further presented and a Jahn-Teller plus pseudo-Jahn-Teller

potential matrix proposed that is capable of modeling locally the 4 conical intersections

(Cis) of D3h and C2v symmetries characteristic to the title species. Novel approaches for

the analytic representation of global PESs based on the accurate description of multiple

Cis as well as for obtaining spectroscopically accurate global forms will also be developed

and illustrated for C3. Finally, a survey on the most relevant isomeric forms for the PES of

C4 will be additionally performed and a fully six-dimensional global surface is reported

that reproduces all known topographical aspects of its ground triplet state.
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Resumo

Nesta dissertação foram abordados os principais aspectos estruturais e eletrônicos in-

trínsecos à agregados de carbono elementares, nomeadamente C2, C3 e C4, por meio

de uma perspectiva teórica e baseada exclusivamente em metodologias ab initio. Tal

estudo envolveu sobretudo a investigação e a obtenção das correspondentes superfícies

de energia potencial (SEPs) empregando-se cálculos de estrutura eletrônica de alto nível

e posterior representação analítica através do método da dupla expansão de multicorpos.

Especial ênfase será dada ao C3 cuja SEP apresenta características topográficas peculiares.

Para tal sistema foram ainda realizados cálculos de seu espectro rotational-vibracional.

Na primeira parte, resumem-se os aspectos teóricos fundamentais para o estudo em

questão, em particular, o conceito, o cálculo e a modelação de superfícies globais, bem

como a utilização destas últimas no estudo de propriedades espectroscópicas. Na se-

gunda parte, apresentam-se os principais contributos da presente investigação. Inicial-

mente será obtida a SEP global para o estado fundamental do C3, obviamente empregando-

se como termo de 2 corpos a curva diatômica do C2. Um estudo sistemático dos efeitos

vibrônicos no referido trímero será, posteriormente, efetuado e uma matriz de potencial

Jahn-Teller+pseudo-Jahn-Teller será proposta visando à adequada descrição local de suas

4 intersecções cônicas características. Métodos de modelação de SEPs globais baseados

na correta representação de múltiplos cúspides, bem como na obtenção de potenciais

com qualidade (quasi-) espectroscópica serão subsequentemente desenvolvidos e apli-

cados ao C3. Por fim, serão ainda efetuados estudos de pontos estacionários relevantes

para a SEP do radical C4 e uma superfície global será obtida de forma a reproduzir os

principais aspectos topográficos do estado fundamental tripleto do referido sistema.
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Introductory remarks

Carbon is one of the most abundant element in the Universe and is of paramount im-

portance to all living organisms on Earth. It provides the backbone of structural and

functional compounds necessary for life like DNA, proteins, fats, and carbohydrates [1].

Undoubtedly, the raw material for these complex biological molecules is primarily atmo-

spheric carbon dioxide (CO2) which is incorporated in terrestrial ecosystems via photo-

synthetic organisms. In the course of such well-known carbon cycle, carbon (again, in

the form of CO2) is released back into atmosphere thought respiration and other oxidative

processes (such as decomposition or combustion of organic materials) [2].

Besides being crucial to life, carbon-bearing molecules are also key for a wide range

of technology fields ranging from material chemistry to pharmaceutics [3, 4]. Clearly, what

brings all such vast branches of science together is the uniqueness of carbon chemistry

itself. Carbon is capable of forming strong covalent bonds with almost all elements (and

with itself) in diverse hybridization states (sp, sp2 and sp3), yielding a myriad of possible

structures with outstanding chemical and physical properties [5, 6].

Elemental carbon exists in nature as two common allotropes, diamond and graphite.

They differ in the way that C atoms are attached together to form extended crystalline net-

works. Diamond is made up of sp3-hybridized (tetrahedral) carbon atoms, while graphite

comprises of stacked sp2 carbon sheets (or graphene layers) arranged in a hexagonal man-

ner [7–9]. As expected from these distinct bonding patterns, such allotropic forms exhibit

quite remarkable differences in their observable properties. Diamond is a transparent

insulator material which is widely appreciated as being the hardest natural substance

known. On the other hand, graphite is an opaque, fragile dark material that shows

9



10 Introductory remarks

exceptional conductivity properties due to its delocalized π electrons [6, 10].

New avenues on the field of carbon chemistry have been traced after the isolation and

structural characterization of the soccer-ball-shaped C60 molecule [11, 12]. Such carbon

allotrope consists of 60 sp2-hybridized C atoms which are arranged in 12 pentagons and

20 hexagons to form an Ih-symmetrical structure [11]. Indeed, several other fullerene

structures such as C70, C76, C78, C84 and C90 have soon been recognized [10, 13]. The

astonishing properties and diverse potential applications of fullerenes motivated intense

research toward the identification of new possible stable allotropic forms. This led to

the discovery of the single- and multi-walled carbon nanotubes [14, 15], the preparation

of single-layer graphene sheets [16] and the introduction of various elusive synthetic

allotropes [6, 17], all of them with remarkable electrical, mechanical, chemical and optical

properties.

Undoubtedly, a detailed knowledge of the fascinating (and often unexpected) com-

plexities of these large carbon aggregates is only attainable once the chemical properties

of their involved precursors, i.e., the smallest pure carbon molecules, have been fully

clarified. Indeed, small Cn clusters have been the subject of an intense research effort

and continue to be target prototypes for understanding a large variety of complex chem-

ical environments [18, 19]. Molecules of this kind are known to appear in a myriad of

astrophysical objects, particularly in the atmospheres of carbon stars [20–24] and in the

sun [25] as well as in comets [26–28] and interstellar clouds [29–32].

Carbon is formed by nuclear fusions in the cores of stars (a phenomenon often re-

ferred to as 3α process [33]) which, in the late stages of stellar evolution, is ejected into

their outer layers and subsequently to the interstellar medium. In these latter environ-

ments, chemical reactions are prone to occur that transform atomic C gas into complex

organic molecules and dust grains [34, 35]. In this context, small carbon aggregates are

thought to be fundamental building blocks for the formation of such involved interstellar

C-rich compounds like HC2n+1N, CnH, CnH2, CnN, CnO, CnS, polycyclic aromatic hydro-

carbons and fullerenes (C60 and C70) [35–38]. Apart from their astrochemical ubiquity,

carbon clusters are also prominent species in equilibrium hot carbon vapors and plas-

mas generated through energetic processing of C-containing materials [39], hydrocarbon
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flames [40] and in other soot-forming terrestrial environments [41].

Clearly, the elucidation of the structural, spectroscopic, and energetic properties of

such species could provide valuable tools for unraveling their underlying chemistry and

also for clarifying the unknown growth processes leading to the formation of larger ag-

gregates. Yet, small Cn clusters are highly reactive (short-lived) molecules under most lab-

oratory conditions which makes their experimental characterization extremely involved

[18, 19]. Moreover, the existence of numerous close-in-energy isomeric forms (rang-

ing from linear chains to monocyclic/polycyclic rings), high-density of low-lying sin-

glet/triplet electronic states, pronounced biradical character and (pseudo-) Jahn-Teller

effects all complicate their theoretical description too [42–50]. Definitely, a detailed study

of these molecules requires a fruitful interplay of state-of-the-art experimental techniques

and high-level ab initio approaches.

What bridges the gap between these latter two is unavoidably the very notion of po-

tential energy surfaces (PESs). Within the adiabatic approximation [51–53], PESs describe

the potential energy of a system in terms of the relative positions of the atoms that make

up this system. Inevitably, such potentials carry precise information about the underly-

ing species, and are therefore conceptually important tools for the analysis of structural

isomers, spectroscopy and chemical reaction dynamics [54]. From the theoretical per-

spective, PESs are obtained by solving the electronic Schrödinger equation at sufficiently

many (fixed) nuclear configurations whose energies are subsequently modeled by some

physically motivated analytic function. In so doing, one therefore is faced with the use-

fulness of such functional representations of PESs which can then be subjected to the

nuclear motion problem, yielding dynamical observables in which to compare and cor-

roborate with experiment. At present, robust theoretical framework and computational

resources make thus possible to extensively explore the nuclear configuration space of

small polyatomics with the aim of constructing accurate and global ab initio-based PESs.

The main goal of the present doctoral thesis is to provide such PESs for the smallest

pure carbon chains, namely C2, C3 and C4, using high-level ab initio calculations and

the double many-body expansion (DMBE) method [55–57] for the modeling. Besides

shedding light on some fundamental issues of such species, it is also expected that,



12 Introductory remarks

by making full use of the many-body expansion methodology [54], the potentials so

obtained should offer the fundamental building blocks for constructing PESs of more

involved carbon aggregates, an assumption already demonstrated here for C4.

This thesis is divided into three parts. The first concerns with the theoretical frame-

work supporting the current research, while the second part gathers the results so ob-

tained. The major scientific achievements and outlook are briefly summarized in the last

part of this work. The first five chapters are entirely theoretical in character and are in-

tended to cover only the fundamental aspects on each topic discussed. The subsequent

chapters, which cover the results obtained by our research, are presented as manuscripts

published in peer-reviewed journals. They can all be outlined as follows.

Chapter 1 presents the concept of PESs. Chapter 2 gives insights into the main as-

pects of conical intersections and their implications on molecular systems. The general

vibronic coupling theory as typified by the so-called Jahn-Teller effect is also summarized.

Chapter 3 gives a survey onto the electronic structure methods currently available for cal-

culating PESs, while in chapter 4 the formalism used to construct analytic representation

of global potentials are discussed. Chapter 5 deals with the methods here employed for

the calculation of rovibrational energy levels using the present DMBE forms.

In chapter 6, an accurate global DMBE PES for ground-state C3 is presented [58] that

utilizes the potential energy curve of C2(a 3Πu) as two-body terms and describes the

main topographical features of the title system. In a subsequent chapter, the Jahn-Teller

plus pseudo-Jahn-Teller vibronic problem characteristic to the carbon trimer is further

exploited [45] in order to rationalize its interesting topographical attributes (4 conical

intersections) near the region defined by equilateral triangular geometries.

Based on the results so obtained, in chapter 8, a revisited form for the previously

obtained potential for C3(1 1A′) is proposed [59] by developing a novel approach for

the modeling of multiple conical intersections [60, 61] on the title and related systems.

Additionally, in chapter 9, (near) spectroscopic accuracy is also conveyed [62] to this latter

global form by applying a simplified version of the multiple energy switching scheme

[63, 64] and the best currently available local (spectroscopic) potentials for C3 [65, 66].

Finally, in chapter 10, the most relevant isomeric forms on both singlet and triplet
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PESs of C4 radical are surveyed using full-valence multi-configurational approaches and

extrapolations to the complete basis set limit [67]. Starting from an approximate cluster

expansion of the molecular potential that utilizes the latest reported function for C3 radi-

cal, an approximate four-body term has also been proposed and calibrated using accurate

ab initio energies. The resulting fully six-dimensional global DMBE form reproduces all

known topographical aspects of the ground triplet state of the title system as well as its

linear-rhombic isomerization path [67].
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Part I

Theoretical Background





Chapter 1

The concept of potential energy

surface

A complete theoretical description of the structure and properties of molecular systems

naturally emerges from the laws of electronic and nuclear motion. Yet, molecules are

complicated quantum objects, and as such many mathematical difficulties arise in solving

the resulting Schrödinger equations [1–4]. Such entanglements led to the introduction of

essential approximations in order to justify their quantum mechanical treatment.

The cornerstone of our understanding of chemical processes and molecular structure

has been hinted at by Born and Oppenheimer (BO) [5] in the early days of quantum me-

chanics. In the BO framework, the physical picture behind the approximate separability

of electronic and nuclear motion rests on the fact that the latter are much more massive

than the former, and therefore fast electrons adjust their positions instantaneously as the

slow nuclei move. Thence, in this so-called adiabatic approximation [5–7], one first solve

an electronic problem with the nuclear variables treated as parameters. Then, the result-

ing electronic energies as a function of such parameters, i.e., the potential energy surface

(PES), act (to a first approximation) as an effective potential for the nuclear motion. Such

a PES therefore carries important insights into the structure, spectroscopy, and reactivity

of the molecule.

Although the adiabatic approximation is at the heart the way we think about chemistry,

23



24 Chapter 1. The concept of potential energy surface

there are several important situations where it breaks down. One of the most striking

example appears whenever two (or more) PESs become degenerate or nearly-degenerate

at some points in the nuclear configuration space. In such cases, the non-negligible

coupling between electronic and nuclear degrees of freedom is ubiquitous, and hence

non-adiabatic phenomena plays a central role.

1.1 The Schrödinger equation
Consider a system of L electrons and H nuclei, interacting through Coulomb forces. The

non-relativistic time-dependent Schrödinger equation (TDSE) describing the complete

many-body problem assumes the form [1–4]

ĤT |Ωn(r′′,R′′, t)⟩ = iℏ
∂ |Ωn(r′′,R′′, t)⟩

∂t
, (1.1)

where ĤT is the total non-relativistic Hamiltonian operator and |Ωn(r′′,R′′, t)⟩ is the total

molecular wave function for a quantum state n which depend explicitly on the time t

and the set of all electronic r′′i (i=1, 2, . . . , L) and nuclear R′′
i (i=1, 2, . . . ,H) coordinates1

measured relative to the laboratory-fixed (LF) frame. In turn, i=
√
−1 is the imaginary unit

and ℏ= h/2π is the reduced Planck’s constant. In the absence of external time-varying

fields2, the LF form of ĤT is then [in atomic units (au); see appendix A]

ĤT(r′′,R′′) = T̂N(R′′) + T̂e(r′′) + Û(r′′,R′′), (1.2)

where T̂N(R′′) and T̂e(r′′) are the kinetic energy operators for the motion of the nuclei

and electrons, respectively, which are defined as

T̂N(R′′) = −1
2

H∑
i=1

1
Mi

∇2(R′′
i ), (1.3)

and

T̂e(r′′) = −1
2

L∑
i=1

∇2(r′′i ). (1.4)

1It is convenient to regard r′′i (R
′′
i ) as a column matrix of three Cartesian components with r′′(R′′) being,

therefore, a 3 by L(H) matrix.
2In such cases, the Hamiltonian is not explicitly time dependent.
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In the above equations, Mi=Mi/me is the ratio of the mass of nucleus i (Mi) to the mass

of an electron (me) and ∇2 is the usual Laplacian operator expressed in the Cartesian

components of R′′
i and r′′i . In Eq. (1.2), Û(r′′,R′′) is the total potential energy operator

Û(r′′,R′′) = V̂ee(r′′) + V̂Ne(r′′,R′′) + V̂NN(R′′), (1.5)

with V̂ee(r′′), V̂Ne(r′′,R′′) and V̂NN(R′′) representing the associated operators arising from

the electron-electron, nucleus-electron and nucleus-nucleus interactions

V̂ee(r′′) =
L∑
i=1

L∑
j>i

1
|r′′i − r′′j |

, (1.6)

V̂Ne(r′′,R′′) = −
H∑
i=1

L∑
j=1

Zi
|R′′

i − r′′j |
, (1.7)

and

V̂NN(R′′) =
H∑
i=1

H∑
j>i

ZiZj
|R′′

i − R′′
j |
, (1.8)

where Zi is the atomic number of the i-th nucleus.

If ĤT does not contain time explicitly, as assumed in Eq. (1.2), then the TDSE [Eq. (1.1)]

can be separated from its space and time dependencies by writing [8, 9]

|Ωn(r′′,R′′, t)⟩ = Dn(t) |Ψn(r′′,R′′)⟩ , (1.9)

where

Dn(t) = e−iEnt/ℏ. (1.10)

In Eqs. (1.9) and (1.10), Dn(t) is the usual dynamic phase factor and |Ψn(r′′,R′′)⟩ is

the stationary-state molecular wave function which depends on the electronic (r′′) and

nuclear coordinates (R′′) only. By inserting the ansatz (1.9) into Eq. (1.1) and multiplying

both sides by 1/Dn(t), we obtain [8, 9]

ĤT |Ψn(r′′,R′′)⟩ = En |Ψn(r′′,R′′)⟩ , (1.11)
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which is the time-independent Schrödinger equation (TISE) [1–4]. Indeed, the |Ψn(r′′,R′′)⟩’s
(and also the stationary states3 |Ωn(r′′,R′′, t)⟩) are both eigenfunctions of ĤT with asso-

ciated eigenvalues En. Such functions, therefore, form a complete set {|Ψn(r′′,R′′)⟩}Nn=1

of orthonormal [⟨Ψn(r′′,R′′)|Ψm(r′′,R′′)⟩ = δnm] eigenkets in the N-dimensional Hilbert

space.

1.2 Transformation of the Hamiltonian

1.2.1 Removal of translational motion

It is well established that the full LF Hamiltonian given in Eqs. (1.2)-(1.8) is invariant under

coordinate transformations corresponding to uniform translations [10–13]. This meas that

the molecular center-of-mass (COM) moves through space like a free particle whose

spectrum is completely continuous and associated eigenfunctions not square integrable.

Thence, if there are P= L+H particles, it is always possible to factorize the variable space

R3P as R3⊗R3P−3, where the variables in R3P−3 are translation free. This process is called

setting up a space-fixed (SF) frame. Such a frame is, therefore, parallel to the LF one but

it moves with the COM.

The required linear transformation may be written as

P′ = P′′V, (1.12)

where P′=(r′R′XT) is a 3 by P matrix whose submatrices are expressed enterely in terms

of 3L and 3H−3 SF electronic (r′) and nuclear (R′) degrees of freedom, respectively, as

well as 3 COM coordinates (XT). In turn, P′′ = (r′′R′′) is the associated LF coordinate

matrix and V is a suitable P by P transformation matrix [14–16]. In the above equation,

XT assumes the form (in au)

XT = M−1
T

(
L∑
i=1

r′′i +
H∑
i=1

MiR′′
i

)
, (1.13)

3A quantum state is called stationary if the probability density |Ωn(r′′,R′′, t)|2 = |Ψn(r′′,R′′)|2 is time

independent and all observables (and associated quantum mechanical operators) which do not depend

explicitly on time have time-independent expectation values.
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with

MT =

(
L+

H∑
i=1

Mi

)
. (1.14)

Thence, the Hamiltonian ĤT [Eq. (1.2)] in the new coordinates becomes [11–13]

ĤT(r′′,R′′)
V−→ ĤT(r′,R′,XT) = T̂COM(XT) + ĤRI(r′,R′), (1.15)

where T̂COM(XT) represents the kinetic energy operator for the COM motion

T̂COM(XT) = − 1
2MT

∇2(XT). (1.16)

As seen in Eq. (1.15), the COM variable does not enter the SF Hamiltonian ĤRI(r′,R′),

and therefore such a problem may be separated off completelly [11]. Indeed, the full

solution is of the form4

|Ψn(r′′,R′′)⟩ = |T(XT)⟩ |Ψn(r′,R′)⟩ , (1.17)

where

|T(XT)⟩ = eipXT , (1.18)

and associated translational energy

ET =
|p|2

2MT
. (1.19)

In the above equations, p= [px py pz] is the COM linear momentum whose components

[pα =MTdα/dt (α= x, y, z)] are defined with respect to the origin of the LF frame. Note

that the translational wave function |T(XT)⟩ is not square integrable and the associated

translational energy ET is continuous [12].

The SF (translation-free) Hamiltonian (ĤRI) of Eq. (1.15) is then

ĤRI(r′,R′) = T̂N(R′) + T̂e(r′) + T̂MP(r′) + Û(r′,R′), (1.20)

4By inserting Eqs. (1.15) and (1.17) in Eq. (1.11), dividing both sides by 1/[|T(XT)⟩ |Ψn(r′,R′)⟩] and
solving the resulting diferential equations.
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with T̂N(R′) and T̂e(r′) given now by

T̂N(R′) = −1
2

H−1∑
i,j=1

1
µij

∇⃗(R′
i) · ∇⃗(R′

j), (1.21)

and

T̂e(r′) = − 1
2µe

L∑
i=1

∇2(r′i), (1.22)

where µij and µe are the effective (reduced) masses of the nuclei and electrons, respec-

tively. In Eq. (1.20), T̂MP(r′) is the so-called mass polarization term [13, 17] expressed

as

T̂MP(r′) = − 1
2MT

L∑
i,j=1

∇⃗(r′i) · ∇⃗(r′j), (1.23)

where MT=
∑H

i=1Mi is the total nuclear mass and Û(r′,R′) is defined just as in Eq. (1.5)

but using SF coordinates (r′ and R′) instead of LF ones (r′′ and R′′). Note that, depend-

ing on the choise of the SF coordinates, mixed electronic-nuclear kinetic energy terms

may also appear in Eq. (1.20). Suffice it to say that, in Eq. (1.17), |Ψn(r′,R′)⟩ is now

eigenfunction of ĤRI(r′,R′) [Eq. (1.20)].

1.2.2 The body-fixed Hamiltonian

It can be realized that the translation-free problem is still invariant under orthogonal trans-

formations (rotations) of all electronic and nuclear coordinates [10–13]. This means that

the variable space R3P−3 [spanned by the SF Hamiltonian of Eq. (1.20)] could, in princi-

ple, be further factorized into S3⊗R3P−6, where R3P−6 defines the space of (rotation- and

translation-free) internal coordinates. In turn, S3 defines orientation coordinates which

are usually characterized by three Eulerian angles Θi(i = 1, 2, 3). Such a factorization

could be done by defining a new axis set that rotates in a defined way with the system.

This process is called constructing (or embedding) a body-fixed (BF) frame [14–16].

The required (non-linear) transformation from the set of SF coordinates (r′R′) to BF

ones can be defined as [12]

Z = CT(r′R′), (1.24)

where Z is a 3 by P−1 matrix whose components must be writable in terms of 3L and

3H−6 independent electronic (r) and nuclear (R) internal coordinates, respectively, and C
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is a 3 by 3 orthogonal matrix expressed entirely in terms of Θi. Such a matrix, therefore,

specify the orientation of the BF frame with respect to the SF one. Note that the choice

of C and internal coordinates is, likewise V and P′ in Eq. (1.12), to a large extent arbitrary

[14–16].

Using just these general considerations, and assuming that an internal coordinate and

embedding scheme have been previously chosen, the SF Hamiltonian ĤRI [Eq. (1.20)] in

BF form becomes [10–13]

ĤRI(r′,R′)
CT

−→ ĤRI(r,R,Θ) = T̂R(r,R,Θ) + ĤI(r,R), (1.25)

where the term T̂R(r,R,Θ) contains angular momentum operators involving Θi only as

well as operators that couple the electronic and nuclear motions separately to the angular

motion. In turn, ĤI(r,R) is the corresponding “internal” part which is expressed as

ĤI(r,R) = T̂Ne(r,R) + T̂N(R) + T̂e(r) + T̂MP(r) + Û(r,R), (1.26)

where the operator T̂Ne(r,R) is responsible for the proper coupling between electronic

and nuclear variables via angular motion and all the remaining terms assume the same

form as given in Eqs. (1.21)-(1.23) but now with r and R replacing the SF coordinates (r′

and R′).

The formal solutions of the eigenvalue problem specified by the BF Hamiltonian of

Eq. (1.25) are of the type

|Ψn(r′,R′)⟩ CT

−→ |ΨJ,M
n (r,R,Θ)⟩ =

J∑
k=−J

|ΦJ
k(r,R)⟩ |JMk⟩ . (1.27)

Here, |JMk⟩ is a (normalized) angular momentum eigenfunction [18] which is a function

of the Euler angles alone, J denotes the total angular momentum, M its component along

the SF z-axis and k the corresponding component along the BF z-axis. In the absence of a

field [11], the energy eigenvalue does not depend on M so that the “internal” motion func-

tion |ΦJ
k(r,R)⟩, which is a function of internal degrees of freedom alone, need be labeled

only by J and k. Although a complete separation between internal and rotational motions

is not strictly practicable, as can be seen from Eqs. (1.25) and (1.26), it is thus possible
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to eliminate the angular motion from the problem and write an effective BF Hamiltonian

within any (J,M,k) rotational manifold that depends only on the internal coordinates. In so

doing,5 one get a part of the problem [i.e., Ĥeff
I (r,R)=⟨JMk′|ĤI(r,R)|JMk⟩] which is com-

pletely invariant under orthogonal transformation of the translation-free variables and

another angular part [i.e., T̂eff
R (r,R,Θ) = ⟨JMk′|T̂R(r,R,Θ)|JMk⟩] which vanishes when

J=0 [19] (for details; see chapter 5).

1.3 Adiabatic approximation

Although the underlying idea of the approximate separability of electronic and nuclear

motion has its grounds on the classical paper due to BO [5], the justification of the

adiabatic approximation is customarily approached through the arguments of Born [6]

and Born and Huang (BH) [7]. As traditional in the BH framework, the derivation of

the coupled differential equations for the nuclear motion is made quite formally in terms

of a LF Hamiltonian [Eq. (1.2)]. Such a procedure, however, is far from being trivial

because of the ubiquitous continuous spectrum arising from the COM motion [20, 21].

This difficulty could be avoided by going to a SF frame [section (1.2.1)] or even to a BF

coordinate set [section (1.2.2)] but then several complications arise due to the appearance

of cross terms that mixes electronic with nuclear coordinates [see, e.g, Eqs. (1.25) and

(1.26)] [11–13, 22]. Fortunately, as shown by Handy and Lee [23] and pointed out by

Kutzelnigg [22], “In doing things that, strictly speaking, one should not do, one arrives

at the correct adiabatic corrections, and so in a much simpler way than if one had first

separated off the COM motion”. Thus, for the sake of simplicity, all the derivations here

shown follow the pragmatic formalism of BH.

The adiabatic approximation is based onto the assumption that the operator T̂N(R)

[Eq. (1.3)] can be considered as a small perturbation [5]. Thence, in zeroth-order approx-

imation, when the mass of the nuclei are infinitely large, the LF Hamiltonian of Eq. (1.2)

5By constructing matrix representations of the operators T̂R(r,R,Θ) and ĤI(r,R) [Eq. (1.27)] in the

angular momentum basis |JMk⟩ and integrating over Θi.
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takes the form6 [24, 25]

Ĥe(r;R) = T̂e(r) + Û(r;R), (1.28)

where, for simplicity, we have dropped the explicit distinction between coordinate sets

[the LF coordinates r′′(R′′) will be denoted, henceforth, as just r(R), unless otherwise

stated]. In Eq. (1.28), Ĥe(r;R) is the familiar electronic (clamped-nuclei) Hamiltonian

that depends parametrically (as indicated by the semicolon) on R. The problem of

finding the stationary states of the system reduces then to solving the time-independent

electronic Schrödinger equation (TIESE)

Ĥe |ψi(r;R)⟩ = Vi(R) |ψi(r;R)⟩ (1.29)

for fixed values of nuclear coordinates R. In the TIESE above, |ψi(r;R)⟩ are elec-

tronic adiabatic eigenfunctions that form a complete set {|ψi(r;R)⟩}Ii=1 of orthonormal

[⟨ψj(r;R)|ψi(r;R)⟩ = δji] eigenkets in the I-dimensional electronic Hilbert space. Such

functions thus characterize states of motion of electrons for infinitely slow (adiabatic)

changes in R. Vi(R) is the associated electronic eigenvalues and, if all possible sets of

nuclear coordinates are considered, represents the effective adiabatic PES for nuclear

motion.

Of course, we are primarily interested in solving the full TISE [Eq. (1.11)] which

describes the electronic plus nuclear motion in the system. To this end, we expand the

total wave function |Ψn(r,R)⟩ [Eq. (1.11)] in the electronic eigenfunctions of Ĥe as

|Ψn(r,R)⟩ =
I∑
i

|χi(R)⟩ |ψi(r;R)⟩ . (1.30)

The above expression represents the BH expantion [6, 7] with {|χi(R)⟩}Ii=1 being the

set of (a priori, unknown) nuclear wave functions. Substituting Eq. (1.30) into the full

TISE [Eq. (1.11)] and taking the inner product with ⟨ψj(r;R)|, one obtain an infinite set

[provided that I in Eq. (1.30) is infinitely large] of coupled differential equations of the

form [24, 25][
−

H∑
α=1

1
2Mα

∇2(Rα) + Vj(R)− En

]
|χj(R)⟩ =

I∑
i

Λji(R) |χi(R)⟩ (1.31)

6By setting the kinetic energy of the nuclei equal to zero.
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where Λ defines the so-called non-adiabatic coupling matrix which describes the dy-

namical interactions between the electronic and nuclear motion. Its elements [Λji(R)] are

given by

Λji(R) =
H∑

α=1

1
2Mα

[
2Fji(Rα) · ∇⃗(Rα) + Gji(Rα)

]
, (1.32)

with

Fji(Rα) =
⟨
ψj(r;R)

∣∣∣ ∇⃗(Rα)ψi(r;R)
⟩

(1.33)

and

Gji(Rα) =
⟨
ψj(r;R)

∣∣∇2(Rα)ψi(r;R)
⟩

(1.34)

being the derivative and scalar coupling terms, respectively. Note that F is a matrix

in electronic space whose elements (Fji) are, in turn, vectors in nuclear space.7 In

Eqs. (1.32)-(1.34), if the electronic wave functions are chosen to be real, the derivative

coupling elements Fji(Rα) vanishes for i= j [6, 7], and only the scalar coupling terms con-

tribute to the so-called diagonal Born-Oppenheimer correction (DBOC) [22, 23] which,

for this case, assume the form

Λjj(R) =
H∑

α=1

Gjj(Rα)

2Mα

. (1.35)

Suffice it to say that the off-diagonal terms Λji(R) (i ̸= j) are responsible for the proper

coupling between nuclei and electrons in different states of motion [i.e., between elec-

tronic states |ψi(r;R)⟩ and |ψj(r;R)⟩], and hence are generally referred to as non-adiabatic

corrections [25].

By applying the grad operator ∇⃗(Rα) to the TIESE [Eq. (1.29)] and using the definition

(1.33), one can obtain the following expression for the off-diagonal derivative couplings8

Fji(Rα) =

⟨
ψj(r;R)

∣∣∣ ∇⃗(Rα)Ĥe(r;R)
∣∣∣ψi(r;R)⟩

Vi(R)− Vj(R)
(i ̸= j). (1.36)

7We recall that Rα is a column matrix of three Cartesian components corresponding to the coordinates

of the α-th nucleus.
8From the definition Gji(Rα) = ∇⃗(Rα) ·Fji(Rα) + Fji(Rα) ·Fji(Rα) the same conclusions also apply to

scalar coupling terms.
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It is clear from the above definition that Fji(Rα) assume substantially large values when

the Vi(R) and Vj(R) PESs come quite close in energy. Actually, at a conical intersection

(Ci) [where Vi(R)=Vj(R)], the derivative couplings becomes infinite. Such a well-known

behavior of the non-adiabatic coupling terms (NACTs) is responsible for numerical com-

putational difficulties when one deals with the adiabatic basis representation [25, 26].

Apart from such situations, if the adiabatic PESs are well separated energetically from

all other electronic states, Λji(R) is expected to be a small (but not vanishing) quantity,

inasmuch as Fji(Rα) and Gji(Rα) in Eq. (1.32) are scaled by 1/Mα.

Since the set of electronic adiabatic wave functions of Eq. (1.29) is, in principle,

complete, Eqs. (1.30) and (1.31) are exact [25]. It is only when the BH expansion is

truncated that approximations are made. Indeed, if just one term is retained in the

expansion of Eq. (1.30), the total wave function is then

|Ψn(r,R)⟩ = |χi(R)⟩ |ψi(r;R)⟩ . (1.37)

By inserting such adiabatic anzats [5–7] into Eq. (1.11) and taking the inner product with

⟨ψj(r;R)|, one obtain[
−

H∑
α=1

1
2Mα

∇2(Rα) + Vj(R)− Λjj(R)− En

]
|χj(R)⟩ = 0, (1.38)

which is exactly Eq. (1.31) when interstate coupling terms [Λji(R) for i ̸= j] are neglected.

The above equation is thus called BO approximation [5, 6, 17]. Further approximations

could be here introduced if one considers the smallness of the Λjj(R) term. Thence, by

neglecting the DBOC in (1.38) gives[
−

H∑
α=1

1
2Mα

∇2(Rα) + Vj(R)− En

]
|χj(R)⟩ = 0, (1.39)

which is the so-called adiabatic approximation [5–7]. In such an anzats, the electronic

and nuclei motion are completely decoupled and the latter are only allowed to move in

a single adiabatic PES generated by the former.

BO [5] demonstrated that such an uncoupled single-surface treatment is justified due

to the small electron-to-nuclei mass ratio. Actually, in the BO pertubational approach [5],
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the full TISE [Eq. (1.11)] is addressed by considering T̂N(R) [Eq. (1.3)] as a small pertur-

bation on the unperturbed (clamped-nuclei) electronic problem [Eq. (1.29)]. Thence, by

expanding the total Hamiltonian [ĤT(r,R)] up to the fourth-order [or second-order in the

total wave function |Ψn(r,R)⟩] in the expansion parameter κ = (1/M0)
1/4, BO showed

that the adiabatic approximation and also the adiabatic anzats of Eq. (1.37) are made

possible. Note that M0 can be set as the mass of a particular nucleus α (M0 =Mα) or

their mean [7]. Yet, in proceeding to even higher orders in κ, the simple adiabatic picture

is lost and cross terms that couple electronic and nuclear degrees of freedom arise [7, 25].

The adiabatic approximation provides the fundamental link between quantum me-

chanics and traditional chemistry. It allows the visualization of chemical reactions as

paths connecting reactants to products via transition states. In fact, the very notion of

stationary points on PESs and the electronic states themselves are also a direct outcome

of the approximate separability of slow (nuclei) and fast (electrons) degrees of freedom.

However, as stated above, there are several important situations in which Eq. (1.39) does

not suffice to properly describe the complexity of the problem at hand. In particular, in

the presence of close-in-energy or degenerate PESs, the adiabatic approximation breaks

down and the NACTs [Eq. (1.32)] become substantial. Suffice it to add that, in the special

case of a Ci, the expected singularities of Λji(R) is generally addressed by employing

appropriate adiabatic-to-diabatic (ATD) transformations [17, 25–27]. As a limiting case,

we should also comment on the existence of non-adiabatic processes in which the break-

ing down of the adiabatic approximation is so complete that the notion of a PES is lost

and electronic and nuclear motion must be treated on an equal footing. Such processes

generally involve very high nuclear kinetic energies [25].
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Chapter 2

Conical intersections and their

topological implications

While the adiabatic single-surface approximation [Eq. (1.39)] is valid for the preponder-

ance of chemical processes, electronically non-adiabatic effects, which extend nuclear

motion to more than one adiabatic PES, are ubiquitous in photochemistry and pho-

tobiology [1, 2]. Indeed, some of the nature’s most fundamental phenomena such as

photosynthesis and vision are of non-adiabatic character [3]. In this context, Cis play

a key mechanistic role and provide the means through which such events are actually

understood [3–5].

The effects of Cis on molecular processes are usually classified as either direct or indi-

rect, depending on whether or not nuclear motion spreads over the intersecting surfaces.

The former is generally exhibited in (ultrafast) radiationless relaxation of excited elec-

tronic states [2] as well as in non-adiabatic recrossing events [6, 7]. Clearly, the propensity

for such interstate transitions is largest at regions of nuclear configuration space close to

the so-called photochemical funnels [2]. The more subtle indirect effect associated with

the presence of Cis occurs already in the uncoupled single-surface adiabatic formalism

and is closely related to the well-known geometric phase (GP) [8, 9] or Berry’s phase [10]

effect. Such sign-reversal property of real adiabatic electronic wave functions is naturally

manifested whenever these latter transverse a closed path in the parameter space round

37
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a degeneracy point. As a result, the GP effect has dramatic consequences for the corre-

sponding nuclear dynamics even if the system is confined to the lower electronic surface

and regardless the energy the Ci itself [11–13].

2.1 Classification of conical intersections

Cis form hyperlines in nuclear configuration space on which two (or more) PESs are

degenerate. Such a subspace of continuously connected points is called the seam space

[4]. For doubly (triply) degenerate electronic states, it has dimensions 3H−8 (3H−11) [9].

The orthogonal complement of the seam space (or locus of Ci) is generally referred to as

branching [14] or (g,h)-space [7] at which degeneracies are lifted linearly (in a first-order

approximation) in displacements from the intersection, with a local topology of a double

cone [15]. Berry and Wilkinson [16] noted that such a conical topology resembles that of

a diabolo and have referred to it as diabolical points.

It is useful to classify M state Cis into three important groups: (i) symmetry-required

(or symmetry-dictated), (ii) accidental symmetry-allowed and (iii) accidental same-symmetry

[4]. In the first case, the very nature of Cis rely on the molecular point-groups themselves

(such as those addressed by Jahn and Teller ( JT) [17, 18]; see later section 2.3) and occur

whenever M electronic states (at highly symmetric non-linear arrangements) transform as

M-fold degenerate irreducible representations (irreps) [17, 18]. For accidental symmetry-

allowed intersections, the involved electronic states transform as distinct one-dimensional

irreps. Finally, for accidental same-symmetry Cis, (M+2)(M−1)/2 independent nuclear

coordinates must be varied [9] in order to accomplish the degeneracy and the intersecting

PESs have the same spin and spacial symmetry.

2.2 The non-crossing rule

Apart from symmetry-dictated Cis, the existence of accidental same-symmetry degenera-

cies has been a matter of deep controversy and debate for many years [8, 9, 19–24].

The conditions for such degeneracies have first been recognized by von Neumann and

Wigner [19] in 1929, just two years after the seminal paper of BO [25], with Teller [20], in

1937, first emphasizing their hole in fast radiationless transitions. Herzberg and Longuet-
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Higgins [8] and Longuet-Higgins [9] further generalized the concept of same-symmetry

Cis and their topological implications for systems with more than one degree of freedom.

For the sake of simplicity, the following discussion will be restricted to the case of

two intersecting adiabatic PESs. Let |ψ1(r;R)⟩ and |ψ2(r;R)⟩ be any two eigenfuctions of

the TIESE [Eq. (1.29)] which have the same symmetry and spin. Such adiabatic electronic

states can be expressed as linear combinations of two arbitrary, e.g., diabatic [4, 5, 26,

27] basis |ξ1(r;R)⟩ and |ξ2(r;R)⟩, which are orthogonal to all the remaining eigenstates

|ψn(r;R)⟩ (n≥3) and to one another, as

|ψ1(r;R)⟩ = c11 |ξ1(r;R)⟩+ c12 |ξ2(r;R)⟩ , (2.1)

and

|ψ2(r;R)⟩ = c21 |ξ1(r;R)⟩+ c22 |ξ2(r;R)⟩ . (2.2)

The matrix representation of the electronic Hamiltonian [Ĥe(r;R)] in this new basis is

then given by

He =

H11(R) H12(R)

H12(R) H22(R)

 , (2.3)

where Hji(R) = ⟨ξj(r;R)|Ĥe(r;R)|ξi(r;R)⟩. In the above equation, we have considered

the practically important case that He is a real and symmetric Hermitian matrix1 and

therefore, H21(R)=H12(R). Its eigenvalues and the corresponding expansion coefficients

cji of Eqs. (2.1) and (2.2) can then be obtained by the orthogonal transformation

V = U†HeU =

V1(R) 0

0 V2(R)

 , (2.4)

where

U =

 cos 1
2α(R) sin 1

2α(R)

− sin 1
2α(R) cos 1

2α(R)

 (2.5)

1A Hermitian matrix A is a complex square matrix that is equal to its conjugate transpose (adjoint) A†.

A matrix that has only real elements is Hermitian if and only if it is a symmetric matrix.



40 Chapter 2. Conical intersections and their topological implications

is an unitary (or, in this particular case, orthogonal) matrix2 expressed entirely in terms

of the rotation angle α(R) [15]. The associated expectation values of Eq. (2.4) become

[14]

V1,2(R) = H(R)±
√

∆H(R)2 + H12(R)2 (2.6)

where H(R)=[H11(R)+H22(R)]/2 and ∆H(R)=[H11(R)−H22(R)]/2. Note that the above

eigenvalues are obtained by choosing α(R) such that

sinα(R) =
H12(R)√

∆H(R)2 + H12(R)2
, (2.7)

and

cosα(R) =
∆H(R)√

∆H(R)2 + H12(R)2
, (2.8)

which defines therefore the transformation from diabatic to adiabatic states. The two

eigenvectors and the expansion coefficients of Eqs. (2.1) and (2.2) are thus given by

[14, 28] |ψ1(r;R)⟩
|ψ2(r;R)⟩

 =

cos 1
2α(R) − sin 1

2α(R)

sin 1
2α(R) cos 1

2α(R)

|ξ1(r;R)⟩
|ξ2(r;R)⟩

 . (2.9)

According to Eq. (2.6), an intersection between the V1(R) and V2(R) PESs occurs for

a specified set of nuclear configuration R=R× at which the two quantities ∆H(R×) and

H12(R×) both vanish (see Figure 2.1). In other words, the two crossing conditions are

then defined as [8, 9, 19, 20]

H11(R×)− H22(R×) = 0, (2.10)

and

H12(R×) = 0 (2.11)

with the corresponding eigenvalues given by V1,2(R×) = H(R×). Teller [20] was the

first to drawn attention to the fact that if H11(R)−H22(R) and H12(R) are independent

2A complex square matrix U is unitary if U† is equal to its inverse U−1, i.e., U†U=UU† = I, where I

is the identity matrix. If U has only real entries it is usually referred to as orthogonal matrix, and hence

UTU=UUT=I.
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Figure 2.1: (a). Adiabatic and (b). Diabatic PESs around a conical intersection at R×. x and y denotes

the two independent nuclear coordinates (the branching plane) with the origin corresponding to the point

where H11(R×)−H22(R×) = 0 and H12(R×) = 0 [8, 20]. Following Herzberg and Longuet-Higgins [8], the

adiabatic potentials are given by Va1,2(x, y) = k(x2 + y2)+ lx ±
√
m2x2+n2y2, while the diabatic ones by

Vd1,2(x, y)=k(x
2+y2)+(l±m)x, with (in arbitrary units) k=15, l=0 and m=n=2.

functions of two nuclear coordinates it is therefore possible, in some situations, to satisfy

both (2.10) and (2.11). Indeed, if there are 3H−6 internal coordinates then such crossing

conditions could be satisfied in a space of 3H−8 dimensions. Thence, for triatomic

systems the crossing of PESs for electronic states of the same symmetry can occur in

3×3−8=1 dimension, i.e., along a line. As pointed out by Longuet-Higgins [9], for a real

and symmetric Hamiltonian matrix He, (M+2)(M−1)/2 independent conditions must be

satisfied in order to establish a M-fold degeneracy at R× which is expected to occur in a

space of 3H−6−[(M+2)(M−1)/2] dimensions.

Since diatomic molecules have only one internal coordinate, for two states of the same

irrep, the two conditions (2.10) and (2.11) cannot, in general, be satisfied by adjusting

the one available variable. Thence, accidental same-symmetry Cis are very rare events in

such systems. This general result is frequently referred to as the “non-crossing rule” and
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is strictly limited to diatomic molecules [8, 9, 19, 20].

Despite the present discussion being mainly addressed to accidental same-symmetry

intersections, one should bear in mind that the R-dependence of ∆H(R) and H12(R) in

Eq. (2.6) near R× is the same for all types of Cis aforementioned. Actually, the distinctions

are made from the role played by the group theory itself in the determination of the

solutions of Eqs. (2.10) and (2.11). Thus, for symmetry-imposed Cis, such requirements

are made possible for nuclear configurations R× at which the system carry the highest

possible symmetry, e.g., D3h geometries for X3-type molecules. In turn, if |ξ1(r;R)⟩ and
|ξ2(r;R)⟩ have different symmetries then H12(R)will be zero for all values of R (or R in the

case of a diatomic molecule). In this case there may be points in nuclear configuration

space at which Eq. (2.10) is satisfied by happenstance, and therefore determine the

existence of accidental symmetry-allowed Cis. With this in mind, it should be added

that accidental same-symmetry intersections are always difficult to predict a priori since

group theory plays no role in the determination of R×, and therefore both Eqs. (2.10)

and (2.11) are always satisfied by happenstance [4, 7, 29, 30].

2.3 The Jahn-Teller vibronic coupling theory

As stated by JT [17, 18], highly symmetric non-linear configurations in degenerate orbital

states are not stable structures on adiabatic PESs. At such geometries, there will always

exist distorting forces along non-totally symmetric displacements (the JT-active modes)

so that any degeneracy can be removed in first order. By making use of degenerate

perturbation theory [31] and group theoretical considerations [32], JT examined all types

of degenerate terms of all symmetry point groups and determined the corresponding

irreps according to which each JT-active mode should transform in order to warrant

the existence of non-vanishing perturbation matrix elements. If, for a given molecular

symmetry, they are different from zero then the degeneracy is lifted in first order in nuclear

displacements and the associated adiabatic electronic states are given as characteristic

values of such perturbation matrix.

In what follows, we will stress the main aspects of the so-called JT vibronic coupling

theory [33–36] which is the foundation stone for the general understanding of the proper
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JT [17, 18], pseudo-Jahn-Teller (PJT) [37, 38] and Renner-Teller (RT) [39–41] effects. The

concepts here developed will be further illustrated by considering the simplest JT problem

in an X3-type system, i.e., a twofold degenerate electronic term E interacting with twofold

degenerate e vibrations or, in other words, the well-studied E⊗ e problem.

Consider a molecular system in a high-symmetry reference configuration R× which

transform according to the point group S.3 Since we are primarily interested in evalu-

ate the behavior of the adiabatic PESs in the immediate vicinity of R×, the electronic

Hamiltonian of Eq. (1.28) can then be expanded as [33, 35, 36]

Ĥe(r;Q) = Ĥ(0)
e (r;0) +

∑
Γγ

(
∂ Û(r;0)
∂QΓγ

)
0

QΓγ

+
1
2

∑
Γγ

{(
∂ Û(r;0)
∂QΓ1

)
0

⊗
(
∂ Û(r;0)
∂QΓ2

)
0

}
Γγ

{
QΓ1

⊗ QΓ2

}
Γγ

+ . . .

= Ĥ(0)
e (r;0) +W(1)(r;Q) +W(2)(r;Q) + . . . , (2.12)

where Q are now a set of 3H−6 (or 3H−5 for linear molecules) symmetrized nuclear

displacements4 which transform as the line γ of the M-fold degenerate irrep Γ of the

point group S.5 In turn, Ĥ(0)
e (r;0) is the corresponding zeroth-order Hamiltonian for the

nuclei clamped at the origin which satisfies the eigenvalue problem

Ĥ(0)
e |Γγi(r;0)⟩ = Vi(0) |Γγi(r;0)⟩ , (2.13)

where {|Γγi(r;0)⟩} ≡ {|ψi(r;R×)⟩} [see Eq. (1.29)] is the set of orthonormal eigenfunc-

tions which, under the symmetry operation of the molecular point group S, also trans-

form according to one of its Γγ irreps. In Eq. (2.12), W(n)(r;Q) are vibronic coupling

3In this particular case, S is assumed to have at least one rotational or roto-reflection (improper) axis of

order>2
4We assume for the moment that the non-trivial task of separating translational and rotational degreess

of fredom has already been accomplished, with any term that couples electronic and nuclear variables via

rotation [T̂Ne in Eq. (1.26)] and mass-polarization effects [T̂MP in Eq. (1.23)] neglected.
5M-fold degenerate representations Γ have M lines γ. For instance, the two-dimensional irrep Γ =

E has two lines γ = θ, ϵ, while γ = ξ, η, ζ for the threefold degenerate irrep Γ = T. One-dimensional

representations, e.g, Γ=A have only one line γ= ι [32].
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(nth-order perturbation) operators [35, 36] which involve nth-order derivatives of the

electron-nuclear, V̂Ne(r;0) [Eq. (1.7)], and nuclear-nuclear, V̂NN(0) [Eq. (1.8)], interac-

tions with respect to the QΓγ . Note that, similarly to the symmetrized displacements,

such derivatives have the same transformation properties of Γγ. Indeed, in (2.12), the

quantities {XΓ1
⊗YΓ2

}Γγ define irreducible products [32] (or a tensor convolutions [36])

which are per se linear combinations of direct products of XΓ1
and YΓ2

(i.e., derivatives or

symmetrized displacements) that transform according to the line γ of the representation

Γ ∈ Γ1 ⊗ Γ2 (for an explicit definition of such quantities see appendix B).

If by solving the TIESE [Eq. (2.13)] one obtains M electronic terms that are degen-

erate [or, in other words, an eigenstate |Γγi(r;0)⟩ that transform as the M-dimensional

representation Γ of S], then all such states are vibronically coupled along the JT-active

modes and, away from the intersection point, the energy term splits into M branches. In

fact, the proper behavior of the M adiabatic PESs in the vicinity of the high-symmetry

configuration is only attainable by estimating the effects of the vibronic interaction terms

W(n)(r;Q) in Eq. (2.12) on the eigenvalues Vi(0). To this end, let He be a M by M

matrix representation of the operator Ĥe(r;Q) [Eq. (2.12)] in the basis of the degenerate

electronic term Γ. Its matrix elements are then given by [36]

Hji(Q) =
⟨
Γ′γ′j(r;0)

∣∣∣Ĥ(0)
e (r;0)

∣∣∣Γγi(r;0)⟩δji
+
∑
Γγ

⟨
Γ′γ′j(r;0)

∣∣∣∣∣
(
∂ Û(r;0)
∂QΓγ

)
0

∣∣∣∣∣Γγi(r;0)
⟩
QΓγ

+
∑
Γγ

1
2

⟨
Γ′γ′j(r;0)

∣∣∣∣∣
{(

∂ Û(r;0)
∂QΓ1

)
0

⊗
(
∂ Û(r;0)
∂QΓ2

)
0

}
Γγ

∣∣∣∣∣Γγi(r;0)
⟩{

QΓ1
⊗ QΓ2

}
Γγ

+ . . . . (2.14)

Since the orthonormal set {|Γγi(r;0)⟩}Mi=1 are eigenfunctions of the zeroth-order Hamil-

tonian Ĥ
(0)
e (r;0) [Eq. (2.13)], the first term on the right-hand side (RHS) equals to Vi(0)=

V×(0), i=1, 2, . . . ,M, and hence is different from zero only in diagonal matrix elements.

Obviously, at R×, all the remaining terms vanish and He = V×(0)δji. Nevertheless, for

sufficiently small distortions from R×, the non-vanishing nature of the second and third

terms on the RHS of Eq. (2.14) warrants the instability of the JT origin, and therefore
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the degeneracy is no longer ensured [17, 18]. Such matrix elements define the so-called

linear and quadratic vibronic coupling constants (VCCs) which are defined by [35, 36]

F
(Γ′γ′

jΓγi)

Γγ
=

⟨
Γ′γ′j(r;0)

∣∣∣∣∣
(
∂ Û(r;0)
∂QΓγ

)
0

∣∣∣∣∣Γγi(r;0)
⟩

= F(Γ
′Γ)

Γ
V

Γ′ Γ Γ

γ′j γi γ

 (2.15)

and

G
(Γ′γ′

jΓγi)

Γγ
=

1
2

⟨
Γ′γ′j(r;0)

∣∣∣∣∣
{(

∂ Û(r;0)
∂QΓ1

)
0

⊗
(
∂ Û(r;0)
∂QΓ2

)
0

}
Γγ

∣∣∣∣∣Γγi(r;0)
⟩

=
1
2
G(Γ′Γ)

Γ
V

Γ′ Γ Γ

γ′j γi γ

 , (2.16)

respectively. Note that VCCs arising from higher-order (n > 2) perturbation operators

W(n)(r;Q) [Eq. (2.12)] will not be considered explicitly here and for most practical pur-

poses can be neglected. Indeed, as clearly seen from Eqs. (2.14)-(2.16), the vibronic

constants effectively measure the coupling between electronic structure and nuclear dis-

placements. In particular, linear VCCs in diagonal matrix elements, i.e., F(ΓγiΓγi)
Γγ

[see

Eq. (2.15)], give a physical insight into (and an estimate of) the distorting forces to which

the state |Γγi(r;0)⟩ is subjected in the direction of the non-totally symmetric displacement

QΓγ .

Following the Wigner-Eckart theorem [32], in Eqs. (2.15) and (2.16), F(Γ
′Γ)

Γ
and G(Γ′Γ)

Γ

are reduced matrix elements (which do not depend on γ′, γ and γ) with the last terms

defining the so-called V coefficients6 [32, 35, 42]. Indeed, the non-vanishing nature of

both linear and quadratic VCCs (and therefore the lack of extremum at R×) are clearly

6The V coefficients are directly related to the (symmetrized) Clebsch-Gordan coupling coefficients by

the equation [32]

V

Γ′ Γ Γ

γ′ γ γ

 = λ(Γ)−1/2 ⟨Γ′Γγ′γ|Γ′ΓΓ γ⟩ , (2.17)

where λ(Γ) is the dimension of the Γ irrep in the point group S.
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dictated by the symmetry properties of the V coefficients themselves. According to the

group-theoretical requirements, such quantities are nonzero if and only if the direct prod-

uct Γ′⊗Γ contains Γ (or, in other words, if Γ′⊗Γ⊗Γ contains the totally symmetric irrep A1)

[32, 35]. Indeed, for molecular systems in degenerate electronic terms E and T, the sym-

metries of the vibronic perturbations should be E⊗E→ A1+E and T⊗T→ A1+E+T1+T2,

respectively [17, 18]. It follows from the above considerations that, besides the E, T1

and T2 modes, totally symmetric displacements of A1 type are also JT-active with (di-

agonal) linear VCCs [Eq. (2.15)] being different from zero by symmetry. Nevertheless,

since displacements along such modes dot not remove the degeneracy, they are gener-

ally disregarded in the vibronic coupling treatment [35]. Note, however, that the totally

symmetric part of the diagonal matrix element in Eq. (2.16), i.e., G(ΓγiΓγi)
a1ι , is an important

component of the PES curvature and is often referred to as primary (nonvibronic) force

constant K(Γ)
0 . In fact, by setting all the proper linear and quadratic VCCs equal to zero,

the M adiabatic PESs near R× assume the simple form of M harmonic oscillators along

the JT-active modes.

Once the matrix elements of He [Eq. (2.14)] have been properly determined, the

associated eigenvalues (i.e., the adiabatic PESs) can then be obtained by solving the

secular determinant∣∣∣∣∣∣∣∣∣∣∣

H11(Q)− V(Q) H12(Q) . . . H1M(Q)

H21(Q) H22(Q)− V(Q) . . . H2M(Q)
...

...
...

...

HM1(Q) HM2(Q) . . . HMM(Q)− V(Q)

∣∣∣∣∣∣∣∣∣∣∣
= 0, (2.18)

whose solutions assume the form [35, 36]

Vi(Q) = Vi(0) +
1
2

∑
Γγ

K(Γ)
0 Q2

Γγ
+ ϑi(Q), i=1, 2, . . . ,M (2.19)

where ϑi(Q) is the vibronic contribution to the (nonvibronic) harmonic nuclear potential.

Before proceeding with the discussion of the E ⊗ e problem, some general remarks

are here necessary. The exclusion of linear molecules from the JT statement steams from

the fact that only first-order operators W(1)(r;Q) [see Eq. (2.12)] have been considered
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Qa1ι≡Q1

R1

R2 R3

Qeǫ
≡Q2 Qeθ

≡Q3

Figure 2.2: Symmetrized nuclear displacements of atoms in a triangular X3-type molecular system. Qa1ι≡
Q1 is the symmetry preserving breathing mode, Qeϵ ≡Q2 is the asymmetric stretch mode which distorts the

equilateral triangle into a Cs configuration and Qeθ ≡Q3 takes the D3h structure into a C2v conformation.

in their theoretical perturbational treatment. Indeed, for such systems the non-totally

symmetric displacements (e.g., the degenerate bending modes) are of odd type with

respect to reflections in the plane containing the molecular axis, while the product of

wave functions of the degenerate term (e.g., a Π state with orbital angular momentum

quantum number Λ= 1) is always even with respect to such reflections [43]. If follows

that the linear VCCs of Eq. (2.15) vanish and the corresponding adiabatic PESs have an

extremum at such arrangements. However, the effect of quadratic terms of Eq. (2.16)

is non-negligible. Indeed, for linear molecules, instability arising from quadratic VCCs

results in the so-called Renner-Teller effect (RTE) [39–41], but it also takes place in non-

linear systems in which the linear VCCs are accidentally zero or negligibly small.

It should be emphasized that, apart from the proper JT and RT effects, the vibronic

mixing of two or more close-in-energy (pseudo-degenerate) states under nuclear dis-

placements, i.e., the so-called pseudo-Jahn-Teller effect (PJTE) [37, 38], also occupies an

outstanding place in the JT vibronic coupling theory. Indeed, the PJTE is the only source
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of instability and distortions of high-symmetry configurations of polyatomic systems in

non-degenerate states [38]. Note further that, even in the presence of electronic degen-

eracy, such additional effects are still very important contributions to the (net) vibronic

coupling and interesting topographical features on adiabatic PESs may arise due to such

combined problem [44, 45].

Consider now the simplest case of a X3-type (D3h) molecule in a doubly degener-

ate E state. Its component wave functions which are obtained as solutions of the TIESE

[Eq. (2.13)] are denoted as |Eθ(r;0)⟩ and |Eϵ(r;0)⟩with eigenvalues V1(0)=V2(0)=V×
E (0).

Note that, for convenience, the symmetry labels of the point group C3v (subgroup of

D3h) will be used henceforth. The corresponding set of symmetrized nuclear displace-

ments and their classification according to irreducible representations are illustrated in

Figure 2.2. They are related to the set of internal (bond-length) coordinates R=(R1,R2,R3)

by [46, 47] 
Qa1ι

Qeϵ

Qeθ

 =


√

1/3
√
1/3

√
1/3

0
√

1/2 −
√

1/2√
2/3 −

√
1/6 −

√
1/6



R1 − R×

R2 − R×

R3 − R×

 , (2.20)

where R× defines the D3h JT reference configuration [R× = (R×,R×,R×)]. Following

appendix B and using the convenient notation introduced in Figure 2.2, the explicit form

of Ĥe(r;Q) [Eq. (2.12)] for the E⊗ e problem is [35, 36]

He =

V×
E (0)−FEQ3−GE(Q2

2−Q2
3)+κE(Q) FEQ2+2GEQ2Q3

FEQ2+2GEQ2Q3 V×
E (0)+FEQ3+GE(Q2

2−Q2
3)+κE(Q)

.
(2.21)

where FE and GE are the linear and quadratic JT VCCs, respectively, with κE(Q) being the

(nonvibronic) harmonic nuclear potential near R×. In polar coordinates,

Q2 = ρ cosϕ

Q3 = ρ sinϕ, (2.22)

the solution of the secular determinant [Eq. (2.18)] with the present E⊗ e vibronic Hamil-
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tonian is given by [35, 36]

V1,2(Q) = V×
E (0) +

1
2
K(E)
0 ρ2 ± ρ

√
F2E + G2

Eρ
2 + 2FEGEρ sin 3ϕ, (2.23)

where ρ=
√
Q2

2+Q
2
3 and ϕ define the radial and angular polar coordinates, respectively,

and K(E)
0 the primary force constant for the E term. It should be pointed out that, since

VCCs associated with the breathing normal coordinate are assumed to be identically

zero, the adiabatic PESs along sufficiently small Q1 distortions behave simply as harmonic

potentials,

V1,2(Q) = V×
E (0) +

1
2
K′(E)
0 Q2

1. (2.24)

From Eq. (2.23), one can see that in the limit of pure linear coupling, i.e., the linear

E⊗ e problem [17, 18, 33–36], the PESs simplify to7

V1,2(Q) = V×
E (0) +

1
2
K(E)
0 ρ2 ± |FE| ρ, (2.25)

and assume the form of a double cone (the Mexican-hat-type PESs) with a Ci at ρ= 0

[see Figures 2.3(a) and 2.4(a)]. The radius ρmin of the circle at the bottom of the trough

and its well-depth, i.e., the JT stabilization energy EEJT, are given, respectively, by [37, 48]

ρmin =
|FE|
K(E)
0

, (2.26)

and

EEJT =
F2E

2K(E)
0

. (2.27)

As seen from Figures 2.3(b) and 2.4(b), the introduction of the quadratic coupling

terms into the vibronic problem [i.e., the linear plus quadratic E⊗ e problem of Eq. (2.23)]

reveals the so-called warping of the Mexican hat with the formation three wells (minima)

alternating regularly with three humps (saddle points) along the bottom of the trough

[49]. Such extrema points (ρmin, ϕmin) on the lowest (ground-state) PES are thus defined

by

ρmin =
±FE

K(E)
0 ∓ (−1)n2GE

, ϕmin = (2n+ 1)
π

6
, n = 0, . . . , 5, (2.28)

7By setting GE=0.
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Va
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(a)

ρmin

EE
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Q3

(b)

ρmin
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JT

δ

Va

Q3

(c)

ρmin

EE
JT δ

ρ0

Va

Q3

(d)

Figure 2.3: Cross sections of the PESs of Eq. (2.23) along the Q3 mode (with Q2 = 0 and ϕ= π/2) for

the various possible E⊗ e coupling regimes. (a). Pure linear coupling with (in arbitrary units) K(E)
0 =100,

FE = 20 and GE = 0. (b). Linear plus quadratic coupling with K(E)
0 = 100, FE = 20 and GE = 15. (b). Small

linear plus large quadratic coupling with K(E)
0 =100, FE=12 and GE=38 and (d). Pure quadratic coupling

with K(E)
0 = 100, FE= 0 and GE= 80. The parameters ρmin, EEJT, δ and ρ0 are defined in Eqs. (2.26)-(2.30)

and (2.33). The dotted lines are the zero of energy defined with respect to V1(0)=V2(0)=V
×
E (0), i.e., to

the crossing points at Q3=Q2=0. The inset of panel (c) shows a close view of the additional degeneracy

points observed in the large quadratic (and small linear parameter) coupling case.

where the upper and lower signs correspond to the cases FE>0 and FE<0, respectively.

If FEGE> 0, the points with n= 0, 2 and 4 are minima, whereas those with n= 1, 3 and

5 are saddle points [see Figures 2.3(b) and 2.4(b)]. Indeed, for FEGE<0, the contrary is

the case and the nature of the extrema points interchange. The JT stabilization energy of
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Figure 2.4: Contour plots of the lower (ground-state) PESs of Eq. (2.23) for the various possible E⊗ e cou-

pling regimes shown in Figure 2.3. (a). Pure linear coupling [Figure 2.3(a)]. (b). Linear plus quadratic cou-

pling [Figure 2.3(b)]. (c). Small linear plus large quadratic coupling [Figure 2.3(c)] and (d). Pure quadratic

coupling [Figure 2.3(d)]. Minima and saddle points are represented by circles and diamonds, respectively,

while Cis are indicated by the “×” symbol. Filled arrows define the ρmin parameters of Eqs. (2.26) and

(2.28), whereas the dotted ones represents the radius ρ0 defined in Eq. (2.33). The angles ϕmin and ϕ0

are measured counterclockwise starting at the Q2 axis. The inset of panel (c) shows a close view of the

additional degeneracy points observed in the large quadratic (and small linear parameter) coupling case.

the minima with respect to the degeneracy point at ρ=0, is

EEJT =
F2E

2(K(E)
0 − 2 |GE|)

, (2.29)
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with the corresponding barrier height δ given by

δ =
4EEJT |GE|

(K(E)
0 + 2 |GE|)

. (2.30)

It is clear from the above considerations that, in the absence of quadratic couplings [Fig-

ures 2.3(a) and 2.4(a)], the nuclei perform free internal rotations (more precisely, pseudo-

rotations) along the circle of radius ρmin [50–52]. However, if δ are sufficiently high, such

pseudo-rotational motion along the warped trough [Figures 2.3(b) and 2.4(b)] cease to be

free and the phenomenon of tunneling between the three symmetry-equivalent minima

should be expected [35, 36].

The two eigenvectors which are the solutions of the pertubational problem (2.21),

with the corresponding expectation values given by Eq. (2.23), are|ψ1(r;Q)⟩
|ψ2(r;Q)⟩

 =

cos 1
2α(Q) − sin 1

2α(Q)

sin 1
2α(Q) cos 1

2α(Q)

|Eθ(r;0)⟩
|Eϵ(r;0)⟩

 , (2.31)

where α(Q) is defined such that8

tanα(Q) =
FE sinϕ− |GE| ρ sin 2ϕ
FE cosϕ+ |GE| ρ cos 2ϕ

. (2.32)

An important aspect of the E⊗ e problem emerged only recently in the literature [53].

For such systems, in addition to the central D3h Ci at ρ = 0, the two branches of the

adiabatic PESs [Eq. (2.23)] also intersect at

ρ0 =

∣∣∣∣ FEGE

∣∣∣∣ , ϕ0 =
π

2
,
7π
6

and
11π
6
. (2.33)

It follows that, if GE is small, such three additional symmetry-equivalent C2v Cis occur

far way from the central intersection. Yet, as shown in Figures 2.3(c) and 2.4(c), for

sufficiently large values of GE (compared to FE), the radius ρ0 becomes quite small and

the four Cis come quite close together. Indeed, for such molecules, often referred to

as small linear paramenter (SLP) JT systems [33, 35, 36, 53–55], the presence of these

additional topographical features have dramatic implications on the resulting spectral

8By considering Eqs. (2.7) and (2.8).
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properties of the PESs, in particular, those related to the so-called GP effect [8–11]. As a

final remark, we should also comment on the important limiting case for which FE = 0

and GE ̸=0. From Eq. (2.23), the adiabatic PESs become

V1,2(Q) = V×
E (0) +

1
2
ρ2
(
K(E)
0 ± 2 |GE|

)
. (2.34)

As seen from Figures 2.3(d) and 2.4(d), the two sheets assume the form of tangen-

tially touching parabolas (or, in other words, RT-like PESs) in which the degeneracy is

lifted quadratically in displacements from the point of intersection. Interestingly, from

Eq. (2.33), ρ0 = 0 in this case which implies therefore that all four degeneracies are as-

sumed to be located at the same point in nuclear configuration space, i.e., at the JT D3h

arrangement.

2.4 Geometric phase effect
The most fundamental effect directly related to the presence of Cis has first been rec-

ognized in 1963 by Herzberg and Longuet-Higgins [8]. The authors, with the aid of a

two-state model Hamiltonian proposed by Teller [20], showed that a real adiabatic elec-

tronic wave function undergoes a sign change (i.e., it is a double-valued function) when

the nuclear coordinates traverse a closed path round the point at which the associated

PESs intersect conically. This signature property of Cis had previously been considered

by Longuet-Higgins et al. [50] in their treatment of the dynamical E⊗ e JT problem. In

fact, it is easy to see from Eqs. (2.9) and (2.31) that as we move round the origin keeping

a fixed distance from R× and allowing α to increase from 0 to 2π, both coefficients on

the RHS change sign, and so do |ψ1⟩ and |ψ2⟩.9

Longuet-Higgins [9] further demonstrated, by using topological arguments only, that

such sign-reversal condition can be properly utilized to diagnose the presence of inter-

sections between PESs, particularly if the degeneracy is not dictated by symmetry. This

well-known Longuet-Higgins’ theorem [8, 9] can be formally stated (and generalized) as

follows [15]

9Note that, in Eq. (2.31), such sign-reversal property can only be achievable for the cases when FE ̸=0

and GE=0 or FE≫GE; see Eq. (2.32).
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(1) On going once around any closed path on the surface that contains the Ci the elec-

tronic wave function changes sign.

(2) If a real adiabatic electronic wave function changes sign when a polyatomic trans-

verses a closed loop on a two-dimensional surface in the 3H−6-dimensional nuclear

configuration space, then the corresponding electronic state must become discon-

tinuous and degenerate with another one at an odd number of points lying on that

surface and within that loop.

Indeed, the physical consequences of the presence of such GP or topological phase

are quite remarkable [56]. Overall, Cis can alter the nuclear dynamics even when the col-

lisional or vibrational motions occur far away for the intersection seam, the only require-

ment though is that the nuclear wave function has appreciable amplitude along an entire

path enclosing the degeneracy, regardless of the energy of the Ci itself [11, 13, 57]. Since

the total (electron-nuclear) wave function must be continuous and single-valued, the nu-

clear eigenket must then also change sign to compensate the sign-change of the electronic

counterpart. As a result, both |ψi(r;R)⟩ and |χi(R)⟩ in Eq. (1.37) are not single-valued

when taken as real. Such observable effects were discussed in a more general sense by

Mead and Truhlar [11] who demonstrated that the resulting multiple-valuedness of the

electronic part can be removed by attaching to it a complex (multi-valued) geometry-

dependent phase factor, although at the cost of introducing a vector-potential-like term

into the effective Schrödinger equation for the nuclear motion. The phase factor is chosen

in such a way as to cancel out the net change of sign so that the complex electronic wave

function is single-valued. Note that this latter also satisfies the same TIESE [Eq. (1.29)]

as the real double-valued eigenvector. As pointed by Longuet-Higgins et al. [50] and

Mead [57], the vector potential so introduced is not a mere mathematical artifact, but

has experimental implications such as the appearance of half-odd integral vibronic an-

gular momentum quantum numbers for the pseudorotational motion in certain X3-type

molecules. In fact, it gives rise to a “ficticious” magnetic field [58] confined at the Ci, which

led Mead [57] to further suggest the designation “molecular Aharonov-Bohm effect”10 for

10In the Aharonov-Bohm effect [58] the wave function of a charged particle passing around a magnectic
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the geometric phase change.

Such a phenomenon has been placed in a wider quantum mechanical context by

Berry [10], and hence it also became known as the Berry phase effect [59]. The author

showed that any quantum system acquires a geometric phase factor, in addition to the

familiar dynamic phase [Eq. (1.10)], when it undergoes an adiabatic time evolution round

a circuit C in the parameter space. As pointed out by Berry, the sign-reversal property

of electronic eigenfunctions of real symmetric matrices round a degeneracy is a special

case of the more general GP problem [12, 59].

In the following, we stress the essential approach to account for the Berry’s phase

in typical molecular systems and address the main physical consequences of such a

phenomena. Since the GP effect manifests itself in the uncoupled single-surface formal-

ism, we also consider the modifications to the standard adiabatic framework which are

required in order to access the effects of Cis on nuclear dynamics, i.e., the so-called

generalized Born-Oppenheimer (GBO) approximation [4, 11, 13, 29, 60, 61]. To this

end, we define, following Mead and Truhlar [11], a gauge transformation of the form

[11, 13, 60, 61]

|ψ̃i(r;R)⟩ ≡ eiAi(R) |ψi(r;R)⟩ , (2.35)

where Ai(R) is a geometry-dependent phase which is chosen to make the electronic

adiabatic eigenstate |ψ̃i(r;R)⟩ single-valued (and complex) and |ψi(r;R)⟩ is a real-valued

solution of Eq. (1.29). It should be recalled that both state vectors are actually eigen-

functions of the electronic Hamiltonian. Note that, in (2.35), the wave function index i

should not be confused with the imaginary number i.

From (2.35), the BH expansion of Eq. (1.30) can be rewritten in the form

|Ψn(r,R)⟩ =
I∑
i

|χi(R)⟩ |ψ̃i(r;R)⟩ . (2.36)

By substituting the above anzats into the full TISE [Eq. (1.11)], projecting from the left

by ⟨ψ̃j(r;R)| and using (2.35), the generalized form of the coupled nuclear equations

flux (a narrow solenoid) experiences a phase shift, even if the field itself is zero everywhere along the

path.
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[Eq. (1.31)] become [29]{
H∑

α=1

1
2Mα

[
−i∇⃗(Rα) + ∇⃗(Rα)Aj(R)

]2
+ Vj(R)− En

}
|χj(R)⟩ =

I∑
i( ̸=j)

Ξji(R) |χi(R)⟩ ,

(2.37)

where

Ξji(R) = ei[Ai(R)−Aj(R)]
H∑

α=1

1
2Mα

{
−Kji(Rα) + i

[
−i∇⃗(Rα) + ∇⃗(Rα)Aj(R)

]
· Fji(Rα)

+ iFji(Rα) ·
[
−i∇⃗(Rα) + ∇⃗(Rα)Aj(R)

]}
(i ̸= j), (2.38)

with Kji(Rα) being a derivative coupling11 of the form [29]

Kji(Rα) =
⟨
∇⃗(Rα)ψj(r;R)

∣∣∣ ∇⃗(Rα)ψi(r;R)
⟩
, (2.40)

and

Vj(R) = Vj(R) +
H∑

α=1

Kjj(Rα)

2Mα

= Vj(R)−
H∑

α=1

Gjj(Rα)

2Mα

(2.41)

is the effective scalar potential [13, 60, 61]. In the above equations, Fji(Rα) and Gji(Rα) are

the usual derivative and scalar couplings defined in Eqs. (1.33) and (1.34), respectively.

They are related to the corresponding tilted quantities by12 [11]

F̃ji(Rα) ≡ ei[Ai(R)−Aj(R)]
[
iδji∇⃗(Rα)Ai(R) + Fji(Rα)

]
, (2.42)

and

G̃ji(Rα) ≡ ei[Ai(R)−Aj(R)]
{
−δji[∇⃗(Rα)Ai(R)]2 + iδji∇2(Rα)Ai(R)

+2iFji(Rα) · ∇⃗(Rα)Ai(R) + Gji(Rα)
}
. (2.43)

11 Kji(Rα) is related to Fji(Rα) and Gji(Rα) by [4]

Kji(Rα) = ∇⃗(Rα) · Fji(Rα)− Gji(Rα). (2.39)

12By substituting relation (2.35) into Eqs. (1.33) and (1.34), respectively.
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Note that, in contrast to Fjj(Rα) which vanishes for real-valued electronic wave functions,

F̃jj(Rα) = i∇⃗(Rα)Aj(R). In fact, as can be seen from Eq. (2.37), the appearance of the

phase gradients ∇⃗(Rα)Aj(R), i.e., the well-known gauge or vector potentials [4, 11, 13,

29, 60, 61], is a direct consequence of the presence of Cis. Since such terms are singular

at the intersection seam, the resulting (pseudo) magnetic field, ∇⃗(Rα)×[∇⃗(Rα)Aj(R)], is

zero everywhere except at the Ci where it has a delta-function singularity [11, 13]. It is

worth mentioning that, if Eq. (2.36) is reassociated as

|Ψn(r,R)⟩ =
I∑
i

[
eiAi(R) |χi(R)⟩

]
|ψi(r;R)⟩ ≡

I∑
i

|χ̃i(R)⟩ |ψi(r;R)⟩ , (2.44)

then no vector potentials appear and Eq. (2.37) assumes the same form of (1.31) but

with |χ̃i(R)⟩ in place of |χi(R)⟩. In this case, both |χ̃i(R)⟩ and |ψi(r;R)⟩ are double-

valued. Although being particularly convenient for treating X3-type molecules (and their

isotopomers) [62], such an alternative approach is often difficult to implement in general

systems and computationally cumbersome [63].

Again, if just one term is retained in the expansion (2.36), then Eq. (2.37) becomes{
H∑

α=1

1
2Mα

[
−i∇⃗(Rα) + ∇⃗(Rα)Aj(R)

]2
+ Vj(R)− En

}
|χj(R)⟩ = 0, (2.45)

which is a generalized version of Eq. (1.38) or GBO approximation13. It is obvious

from (2.45) that even when a Ci is not energetically accessible, its presence is certainly

reflected on the nuclear dynamics. It should be emphasized, however, that for high-

energy collisions and/or vibration motions, the NACTs [Eq. (2.38)] become sizable (and

even singular at a Ci) so that the GBO approximation also breaks down.

Of course, in order to account for the proper GP effect in Eqs. (2.37) and (2.45)

one must be able to anticipate the existence of Cis prior to the dynamical treatment

[11, 13, 29, 62], and then determine the phase accordingly. Indeed, Aj(R) must reflect (by

built-in construction) the presence of any discontinuities on adiabatic PESs. Although a

general approach for determining Aj(R) has been suggested [63, 64], it remains a nontrivial

task.
13Obviously, one can also neglect the standard DBOC term in the RHS of Eq. (2.41). In so doing, a

generalized version of the adiabatic approximation (1.39) is obtained.
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Consider again the linear plus quadratic E⊗ e JT problem for a X3-type molecule

discussed in section 2.3. As already stated, the eigenkets |ψ1,2(r;Q)⟩ [Eq. (2.31)] are

double-valued, and hence undergo a change of sign when α(Q) [Eq. (2.32)] makes a full

circuit from 0 to 2π round the origin.14 In this case, it is straightforward to show that a

phase of the form [11, 53, 57]

A1,2(Q) =
ℓ

2
α(Q) (2.46)

makes the corresponding tilded electronic wave functions single-valued. These latter are

thus defined by the following gauge transformation [11, 53, 57]

|ψ̃1,2(r;Q)⟩ ≡ ei
ℓ
2α(Q) |ψ1,2(r;Q)⟩ . (2.47)

Note that, in the above equations, ℓ=±1,±3,±5 . . . is an odd integer which satisfies the

requirement [36]

ei
ℓ
2 [α(Q)+2π] = −ei

ℓ
2α(Q). (2.48)

As demonstrated by Mead and Thuhlar [11], the choice of the gauge parameter which is

most convenient for the treatment of permutational symmetry is ℓ=±3.

From Eqs. (2.31), (2.47) and (2.42), one can thus define [53]

F̃11 = F̃22 =
⟨
ψ̃1,2(r;Q)

∣∣∣ ∇⃗ψ̃1,2(r;Q)
⟩

= i
ℓ

2
∇⃗α(Q), (2.49)

where we have used the well-known result ⟨ψ1,2(r;Q)|∇⃗ψ1,2(r;Q)⟩ = 0. Note that the

grad operator ∇⃗ can be defined such that [36, 53]

∇⃗ =
∂

∂ρ
ρ̂+

1
ρ

∂

∂ϕ
ϕ̂. (2.50)

Indeed, the quantity ∇⃗α(Q) in (2.49) can be evaluated by applying ∇⃗ to Eq. (2.32). In

so doing, one obtains [53]

∇⃗α(Q) =
−FE|GE| sin 3ϕ

F2E + 2FE|GE|ρ cos 3ϕ+ G2
Eρ

2
ρ̂+

1
ρ

F2E − FE|GE|ρ cos 3ϕ− 2G2
Eρ

2

F2E + 2FE|GE|ρ cos 3ϕ+ G2
Eρ

2
ϕ̂. (2.51)

14As we shall see later, this is true only for the cases in which FE ̸=0 and GE=0 or FE≫GE.
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Following Berry [10] and Zwanziger and Grant [53], the phase experienced by the wave

functions under complete traversal by the nuclei of a circular path C, i.e., for a fixed and

arbitrary value of ρ, round the origin is

γ1,2(C) = i
∮
C

⟨
ψ̃1,2(r;Q)

∣∣∣ ∇⃗ψ̃1,2(r;Q)
⟩
· dQ

= i
∮
C
i
ℓ

2
∇⃗α(Q) · dQ

= − ℓ

2

∫ 2π

0

∂α(Q)

∂ϕ
dϕ

= − ℓ

2

∫ 2π

0

F2E − FEGEρ cos 3ϕ− 2G2
Eρ

2

F2E + 2FEGEρ cos 3ϕ+ G2
Eρ

2
dϕ, (2.52)

where we have taken both FE and GE as positive quantities. Note that, in the limit of pure

linear coupling, i.e., for GE=0, α(Q)=ϕ [see Eq. (2.32)], the integral (2.52) assumes the

simple form

γ1,2(C) = − ℓ

2

∫ 2π

0
1dϕ = −ℓπ, (2.53)

which corresponds to a GP factor of

e−iℓπ = −1. (2.54)

Thus, as the electronic wave functions (2.47) are adiabatically transported around any

closed path C which encircles the central D3h Ci, they both change sign. This is just the

result obtained by Berry in the context of the linear E⊗ e JT problem [10].

Let us now turn to the important case of the SLP JT molecules. As shown in Fig-

ures 2.3(c) and 2.4(c), such systems show three additional symmetry-allowed C2v degen-

eracies in quite close proximity to the central D3h Ci. Zwanziger and Grant [53] evaluated

the phase behavior of the adiabatic wave functions (2.47) by solving the integral (2.52)

for distinct cyclic paths in the (Q2,Q3) branching plane.15 They demonstrated that for

loops defined by ρ<ρ0 [see Eq. (2.33)], i.e., when only the D3h degeneracy is encircled,

the electronic wave functions behave much in the same way as those of the purely linear

15In such circular paths, the perimeter of the triangle is always kept fixed or, in other words, Qa1ι≡Q1

in Eq. (2.20) equals to zero, with R× assuming a particular and fixed value.
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E⊗ e problem and change sign under the complete traversal of the path. Furthermore,

if the loop encloses just one of the three equivalent C2v Cis, the phase experienced by

the eigenkets imparts the same degree of rotation as transport about the origin, but with

the opposite sign, i.e.,

γ1,2(C
′) = ℓπ. (2.55)

Thus, as highlighted by the authors [53], the phase along any path is easily obtained by

including ℓπ for every (counterclockwise) loop around one of the three C2v degeneracies,

and −ℓπ for the origin. Indeed, for paths with ρ>ρ0, i.e., those which include all 4 Cis,

we find

γ1,2(C
′′) = −ℓπ + 3(ℓπ) = 2ℓπ, (2.56)

and

ei2ℓπ = 1. (2.57)

In this case, therefore, there is no net sign change and both |ψ1,2(r;Q)⟩ [Eq. (2.31)] and
|ψ̃1,2(r;Q)⟩ [Eq. (2.47)] are single-valued everywhere in the ρ>ρ0 region. Finally, consider

the RT-like case shown in Figures 2.3(d) and 2.4(d). Again, for such systems FE=0, and

therefore, α(Q) in Eq. (2.32) is precisely −2ϕ. Thence, Eq. (2.52) assumes the form

γ1,2(C
′′′) = − ℓ

2

∫ 2π

0
−2dϕ = 2ℓπ, (2.58)

which is exactly the same solution obtained in (2.56). From such results, one can cer-

tainly state that, for SLP JT systems, ρ0 marks a sharp boundary between (linear) JT- and

(quadratic) RT-like behavior. This is so since adiabatic electronic wave functions undergo

a sign change upon transport about the origin in the former, but not in the latter.
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[4] W. Domcke, D. R. Yarkony, and H. Köppel, Conical Intersections: Electronic Struc-

ture, Dynamics & Spectroscopy., Advanced Series in Physical Chemistry, Vol. 15

(World Scientific, Singapure, 2004).

[5] G. A. Worth and L. S. Cederbaum, Ann. Rev. Phys. Chem. 55, 127 (2004).

[6] G. C. G. Waschewsky, P. W. Kash, T. L. Myers, D. C. Kitchen, and L. J. Butler, J.

Chem. Soc., Faraday Trans. 90, 1581 (1994).

[7] D. R. Yarkony, Acc. Chem. Res. 31, 511 (1998).

[8] G. Herzberg and H. C. Longuet-Higgins, Discuss. Faraday Soc. 35, 77 (1963).

[9] H. C. Longuet-Higgins, Proc. R. Soc. Ser. A 344, 147 (1975).

[10] M. V. Berry, Proc. R. Soc. 392, 45 (1984).

[11] C. A. Mead and D. G. Truhlar, J. Chem. Phys. 70, 2284 (1979).

[12] C. A. Mead, Rev. Mod. Phys. 64, 51 (1992).

61

http://dx.doi.org/ 10.1007/BFb0009221
http://dx.doi.org/10.1146/annurev-physchem-032210-103450
http://dx.doi.org/10.1146/annurev.physchem.55.091602.094335
http://dx.doi.org/10.1039/FT9949001581
http://dx.doi.org/10.1039/FT9949001581
http://dx.doi.org/10.1021/ar970113w
http://dx.doi.org/10.1039/DF9633500077
http://dx.doi.org/10.1098/rspa.1975.0095
http://dx.doi.org/10.1098/rspa.1984.0023
http://dx.doi.org/10.1063/1.437734
http://dx.doi.org/10.1103/RevModPhys.64.51


62 Bibliography

[13] B. K. Kendrick, J. Phys. Chem. A 107, 6739 (2003).

[14] G. J. Atchity, S. S. Xantheas, and K. Ruedenberg, J. Chem. Phys. 95, 1862 (1991).

[15] A. J. C. Varandas, Chem. Phys. Lett. 487, 139 (2010).

[16] M. V. Berry and M. Wilkinson, Proc. R. Soc. Lond. A 392, 15 (1984).

[17] H. A. Jahn and E. Teller, Proc. R. Soc. Lond. A 161, 220 (1937).

[18] H. A. Jahn, Proc. R. Soc. Lond. A 164, 117 (1938).

[19] J. von Neumann and E. P. Wigner, Physik. Z. 30, 467 (1929).

[20] E. Teller, J. Phys. Chem. 41, 109 (1937).

[21] K. R. Naqvi, Chem. Phys. Lett. 15, 634 (1972).

[22] A. J. Stone, Proc. R. Soc. Lond. A 351, 141 (1976).

[23] G. J. Hatton, Phys. Rev. A 14, 901 (1976).

[24] C. A. Mead, J. Chem. Phys. 70, 2276 (1979).

[25] M. Born and R. Oppenheimer, Ann. Phys. 389, 457 (1927).

[26] C. J. Ballhausen and A. E. Hansen, Annu. Rev. Phys. Chem. 23, 15 (1972).

[27] C. A. Mead and D. G. Truhlar, J. Chem. Phys. 77, 6090 (1982).

[28] A. Szabo and N. S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced

Electronic Structure Theory, Vol. 1 (McGraw-Hill Book Co., New York, 1989).

[29] D. R. Yarkony, Rev. Mod. Phys. 68, 985 (1996).

[30] D. R. Yarkony, Chem. Rev. 112, 481 (2012).

[31] L. Pauling and E. B. Wilson, Introduction to Quantum Mechanics with Applications

to Chemistry, Vol. 1 (McGraw-Hill Book Co., New York, 1935).

http://dx.doi.org/10.1021/jp021865x
http://dx.doi.org/10.1063/1.461036
http://dx.doi.org/10.1016/j.cplett.2010.01.032
http://dx.doi.org/10.1098/rspa.1984.0022
http://dx.doi.org/10.1098/rspa.1937.0142
http://dx.doi.org/10.1098/rspa.1938.0008
http://dx.doi.org/10.1007/978-3-662-02781-3_20
http://dx.doi.org/10.1021/j150379a010
http://dx.doi.org/10.1016/0009-2614(72)80393-2
http://dx.doi.org/10.1098/rspa.1976.0134
http://dx.doi.org/10.1103/PhysRevA.14.901
http://dx.doi.org/10.1063/1.437733
http://dx.doi.org/10.1002/andp.19273892002
http://dx.doi.org/10.1146/annurev.pc.23.100172.000311
http://dx.doi.org/10.1063/1.443853
http://dx.doi.org/10.1103/RevModPhys.68.985
http://dx.doi.org/10.1021/cr2001299


Bibliography 63

[32] J. S. Griffith, The Irreducible Tensor Method for Molecular Symmetry Groups (Prentice-

Hall, New Jersey, 1962).

[33] R. Englman, The Jahn-Teller Effect ( John Wiley & Sons, New York, 1973).

[34] I. B. Bersuker and V. Z. Polinger, Vibronic Interactions in Molecules and Crystals

(Springer-Verlag, Berlin, 1989).

[35] I. B. Bersuker, Chem. Rev. 101, 1067 (2001).

[36] I. B. Bersuker, The Jahn-Teller Effect (Cambridge University Press, Cambridge, 2006).

[37] U. Öpik and M. H. L. Pryce, Proc. R. Soc. Lond. A 238, 425 (1957).

[38] I. B. Bersuker, Chem. Rev. 113, 1351 (2013).

[39] R. Renner, Z. Phys. 92, 172 (1934).

[40] G. Herzberg and E. Teller, Z. Phys. Chem., Abt. B 21, 410 (1933).

[41] T. J. Lee, D. J. Fox, H. F. Schaefer, and R. M. Pitzer, J. Chem. Phys. 81, 356 (1984).

[42] M. D. Sturge, Solid State Physics 20, 91 (1968).

[43] T. A. Barckholtz and T. A. Miller, Int. Rev. Phys. Chem. 17, 435 (1998).

[44] P. Garcia-Fernandez, I. B. Bersuker, and J. E. Boggs, J. Chem. Phys. 125, 104102

(2006).

[45] C. M. R. Rocha and A. J. C. Varandas, J. Chem. Phys. 144, 064309 (2016).

[46] A. J. C. Varandas and J. N. Murrell, Chem. Phys. Lett. 84, 440 (1981).

[47] J. N. Murrell, S. Carter, S. C. Farantos, P. Huxley, and A. J. C. Varandas, Molecular

Potential Energy Functions ( John Wiley & Sons, Chichester, 1984).

[48] A. Ceulemans, J. Chem. Phys. 87, 5374 (1987).

[49] A. D. Liehr and C. J. Ballhausen, Ann. Phys. 3, 304 (1958).

http://dx.doi.org/10.1021/cr0004411
http://dx.doi.org/10.1098/rspa.1957.0010
http://dx.doi.org/10.1021/cr300279n
http://dx.doi.org/10.1007/BF01350054
http://dx.doi.org/10.1515/zpch-1933-2136
http://dx.doi.org/10.1063/1.447313
http://dx.doi.org/10.1016/S0081-1947(08)60218-0
http://dx.doi.org/10.1080/014423598230036
http://dx.doi.org/10.1063/1.2346682
http://dx.doi.org/10.1063/1.2346682
http://dx.doi.org/10.1063/1.4941382
http://dx.doi.org/10.1016/0009-2614(81)80381-8
http://dx.doi.org/10.1063/1.453656
http://dx.doi.org/10.1016/0003-4916(58)90022-8


64 Bibliography

[50] H. C. Longuet-Higgins, U. Öpik, M. H. L. Pryce, and R. A. Sack, Proc. R. Soc. Lond.

A 244, 1 (1958).

[51] W. Moffitt and W. Thorson, Phys. Rev. 108, 1251 (1957).

[52] M. C. M. O’Brien, Proc. R. Soc. Lond. A 281, 323 (1964).

[53] J. W. Zwanziger and E. R. Grant, J. Chem. Phys. 87, 2954 (1987).
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Chapter 3

Calculation of potential energy

surfaces

An essential step toward an accurate representation of PESs consists of finding exact

solutions to the TIESE [Eq. (1.29)] for an extensive set of fixed nuclear coordinates. Such

a task is central to quantum chemists and, apart from the simplest cases such as H+
2 (and

similar one-electron systems), is hardly achievable. Thus, one frequently has to rely on

rigorous (but approximate) quantum-mechanical models in order to approach the exact

solutions of the many-electron problem [1–3].

Central to such standard methodologies is the Hartree-Fock (HF) approximation [4, 5]

which introduces the simplest and fundamental picture of electrons occupying orbitals

and provides a well defined step on the way to more sophisticated theories. By approx-

imating the true electronic wave function as a single antisymmetrized Hartree product

(Slater determinant (SD) [6]), the variational principle naturally warrants that the best set

of orbitals and the lowest possible electronic energy is achieved for such trial function

[7–9]. Obviously, as an independent-particle model, the HF theory accounts only for

the average electron-electron interactions, and hence neglects, by its own fundamental

nature, the true correlated dynamics of the systems’ particles. At higher levels of ap-

proximation, one then expects to represent the true wave function for a fully interacting

system by a variationally determined superposition of several (if not all) SDs. Although

65
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multi-determinant methods are computationally much more involved than the HF model,

they can, in principle, generate results that systematically approach the exact solutions

of the TIESE.

Once the best affordable one-electron basis set and electronic structure model, i.e., the

L-electron wave function, have been selected and solved for a reasonable set of nuclear

arrangements, we are frequently faced with the problem of how to accurately represent

such huge table of ab initio energies so generated [10, 11]. By selecting a reliable compact

analytic model, one is then able to fit such data (interpolate, and possibly extrapolate

to regions of the nuclear configuration space not covered by the ab initio calculations)

and subsequently use the model PES so obtained to solve any nuclear dynamics problem

[12–17].

3.1 The Hartree-Fock self-consistent field theory

Following the HF approach [4, 5], the ground-state wave function for an L-electron molec-

ular system can be approximated by the single SD1

|Θ0(x;R)⟩ =
1√
L!

∣∣∣∣∣∣∣∣∣∣∣

φ1(x1) φ2(x1) . . . φL(x1)

φ1(x2) φ2(x2) . . . φL(x2)
...

...
. . .

...

φ1(xL) φ2(xL) . . . φL(xL)

∣∣∣∣∣∣∣∣∣∣∣
, (3.1)

where xj = (rj,w) is a collective variable defining the three spatial (rj) and spin (w)

coordinates of the j-th electron and |φi(xj)⟩ specify a set of orthonormal one-electron

1Slater determinants meet the requirement of the antisymmetry principle [6], i.e., they are antisymmetric

with respect to the interchange of the space (r) and spin (w) coordinates of any two electrons. From

Eq. (3.1), this means that, by interchanging any two rows, the determinant changes its sign. Note further

that, if two columns are equal, or in other words, if two electrons occupy the same spin orbital, the

determinant assumes a null value. This is clearly a direct consequence of the Pauli exclusion principle [6].
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wave functions, i.e., spin molecular orbital (MO)s, given by

|φi(xj)⟩ =


|ςi(rj)⟩ |α(w)⟩

or

|ςi(rj)⟩ |β(w)⟩ ,

(3.2)

where, |α(w)⟩ and |β(w)⟩ are orthonormalized spin functions corresponding to spin up

(↿) and spin down (⇂), respectively, with |ςi(rj)⟩ being the associated spatial part. Before

proceeding to the evaluation of the energy of the SD, it is convenient to rewrite the

(clamped-nuclei) electronic Hamiltonian of Eq. (1.28) in the form

Ĥe(r;R) =
L∑
i=1

ĥi(ri;R) +
L∑
i=1

L∑
j>i

ĝij(ri, rj;R) + V̂NN(R), (3.3)

where

ĥi(ri;R) = −1
2
∇2(ri)−

H∑
j=1

Zj
|Rj − ri|

, (3.4)

and

ĝij(ri, rj;R) =
1

|ri − rj|
. (3.5)

In the above equations, ĥi(ri;R) is a one-electron operator which describes the motion

of electron i in the field of the nuclei and ĝij(ri, rj;R) is the typical electron-electron

repulsion term. Note that the nuclear repulsion operator V̂NN(R) [Eq. (1.8)] is independent

of the electronic coordinates, and hence, for a fixed nuclear arrangement, assumes a

constant value. Thus, V̂NN(R) can be immediately integrated out in the evaluation of the

matrix elements of Ĥe(r;R) in the electronic basis |Θ0(x;R)⟩. For the sake of clarity,

here and in the following sections, obvious coordinate dependencies will be suppressed

when no confusion result.

By substituting Eqs. (3.1) and (3.3) into the expression

E0 =

⟨
Θ0

∣∣∣Ĥe

∣∣∣Θ0

⟩
⟨Θ0 |Θ0⟩

, (3.6)
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one then obtains the expectation value of Ĥe in the single-determinantal (trial) wave

function |Θ0⟩ which yields [1–3]

E0 =E′
0 +E′′

0 + V̂NN, (3.7)

where

E′
0 =

L∑
i=1

⟨
φi(1)

∣∣∣ ĥi

∣∣∣φi(1)⟩ (3.8)

is the expectation value of the one-electron terms and

E′′
0 =

1
2

L∑
ij

⟨
φi(1)φj(2)

∣∣ ĝ12

∣∣φi(1)φj(2)⟩− ⟨φi(1)φj(2) ∣∣ ĝ12

∣∣φj(1)φi(2)⟩
=

1
2

L∑
ij

(Jij − Kij) (3.9)

represents the corresponding two-by-two electron repulsion energy. The matrix elements

Jij and Kij are the so-called Coulomb and exchange (two-electron) integrals, respectively

[1–3]. Clearly, Jij represents the repulsion between two charged particles described by the

probability distribution functions φi(1)2 and φj(2)2, whereas Kij has no classical interpre-

tation and arises because of the antisymmetric nature of the determinantal wave function

[1]. Note that, in Eq. (3.9), the 1/2 factor appears inasmuch as the double summation

runs over all electrons, without explicit restrictions on the i and j indexes.2

The total electron-electron repulsion energyE′′
0 [Eq. (3.9)] can be conveniently rewrit-

ten in terms of one-electron Coulomb (Ĵj) and exchange (K̂j) operators. They are defined

by their effect when operating on a spin MO, say, |φi(1)⟩,

Ĵj |φi(1)⟩ =
[
⟨φj(2)|ĝ12|φj(2)⟩

]
|φi(1)⟩ (3.10)

and

K̂j |φi(1)⟩ =
[
⟨φj(2)|ĝ12|φi(2)⟩

]
|φj(1)⟩ . (3.11)

2It can be seen from Eq. (3.9) that the “self-interaction” term Jjj is exactly canceled by the corresponding

“exchange” element Kjj.
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By making use of the above operators, Eq. (3.9) assumes the form

E′′
0 =

1
2

L∑
ij

[⟨
φi(1)

∣∣∣ Ĵj ∣∣∣φi(1)⟩−
⟨
φi(1)

∣∣∣ K̂j

∣∣∣φi(1)⟩] , (3.12)

and, finally, from (3.7), (3.8) and (3.12), the total energy of the single SD wave function

[Eq. (3.1)] is

E0 =
L∑
i=1

⟨
φi(1)

∣∣∣ ĥi

∣∣∣φi(1)⟩+
1
2

L∑
ij

[⟨
φi(1)

∣∣∣ Ĵj ∣∣∣φi(1)⟩−
⟨
φi(1)

∣∣∣ K̂j

∣∣∣φi(1)⟩]+ V̂NN.

(3.13)

We are now primarily interested in obtaining a set of spin MOs {|φi⟩}Li=1 such that

the single determinant (3.1) formed from them is the best possible approximation to the

ground-state wave function for the L-electron system. Following the variational principle

[7–9], this can only be accomplished by determining those orthonormal orbitals that make

the total electronic energyE0 [Eq. (3.13)] a minimum. In so doing3, one obtains the usual

form of the HF pseudo-eigenvalue equations [1]

f̂i |φ′
i(1)⟩ = ϵi |φ′

i(1)⟩ , (3.15)

where f̂i is the effective one-electron Fock operator

f̂i = ĥi +
L∑
j

(Ĵj − K̂j), (3.16)

|φ′
i(1)⟩ is the set of canonical4 HF eigenvectors (MOs) which warrant that the lowest

possible E0 is achieved for the single SD and ϵi is the corresponding orbital energies. It

3Such a constrained optimization is performed in such a way that the MOs remain orthonormal, and

therefore can be reasonably handle by means of the Lagrange multipliers technique [2]. The condition to

be fulfilled is that the Lagrange function (L) must be stationary with respect to an orbital variation, i.e.,

δL = δE0 −
L∑
ij

λij
[
⟨δφi|φj⟩ − ⟨φi|δφj⟩

]
= 0, (3.14)

where λij are the Lagrange multipliers.
4Canonical orbitals are those that, by an unitary transformation, make the matrix of Lagrange multipliers

diagonal. Such diagonal elements are thus the expectation values of the Fock operator in the {|φ′
i⟩}

L
i=1

basis, i.e., have the physical interpretation of the MO energies.
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should be emphasized that, apart from atoms and diatomic molecules, the “exact” HF

spin orbitals, and hence the exact (numeric) solutions of (3.15) are hardly possible. In

practice, one normally expand the MOs as linear combinations of basis functions and

then solve the resulting set of matrix equations. It is only when such basis approaches

completeness, i.e., at the complete basis set (CBS) or, in this particular case, at the HF

limit, will the resulting spin orbitals converge to the correct solutions. By inspecting the

ansatz (3.15), it is also clear that, since the Fock operator [Eq. (3.16)] actually depends on

its own eigenvectors [via Ĵ and K̂ in Eqs. (3.10) and (3.11)], the HF pseudo-eigenvalue

problem must then be solved by iterative techniques, i.e, by a self-consistent field (SCF)

procedure [1–5].

The minimum value of E0 can thus be given in terms of the eigenvalues of the Fock

operator, i.e.,

E0 =E
(0)
0 +E

(1)
0 + V̂NN

=
L∑
i=1

ϵi −
1
2

L∑
ij

(Jij − Kij) + V̂NN. (3.17)

Indeed, since the summation over spin orbitals in Eq. (3.16) accounts from the electron-

electron repulsion twice, the total energy of the L-electron molecular system is not the

sum of MO energies, and hence the corrective term E
(1)
0 on the RHS of Eq. (3.17) must

be added.

So far we have considered the HF formalism without making any assumptions (or

restrictions) about the explicit form of the spin MOs from which the single SD trial wave

function [Eq. (3.1)] is built. As stated above, the best set of such orbitals are those that

satisfy the Schrödinger-like one-electron equations (3.15). Most stable molecules have

singlet ground electronic states (closed-shell species) in which each MO is occupied by

a pair of electrons with opposite spins. Thus, for such systems, a reasonable trial SD

would be the one in which spin orbitals are constrained to have the same spatial part

|ς(r)⟩ for |α(w)⟩ and |β(w)⟩ spin functions [see Eq. (3.2)]. In an abbreviated notation,
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such closed-shell restricted Hartree-Fock (RHF) wave function is thus defined as [1]

|ΘRHF
0 ⟩ = Â |φ1φ2φ3φ4 . . . φL−1φL⟩

= Â |φ1φ1φ2φ2 . . . φL/2φL/2⟩ , (3.18)

where Â is an antisymmetrizing operator with |φi⟩ and |φi⟩ denoting the set of restricted

spin orbitals having α and β spin functions, respectively. To solve the corresponding

(spatial) HF equations [1], one can then expand the unknown set of spatial MOs, i.e.,

{|ςi⟩}L/2i=1, in terms of a set of K known basis functions [1]

|ςi⟩ =
K∑

ν=1

Cνiϱν i = 1, 2 . . .K, (3.19)

where Cνi are the MO expansion coefficients. By making use of the above expansion,

the corresponding spatial RHF equations turn into a set of matrix eigenvalue problems

[1]

FC = SCϵ (3.20)

which is the so-called Roothaan-Hall equations [18, 19]. In the above expression, F is the

matrix representation of the (closed-shell) spatial Fock operator [see Eq. (3.23) below] in

the basis {|ϱν⟩}Kν=1, or the Fock matrix, and S is the associated overlap matrix [1, 18, 19].

These latter have elements

Fµν =
⟨
ϱµ

∣∣∣ f̂i ∣∣∣ ϱν⟩ , (3.21)

and

Sµν = ⟨ϱµ | ϱν⟩ , (3.22)

with f̂i now assuming the form [1]

f̂i = ĥi +

L/2∑
j

(2Ĵj − K̂j). (3.23)

From the definitions of the Coulomb and exchange operators [Eqs. (3.10) and (3.11)] and

the above expressions, the element Fµν of the Fock matrix can be further expanded as
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[1]

Fµν =
⟨
ϱµ

∣∣∣ ĥi

∣∣∣ ϱν⟩+

L/2∑
j

[
2
⟨
ϱµ

∣∣∣ Ĵj ∣∣∣ ϱν⟩−
⟨
ϱµ

∣∣∣ K̂j

∣∣∣ ϱν⟩]

=
⟨
ϱµ

∣∣∣ ĥi

∣∣∣ ϱν⟩+

L/2∑
j

[
2
⟨
ϱµςj

∣∣ ĝ12

∣∣ ϱνςj⟩− ⟨ϱµςj ∣∣ ĝ12

∣∣ ςjϱν⟩]
=
⟨
ϱµ

∣∣∣ ĥi

∣∣∣ ϱν⟩+

L/2∑
j

K∑
σλ

2CσjC
∗
λj

[
⟨ϱµϱλ | ĝ12 | ϱνϱσ⟩ −

1
2
⟨ϱµϱλ | ĝ12 | ϱσϱν⟩

]

=
⟨
ϱµ

∣∣∣ ĥi

∣∣∣ ϱν⟩+
K∑
σλ

Pσλ

[
⟨ϱµϱλ | ĝ12 | ϱνϱσ⟩ −

1
2
⟨ϱµϱλ | ĝ12 | ϱσϱν⟩

]
, (3.24)

where

Pσλ =

L/2∑
j

2CσjC
∗
λj (3.25)

is the so-called density matrix [1, 18, 19]. In Eq. (3.20), C is a K by K matrix of the MO

expansion coefficients and ϵ is a diagonal matrix of the orbital energies. The solutions of

the Roothaan-Hall equations [Eq. (3.20)] are determined in a self-consistent fashion [1–5]

and yield a set of L occupied (restricted) spin orbitals (or L/2 doubly occupied MOs) as

well as a complementary set of 2K− L virtual spin orbitals (or K− L/2 unoccupied MOs).

Obviously, not all molecules can be described by pairs of electrons in closed-shell

orbitals. Open-shell species are characterized as having one or more unpaired electrons

which should then be treated accordingly. Thus, one frequently has to generalize the

previous closed-shell approach by allowing each set of α and β spins to be described

by a different set of spatial orbitals [20]. Within such open-shell formalism, the single

determinantal unrestricted Hartree-Fock (UHF) wave function assumes the form [1]

|ΘUHF
0 ⟩ = Â |φ1φ2φ3φ4 . . . φL−1φL⟩

= Â |φα
1φ

β
1φ

α
2φ

β
2 . . . φ

α
Lαφ

β
Lβ⟩ , (3.26)

where |φα
i ⟩ and |φβ

i ⟩ now define the set of unrestricted spin orbitals that have different

spatial parts [|ςαi ⟩ and |ςβi ⟩] for |α⟩ and |β⟩ spin functions, respectively. Again, in order to

solve the corresponding α and β (spatial) UHF equations [1], we expand the unknown
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sets of spatial orbitals, i.e., {|ςαi ⟩}L
α

i=1 and {|ςβi ⟩}L
β

i=1, in terms of a set of K basis functions

[1]

|ςαi ⟩ =
K∑

ν=1

Cα
νiϱν i = 1, 2 . . .K

|ςβi ⟩ =
K∑

ν=1

Cβ
νiϱν i = 1, 2 . . .K, (3.27)

where Cα
νi and C

β
νi are the coefficients for the distinct sets of α and β MOs. The resulting

UHF matrix eigenvalue equations are now split into α and β components [1]

FαCα = SCαϵα

FβCβ = SCβϵβ. (3.28)

The above expressions are the unrestricted generalizations of the Roothaan-Hall equa-

tions [Eq. (3.20)] and were first derived by Pople and Nesbet [20]. Note that Fα and Fβ are

matrix representations (in the basis {|ϱν⟩}Kν=1) of the unrestricted spatial Fock operators

[1, 20]

f̂α
i = ĥi +

Lα∑
j

(Ĵα
j − K̂α

j ) +
Lβ∑
j

Ĵ
β
j

f̂
β
i = ĥi +

Lβ∑
j

(Ĵβ
j − K̂

β
j ) +

Lα∑
j

Ĵα
j , (3.29)

which include, for an electron of α (β) spin, a coulomb and exchange interactions with

all other α (β) electrons plus a coulomb interaction with electrons of β (α) spin. Suffice

it to add that, since the |α⟩ and |β⟩ spin functions are orthonormal, exchange effects are

only effective between electrons of parallel spins [1]. Similarly to Eq. (3.20), the Pople-

Nesbet equations [Eq. (3.28)] can be solved with the aid of a SCF procedure. However,

inasmuch as Fα and Fβ depend on both Cα and Cβ, the solutions of the two eigenvalue

problems can only be obtained simultaneously.

Apart from the proper unrestricted treatment, open-shell species can also be described

by restricted-type SDs in which all electrons, expect those that are explicitly required to

occupy open-shell MOs, occupy closed-shell orbitals. In such a restricted open-shell

Hartree-Fock (ROHF) formalism [1–3], the orbital space is partitioned into a subset D
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which contains doubly occupied orbitals, a subset P that are allowed to be partially oc-

cupied and a subset V which are unoccupied (virtual). These three types of orbital spaces

give rise to three different spatial Fock operators whose matrices, similarly to Eq. (3.28),

must then be diagonalized simultaneously in order to account for the proper mixing be-

tween each subset. The advantage of the ROHF procedure is that the associated wave

functions are generally eigenfunctions of the total spin angular momentum operator Ŝ2.

Indeed, UHF determinants do not meet such a requirement, and therefore suffer from

considerable spin contamination, i.e., they have contributions from higher multiplicity

components. Nevertheless, one should bear in mind that, by restricting the spatial de-

scription of electrons, additional constraints are introduced in the variational problem

and the energy of a UHF wave function is always lower than or equal to a corresponding

ROHF-type determinant [1–3].

Regardless of the type of spin MOs employed in the construction of the single SD trial

wave functions, the essential concept behind the HF approximation, i.e., to transform the

L-electron problem into L one-electron Schrödinger-like equations, clearly does not suf-

fice to provide the correct answer. Actually, even at the CBS limit, HF energies are always

upper bounds to the exact non-relativistic BO electronic eigenvalues. One then seeks

for higher levels of approximations which are capable to properly describe the corre-

lated nature of electrons. Obviously, since the electronic motion in an L-electron system

is very complex, such models naturally require elaborate and expensive computational

approaches.

3.2 Electron correlation methods

The term “correlation energy” is generally employed to describe all the remaining effects

that the mean-field HF theory naturally neglects [21]. It is defined as the difference

between the exact non-relativistic BO electronic energy (V1) and the HF energy obtained
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at the CBS limit [1], i.e.,5

Ecor = V1 −E0. (3.30)

In practice, however, since the HF limit is hardly reached nor V1 is known, Ecor is simply

determined as the difference in energy between the HF and the lowest possible energy

in a given one-electron basis set [2]. Indeed, Ecor represents an essential mathematical

quantity which tells us the error of the independent particle model [21].

The HF theory determines (via the variational principle) the best possible single-

Slater-determinantal wave function (within the given basis set), so an obvious choice to

correct for the remaining deficiencies would be to construct a trial wave function which

contains more than one SD, i.e.,

|ψ1⟩ = c0 |Θ0⟩+ c1 |Θ1⟩+ c2 |Θ2⟩+ . . . , (3.31)

where the coefficients determine the weight of each determinant in the expansion.

Clearly, if |Θ0⟩ is a reasonable approximation to the ground-state wave function, c0 will

be greater than any other coefficient.

For the majority of chemical systems, the chief error in the mean-field approximation

relies on ignoring the (instantaneous) correlated motion of each electron with the others.

Such kind of electron correlation is often referred to as dynamical correlation (dc), since it

is related to the dynamical character of electron-electron interactions [2]. The dc manifests

itself through the small but non-vanishing contributions of other determinants to the

total wave function, and hence to the total energy. Several electronic structure methods

of varying complexity and accuracy have been proposed in order to account for the

dynamical correlation effects; these include the configuration interaction (CI) method

[1–3, 22], Møller-Plesset perturbation theory (MPn) [1–3, 23, 24] and coupled cluster (CC)

theory [25–27].

In contrast, there will also be situations, particularly for molecules having nearly (or

exactly) degenerate frontier orbitals, in which one or more determinants in (3.31) have

5Note that, by using the notation V1 for the exact non-relativistic BO electronic energy, we are here

assuming that this is the solution of the TIESE [Eq. (1.29)] for the ground-electronic state of the L-electron

molecular system in a particular nuclear configuration.
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coefficients of similar magnitude to that of the HF reference wave function. Such near-

degeneracy effects are generally referred to as static or non-dynamical correlation (ndc).

It reflects the fact that the error the in the HF approximation is not only because it ignores

the correlated motion of the electrons, but also due to its intrinsic single-determinantal na-

ture [2]. In dealing with such systems, multi-configurational self-consistent field (MCSCF)

approaches [28–30] must generally be employed along with multi-reference correlation

methods [31–37].

3.2.1 CI method

In our previous discussion, we have addressed the general aspects about the nature and

type of trial wave functions that can actually be utilized for improving upon the HF

approximation. So far, we did not make any reference on the explicit form of these

additional SDs that should be included in (3.31). This will be our main concern here.

Suppose that, by solving the the Roothaan-Hall’s equations [Eq. (3.20)] in a finite one-

electron basis set, one obtains a set of 2K spin orbitals {|φi⟩}. Clearly, the determinant

formed from the L lowest spin MOs is |Θ0⟩. However, apart from the HF wave function,

several other SDs can also be obtained by simply promoting electrons from the set of L

occupied spin orbitals, here denoted as {|φa⟩ , |φb⟩ , |φc⟩ , |φd⟩ , . . .}, to the set of 2K − L

virtuals {|φr⟩ , |φs⟩ , |φt⟩ , |φu⟩ , . . .}. The possible set of SDs that can be formed include

singly |Θr
a⟩, double |Θrs

ab⟩, triply |Θrst
abc⟩ up to L-tuply |Θrstu...

abcd...⟩ excited determinants. The

total number of such possible combinations is given by the binomial coefficient [31]

2K

L

 =
(2K)!

L!(2K− L)!
. (3.32)

These SDs so obtained can be taken to represent approximate excited states of the system

and form, within a given one-electron basis set, a complete set of L-electron basis in which

to expand the exact ground-state wave function |ψ1⟩. From the above considerations,
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Eq. (3.31) can be rewritten as

|ψ1⟩ = c0 |Θ0⟩+
∑
ar

cra |Θr
a⟩+

∑
a<b
r<s

crsab |Θrs
ab⟩

+
∑
a<b<c
r<s<t

crstabc |Θrst
abc⟩+

∑
a<b<c<d
r<s<t<u

crstuabcd |Θrstu
abcd⟩+ . . . , (3.33)

which is the so-called full configuration interaction (FCI) wave function [1–3, 22]. Note

that the restricted summation indices warrant that a given excited determinant is included

only once in the sum. The corresponding coefficients and energies of such trial wave

function are obtained by diagonalizing the matrix representation of the electronic Hamil-

tonian [Eq. (3.3)] in the L-electron basis of Eq. (3.33), i.e., by finding the eigenvectors and

eigenvalues of the FCI matrix [31]. The lowest eigenvalue is always an upper bond of the

exact non-relativistic BO ground-state energy. Indeed, the difference between the FCI

energy and the HF energy within the same finite one-electron basis is often called the

basis set correlation energy [31]. Note that, if all possible SDs formed from an infinity set

of spin orbitals (at the CBS limit) are included in (3.33), the FCI method provides the “ex-

act” solutions to the TIESE [Eq. (1.29)], with the basis set correlation energy approaching

the “true” correlation energy.

Although such an approach is a formally exact theory, FCI calculations becomes

computationally prohibitive as the number of electrons and the size of the MO basis set

increases. It is therefore a common practice to truncate the CI expansion (3.33) at the

double excitation terms (CISD) which already recover a large fraction of the correlation

energy. While such truncated approaches make CI computations feasible in practice,

the resulting solutions may suffer from size-consistency and size-extensivity problems6

[1–3, 22].

6An electronic structure method is said to be size consistent when the energy calculated for a super-

molecule composed of two identical and noninteracting (infinitely separated) molecules is exactly twice

the energy of the (isolated) monomer. In contrast, size extensivity is the property that the fraction of

the electron correlation recovered by the model is proportional to the number of electrons present in the

molecular system [2].
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3.2.2 Multi-configurational SCF theory

For the majority of molecular systems, the HF wave function provides an acceptable

starting point for a subsequent (single-reference) correlation treatment. Yet, the most

fundamental problem of such an approach is that single SDs become clearly inadequate

in describing molecules having near (or exact) degeneracies in their valence MOs. This

situation arises particularly in bond-breaking-bond-forming processes in which occupied

and unoccupied orbitals come quite close in energy as bond distances are stretched. Ob-

viously, such multi-configurational nature is also preponderant in JT, RT and PJT systems

as well as in general avoided crossing situations [28, 29]. Since different regions of the

molecular PES are often dominated by different electronic configurations, a qualitatively

correct description of these systems can only be attained by including all relevant con-

figuration state function (CSF)s7 in the SCF procedure. Such a MCSCF approach can be

considered as a CI in which not only the coefficients in the expansion (3.33) are opti-

mized by the variational principle, but also the MOs (via atomic expansion coefficients)

used for constructing the corresponding determinants [31].

The fundamental problem with the MCSCF method consists of selecting which CSFs

are necessary in (3.33) in order for the total wave function be sufficiently flexible to

provide a proper description of the system at hand, but still small enough to be compu-

tationally tractable. A successful approach to perform such a task consists in partitioning

the MO space into three subsets (spaces)

φ1 . . . φi︸ ︷︷ ︸
inactive

φi+1 . . . φi+a︸ ︷︷ ︸
active

φi+a+1 . . . φi+a+v︸ ︷︷ ︸
virtual

, (3.34)

where the i inactive orbitals are defined as being doubly occupied, the v virtuals as

unoccupied, while the a active orbitals have partial occupancy. Within the active MOs

a FCI is performed and all the proper CSFs (with the correct spin and spatial symmetry)

are included in the MCSCF optimization. Such a model is usually called complete active

7Configuration state functions are linear combinations of Slater determinants that have the same spatial-

orbital occupations and that are eigenfunctions of the total spin angular momentum operator Ŝ2 and the

spin projection along the z-axis Ŝz. Note that primitive Slater determinants are typically eigenfunctions

only of the Ŝz operator.
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space self-consistent field (CASSCF) approach [2, 28–30]. CASSCF active space choices

are generally abbreviated as (x, y) where x is the number of electrons and y is the number

of orbitals. For small molecules, the core orbitals are frequently treated as inactive, while

those orbitals that undergo substantial changes in chemical reactions, i.e., the valence

orbitals, as active. In such cases, the CASSCF method is often referred to as full valence

complete active space self-consistent field (FVCAS) model [30].

Although MCSCF wave functions have sufficient flexibility to describe bond-breaking-

bond-forming processes and also systems that do not have simple one-configurational

character, accurate predictions such as reaction energies and barrier heights should not

be expected. MCSCF approaches are mainly used for generating a qualitatively correct

and balanced wave function across the molecular PES by recovering the non-dynamic

part of the electron correlation. Similarly to the single-configuration HF wave functions,

they require addition of (dynamical) correlation corrections [2, 28–30].

3.2.3 Multi-reference CI

One of the most powerful quantum-mechanical models for accurate computations of

PESs is the multi-reference CI (MRCI) approach [31–35]. Its formalism is quite similar

to that for single-reference CI with the exception that, instead of a single-determinal HF

wave function, a set of reference CSFs optimized at MCSCF level is employed as a zeroth-

order approximation. In analogy to Eq. (3.33), the (uncontracted) MRCI wave function

assumes the general form [31]

|ψ1⟩ =
∑
ν

cν |Θν⟩+
∑
ν

∑
a′r′

cr
′

(ν)a′ |Θr′
(ν)a′⟩+

∑
ν

∑
a′<b′
r′<s′

cr
′s′
(ν)a′b′ |Θr′s′

(ν)a′b′⟩

+
∑
ν

∑
a′<b′<c′
r′<s′<t′

cr
′s′t′
(ν)a′b′c′ |Θr′s′t′

(ν)a′b′c′⟩+
∑

a′<b′<c′<d′
r′<s′<t′<u′

cr
′s′t′u′
(ν)a′b′c′d′ |Θr′s′t′u′

(ν)a′b′c′d′⟩+ . . . , (3.35)

where {|Θν⟩}Mν=1 defines the set of orthonormalized reference (internal) configurations

(the MCSCF expansion space) from which a complete set of L-electron MRCI basis is
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generated, i.e.,

|Θr′
(ν)a′⟩ ≡ â†r′ âa′ |Θν⟩

|Θr′s′
(ν)a′b′⟩ ≡ â†r′ â

†
s′ âa′ âb′ |Θν⟩

|Θr′s′t′
(ν)a′b′c′⟩ ≡ â†r′ â

†
s′ â

†
t′ âa′ âb′ âc′ |Θν⟩

|Θr′s′t′u′
(ν)a′b′c′d′⟩ ≡ â†r′ â

†
s′ â

†
t′ â

†
u′ âa′ âb′ âc′ âd′ |Θν⟩ . . . ν = 1, 2 . . .M, (3.36)

with â† and â being the usual spin-orbital creation and annihilation operators, respec-

tively [3, 31]. Note that, in Eqs. (3.35) and (3.36), {|φa′⟩ , |φb′⟩ , |φc′⟩ , |φd′⟩ , . . .} now

represents the set of internal spin orbitals (containing inactive+active orbitals), while

{|φr′⟩ , |φs′⟩ , |φt′⟩ , |φu′⟩ , . . .} are the corresponding external or virtuals [see Eq. (3.34)].

Thence, |Θr′
(ν)a′⟩, |Θr′s′

(ν)a′b′⟩, |Θr′s′t′
(ν)a′b′c′⟩ and |Θr′s′t′u′

(ν)a′b′c′d′⟩ represent singly, doubly, triply and

quadruply excited external configurations, respectively, in which to expand the ground-

state eigenket |ψ1⟩ [Eq. (3.35)].

While large-scale MRCI wave functions can provide a highly accurate and a balanced

description of different regions of the ground and excited molecular PESs, the compu-

tational cost associated with such calculations can be enormous. Indeed, similarly to

single-reference CI approaches, typical multi-reference calculations truncate the CI ex-

pansion to include only singles and double excitations out of the MCSCF reference space

(MRCISD), and hence are also subjected to size-consistency and size-extensivity problems

[31–35].

It should be emphasized that, even for excitation-limited models, the main bottleneck

of the MRCI method is the fact that the size of the expansion space and the computational

effort rapidly increases with the number of reference configurations. This drastically limit

the size of the molecules and/or the size of the one-electron basis sets that can actually be

handled. Indeed, different contraction schemes8 have been proposed in order to reduce

the number of parameters in the variational treatment while allowing the use of much

larger reference spaces [33–37]. Additionally, one can also restrict the size of the MCSCF

8Among these variants, the internal contraction scheme of Werner and Knowles [33–35] as well as the

externally contracted MRCI concept of Siegbahn [36, 37] deserve particular mention.
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expansion to something smaller than a CASSCF reference and consider only a reduced

number of single and double excitations [23].

3.2.4 Møller-Plesset perturbation theory

CI-based quantum-mechanical models are systematic and convenient procedures in which

to improve (and go beyond) the mean-field HF approximation. Clearly, they have the

important advantage of being variational in-nature, i.e., the electronic energies so ob-

tained are always upper bounds of the true non-relativistic BO results. The main draw-

back, however, is that size-consistency and size-extensivity errors are certainly to be

expected from them, unless all possible excitations are warranted in the trial wave func-

tions [Eqs. (3.33) and (3.35)]. An alternative method for adding electron correlation,

which is not variational but size consistent, is perturbation theory [1–3, 23]. The basic

premise of such an approach consists of partitioning the Hamiltonian (in particular, the

electronic Hamiltonian Ĥe) into two contributions: a zeroth-order part Ĥ(0)
e which has

known eigenfunctions and eigenvalues, and a small perturbation Ĥ′
e . The exact energies,

which, in principle, differ only slightly from those of the unperturbed system, are then

expressed as a perturbation expansion whose components are entirely defined in terms

of the eigenvalues of Ĥ(0)
e and matrix elements of Ĥ′

e calculated with the zeroth-order

wave functions [1–3, 23].

Suppose we wish to solve the TIESE

Ĥe |ψi⟩ =
(
Ĥ(0)
e + λĤ′

e

)
|ψi⟩ = Vi |ψi⟩ , (3.37)

where the unperturbed Hamiltonian Ĥ
(0)
e satisfies the eigenvalue problem

Ĥ(0)
e |Θ(0)

i ⟩ =E
(0)
i |Θ(0)

i ⟩ . (3.38)

In (3.37), λ is a perturbation parameter which connects the reference system (λ = 0)

with the exact physical problem (λ = 1). Obviously, if the perturbation Ĥ′
e is small,

one then expects that |ψi⟩ and Vi are reasonably close to |Θ(0)
i ⟩ and E

(0)
i , respectively.

Indeed, if λ = 0 then Ĥe = Ĥ
(0)
e , |ψi⟩ = |Θ(0)

i ⟩, and hence Vi =E
(0)
i . Note that, for the

sake of simplicity, we only consider here cases in which Ĥ′
e is time-independent and the

complete set of orthonormal zeroth-order wave functions {|Θ(0)
i ⟩} is non-degenerate [1].
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The exact eigenfunctions and eigenvalues of Ĥe can now be expanded in a Taylor

series in λ, i.e.,

|ψi⟩ = |Θ(0)
i ⟩+ λ |Θ(1)

i ⟩+ λ2 |Θ(2)
i ⟩+ . . .+ λn |Θ(n)

i ⟩

Vi =E
(0)
i + λE

(1)
i + λ2E

(2)
i + . . .+ λnE

(n)
i , (3.39)

where |Θ(n)
i ⟩ and E

(n)
i define the nth-order perturbation corrections to the electronic

wave functions and energies, respectively. The main focus of the so-called Rayleigh-

Schrödinger pertubation theory (RSPT) [1–3, 23] consists therefore in expressing these

latter quantities in terms of {E(0)
i } and matrix elements of Ĥ′

e in the basis {|Θ(0)
i ⟩}. To

this end, let’s substitute Eq. (3.39) into (3.37). In so doing, one obtains [1, 2]

(
Ĥ(0)
e + λĤ′

e

)(
|Θ(0)

i ⟩+ λ |Θ(1)
i ⟩+ λ2 |Θ(2)

i ⟩+ . . .+ λn |Θ(n)
i ⟩
)
=(

E
(0)
i + λE

(1)
i + λ2E

(2)
i + . . .+ λnE

(n)
i

)(
|Θ(0)

i ⟩+ λ |Θ(1)
i ⟩+ λ2 |Θ(2)

i ⟩+ . . .+ λn |Θ(n)
i ⟩
)
.

(3.40)

Since the above expression holds for any value of λ (for convenience, this will be later

set equal to unit), we can now collect the terms with the same power of λ which yields

Ĥ(0)
e |Θ(0)

i ⟩ =E
(0)
i |Θ(0)

i ⟩ λ0

Ĥ(0)
e |Θ(1)

i ⟩+ Ĥ′
e |Θ

(0)
i ⟩ =E

(0)
i |Θ(1)

i ⟩+E
(1)
i |Θ(0)

i ⟩ λ1

Ĥ(0)
e |Θ(2)

i ⟩+ Ĥ′
e |Θ

(1)
i ⟩ =E

(0)
i |Θ(2)

i ⟩+E
(1)
i |Θ(1)

i ⟩+E
(2)
i |Θ(0)

i ⟩ λ2

...
...

Ĥ(0)
e |Θ(n)

i ⟩+ Ĥ′
e |Θ

(n−1)
i ⟩ =

n∑
j=0

E
(j)
i |Θ(n−j)

i ⟩ λn. (3.41)

These latter define the nth-order perturbation equations. Note that the zeroth-order

anzats is just the TIESE for the unperturbed system [Eq. (3.38)]. Multiplying each of these

expressions by ⟨Θ(0)
i | and using the orthogonality relation ⟨Θ(0)

i |Θ(n)
i ⟩= 0 [1], we obtain
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the following equations for the nth-order energy corrections

E
(0)
i = ⟨Θ(0)

i |Ĥ(0)
e |Θ(0)

i ⟩

E
(1)
i = ⟨Θ(0)

i |Ĥ′
e |Θ

(0)
i ⟩

E
(2)
i = ⟨Θ(0)

i |Ĥ′
e |Θ

(1)
i ⟩

...

E
(n)
i = ⟨Θ(0)

i |Ĥ′
e |Θ

(n−1)
i ⟩ . (3.42)

Thus, to obtain the unknown quantities in Eq. (3.39), one needs first solve the set of

equations (3.41) for |Θ(n)
i ⟩ and then determine the nth-order energies using (3.42). In-

deed, the first-order correction to the wave function can be obtained by expanding |Θ(1)
i ⟩

in terms of the eigenfunctions of Ĥ(0)
e

|Θ(1)
i ⟩ =

∑
j

c(1)j |Θ(0)
j ⟩ . (3.43)

SinceE(1)
i is already known from (3.42), i.e., it is just the average of the perturbation oper-

ator over the unperturbed wave function, the coefficients c(1)j in (3.43) are determined by

substituting Eqs. (3.43) and (3.42) into the corresponding first-order perturbation equa-

tion (3.41), followed by a multiplication by ⟨Θ(0)
j |. In so doing, we find [1, 2]

c(1)j =
⟨Θ(0)

j |Ĥ′
e |Θ

(0)
i ⟩

E
(0)
i −E

(0)
j

j ̸= i. (3.44)

Of course, the restriction on the i and j indexes also excludes the term j = i in the

summation of Eq. (3.43). Note further that the denominator in (3.44) naturally imposes

the constraint that {|Θ(0)
i ⟩} must not involve degenerate states [1].

Starting from the second-order perturbation equation (3.41), analogous formulas can

be generated for the second-order corrections. For E(2)
i , one obtains

E
(2)
i =

∑
j

⟨Θ(0)
i |Ĥ′

e |Θ
(0)
j ⟩ ⟨Θ(0)

j |Ĥ′
e |Θ

(0)
i ⟩

E
(0)
i −E

(0)
j

j ̸= i, (3.45)

with the associated coefficients c(2)j for |Θ(2)
i ⟩ being determined as in (3.43). Actually,

higher-order corrective terms can be obtained in a similar fashion, with their functional
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forms becoming progressively complex as the order of the perturbation increases. For

the sake of simplicity, these will be omitted in the present discussion.

Up to now, we have only introduced the main aspects of the RSPT to approach

the exact solutions of a general L-electron system. Our main focus here is therefore to

use perturbation theory for adding corrections (i.e., correlation energy) to approximate

solutions arising from an independent-particle model. For this, one must first select a

reasonable form of the zeroth-order Hamiltonian. The most convenient choice is to take

the HF Hamiltonian [i.e., a sum over effective one-electron Fock operators; see Eq. (3.16)]

as Ĥ(0)
e . This leads to the infamous MPn methods [1–3, 23, 24]. From Eqs. (3.16), (3.37)

and (3.38), we thus define [1, 24]

Ĥ(0)
e =

L∑
i

f̂i =
L∑
i

ĥi +
L∑
ij

(Ĵj − K̂j), (3.46)

and hence

Ĥ′
e = Ĥe − Ĥ(0)

e =
L∑
j>i

ĝij −
L∑
ij

(Ĵj − K̂j), (3.47)

where Ĥe is the exact electronic Hamiltonian of Eq. (3.3) with all other quantities assum-

ing the same meaning as given in section 3.1. Naturally, as can be seen from (3.47), the

perturbation is defined as just the difference between the exact two-electron interaction

and the sum of the Coulomb and exchange potentials (i.e., the effective HF potential)

[1, 24]. Recall that, for convenience, we have set λ equal to unit. Moreover, since the

nuclear repulsion energy V̂NN [Eq. (1.8)] assumes a constant value for a fixed nuclear

arrangement, this have also been omitted in Eq. (3.46) and can be simply added to the

total electronic energy in a posteriori step; see Eq. (3.17). Obviously, V̂NN immediately

cancels out when calculating the perturbation in (3.47).

The zeroth-order wave function is thus the ground-state HF determinant [Eq. (3.1)]

with the corresponding zeroth-order electronic energy given by

E
(0)
0 = ⟨Θ0|Ĥ(0)

e |Θ0⟩ =
L∑
i

⟨Θ0|f̂i|Θ0⟩ =
L∑
i=1

ϵi. (3.48)

In fact, this latter quantity is just the sum of spin MO energies. From Eqs. (3.42) and
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(3.47), the first-order energy is defined as

E
(1)
0 = ⟨Θ0|Ĥ′

e |Θ0⟩

=
L∑
j>i

⟨Θ0|ĝij|Θ0⟩ −
L∑
ij

⟨Θ0|Ĵj − K̂j|Θ0⟩

= −1
2

L∑
ij

(Jij − Kij). (3.49)

As one can see, the corrective term E
(1)
0 clearly arises due to the double counting of the

electron-electron repulsion by the Fock operator [1–3, 23]. Thus, apart from a constant

which is simply V̂NN, the HF energy is defined by the sum of the zeroth- and first-order

energy terms; see Eq. (3.17). Indeed, within the MPn framework, any correction due to

electron correlation starts at order two, or in other words, at the MP2 level.

Let us now turn to the calculation of suchE
(2)
0 correction. As discussed in connection

with the RSPT, the solutions of the unperturbed problem [Eq. (3.38)] yield, in principle,

a complete and orthonormal set of eigenfunctions. For the HF case, the lowest possible

eigenstate is naturally the single-determinantal wave function formed from occupied HF

canonical spin orbitals. As pointed out in section 3.2.1, all other possible members of

such a set include those SDs generated by promoting one, two, three, etc., electrons from

occupied spin MOs to the virtuals. Thus, the second-order energy correction (3.45) can

be readily obtained by considering all possible matrix elements of Ĥ′
e that can be formed

from the HF reference and such excited states. These latter cannot be singly excited

determinants since

⟨Θ0|Ĥ′
e |Θr

a⟩ = ⟨Θ0|Ĥe − Ĥ(0)
e |Θr

a⟩

= ⟨Θ0|Ĥe|Θr
a⟩ − ⟨Θ0|Ĥ(0)

e |Θr
a⟩

= ⟨Θ0|Ĥe|Θr
a⟩ −

L∑
i

ϵi ⟨Θr
a|Θ0⟩ = 0, (3.50)

where the first bracket on the RHS vanishes due to the well-known Brillouin’s theorem

[1–3, 23], while the second term is also zero owing to the orthogonality of ground- and

excited-state SDs. Moreover, since Ĥ′
e is a two-electron operator, the elements between
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ground and triple, quadruple, etc., excited determinants also vanish due to the so-called

Slater-Condon rules [2]. Therefore, we are left with the possibility of defining the second-

order correction (the first contribution to the correlation energy) as a sum over doubly

excited determinants

E
(2)
0 =

∑
a<b
r<s

⟨Θ0|Ĥ′
e |Θrs

ab⟩ ⟨Θrs
ab|Ĥ′

e |Θ0⟩
E

(0)
0 −E

rs(0)
ab

. (3.51)

Note that the above expression can also be conveniently written in term of two-electron

integrals by [1]

E
(2)
0 =

∑
a<b
r<s

[⟨φaφb|φrφs⟩ − ⟨φaφb|φsφr⟩]2

ϵa + ϵb − ϵr − ϵs
. (3.52)

Thus, the MP2 energy is given by the sum of E(0)
0 , E(1)

0 , E(2)
0 and V̂NN [Eqs. (3.48), (3.49),

(3.52) and (1.8), respectively]. In fact, because Eq. (3.52) can be efficiently evaluated in

actual calculations, MP2 is the most economical method for including electron correlation.

Moreover, such an approach, together with all orders of MPn, are size-consistent and size-

extensive theories which is a particularly desirable feature when calculating molecular

properties.

However, the main limitation of MPn approaches relies therefore in the assumption

that the HF determinant is a reasonable approximation of the true wave function and

that the perturbation (which is the full electron-electron repulsion energy) is small [1–

3, 23]. For this reason, MP2 calculations typically overestimate the correlation energies.

Naturally, to improve convergence, one must proceed further and assess the effects of

including higher-order corrections such as MP3, MP4, etc [2]. Although ideally the MPn

results would show a monotonic convergence as a function of n, in practice, this is by

no means the case. Indeed, even for systems where the ground-state wave function

is satisfactorily described by a single determinant, an oscillatory behavior of the per-

turbation series is frequently observed. Clearly, if the system experiences a substantial

multi-reference character, one then expects the convergence to be too slow or even er-

ratic. In this direction, generalizations of the MPn theory to the multi-reference case have

also been proposed (such as in the CASPT2 approach [38–40]) which involve the natural

choice of an MCSCF wave function as a zeroth-order approximation for a subsequent
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perturbation treatment.

3.2.5 Coupled cluster methods

CC methods [25, 26] have acquired widespread use in quantum chemistry to calculate

electron correlation energy and many other atomic and molecular properties. The idea

behind such approaches is to correct the HF reference wave function by using a coupled

cluster scheme (or, a cluster operator T̂) which, for most practical purposes, must be

truncated at some level of excitation [1–3, 23]. Within the CC framework, the electronic

wave function for the L-electron system is expressed in terms of the exponential anzats

|ψ1⟩ = eT̂ |Θ0⟩ , (3.53)

where the cluster operator T̂ is defined by

T̂ = T̂1 + T̂2 + T̂3 + T̂4 + . . .+ T̂l. (3.54)

In the above equation, T̂l (l=1, 2, 3, . . . , L) are excitation operators which act on the HF

wave function to generate all possible lth-excited Slater determinants. For instance,

T̂1 |Θ0⟩ =
∑
ar

tra |Θr
a⟩ , (3.55)

and

T̂2 |Θ0⟩ =
∑
a<b
r<s

trsab |Θrs
ab⟩ , (3.56)

determines the complete set of singly- and doubly-excited SDs that can be formed from

|Θ0⟩ (with a given finite one-electron basis set), respectively, with tra and trsab being the

corresponding cluster amplitudes [which are analogous to the expansion coefficients cra

and crsab in Eq. (3.33)]. Note that, the exponential operator in Eq. (3.53), is generally

written as a Taylor-series expansion

eT̂ = 1+ T̂ +
T̂2

2
+

T̂3

6
+

T̂4

24
+ . . . =

∞∑
k=0

T̂k

k!
, (3.57)
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or, by substituting Eqs. (3.54) into (3.57), as

eT̂ =1+ T̂1 +

(
T̂2 +

T̂2
1

2

)
+

(
T̂3 + T̂2T̂1 +

T̂3
1

6

)
+(

T̂4 + T̂3T̂1 +
T̂2
2

2
+

T̂2T̂
2
1

2
+

T̂4
1

24

)
+ . . . (3.58)

In (3.58), the first term on the RHS generates the HF reference and the second all singly

excited states. The first quantities in each parenthesis, e.g., T̂2, T̂3, T̂4, etc., determines

the “true” or connected excitations with all the remaining terms (which involve products

of lower-order operators) defining the corresponding disconnected excitations.

Obviously, if all cluster operators up to T̂l are included in T̂ [Eq. (3.54)], all possible

excited SDs are generated and the CC wave function in Eq. (3.53) is equivalent to a

full CI [Eq. (3.33)]. Unfortunately, as already stated, such a procedure is impossible for

all but the smallest systems. Actually, it is the allowance for simplifications in T̂ that

makes CC theory extremely advantageous over excitation-limited CI approaches [25, 26].

As one can see from (3.58), by truncating T̂ at some level, say at T̂2, there will always

remain disconnected terms corresponding to higher-order excitations such as T̂2T̂1, T̂
3
1 ,

T̂2
2 , T̂2T̂

2
1 and T̂4

1 . In fact, it is exactly the failure to include these additional terms

that makes truncated CI approaches non-size-consistent. Thus, by making use of the

exponential anzats (3.53), one can clearly ensure size consistency. Note, however, that

truncated CC approaches are not variational [1–3, 23].

The models in most common usage are CC doubles (CCD), where T̂ = T̂2, and CC

with single and double excitations (CCSD), where T̂ = T̂1+T̂2. Indeed, larger expan-

sions such as in CCSDT make the calculations extremely demanding, and hence are

only computationally feasible for relatively small systems. The most practical and suf-

ficiently accurate approach to this problem is the CCSD(T) model, where the effects of

the connected triples (T̂3) are estimated using perturbation theory [27]. This model have

acquired great success, becoming a standard method for high accuracy single-reference

calculations (sometimes referred to as “the gold standard of quantum chemistry”).
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3.3 One-electron basis sets
One of the fundamental approximations inherent in essentially all ab initio methods is

the introduction of a basis set. Many-electron wave functions such as a single SD or any

linear combinations of it are generally made up from atomic or molecular spin orbitals.

These a priori unknown one-electron eigenkets must therefore be expanded in terms

of a known set of basis functions [Eqs. (3.19) and (3.27)] and the optimum coefficients

determined in a variational manner. In this regard, the number K and type of functions

so employed clearly dictates the level of accuracy that can be attained within a given

electronic structure model. Obviously, one can express orbitals as linear combinations

of an infinite number of physically motivated functions. Such an approach, however, is

impossible in actual calculations and, since ab initio methods scale formally as at least

K4, a balance must be struck between acceptable accuracy and computational efficiency

[1–3, 23].

In a strictly mathematical sense many different kinds of one-electron functions could

be employed in electronic structure calculations. The most commonly used are the

Slater-type orbitals (STOs) [41] and Gaussian-type orbitals (GTOs) [42]. The former have

functional form (in atom-centered polar coordinates)

ϱSTOζ,n,l,m(r, θ, ϕ) = NYl,m(θ, ϕ)r
n−1e−ζr, (3.59)

where N is a normalization constant, Yl,m(θ, ϕ) are spherical harmonic functions which

depend on the angular momentum quantum numbers l andm, n is the principal quantum

number and ζ the corresponding orbital exponent. While STOs give the best physical

description of the wave function, including the expected singularity (cusp) at r=0 and the

correct exponential decaying with increasing r, difficulties associated with the calculation

of the two-electron multicenter integrals [i.e, the last term on the RHS of Eq. (3.24)] make

them impractical for use in anything other than atoms and diatomic species.

In this respect, a significant simplification is made by the use of GTOs. These latter

can be written in terms of polar and Cartesian atom-centered coordinates as

ϱGTOζ,n,l,m(r, θ, ϕ) = NYl,m(θ, ϕ)r
2n−2−le−ζr2 , (3.60)
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and

ϱGTOζ,lx,ly,lz(x, y, z) = Nxlxylyzlze−ζr2 , (3.61)

respectively. Note that, in (3.61), the sum of lx, ly and lz determines the type of orbital,

i.e, lx+ ly+ lz= 0 is an s-orbital, lx+ ly+ lz= 1 an p-orbital, lx+ ly+ lz= 2 an d-orbital and

so on. The advantage of GTOs is that the evaluation of the necessary integrals is made

simpler and faster than for STOs. This steams largely from the fact that the product of

two Gaussian functions on different centers gives a new Gaussian centered on a third

position in space, and hence the evaluation of the four-center repulsion integrals reduces

to the consideration of only integrals involving two-centers [1].

The use of GTOs, however, does have disadvantages. In particular, they no longer

have a cusp at r=0 and decay too quickly as r→∞. One way around this issue is to use

as basis functions a set of contracted Gaussian-type orbitals (CGTOs), i.e., by defining

functions that are expressed as fixed linear combinations of primitive Gaussians

ϱCGTOν =
C∑
p

dpνϱ
GTO
p (ζpν), (3.62)

where dpν and ζpν are the contracted coefficients and exponents, respectively, with C

determining the length of the contraction. Indeed, a proper choice of the contraction

parameters can be made in such a way that CGTOs fit the known behavior of Slater-

type functions, reproduce HF atomic orbitals or even based on correlated calculations.

Hehre, Stewart and Pople [43] were pioneering in obtaining a series of basis functions for a

large number of atoms by fitting STOs to linear combinations of C=1, 2, 3 . . . 6 primitive

Gaussians. These well-known STO-CG basis are often denoted as minimal since only

one CGTO is employed to describe each occupied atomic orbital for a given element.

In particular, STO-3G basis sets have come into widespread use in general polyatomic

calculations. For first-row atoms, these latter can be denoted as (6s3p)→[2s1p], i.e., as a

contraction of 3 primitive GTOs for each atomic basis function.

Overall, basis sets should be flexible enough to account for the inherent changes in

electronic density with the formation of more complex chemical environments. This is

a general requirement in order for them to be useful in calculations involving atoms,
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ions, molecules and solids. Although minimal basis sets should in principle fulfill such

requirements, they, in fact, fail to properly describe the changes in orbitals due to bonding

nor can they recover much of the correlation energy. One way to increase the flexibility of

a basis consists of decontracting it, i.e., by allowing each atomic orbital to be represented

by more than one CGTO; this led to the development of the so-called double-ζ, triple-

ζ and multiple-ζ basis sets [1–3, 23]. Obviously, at the CBS limit, an infinity-ζ basis

would be needed in order to assess the effects of truncating the one-particle space.

In practice, however, a compromise must be made between accuracy and feasibility.

Naturally, as opposed to the valence orbitals, core orbitals are only weakly affected by

chemical bonding. Thus, it is often the case that only valence orbitals are augmented

by additional functions, whereas the core continue to be represented by a minimum

number of CGTOs. Such basis sets are generally called split valence or valence multiple-

ζ [1–3, 23]. The Pople-type basis, such as 3-21G, 6-21G, 4-31G, 6-31G, and 6-311G, are

amongst the most widely used split valence basis [44]. For instance, for first-row atoms,

the valence triple-ζ basis 6-311G [45] consists of one 1s inner shell function (core) which

is a contraction of 6 primitive Gaussians and four more basis functions to represent each

valence 2s, 2px, 2py and 2pz orbitals. The inner valence functions are a contraction of 3

primitive GTOs, while the outer functions are left uncontracted. This is equivalent to the

contraction scheme (11s5p)→[4s3p].

The formation of chemical bonds between two or more elements is clearly accom-

panied by perturbations of the atomic orbitals. Indeed, even though the involved atoms

are individually reasonably well represented by a set of (valence) basis functions, the

proper description of MOs requires an extra mathematical flexibility. This is almost al-

ways added in the form higher-order angular momentum functions or, in other words, by

augmenting basis sets with polarization functions [1–3, 23]. For example, in the 6-311G∗∗

basis [45], the first star implies the addition of a set of d functions on first-row atoms,

while the second star indicate p functions on hydrogen.9 Besides polarization effects,

diffuse functions, i.e., GTOs with small exponents, may also by added to a basis set. They

are necessary whenever loosely bound electrons are present such as in anions, excited

9Such a basis set is also denoted as 6-311G(d,p).
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states, hydrogen-bonded and van der Waals complexes [44]. In the Pople family of basis

sets, the presence of diffuse functions is indicated by a “+” sign. Thus, 6-311++G∗∗ [46]

means that heavy atoms have been augmented with an additional one s and one set of

p functions with small exponents, while the second plus implies diffuse functions on

hydrogen.

For correlated calculations, basis sets requirements are generally more demanding

than for mean-field approaches. In such cases, one frequently has to provide a suit-

able orbital space in order to properly account for the effects of electrons avoiding each

other. Dunning and coworkers [47, 48] reported a sequence of correlation consistent (cc)

basis in which sets of functions that contribute with similar amounts to the correlation

energy are included at the same stage and in a balanced manner. Such basis sets are

denoted as cc-pVXZ, where X=D, T,Q, . . . is the associated cardinal number which indi-

cates a systematic improved sequence of double-ζ, triple-ζ, quadruple-ζ and so on. For

first-row atoms, these latter have a general contraction scheme10 of (9s4p1d)→[3s2p1d],

(10s5p2d1f)→[4s3p2d1f] and (12s6p3d2f1g)→[5s4p3d2f1g], respectively. Note that the

addition of diffuse functions is indicated by the prefix “aug-”, i.e., by referring the basis

sets as aug-cc-pVXZ [48].

One of the major advantage of such correlation consistent approach is that on going

from aug-cc-pVDZ to aug-cc-pV6Z a significant improvement in the description of the

correlation energy is achieved [47, 48]. These latter can be suitably fitted to smooth

monotonic functions, and hence approximately extrapolated to the CBS limit (see next

section). In conjunction with reliable quantum-mechanical models such as the MRCI

approach, these extrapolations can provide highly accurate molecular PESs.

Almost all basis sets currently available employ atom-centered GTOs as expansion

functions. This allows for the construction of very compact sets of one-electron basis.

In fact, when incomplete basis sets are utilized in electronic structure calculations, it

may happen that certain fragments of the system, e.g., a monomer in a complex, benefit

from functions located at different centers. Such borrowing of basis functions provides,

10As opposed to a segmented scheme in which each primitive is allowed to contribute only once in the

contracted functions, in a general contraction scheme all primitives appear in all contracted basis [1–3, 23].



3.4. Extrapolations to the complete basis set limit 93

therefore, an unphysical lowering of the overall interaction energy. This is so, since this

latter are generally calculated by means of the supermolecular approach [49], i.e., by

subtracting the energies of the infinitely separated fragments11 (which, in fact, do not

suffer from such additional stabilization of the “complex” basis) from the total energy

of the system. This basis set superposition error (BSSE) [49] is especially troublesome

when dealing with small effects, such as energies of hydrogen-bonded and van der Waals

complexes. In these cases, the BSSE is comparable in size to the overall complexation

energy, and hence the ab initio prediction of PESs with quantitative accuracy is only

possible if this error can effectively be removed or avoided. A conceptually simple

approach to account for the BSSE is the conterpoise (CP) correction method [50] in

which the energies of the constituent parts (in the corresponding geometries adopted in

the complex) are also computed in the full basis and subtracted from the energy of the

entire system. Naturally, as an alternative to correct for the BSSE, one can also perform

extrapolations to the CBS limit either by making use of explicit functional forms or by

employing a semiempirical scaling of the ab initio energies.

3.4 Extrapolations to the complete basis set limit
An enormous progress in electronic structure calculations arose with the introduction of

the so-called cc-type family of basis sets. Such functions provide results that follow a well

behaved trend toward some limiting value as the sets are increased in a consistent manner,

i.e., for each increment in the cardinal number X. Thus, by performing a sequence of

calculations for different values of X, one can then exploit the dependence of the energy

EX with respect to such cardinal number and search for laws to extrapolate to the CBS

limit (E∞) [2, 3].

Since the mean-field HF approach treats the electron-electron repulsion in an aver-

age sense, the wave function amplitude of a single electron is clearly unaffected by the

presence of the others. Nevertheless, for an exact wave function, the probability am-

plitude for an electron is shifted away from the positions of the other particles, creating

therefore a Coulomb hole around them. As is evident from Eqs. (1.28) and (1.5), the

11Of couse, we assume that the ab initio method so employed is size-consistent.
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electronic Hamiltonian possesses singularities whenever two electrons or one electron

and one nucleus coincide in space, which imposes an electronic and nuclear Coulomb

cusp conditions [3]. With this in mind, one can them expect that the convergence of the

HF (and possibly CASSCF) wave function to the CBS limit is achieved much faster than

for correlated calculations, inasmuch as no effort is put into the former in describing the

electronic Coulomb cusp [51–54]. For this reason, the standard procedure to obtain CBS

values is to extrapolate separately the HF (or ndc) and total correlation (or dc) parts of

the energy [55–60].

Although the convergence of the correlation energy is rather slow and sets high re-

quirements in both basis sets and computational effort, a simple, yet physically motivated,

form to estimate the error (∆Ecor
∞ ) of a calculation with the cc-pVXZ basis sets can be

given by [61, 62]

∆Ecor
∞ ≈ A3X

−3. (3.63)

In fact, the above expression allows an a priori estimation of the CBS limit as

Ecor
∞ ≈Ecor

X +∆Ecor
∞ =Ecor

X + A3X
−3. (3.64)

The value of Ecor
∞ can then be obtained by simply calculating the correlation energy in

two different basis of ranks X and Y [since Eq. (3.64) has just two unknown parameters]

Ecor
∞ ≈Ecor

X + A3X
−3

Ecor
∞ ≈Ecor

Y + A3Y
−3 (3.65)

with the extrapolated energy and linear parameter A3 being defined by

Ecor
∞ ≈ X3Ecor

X − Y3Ecor
Y

X3 − Y3
, (3.66)

and

A3 ≈ −Ecor
X −Ecor

Y

X−3 − Y−3
, (3.67)

respectively.

Indeed, the physical motivation behind the anzats (3.63) comes from the energy

increments of partial-wave expansions of atomic correlation energies [63–65] and similar
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expressions derived from the convergence behavior of principal expansions [62]. As first

demonstrated by Schwartz [63] with the aid of second-order perturbation theory applied

to two electron atoms, the energy increments obtained by adding a saturated shell of

basis functions of angular momentum l obey the asymptotic formula

δEcor
l =Ecor

l −Ecor
l−1 = − 45

256

(
l+

1
2

)−4

+
225
1024

(
l+

1
2

)−6

+ . . . (3.68)

This result has been later demonstrated by Hill [64] and generalized for atoms with arbi-

trary number of electrons by Kutzelnigg and Morgan [65]. From these energy increments,

one can then assess the basis-set truncation error (∆Ecor
∞ ) due to omission of all basis

functions with l> L. Thus, by integrating the Schwartz’s expansion (3.68) one gets [56, 62]

∆Ecor
∞ =

∞∑
l=L+1

δEcor
l ≈

∫ ∞

l=L+1/2
δEcor

l dl =
∑
m=4

Am−1(L+ 1)−m+1, (3.69)

and hence

Ecor
∞ =Ecor

L+1 +∆Ecor
∞ =Ecor

L+1 +
∑
m=4

Am−1(L+ 1)−m+1. (3.70)

In the above equations, Am−1 are numerical coefficients. Clearly, if we identify L + 1

with the cardinal number of the cc-pVXZ basis sets and retain only the leading term in

Eq. (3.69), formula (3.63) is recovered.

With the aim of developing more accurate extrapolation schemes that follow the well

established asymptotic behavior of the Schwartz’s series, generalized forms of Eq. (3.64)

have also been utilized, in particular, expressions such as [55–57]

Ecor
X =Ecor

∞ +
A3

(X+ α)−3
+

An
(X+ α)−n

, (3.71)

where An (with n ≥ 4) and α are parameters that may be chosen to approximately

account for the effects of higher-X (L) terms in (3.70). Indeed, by choosing α=0 and An

(with n=4) to depend on A3, Varandas [55] proposed a two-point extrapolation scheme

capable of predicting CBS correlation energies with root-mean-square deviation (rmsd)

of a few mEh for a set of 33 systems studied at MP2, CCSD, and CCSD(T) levels. In fact,

such a protocol has proved itself very effective in predicting energies that varies little

with the pair of cardinal numbers chosen for the extrapolation.
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Later on, the same author [56] extended further the method and proposed the use

of α ̸= 0 and n = 5 in Eq. (3.71). Since A3 and A5 (which is also a function of A3)

explicitly account for the singlet- and triplet pair interactions, respectively, such a novel

scheme has been referred to as uniform singlet- and triplet-pair extrapolation (USTE).

As usual, Ecor
∞ and A3 (with A5 = A5(0)+cAn3 and α = −3/8 [56]) are determined from

a fit to ab initio energies obtained with cc-pVXZ basis sets of two different ranks. The

remaining set of fixed parameters (i.e., A5(0), c, and n) have been calibrated by fitting total

correlation energies in single-reference MP2, CCSD, and CCSD(T) calculations as well as

the dynamical counterpart at MRCI level for a set of target atomic and molecular systems.

One of the most important features of the USTE method is that it retains the accuracy

when extrapolating from smaller (X,X+1) pairs, while the traditional approaches work

best when higher pairs of cardinal numbers are employed in the extrapolation procedure.

Indeed, this makes such a protocol highly desirable for larger systems where calculations

with larger basis sets are computationally prohibitive [56].

More recently, Varandas and co-workers [58, 66] suggested a basis set re-hierarchization

scheme in which newly hierarchical (fractional) numbers x=d, t, q, p,h, analogous to the

cardinal series X = D : 2, T : 3,Q : 4, 5, 6, are employed in the extrapolation formulas.

These x-numbers are determined from the requirement that the X≤6 values fall on the

straight line obtained by fitting the X= 5 and 6 correlation energies with the USTE(5,6)

method for each of the 18 molecular systems used for the calibration [58]. Clearly, the

aim of the above procedure is to warrant that the results obtained from different pairs of

extrapolation, particularly from smaller hierarchical numbers such as d and t, fall close

to each other. In such an approach, the USTE(x,x+1) extrapolation formula assumes

the traditional one proposed by Helgaker et al. [61] [see Eq. (3.64)] with the exception

that the cardinal numbers are replaced by their hierarchical analogues. For the MP2

theory, these latter are defined by x = d : 2.13, t : 2.90, q : 3.78, p : 4.74 and h : 5.72,

while for CC-type methods they read x= d : 1.91, t : 2.71, q : 3.68, p : 4.71, and h : 5.70.

With the above x-hierarchical numbers, the extrapolations of the correlation energy via

USTE(x,x+1) have shown a significant improvement over the original USTE when tested

with low hierarchies for a total of 106 target molecules.
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To treat the uncorrelated HF and CASSCF energies, one of the two routes is usually

followed. The first, and the most obvious, is to consider that the energies obtained from

large scale calculations, e.g., with X = 6, already represent the converged CBS results.

The second though consists of employing exponential or inverse-power-type formulas to

extrapolate the SCF energies so obtained with several protocols being devoted to such a

task [51–54]. One of the most used form is the exponential law of the type [67, 68]

EHF
X =EHF

∞ + A exp (−bX), (3.72)

where EHF
∞ , A, and b are parameters to be determined from ab initio energies calculated

for at least three different values of X. Most recently, Karton and Martin [53], following

the work of Jensen [52], proposed the two-point extrapolation formula

EHF
X =EHF

∞ + A(X+ 1) exp (−b
√
X), (3.73)

where b=9. The above equation has shown a rmsd of 0.1mEh using AVQZ and AV5Z ba-

sis sets and of 10µEh using AV5Z and AV6Z basis sets. However, in situations where such

large basis are prohibitive, and only AV(T,Q)Z pairs are affordable, it is recommended

the use of the inverse power form [53]

EHF
X =EHF

∞ +
A
Xb
, (3.74)

with b=5.34. Eq. (3.74) is known to perform very well with rmsd of about 206µEh.

Although Eqs. (3.72)-(3.74) have been specially designed to treat HF energies [53],

Varandas [56] suggested that they should also yield accurate CBS values for CASSCF

wave functions. Indeed, Pansini et al. [54] have recently proposed novel x-hierarchical

numbers to be used along with an effective two-parameter form of Eq. (3.72). For the

HF theory, these latter assume the values x=d :2.08, t :2.96, q :3.87, p :5.07 and h :6.12

with b=1.62, while for the CASSCF method they are x=d :2.08, t :2.94, q :3.87, p :5.08,

and h :6.13 with b=1.63.



98 Chapter 3. Calculation of potential energy surfaces

3.5 Semiempirical corrections to ab initio energies

3.5.1 Size-consistency and size-extensivity errors

As previously stated, one of the most undesirable features of excitation-limited CI ap-

proaches is that the resulting electronic energies do not scale properly with the size

of molecular systems, i.e., they are not size-extensive. Indeed, higher-order excitations

terms become more and more important as the number of electrons increases, and hence

truncated CI wave functions tend to recover smaller and smaller fractions of the correla-

tion energy as long as the size of the molecule increases [1, 2, 23]. Another closely related

deficiency of such methods rests on the fact the energy of two noninteracting molecules,

when placed at infinitely large distances, is not the sum of the energies of each isolated

subsystem, i.e., they are not size-consistent either [1]. This handicap becomes particularly

dramatic when one aims to obtain accurate predictions of thermochemical data as well

as warrant the correct energetics of dissociation channels in global PESs [69].

Several schemes of varying sophistication have been proposed to address this subject

[31]. Owing to its simplicity, one of the most popular method to correct for the size-

extensivity and size-consistency problems in general CISD calculations is that of Langhoff

and Davidson [70] which estimates the energy of the missing quadruple excitations as

EQ
cor = (1− c20)E

SD
cor, (3.75)

where c0 is the coefficient of the HF determinant in the normalized truncated CISD wave

function and ESD
cor the corresponding correlation energy, i.e., ESD

cor = ECISD−EHF. The

Davidson correction (DC) is very often extended to the multi-reference case by using the

form [71, 72]

EQ
cor =

(
1−

∑
ν

c2ν

)
ESD
cor, (3.76)

with cν now being the associated coefficients of the CSFs in the reference MCSCF ex-

pansion and ESD
cor is the dc energy obtained from a truncated MRCI calculation [ESD

cor =

EMRCI−EMCSCF]. In general, the abbreviations CISD(Q) and MRCI(Q) are employed to

denote the use of the corrections given by Eqs. (3.75) and (3.76), respectively. Note

that, although the validity of the above expressions have been demonstrated by means
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of many-body perturbation theory [72], the final justification for the use of the DC is

rather empirical, based primarily on a large number of ab initio calculations. Suffice it

to add that such a correction does not vanish for two-electron systems, where the CISD

model becomes equivalent to a FCI, and hence it is expected to overestimate the effects

of quadruple excitations in small molecules. Moreover, since there are no useful bounds

on the energy expressions, one of the main shortcomings of the Q correction is that some

numerical “noises” can be introduced when calculating large sections of PESs which can

significantly increase the rmsd for a fitted potential [73].

3.5.2 Scaling of the correlation energy

The fundamental error of excitation-limited CI wave functions, i.e., the lack of size-

extensivity and size-consistency, is directly related to the fact that these latter tend to

recover only part of the total dynamical or external correlation energy. Brown and Truh-

lar [74] proposed a scheme to incorporate the remaining deficiencies by recognizing that

the fraction of the external correlation energy recovered in a truncated MRCI method

(relative to an MCSCF reference and within a given one-electron basis set) is an approx-

imately constant factor of the total external correlation over all nuclear configurations.

The authors introduced an scaled external correlation (SEC) energy of the form

ESEC(R) =EMCSCF(R) +
EMRCI(R)−EMCSCF(R)

F
(3.77)

as a semiempirical correction to the MRCI energy. Note that the (empirical geometry-

independent) parameter F is taken to be a constant over the entire PES and is chosen in

such a way as to reproduce known bond dissociation energies, barrier heights or other

available experimental data [74]. As pointed out by Brown and Truhlar [74], an important

element of the physical basis of the SEC method is that the MCSCF reference space and

the one-electron basis should already be large enough in order to include dominant

geometry-dependent internal correlation effects and an appreciable percentage of the

external correlation energy. It should be emphasized that, by including information

relative to experimental data, the SEC approach, besides extrapolating to the limit of the

L-electron basis, also account for the incompleteness of the one-electron basis set [69].
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Later on, Varandas [69] proposed a generalization of the SEC approach by recognizing

the conceptual relationship between this latter and the double many-body expansion

(DMBE) method [75–77] (the DMBE approach is discussed in section 4.3). In such a

scheme, denoted as DMBE-SEC [69], the total interaction potential relative to the infinitely

separated atoms is thus given by

V(R) = VMCSCF(R) + VSEC(R), (3.78)

where VMCSCF(R) denotes the internal correlation part and VSEC(R) the corresponding SEC

contribution. Note that, as opposed to the notation used in Eq. (3.77), VSEC(R) denotes

only the scaled external correlation energy component, i.e., the second term on the RHS

of (3.77). As usual in the DMBE-SEC approach, each term in Eq. (3.78) are then written

in the form of a cluster expansion [10, 78]

VMCSCF(R) =
∑
AB

V(2)
AB,MCSCF(RAB) +

∑
ABC

V(3)
ABC,MCSCF(RAB,RAC,RBC) + . . .

VSEC(R) =
∑
AB

V(2)
AB,SEC(RAB) +

∑
ABC

V(3)
ABC,SEC(RAB,RAC,RBC) + . . . ,

(3.79)

(3.80)

where the summations run over all subclusters of atoms (e.g., diatomics, triatomics, etc.)

that constitute the molecular system. The scaled external correlation contribuition of

each n-body term in the series is thus given by

V(n)
ABC...H,SEC(R) =

V(n)
ABC...H,MRCI(R)− V(n)

ABC...H,MCSCF(R)

F
(n)
ABC...H

, (3.81)

where F
(n)
ABC...H is a n-body geometry-independent scaling parameter which, similarly

to the SEC method, is judiciously chosen in order to reflect some known (accurate)

experimental information. Particularly for diatomic molecules, the two-body factor F(2)
AB

is generally determined in such a way as to reproduce experimental dissociation energies

and a similar approach can also be adopted for higher-order terms if accurate atomization

energies are known for the relevant subsystems [69]. For the triatomic case, a reasonable

approximation for F(3)
ABC can be obtained by taking the average of the three two-body

factors

F
(3)
ABC =

1
3

[
F

(2)
AB +F

(2)
AC +F

(2)
BC

]
. (3.82)
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Undoubtedly, enhanced accuracy and better theoretical estimates are obtained when

the raw ab initio points are corrected by the DMBE-SEC method. Clearly, the chief

advantage of such an approach is to warrant the correct exotermicities of all asymptotic

channels as well as the proper shape of the potential in the valence region in order for

the global PES be useful both for rovibrational calculations and reaction dynamics [69].
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Chapter 4

Analytical modeling of ab initio

energies

The theoretical study of molecular dynamics (scattering, spectroscopy, etc.) requires

precise information about the relevant electronic PES. A common starting point to obtain

such interaction potential is to perform pointwise “solutions” to the TIESE [Eq. (1.29)] at

sufficiently many nuclear configurations by choosing an appropriate quantum-mechanical

method and one-electron basis set. In such ab initio electronic structure calculations, the

results are mostly given in form of huge tables of energy values for the specific nuclear

arrangements so selected and, in order to obtain a realistic global representation of the

potential, one must then devise a model function in which to fit such discrete data (see

appendix C).

Clearly, the need for developing analytical representations of PESs arises primarily

because ab initio computations are sufficiently time consuming that the explicit energy

and gradients evaluations at every nuclear geometry required in a dynamics study is rarely

feasible [1–3]. Thus, by making use of reliable analytic models, one can clearly benefit

from their advantages in providing fast, continuous and differentiable representations of

the surface. Such an asset is particularly useful if one aims at studying chemical kinetics

for a given reaction. Indeed, by integrating the relevant equations of motion with the PES

dictating the interactions between the involved species, accurate reaction rate constants
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and cross sections can be obtained and compared to experimental data [4]. Although

direct dynamics methods [5] have been proposed to couple dynamics and electronic

structure calculations (avoiding, therefore, a global functional form), the computational

effort for evaluating ab initio all the nuclear geometries needed dramatically restricts

the usefulness of such an approach. Similar drawbacks are also encountered when

calculating rovibrational energy levels of polyatomic systems (see chapter 5). In fact,

apart from the simplest cases of diatomic molecules, the direct evaluation of the electronic

energies required to solve the corresponding bound-state problem in molecular systems

with large number of nuclear degrees of freedom is extremely demanding. Again, the

fitted potentials provide the main route toward the spectroscopic characterization of the

underlying species.

It should be recalled that, due to the unavoidable errors associated to the truncation

of CI expansions and incompleteness of the one-electron basis sets, ab initio energies

themselves seldom fulfill the standards of spectroscopic (≲ 1 cm−1) or even chemical

accuracy (≲4 kJmol−1). To overcome such difficulties some corrections, such as the use

of CBS extrapolation schemes and/or the DMBE-SEC method, must be generally made

prior to the calibration procedure [6]. Of course, one can also improve the quality of

the final PES by employing an iterative process in which the potential parameters are

further refined in such as way as to minimize the differences between calculated and

experimental data [7–10]. Other approaches also exist in which global analytic forms are

actually merged with experimentally-determined local potentials. These latter are often

referred to as the energy-switching (ES) methods [11, 12].

4.1 General rules and strategies

Wright and Gray [2], following a suggestion by Kuntz [1], enumerated ten criteria that a

potential form should satisfy to be successful. These can be stated as follows [1, 2]

(1) It should accurately characterize the asymptotic reactant and product molecules.

(2) It should have the correct symmetry properties of the system.
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(3) It should represent the true potential accurately in interaction regions for which

experimental or theoretical data are available.

(4) It should behave in a physically reasonable manner in those parts of the interaction

region for which no experimental or theoretical data are available.

(5) It should smoothly connect the asymptotic and interaction region in a physically

reasonable way.

(6) The target function and its derivatives should have as simple an algebraic form as

possible consistent with the desired goodness of fit.

(7) It should require as small a number of data points as possible to achieve an accurate

fit.

(8) It should converge to the true surface as more data become available.

(9) It should indicate where it is most meaningful to compute the data points.

(10) It should have a minimal amount of ad hoc or “patched up” character.

As noted by Connor [3], the criteria (1)-(5) are essential for a global PES to be useful for

reaction dynamics studies, while the remaining five are less essential but highly desirable.

Schatz [13] emphasized that the Wright and Gray criteria may lead to some conflicting

strategies, inasmuch as simplicity and accuracy are seldom fulfilled at once. Obviously,

in order to maximize the compromise between such concepts, the use of physically

motivated fitting forms are always advocated.

Several strategies have been suggested to analytically represent PESs of small poly-

atomic systems [1–3, 6, 13–17]. These approaches can generally be categorized into

two distinct classes, i.e., global and local methods [3]. In the former, the potential

is determined at each point by all the data that are used as input for the calibration

procedure. Among these, several approaches can be highlighted such as diatomics-in-

molecules (DIM) [18–20], many-body expansion-type forms [14, 17, 21–23], reproducing

kernel Hilbert space [24, 25] and ES methods [11, 12]. Conversely, in local schemes, the
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value of the potential at a specified nuclear arrangement depends only on ab initio data

that are available for geometries close to that point. Some examples include standard

cubic-spline interpolations [26, 27], Shepard interpolation [28] and moving least-squares

methods [29]. Indeed, local interpolation schemes are useful when sufficiently detailed

information is available about the interaction potential under study [15]. Therefore, they

require an extremely dense and equidistant grid of ab initio data that cover large sec-

tions of the PESs [27]. In turn, global approaches are more attractive when little detailed

information is known about the PES [6]. Their the main advantages relies on the fact that

a lesser amount of input data points are needed in the calibration procedure and that the

resulting analytic forms have physically meaningful extrapolation capabilities.

Amongst the most reliable global interpolation schemes, the many-body expansion

(MBE) [14] and, its improved variant, the DMBE [17, 21, 22] methods play a prominent

role and have acquired the greatest popularity. In such methodologies, the total interac-

tion potential of a molecular system is defined by making an expansion in the energy of

all its sub-clusters of atoms [14]. Besides accurately describing valence interactions, one

of the main advantages of such approaches relies, therefore, on the possibility to account

for the correct asymptotic behavior of each n-body term in the series so that all disso-

ciation limits (as well as long-range interactions in the case of the DMBE approach) are

naturally warranted. Indeed, once the potentials of all the fragments have been obtained,

the many-body expansion also enables one to built a first estimate of the PES of a target

polyatomic system [14, 30]. Note that, even if the series converges rapidly, chemical ac-

curacy is only attainable by including the highest-order (i.e., the non-pairwise-additive)

contributions to the potential [14, 17]. A practical advantage of such methods over those

based on semiempirical valence-bond theories such as the DIM approach is that sim-

pler and more flexible functional forms can actually be employed to fit ab initio and/or

experimental information, and hence accurate and realistic global potentials are often

obtained.

Before proceeding to the discussion of the underlying theories, it is safe here to high-

light an important point not addressed by the Wright and Gray criteria, i.e., the issue of

the multi-sheeted PESs. Although chemical reactions may be viewed as proceeding on
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an approximate single-sheeted potential, the formation and breaking of chemical bonds

frequently involves several (coupled) electronic states. As noted by Varandas [6], two

distinct approaches to modeling a multi-sheeted problem can be advocated. The first

consists of fitting the involved adiabatic PESs arising from a proper diagonalization of a

diabatic electronic potential matrix, either separated [31, 32] or simultaneously [33, 34].

The second approach is to fit instead the various (diagonal and off-diagonal) elements

of such a matrix which yields, when diagonalized, the required adiabatic potentials [35].

One of the main drawbacks of this latter methodology consists of finding a proper ATD

similarity transformation in such a way that the diagonal adiabatic PESs (strictly speaking,

ab initio energies) are replaced by a potential matrix whose elements are smooth func-

tions of the nuclear coordinates [14, 35–38]. Indeed, for molecules other than diatomics,

strictly diabatic basis which exactly diagonalize the nuclear kinetic energy operators do

not exist [39], and hence one may speak at most of quasi-diabatic PESs. However, if

the aim is to solve adiabatically the nuclear equations of motion [Eq. (1.31)], the first

strategy may be more advantageous. Note that, by adopting such a coupled multi-sheet

approach, one generally requires precise knowledge of the NACTs [Eq. (1.32)]. Alterna-

tively, if the proper topological properties are to be warranted [see Eq. (2.45)], one can

also ensure the expected cusp behavior on single-sheeted adiabatic PESs by making use

of polynomial forms containing special non-analytic coordinates [30, 40–42]. As we shall

see later, this will be the main strategy employed throughout the present thesis.

4.2 The MBE method
According to the MBE method, the molecular PES for an H-atom system can be expressed

by the cluster expansion [14]

VABC...H(R) =
∑
A

V(1)
A +

∑
AB

V(2)
AB(RAB) +

∑
ABC

V(3)
ABC(RAB,RAC,RBC) + . . .+ V(n)

ABC...H(R), (4.1)

where the one-body term V(1)
A is the the energy of atom A in the state produced by

adiabatically removing it from the cluster. If the energy zero is chosen with all atoms

in their ground states, V(1)
A is only non-zero when, on dissociation, A is left in an ex-

cited state. In turn, V(2)
AB(RAB) is a two-body term and corresponds to the diatomic in-
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teraction potential of the subsystem AB. V(3)
ABC(RAB,RAC,RBC) is the corresponding ABC

three-body energy, and so on. Note that, in (4.1), the summations run over all possible

H!/n!(H − n)! n-body terms, each depending on the set of Rn ≡ {R1,R2, . . .Rn(n−1)/2}
nuclear coordinates which, in turn, is a subset of the total number of interatornic separa-

tions RH≡{R1,R2, . . .RH(H−1)/2}. Thus, we can rewrite Eq. (4.1) in a more compact form

as

V(RH) =
H∑
n=1

∑
Rn⊂RH

V(n)(Rn). (4.2)

As already mentioned, in the MBE method, each n-body term in the series vanishes as

any one of its constituent atoms is adiabatically removed to infinity. Such a requirement

is generally satisfied by writing the corresponding terms in Eq. (4.2) as

V(n)(Rn) = P(Rn)T(Rn), (4.3)

where P(Rn) is an n-body polynomial in the interparticle coordinates and T(Rn) is a range

determining factor which decreases to zero when any of the coordinates belonging to

Rn becomes infinite [14].

4.3 The DMBE method
A commonly accepted and conceptually convenient approach in obtaining realistic func-

tional forms for molecular PESs is to make a further partition of the potential by splitting

each n-body term of Eq. (4.2) into extended Hartree-Fock (EHF) and dc energy-type

components [17, 21, 22]. In such a DMBE approach, originally proposed by Varandas

[21], the molecular PESs are thus represented by

V(RH) =
H∑
n=1

∑
Rn⊂RH

[
V(n)
EHF(R

n) + V(n)
dc (R

n)
]
. (4.4)

One of the major advantages of the DMBE method over the conceptually simple MBE

approach relies therefore in the allowance for the different convergence rates of the n-

body terms at short separations, where the EHF energy is the dominant contribution, and

at large distances, where the dispersion (or dc) energy component dominates. It is also

fair to say that by performing such a double decomposition of the interaction energy,
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one can naturally add physical insight into the origin of the potential [17, 21, 22]. To this

end, it is convenient, for modeling purposes, to carry out a further partition of these two

energy components as

V(n)
EHF(R

n) = V(n)
exc(R

n) + V(n)
ele (R

n) + V(n)
ind(R

n), (4.5)

and

V(n)
dc (R

n) = V(n)
intra(R

n) + V(n)
inter(R

n) + V(n)
res (R

n), (4.6)

where the subscripts ele and ind indicate the electrostatic and induction energies, exc

denotes the exponentially decaying short-range exchange energy, intra and inter are the

intra- and inter-fragment components of the dc energy, and res denotes the residual

intra-inter dc coupling terms. Indeed, at the valence (short-range) interaction regions of

the potential, where the EHF component prevails, its exponentially decaying behavior

can be reasonably modeled ab initio by employing conventional polynomial expansions

such as (4.3) [14, 17, 21, 22]. Conversely, at long-range distances, where the interaction

potential are mainly determined by means of the Rayleigh-Schrödinger perturbation ap-

proach [17], the inter-fragment dc energy (here, identified as the dispersion energy arising

in second-order of perturbation theory) are modeled semiempirically from the dispersion

coefficients for the various separate and united-atom limits [43–46]. Note that a similar

approach may also be used to represent the long-range contributions to the electrostatic

and induction energies which find their formal definitions in first- and second-order of

perturbation theory, respectively [43, 47]. Of course, for regions of the potential where

charge-overlap and exchange effects are appreciable (i.e., at intermediate separations),

the usual asymptotic multipolar series expansions for the (long-range) interaction energy

becomes divergent, and hence convenient damping functions must be introduced to ap-

proximate such effects [14, 17, 21, 22, 44]. Suffice it to add that, in these regions of the

nuclear configurations space, ambiguities also arise in the formal definition of the various

energy contributions (4.5) and (4.6), but any errors caused by such inadequate represen-

tations are commonly absorbed into the various n-body energy terms which contribute to

EHF. Moreover, the terms V(n)
intra(R

n) and V(n)
res (Rn) are generally not explicitly considered

and, for most practical purposes, can be incorporated into V(n)
EHF(R

n).
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Varandas and coworkers proposed simple, yet reliable, physically motivated forms

for the various n-body terms of Eq. (4.4). For the simplest case, i.e., for a diatomic

potential energy curve, the DMBEmethod finds its usefulness in the well-known extended

Hartree-Fock approximate correlation energy for two-body interactions (EHFACE2) [48]

and the EHFACE2U (EHFACE2 including united atom limit) [49] models. For the three-

body energy terms, several approaches have also been advocated in obtaining realistic

and flexible functional representations [17, 22, 23, 50]. Note that a suitable analytical

form should reflect the intrinsic complexities of the molecule at hand, and hence must be

modeled accordingly (i.e., is system-specific) [30, 40–42, 51]. In fact, for small polyatomic

systems, the main features of their PESs appear to be contained in the two- and three-

body terms, with the four-body (and higher-order) terms being regarded as a fine tuning

to give chemical accuracy [14]. Thus, it is expected that only a simple and approximate

representation of these latter will generally be required.

4.4 Modeling of multi-sheeted potentials

It is a well known fact that the modeling of global PESs is dramatically complicated by

the presence of Cis. At such regions of the nuclear configuration space both ground-

and excited-state potentials show a cusp and possess discontinuous first derivatives that

cannot be mimicked by standard analytic forms [30, 40]. One way around this issue is

to employ appropriate diabatic matrix representations where the adiabats (which vary

drastically and in a discontinuous manner near these regions) are replaced by functions

that behave smoothly at the neighborhood of Cis. Such diabatic states, once properly

obtained and conveniently modeled by some functional form, can be back transformed

to adiabatic ones, yielding therefore the expected cusp behavior in the vicinity of the

crossing seams [41, 42].

For the two-state case, the adiabatic energies V1(R) and V2(R), which are obtained

as pointwise solutions to the TIESE [Eq. (1.29)], can be resolved into diabatic ones by the
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following ATD transformation [14, 52]H11(R) H12(R)

H12(R) H22(R)

=
 cosα′(R) sinα′(R)

− sinα′(R) cosα′(R)

V1(R) 0

0 V2(R)

cosα′(R) − sinα′(R)

sinα′(R) cosα′(R)

 ,

(4.7)

where α′(R) = (1/2)α(R) [see Eqs. (2.3)-(2.5)] is the so-called diabatization or mixing

angle [35] which is responsible for the proper “rotation” between one representation to

the other. From the above expression, the diabatic potential matrix elements Hji(R) can

be further defined by the relations [35]

H11(R) = V1(R) cos2 α′(R) + V2(R) sin2 α′(R)

H22(R) = V1(R) sin2 α′(R) + V2(R) cos2 α′(R)

H12(R) = [V2(R)− V1(R)] cosα′(R) sinα′(R). (4.8)

Note that such ATD transformations are not unique and strictly depend on the functional

form for α′(R). Although several approaches [14, 35–39, 53–56] have been devoted to

obtain appropriate global (or local) representations for the mixing angle, the resolution

in term of diabatic states is generally a non-trivial matter.

Once this transformation has been accomplished, the diabatic energies obtained for

H11(R) and H22(R) can then be fitted to polynomial forms of the MBE or DMBE-type

[57, 58]. In turn, the non-diagonal element [H12(R)] is problem-specific and must be

modeled in such a way as to vanish at all the dissociation limits as well as in regions of

the nuclear configuration space at which the intersection occurs. Following Murrell et

al. [14, 57, 59], this term is usually written as a polynomial times a specially designed

function that becomes zero at the desired molecular arrangements.

After convenient analytic forms have been obtained for the diabatic elements in (4.8),

the functional representation of the whole adiabatic surfaces (or sheets), including the

non-analytic behavior at the intersection seam, can be expressed as the lowest eigenval-

ues of the 2 by 2 matrix (4.7) [see also Eq. (2.3)] giving

V1,2(R) =
1
2
[H11(R) + H22(R)]±

1
2

√
[H11(R)− H22(R)]

2 + 4H12(R)2, (4.9)
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which has exactly the same form as (2.6). Suffice it to add that, apart from the proper

diabatization schemes, the modeling of the multi-sheeted problem can also be accom-

plished by first employing a semiempirical diabatic-type formalism such as DIM theory,

which has built-in the desired cusps, followed by the introduction of additional terms to

accommodate as much flexibility as possible to fit directly adiabatic ab initio energies

[12, 57, 58, 60].

4.5 Modeling cusps in adiabatic potentials
Alternative and efficient approaches to describe the characteristic cusps on adiabatic PESs

have been put forward after the pioneering work due to Varandas and Murrell [30]. The

authors proposed the use of the so-called JT-type coordinate
√
Γ2=(Q2

2+Q
2
3)

1/2 [see, e.g.,

Eq. (2.25)] together with suitable additional polynomial terms to introduce the required

nonanalyticity into the lowest adiabatic PES of H3(12A′) which shows a symmetry-dictated

intersection atD3h geometries. Later on, Varandas and coworkers [31–33] extended further

the above methodology and showed that it can be used not only to cause the cusp but also

to fit simultaneously both ground- and excited-state sheets, hence ensuring degeneracy

over the entire crossing seam. Undoubtedly, this was the first approach to correctly mimic

the two adiabatic sheets without the need of any diabatic representation. Accordingly,

the lower [V1(R)] and upper [V2(R)] surfaces are written as [33]

V1(R) = V(2)(R) + V(3)
dc (R) +

[
P′
1(R)−

√
Γ2P

′′
1(R)

]
T(R)

V2(R) = V(2)(R) + V(3)
dc (R) +

[
P′
2(R) +

√
Γ2P

′′
2(R)

]
T(R), (4.10)

where, as usual in the DMBE framework, V(2)(R) is the sum of two-body potentials,

V(3)
dc (R) is the three-body dc term, P(R) are appropriate polynomial functions and T(R) the

corresponding range-decaying factors. It is seen from (4.10) that the two-body fragments

must be equal on both sheets (or forced to vanish at equilateral triangular conformations

[33]) in order to make the adiabatic PESs degenerate along the D3h line. Moreover,

since
√
Γ2 = 0 at D3h arrangements, one must also warrant that the polynomials P′(R)

assume the same values at these crossing geometries. Such a requirement can actually

be accomplished by making those coefficients that depend only on the breathing normal
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mode Q1 [see Figure 2.2] be the same, i.e., c′(1)i00 = c′(2)i00 ∀i. Since Eq. (4.10) ensures that

the two sheets behave as a linear function of the
√
Γ2 coordinate in the neighborhood

of the intersection seam, the only additional constraint is to impose the same slope, i.e.,

c′(1)000 =c
′(2)
000 .

Apart from the specific case of X3-type JT systems, Varandas et al. [41, 42] recently

suggested the use of a generalized JT-type coordinate (∆) to cause the desired singular-

ities on adiabatic single-sheeted PESs of any triatomic molecule, including those having

accidental Cis. Indeed, such a novel scheme has been proved very effective in accurately

modeling the locus of intersection of several molecules such as N3(12A′), NO2(12A′′),

HN2(12A′) and C3(11A′) [41, 42, 51].

4.6 The energy-switching approach
Following the Wright and Gray criteria (section 4.1), a global PES should attain spectro-

scopic accuracy at regions where such an information is available. With this in mind,

Varandas [11] proposed a simple, yet reliable, scheme in which a local polynomial ex-

pansion that is capable of predicting experimental spectroscopic information is actually

morphed with a global form that warrants a realistic description of the whole surface.

Because these latter potentials are switched smoothly between one to the other as a func-

tion of the energy only, the method has been referred to as energy-switching. Labeling

the spectroscopically accurate surface by V2(R) and the global one as V1(R), the final ES

potential [VES(R)] can be cast in the form [11]

VES(R) = f(∆E)V1(R) + [1− f(∆E)]V2(R), (4.11)

with

f(∆E) =
1
2
{1+ tanh[(γ0 + γ1∆E

m)∆E]} , (4.12)

where ∆E= E−E0 is the displacement from some reference energy E0 at which V1(R)

and V2(R) are equally reliable, and f(∆E) is a switching function that approaches zero

for large negative energy displacements (i.e., at the absolute minimum) and +1 for large

positive ones (i.e., at the atom-diatom dissociation limits). Note that γi (i = 0, 1) are

disposable parameters to be optimized for a selected even power of m [11].
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Recently, the same author [12] suggested further refinements onto the approach and

introduced a generalized multiple energy-switching (MES) variant. In fact, such a novel

methodology has been particularly designed to convey spectroscopic accuracy for sys-

tems in which the switching from V2(R) to V1(R) takes place in a rather narrow energy

window. In this case, VES(R) assumes the form [12]

VES(R) = fi . . . f3f2f1 [V1(R)− V2(R)] + V2(R), (4.13)

with the switching functions fi(∆E) being given by [12]

fi(∆E) =

exp
[
−βi

(
∆E0
∆E+ξ

− 1
)ni]

if ∆E < ∆E0

1 if ∆E ≥ ∆E0,
(4.14)

where ∆E=E−Emin is the energy displacement with respect to the absolute minimum of

the global PES, while ∆E0 = E0−Emin measures the energy difference between Emin and

some cutoff energy E0 [12]. Usually, E0 can be wisely chosen so as to keep unaltered

some topological feature of V1(R) or simply represent the energy range at which the

Taylor-series-type expansion V2(R) is physically meaningful. Note that, in (4.14), βi is a

trial-and-error parameter, ni is an even integer and ξ is a small number chosen to avoid

numerical overflows at E=Emin.

The ES and MES schemes have been successfully applied to obtain PESs of several

triatomic [11, 61, 62] and tetratomic [63–65] molecules, including multi-sheeted ones [12,

66–68], and have provided some of the most accurate global form thus far reported for

those systems.
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Chapter 5

Exploring potential energy surfaces

via rovibrational calculations

Once a reliable and physically motivated form for the PES have been acquired, an es-

sential step to obtain dynamical observables such as those related to molecular spec-

troscopy and chemical dynamics involves the solution of the nuclear Schrödinger equa-

tion [Eq. (1.31)]. Similarly to the electronic-motion case, such a problem is also subjected

to some approximations [1, 2]; the most obvious is the adiabatic ansatz (1.39). One

of the most fundamental differences between electronic structure and nuclear dynamics

problems is that, in the former, we are interested only in the ground and possibly in

a few excited states, while in the latter we often want to compute many hundreds or

even thousands of excited states. This is particularly true when dealing with molecular

rotation-vibration motion [3].

The theoretical calculation of rovibrational energy levels is characterized by a fruit-

ful interplay between state-of-the-art molecular spectroscopy and quantum-mechanics.

Obviously, what brings them together is the very notion of PESs. As noted previously,

such ab initio potentials seldom meet the standards of spectroscopic accuracy, specially

if more extended, high-energy regions of the nuclear configuration space are of inter-

est. Although experimental spectra cannot in general be directly inverted to yield PESs,

it does provide the most stringent test for the theoretically obtained potentials and the
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Figure 5.1: Internal coordinate systems for a triatomic molecule ABC. (a). Bond-length coordinates.

(b). Bond-length-bond-angle or valence coordinates. (c). Jacobi or scattering coordinates and (d). Radau

coordinates. Panel (c) illustrates different embedding schemes for Jacobi coordinates which place R (R

embedding) or r (r embedding) along the body-fixed z-axis.

properties derived from them. Thus, the only practical way of improving potentials is to

minimize the difference between experimental and predicted observables [4–6].

5.1 Coordinate systems and embedding schemes
It is useful to consider the nuclear motion in a molecular system as falling into three

categories

(1) Translation of the whole molecule through space.

(2) Rotation of the molecule.

(3) Internal or vibrational motion.
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As noted in section 1.2, the translational motion of the system gives a continuous spectrum

which is unattractive if one is interested in spectroscopy. Thus, it is often possible to

separate off the center-of-mass motion and setting up a space-fixed frame, i.e., by defining

a moving axis with origin at the COM [3, 7–10]. The remaining 3H−3 translation-free

nuclear coordinates are a mixture of those representing vibration and rotation. In order to

formulate any theoretical treatment of the bond state problem, it is generally desirable to

distinguish between these latter degrees of freedom by setting up the so-called body-fixed

frame. Although there is no unique way of fixing the rotating axis to the molecule [11–13],

the BF representation allows the introduction of several decoupling approximations (i.e.,

by minimizing rovibrational interactions) so that the resulting equations are generally

simpler than those obtained from the SF Hamiltonian [14]. In this regard, the choice

of the coordinate system appropriate to the molecule under study plays a central role.

For instance, it is well known that the use of orthogonal coordinates such as Jacobi and

Radau coordinates1 (see Figure 5.1) generate rather simple and general internal kinetic

energy operators which contains no cross-derivative terms [5, 14]. Indeed, an optimal

set of coordinates must take advantage of the highest symmetry present in the system as

well as span all of the nuclear configuration space accessible for the molecule of interest

[16].

Once a suitable coordinate system have been judiciously chosen, the process of de-

riving a BF Hamiltonian also requires the specification of a set of Cartesian axes defined

in the frame of the molecule [see Figure 5.1(c)]. This process is often called “embedding”

[4–6]. Apart from the proper choice of internal coordinates, a suitable embedding scheme

may shift away the inherent singularities of the BF Hamiltonian to regions of the nuclear

configuration space not physically accessible to the problem at hand. The rotational mo-

tions are then represented by the three Euler angles Θi(i= 1, 2, 3) which determine the

1Jacobi coordinates are suitable for describing atom-diatom complexes and systems with large amplitude

motion. In such a coordinate system, r is the bond length of the BC diatomic, R is the distance from the

atom A to the center-of-mass of BC and θ is the included angle. Conversely, in the Radau coordinate

system, R1 and R2 measure the distance of the two light atoms from the so-called canonical point [15],

which for light-heavy-light systems lies very close to the center of the heavy atom C.
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orientation of the BF frame with respect to the SF one. Note that the actual definition of

the BF axes is only relevant for rotationally excited states since the Hamiltonian for J=0

is independent of this choice. After setting on some definitions of the molecule-fixed

frame, 3H−6 (or 3H−5 for linear molecules) translation- and rotation-free vibrational

degrees of freedom remain which can be readily employed in the construction of the

internal-coordinate Hamiltonian.

5.2 Hamiltonians

Early approaches to the nuclear-motion problem were primarily based on an approx-

imate separability of the vibrational and rotational degrees of freedom (the so-called

Eckart conditions [17]) and a harmonic expansion of the PES around an equilibrium ge-

ometry [18, 19]. In such normal mode Hamiltonians, the reference configuration is rigidly

attached to the BF axes so that the nuclear motions consist essentially of rigid rotations

and small amplitude vibrations [3]. Among these, the Watson’s Hamiltonian [20, 21] has

been the most widely used form for calculating low-lying rovibrational energy states of

(semi-) rigid triatomic molecules. Its success owes much to the pioneering variational

method due to Whitehead and Handy [22]. However, it has long been recognized that,

for highly anharmonic systems containing large-amplitude bending motions such as CH+
2

[23, 24], the Watson’s Hamiltonian gives rise to unphysical, spurious solutions. This is an

expected result since the Eckart’s embedding scheme is only valid in the small amplitude

limit [24]. Note that, as demonstrated by Watson himself, the originally proposed form

has an inherent singularity at linear geometries [21].

Expressions for the full vibration-rotation Hamiltonian for non-rigid triatomic species,

which do not rely on the Eckart conditions nor in the concept of an equilibrium geometry,

have been extensively discussed in the literature by Sutcliffe and Tennyson [4, 11–13, 24–

27]. These authors proposed [11, 12] a rather general BF Hamiltonian which is expressed

in terms of two lengths and an included angle and that includes as limiting cases those

previously derived in Jacobi [26, 27] and valence [28, 29] coordinates. Suffice it to add

that the first Hamiltonians especially designed for calculating rovibrational states in floppy

triatomic molecules were those based on the (non- and semi-) rigid bender method of
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Bunker and Jensen [30, 31]. In such an approach, the small amplitude vibrations (normal

coordinates) are handle by means of standard perturbation theory, whereas the large

amplitude motion is treated in a separate (and accurate) manner by defining a suitable

bending vibrational coordinate.

Regardless the set of internal coordinates so chosen, the general expression for the

rotation-vibration BF Hamiltonian (ĤRV) can be cast in the form2 [4, 28]

ĤRV = T̂RV + T̂V + V, (5.1)

where T̂RV and T̂V are the rotation-vibration and purely vibrational kinetic energy op-

erators, respectively, with V being the corresponding potential for the molecule (and

electronic state) under consideration. Note that, for a non-rotating (J = 0) system, the

term T̂RV vanishes. Derivation of the kinetic energy operators in Eq. (5.1), in any coordi-

nate set, can be accomplished by using the well-known Podolsky transformation [32] or

by means of the increasingly popular method of Sutcliffe [33]. For a triatomic molecule

A–BC, T̂V can be written in Jacobi coordinates as [26, 27]

T̂V(r,R, θ) =− 1
2µR2

∂

∂R

(
R2 ∂

∂R

)
− 1

2µdr2
∂

∂r

(
r2
∂

∂r

)
− 1

2

(
1
µR2

+
1

µdr2

)
1

sin θ
∂

∂θ

(
sin θ

∂

∂θ

)
, (5.2)

where r is the bond length of the BC diatomic, R is the distance from the atom A to the

COM of BC and θ is the included angle [see Figure 5.1(c)]. The reduced masses are [4]

µ =
1
MA

+
1

MB +MC
and µd =

1
MB

+
1
MC

. (5.3)

In contrast to T̂V, the expression for the rotation-vibration kinetic energy operator T̂RV de-

pends on the embedding scheme chosen. If a R embedding is assumed [see Figure 5.1(c)],

2Eq. (5.1) can be readily obtained from the general forms (1.25) and (1.26) by considering the ap-

proximate separability of the electronic and nuclear degrees of freedom as well as by neglecting mass

polarization terms. In so doing, one can define ĤRI≈ĤRV with T̂R≈T̂RV and ĤI≈T̂V+V.
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its form is given by [26]

T̂RV(r,R, θ) =
1
2

[
1
µR2

(
Π̂2
x + Π̂2

y

)
+

(
1

µR2 tan2 θ
+

1
µdr2 sin2 θ

)
Π̂2
z

1
µR2 tan θ

(
Π̂xΠ̂z + Π̂zΠ̂x

)]
− i
µR2

(
∂

∂θ
+

1
2 tan θ

)
Π̂y, (5.4)

where the quantities Π̂α (α = x, y, z) are the components of total angular momentum

operator which depend only on the three Euler angles. Note that, if the r embedding is

considered, the resulting T̂RV operator is simply obtained by making the changes R→ r

and µ→µd in Eq. (5.4).

In fact, the solutions of the eigenvalue problem specified by the Hamiltonian (5.1)

can be written as a sum of products of internal functions and angular momentum eigen-

functions3

|χ⟩ =
J∑

k=−J

|ξJk(r,R, θ)⟩ |JMk⟩ . (5.5)

By allowing (5.1) [with the form given in (5.2) and (5.4)] to operate on Eq. (5.5), multi-

plying from the left by ⟨JMk′| and integrating over Euler angles, one can then obtain an

effective Hamiltonian [11, 12, 26]

Ĥ
eff
RV = T̂

eff
RV + δk′ kT̂V + δk′ kV, (5.6)

that depends only on the internal coordinates and is block-diagonal in J. The part arising

from T̂
eff
RV assumes the form [26]

T̂
eff
RV =δk′ k

[
J(J+ 1)− 2k2

2µR2
+

k2

2 sin2 θ

(
1
µR2

+
1

µdr2

)]
+ δk′ k+1

1
2µR2

C+
Jk

(
− ∂
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+

k
tan θ

)
+ δk′ k−1

1
2µR2

C−
Jk

(
∂

∂θ
+

k
tan θ

)
, (5.7)

where C±
Jk = [J(J+ 1)− k(k± 1)]1/2. Clearly, T̂eff

RV is diagonal in J but not in k. Note that,

because the PES and the vibrational kinetic energy operator are functions of the internal

coordinates only, they are naturally diagonal in both J and k [see Eq. (5.6)].

3Eq. (5.5) can also be obtained from the general form (1.27) by setting |ΦJ
k⟩≈ |ψ⟩ |ξJk⟩ and noting that

|ψ⟩ which is a solution of the clamped-nuclei electronic problem do not depend on J.
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It is worth pointing out that, differently from the purely vibrational part, both T̂RV

and T̂
eff
RV operators have singularities at linear arrangements for which θ = 0 or π. This

issue can be further addressed by choosing a convenient angular basis and constructing

another effective (radial) Hamiltonian in which all angular variables (including θ) are

integrated out [11, 12, 26]. As noted by Tennyson [4], the explicit coupling between

polynomials depending on θ (such as normalized associated Legendre functions) and

the rotational functions |JMk⟩ by means of their common index k allows the cancellation

of singular terms in Eqs. (5.4) and (5.7).

5.3 Solutions to the bound-state problem

Likewise the electronic-motion case, the solutions to the bound-state problem are gen-

erally obtained by making use of two main strategies, i.e., by means of perturbation

methods or variational approaches [14, 34]. The first involves the expansion of the ex-

act rotation-vibration Hamiltonian into a Taylor series about the equilibrium geometry

whose components are clearly identified as a zeroth-order part and a small perturbation.

This former contribution, which has known eigenfunctions and eigenvalues, is generally

associated to the standard harmonic-oscillator rigid-rotor Hamiltonian, while the correc-

tions due to anharmonicities of the potential, Coriolis and centrifugal distortion effects

are self-contained in the higher-order perturbation terms [18, 34, 35]. Although being of

fundamental importance to any interpretation of rotation-vibration data4, the solutions

based on perturbation approaches are primarily obtained from the basic assumption that

the vibrational displacements in the molecule are of small amplitude compared to the

equilibrium bond lengths and bond angles. Thus, for molecules with large amplitude

vibrational motion (or in highly excited states), the application of such standard treat-

ment is known to generate an oscillatory or even a non-convergent perturbation series,

4As a result of such perturbation theoretic approach the energies become expressed as a power series in

the rotation and vibration quantum numbers [i.e., J(J+1) and (v+1/2)] whose coefficients are determined

from a fit to the experimental and/or ab initio data. Additionally, perturbation theory also gives expres-

sions for the rotation-vibration constants in terms of the equilibrium geometry, harmonic and anharmonic

constants of the molecular PESs.
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and hence meaningful results can only be accomplished by employing a fully variational

procedure [4, 22, 28, 29, 34, 36].

As usual in methodologies based on the variational principle, one generally provides

a trial wave function which, for the particular case under consideration, can be readily

defined as a sum of products of suitably chosen vibrational and rotational basis functions.

Rotation-vibration energy levels can then be obtained by diagonalizing the resulting ma-

trix representation of the Hamiltonian in this basis which, as naturally warranted by any

variational treatment, are always upper bounds to the true solutions [34]. The varia-

tional method has proved very effective in calculating many rovibrational energy levels

of non-rigid triatomic species [4, 28, 29, 36]. However, extensive applications to floppy

molecules have shown that such an approach has also several shortcomings, particularly

when dealing with highly excited vibrational states which cover large, anharmonic re-

gions of the PESs [14]. Pointwise representations of the internal degrees of freedom such

as the discrete variable representation (DVR) method [37–39] have also been developed

that are more appropriate for delocalized wave functions of large amplitude vibrational

states than the usual bases.

5.3.1 The variational method

As discussed previously, the eigenvalues and eigenvectors of the effective Hamiltonian

(5.6) can be readily obtained by means of the linear variational method [40–43], i.e., one

introduces a set of basis functions and the Hamiltonian matrix H
eff
RV in this basis is build

and then diagonalized. A suitably chosen trial wave function for the ith rovibrational

state of a triatomic molecule can be written (in Jacobi coordinates) as [4, 28, 34, 36]

|χJ,Mi ⟩ =
J∑

k=−J

∑
l

∑
m

∑
n

cJ,k,in,m,l |Xn(r)⟩ |Ym(R)⟩ |Zl,k(θ)⟩ |JMk⟩ , (5.8)

where |Xn(r)⟩ and |Ym(R)⟩ are some convenient one-dimensional, orthogonal radial basis

functions, |Zl,k(θ)⟩ is generally associated Legendre polynomials and |JMk⟩ represent the
usual normalized Wigner rotation matrix elements [D J

M k(Θ)] [44]. Clearly, the success of

any variational method depends upon the selection of a suitable basis for representing
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the radial degrees of freedom and the ability to evaluate the matrix elements [4]

Hji =
⟨
Xn′(r)Ym′(R)Zl′,k′(θ)

∣∣∣Heff
RV

∣∣∣Xn(r)Ym(R)Zl,k(θ)⟩
= ⟨Xn′(r)Ym′(R)Zl′,k′(θ) | ⟨JMk′ |HRV | JMk⟩ |Xn(r)Ym(R)Zl,k(θ)⟩ , (5.9)

so that the secular equation problem can be accurately solved. The main strategy there-

fore is to use known analytic solutions of model one-dimensional vibrational problems

that contain parameters which can be adjusted to the current potential, yielding there-

fore a compact basis set representation [14]. Indeed, the most commonly used forms for

|Xn(r)⟩ and |Ym(R)⟩ in Eq. (5.8) are Morse oscillator-like wave functions and spherical os-

cillator functions [4, 22, 28, 29, 34, 36]. Note that, in analogy to electronic structure theory,

one can also determine in advance the best simple product functions (and their parame-

ters) by means of a SCF step in which some effective (zeroth-order) model Hamiltonian

is considered. Since these functions form, in principle, a complete and orthonormal set,

they can be used a posteriori as expansion basis in the CI-like trial wave function (5.8)

[34, 45–47].

Once the type and size of the weighted orthogonal polynomial basis have been de-

termined, the evaluation of the matrix elements (5.9) can be accomplished numerically

by using convenient Gaussian quadrature formulas [48]. Note that, as emphasized by

Sutcliffe and Tennyson [4, 11, 12], all the angular matrix elements can be computed an-

alytically, with the exception of those involving angular integration over the potential5

which are usually obtained by means of Gauss-Legendre quadrature rules [36]. Addi-

tionally, for both the Morse oscillator and the spherical oscillator functions, the matrix

elements of the differential terms in T̂V [the first and second terms on the RHS of Eq. (5.2)]

can be evaluated analytically, with all the remaining radial integrals being computed by

using M-point Gauss-Laguerre quadrature schemes [4].

For fully coupled rovibrational calculations, the size of the secular problem to be

solved increases largely with J and makes therefore the computation of rotationally ex-

cited states prohibitively expensive. This is so since every product of internal coordinate

5In fact, if the PES is assumed to be represented by a Legendre expansion [see later Eq. (29) of chapter 6]

then angular integration over the potential can be performed analytically [4].
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functions in Eq. (5.8) must be associated with 2J+1 rotational functions. To obviate these

limitations, Sutcliffe and Tennyson [25, 49] proposed the use of a two-step variational

procedure which has extended the range of Js that can be convered in practical varia-

tional calculations [14]. In such an approach, one first obtain the solutions of a Coriolis

decoupled problem, i.e., by neglecting the off-diagonal terms in Eq. (5.7), for which k,

the projection of J onto the body-fixed z-axis, is a good quantum number. The resulting

eigenfunctions can then be used in a subsequent step as basis for the construction (and

diagonalization) of the full Hamiltonian matrix [25, 49]. Note that the main advantage

of such a procedure is that the solutions of the decoupled Hamiltonian provide a well-

adapted and compact basis for the full problem, and hence not all of them are actually

required to obtain fully converged rovibrational states [24].

Indeed, the feasibility of any variational treatment is clearly dictated by the size of

the final Hamiltonian matrix that must be handled. This is particularly critical when

highly excited vibrational states are envisaged. For them, one generally needs a large

number of oscillator basis functions in order to ensure convergence of the band origins,

which makes the calculation computationally unfeasible [14]. Such entanglements can

often be tackled on going from the usual finite basis representation (FBR) to a “pointwise

representation” of the bound-state problem [37–39].

5.3.2 Discrete variable representation

As noted above, in the FBR, the Hamiltonian operator is represented in terms of a (finite)

set of “diffuse” basis functions whose elements are generally determined by numerical

quadrature. Suffice it to highlight that, as opposed to the FBR, in the so-called variational

basis representation (VBR) [14], all the required matrix elements are computed exactly,

and hence the only source of error is due to basis set incompleteness.

DVRs, on the other hand, are representations in which the associated basis func-

tions are in some sence “localized” about grid points on a coordinate space [37, 39].

The fundamental assumption behind the use of DVRs is that matrix representations of

coordinate-dependent operators are always diagonal and their matrix elements are given

simply by the value of this latter quantity at the DVR grid points. In this sence, DVR-based
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approaches have acquired great success in providing efficient and accurate numerical so-

lutions to nuclear dynamics problems, inasmuch as they greatly simplify the evaluation

of Hamiltonian operators. Indeed, since kinetic energy matrices can efficiently be com-

puted, potential matrix elements are merely the value of the PESs at the DVR pivots

[37–39].

To construct a DVR, one should first determine an appropriate set of finite global basis

functions and then establish the proper transformational relationship between point and

function space. As first demonstrated by Harris et al. [50], such a task can be accomplished

by simply diagonalizing the matrix representation (in the VBR) of the position operator

whose eigenvalues and eigenvectors are nothing but the DVR points and basis functions,

respectively. Dickinson and Certain [51] provided the formal basis for the technique, and

proved that, for sets of M classical orthogonal polynomials times their appropriate weight

functions, the diagonal elements of the coordinate matrix in the DVR were in fact the

points of the Gaussian quadrature associated to the FBR. Indeed, Gaussian quadrature

DVRs became the standard representation in which to base discrete variable approaches

[37, 39].

Consider a general (non-rotating) one-dimensional system with Hamiltonian defined

simply by

Ĥ = T̂ + V. (5.10)

Again, to obtain the desired eigenvalues and eigenfunctions, one could then express Ĥ

in terms of a truncated orthonormal basis function {fi(x)}Mi=1 having the form of a classical

polynomial times the square root of a weight function ω(x) [5]

fi(x) =
√
ω(x)pi(x). (5.11)

For instance, if fi(x) are chosen to be harmonic oscillator wave functions, ω(x)=exp (−x2)
and pi(x)=NiHi(x) are normalized Hermite polynomials [42]. With the above basis, the

M by M Hamiltonian matrix can then be diagonalized. One of the main drawback of

such an approach is that, while the matrix representation of the kinetic energy operator

T̂ are computed only once for a chosen basis, the corresponding M(M+ 1)/2 elements
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(integrals) of V should be recalculated for each choice of V(x). In fact, if these latter can

be evaluated exactly, then

VVBR
ji = ⟨fj(x)|V(x)|fi(x)⟩ (5.12)

is the matrix elements of V expressed in the VBR [5]. Recall that, in such a representation,

the only source of error is due to the truncation of the basis [39].

Conversely, we can also choose to evaluate all the integrals necessary to build V in

an approximate way by using for each of them an M-point Gaussian quadrature formula

[48]

VVBR
ji ≈ VFBR

ji =
M∑

α=1

wα

ω(xα)
f∗j (xα)V(xα)fi(xα), (5.13)

where, {xα}Mα=1 and {wα}Mα=1 are the set of Gaussian points and weights, respectively,

associated to the polynomial basis. Note that, in the above equation, the number of

quadrature points is set equal to the number of basis functions. Thus, in addition to

the basis set incompleteness error, in such FBR, approximations inherent to the use of

Gaussian quadratures are also introduced.

Dickinson and Certain [51] have shown that, for a basis of M classical orthogonal poly-

nomials times their associated weight functions {fi(x)}, there will always be an orthogo-

nal transformation that switches between representations in the M-quadrature points (the

DVR) and the one in the M-dimensional function space (the FBR). Thus, from Eq. (5.13),

we can then define the elements of a M by M transformation matrix T as [39]

Tαi =
√

wα

ω(xα)
fi(xα), (5.14)

and the diagonal matrix

VDVR = diag(V(x1),V(x2),V(x3), . . . ,V(xM)). (5.15)

By making use of the above expressions, one can now rewrite the anzats (5.13) in matrix

form as [37–39]

VVBR ≈ VFBR = T†VDVRT. (5.16)

As clearly seen from the above relations, the matrix representation of the potential energy

operator V(x) in the DVR basis is always diagonal and the associated matrix elements are
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given simply by the value of the potential itself at the quadrature points (or, equivalently,

at the DVR pivots) [51]. In fact, one of the main advantages of DVR-based approaches

is that VVBR can be approximately calculated without making any integral at all [5]. The

orthonormal set of DVR basis {gα(x)}Mα=1 can then be defined from the DVR-to-FBR

transformation (unitary) matrix T as [39]

gα(x) =
M∑
i=1

Tαifi(x). (5.17)

An important property of such functions is that they are strongly localized around their

respective focal points xα and vanish for all xβ ̸=xα [39].

As noted above, differently from V, kinetic energy matrices can, in principle, be

evaluated (sometimes even analytically) in the M function space. In this case, the trans-

formation from, say, VBR to DVR can be usually performed [52]. With this is mind, one

can define the matrix representation of the Hamiltonian (5.10) in the DVR basis as [39]

HVBR ≈ HDVR = TDVR + VDVR, (5.18)

where TDVR = TTVBRT†. Suffice it to add that the use of DVRs, as made explicit in

Eq. (5.16), introduce the same approximation to the VBR as that implied by the use

of quadrature schemes in evaluating matrix elements (the FBR). For this reason, DVRs

are generally said to be isomorphic with the corresponding FBRs [37]. One of the main

disadvantages in DVRs, however, is that the solutions of the eigenvalue equations dictated

by the Hamiltonian (5.18) are not strictly variational, inasmuch as the quadrature error

so introduced may cause some of the eigenvalues to be lower than their true BO values

[53].

Up to this point, we have stressed the main aspects and convenience in the use of

DVR-based approaches in dealing with general one-dimensional bound-state problems.

Clearly, these advantages should become even more flagrant when higher dimensions

are envisaged [5, 39]. The simplest way of introducing multi-dimensional DVRs is as

direct products of one-dimensional DVRs for each of the coordinates. The required T

matrix is thus given by a direct product of 1D transformation matrices (5.14) [54–56]. A
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major attraction of such an approach is that the resulting transformed Hamiltonians (in

DVR) are very sparse so that efficient algorithms can be applied along with sequential

diagonalization/truncation schemes6 [54, 55]. It should also be emphasized on passing

the possibility that only one or two (large-amplitude) vibrational coordinates be treated

in the DVR. For triatomic molecules, this concept led to the introduction of the so-called

DVR-DGB methodology [38]. In this approach, the DVR is generally used to represent

the bending coordinate, while a separate distributed Gaussian basis (DGB) is employed

at each angle (i.e., at the DVR grid points) to describe the motion of the radial degrees

of freedom.

6In such schemes, low-dimensional Hamiltonian matrices are first diagonalized and the solutions with

eigenvalues above certain cutoff energy are then used as a basis for subsequent higher-dimensional prob-

lems.
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Accurate ab initio-based double many-body expansion potential energy
surface for the adiabatic ground-state of the C3 radical including combined
Jahn-Teller plus pseudo-Jahn-Teller interactions

C. M. R. Rocha and A. J. C. Varandasa)

Departamento de Química, and Centro de Química, Universidade de Coimbra, 3004-535 Coimbra, Portugal

(Received 9 May 2015; accepted 30 July 2015; published online 18 August 2015)

A fully ab initio-based potential energy surface is first reported for the ground electronic state
of the C3 radical using the double many-body expansion (DMBE) method. The DMBE form so
obtained mimics the full set of energies calculated at the multireference configuration interaction
level of theory with chemical accuracy. To account for the incompleteness of the one- and N -
electron bases, the calculated external correlation energies have been scaled prior to the fitting
procedure via DMBE-scaled external correlation method. Furthermore, the novel potential energy
surface reproduces accurately dissociation energies, diatomic potentials, long-range interactions at
all asymptotic channels, and the correct topological behavior at the region of 4 conical intersec-
tions with the partner state of the same symmetry near equilateral triangular geometries due to
combined Jahn-Teller (E ′ ⊗ e′) plus pseudo-Jahn-Teller [(E ′ + A′1) ⊗ e′] interactions. Rovibrational
calculations have also been performed, unveiling a good match of the vibrational spectrum of C3
for 53 calculated levels. The present DMBE form is, therefore, commended for both spectroscopic
and reaction dynamics studies, some also performed in the present work. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4928434]

I. INTRODUCTION

The A1Πu − X1Σ+g emission spectrum of the C3 radical,
near 4050 Å, was initially detected in the tail of a comet
by Huggins as early as 1881.1 These so-called Swings emis-
sion bands2 of C3 were first reproduced in the laboratory by
Herzberg3 in 1942, although the final assignment of the rovi-
bronic spectra was attributed to Douglas4 and Gausset et al.5,6

Since then, the C3 radical has been observed in a wide range of
astrophysical sources,7,8 including circumstellar shells of car-
bon stars,9–11 interstellar molecular clouds,12–15 and comets.1,10

As the most abundant small pure carbon molecule in the inter-
stellar medium,16–18 C3 along with its smaller congener C2 are
the central key to the formation of more complex carbon clus-
ters, long-chain cyanopolyynes, carbon dust, and polycyclic ar-
omatic hydrocarbons.2,19,20 Mebel and Kaiser21 provided alter-
native pathways, besides the C(3Pj) + C2H2(X 1Σ+g ) reaction,22

through which linear C3(X 1Σ+g )would be formed in interstellar
environments, i.e., in the reactions CH(X 2ΠΩ) + C2(X 1Σ+g )
and C(3Pj) + C2H(X 2Σ+), the latter being most relevant in
interstellar space.23 C3 is also the predominant carbon cluster
in equilibrium hot carbon vapor,19,24 hydrocarbon flames,2,19

and plasmas generated through energetic processing of carbon
containing materials.19,25,26 The relevance of the C3 molecule
in space27 as well as in terrestrial sooting flames and combus-
tion processes2,19 has motivated many experimental28–30 and
theoretical17,18,31–41 studies both in the ground (1 1A

′) as well
as in some low-lying excited singlet ( 1A

′
/1A

′′
) and triplet

a)Author to whom correspondence should be addressed. Electronic mail:
varandas@uc.pt

(3A
′
/3A

′′
) electronic manifolds.23,38–40 It is worth pointing out

that, from the theoretical perspective, much effort has been
devoted to obtain local (near-equilibrium) ground state poten-
tial energy surfaces42 (PESs) for C3 aiming to explore its spec-
troscopy, notably the unusual large amplitude bending motion
and related speculations concerning its quasi-linearity (for a
comprehensive review, see Refs. 2 and 19, and references
therein).

Early ab initio calculations by Kraemer et al.32 using
configuration interaction with single and double excitations
including the Davidson correction for quadruple excitations43

(CISDQ) and a triple-ζ-plus-polarization (TZP) basis set32

yielded a PES which has been expressed as a force field
expansion.44 Its minimum shows the C3 radical as a bent
species with an equilibrium bond angle of about 162◦ and
a barrier to linearity of 21 cm−1.32 The results so obtained
seemed to indicate the title system to be quasi-linear (i.e.,
with a barrier to linearity much smaller than the bending
frequency of ν2 = 63.42 cm−1).40,45 This has been reinforced
by Jensen33 who used the MORBID (Morse Oscillator-
Rigid Bender Internal Dynamics) Hamiltonian46 along with
experimentally determined bend-stretch term values to derive
an analytic PES for the ground electronic state of the C3
radical.33 However, these studies were soon superseded by
high level ab initio PESs obtained from complete active space
self-consistent field47 (CASSCF) calculations by Jørgensen
et al.,34 and Jensen et al.,35 as well as large scale coupled
cluster calculations with single and double excitations and a
quasi-perturbative treatment of the connected triple substitu-
tions48 [CCSD(T)] by Mladenović et al.36 Accordingly,34–36

it was stated that C3 is not quasi-linear as had previously

0021-9606/2015/143(7)/074302/17/$30.00 143, 074302-1 © 2015 AIP Publishing LLC
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been discussed but possesses instead an exceptionally flat
bending potential. Such a controversy was rationalized by
means of its strong stretch-bend coupling: as noted by
Northrup et al.49 and Špirko et al.,36 a lower barrier to
linearity and an increase in floppiness is observed when
the antisymmetric stretch (ν3) is excited, while a more rigid
linear configuration prevails upon excitation of the symmetric
stretch (ν1).49 More recently, Ahmed et al.39 and Saha et al.40

employed internally contracted multireference configuration
interaction47 (MRCI) calculations with the cc-pVTZ basis
set of Dunning50 to model near-equilibrium PESs for both
the ground and excited A 1Πu and D 1∆g electronic states
of the C3 radical which potential parameters were, subse-
quently, least-squares fitted to experimental data.39,40 From
these studies,39,40 several important features were highlighted,
notably the strong Renner-Teller vibronic interactions51,52 for
the Π and ∆ excited states, already reported by Gausset
et al.5,6 and Jungen et al.,53 in which the degeneracy at
linear configurations is lifted closely proportional to the square
and fourth power of the bending coordinate, respectively.5,6,53

Furthermore, as previously noted,54,55 Ahmed et al.39 empha-
sized the presence of a symmetry-required conical inter-
section42,56 between the ground and the excited adiabatic
B′ 1∆u state at equilateral triangular geometries where both
correlate with the degenerate 1E

′
irreducible representation

in D3h symmetry (see also Figure 1 of the supplementary
material57).

The first global PES and, to the best of our knowledge,
the only one reported so far for the ground state of C3(1 1A′)
radical is due to Carter, Mills, and Murrell31 (CMM). The
authors employed the many-body expansion31,42,58 (MBE)
with an experimentally determined harmonic force field6 and
40 ab initio energies55,59 to obtain an analytic form of the PES
that exactly reproduces an early experimental heat of forma-
tion, geometry, and force constants of the linear equilibrium
configuration of C3. Additionally, it describes other relevant
topographical attributes such as the C2v transition-states for
the isomerization between the three equivalent symmetry-
related minima, in addition to accurately characterize the
atom+diatom asymptotic limits which correlate adiabatically
with31,42,60,61 C2(a 3Πu) + C(3P).

Despite its astrophysical significance and importance as
a key intermediate for the formation of more complex carbon
clusters,2,19 there is not as yet an ab initio-based global PES
for the title system. Thus, the main goal of this work is to
provide such a PES for C3(1 1A

′). For this, we use double
many-body expansion (DMBE) theory62–66 (for recent devel-
opments on the methodology, see Refs. 67 and 68). As usual
in DMBE theory,63,66 the present form must ensure the proper
permutational symmetry and correct behavior at conical inter-
sections. Given the close resemblance to the PES of58 H3
and69–71 H+3 (1 3A

′
/2 3A

′), a similar methodological scheme will
be here adopted. Naturally, the DMBE function so obtained
will correctly reproduce the dissociation energies, diatomic
potentials, and long-range interactions at all asymptotic chan-
nels (a long-standing feature of DMBE theory62–66), as well
as all topological features in the valence region in order to
be useful both for rovibrational calculations (hopefully with
minor adjustments) and reaction dynamics.69,70,72

The paper is organized as follows. Section II summarizes
the ab initio calculations and provides an overview on the
singlet electronic manifold of the C3 radical. The scaling of
the external (dynamical) correlation is examined in Section III.
Section IV is devoted to details of the analytical functions
employed for the modeling, while the results and the main
topographical features of the PES are discussed in Section V.
Its quality is further judged via rovibrational calculations in
Section VI. Some conclusions are gathered in Section VII.

II. AB INITIO CALCULATIONS AND SYNOPSIS
ON THE SINGLET MANIFOLD

Although the paper is primarily concerned with the 1 1A
′

state of C3, a survey of the main features of some low-lying
excited singlet states for C2v conformations, and their corre-
lations with distinct dissociation limits, is summarized in
Figures 1 and 2. For this, we have performed full valence
CASSCF47 (FVCAS) constrained optimizations with a triple-
ζ augmented correlation consistent basis set of Dunning50,73

(aug-cc-pVTZ or AVTZ) for a grid of angles φ, i.e., by fixing
C2v symmetry with the bond distance R optimized at each
angle. Single-point calculations employing the internally con-
tracted MRCI47 method, as implemented in MOLPRO,74 have
subsequently been done. Thus, the C2v cuts are effectively
obtained at the MRCI/AVTZ//FVCAS/AVTZ level of the-
ory, following an efficient scheme for accurate treatment of
bond-breaking/forming reactions proposed elsewhere.75 Note
that for small angles (φ < 30◦), the optimization leads to the
asymptotic channels, as the optimum bond lengths correspond
to widely separated atom+diatom fragments (e.g., for φ = 15◦,
R ≈ 9.624 a0).

According to the spin-spatial Wigner-Witmer correla-
tion rules,76,77 six singlet states correlate in C2v (Cs) sym-
metry with the lowest dissociation limit C2(a 3Πu) + C(3P),

FIG. 1. Optimized bending potential for the ground and some low-lying
excited singlet states of C3 obtained at the MRCI/AVTZ//CASSCF/AVTZ
level of theory for a grid of fixed angles. The key shows the irreducible
representation, in C2v symmetry, for each electronic state and its correlation
with Cs point group. Also shown in panel are the associated correlations,
for linear geometries, with D∞h symmetry as well as the corresponding
dissociation limits. Conical intersections are indicated by the “×” symbol;
for details in Cs symmetry, see Figure 1 of the supplementary material.57
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FIG. 2. FVCAS/AVTZ description of the region close to the conical inter-
section regions with two equal bond lengths fixed at R = 2.643 a0. The solid
symbols correspond to points calculated in the 1 1A1 and 1 1B2 states of C2v
symmetry, while the open symbols connected by smooth splines correspond
to calculations with A

′
symmetry in the Cs point group. The energies are

given with respect to the global minimum of C3 with D∞h symmetry.

namely, 1 1A1 (1 1A
′
), 1 1B1 (1 1A

′′
), 1 1B2 (2 1A

′
), 1 1A2 (2 1A

′′
),

2 1B2 (3 1A
′
), and 2 1A2 (3 1A

′′
). In turn, the four other elec-

tronic states here considered [2 1A1 (4 1A
′
), 2 1B1 (4 1A

′′
), 3 1A1

(5 1A
′
), and 3 1A2 (5 1A

′′
)] correlate with triplet states of the

fragments [C2(b 3Σ−g ) + C(3P) and C2(c 3Σ+u ) + C(3P)] or
C2(X 1Σ+g ) + C(1D). Suffice to add that other dissociation limits
correlate with higher excited singlet states: C2(b 3Σ−g ) + C(3P)
correlates with 1A1 (A

′
), 1A2 (A

′′
), and 1B2 (A

′
); C2(c 3Σ+u )

+ C(3P) with 1A1 (A
′
), 1A2 (A

′′
), and 1B1 (A

′′
); C2(X 1Σ+g )

+ C(1D) with 1A1 (A
′
), 1A2 (A

′′
), 1A1 (A

′
), 1B1 (A

′′
), and 1B2

(A
′
).77 However, as seen from Figure 1, some have not been

considered in our test calculations. As noted by Murrell and
co-workers,31,42,60,61 the ground state of C3(X 1Σ+g/1

1A1/1 1A
′)

does not dissociate adiabatically to ground state fragments
[C2(X 1Σ+g ) + C(3P)], since either C2 or C must be in an excited
state to satisfy the spin correlation rules. Such considerations
will be discussed in relation to the PES in Section IV.

In order to characterize the dissociation limits in Figure 1,
we have computed the optimized equilibrium bond distances
for the diatomic fragments (Re,asym) in the asymptotic channels
(for φ = 15◦) and compared the results with the ones obtained
from FVCAS/AVTZ and MRCI/AVTZ geometry optimiza-
tions for the isolated diatomic molecules (Re,diat). The results
are gathered in Table I. Also given are the relative energies
(∆E) between the dissociation channels at FVCAS/AVTZ
and MRCI/AVTZ//FVCAS/AVTZ levels of theory as well as
experimental values. Note that the latter were estimated consid-
ering the equilibrium experimental electronic term values (Te)
for each diatomic (Te[C2(X 1Σ+g )] = 0 kJ mol−1, Te[C2(a 3Πu)]
= 8.59 kJ mol−1, Te[C2(b 3Σ−g )] = 77.00 kJ mol−1, and
Te[C2(c 3Σ+u )] = 109.13 kJ mol−1)78–80 and the 1D − 3P sepa-
ration of the carbon atom (121.96 kJ mol−1).81

As shown, excellent agreements have been obtained be-
tween the equilibrium bond distances for the diatomic frag-
ments (Re,asym) and those from geometry optimizations for the
isolated molecules (Re,diat) as well as experimental ones.78,80 In
fact, as shown in the fifth column of Table I, the calculated rela-

TABLE I. Optimized equilibrium bond distances of diatomic fragments in
dissociation channels shown in Figure 1 (Re,asym), and corresponding at-
tributes in the bare diatomics (Re,diat) as obtained at the FVCAS/AVTZ and
MRCI/AVTZ levels of theory. ∆E is the relative energy between dissociation
channels.

Channel Method Re,asym/a0 Re,diat/a0 ∆E/kJ mol−1

C2(a 3Πu)+C(3P)
FVCAS/AVTZa 2.512b 2.513 0c

MRCI/AVTZa . . . 2.498 0c

Expt. . . . 2.479d 0e

C2(b 3Σ−g )+C(3P)
FVCAS/AVTZa 2.618b 2.616 80.08c

MRCI/AVTZa . . . 2.606 67.25c

Expt. . . . 2.587d 68.41e

C2(c 3Σ+u)+C(3P)
FVCAS/AVTZa 2.316b 2.313 75.84c

MRCI/AVTZa . . . 2.299 103.91c

Expt. . . . 2.283d 100.54e

FVCAS/AVTZa 2.372b 2.372 108.93c

C2(X 1Σ+g )+C(1D) MRCI/AVTZa . . . 2.366 117.71c

Expt. . . . 2.348d 113.37e

aThis work.
bCalculated in this work as Re,asym= R


2(1−cosφ), where φ = 15◦.

cFVCAS/AVTZ and MRCI/AVTZ//FVCAS/AVTZ energies for each asymptotic
channel with respect to C2(a 3Πu)+C(3P).
dReferences 78 and 80.
eRelative energies from experimental electronic term values (Te)78–80 for each diatomic
and 1D−3P separation of C atom.81

tive energies (∆E) at the asymptote yield results in good agree-
ment with the experimental estimates. Of course, although the
correct wave function at (near-) dissociation regions has been
ensured by our multireference scheme,47 the calculations are
subject to errors due to the incompleteness of the one-electron
basis and truncation of the N -electron expansion. Addition-
ally, spin-orbit couplings are intrinsic to experimental data both
for the C(1D) − C(3PJ=0) energy separation (with spin-orbit
coupling constant A ≈ 14.47 cm−1)78 and C2 in the 3ΠΩ state
(which splits into a multiplet of 3 equidistant components:
Ω = 0,1,2, with A ≈ −15.25 cm−1).78 Because they should be
minor, such effects have not been considered.

As shown in Figure 1, and by others,5,6,39,40,53 all degen-
erate excited states at linear geometries (namely, A 1Πu, B

′ 1∆u,
C 1Πg, and D 1∆g) are subject to strong Renner-Teller vi-
bronic interactions51,52 which are manifested as splittings into
symmetric (A

′
) and antisymmetric (A

′′
) components as the

molecule bends. Such electronic excited states show numerous
crossings between themselves for φ < 140◦. They are indicated
by a “×” symbol in Figure 1; for details on the conical inter-
sections and avoided crossings in Cs symmetry, see Figure 1
of the supplementary material.57 However, an appreciable gap
(up to 377 kJ mol−1) is visible between them and the ground
state for φ ≥ 100◦.

Figure 1 allows a comprehensive picture of the topological
features for the lowest ten singlet surfaces of C3 (for a T-
shaped path). However, in as much as the present work is
focused on the ground state of C3, special relevance will be
given to electronic states that correlate with the A

′
irreducible

representation in Cs symmetry, in particular, the 1 1A1 and 1 1B2
states. The following discussion will therefore be devoted to
them.
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As seen from Figure 1, the ground state equilibrium geom-
etry of C3 is linear with Re = 2.474 a0 at this level, in good
agreement with the experimental value of 2.451 a0.9 As already
remarked,5,6,39,40,53 the ground state bending potential is excep-
tionally flat with a low bending frequency and hence a large
amplitude motion. In fact, only 25.81 kJ mol−1 are required to
bend C3 up to φ = 90◦.

A region that deserves close attention refers to near equi-
lateral triangular (φ = 60◦) geometries. As shown in Figure 1,
there appears to be a single conical intersection at geometries
with D3h symmetry (R = 2.643 a0). However, a close inspec-
tion (see Figure 2) indicates that there are two such intersec-
tions which may be attributed to what is commonly referred to
as a combined JT [E′ ⊗ e

′] plus pseudo-JT (PJT) [(E′ + A
′
1) ⊗

e
′] interactions.82–85 Rather than a single symmetry-dictated

1E ⊗ e intersection, one has instead a strong mixing of two 1A1
states which pushes down the lower term to cross twice the 1B2
state at valence angles of φ = 60◦ and 60.2128◦ for D3h and
C2v conformations, respectively. Such an interesting feature is
then due to one of the components of the twofold degenerate 1E

′

which gets vibronically mixed with the next electronic state of
1A
′
1 symmetry (note that the separation between the 1E

′
and 1A

′
1

states at φ = 60◦ is only 29.29 kJ mol−1).84,85 Thus, for typical
systems with e2 or t3 configurations in high-symmetry geom-
etries, e.g., the C3 congener Si3,85 such a JT + PJT vibronic
effect is known to generate four conical intersections85,86 (see
Figures 10 and 11) at which the wave function and associated
energy levels may not be subjected to the topological (Longuet-
Higgins,87–89 also called Berry90) phase.

Distortion of the D3h structure maintaining C2v symmetry
and φ < 60◦ leads to stabilization of the lower sheet and forma-
tion of a saddle point, Figure 1 at φ ≈ 50◦. This represents the
transition state (TSiso for future reference) for the isomerization
between the three equivalent D∞h minima in the ground state
PES. In turn, C2v distortions with φ > 60◦ lead ultimately to
the absolute D∞h minima of C3; see Section V.

III. SCALING OF THE EXTERNAL CORRELATION

To calibrate the DMBE PES, we have performed ab initio
calculations at the MRCI47 level of theory using the FVCAS47

wave function as reference. The AVTZ basis of Dunning50,73

has been employed, with the calculations performed using
the MOLPRO74 package. Due to inadequacies of a single-
reference treatment in the description of surface crossings
(or avoided crossings) and regions of the PES dominated
by a multistate character47,56 (e.g., at dissociation regions
characterized by electronic degeneracies), a FVCAS wave
function has been utilized as reference by employing state
averaged CASSCF47 in which three electronic states of
A
′

symmetry (in the Cs point group) were simultaneously
treated. Such a reference wave function involves 12 correlated
electrons in 12 active orbitals (9a

′
+ 3a

′′
) and amounts to a

total of 113 904 configuration state functions (CSFs). For
the MRCI calculations, all single and double excitations
(FVCAS-CISD) have been considered, yielding a total of
21 580 857 contracted configurations with the AVTZ basis.
The three lowest molecular orbitals (3a

′
) have been treated

as inactive in all calculations. A total of 629 symmetry
unrelated grid points has been chosen to map the entire
PES defined by 1.5 ≤ RC2/a0 ≤ 6.0, 0.0 ≤ rC−C2/a0 ≤ 10.0,
and 0 ≤ θ/deg ≤ 90. Note that RC2, rC−C2, and θ are Jacobi
coordinates (see inset of Figure 12). The diatomic potential
energy curve for the C2(a 3Πu)molecule and the corresponding
static dipole polarizabilities have also been obtained at the
same MRCI/AVTZ level of theory.

To account for excitations beyond singles and doubles and
also the incompleteness of the one-electron basis set, all raw
ab initio energies have been scaled with the double many-
body expansion-scaled external correlation (DMBE-SEC)91

method, which is a generalization of the SEC92 method. Thus,
the total interaction energy relative to the separated atoms
assumes the form

VDMBE-SEC(R) = VFVCAS(R) + VSEC(R), (1)

where

VFVCAS(R) =

AB

V (2)
AB,FVCAS(RAB) + V (3)

ABC,FVCAS(R) (2)

and

VSEC(R) =

AB

V (2)
AB,SEC(RAB) + V (3)

ABC,SEC(R). (3)

Note that both the FVCAS [VFVCAS(R)] and scaled external
correlation [VSEC(R)] energy contributions are written as a sum
of two- and three-body terms, where R = {RAB,RBC,RCA} is
a collective variable defining the three interparticle distances.
The first two terms in the SEC series expansion [Eq. (3)] are
written as

V (2)
AB,SEC(RAB) =

V (2)
AB,FVCAS-CISD(RAB) − V (2)

AB,FVCAS(RAB)
F (2)

AB

(4)

and

V (3)
ABC,SEC(R) = V (3)

ABC,FVCAS-CISD(R) − V (3)
ABC,FVCAS(R)

F (3)
ABC

. (5)

According to the DMBE-SEC method,91 the two-body
scaling parameter F (2)

AB in Eq. (4) is chosen such as to repro-
duce the experimental dissociation energy (De) of the diatomic
fragment, while F (3)

ABC is defined as the average of the two-body
F factors.91 A value of F (2)

C2(3Πu) = 0.4905 has been obtained
(at MRCI/AVTZ level) in such a way as to reproduce the
experimental dissociation energy of C2(a 3Πu), which has been
defined as93

De[C2(a 3
Πu)] = D0[C2(X 1

Σ
+
g )] + EZPE[C2(X 1

Σ
+
g )]

−Te[C2(a 3
Πu)] (6)

and

EZPE[C2(X 1
Σ
+
g )] = 1

2
ωe −

1
4
ωexe +

1
8
ωeye, (7)

where D0[C2(X 1Σ+g )] = 607.47 kJ mol−1 is the accurate exper-
imental dissociation energy of Ref. 94 C2(X 1Σ+g ), and
Te[C2(a 3Πu)] = 8.59 kJ mol−1 (or 716.24 cm−1) is the elec-
tronic term value of the first excited triplet state.78–80 The
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zero-point energy (ZPE) correction for the ground state of
C2 (EZPE[C2(X 1Σ+g )] = 11.10 kJ mol−1) has been determined
based on experimental spectroscopic constants:95 ωe
= 1854.71 cm−1,ωexe = 13.34 cm−1, andωeye = −0.172 cm−1.
It should be pointed out that both the ground-singlet and
first excited-triplet states of C2 dissociate to the same limit,
C(3P) + C(3P). In turn, the three-body scaling parameter has
been defined91 as the average of the two-body F factors so
obtained which yields F (2)

C2(3Πu) = F
(3)

C3
for C3. Although an

experimental value is available for the dissociation energy of
C3,24 which could therefore be used in estimating F (3)

C3
, we

have decided not to bias further the ab initio results since
the uncertainties associated to such an experimental value
are24 ≈13.01 kJ mol−1 (note the much smaller experimental
uncertainty in De[C2(a 3Πu)]:94 ≈2.09 kJ mol−1).

IV. DMBE MODELING

According to the spin-spatial Wigner-Witmer correlation
rules,76,77 the ground state C3(1A′) dissociates adiabatically
into C2(X 1Σ+g ) + C(1D) or C2(a 3Πu) + C(3P) fragments. As
noted elsewhere,31,42,60,61 the first excited triplet state of C2 lies
only 8.59 kJ mol−1 (Te[C2(a 3Πu)] = 8.59 kJ mol−1)78–80 above
the corresponding ground state, whereas the energy separation
between the 3P state of atomic carbon and its first excited state
C(1D) is 121.96 kJ mol−1.81 Thus, as Figure 1 (see also Ta-
ble I) shows, the lowest asymptotic channel C2(a 3Πu) + C(3P)
is 113.37 kJ mol−1 more stable than the dissociation limit
C2(X 1Σ+g ) + C(1D). Thus, to model the present DMBE62,63,65,66

form, we have adopted as V (2)(R) the potential energy curve
of C2(a 3Πu). Because all C − C2 channels dissociate to C(3P)
+ C(3P) + C(3P), no use of the switching function formalism96

is required.
Within the DMBE62,63,65,66 framework, the PES is written

as a sum of one-, two-, and three-body terms,

V (R) = V (1) +
3

i=1


V (2)

EHF(Ri) + V (2)
dc (Ri)



+

V (3)

EHF(R) + V (3)
dc (R) , (8)

where the atom pairs AB, BC, and AC have been labeled
for convenience by i = 1-3, thence R = {R1,R2,R3}. In turn,
EHF stands for extended Hartree-Fock type energy, and dc for
dynamical correlation.

Following previous work on the N3 system,72,97 the zero of
energy is defined as C2(a 3Πu) at its equilibrium geometry (Re)
with the C(3P) atom infinitely separated. Thus, we impose that
the (pseudo-) one-body term equals V (1) = De. Such a strategy
ensures the correct energetics of the PES at all asymptotic
limits: V (Re,∞,∞) = 0 and V (∞,∞,∞) = De. As usual, every
term in Eq. (8) is expressed as a sum of EHF and dc energy
contributions, with the details of the analytical forms employed
in such a cluster expansion given in Subsections IV A-IV C
(see also the supplementary material57). We emphasize that the
DMBE form here reported warrants by built-in construction
the cusped behavior of the adiabatic ground-state PES at both
D3h and C2v conical intersections without resorting to diaba-
tization schemes,98 thus ensuring a realistic representation of

such nonanalytic features. The terms required to be added to
the three-body EHF [V (3)

EHF(R)] energy are given in Sections
IV C 1 and IV C 2.

A. Two-body energy terms

The diatomic potential energy curve of C2(a 3Πu) has been
modeled using the extended Hartree-Fock approximate corre-
lation energy method for diatomic molecules including the
united-atom limit99 (EHFACE2U), which has built-in the cor-
rect behavior both at long-range distances and in regions close
to the united-atom limit (R → 0); the reader is addressed to
Ref. 62, 63, 99–104 (see also the supplementary material57)
for a complete description of the analytical functions here
employed.

Figure 3 shows that the EHFACE2U potential accurately
reproduces the DMBE-SEC interaction energies [with a root
mean square deviation (rmsd) of 4.8 cm−1 for 116 calculated
points] while exhibiting quite good ability for extrapolation
to regions not covered by the ab initio data. Also shown in
the inset of panel (b) are the RKR (Rydberg-Klein-Rees) turn-
ing points.105 For comparison, we have also computed RKR
points using the RKR1 code106 and accurate spectroscopic con-
stants107 (we = 1641.3463 cm−1, wexe = 11.6595 cm−1, weye
= −0.000 79 cm−1, Be = 1.632 355 cm−1,αe = 0.016 582 cm−1,
and γe = −0.000 027 3 cm−1) for the Dunham expansion.42

Note that both data sets differ by no more than 5.764 × 10−4 a0
and 3.8 cm−1 for both inner and outer turning points. As seen
in Figure 3, the potential curve reproduces quite well the

FIG. 3. Potential energy curve for C2(a 3Πu) as obtained from a least-squares
fit to the DMBE-SEC energies. The energy differences between the predicted
and fitted values are shown in panel (c). Also shown in the inset of panel
(b) are the RKR (Rydberg-Klein-Rees) turning points of Read et al.105 and
the ones calculated from accurate spectroscopic constants of Brooke et al.107

with the RKR1 computer code.106 The key is in panel (a).
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TABLE II. Equilibrium geometries (Re), dissociation energies (De), and
vibrational frequencies (we) of C2.

C2(a3Πu)
Method Re/a0 De/kJ mol−1 we/cm−1

EHFACE2Ua 2.483 610.03 1638.3
FVCAS/AVTZb 2.513 558.35 1592.9
MRCI/AVTZb 2.498 583.50 1618.4
CCSD(T)/PVQZc 2.477 596.30 1653.0
W4d 2.486 605.76 1639.8
MRCI/CBSe 2.487 598.31 1632.3
MRCI+Q/CBSe 2.487 598.73 1629.8
MRCI+Q+CV/AV6Zf 2.480 . . . 1641.6
MRCI+Q+CV+Rel/AV6Zf 2.480 . . . 1641.1
MRCI+ [2]R12+ [2]S/AVQZg 2.487 601.24 . . .
Expt.h 2.479 609.99 1641.35

aThis work.
bThis work. From ab initio points at FVCAS and MRCI levels of theory.
cReference 108.
dReference geometry at CCSD(T)/VQZ level of theory.109

eCBS limit obtained93 as A(X )= A∞+Bexp(−CX ) using MRCI(+Q)/VXZ energies
with cardinal numbers X = 2,3,4,5.
f Reference 110. Dissociation energies not reported.
gReference 111. Harmonic vibrational frequency not reported.
hReferences 78, 94, and 95.

experimental RKR classical turning points with a rmsd that
amounts to ca. 231.8 cm−1. It must be stressed that the RKR
points have not been included in the fitted data set, and there-
fore such discrepancies may partly be due to the fact that the
error margin associated to the fitted (see above) experimental
dissociation energy is ≈174.9 cm−1.94 The computed equilib-
rium geometry (Re), dissociation energy (De), and harmonic
vibrational frequencies (we) are given in Table II, together
with available results from the literature. As seen, excellent
agreement is found between the structural properties of the
EHFACE2U curve and the experimental data, with deviations
of 0.004 a0, 0.04 kJ mol−1, and −3.1 cm−1 for the equilib-
rium geometry, dissociation energy, and harmonic vibrational
frequency, respectively. Indeed, the enhanced accuracy and
reliability of the results when the raw ab initio points are
corrected by scaling of the dynamical correlation are remark-
able. It should be pointed out that excellent correlations were
also found between the present model potential and the best
available theoretical results93,109,111 (see Table II). Note that
these93,109–111 include extrapolations to the one- and/or N -
electron basis sets, core and core-valence correlation contri-
butions, and also relativistic corrections, effects implicitly
accounted for in the SEC92 and DMBE-SEC91 methods. All
numerical coefficients in the C2(a 3Πu) potential curve and
other contributions to the DMBE PES are given as the supple-
mentary material.57

B. Three-body dynamical correlation energy

Following the DMBE62,63,65,66 formalism, the three-body
energy term [V (3)(R)], likewise V (2)(R) in Eq. (8), is split into
EHF and dc contributions,

V (3)(R) = V (3)
EHF(R) + V (3)

dc (R). (9)

The three-body dc energy term assumes the form112,113

V (3)
dc (R) = −

3
i=1


n=6,8,10

f i(R)C(i)
n (Ri, θi)χn(ri)r−ni , (10)

where Ri, ri, and θi are Jacobi coordinates, with i labeling
the associated atom-diatom (I − JK) arrangement channel for
a defined set of interparticle distances R = {R1,R2,R3}. The
switching function f i(R) is chosen from the requirement that
its value must be +1 for Ri = Re and ri → ∞, and 0 when
Ri → ∞. As proposed elsewhere,112 a suitable functional form
is

f i(R) = 1
2


1 − tanh[ξ (η Ri − Rj − Rk)]


, (11)

where ξ = 1 a−1
0 and η = 6 are fixed parameters,114 and the

indices (i, j, k) are to be understood as cyclic permutations
of (1,2,3). In turn, the damping functions χn(ri) in Eq. (10)
assume the same functional form as employed in EHFACE2U
model99 [see Eq. (3) of the supplementary material57], but with
Ri replaced by the center-of-mass separation ri for the appro-
priate atom-diatom channel. To determine the scaling param-
eter ρ in the damping functions χn(ri) [see Eqs. (3) and (6) of
the supplementary material57], the associated Le Roy radius115

(R0) has been estimated as for the Mg − C diatomic (the Mg
atom corresponds to the united-atom for the collapsed C2 frag-
ment) which yields R0 = 10.983 a0 and ρ = 19.230 a0.101

In Eq. (10), C(i)
n (Ri, θi) are atom-diatom long-range disper-

sion coefficients given by113

C(i)
n (Ri, θi) =


L

CL
n (Ri) PL(cos θi), (12)

where PL(cos θi) denotes the Lth term of the Legendre poly-
nomial expansion. Note that this expansion has been truncated
by considering only C0

6(Ri), C2
6(Ri), C0

8(Ri), C2
8(Ri), C4

8(Ri), and
C0

10(Ri); all other components are assumed to make negligible
contributions and hence neglected. In order to estimate the
dependence of such coefficients on the diatomic vibrational
coordinate116 (Ri), the generalized Slater-Kirkwood approxi-
mation117 has been employed, with the isotropic [α0(Ri)] and
anisotropic [α2(Ri)] static dipole polarizabilities116 calculated
at the MRCI/AVTZ level using the finite field method.116

Note that the dipole polarizability for the carbon atom has
been here estimated ab initio to be αC(3P) = 11.31 a3

0, with the
corresponding polarizability for the united-atom of the coa-
lescent C2(a 3Πu) diatomic as αMg(3P) = 101.26 a3

0. It should
also be pointed out that the isotropic dispersion energy coeffi-
cients C0

8(Ri) and C0
10(Ri) have been obtained from C0

6(Ri) by
the generalized correlation approach,116 while the associated
anisotropic components C2

6(Ri), C2
8(Ri), and C4

8(Ri) were esti-
mated using an adaptation of Pack’s formalism based on the
harmonic oscillator model.118

The atom-diatom dispersion coefficients so obtained for a
set of internuclear distances were then fitted to the form

CL,C1–C2C3
n (R) = CL,C1C2

n + CL,C1C3
n

+DM *
,
1 +

3
i=1

ai r i+
-

exp *
,
−

3
i=1

bi r i+
-
, (13)
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FIG. 4. Dispersion coefficients for the atom-diatom asymptotic channel as a
function of the C2(a 3Πu) internuclear distance.

where CL,C1C2
n = CL,C1C3

n is the atom-atom dispersion coeffi-
cients for L = 0 and CL,C1C2

n = CL,C1C3
n = 0 for L , 0, ai and

bi are fitting parameters with a1 = b1, and r = R − RM is the
displacement from the internuclear distance (RM) associated
with the maximum value (DM) of the corresponding atom-
diatom coefficient. The dependence of such coefficients on
the internuclear distance of C2(a 3Πu) is shown in Figure 4.
As noted elsewhere,114 Eq. (10) causes an overestimation of
the dynamical correlation energy at the atom-diatom disso-
ciation channel. To correct this, we have multiplied the two-
body dynamical correlation energy for the ith pair by


j , i[1

− f j(R)], correspondingly for channels j and k. This en-
sures114 that the only two-body contribution at the ith channel
is that of j k.

C. Three-body extended Hartree-Fock energy

Once the one- [V (1) = De], two- [V (2)(Ri)], and three-body
dc [V (3)

dc (R)] energy terms are obtained, the three-body EHF
interaction energy [ϵEHF(Rn)] is given as69,70

ϵEHF(Rn) = EDMBE-SEC(Rn)

−V (1) −
3

i=1

V (2)(Ri,n) − V (3)
dc (Rn), (14)

where EDMBE-SEC(Rn) is the DMBE-SEC interaction energy
for the nth ab initio point. Since the title radical is composed
by three identical carbon atoms, the DMBE PES must ensure
the proper permutational symmetry (see Refs. 42 and 119, and
references therein), which is warranted by built-in construc-
tion. Such a requirement is generally satisfied by expressing
the three-body EHF term [V (3)

EHF(R)—see Eq. (9)] as a sum of

polynomials in the integrity basis,119

Γ1 = Q1, (15)
Γ2 = Q2

2 +Q2
3, (16)

Γ3 = Q3(Q2
3 − 3Q2

2), (17)

where the Qi are symmetry adapted displacement coordinates
from a D3h configuration of bond length R0,58,119

*...
,

Q1

Q2

Q3

+///
-

=
*...
,


1/3


1/3


1/3

0


1/2 −


1/2
2/3 −


1/6 −


1/6

+///
-

*...
,

R1 − R0

R2 − R0

R3 − R0

+///
-

. (18)

Note that Q1, Q2, and Q3 transform as irreducible represen-
tations of the S3 permutation group42 and, in Eqs. (15)-(17),
Γi are totally symmetric combinations of the Qi. Thence, any
polynomial built from the Γi also transforms as the totally
symmetric representation of S3. In this work, the modelling of
both D3h and C2v crossing seams has been accomplished by
expressing the three-body EHF [V (3)

EHF(R)] energy as a sum of
two terms,

V (3)
EHF(R) = V ′ (3)EHF (R) + V ′′(3)EHF (R), (19)

where V
′ (3)

EHF(R) is the component which adequately describes
the symmetry-required JT conical intersection along the D3h

symmetry line and V ′′(3)EHF (R) is an extra term that accounts for
the three equivalent conical intersections at C2v symmetries
which occur for a valence angle of φ = 60.2128◦. The details
of the forms used along with the two-step fitting procedure are
described next.

1. Crossing seam with D3h symmetry

Following previous work for the H3,120 H+3 ,69–71 and N3
72

systems, the V
′ (3)

EHF(R) term is written as

V
′ (3)

EHF(R) = 
PN ′

1 (Γ1,Γ2,Γ3)
−

Γ2 PM′

2 (Γ1,Γ2,Γ3)


T ′(R), (20)

where the PI
n(n = 1,2) are polynomials of order I that assume

the form

PI
n(Γ1,Γ2,Γ3) =


i+2 j+3k 6 I

cni jk Γ
i
1 Γ

j
2 Γ

k
3 . (21)

In turn, T ′(R) in Eq. (20) is a range-determining factor that
ensures the proper asymptotic behavior of the three-body term
as any of the three atoms is removed to infinity [V ′ (3)EHF(∞,R2,R3)
= 0] and is given by

T ′(R) =
3

i=1

{1 − tanh[α(Ri − R0)]}. (22)

As remarked by Varandas and Murrell,58 the second poly-
nomial in Eq. (20) warrants that the present DMBE form
behaves as a linear function of the JT coordinate82 √Γ2 in
the vicinity of the intersection seam.58 Thus, it is responsible
for the proper representation of the nonanalytic part of the
potential at the line of D3h symmetry;58 see elsewhere98 for
an extension to non-symmetrical seams. Finally, the numerical
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parameters in Eq. (20) are obtained by minimizing the sum of
squared residuals

χ2 =

N
n=1


ϵEHF(Rn) − V

′ (3)
EHF(Rn)

2
, (23)

where ϵEHF(Rn) is the three-body EHF interaction energy
previously defined in Eq. (14), with the summation extended
over the whole data set of ab initio points. Thus, the complete
set of parameters (86 in all: 84 cn

i jk
, α, and R0) has been ob-

tained from a fit to the 575 calculated points covering 1/6 of the
physically accessible space (see Figure 10) due to symmetry
requirements. Following the usual procedure,42 the reference
geometry (R0) used to define the displacement coordinates of
Eq. (18) was taken as a D3h triangle with perimeter equal
to that of C3 at linear equilibrium geometry, R0 = 3.268 a0.
Due to the symmetry restrictions, the range-determining factor
T ′(R) [see Eq. (22)] has been obtained with α1 = α2 = α3 = α
= 0.620 a−1

0 and selected by a trial-and-error procedure where
the total rmsd is minimized; the optimal numerical values are
given in the supplementary material.57 Suffice it to emphasize
that the ab initio data cover a range of up to 2510 kJ mol−1

above the C3 global minimum, and that larger weights were
attributed to the most important regions of the PES, namely,
the linear minimum, the isomerization transition state, and the
van der Waals complexes.

2. Crossing seams with C2v symmetry

Following recent work on NO2 (1A
′′) and N3 (2A

′) sys-
tems,98 the cusps at C2v symmetry can be modelled by adding
an extra term [V ′′(3)EHF (R)] on the three-body EHF energy [see
Eq. (19)] defined as98

V ′′(3)EHF (R) = 
PN ′′

3 (Γ1,Γ2,Γ3)
−∆1∆2∆3 PM′′

4 (Γ1,Γ2,Γ3)


T ′′(R), (24)

where PI
n(n = 3,4) are two other polynomials that assume the

form given in Eq. (21) and ∆c (c = 1,2,3) is the distance from
any point in R space (R1, R2, and R3) to the three permutation-
ally equivalent C2v crossing seams.98 Focussing on one of these
lines, we define98

∆1 =


(R1 − t0)2 + (R2 − t0)2 + [R3 − t0


2(1 − cos φ)]2, (25)

with

t0 =
R1 + R2 + R3


2(1 − cos φ)

4 − 2 cos φ
. (26)

Note that φ = 60.2128◦ is the corresponding valence angle
and t0 defines the point [(t0, t0, t0


2(1 − cos φ))] in the para-

metric line r1 = (t, t, t2(1 − cos φ)) [i.e., in the C2v cross-
ing line] at which the distance is being calculated. Simi-
larly, ∆2 and ∆3 are quantities obtained by considering the
parametric equations for the other permutationally equivalent
lines [r2 = (t2(1 − cos φ), t, t) and r3 = (t, t2(1 − cos φ), t),
respectively]; the reader is addressed to Ref. 98 for more
details.

In turn, T ′′(R) in Eq. (24) is a range-decaying Gaussian
function suitably centered at each of the minima of the crossing

TABLE III. Stratified root-mean-square deviations (in kJ mol−1) of the final
DMBE PES.

Energya N b Maximum deviationc rmsd N>rmsd
d

42 105 2.93 0.67 27
84 168 3.56 0.79 35
126 250 5.02 0.88 45
167 310 9.08 1.00 48
209 327 13.22 1.21 49
251 338 13.22 1.46 47
293 347 13.22 1.67 47
335 366 14.85 2.34 38
377 367 14.85 2.51 39
418 372 14.85 2.72 39
628 396 14.85 2.85 45
837 484 14.85 2.93 66
1255 572 16.61 3.56 67
1674 623 16.61 3.81 75
2092 626 16.61 3.97 75
2510 629 16.61 4.14 76

aThe units of energy are kJ mol−1. Energy strata are defined relative to the absolute
minimum of the DMBE PES, i.e., the linear C3 structure with an energy of −0.2904 Eh.
bNumber of calculated points up to indicated energy range.
cMaximum deviation up to indicated energy range.
dNumber of calculated points with an energy deviation larger than the rmsd.

seam (R0
1, R0

2, and R0
3) and written as98

T ′′(R) = exp{−β[(R1 − R0
1)2 + (R2 − R0

2)2 + (R3 − R0
3)2]}

+exp{−β[(R1 − R0
2)2 + (R2 − R0

3)2 + (R3 − R0
1)2]}

+exp{−β[(R1 − R0
3)2 + (R2 − R0

1)2 + (R3 − R0
2)2]},

(27)

where β is a rate decaying parameter which ensures that the
above function avoids any influence of the V ′′(3)EHF (R) term at
regions of the configuration space far from the crossing seam.98

The complete set of parameters in Eq. (24) [20 in all: 15
cn
i jk

, R0, β, R0
1, R0

2, and R0
3] have been obtained by subtracting

the sum of one- [V (1) = De], two- [V (2)(Ri)], three-body dc
[V (3)

dc (R)], and V
′ (3)

EHF(R) energy terms from an extra set of 54
scaled ab initio points covering the region defined by 59.88◦

6 φ 6 60.40◦ with bond lengths fixed at R1 = R2 = 2.643 a0
and also FVCAS/AVTZ optimized distances (2.644 a0 6 R1
= R2 6 2.639 a0—see inset of Figure 11). These could be least-
squared fitted to Eq. (24) with a rmsd of 0.06 kJ mol−1; the
numerical values of the corresponding optimum parameters are
given in the supplementary material.57 Table III displays the
stratified rmsd values of the final PES with respect to all fitted
points. Accordingly, the fit shows a maximum unweighted
rmsd of 4.14 kJ mol−1 up to the highest repulsive energy stra-
tum.

V. FEATURES OF THE DMBE POTENTIAL
ENERGY SURFACE

All major topographical features of the PES are depicted
in Figures 5-12, while the corresponding structural parameters
of the relevant stationary points are collected in Table IV.
The most salient feature relates to the fact that the present
DMBE PES for the C3(1 1A

′) radical shows three equivalent,
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FIG. 5. Contour plot for C2v insertion of the C atom into the C2 fragment.
Contours equally spaced by 0.01 Eh, starting at −0.2904 Eh.

symmetry related minima (referred to as Min) at symmetric
linear configurations with a characteristic bond length of R1/2
= R2 = R3 = 2.444 a0 in excellent agreement with the exper-
imental value reported by Hinkle et al.9 of 2.451 a0. As seen
in Table IV, this is no doubt obtained by virtue of the DMBE-
SEC91 scheme employed in the present work. Table IV also
gathers the best available results reported in the literature as
well as our own ab initio values obtained at the FVCAS/AVTZ
and MRCI/AVTZ levels of theory. For comparison, we have
also computed scaled MRCI + Q/AVQZ (with F (2)

C2
= F (3)

C3

FIG. 6. Contour plot for the C–C–C bond stretching keeping the included an-
gle fixed at 60◦. Contours equally spaced by 0.012 Eh, starting at −0.2588 Eh.

FIG. 7. Cut along the D3h intersection line as a function of the characteristic
bond length. The dots indicate the ab initio points included in the fit.

= 0.6738 at this level) and CBS extrapolated energies121,122

at the stationary structures predicted by the DMBE PES. Note
that the latter were estimated by treating separately the FVCAS
and dc components of the energy as obtained from MRCI
+Q/AVXZ (X = T,Q) calculations.121,122 Thence, for FVCAS
energies, a two-point extrapolation scheme due to Karton-
Martin121 has been employed, while the dc components have
been obtained following the USTE(T,Q)122 protocol. Although
the DMBE PES yields an accurate equilibrium structure for
the C3(1 1A

′) radical, the harmonic vibrational frequencies so
obtained deviate by ca. 20.0 cm−1, −0.1 cm−1, and −86.5 cm−1

for the symmetric (w1), bending (w2), and antisymmetric (w3)
motions, respectively, relative to the observed fundamentals.
Such a discrepancy is most likely due to large anharmonicity
and large-amplitude motion, which are especially manifested
in the bending frequency, thence explaining why deviations

FIG. 8. Contour plot for the C–C–C bond stretching for linear configuration.
Contours equally spaced by 0.012 Eh, starting at −0.2904 Eh.
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FIG. 9. Cut for C∞v insertion of the C atom into the C2 diatomic with a
internuclear distance fixed at Re= 2.444 a0. The dots indicate the ab initio
points included in the fit.

from the normal mode and small-amplitude models may take
place.2

A notable feature of the present DMBE PES, thus far
unreported, is the transition structure (hereinafter referred to
as TSwdW) at regions of the PES dominated by long range
interactions. As clearly visible from Figure 5, which depicts
the insertion of a C atom into the C2 fragment for C2v
configurations, such a structure is predicated to be located
at R1 = 2.470 a0 and R2 = R3 = 7.247 a0 with a well depth of
−6.49 kJ mol−1 relative to the C2(a 3Πu) + C(3P) dissociation
channel. Although it is a typical first-order saddle point
whose imaginary frequency (136.7 i cm−1) corresponds to the
distortion of the isosceles triangle to a Cs configuration, such
a TSwdW structure manifests as a minimum in two dimensions,
one corresponding to the perpendicular approach of the C atom
to C2(a 3Πu) and the other to the diatomic C–C stretching.
The saddle-point nature of this stationary state is perhaps
best understood from the plot shown later in Figure 12. In
fact, this transition state is connected by another saddle point
of index 2 (or second-order), SP2, with characteristic bond

lengths of R1 = 2.477 a0 and R2 = R3 = 5.509 a0, which lies
about 32.46 kJ mol−1 and 38.95 kJ mol−1 above C + C2 and
TSwdW, respectively. Note from Table IV that SP2 is actually
a second-order saddle point with imaginary frequencies of
453.3i cm−1 and 542.7i cm−1 which correspond to the insertion
of the C atom into C2, and distortion of the isosceles triangle
to a Cs configuration, respectively. This now appears as a
maximum in the C around C2 contour plot of Figure 12.
Although stationary structures with more than one negative
curvature along the principal axes have, generally, no chemical
significance, such a feature may reflect an avoided intersection
with an upper electronic state. As first remarked by Carter
et al.31 and Whiteside et al.,54 the isomerization between the
three symmetry related C3 global minima (i.e., the degenerate
arrangement which exchanges the central carbon atom to a
terminal position and vice versa) occurs via a C2v transition
state TSiso located at R1 = 2.399 a0 and R2 = R3 = 2.768 a0
with a frequency of 1039.3i cm−1. Note that due to the
low dimensionality of the contour plot in Figure 5, such a
structure shows itself as a local minimum with an energy
of −673.01 kJ mol−1 with respect to the C2(a 3Πu) + C(3P)
asymptote. Note further that the TSiso arises from a non-
totally symmetric distortion of the D3h equilateral triangle
(Dcusp

3h structure — see Table IV), as implied by the Jahn-Teller
theorem,82,83 with a stabilization energy relative to the Dcusp

3h of
−45.98 kJ mol−1. The classical barrier height predicted from
the present DMBE form is 89.58 kJ mol−1 relative to the linear
minima. In fact, excellent agreements were found between
this value and the corresponding barriers predicted from
the DMBE-SEC/MRCI+Q/AVQZ (89.43 kJ mol−1) and CBS
extrapolation schemes (82.22 kJ mol−1). It should be pointed
out that scaling of the dynamical correlation via DMBE-SEC92

reduces the activation barrier for the isomerization process
in about 32.34 kJ mol−1 and 17.82 kJ mol−1 with respect to
the values actually predicted from the FVCAS/AVTZ and
MRCI/AVTZ energies, respectively (see Table IV). Note that
the corresponding barrier predicted from the CMM31 PES is
rather low (25.19 kJ mol−1) compared with the results reported
by Whiteside et al.54 at the MP4/6-31G∗ level of theory

FIG. 10. (a) Relaxed triangular plot in hyperspherical coordinates depicting the location and symmetry of all stationary points discussed in the present work for
the ground state of C3. Solid black lines are equally spaced by 0.005 Eh, starting at −0.2904 Eh. Dashed red and blue lines are equally spaced by 0.001 Eh, starting
at 0.000 67 Eh and −0.0206 Eh, respectively. (b) Close view of the conical intersection region showing the minimum of the crossing seam at D3h symmetry as
well as the minimum of the three equivalent symmetry related C2v crossing lines. Contours are equally spaced by 0.000 04 Eh, starting at −0.240 085 Eh.
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FIG. 11. Minimum energy path with bond lengths relaxed along the bending
angle φ. The plot starts at φ = 5◦ which corresponds to the C+C2 limit and
leads to the linear global minimum at φ = 180◦ via the conical intersection
region. The inset shows an amplified region of the configuration space, with
the correct cusped behavior at both D3h and C2v crossing seams. The dots
indicate the ab initio points included in the fit, with the ones related to a
fixed bond-length shifted by −0.0025 Eh. In the key, DMBE JT indicates the
present PES without the contributions of the V ′′(3)EHF(R) term.

(125.14 kJ mol−1) as well as our own ab initio calculations.
Figures 5–11 show that the present DMBE form ensures the
correct behavior at the 4 conical intersections. This is a result
of using the Jahn-Teller type coordinate82 √Γ2 in the second
polynomial of Eq. (20), and the term V ′′(3)EHF in Eq. (24). Note
that the Dcusp

3h structure shown in Table IV and emphasized in
Figure 7 is not a stationary point on the global PES: it is a
minimum only for A1 distortions. Conversely to the C2v case,
the linear insertion of C(3P) into C2(a 3Πu), shown in Figures 8
and 9, encounters no barrier for forming ground-state linear C3
(denoted as Min). Suffice it to say that this minimum structure
has a well depth of −762.58 kJ mol−1 relative to C + C2, and
an energy of −1372.60 kJ mol−1 (≡ −De[C3(X 1Σ+g )]) with
respect to the three infinitely separated C(3P) atoms. This

result agrees quite well with the experimental values reported
by Gingerich et al.24 (−1323.27 kJ mol−1) as well as the ab
initio W4 result of Karton et al.109 (−1342.65 kJ mol−1). As
above, the global minima (Min) arises due to distortion of
the Dcusp

3h and Ccusp
2v unstable configurations to form a linear

structure with a stabilization energy of −135.56 kJ mol−1.
All major topographical features of the DMBE PES are

probably better viewed in a relaxed triangular plot123 using
scaled hyperspherical coordinates (β⋆ = β/Q and γ⋆ = γ/Q),
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,
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γ

+///
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*...
,

1 1 1
0
√
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3

+///
-

. (28)

As shown in Figure 10, such a plot depicts in a physical way all
the stationary points discussed above. Two significant features
also visible from Figure 10 are the TSwdW and SP2 structures in
the entrance channel associated to C + C2. Following the C2v
line, the transition state for the isomerization between the three
symmetry related global minima is apparent and signaled by a
red double dagger symbol (“‡”). From here, the title system
may attain the C3 structure by following down to the right or
left until reaching the equator of the hypersphere. Instead, if
continuing to move forward along the C2v axis, one encounters
first the minimum of the C2v conical seam and finally the mini-
mum of the D3h conical seam. On moving further on along the
C2v axis, one finally encounters the D∞h absolute minimum as
it is visible from Figure 10(a). For collinear arrangements, the
C + C2 system may reach directly the C3 minima by following
any direction along the equator (see Figure 9).

Figure 11 shows a minimum energy cut for C2v arrange-
ments and corresponds, in Figure 10, to a path from the equator
(C + C2) to the pole of the North or South hemispheres (i.e.,
center of the shown physical circle123), Dcusp

3h , and then again
to the equator at the opposite side (C3). Note that similar
sections exist for rotations by ±120◦. As already remarked by
others,5,6,39,40,53 and clearly visible from Figure 11, the ground

FIG. 12. Contour plot for the C atom
moving around a partially relaxed C2
diatom (2.2 6 RC2/a0 6 2.6), which lies
along the x axis with the center of the
bond fixed at the origin. Solid black
lines are equally spaced by 0.01 Eh,
starting at −0.2906 Eh. Dashed gray and
black lines are equally spaced by 0.001
and 0.000 25 Eh, starting at zero and
−0.0206 Eh, respectively. Also shown
by the black solid dots are the calculated
ab initio points for the C atom moving
around a C2 diatomic fixed at the equi-
librium geometry. Similarly indicated
by other symbols are various station-
ary points. In turn, the inset shows cuts
along the atom-(equilibrium)diatom ra-
dial coordinate for selected values of the
Jacobi angle.
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TABLE IV. Properties of stationary points and other relevant structures on the C3(1 1A
′) DMBE PES.

Method R1/a0 R2/a0 R3/a0 E/kJ mol−1 w1/cm−1 w2/cm−1 w3/cm−1

Min

DMBEa 4.888 2.444 2.444 0b 1204.2 63.5 2126.5
FVCAS/AVTZa 4.948 2.474 2.474 0 1171.0 56.1 2060.9
MRCI/AVTZa 4.922 2.461 2.461 0 1190.0 75.8 2085.1
DMBE-SEC/MRCI+Q/AVQZa 4.888 2.444 2.444 0 . . . . . . . . .
CBSa 4.888 2.444 2.444 0 . . . . . . . . .
FVCAS/ANOc 4.948 2.474 2.474 . . . 1192.0 70.2 2007.3
CCSD(T)/177 cGTOsd 4.906 2.453 2.453 . . . 1219.0 64.3 2040.6
MRCI+Q/VTZe 4.924 2.462 2.462 . . . 1212.6 84.8 2044.6
CASSCF(10,8)/VQZf 4.920 2.460 2.460 . . . 1178.9 132.3 2067.7
CMMg 4.838 2.419 2.419 0 1278.0 106.0 1950.0
Expt.h 4.902 2.451 2.451 0 1224.20 63.42 2040.02

TSiso

DMBEa 2.399 2.768 2.768 89.58 1257.2 1873.3 1039.3i
FVCAS/AVTZa 2.424 2.808 2.808 121.92 1193.8 1747.0 997.7i
MRCI/AVTZa 2.413 2.787 2.787 107.40 1211.1 1774.0 1011.1i
DMBE-SEC/MRCI+Q/AVQZa 2.399 2.768 2.768 89.43 . . . . . . . . .
CBSa 2.399 2.768 2.768 82.22 . . . . . . . . .
MP4/6-31G∗i 2.362 2.761 2.761 125.14 1339.0 2013.0 1402.0i
CMMg 2.268 3.053 3.053 25.19 . . . . . . . . .

SP2

DMBEa 2.477 5.509 5.509 795.04 1354.4 453.3i 542.7i
DMBE-SEC/MRCI+Q/AVQZa 2.477 5.509 5.509 799.83 . . . . . . . . .
CBSa 2.477 5.509 5.509 771.17 . . . . . . . . .

TSwdW

DMBEa 2.470 7.247 7.247 756.09 1613.1 160.0 136.7i
DMBE-SEC/MRCI+Q/AVQZa 2.470 7.247 7.247 755.93 . . . . . . . . .
CBSa 2.470 7.247 7.247 729.75 . . . . . . . . .

Dcusp
3h

DMBEa 2.610 2.610 2.610 135.56 . . . . . . . . .
FVCAS/AVTZa 2.643 2.643 2.643 181.08 . . . . . . . . .
MRCI/AVTZa 2.627 2.627 2.627 159.20 . . . . . . . . .
DMBE-SEC/MRCI+Q/AVQZa 2.610 2.610 2.610 137.97 . . . . . . . . .
CBSa 2.610 2.610 2.610 154.43 . . . . . . . . .

Ccusp
2v

DMBEa 2.615 2.606 2.606 135.31 . . . . . . . . .
FVCAS/AVTZa 2.648 2.639 2.639 180.96 . . . . . . . . .
MRCI/AVTZa 2.628 2.620 2.620 159.12 . . . . . . . . .
DMBE-SEC/MRCI+Q/AVQZa 2.615 2.606 2.606 137.40 . . . . . . . . .
CBSa 2.615 2.606 2.606 154.12 . . . . . . . . .

C2(a 3Πu)
+C(3P)

DMBEa 2.483 50.000 52.483 762.58 . . . . . . . . .
FVCAS/AVTZa 2.513 50.000 52.513 667.31 . . . . . . . . .
MRCI/AVTZa 2.498 50.000 52.498 714.79 . . . . . . . . .
DMBE-SEC/MRCI+Q/AVQZa 2.483 50.000 52.483 761.67 . . . . . . . . .
CBSa 2.483 50.000 52.483 733.66 . . . . . . . . .
CMMg 2.479 50.000 52.479 877.93 . . . . . . . . .
W4j . . . . . . . . . 736.89 . . . . . . . . .
Expt.k . . . . . . . . . 713.29 . . . . . . . . .

aThis work.
bRelative to the absolute minimum of C3, −0.2904 Eh.
cReference 35. Dissociation energy not reported.
dReference 37. Dissociation energy not reported.
eReferences 39 and 40. Dissociation energy not reported.
f Reference 34. Dissociation energy not reported.
gReference 31. Harmonic vibrational frequencies for TSiso not reported.
hReferences 9 and 40.
i Reference 54.
j Reference 109.
kReferences 78, 94, 95, and 24. Estimated as E =−De[C2(a 3Πu)]+ {D0[C3(X 1Σ+g )]+EZPE[C3(X 1Σ+g )]}.

state bending potential is exceptionally flat with a very low
bending frequency and large amplitude motion. Indeed, as
predicted from the present DMBE form, linear C3 requires only
16.36 kJ mol−1 to reach a bending angle of 90◦. Additionally,

the inset of Figure 11 reinforces the fact that the present DMBE
PES has the correct behavior at the conical intersection region.

Figure 12 illustrates the PES for a C atom moving around
a C2 fragment and summarizes, in a comprehensive manner,
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all the stationary structures discussed in the present work. For
inelastic and reactive quantum scattering calculations, it is
often advantageous to express the interaction potential by a
Legendre expansion120,124,125

V (Re,r, θ) =

L

VL(Re,r) PL(cos θ), (29)

where Re is the diatomic internuclear distance of C2, here
fixed at its equilibrium value of 2.483 a0, r and θ are Jacobi
coordinates, and PL(cos θ) are Legendre polynomials.125 The
leading terms VL(Re,r), shown in Figure 13, are obtained from
V (R) by the integral42

VL(Re,r) = (2L + 1)
×
 π/2

0
V (Re,R2,R3) PL(cos θ) sin θ dθ. (30)

Only even terms are presented, since odd ones vanish by
symmetry reasons.125 Of particular relevance in scattering
processes97,125 are the spherically averaged (or isotropic)
[V0(Re,r)] and leading anisotropic [V2(Re,r)] terms. Generally,
the magnitude of V0(Re,r) determines how close, on the
average, the atom and the diatomic fragment can get together,
while the sign of V2(Re,r) indicates whether or not the
molecule prefers to orient its axis along the incoming
atom:97,125 a negative value favors a collinear approach,
whereas a positive one favors the approach through C2v
configurations. As seen in Figure 13, the average distance
where V0(Re,r) attains its lowest value is ⟨ r ⟩ = 3.172 a0 and
corresponds to a region of maximum interaction between the
C atom and C2 diatomic (at its equilibrium distance). Note that
in regions dominated by long-range interactions (see inset of
Figure 13), the V2(Re,r) term changes twice sign for values
of the atom-diatom separation equal to r = 12.495 a0 and
7.478 a0, distance from which it remains negative until the next
sign change at r = 3.172 a0. Note that the third sign change of
V2(Re,r) coincides with the distance at which V0(Re,r) assumes
its minimum value. All such features may be rationalized
from a close inspection of Figures 10 and 12. Accordingly,
the collinear approach of the C atom to the C2 molecule is
energetically more favorable at large values of r and changes as
the fragments get together following the sequence: collinear,

FIG. 13. Isotropic [V0(Re, r )], leading anisotropic [V2(Re, r )], and higher
order terms of the Legendre expansion in Eq. (29).

perpendicular (first sign change at r = 12.495 a0), collinear
(second sign change at r = 7.478 a0), and perpendicular
(third sign change at r = 3.172 a0). Note that the first sign
change (r = 12.495) is most likely induced by the energy
stabilization of ≈6.49 kJ mol−1 due to formation of the TSwdW
structure. Subsequently, the system undergoes a distortion
to D∞v conformation (second sign change) following the
imaginary normal mode of TSwdW in order to avoid spending
38.95 kJ mol−1 to overcome the SP2 stationary point. This
is seen from Figure 12, which shows that the depth of the
van der Waals potential is the largest for the perpendicular
approach and decreases smoothly as one approaches collinear
arrangements.

VI. ROVIBRATIONAL ENERGY LEVELS

To judge the quality of the current DMBE PES, we have
performed rovibrational calculations for the first 53 levels
using the multidimensional discrete variable representation
(DVR) method126,127 as implemented in Tennyson’s128 DVR3D
code. All calculations have employed Jacobi coordinates with
the molecular body-fixed z-axis embedded along the C–CC
center-of-mass separation (r). This embedding scheme and
choice of (orthogonal) internal coordinates are particularly
advantageous129,130 to achieve simple (in the sense that no
cross-derivative terms are present) and general kinetic energy
operators. Details concerning the analytical expression of the
body-fixed Hamiltonian operator in Jacobi coordinates can be
found elsewhere.126,131,132

As noted by Ahmed et al.39 and Mladenović et al.,37 the
strong stretch-bend coupling and the large-amplitude bending
motion in C3 set high requirements to a proper treatment of
the intramolecular motion, in as much as vibrational modes are
sufficiently highly excited and significant portions of the PES
far from the equilibrium are accessible.126 In this sense, DVR-
based methods126,127 have enjoyed great success in obtaining
accurate solutions of a variety of rovibrational problems for
such floppy systems.37,126,127

The rotation-vibration wave function assumes the
form129,130

|nJp⟩ =
J

k=0

|Jkp⟩


m1m2m3

cnJ p
km1m2m3

Pk
m1
(R) Pk

m2
(r) Pk

m3
(θ), (31)

where |nJp⟩ is the wave function of the nth rotation-vibration
state with rotational symmetry defined by the total rotational
angular momentum quantum number J and the parity p.130

The |Jkp⟩ are the symmetrized rotational functions129,130 and
depend on the three Euler angles (α, β, and γ) which specify
the orientation of the body-fixed coordinate with respect to
the space-fixed frame. Finally, Pk

mi
are the vibrational basis

functions, which may depend on the projection of the total
angular momentum along the body-fixed z-axis, k, and are
functions of a single internal Jacobi coordinate (R, r , or θ). In
turn, cnJ p

km1m2m3
are expansion coefficients which are determined

by diagonalizing the Hamiltonian matrix.129,130

For given (J, p) values, the Hamiltonian matrix of the
body-fixed operator in Jacobi coordinates, ĤJac, is defined as
follows:129,130
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TABLE V. Calculated (Gcal) and experimental (Gexp) vibrational term values (in cm−1) for the ground state of
C3(1 1A

′) radical. The quantum numbers v1, v2, and v3 refer to symmetric, bending, and antisymmetric motions,
respectively, and l2= 0, 1, 2 is the vibrational angular momentum quantum number. J is the total rotational
angular momentum quantum number.

Observed — calculated

v1 v
l2
2 v3 J Gcal

a Gexpt.
b DMBEa Jensen et al.c Ahmed et al.d Mladenović et al.e

0 20 0 0 140.8 132.80 −8.0 −21.5 15.5 −0.5
0 40 0 0 328.5 286.11 −42.4 −47.1 −5.0 2.7
0 60 0 0 522.9 461.09 −61.8 −66.7 −16.7 11.0
0 80 0 0 691.8 647.59 −44.2 −87.9 −29.5 15.1
0 100 0 0 862.8 848.40 −14.4 −106.8 −40.0 19.1
0 120 0 0 1085.3 1061.96 −23.3 −118.4 −49.2 . . .
1 00 0 0 1161.0 1224.20 63.2 32.2 60.4 5.3
1 20 0 0 1330.0 1404.10 74.1 26.1 32.4 1.0
1 40 0 0 1606.7 1592.05 −14.7 5.3 13.1 2.0
1 60 0 0 1812.3 1785.11 −27.1 −20.1 −2.2 2.4
1 80 0 0 1954.7 1990.52 35.8 −42.1 −14.9 6.6
1 100 0 0 2169.7 2210.50 40.8 −57.3 −21.9 15.3
0 00 1 0 1986.1 2040.02 53.9 32.7 44.2 −0.6
0 20 1 0 2126.9 2133.88 6.9 3.2 13.9 −4.7
0 40 1 0 2314.6 . . . . . . . . . . . . . . .
0 60 1 0 2509.0 . . . . . . . . . . . . . . .
0 80 1 0 2678.0 . . . . . . . . . . . . . . .
0 100 1 0 2848.9 . . . . . . . . . . . . . . .
2 00 0 0 2422.8 2435.20 12.4 60.8 69.5 10.5
2 20 0 0 2616.8 2656.30 39.5 65.7 46.0 3.9
2 40 0 0 2826.9 2876.90 50.0 49.3 30.6 0.4
2 60 0 0 3010.5 3099.90 89.4 29.6 18.7 1.6
2 80 0 0 3364.4 . . . . . . . . . . . . . . .
2 100 0 0 3445.2 . . . . . . . . . . . . . . .
0 11 0 1 61.6 63.42 1.8 −6.8 27.3 −0.9
0 31 0 1 231.9 207.30 −24.6 −33.0 3.0 0.8
0 51 0 1 426.0 . . . . . . . . . . . . . . .
0 71 0 1 612.3 . . . . . . . . . . . . . . .
0 91 0 1 769.8 . . . . . . . . . . . . . . .
1 11 0 1 1201.9 . . . . . . . . . . . . . . .
1 31 0 1 1463.7 . . . . . . . . . . . . . . .
1 51 0 1 1754.2 . . . . . . . . . . . . . . .
1 71 0 1 2042.1 . . . . . . . . . . . . . . .
1 91 0 1 2219.9 . . . . . . . . . . . . . . .
0 11 1 1 2075.7 2078.50 2.8 19.7 21.6 −4.4
0 31 1 1 2279.9 2191.10 −88.8 −10.3 1.0 −5.7
0 51 1 1 2427.3 2330.00 −97.3 −34.5 −12.9 −2.1
0 71 1 1 2571.6 2489.70 −81.9 −54.7 −23.3 3.3
0 22 0 2 121.2 133.06 11.8 −16.9 . . . −1.2
0 42 0 2 323.3 286.80 −36.5 −44.6 . . . 2.2
0 62 0 2 516.4 462.10 −54.3 −64.8 . . . 10.7
0 82 0 2 688.7 648.80 −39.9 −86.2 . . . 15.0
0 102 0 2 857.1 849.70 −7.4 −104.7 . . . 19.0
1 22 0 2 1321.4 1410.50 89.1 −31.5 . . . 3.5
1 42 0 2 1597.5 1596.00 −1.5 −8.0 . . . 2.0
1 62 0 2 1905.7 1995.80 90.1 −37.7 . . . 8.6
1 82 0 2 2239.8 . . . . . . . . . . . . . . .
1 102 0 2 2305.3 . . . . . . . . . . . . . . .
0 22 1 2 2125.9 2127.41 1.5 1.8 . . . −7.0
0 42 1 2 2239.8 . . . . . . . . . . . . . . .
0 62 1 2 2405.3 . . . . . . . . . . . . . . .
0 82 1 2 2606.7 . . . . . . . . . . . . . . .
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TABLE V. (Continued.)

Observed — calculated

v1 v
l2
2 v3 J Gcal

a Gexpt.
b DMBEa Jensen et al.c Ahmed et al.d Mladenović et al.e

0 102 1 2 2808.3 . . . . . . . . . . . . . . .
rmsd 50.4 53.1 31.2 8.0

aThis work. Gcal is given with respect to the zero point level at 1728.8 cm−1.
bReferences 35, 37, 39, 45, and 49.
cReference 35.
dReference 39.Vibrational term values for J = 2 not reported.
eReference 37.

HJ p

S
′
S
= ⟨Jk

′
p|⟨m′1 m

′
2 m

′
3|ĤJac |m1 m2 m3⟩|Jkp⟩, (32)

where the S (S
′
) index has been used to represent the quantum

numbers k, m1, m2, and m3 (k
′
, m

′
1, m

′
2, and m

′
3) and |m1 m2 m3⟩

(|m′1 m
′
2 m

′
3⟩) denote the purely vibrational part in Eq. (31). In

the present work, we have employed Morse oscillator-like
functions128 as radial vibrational basis [Pk

m1
(R) and Pk

m2
(r)]

whose parameters were initially obtained by taking cuts
through the PES at the region defined by the D∞h global
minimum (Min structure). Such parameters have been
subsequently optimized in initial test calculations, yield-
ing R = 2.585 a0, De = 0.562 Eh, and we = 0.011 Eh for
the CC diatomic stretching coordinate and r = 3.695 a0,
De = 0.305 Eh, and we = 0.008 Eh for C−CC center-of-mass
coordinate. Note that associated Legendre polynomials129

have been used for angular vibrational basis [Pk
m3
(θ)], as

defined in the DVR3D software suite.128 With the above
set of orthogonal polynomials and their associated Gaussian
quadratures,129,130 our final DVR transformation has been
accomplished by using 100 grid points for each single internal
Jacobi coordinate with the diagonalization problem solved in
the order r → R → θ. An energy cutoff of 3000 cm−1 (here,
the global minimum is the zero of the potential) has been
used for the 1D solutions, and 1000 2D solutions utilized for
building the final 3D matrix of dimension 2000. It should be
pointed out that the above procedure provided a large number
of converged levels up to 3500 cm−1 above the zero point level
at 1728.8 cm−1, typically converged to within 0.1 cm−1 or
better.

The rovibrational levels for the ground state of the
C3(1 1A

′) radical were obtained for J 6 2 both for even(e)-
parity (p = 0) and odd( f )-parity (p = 1). The term values
so obtained (Gcal) are gathered in Table V together with the
available experimental measurements35,37,39,45,49 (Gexp). Also
shown in Table V are the differences between experimental and
calculated term energies (Gexp − Gcal) obtained in the present
work as well as those reported in the most recent purely ab
initio (near-equilibrium) surfaces of Jensen et al.,35 Mlade-
nović et al.,37 and Ahmed et al.39 Note that all vibrational
term energies, Gv, are assigned according to four approximate
quantum numbers (v1, v

l2
2 , v3), where v1, v2, and v3 refer to

symmetric, bending, and antisymmetric motions, respectively,
and l2 = 0, 1, 2 is the vibrational angular momentum quantum
number.35

A close inspection of Table V shows that the present
global DMBE PES reproduces quite well the vibrational

energy spectrum of C3 with a rmsd of 50.4 cm−1 for 53 calcu-
lated levels. Note that to achieve such an accuracy, a relatively
dense grid of 149 scaled ab initio points has been generated in
the region defined by 2.145 a0 6 R1,2/Re 6 2.745 a0 in steps of
0.15 a0 for a range of selected φ angles (180◦, 177◦, 174◦, 171◦,
168◦). Note further that R1, R2, and φ are valence coordinates42

with Re = 2.444 a0 and φe = 180◦ referring to the bond length
and bond angle equilibrium values, respectively, at the D∞h
global minimum (Min structure) predicted by our DMBE-
SEC91 approach. Such a grid has been included in the whole
data set of scaled ab initio points and could be least-squares
fitted to the analytical function here employed [see Eqs. (8),
(20), and (21)] with a rmsd of 19.8 cm−1 up to 3000 cm−1

above the equilibrium geometry (corresponding to 92 points),
which is about the range to which our present rovibrational
calculations have been restricted. It should also be pointed out
that attempts were made to achieve an even smaller rmsd in
this region of configuration space by attributing larger weights
to the selected grid points. Such a procedure, however, leads
to spurious features at other regions of configuration space,
and hence has not been pursued. Of course, small numerical
uncertainties in the raw energies themselves may support
such an attitude. In spite of this, the present DMBE PES
shows slightly better results when compared with the near-
equilibrium FVCAS/ANO surface of Jensen et al.35 whose
rmsd amounts to ca. 53.1 cm−1 for the selected levels.

Regarding the local, purely ab initio, surface of Ahmed
et al.39 obtained at MRCI+Q/VTZ level, this shows a some-
what better rmsd of 31.2 cm−1 for the selected levels. Note,
however, that the authors have employed a much denser grid
(384 ab initio points) at regions of configuration space up to
8000 cm−1 (≈96 kJ mol−1) above the equilibrium geometry,
which corresponds to an energy cutoff of about 42 kJ mol−1

below the conical intersection region. This contrasts with the
global nature of the current PES. The best fit of the rovi-
brational data (rmsd = 8.0 cm−1) is obtained with the PES
reported by Mladenović et al.37 which has been calculated at
the CCSD(T) level of theory with a basis set of 177 contracted
Gaussian-type orbitals (cGTOs). Unfortunately, this too is of
the local type. In summary, we judge the fit of the present work
as quite satisfactory particularly because it does not involve any
fitting to the observed vibrational data. Moreover, it may pro-
vide the required input for later improvement to true spectros-
copy accuracy either via a direct fit114,133,134 to spectroscopic
data or by morphing the current PES with a spectroscopically
accurate local potential via energy-switching.112,135,136
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VII. CONCLUSIONS

We report the first global accurate ab initio-based PES
for the ground state of the C3(1 1A

′) radical, thus including all
relevant stationary points some of which unreported thus far to
our best knowledge. Because C3 shows a combined Jahn-Teller
[E′ ⊗ e

′] plus pseudo-Jahn-Teller [(E ′ + A′1) ⊗ e′] interaction,
the adiabatic DMBE PES here reported must describe four
conical intersections. To account for excitations beyond singles
and doubles in the MRCI calculations, and also incompleteness
of the one-electron basis set, all calculated energies have been
fine-tuned with the DMBE-SEC method such as to repro-
duce the experimental dissociation energy of C2(a 3Πu). The
PES has then been modeled to the scaled data points accord-
ing to DMBE theory, and the fit shown to accurately repro-
duce dissociation energies, diatomic potentials, and long-range
interactions at all asymptotic channels. The proper permu-
tational symmetry and correct behavior at the four conical
intersections have also been warranted by built-in construction.
Rovibrational calculations also performed have shown that the
present PES reproduces the vibrational energy spectrum of
C3 with a rmsd of 50.4 cm−1 for the 53 considered levels.
The novel DMBE form here reported is therefore commended
for spectroscopic as well as reaction dynamics studies on C3.
Moreover, the new potential energy surface should be useful,
and indeed is currently being utilized, as a building block
for constructing the potential energy surfaces of larger carbon
clusters. Of course, being single-sheeted, it cannot be used for
non-adiabatic dynamics where other adiabatic sheets can be
visited.
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The Jahn-Teller plus pseudo-Jahn-Teller vibronic problem
in the C3 radical and its topological implications
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The combined Jahn-Teller plus pseudo-Jahn-Teller [(E ′ + A′1) ⊗ e′] problem is discussed for the
tricarbon radical (C3) by means of ab initio calculations at the multireference configuration interaction
level of theory. For the 1E ′ electronic state arising from a e′2 valence configuration, three additional
symmetry-equivalent C2v seams are found to lie in close proximity to the D3h symmetry-required
seam over the entire range of the breathing coordinate here considered. As the perimeter of the
molecule increases, the C2v disjoint seams approach the D3h one almost linearly and ultimately
coalesce with it at Q1 = 5.005 a0, thence forming an intersection node or confluence. By further
increasing the size of the molecular triangle, the C2v seams get rotated by ±π in the g-h plane. A
three-state vibronic Hamiltonian is also proposed to model locally the title system and shown to
accurately mimic the calculated data over the region close to the minimum energy crossing point. No
net geometric phase effect is observed when the associated electronic wave functions are adiabatically
transported along closed paths encircling the four singularity points. For all paths enclosing the
intersection node, the sign reversal criterion is shown to be not fulfilled, even for infinitesimal
loops. The results so obtained are expected to be valid for other ring systems experiencing similar
topological attributes. C 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4941382]

I. INTRODUCTION

Homonuclear triatomic (X3-type) molecules have enjoyed
a great theoretical interest for many decades and still
provide a tempting target for electronic structure calculations
(Refs. 1–10 and references therein). At high-symmetry nuclear
configurations, such elemental clusters assume equilateral
triangular geometries (threefold axial symmetry) with some
of the electronic states transforming according to the twofold
degenerate E ′(E ′′) irreducible representation (irrep) of the
D3h point group.1,11 Not surprisingly, therefore, symmetry-
required conical intersections12 (CIs) between the associated
potential energy surfaces1 (PESs) are often realized and
have been extensively characterized for a variety of such
systems.12–17

According to the Jahn-Teller (JT) theorem,18–25 highly
symmetric non-linear geometries in degenerate electronic
states are not stable equilibrium configurations but instead
singularity points on adiabatic PESs.26 As such, the system
lowers its symmetry so that any electronic degeneracy can
be lifted.21–24 By means of first-order perturbation theory
and group-theoretical arguments, Jahn and Teller18 proved
that for non-linear molecules experiencing a symmetry
imposed CI there will exist non-vanishing perturbation
matrix elements along certain non-totally symmetric nuclear
displacements, thence implying the instability at the JT
origin.18,19 Accordingly, the associated electronic energies
of the distorted configurations are the characteristic values

a)Author to whom correspondence should be addressed. Electronic mail:
varandas@uc.pt

of the perturbation matrix, the elements of which define
the nonadiabatic electronic-nuclear interactions (vibronic
interactions).18–25 Specifically for X3-type molecules, the
simplest JT case consists of a twofold degenerate electronic
term E interacting with twofold degenerate e vibrations, i.e.,
the well-studied linear E ⊗ e problem.3,12–17,20–25 Generally,
systems with e or e3 electron configurations27 behave as linear
JT molecules with the adiabatic PESs assuming the well-
known form of a “Mexican hat.”22–24 The simplest prototype
of such a class of molecules is H+3(13A′/23A′),7 with the locus
of CI having D3h symmetry. Yet, the introduction of quadratic
terms of vibronic interactions in the perturbation theoretic
approach, i.e., the linear plus quadratic JT problem,18–25

reveals the so-called warping of the Mexican-hat-type PESs23

(the “tricorn”) with the formation of three wells (alternating
regularly with three bumps, topographically saddle points or
transition states) along the bottom of the trough.23,24 Although
the linear plus quadratic JT problem encompasses a large
spectrum of possibilities28 [ranging from the pure linear to
pure Renner-Teller22–24 (RT) case], systems in which small
linear and large quadratic coupling terms succeed are in
general a much more entangled subject. Indeed, as pointed
out by Zwanziger and Grant,28 in such systems, referred
to as small linear parameter (SLP) JT molecules,21,28–30 the
locus of points of CI is quite peculiar. Thus, in addition to
the symmetry-required D3h crossing seam, there are three
symmetry-equivalent C2v seams in close proximity to the
central one.27,28,30,31 In general, ring systems with principal
electron configurations e2 and e3 tend to produce SLP JT
molecules16,27 with31 Si3(11E ′) and27,32 N+3(11E ′′) providing
well established prototypes.

0021-9606/2016/144(6)/064309/16/$30.00 144, 064309-1 © 2016 AIP Publishing LLC
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In addition to the JT effect, the vibronic mixing of two
(or several) nearly degenerate electronic states under nuclear
displacements, the well-known pseudo-JT (PJT) effect,25 is
expected to play a crucial role in the structural instability of
high-symmetry configurations.22–25 Of particular interest in
X3-type systems are cases where relatively close-in-energy E
and A states emerge, as is the case in C3(11E ′/11A′1)10 and
Si3(11E ′/11A′1).31 Overall, such combined JT plus PJT effects
introduce drastic changes in the structure and properties
of adiabatic PESs near equilateral triangular geometries
as reported for the alkali metal trimers Li3(22E ′)33 and
Na3(22E ′).34–37

One of the most fundamental topological phenomenons
directly related to the JT effect has been hinted at by Herzberg
and Longuet-Higgins38 and Longuet-Higgins.39 These authors,
with the aid of a linear E ⊗ e JT Hamiltonian, have shown
that real-valued electronic wave functions change sign when
adiabatically transported around a closed circuit (in nuclear
configuration space) enclosing the intersection point.38,39

Such a geometric (also known as topological or Berry’s40)
phase (GP) effect38–41 naturally emerges whenever the Born-
Oppenheimer (BO) approximation12 which separates the fast
moving electrons from the slow nuclei degrees of freedom
is employed in the study of the coupled electron-vibrational
(vibronic) system.26,28 For general JT problems, such a sign
flip of the electronic adiabatic wave functions occurs only
when an odd number of CIs is encircled and hence, the net GP
effect may be readily suppressed by the existence of marginal
crossing seams in the vicinity of the central one.23,24,28

The present work is primarily concerned with C3, an
astrophysically important radical which has been detected
in stellar atmospheres, interstellar molecular clouds, and
cometary tails.42,43 Being the most abundant X3-type carbon
molecule in the interstellar medium, the title system plays a
major role in the formation of more involved carbon clusters
and carbon-chain molecules;44 the reader is addressed to
Refs. 10, 42, and 43 for a comprehensive review and updated
bibliography regarding the target system. Recently, we have
reported10 the first global ab initio-based PES for the ground
state of the C3(11A′) radical using the double many-body
expansion (DMBE) method.11 In this study, we outlined
the existence of three symmetry-equivalent C2v crossing
seams in quite close proximity to the symmetry-required
one, an attribute which had been previously overlooked
for the title species. Such an interesting topographical
feature (4 CIs) has been ascribed to combined JT plus
PJT vibronic effects involving the first three 1A′ states of
C3, with the proper cusped behavior warranted by built-in
construction.45

Although a huge body of information regarding JT and
PJT effects for systems with equilateral triangular geometries
is available in the literature,24,25 studies involving systems
in which such combined problems clearly succeed, as it
happens in the one here reported, and SLP JT molecules are
much less advanced.10,27,31–37 The main goal of this work
is therefore to provide a comprehensive analysis of the JT
plus PJT vibronic effects in C3 where they have profound
topological implications both for ground and excited states.
Despite the present discussion being mainly addressed to C3,

the results here reported should be applicable to a whole class
of molecules experiencing similar features.

The paper is organized as follows. Section II summarizes
the ab initio calculations. The molecular orbital picture and
the nature of the low-lying excited states are examined in
Section III. Section IV gathers the main topological aspects
induced by such combined vibronic effects, while the proper
(E ′ + A′1) ⊗ e′ problem is discussed and analyzed in Section V.
The topological-phase implications are then discussed in
Section VI. Some conclusions are gathered in Section VII.

II. COMPUTATIONAL DETAILS

All electronic structure calculations have been performed
at the multireference configuration interaction46 (MRCI) level
of theory using the complete active space self-consistent field46

(CASSCF) wave functions as reference. The triple-ζ augmented
correlation consistent basis set of Dunning47,48 (aug-cc-pVTZ
or AVTZ) has been employed, with the calculations performed
using the MOLPRO49 package. Due to the strong vibronic
interactions between the ground and first two excited singlet
states near equilateral triangular geometries10 [1E ′(11A1,11B2)
and 1A′1(21A1) states in D3h(C2v) symmetry], a coherent picture
of such a region is only attainable by including all three
relevant A′ states of Cs symmetry in state-averaged CASSCF
calculations, and hence in the reference state for the internally
contracted MRCI wave functions.

For C3, a total of 15 molecular orbitals are of
interest. The three lowest arise from carbon 1s orbitals
[1a′1(a1) + 1e′(a1,b2)] and have been treated as inactive
throughout all calculations. The remaining 12 orbitals
[2a′1(a1) + a′2(b2) + 3e′(a1,b2) + a′′2 (b1) + e′′(a2,b1)] resulting
from 2s and 2p atomic orbitals have all been included
in the CASSCF active space (full valence CASSCF or
FVCAS46), yielding a reference wave function which involves
12 correlated electrons in 12 active orbitals.

In order to characterize the major topological features
of the relevant PESs near D3h equilateral triangular
conformations, we have performed ab initio calculations
along the standard (symmetry-adapted) JT coordinates
[Q = (Q1,Q2,Q3)] which are defined in terms of the
internuclear distances [R = (R1,R2,R3)] by1,11
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Here, Q1 is associated with the totally symmetric repre-
sentation a′1(a1) or breathing mode, while the pair (Q2,Q3)
constitutes the e′(b2,a1) JT active degenerate vibration
associated with the asymmetric stretch and bending normal
modes, respectively (see Figure 1). Thus, nuclear config-
urations with Qs = (Q1,0,0) define the symmetry-required
(D3h) intersection line along which the degeneracy of the E ′

electronic term is preserved.26 In turn, the two-dimensional
coordinate space defined byQb(Q1) = (Q2,Q3) [i.e., for a fixed
value of Q1] forms the so-called branching14 or g-h plane15

in which the degeneracy is lifted due to the coupling between
electronic and nuclear motions (vibronic effects).21–25
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FIG. 1. Displacements associated with the Q coordinates. Q1 is the D3h
preserving breathing mode, Q2 is the asymmetric stretch mode which distorts
the equilateral triangle into aCs configuration and Q3 takes the D3h structure
into a C2v conformation.

III. MOLECULAR ORBITAL PICTURE
AND EXCITED STATES

As noted elsewhere,10,50,51 both the ground [11A′(11A1)]
and first excited [21A′(11B2)] singlet states of the C3 radical
correlate with the twofold E ′ irrep at D3h equilateral trian-
gular geometries, thus yielding the e′2 valence configuration.
Figure 2 shows a molecular orbital (MO) diagram (valence
orbitals only) for the 1A1 (in C2v) electronic state component of
the 1E ′ term. Note that MOs are labeled according to the D3h
irreps, while the corresponding correlations with the C2v point
group are given in parentheses. Also shown are the natural or-
bitals obtained from a state-averaged FVCAS/AVTZ reference
wave function. Accordingly, 9 MOs arise from 2s, 2px, and 2py

FIG. 2. Molecular orbital diagram and valence electronic configuration for
the 1A1 (in C2v) component of the 1E′ term (in D3h). Molecular orbitals are
labeled according to D3h irreps with the corresponding correlations with the
C2v point group given in parentheses. Up and down arrows denote α and
β spin states, respectively. Natural orbitals obtained from a state-averaged
FVCAS/AVTZ wave function are also depicted.

atomic orbitals (AOs), i.e., 3 σ-bonding, 3 σ∗-antibonding,
and 3 lone-pair (lp) orbitals which are depicted in Figure 2.
The remaining three 2pz AOs originate a π-bonding and two
π∗-antibonding orbitals. A remarkable aspect of such a system,
as already emphasized for the cyclic N+3 molecule,27,32 is that
both highest occupied molecular orbital (HOMO–lp MO) and
lowest unoccupied molecular orbital (LUMO–π∗ MO) are
degenerate and transform as E ′(A1,B2) and E ′′(A2,B1) irreps
of D3h(C2v) point group, respectively. Thus, along C2v(Cs)
distortions [i.e., for Q3(Q2) > 0 or Q3(Q2) < 0], both split into
a1(a′)/b2(a′) and a2(a′′)/b1(a′′) orbital pairs, respectively.

At D3h configurations, four electronic states arise from
HOMO → HOMO excitations (see Figure 2), i.e.,

e′ ⊗ e′
D3h−−−→ A′1 + A′2 + (E ′)

C2v−−−→ A1 + B2 + (A1 + B2). (2)

Note that all states here considered correlate with the A′ irrep in
Cs symmetry. It should be pointed out that higher excited states

can be obtained from HOMO–1 → HOMO [a′1 ⊗ e′
D3h−−−→

(E ′) C2v−−−→ (A1 + B2)], HOMO → LUMO [e′ ⊗ e′′
D3h−−−→ A′′1

+ A′′2 + (E ′′)
C2v−−−→ A2 + B1 + (A2 + B1)] and HOMO–2 →

HOMO [a′′2 ⊗ e′
D3h−−−→ (E ′′) C2v−−−→ (A2 + B1)] excitations, each

of which being either singlet or triplet. Such a manifold,
however, will not be considered in the present work (for a
comprehensive picture on the singlet manifold, see Figure 1
of Ref. 10).

Figure 3 schematically shows the relevant Slater
determinants arising from HOMO → HOMO excitations
in a e′2 valence configuration. The leading (spin-spatial
symmetry adapted) configuration state functions (CSFs) for
each electronic term of Eq. (2) are thus given by

|Ψ1
3A′2(13B2)⟩ = |α⟩, (3)

|Ψ2
1E ′(11A1)⟩ = 1

√
A2 +B2

�
A |β⟩ −B |γ⟩�, (4)

|Ψ3
1E ′(11B2)⟩ = 1

C2+D2

�
C |δ⟩ − D |ϵ⟩�, (5)

|Ψ4
1A′1(21A1)⟩ = 1

√
E2 +F2

�
E |β⟩ +F |γ⟩�, (6)

where A, B, C, D, E, and F are coefficients that determine
the relative contributions of each determinant in the associated
CSF. At D3h geometries, their ratios are approximately equal
to one, with |A| = |B| ≈ | C| = |D| ≈ |E| = |F| ≈ 1. However,
as shown later in Section IV B, along non-totally symmetric
distortions, the ratio of each determinant changes as much
as different CSFs belonging to the same spin and spatial
symmetry can mix.

As seen from Eqs. (3)-(6), along with 1E ′(11A1,11B2)
and 1A′1(21A1), a spin-triplet 3A′2(13B2) term, lower in energy,
is observed.50,52,53 Such a state depicts a minimum at an
equilateral triangular geometry,50,52,53 which is non-JT in
nature; see Figure 4. In turn, the PJT effect between the
excited 1A′1(21A1) electronic state and the 1E ′(11A1,11B2)
one reinforces the stabilization (by strengthening the PES
curvature) and generates a minimum at this geometry. The
computed equilibrium geometries (in valence coordinates1)
and harmonic vibrational frequencies for such structures as
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FIG. 3. Slater determinants arising from HOMO→ HOMO excitations in a e′2 valence configuration. Molecular orbitals are labeled according to D3h irreps
with the corresponding correlations with C2v point group given in parentheses. Up and down arrows denote α and β spin states, respectively.

obtained from FVCAS/AVTZ calculations are given in Table I,
together with results from the literature. Note that the relative
energies are given with respect to the absolute minimum on
the adiabatic ground state PES [lin-C3(1Σ+g/11A1)] and have
been obtained from single-point MRCI/AVXZ (X = T,Q)
calculations as well as complete basis set (CBS) extrapolated
energies; the reader is addressed to Refs. 10, 54, and
55 for more details. Vertical excitation energies from the
cyc-C3(3A′2/1

3B2) structure [i.e., for equilateral triangular
conformations with Qs = (4.554 a0,0,0)] are in Table II.

Accordingly, the most stable electronic state corresponds
to the spin-triplet 3A′2(13B2) with a stabilization energy
relative to the 1E ′(11A1,11B2) term of 70.2, 69.4, and
66.7 kJ mol−1 at MRCI/AVTZ, MRCI/AVQZ and CBS levels

FIG. 4. Optimized FVCAS/AVTZ bending potential for the four electronic
states of C3 radical arising from HOMO→ HOMO excitations in the e′2

valence configuration [see Eqs. (2)-(6)]. The key shows the irreducible repre-
sentation, in C2v symmetry, for each electronic state. Also shown in panel are
the associated correlations, for linear geometries, with D∞h symmetry as well
as the corresponding dissociation limits. Conical intersections are indicated
by the symbol ×, and the bending angle by ∠CCC.

of theory, respectively. However, as emphasized by Garcia-
Fernandez et al.,31 the structural instability and distortion of
the high-symmetry D3h configuration in the 1E ′(11A1,11B2)
term, associated with the JT plus PJT vibronic coupling
between the latter and 1A′1(21A1) state, strongly stabilizes
the 11A1 component (153.6 kJ mol−1 as predicted from
the CBS extrapolation scheme) and generates a distorted
(linear) global minimum on the adiabatic ground state PES.10

Indeed, as shown in Table I, the (low-spin distorted) lin-
C3(1Σ+g/11A1) structure is 84.2 kJ mol−1 more stable than
the (high-spin undistorted) cyc-C3(3A′2/1

3B2) conformation
at CBS//FVCAS/AVTZ level. The corresponding topological
attributes induced by such combined vibronic effects are of
primary concern in the present work and will be addressed in
Secs. IV, V, and VI.

IV. TOPOLOGICAL ASPECTS INDUCED BY JT PLUS
PJT VIBRONIC EFFECTS

A. The symmetry-required D3h seam

The topology of the PESs along the breathing normal
coordinate Q1 [Qs = (Q1,0,0)] is illustrated in Figure 5
for the 1E ′(11A1,11B2) and 1A′1(21A1) electronic states of
the C3 radical. Note that the ab initio calculations have
been performed at the FVCAS/AVTZ [Figure 5(a)] and
MRCI/AVTZ [Figure 5(b)] levels of theory and covered a
region defined by 3.65 a0 6 Q1/Q

cusp
1 6 5.55 a0 in steps of

0.1 a0 (or less when convenient — see insets of Figure 5),
where Qcusp

1 [Qcusp
s = (Qcusp

1 ,0,0)] corresponds to the minimum
of equilateral triangular conformations (this is not a stationary
point on the 1E ′(11A1,11B2) PES but is for Q1 distortions).

As Figure 5 shows, the 1E ′ and 1A′1 states are quite close in
energy over the range of equilateral triangular geometries here
considered, notably for Q1 > 4.750 a0. Suffice it to say that
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TABLE I. Properties and energetics of stationary points on the ground and excited state PESs of C3 radical.
Structures are labeled according to their respective point group irreps with the corresponding correlations
with C2v symmetry given also in parentheses. Energies are given with respect to the D∞h absolute minimum
[lin-C3(1Σ+g/11A1)] of the ground state adiabatic PES of C3.

Method R/a0 ∠CCC/deg ∆E/kJ mol−1 w1/cm−1 w2/cm−1 w3/cm−1

lin-C3(1Σ+g/11A1)

FVCAS/AVTZa 2.474 180.0 0b 1171.0 56.1 2060.9
MRCI/AVTZa 0
MRCI/AVQZa 0
CBSa 0
DMBEc 2.444 180.0 1204.2 63.5 2126.5
MP4/6-31G∗d 2.415 180.0 0 1367.0 154.0 2311.0
CISD/6-311+G∗e 2.477 180.0 0
CCSD(T)/AVTZf 2.440 180.0 0
Expt.g 2.451 180.0 1224.20 63.42 2040.02

cyc-C3(3A′2/13B2)

FVCAS/AVTZa 2.629 60.0 114.6 1508.3 1064.2 1064.2
MRCI/AVTZa 91.3
MRCI/AVQZa 89.2
CBSa 84.2
MP4/6-31G∗d 2.544 60.0 102.3 1774.0 1091.0 1091.0
CISD/6-311+G∗e 2.632 60.0 96.5
CCSD(T)/AVTZf 2.589 60.0 85.4

cyc-C3(1A′1/21A1)
FVCAS/AVTZa 2.678 60.0 213.0 1456.3 5069.5 5069.5
MRCI/AVTZa 191.2
MRCI/AVQZa 189.7
CBSa 185.6

aThis work.
bRelative to the FVCAS/AVTZ optimized minimum of lin-C3(1Σ+g/11A1).
cReference 10.
dReference 50. Geometries optimized at the HF/6-31G∗ level of theory.
eReference 52. Geometries optimized at the CASSCF/6-31G∗ level of theory. Harmonic vibrational frequencies not reported.
f Reference 53. Geometries optimized at the B3LYP/6-311G∗ level of theory. Harmonic vibrational frequencies not reported.
gReferences 56 and 57. Separation between origin level and lowest vn = 1 level.

the components of the E ′ term are found to remain degenerate
in the ab initio calculations to better than 1.0 × 10−7 Eh. A
region that deserves close attention in Figure 5(a) refers
to near Qs = (5.005 a0,0,0) [highlighted by a filled circle in

TABLE II. Vertical excitation energies (∆E) for the three lowest states of
the C3 radical at equilateral triangular conformations. The electronic states
are labeled according to D3h irreps with the corresponding correlations with
C2v point group given in parentheses. Energies are given with respect to the
D3h minimum [cyc-C3] of 3A′2(13B2) electronic state.

State Method ∆E/kJ mol−1

3A′2(13B2)
FVCAS/AVTZa 0b

MRCI/AVTZa 0
MRCI/AVQZa 0
CBSa 0

1E′(11A1,11B2)
FVCAS/AVTZa 81.7
MRCI/AVTZa 70.2
MRCI/AVQZa 69.4
CBSa 66.7

1A′1(21A1)
FVCAS/AVTZa 101.7
MRCI/AVTZa 100.7
MRCI/AVQZa 100.1
CBSa 100.3

aThis work.
bRelative to the FVCAS/AVTZ optimized minimum of 3A′2(13B2) state at the D3h
equilateral triangular conformation with Qs= (4.554 a0,0,0).

Figure 5(a)]. At this point, the 1E ′ and 1A′1 electronic states are
remarkably close in energy, with the former being predicted
from our ab initio calculations to be only 1.1 × 10−5 Eh (at
FVCAS/AVTZ level) more stable than the latter. Such a feature
[near (triple) degeneracy] has been reported in the literature
for alkali metal trimers Li333 and Na3

34,35 as well as the N+3
cation.27,32 Note that, for Q1 > 5.005 a0, the FVCAS/AVTZ
calculations predict an inversion of the 1E ′ and 1A′1 states [see
Figure 5(a)], i.e., the twofold degenerate E ′ term appears to
have as its components the 21A1 and 11B2 electronic states. The
aforementioned picture changes, however, by the inclusion of
dynamical correlation in MRCI/AVTZ calculations. Thence,
as seen in Figure 5(b), the degenerate 1E ′(11A1,11B2) term
and its components remain unchanged over the range of
geometries here considered. Still, as the inset of Figure 5(b)
shows, the energy difference between the 1E ′ and 1A′1
states is ≈3.0 mEh (at MRCI/AVTZ level) over the range
of 5.400 a0 6 Q1 6 6.200 a0.

B. The g-h plane and the symmetry-equivalent
C2v seams

Figures 6 and 7 show cuts of the relevant PESs along the
asymmetric stretch [Qb(Q1) = (Q2,0)] and bending [Qb(Q1)
= (0,Q3)] normal modes, respectively, for a fixed value of
symmetric stretching coordinate Q1 = 4.576 a0 (note that fixed
Q1 does not imply fixed bond lengths; see Figure 1). It
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FIG. 5. PES cuts along the breathing normal coordinate Q1
[Qs= (Q1,0,0)] for the 1E′(11A1,11B2) and 1A′1(21A1) electronic states
of C3 radical at (a) FVCAS/AVTZ and (b) MRCI/AVTZ levels of the-
ory over the range of 3.750 a0 6Q1/Q

cusp
1 6 5.550 a0. Filled circles high-

light the point [Qs= (5.005 a0,0,0)] in which a near (triple) degener-
acy is predicted from FVCAS/AVTZ calculations. Energies relative to:
E1E′(Qcusp

s )=−113.510 481 6 Eh at Q
cusp
1 = 4.576 a0 and E1E′(Qcusp

s )
=−113.760 589 9 Eh at Q

cusp
1 = 4.548 a0 for FVCAS/AVTZ and MRCI/

AVTZ levels, respectively.

must be emphasized that for equilateral triangular geometries
[Qb(Q1) = (0,0), ∀Q1], the 11A′, 21A′ and 31A′ electronic
states correlate with 1E ′(11A1,11B2) and 1A′1(21A1) states
in D3h(C2v) symmetry, respectively. Note that the ab ini-
tio calculations covered a region defined by −0.020 a0 6
Qn(n = 2,3) 6 0.020 a0 in steps of at most 0.0025 a0.

Figures 6 and 7 illustrate the structural instability (with
respect to JT active displacements) of the high-symmetry D3h
geometry in the 1E ′ term. Thence, along Cs(C2v) distortions
[i.e., for Q2(Q3) > 0 or Q2(Q3) < 0], the adiabatic PES splits
into two 1A′ branches.21–25 In fact, a close inspection of the
cross-sectional cuts here shown for the three lowest singlet
states of the C3 radical gives insights into the real nature of
the JT problem at hand. Obviously, instead of a typical linear
E ′ ⊗ e′ JT problem21–25 in which only linear JT vibronic
coupling constants (FE′) are taken into account, the non-
negligible contribution of the quadratic coupling constants
(GE′) is key for the title system (linear plus quadratic JT
problem27,28,32–35). Additionally, an interaction23,25 occurs due
to strong vibronic mixing between the close lying 1E ′ and
1A′1 states, which are linearly coupled by the non-vanishing
constant HE′/A′1

;31 see Figures 5-7 and Table II. Thence,
such a combined JT plus PJT vibronic problem introduces

FIG. 6. PES cuts along the asymmetric stretch normal coordinate Q2
[Qb(Q1)= (Q2,0) with Q1 fixed at 4.576 a0] for the three lowest 1A′ elec-
tronic states of C3 radical at (a) FVCAS/AVTZ and (b) MRCI/AVTZ levels
of theory over the range of −0.020 a0 6Q2 6 0.020 a0. Energies relative to
E1E′(Q1,0,0)=−113.510 481 6 Eh and E1E′(Q1,0,0)=−113.760 453 6 Eh
at FVCAS/AVTZ and MRCI/AVTZ levels, respectively.

profound changes on the topology of the PESs near equilateral
triangular geometries.10 Indeed, as shown in Figure 7, besides
the D3h symmetry-required crossing seam at ρ(Q1) = 0 ∀Q1,
where ρ(Q1) =


Q2

2 +Q2
3 (Refs. 11 and 58) is the radial

polar coordinate in the two dimensional g-h plane,26 there
are three symmetry-equivalent C2v seams in close proximity
to the reference seam.16,28 Such additional CIs (highlighted
by filled circles in Figure 7 for Q1 = 4.576 a0) are located
at ρ0(Q1) = 0.007 a0 and ρ0(Q1) = 0.011 a0 at FVCAS/AVTZ
and MRCI/AVTZ levels of theory, respectively, with ρ0(Q1)
defining the radius on which the C2v disjoint seams16 are
located with respect to the central one. Although not visible
in Figure 7, two other symmetry related C2v seams exist
for similar cross sections rotated by ±2π/3. Thence, on
a circle of radius ρ0 in the two dimensional g-h plane,
the 4 CIs are defined by Qb(Q1) = (0,0), and Qb(Q1)
= (0, ρ0), (−

√
3ρ0/2,−ρ0/2), (

√
3ρ0/2,−ρ0/2). Suffice it to

say that the three additional C2v CIs between the 11A′ and
21A′ states are found degenerate to within 1.0 × 10−7 Eh
in the ab initio calculations here reported. Note further
that, over the range of −0.020 a0 6 Q3 6 ρ0(Q1), the 11A′

and 21A′ electronic states correlate with 11B2(11A1) and
11A1(11B2) states, respectively, for Q3 > 0 (< 0); see Figure 7.
Nevertheless, over the entire interval of Q3, the C2v character
of the upper and lower states remains unchanged on passing
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FIG. 7. PES cuts along the bending normal coordinate Q3 [Qb(Q1)= (0,Q3)
with Q1 fixed at 4.576 a0] for the three lowest 1A′ electronic states of C3
radical at (a) FVCAS/AVTZ and (b) MRCI/AVTZ levels of theory over
the range of −0.020 a0 6Q3 6 0.020 a0. Solid symbols correspond to points
calculated in the 11A1, 11B2, and 21A1 states of C2v symmetry, while the
open symbols connected by smooth splines correspond to calculations with
A′ symmetry in Cs point group. Filled circles highlight the additional C2v
CIs obtained from FVCAS/AVTZ and MRCI/AVTZ calculations and located
at ρ0(Q1)= 0.007 a0 and ρ0(Q1)= 0.011 a0, respectively, with respect to the
symmetry-required seam. Reference energies as in Figure 6.

from both crossing seams. Figure 8 schematically illustrates
the evolution of the dominant CSFs shown in Eqs. (4)-(6)
for the 11A1, 11B2, and 21A1 electronic states (in C2v) along
the bending normal coordinate Q3 [Qb(Q1) = (0,Q3)]. As
noted in Section III, at D3h geometries, the ratio between the
Slater determinants (see Figure 3) in the associated leading
CSF is approximately equal to one, with |A| = |B| ≈ | C|
= |D| ≈ |E| = |F| ≈ 1. Displacements along the bending
normal coordinate changes the ratio between the |β⟩/|γ⟩
determinants in the |Ψ2

1E ′(11A1)⟩ and |Ψ4
1A′1(21A1)⟩ CSFs.

Thence, for Q3 > 0, A > B and E < F, leading ultimately
to the collapsed |Ψ2 11A1⟩ → |β⟩ and |Ψ4 21A1⟩ → |γ⟩
wave functions (see Figure 8). Conversely, for Q3 < 0,
A < B and E > F, and the associated CSFs collapse
into |Ψ2 11A1⟩ → |γ⟩ and |Ψ4 21A1⟩ → |β⟩. Note that for
the |Ψ3

1E ′(11B2)⟩ CSF (which correlates to |Ψ3 11B2⟩ for
Q3 , 0), the coefficients C and D remain approximately
constant under small displacements from the reference
D3h geometry as schematically shown in Figure 8. It is
worth noting that the changes in the |β⟩/|γ⟩ ratios [and
therefore, in the coefficients of Eqs. (4) and (6)] arise due

FIG. 8. Evolution of the dominant CSFs shown in Eqs. (4)-(6) for the
11A1, 11B2, and 21A1 electronic states (in C2v) along the bending normal
coordinate Q3. The Slater determinants |β⟩, |γ⟩, |δ⟩ and |ϵ⟩ are schematically
shown in Figure 3. N = 1/

√
X2+Y 2 is the normalization factor for each CSF,

where X = {A, C,E} and Y = {B,D,F} are the associated coefficients.

to the mixing of |Ψ2
1E ′(11A1)⟩ and |Ψ4

1A′1(21A1)⟩ CSFs
(which have the same spin and irrep at C2v geometries)
in the 11A1 and 21A1 electronic states as the molecule
bends, i.e., |Ψ2 11A1⟩ = a|Ψ2

1E ′(11A1)⟩ + b|Ψ4
1A′1(21A1)⟩

and |Ψ4 21A1⟩ = c|Ψ2
1E ′(11A1)⟩ + d |Ψ4

1A′1(21A1)⟩. There-
fore, the CSFs shown in Eqs. (4)-(6) may be considered
to represent an approximate diabatic (perhaps more precisely,
crude adiabatic) basis through which the three-state JT plus
PJT problem can be conveniently formulated.32 Note further
in passing that for Cs geometries [e.g., for Qb(Q1) = (Q2,0)
nuclear configurations, see Figure 6], the adiabatic wave
functions for the 11A′, 21A′, and 31A′ electronic states are
given by a linear combination of all the |Ψ2

1E ′(11A1)⟩,
|Ψ3

1E ′(11B2)⟩, and |Ψ4
1A′1(21A1)⟩ CSFs, since the latter

correlate with the same spin and irrep in the Cs point group.
Figures 9 and 10 show cross sections of the 11A1, 11B2,

and 21A1 PESs (in C2v) along Q3 [Qb(Q1) = (0,Q3)] for
different values of symmetric stretching coordinate Q1 as
obtained from FVCAS/AVTZ and MRCI/AVTZ calculations,
respectively. The energies are given with respect to the
associated value at equilateral triangular geometries E1E′(Qs)
of the 1E ′ term. Note that such graphical representations
correspond to orthogonal cuts (in the Q3 direction) of the
seam space12 (i.e., the continuously connected points of
degeneracy shown in Figure 5) for distinct Q1 values. As
clearly seen from Figures 9 and 10 (see also Figure 11), as
the perimeter P =

√
3Q1 of the molecule increases, the C2v

disjoint seam (highlighted by filled circles) approaches the
symmetry-required D3h seam almost linearly and ultimately
coalesces [ρ0(Q1) = 0] with the central one at Q1 = 5.005 a0
[Figures 9(c) and 10(c)]. Such a point at the junction
of the seams is referred to as the intersection node59 or
confluence17,60 and has been reported in the literature for Li3,33

Na3,35 and N+3
27 as well as for less symmetrical seams (C2v/Cs

confluences) in O3,61 AlH2,62 CH2,63 and BH2.60 A close view
of such a confluence of the D3h and C2v seams is illustrated
in Figure 11 which depicts the dependence of ρ0(Q1) as a

The JT plus PJT vibronic problem in the C3 radical 171



064309-8 C. M. R. Rocha and A. J. C. Varandas J. Chem. Phys. 144, 064309 (2016)

FIG. 9. Cross-sectional cuts of the 11A1, 11B2, and 21A1 PESs (in C2v) along Q3 [Qb(Q1)= (0,Q3)] for different values of symmetric stretching coordinate
Q1 as obtained from FVCAS/AVTZ calculations. (a) Q1= 4.000 a0, (b) Q1= 4.576 a0, (c) Q1= 5.005 a0, and (d) Q1= 5.500 a0. Filled circles highlight the
dependence of ρ0(Q1) as a function of Q1.

FIG. 10. Cross-sectional cuts of the 11A1, 11B2, and 21A1 PESs (in C2v) along Q3 [Qb(Q1)= (0,Q3)] for different values of symmetric stretching coordinate
Q1 as obtained from MRCI/AVTZ calculations. (a) Q1= 4.000 a0, (b) Q1= 4.576 a0, (c) Q1= 5.005 a0, and (d) Q1= 5.500 a0. Filled circles highlight the
dependence of ρ0(Q1) as a function of Q1.
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FIG. 11. Dependence of ρ0(Q1) as a function of the symmetric stretching
coordinate Q1 over the range of 4.000 a0 6Q1 6 5.005 a0 as obtained from
FVCAS/AVTZ and MRCI/AVTZ calculations. The inset depicts the energy
of the associated disjoint seam point with respect to the minimum of the
C2v crossing seam. The figure illustrates the three symmetry-equivalent C2v
crossing seams located at φ = π/2, 7π/6, and 11π/6 on a circle of radius
ρ0(Q1) in the two dimensional g -h plane.

function of the symmetric stretching coordinate Q1 over the
range of 4.000 a0 6 Q1 6 5.005 a0. It should be recalled that
although only one seam is emphasized in Figures 9-11 [i.e.,
Qb(Q1) = (0, ρ0)], the three symmetry-equivalent C2v disjoint
seams are located at φ = π/2, 7π/6, and 11π/6 on a circle
of radius ρ0(Q1), where φ is the polar (or pseudo-rotation)
angle11,26,58 (see Figure 11).

In fact, as Figure 11 shows, the radial distances ρ0(Q1)
predicted from FVCAS/AVTZ calculations are ≈0.003-
0.004 a0 shorter than those obtained at the MRCI/AVTZ level
of theory. Nevertheless, at regions of configuration space near
the intersection node [i.e., ρ0(Q1) → 0 for Q1 . 5.005 a0],
ρ0(Q1) is a rapidly decreasing function of Q1 with both
curves shown in Figure 11 converging toward a null value. As
emphasized by Zwanziger and Grant28 with the aid of a linear
plus quadratic JT E ′ ⊗ e′ Hamiltonian, ρ0(Q1) ≈ FE′/GE′

(here, the approximate sign follows due to the non-negligible
PJT effect between the close-in-energy 1E ′ and 1A′1 states).
Thence, as noted elsewhere,27,31 configuration interactions
including excited states with large linear JT parameters may
increase the value of FE′ and therefore the associated radius
ρ0(Q1) on which the three equivalent C2v degeneracies occur.
Interestingly enough from the seminal work of Zwanziger
and Grant,28 there are important limiting cases which follow
naturally from the above treatment of the quadratic JT problem
(see Refs. 21–24, 27, 28, and 32–35 for a detailed description).
The first is the well-studied linear E ′ ⊗ e′ JT system for which
FE′ , 0 and GE′ = 0. In this case the PESs in the vicinity
of the high-symmetry configuration Q0 assume the simple
form E± = 1

2 KE′ρ
2 ± FE′ρ (KE′ is the so-called primary force

constant24) with the three C2v crossing seams pushed off
to ∞ [ρ0(Q1) → ∞]. Conversely, for FE′ = 0 and GE′ , 0
(i.e., the pure Renner-Teller case), the PESs take the form
E± = 1

2 KE′ρ
2(1 ± GE′), and the three additional degeneracies

are located at ρ0(Q1) = 0. On the other hand and more
relevant to the current work are the cases in which GE′ > FE′,
the SLP JT molecules.21,28–30 Thus, in such systems, the

three symmetry-equivalent C2v disjoint seams lie close to
the central one with the associated distance depending on
the ratio between the linear and quadratic JT parameters
for a given Q1, i.e., ρ0(Q1) = FE′(Q1)/GE′(Q1). As noted
elsewhere,27,60 at the point of confluence of the D3h and C2v
crossing seams (here at Q1 ≈ 5.005 a0), the linear JT parameter
FE′ dies off and the conical nature of the intersection is lost.
Therefore, as in the case where FE′ = 0 and GE′ , 0, the
intersection topology appears to behave Renner-Teller-like
rather than conical [see Figure 10(c)]. Obviously, for the title
system, the non-negligible PJT effect between the 1E ′ and 1A′1
states [note that in Figure 10(c) the energy gap (∆) between
the latter is only 4.3 mEh] alters significantly the curvature
K = KE′ + Kv of the PESs nearQ0, where Kv = −2|HE′/A′1

|2/∆
is an additional contribution to the primary force constant.23–25

Figure 9(c) illustrates the cut Qb(Q1) = (0,Q3) of the
seam space through the point (Q1 = 5.005 a0) where the
near triple degeneracy between the 1E ′(11A1,11B2) and
1A′1(21A1) electronic states is predicted at the FVCAS/AVTZ
level; see Figure 5(a). As emphasized in Section IV A,
for Q1 > 5.005 a0 [see Figure 9(d)], the non-degenerate 1A′1
state becomes the ground state singlet, with the degenerate
1E ′ term taking the 21A1 and 11B2 electronic states as
its components. Nevertheless, as Figure 9(d) shows, the
additional C2v crossing seam between the 21A1 and 11B2
states still occurs with ρ0(Q1) = 0.009 a0 for Q1 = 5.500 a0.
However, the aforementioned picture changes somewhat
by inclusion of the dynamical correlation in MRCI/AVTZ
calculations. Indeed, as Figure 10(d) shows, for Q1 > 5.005 a0,
the degenerate 1E ′ term remains the ground state singlet of C3
at geometries with D3h symmetry. Instead, as seen from
Figure 10(d), the three symmetry-equivalent C2v disjoint
seams (see illustration in Figure 11) are rotated by ±π
(i.e., φ′ = φ ± π) in the two dimensional g-h plane, and
hence are given by Qb(Q1) = (0,−ρ0), (√3ρ0/2, ρ0/2) and
(−√3ρ0/2, ρ0/2). Such an interesting feature may be attributed
to the sign change of the ratio between the linear and quadratic
JT parameters FE′/GE′ on passing through the confluence
point. As addressed later in Section VI, the combined JT plus
PJT vibronic effects between the first three 1A′ states of C3
radical (4 CIs) jointly with the occurrence of an intersection
node have a dramatic impact on the adiabatic evolution of the
wave functions along a closed circuit C enclosing such points,
thence on the so-called GP effect.38–41

V. THE (E ′ + A′1) ⊗ e′ PROBLEM IN C3

The electronic Hamiltonian (He) of the system can
be expanded as a Taylor series in terms of small
nuclear displacements from the high-symmetry reference
configuration Q0 as21–25

He(r,Q) = H (0)
e (r,0) +


Γγ

(
∂V
∂QΓγ

)
0
QΓγ

+
1
2


Γγ


Γ1Γ2

(
∂2V

∂QΓ1∂QΓ2

)
0


Γγ

�
QΓ1 ⊗ QΓ2

	
Γγ
+ · · ·

= H (0)
e (r,0) +W (r,Q). (7)
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where the zeroth-order Hamiltonian H (0)
e (r,0) = H(r)

+ V (r,0) includes the purely electronic part [H(r)] and the
electron-nuclear plus nuclear-nuclear interactions [V (r,0)]
with the nuclei fixed at origin; r is the set of electronic
coordinates, and QΓγ are symmetrized nuclear displacements
(see Figure 1) which transform according to the line γ
of the D3h irrep Γ. In turn, W (r,Q) is the vibronic
coupling (perturbation) operator whose matrix elements
(vibronic coupling constants) measure the effect of changes
in electronic structure upon nuclear dynamics.21–25 In the
current analysis, the expansion in Eq. (7) has been truncated
at the quadratic terms (second-order perturbation treatment).
The starting point consists of the solution of the electronic
Schödinger equation in the field of the nuclei fixed at the
origin

H (0)
e (r,0)|ϕk(r,0)⟩ = Ek(0)|ϕk(r,0)⟩, (8)

where
�|ϕk⟩	 (or, in symmetry representations,

�|Γγk⟩	)
defines an orthonormal set of static eigenvectors (with
associated eigenvalues {Ek(0)}) which span the complete
electronic function space with the nuclei clamped at Q0.64

Due to the strong vibronic interactions between the ground
and first two 1A′ excited states near Q0 and given that
such terms are well separated from all other ones, only
the subspace spanned by them needs to be considered in
the formulation of the current JT plus PJT problem. Thus,
we employ the BO states in Eqs. (4)-(6) as electronic ba-
sis:

�|ϕk⟩	 ≡ �|Ψ2
1E ′(11A1)⟩, |Ψ3

1E ′(11B2)⟩, |Ψ4
1A′1(21A1)⟩	.

The appropriate picture of the adiabatic PESs near Q0 will
therefore be obtained by diagonalizing the 3 × 3 potential
matrix He. Since the above orthonormal basis sets are
eigenfunctions of the zeroth-order electronic Hamiltonian
H (0)

e (r,0), the associated matrix is diagonal, with elements
(H(0)

e )kl = Ek(0)δkl. The potential matrix He, however, is
nondiagonal in this basis, except at Q0.

Consider the coefficients of the expansion in Eq. (7),
which are derivatives of the operator of electron-nuclear
interaction V (r,0). As noted above, the associated matrix
elements Wkl define the vibronic coupling constants.23,24 Let
us first examine the linear vibronic constants F(ΓγΓ′γ′)

Γγ
which

are given by21–25

F(ΓγΓ′γ′)
Γγ

=

Γγ

���
(
∂V
∂Q
Γγ

)
0

���Γ
′γ′

= F(ΓΓ′)

Γ
V *
,

Γ Γ
′
Γ

γ γ′ γ
+
-
, (9)

where γ(γ′) and γ are the lines of the D3h irreps Γ(Γ′)
and Γ according to which the electronic wave functions
and symmetrized displacements transform, respectively. Note
that, similarly to Q

Γγ, the derivative
�
∂V/∂Q

Γγ

�
0 possess

the transformation properties of Γγ. According to the
Wigner-Eckart theorem,22,23,65 F(ΓΓ′)

Γ
=


Γ
���
∂V/∂Q

Γ

�
0

��
Γ′
�

is
the reduced matrix element (which does not depend on γ, γ′,
and γ) and the last term of Eq. (9) defines the associated V
coefficient (directly related to the Clebsch-Gordan coupling
coefficient22,23) for the D3h point group.65

Selection rules for F(ΓγΓ′γ′)
Γγ

can be readily determined
from group-theoretic considerations22,23,65 and therefore, are
naturally incorporated by the V coefficient.65 Thence, for

nondegenerate states in which Γγ ≡ Γ, Γ′γ′ ≡ Γ′ and hence
Γγ ≡ Γ, F(ΓΓ′)

Γ
is nonzero if and only if the triple direct

product Γ ⊗ Γ ⊗ Γ′ contains the totally symmetric irrep A1. In
turn, if Γ or Γ′ are nondegenerate (e.g., Γ or Γ′ = A′1), then
F(ΓΓ′γ′)
Γγ

is nonzero only if the doubly degenerate electronic
term and symmetrized displacement transform as the same
line of the E ′ irrep in D3h. Indeed, if Γ = A′1, Γ

′ = Γ = E ′

and γ′ = γ = ϵ (or θ), A′1 ⊗ E ′ ⊗ E ′ ⊃ A′1 and V = 1/
√

2.
In this case, F(ΓΓ′γ′)

Γ′γ′ is referred to as linear PJT vibronic
constants. Finally, if Γ and Γ′ are both doubly degenerate with
Γ ≡ Γ′, F(ΓγΓγ′)

Γγ
is nonzero if Γ ⊗ Γ ⊗ Γ ⊃ A1 (or, in other

words, if the symmetric square [Γ2] contains Γ). Clearly, for
Γ = Γ′ = Γ = E ′, the associated linear JT vibronic constant
vanishes for γ = γ′ = γ = ϵ or any combination of θ, θ, and
ϵ lines, since in these cases V = 0. It should be mentioned
here that, following the rules of group theory,22,23,65 the linear
vibronic constants between states of the same symmetry
(i.e., the diagonal elements of W) are nonzero along the
breathing normal coordinate Q1 ≡ Qa′1

, e.g., F(E′ϵE′ϵ)
a′1

, F
(E′θE′θ)
a′1

,

and F
(A′1A′1)
a′1

. However, since the degeneracy of the E ′ term is
only lifted along the JT active displacements (Q2 ≡ Qe′ϵ and
Q3 ≡ Qe′

θ
), the vibronic perturbations associated with Q1 are

assumed to be unimportant, and hence neglected. Thus, by
means of Eq. (9), the linear JT and PJT vibronic coupling
constants in the electronic basis of Eqs. (4)-(6) are defined
by 

Ψ2
1E ′(11A1)���

(
∂V
∂Q3

)
0

���Ψ2
1E ′(11A1)


= −FE′

Ψ2
1E ′(11A1)���

(
∂V
∂Q2

)
0

���Ψ3
1E ′(11B2)


= FE′

Ψ3
1E ′(11B2)���

(
∂V
∂Q2

)
0

���Ψ2
1E ′(11A1)


= FE′

Ψ3
1E ′(11B2)���

(
∂V
∂Q3

)
0

���Ψ3
1E ′(11B2)


= FE′

(10)

and 
Ψ2

1E ′(11A1)���
(
∂V
∂Q3

)
0

���Ψ4
1A′1(21A1)


= HE′/A′1

Ψ3
1E ′(11B2)���

(
∂V
∂Q2

)
0

���Ψ4
1A′1(21A1)


= HE′/A′1

Ψ4
1A′1(21A1)���

(
∂V
∂Q3

)
0

���Ψ2
1E ′(11A1)


= HE′/A′1

Ψ4
1A′1(21A1)���

(
∂V
∂Q2

)
0

���Ψ3
1E ′(11B2)


= HE′/A′1

, (11)

where FE′ and HE′/A′1
are the associated reduced matrix

elements; see Eq. (9). Note that, in Eqs. (10) and
(11), the following symmetry correlations have been
employed: |Ψ2

1E ′(11A1)⟩ ≡ |E ′θ⟩, |Ψ3
1E ′(11B2)⟩ ≡ |E ′ϵ⟩, and

|Ψ4
1A′1(21A1)⟩ ≡ |A′1⟩.
Let us now turn to the analysis of the quadratic

vibronic constants. As shown in the expansion of Eq. (7),
the quantity

��
∂2V/∂QΓ1∂QΓ2

�
0

	
Γγ

defines an irreducible
product65 (or a tensor convolution22,23) which, in fact, is
a linear combination of second derivatives with respect to
QΓ1 and QΓ2 that transforms according to the line γ of the
D3h irrep Γ ⊂ Γ1 ⊗ Γ2. Such combinations can be found by
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means of group-theoretical transformations, together with the
Wigner-Eckart theorem;22,23,65 see, e.g., Eq. (5.1) of Ref. 65.
Likewise,

�
QΓ1 ⊗ QΓ2

	
Γγ

denotes the irreducible product for
the corresponding symmetrized coordinates. The quadratic
vibronic constants are then given by21–25

G(ΓγΓ′γ′)
Γγ

=
1
2


Γγ

���
(

∂2V
∂QΓ1∂QΓ2

)
0


Γγ

���Γ
′γ′


=
1
2

G(ΓΓ′)
Γ

V *
,

Γ Γ
′
Γ

γ γ′ γ
+
-
, (12)

where G(ΓΓ′)
Γ
=


Γ
����

∂2V/∂QΓ1∂QΓ2

�
0

	
Γ

��
Γ′
�

is the associated
reduced matrix element22,23,65 with all other quantities
assuming the same meaning as above. Suffice it to say that,
as for the linear case, the same group-theoretical selection
rules can be used to evaluate the matrix elements of Eq. (12).
Thence, diagonal elements (for which Γγ ≡ Γ′γ′) evaluated
at totally symmetric irreducible products

��
∂2V/∂Q2

Γ

�
0

	
A1

are
nonzero, since Γ ⊗ A1 ⊗ Γ ⊃ A1 and, for degenerate terms,
γ ≡ γ′.21–25 Indeed, such elements are the (nonvibronic) force
constants of the adiabatic PESs at Q0

22,23,65 and within the
basis set under consideration are defined by


Ψ2

1E ′(11A1)���
(
∂2V
∂Q2

2

)
0
+

(
∂2V
∂Q2

3

)
0

���Ψ2
1E ′(11A1)


= KE′

Ψ3
1E ′(11B2)���

(
∂2V
∂Q2

2

)
0
+

(
∂2V
∂Q2

3

)
0

���Ψ3
1E ′(11B2)


= KE′

Ψ4
1A′1(21A1)���

(
∂2V
∂Q2

2

)
0
+

(
∂2V
∂Q2

3

)
0

���Ψ4
1A′1(21A1)


= KA′1

. (13)

Here, KE′ and KA′1
are the primary force constants (without vibronic coupling) for the 1E ′ and 1A′1 electronic states, respectively.

The remaining terms and the off-diagonal elements of W comprise the quadratic JT vibronic coupling constants which are given
by 

Ψ2
1E ′(11A1)���

(
∂2V
∂Q2

2

)
0
−
(
∂2V
∂Q2

3

)
0

���Ψ2
1E ′(11A1)


= −GE′

Ψ2
1E ′(11A1)���

(
∂2V

∂Q2Q3

)
0

���Ψ3
1E ′(11B2)


= 2GE′

Ψ3
1E ′(11B2)���

(
∂2V

∂Q2Q3

)
0

���Ψ2
1E ′(11A1)


= 2GE′

Ψ3
1E ′(11B2)���

(
∂2V
∂Q2

2

)
0
−
(
∂2V
∂Q2

3

)
0

���Ψ3
1E ′(11B2)


= GE′

, (14)

where GE′ is the reduced matrix element. Note that, for the sake of simplicity, only the quadratic parameters GE′ associated
with the JT effect have been included in the vibronic coupling matrix W, and hence the nonadiabatic corrections due to PJT
interaction are here accounted up to first-order (HE′/A′1

). Using Eq. (10)–Eq. (14), the potential matrix He, within the basis�|Ψ2
1E ′(11A1)⟩, |Ψ3

1E ′(11B2)⟩, |Ψ4
1A′1(21A1)⟩	, assumes the form31

He = H(0)
e +W =

*...
,

−FE′Q3 + κE′(Q) − GE′(Q2
2 −Q2

3) FE′Q2 + 2GE′Q2Q3 HE′/A′1
Q3

FE′Q2 + 2GE′Q2Q3 FE′Q3 + κE′(Q) + GE′(Q2
2 −Q2

3) HE′/A′1
Q2

HE′/A′1
Q3 HE′/A′1

Q2 ∆ + κA′1
(Q)

+///
-

, (15)

where κE′(Q) = 1
2 KE′(Q2

2 +Q2
3) and κA′1

(Q) = 1
2 KA′1

(Q2
2 +Q2

3)
are the corresponding harmonic nuclear interaction potentials
aboutQ0 for the 1E ′ and 1A′1 electronic states, respectively. It is
worth pointing out that the zero of energy in Eq. (15) is taken
from the 1E ′ term at the reference configuration [EE′(0) = 0,
see Eq. (8)], and hence ∆ denotes the energy gap between
the vibronically mixed terms at the origin. For sufficiently
small QΓγ (for which the present perturbation approach is
valid), the roots of Eq. (15) are then obtained by solving the
secular determinant

�
He − E(Q)I� = 0 whose solutions assume

the form21–25

Ek(Q) = κk(Q) + ϑk(Q), (16)

where ϑk(Q) is the vibronic contribution which—added to
the harmonic (nonvibronic part) term κk(Q)—produces the
appropriate picture of the adiabatic PESs near Q0, including
the expected cusped behavior at electronic degeneracies and
the vibronic mixing between close-in-energy terms. Suffice it
to add that since the vibronic coupling constants associated
with Q1 are assumed to be identically zero, the corresponding
adiabatic PESs along sufficiently small Q1 distortions behave
simply as harmonic potentials, i.e., Ek(Q) = 1

2 KQ2
1 with

ϑk(Q) = 0 and K = ⟨Γγ |�∂2V/∂Q2
1

�
0

�
Γγ⟩.

The solutions of the vibronic coupling equations with
the present JT plus PJT Hamiltonian [Eq. (15)] are illustrated
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in Figure 12 for cross-sectional cuts of the 11A′, 21A′, and
31A′ PESs along Q3 [Qb(Q1) = (0,Q3)]. Note that the ab initio
points have been obtained from MRCI/AVTZ calculations
and covered a region defined by −0.020 a0 6 Q3 6 0.020 a0
in steps of 0.001 25 a0 for Q1 fixed at the minimum of the
equilateral triangular conformation; Qcusp

s = (Qcusp
1 ,0,0) with

Qcusp
1 = 4.548 a0. The numerical parameters in Eq. (15), [FE′,

GE′, HE′/A′1
, KE′ and KA′1

] have been estimated by minimizing
the sum of squared residuals

χ2
total = χ2

11A′
+ χ2

21A′
+ χ2

31A′
, (17)

in which each electronic state is treated democratically with
χ2
k
, the corresponding sum of squared residuals for the term

k, given by

χ2
k =

Nk
n=1

[Ek,ab initio(Qn) − Ek,num(Qn)], (18)

where Ek,ab initio(Qn) is the corresponding ab initio energy
of the electronic state k at nuclear configuration Qn [given
with respect to E1E′(Q0) = E1E′(Qcusp

s )] and Ek,num(Qn) is the
associated eigenvalue obtained by numerical diagonalization
of the potential matrix He with the aid of the Jacobi
method.66,67 In Eq. (18), the summation is extended over
the whole set of ab initio points for each electronic
state (Nk = 34 and therefore, Ntotal = 102) with all
minimizations performed by means of the Levenberg-
Marquardt algorithm.68,69 As Figure 12 shows, the present
JT plus PJT potential matrix [Eq. (15)] yields eigenvalues
which accurately mimic the adiabatic energies obtained
from MRCI/AVTZ calculations, with an unweighted root
mean square deviation (rmsd) of only 2.6 cm−1 for the
total number of fitted ab initio points. The fitting param-
eters are: KE′ = 351.3 mEh a−2

0 , KA′1
= 399.0 mEh a−2

0 , FE′

= 11.8 mEh a−1
0 , GE′ = 1940.0 mEh a−2

0 , HE′/A′1
= 150.8

mEh a−1
0 , and ∆ = 11.7 mEh. Accordingly, we see that the

linear JT vibronic constant (FE′) is extremely small and

FIG. 12. PES cuts along the bending normal coordinate Q3 [Qb(Qcusp
1 )

= (0,Q3)] for the three lowest 1A′ electronic states of C3 radical over the range
of −0.020 a0 6Q3 6 0.020 a0. Open symbols correspond to points calculated
at MRCI/AVTZ level of theory, while the solid lines are the associated
eigenvalues of Eq. (15) as obtained from the least-squares fitting procedure.
Filled circles highlight the central and additional C2v CIs. The zero of energy
is E1E′(Qcusp

s )=−113.760 589 9 Eh.

about 1 and 2 orders of magnitude smaller than HE′/A′1
and

GE′, respectively. Dillon and Yarkony27 reported a similar
ratio between the linear and quadratic JT parameters for N+3 .
Because GE′≫ FE′, exceptionally small values of ρ0(Q1)
are then expected in this region of configuration space, as
seen in Figures 7 and 9-12. In spite of that, for the present
case FE′/GE′ ≈ 0.006 a0 and therefore, the PJT vibronic effect
operates in such a way as to increase twice the value of
ρ0(Q1), i.e., as seen in Figure 12, ρ0(Qcusp

1 ) = 0.012 a0. Indeed,
the relatively large magnitude of the linear PJT parameter
(HE′/A′1

) gives insights into the relevance and influence of
such combined JT plus PJT vibronic effects in the proper
description of the title system.

Interestingly, as shown in Figure 13, the current three
state JT plus PJT model Hamiltonian predicts the existence
of a stationary point [hereafter, denoted as c2v-C3(11B2)] in
the 21A′ electronic state PES for Q3 = 0.025 a0. Indeed, such
a structure has been confirmed by ab initio FVCAS/AVTZ
geometry optimizations and shown itself as a minimum on
the 21A′ adiabatic PES. The computed equilibrium geometry
(in valence coordinates1) and harmonic vibrational frequencies
are given in Table III. Also shown are the relative energies (∆E)
given with respect to the absolute minimum on the adiabatic
ground state PES [lin-C3(1Σ+g/11A1)] as well as JT plus PJT
stabilization energies (∆Ev) with respect to the minimum of the
equilateral triangular geometry Qcusp

s . Accordingly, excellent
correlations are found between the predicted structure and the
one actually obtained from the ab initio calculations. In fact,
the c2v-C3(11B2) distorted minimum arises from the structural
instability associated to the high-symmetry D3h configuration
with a JT plus PJT stabilization energy of −38.0, −38.8 and
−40.0 cm−1 as obtained from MRCI/AVTZ, MRCI/AVQZ
and CBS/MRCI calculations, respectively. Suffice it to say
that such stabilization energies compare quite well with the
value of −34.4 cm−1 predicted from the JT plus PJT model
Hamiltonian here considered.

Note that, in the 31A′ electronic state PES, the PJT
vibronic effect provides an additional stabilization of the

FIG. 13. PES cuts along the bending normal coordinate Q3 [Qb(Qcusp
1 )

= (0,Q3)] near the minimum structure predicted by the three state JT plus PJT
model Hamiltonian for the 21A′ PES of C3 radical. Open symbols correspond
to points calculated at MRCI/AVTZ level of theory, while the solid lines
are the associated eigenvalues of Eq. (15) as obtained from the least-squares
fitting procedure. Solid symbols correspond to non-fitted ab initio points.

176 The JT plus PJT vibronic problem in the C3 radical



064309-13 C. M. R. Rocha and A. J. C. Varandas J. Chem. Phys. 144, 064309 (2016)

TABLE III. Properties and energetics of the c2v-C3(11B2) minimum on the first excited state (21A′) PES of the
C3 radical. The structure is labeled according to its point group irrep in C2v symmetry (given in parentheses).
Energies are given with respect to the D∞h absolute minimum [lin-C3(1Σ+g/11A1)] of the ground state adiabatic
PES of C3 (see Table I) as well as with respect to the minimum of the equilateral triangular geometry Qcusp

s .

Method R/a0 ∠CCC/deg ∆E/kJ mol−1 ∆Ev/cm−1 w1/cm−1 w2/cm−1 w3/cm−1

c2v-C3(11B2)

FITa,b 2.616 60.8 −34.4c

FVCAS/AVTZa 2.629 60.9 195.5d −38.7 1512.7 1124.7 3690.7
MRCI/AVTZa 161.4 −38.0
MRCI/AVQZa 158.8 −38.8
CBSa 151.3 −40.0

aThis work.
bPredicted by the three state JT plus PJT model Hamiltonian of Eq. (15).
cRelative to Qcusp

s = (Qcusp
1 ,0,0) with Q

cusp
1 = 4.548 a0.

dRelative to the FVCAS/AVTZ optimized minimum of lin-C3(1Σ+g/11A1) [see Table I].

undistorted D3h configuration and therefore, a minimum
at this geometry [cyc-C3(1A′1/2

1A1)] is observed for Qs
= (4.638 a0,0,0), as noted in Section III (see inset of Figure 13
and Table I). Such a strengthening of the PES curvature is
perceived by inspection to the magnitude of the harmonic
vibrational frequency: 5069.5 cm−1 for the degenerate e′

normal mode of cyc-C3(1A′1/2
1A1), as shown in Table I

[compare with the corresponding value of 1091.0 cm−1 of
the cyc-C3(3A′2/1

3B2) triplet structure where neither JT nor
PJT effects are observed]. As emphasized by Rocha and
Varandas,10 in the 11A′ ground state singlet, distortions from
the D3h structure toward Q3 > 0 give rise to the distorted
(linear) global minimum on the adiabatic ground state PES
[lin-C3(1Σ+g/11A1); see Table I]. Instead, if displacements along
Q3 < 0 take place the title system actually attains a saddle
point structure which is, indeed, the transition state for the
isomerization between the three symmetry-equivalent D∞h
global minima.10

VI. TOPOLOGICAL IMPLICATIONS

Following the Longuet-Higgins’ (LH) theorem:39 if a
real-valued electronic wave function changes sign when
adiabatically transported around a closed circuit C in the two-
dimensional g-h plane, then it must become discontinuous and
degenerate with another state at an odd number of points lying
on that surface and within that loop.26,38–41 Varandas et al.58

first demonstrated the numerical validity of such sign reversal
criterion in the unsymmetrical LiNaK system by following the
variation of the dominant coefficients, ci, of the ground-state
electronic wave function along a path (in the two-dimensional
branching space) that encircles the crossing point.58

In this spirit, we have performed state-averaged
FVCAS/AVTZ calculations in which the adiabatic evolution
of the 11A′, 21A′, and 31A′ electronic wave functions along a
chosen (circular) path was attended by following the leading
components (c0) of the associated CASSCF vectors. Note that
such (counterclockwise) paths in the two dimensional g-h
plane26 were judiciously chosen by fixing the radial polar
coordinate ρ(Q1) =


Q2

2 +Q2
3 (hereafter, denoted simply as

ρ) at a convenient value, while varying the pseudo-rotation
angle φ = arctan(Q3/Q2) from 0 to 2π in steps of π/18.11,26,58

Suffice it to say that the associated coordinates in the
two dimensional branching space are given by Q2 = ρ cos φ
and Q3 = ρ sin φ, i.e., Qb(Q1) = (ρ cos φ, ρ sin φ). Figure 14
depicts such closed loops in nuclear configuration space
together with the associated coefficients (c0) in the leading
determinants (or CSFs) of the FVCAS/AVTZ wave functions
for the 11A′, 21A′, and 31A′ electronic states of the C3
radical. It should be emphasized that in Figures 14(a) and
14(d), the circular paths are centered at the minimum of
the D3h crossing seam, i.e., Qcusp

s = (Qcusp
1 ,0,0) with Qcusp

1
= 4.576 a0 (Qcusp

1 = 4.548 a0 at MRCI/AVTZ level), while
in Figure 14(b), the minimum of the C2v seam is set as
the origin, i.e., Qcusp

b = (Qcusp
1 ,0,Qcusp

3 ) with Qcusp
3 = 0.007 a0

(Qcusp
3 = 0.012 a0 at MRCI/AVTZ level). In turn, the path

illustrated in Figure 14(c) is centered at the midpoint between
Q

cusp
s and Qcusp

b , i.e., at Q = (Qcusp
1 ,0,Qcusp

3 /2).
As first pointed out by Zwanziger and Grant,28 and later

by others,10,27,31,33,35–37 for SLP JT molecules and systems in
which a strong JT plus PJT interactions occur such as the one
here reported, the additional three symmetry-equivalent C2v
seams may prevent the associated electronic wave function
of changing sign when transported around a loop enclosing
the four CIs. In other words, the net GP effect38–41 is largely
suppressed.

Consider first the case in which a circular path in the
g-h plane is chosen such that ρ < ρ0(Q1) [see Figure 14(a)
and the insetted illustration]. In this case, only one CI (the
central one) is enclosed and the adiabatic wave function
changes sign along this loop, as seen in Figure 14(a) for
the 11A′ and 21A′ electronic states. In fact, a similar sign
change is expected when only one of the three equivalent
degeneracies of C2v symmetry is encircled [see Figure 14(b)].
Conversely, as Figure 14(c) shows, a closed circuit which
encloses both the central CI and one of the C2v degeneracy
points is sign-preserving, i.e., the adiabatic wave functions
experience no sign change. Indeed, for more general cases in
which circular paths are chosen in such a way that ρ > ρ0(Q1)
[Figure 14(d)], the associated adiabatic wave functions do
not change sign, since upon transport along this loop the
four CIs are encircled. It should be emphasized at this point
that ρ0(Q1) marks an important transition region between a
Jahn-Teller- and Renner-Teller-like behavior in the sense that
the adiabatic wave functions for the 11A′ and 21A′ electronic
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FIG. 14. Adiabatic evolution of the 11A′, 21A′, and 31A′ electronic wave functions of C3 radical along a closed circuit C in the two dimensional g-h plane
encircling one or multiple conical intersections (see illustration). c0 is the associated coefficient in the leading determinant (or CSF) of the FVCAS/AVTZ
electronic wave function for each state considered. The sign changes are observed by considering four closed loops which encircle (a) the central (D3h) conical
intersection with origin at Qcusp

s and fixed radius of ρ = 0.004 a0 (b) one C2v conical intersection with origin at Qcusp
b and fixed radius of ρ = 0.002 a0 (c) two

conical intersections with origin at Q = (Qcusp
1 ,0,Qcusp

3 /2) and fixed radius of ρ = 0.005 a0 and (d) four conical intersections with origin at Qcusp
s and fixed radius

of ρ = 0.010 a0.

states experience a sign change upon adiabatic transport about
the origin (the D3h reference seam) in the case ρ < ρ0(Q1),
but not for ρ > ρ0(Q1).28 Note that, in Figure 14, the adiabatic
wave function for the 31A′ state does not change sign in any
of the cases here considered since it is non-JT in nature.

Figure 15 illustrates the adiabatic evolution the 11A′,
21A′, and 31A′ electronic wave functions along closed paths
encircling the point of confluence between the D3h and
C2v crossing seams or the intersection node17,59,60 at Qs
= (5.005 a0,0,0); see Figures 9(c) and 10(c). As highlighted
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FIG. 15. Adiabatic evolution the 11A′, 21A′, and 31A′ electronic wave
functions of C3 radical along a closed circuit C in the two dimensional g-h
plane encircling the point of confluence between the D3h and C2v crossing
seams or the intersection node. c0 is the associated coefficient in the leading
determinant (or CSF) of the FVCAS/AVTZ electronic wave function for each
state considered. The circular paths are centered at Qs= (5.005 a0,0,0) with
fixed radius of (a) ρ = 0.004 a0, (b) ρ = 0.007 a0, and (c) ρ = 0.010 a0.

in Section IV B, at such a point in nuclear configuration
space, the predominance of quadratic coupling constants GE′

is remarkable [see for instance Figure 10(c)] and therefore,
the situation can be drawn on the same grounds as that for
the FE′ = 0 and GE′ , 0 (i.e., the pure Renner-Teller) case
in which the three additional degeneracies coincide with the
central one, ρ0(Q1) → 0.28,59 Indeed, as seen from Figure 15,
the adiabatic states exhibit no sign changes after a complete
transversal of the loops. As noted by Dillon and Yarkony27

and Schuurman and Yarkony,16 the intersection node is the
only point in the nuclear configuration space at which the
topological phase effect is suppressed even for infinitesimal
loops.

VII. CONCLUSIONS

The combined JT plus PJT problem in the C3 radical has
been here fully accounted for by means of ab initio calcula-
tions obtained at the multireference configuration interaction
level of theory. For the 1E ′ electronic state, arising from a e′2

valence configuration, it is found that the three additional

symmetry-equivalent C2v seams are in extremely close
proximity to the symmetry-required one over the range
of breathing coordinate here considered. Clearly, as the
perimeter of the molecule increases, the C2v disjoint seams
approach the D3h crossing seam almost linearly and ultimately
coalesce with the central one at Q1 = 5.005 a0 thus forming
an intersection node or confluence of the seams. By further
increasing the size of the triangle, however, the marginal C2v
seams are rotated by ±π in the g-h plane. A three-state JT
plus PJT vibronic Hamiltonian is then proposed for the title
system, and shown to accurately mimic the region defined by
the minimum energy crossing point. No net geometric phase
effect is observed, e.g., when the associated electronic wave
functions are adiabatically transported along closed paths
encircling the four singularity points. For paths enclosing
the intersection node it is also realized that the sign-reversal
criterion is not fulfilled, even for infinitesimal loops. The
results so obtained are clearly applicable to other ring systems
experiencing similar topological attributes.
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Multiple conical intersections in small linear parame-
ter Jahn-Teller systems: the DMBE potential energy
surface of ground-state C3 revisited†

C. M. R. Rocha and A. J. C. Varandas∗a

A new single-sheeted DMBE potential energy surface for ground-state C3 is reported. The novel
analytical form describes accurately the three symmetry-equivalent C2v disjoint seams, in addition
to the symmetry-required D3h one, over the entire configuration space. The present formalism
warrants by built-in construction the confluence of the above crossings, and the rotation-in-plane
of the C2v seams when the perimeter of the molecule fluctuates. Up to 1050 ab initio energies
have been employed in the calibration procedure, of which 421 map the loci of intersection. The
calculated energies have been scaled to account for incompleteness of the basis set and trun-
cation of the MRCI expansion, and fitted analytically with chemical accuracy. The novel form is
shown to mimic accurately the region defined by the 4 conical intersections, while exhibiting sim-
ilar attributes to the one previously reported [J. Chem. Phys. 2015, 143, 074302] at regions of
configuration space away from the crossing seams. Despite being mainly addressed to C3, the
present approach should be applicable to adiabatic PESs of any X3 system experiencing similar
topological attributes, in particular the small-linear-parameter Jahn-Teller molecules.

1 Introduction
Conical intersections (Cis) form hyperlines in nuclear configura-
tion space where two (or more) adiabatic potential energy sur-
faces (PESs) are degenerate.1 Such hyperlines are referred to as
seams (or locus) of Cis. Their orthogonal complements define
the so-called branching2 or (g,h)-plane3 at which degeneracies
are linearly lifted in displacements from the intersection, assum-
ing a local topology of a double cone.4 Conventionally, degen-
eracies on PESs are classified as normal (or symmetry-required),
when they are naturally dictated by the molecular point group
[as in the Jahn-Teller (JT) case5–9] and accidental.1,3,10 These
include both symmetry-allowed Cis (if the symmetries of the in-
volved states carry distinct one-dimensional irreducible represen-
tations) and degeneracies involving two states of the same sym-
metry, which can only occur when two indepedent conditions are
satisfied.11–14 Although often considered a theoretical curiosity,
the conditions for electronic degeneracies have long been rec-
ognized by von Neumann and Wigner11, with Teller12 empha-
sizing 80 years ago their role in fast radiationless transitions.
Rather than the “non-crossing rule”,11–14 Herzberg and Longuet-
Higgins13 and Longuet-Higgins14 have shown that intersections

a Departamento de Química, and Centro de Química, Universidade de Coimbra
3004-535 Coimbra, Portugal. E-mail: varandas@uc.pt
† Electronic Supplementary Information (ESI) available. See DOI:
10.1039/b000000x/

of PESs are possible in systems with the same spin and spatial
symmetries as long as they involve 2 or more configurational de-
grees of freedom. When dictated by symmetry, Jahn and Teller5

demonstrated that the very nature of Cis relies on the molecular
point groups, thus occurring whenever two electronic states (at
highly symmetric non-linear arrangements) transform as twofold
degenerate irreducible representations.5 Cis lie also at the heart
of nonadiabatic processes,1,10 and related phenomena associated
with the so-called geometric phase (GP) effect.13–16

Regardless the nature of the Cis, they make the task of mod-
eling an accurate global PES increasingly cumbersome. This is
so, since standard analytic functions are inappropriate to de-
scribe the characteristic cusp behavior of the involved electronic
states in the vicinity of the degeneracy seam.17,18 Given the di-
vergent nature of the nonadiabatic couplings terms (NACTs) and
the pronounced electronic interstate couplings [the breakdown of
the Born-Oppenheimer (BO) approximation19,20] at the locus of
intersection and immediacies,1 one could then resort to appro-
priate diabatization schemes.21–30 By employing an adiabatic-to-
diabatic (ATD) unitary transformation so that the leading terms
of the NACTs are partially removed, the diagonal adiabatic PESs
(strictly speaking, ab initio energies) are replaced by a poten-
tial matrix whose elements are smooth functions of the nuclear
coordinates.22,27–30 Such diabatic states, once properly obtained
and conveniently modeled by some smooth functional form, can
be back transformed to adiabatic ones, yielding therefore the ex-
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pected cusp behavior in the vicinity of the crossing seams. Despite
its advantages, the resolution in terms of diabatic basis is nontriv-
ial and, together with the need for a proper modeling of the po-
tential matrix, turns the process of obtaining accurate global PESs
increasingly complex.17,18 Actually, for molecules other than di-
atomics, strictly diabatic basis which exactly diagonalize the nu-
clear kinetic energy operators do not exist21 and hence, any at-
tempt to minimize NACTs often leads to arbitrariness in the con-
struction of the (quasi)-diabatic states.21,23–26

Another possibility to describe a cusp on adiabatic PESs has
been proposed by Varandas and Murrell.31 The authors employed
the so-called JT-type coordinate31,32 (

√
Γ2) together with suit-

able additional polynomial terms such as to introduce the re-
quired nonanalyticity into the adiabatic PESs of H3(12A′) which
shows the symmetry-required Ci for D3h arrangements.31,33 In-
deed,

√
Γ2 has been especially designed to model adiabatic PESs

of X3-type JT molecules in which a doubly degenerate pair of
electronic states (E) are coupled by a doubly degenerate normal
mode (e) [the well-studied linear E ⊗ e JT systems2–4,6–9]. As
such, the approach has been successfully applied to model ac-
curate global PESs for34–36 H+

3 (1
3A′/23A′) and37 N3(12A′′/22A′′)

molecules without the need of any ATD transformation. As stated
in Ref. 17, the JT coordinate is simply the distance from a given
point in the branching plane3 to the corresponding origin (the
D3h crossing seam) and hence ensures, by bult-in construction,
the correct linear dependence of the potential (the conical shape)
along non-totally symmetric distortions.31,32,34–37

Recently, Galvão, Mota and Varandas (GMV)17,18 extended the
above methodology to include cusps on adiabatic single-sheeted
PESs of any triatomic system exhibiting accidental Cis.17 Such an
approach relies on finding the appropriate parametric equation
which characterizes the locus of intersection and, from simple
geometric considerations, define the distance from any point in
R-space to the seam.17,18 The GMV scheme has been employed
to accurately model the C2v degeneracy line (2A2/2B1) of38,39

NO2(12A′′) as well as the three permutationally equivalent seams
of30 N3(12A′). Further progress on the methodology has recently
been reported.18 The authors suggested the use of a general-
ized JT-type coordinate (∆) to mimic the desired singularities on
PESs of any triatomic system, including molecules having strongly
curved (accidental) seams, as is the case of18,27,40 HN2(12A′); the
reader is addressed to Refs 17 and 18 for details.

For general X3-type JT molecules, it is widely known that the
introduction of quadratic terms in the vibronic coupling perturba-
tion operator (the linear plus quadratic E⊗e problem6–9) reveals
the so-called warping of the Mexican-hat-type PESs with the for-
mation of three-equivalent minima connected by three pseudo-
rotation saddle points along the bottom of the “tricorn”.7–9

Yet, for molecules with small linear (FE) and large quadratic
(GE) vibronic coupling constants, the locus of Ci and hence,
the topology of the PESs near equilateral triangular arrange-
ments is rather intricate.41,42 For such systems, referred to as
small linear parameter (SLP) JT molecules,6,41–43 besides the
usual symmetry-required D3h seam, three additional symmetry-
allowed Cis along the line of C2v symmetry are found in quite
close proximity to the D3h one. Such unusual topological fea-

tures have been reported in literature for elemental clusters
such as Li3(22E ′),44 Na3(22E ′),43,45,46 K3(22E ′),47 Si3(11E ′),48

N+
3 (1

1E ′′),49 and C3(11E ′).50,51 Suffice it to add that, in addition
to the proper JT effect,5–9 the presence of close-in-energy A states
near D3h conformations are ubiquitous,44–51 so the overall prob-
lem at hand is effectively a three state one, i.e., a combined JT
plus pseudo-JT (PJT) case.48,50,51

In previous work,50 we have reported a single-sheeted DMBE
PES (hereinafter referred to as DMBE I) for ground-state C3(11A′).
There, we first outlined the presence of the 4 Cis characteristic of
SLP JT systems. Because a third electronic state of 1A′ symme-
try (11A′1 in D3h) comes close in energy to the pair of intersecting
states (11E ′ in D3h) near equilateral triangular arrangements,51

such unusual topological attributes have been ascribed to com-
bined JT plus PJT vibronic effects.50 Modeling of the D3h and
C2v seams has then been accomplished by employing the JT co-
ordinate and the GMV approach, respectively, along with suitable
additional polynomial terms.50 Since the term responsible for in-
troducing the required singularities at C2v degeneracies dies-off
Gaussian-like,17 the cusps are warranted only near the region de-
fined by the minimum energy crossing point (MeX).50

Most recently, the combined JT plus PJT [(E ′+A′1)⊗ e′] prob-
lem in C3 has been further exploited51 with somewhat un-
expected results. Accordingly, the three additional symmetry-
allowed C2v seams are not static objects with respect to the
symmetry-required (D3h) one but evolve in location with varying
perimeter of the molecule. In so doing, such degeneracy points
approach the central D3h Ci almost linearly and ultimately coa-
lesce with it forming an intersection node52 or confluence.53,54

Additionally, by increasing the size of the molecular triangle, the
C2v disjoint seams get rotated by ±π in the branching plane.51

We have also proposed a three-state vibronic Hamiltonian that,
once diagonalized, naturally mimics the 4 singularity points near
the MeX of D3h and C2v symmetries as well as highlighted the
implications of such multiple Cis on the net GP effect.

Our aim in this work is to devise a form (DMBE II) capable of
accurately modeling the three symmetry-equivalent C2v disjoint
seams, in addition to the seam of D3h symmetry, over the entire
range of nuclear configuration space. Special attention is paid in
developing a form that warrants by built-in construction the con-
fluence of the above crossings and the rotation in the branching
plane of the C2v seams as the perimeter of the molecule fluctu-
ates. The approach, which follows the original formalism should
in principle be applicable to other cusps of any X3-type SLP JT
system without the need of diabatization.

The paper is organized as follows. Section 2 summarizes the
ab initio calculations. The strategy and analytical forms used in
DMBE I PES are briefly reviewed in section 3. In section 4, we
devise an alternative scheme capable of accurately mimicking the
symmetry-related C2v seams over the entire configuration space,
while in section 5 the approach is used to get the DMBE II form.
The major topological features of the current PES are discussed
in section 6 whereas section 7 gathers the conclusions.

2 | Phys. Chem. Chem. Phys. 1–13 This journal is @ The Royal Society of Chemistry 2017
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Fig. 1 Permutationaly equivalent C2v crossing seams for a fixed valence angle φ .

The seams are shown in dotted, with the distances from any point in R-space (~p

vector) to the corresponding crossings points (~p1, ~p2 and ~p3 vectors) indicated by

the ~∆1, ~∆2 and ~∆3 vectors. The dummy variable t defines the associated parametric

lines r1, r2 and r3 (see text).

2 Ab initio calculations
All calculations have been performed at the multireference con-
figuration interaction (MRCI) level using the full-valence com-
plete active space self-consistent field [CASSCF(12,12) or FVCAS]
wave functions as reference.55 The triple-ζ augmented correla-
tion consistent basis set of Dunning56,57 (aug-cc-pVTZ or AVTZ)
has been employed, and the calculations done with MOLPRO.58

To account for the incompleteness of the one- and N -electron
bases, all raw ab initio energies have been scaled using the double
many-body expansion-scaled external correlation (DMBE-SEC)59

method, a methodology also utilized in Ref. 50. All computa-
tions have been performed by considering cuts of the PES along
symmetry-adapted coordinates [Q=(Q1,Q2,Q3)] defined by22,60Q1

Q2

Q3

=


√

1/3
√

1/3
√

1/3
0

√
1/2 −

√
1/2√

2/3 −
√

1/6 −
√

1/6


R1

R2

R3

 , (1)

where Q1 is related to the perimeter of the triatomic, and the
pair (Q2,Q3) defines the shape of the molecular triangle; R =

(R1,R2,R3) are internuclear distances.51

To obtain a realistic PES in which both D3h and C2v seams are
accurately modeled, a total of 421 grid points have been chosen to
map the region defined by 4.000a06Q165.750a0 and −0.040a06
Qi(i=2,3)60.040a0. An extra 629 ab initio energies50 have been
considered, which amounts to a total of 1050 points used for the
calibration process.

3 The DMBE I potential energy surface: a
brief survey

The adiabatic ground-state PES reported elswhere50 for the
C3(11A′) radical assumes the following form:

VI(R) =V (1)+V (2)(R)+V (3)
dc (R)+V (3)

I,EHF(R), (2)

where as usual60–63 V (1) is a one-body term equal to the dissocia-
tion energy (De) of C2(a3Πu), V (2)(R) is the sum of the two-body

Q3

Q2

~p′=(Q2,Q3)~p′

1

~p′

2
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1
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~∆′
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ϕρ0(Q1)

ut

bc

bc bc
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Fig. 2 Symmetry-equivalent C2v crossing seams lying at ϕ =π/2, 7π/6 and 11π/6

on a circle of radius ρ0(Q1) in the (Q2,Q3) branching plane. Also shown at the origin,

(0,0), is the D3h symmetry-required seam. The distances from any point in Q-space

(~p ′ vector) to the corresponding C2v crossings points (~p1
′, ~p2

′ and ~p3
′ vectors) are

indicated by the ~∆′1, ~∆′2 and ~∆′3 vectors.

potentials, and V (3)
dc (R) is the three-body dynamical correlation;

see Ref. 50 and Electronic Supplementary Information (ESI). To
ensure the proper cusp behavior,17,18 the three-body extended
Hartree-Fock (EHF) energy, V (3)

I,EHF(R), is expressed as a sum of
two terms50

V (3)
I,EHF(R) =V

′ (3)
I,EHF(R)+V ′′(3)I,EHF(R), (3)

where

V
′ (3)
I,EHF(R) =

[
PN ′

1 (Γ1,Γ2,Γ3)

−
√

Γ2 PM′
2 (Γ1,Γ2,Γ3)

]
T ′I (R), (4)

and

V ′′(3)I,EHF(R) =
[
PN ′′

3 (Γ1,Γ2,Γ3)

−∆1∆2∆3 PM′′
4 (Γ1,Γ2,Γ3)

]
T ′′I (R). (5)

In Eqs. (4) and (5), PJ
n (Γ1,Γ2,Γ3) [n = 1, . . . ,4 and J =

N′,M′,N′′,M′′] are polynomials of order J expressed as

PJ
n (Γ1,Γ2,Γ3) = ∑

i+2 j+3k6J
cn

i jk Γ
i
1 Γ

j
2 Γ

k
3, (6)

where Γ1=Q1, Γ2=Q2
2 +Q2

3, and Γ3=Q3(Q2
3−3Q2

2) define the in-
tegrity basis.64 In turn, T ′I (R) and T ′′I (R) are range-decaying fac-
tors.50 As noted elsewhere,17,31,32,50 the polynomial in Eq. (4)
warrants that the DMBE form behaves as a linear function of the
radial polar coordinate4 ρ(Q1)≡

√
Γ2 =

√
Q2

2 +Q2
3 in the two di-

mensional branching plane [here denoted for a given value of Q1

as QQQb(Q1)=(Q2,Q3)]. In turn, following Ref. 17, the polynomials
in Eq. (5) provide the expected cusp behavior at C2v degenera-
cies which, in Ref. 50, have been first modeled for a fixed valence
angle of φ =60.2128◦. Thus, in Eq. (5), ∆c (c=1,2,3) are the dis-
tances (or the corresponding norms ||~∆c|| in Figure 1) from any
point in R-space [say, ~p=(R1,R2,R3)] to the three permutation-
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ally equivalent C2v crossing seams

||~∆1||=
√
[R1−t0

√
2(1−cosφ)]2+(R2−t0)2+(R3−t0)2 (7)

||~∆2||=
√
(R1−t0)2+[R2−t0

√
2(1−cosφ)]2+(R3−t0)2 (8)

||~∆3||=
√
(R1−t0)2+(R2−t0)2+[R3−t0

√
2(1−cosφ)]2, (9)

where t0 is the reference distance in ~p1 =(t0
√

2(1−cosφ), t0, t0),
~p2 = (t0, t0

√
2(1−cosφ), t0), and ~p3 = (t0, t0, t0

√
2(1−cosφ))

along the parametric lines r1 = (t
√

2(1−cosφ), t, t),
r2 = (t, t

√
2(1−cosφ), t), and r3 = (t, t, t

√
2(1−cosφ)); Fig-

ure 1. Suffice to say that t0 is obtained from the requirement
that ~∆c is orthogonal to the seam, which is equivalent to solve
~∆c ·~pc=0 for t0. This yields

t0 =
R1
√

2(1− cosφ)+R2 +R3

4−2cosφ
, (10)

for ~∆1 ·~p1=0, and

t0 =
R1 +R2

√
2(1− cosφ)+R3

4−2cosφ
(11)

t0 =
R1 +R2 +R3

√
2(1− cosφ)

4−2cosφ
, (12)

for ~∆2 ·~p2 =0 and ~∆3 ·~p3 =0, respectively; see elsewhere17,18 for
details. Note that the parameters of Eqs. (4) and (5) have been
obtained50 from a fit to 629 scaled ab initio energies with a total
unweighted root mean square deviation (rmsd) of 4.14kJmol−1.
It should be recalled that, unlike V ′(3)I,EHF(R), V ′′(3)I,EHF(R) in Eq. (5)
dies-off Gaussian-like, and therefore is expected to be valid in
a limited portion of configuration space, namely at the region
defined by the minima of the C2v crossings.17,50

4 Modeling the C2v disjoint seams

Consider the 2D branching plane QQQb(Q1)= (Q2,Q3) in Figure 2
defined by the coordinates Q2 and Q3, for a fixed Q1. Clearly,
∀Q1, QQQb(Q1)= (0,0) defines equilateral triangular arrangements
where the ground (11A′) and first excited (21A′) PESs of C3 show
a symmetry-dictated Ci.50,51 The C2v crossings points are then
defined by

~pc
′ ≡ (Qc

2,Q
c
3) = (ρ0 cos(ϕc±nπ),ρ0 sin(ϕc±nπ)) , (13)

where the parametric dependences of Qc
2(Q1), Qc

3(Q1) and ρ0(Q1)

on Q1 is eliminated thereof for convenience of notation. In
turn, ρ0=[(Qc

2)
2+(Qc

3)
2]1/2 denotes the radius at which the three

symmetry-equivalent disjoint seams are located with respect to
the central Ci51 and ϕc (c=1,2,3) is the polar angle4,60,65 that ex-
plicitly defines the positions of the crossings; ϕ1 =π/2, ϕ2 =7π/6
and ϕ3 = 11π/6. In Eq. (13), n = 0 or 1 is an integer that ac-
counts for the proper rotation-in-plane of the C2v seams on pass-
ing through the confluence point.51 Thus, the distance from any
point ~p ′=(Q2,Q3) in Q-space to the three permutationally equiv-

alent C2v crossing points (see Figure 2) is defined by17,18

~∆′c = ~p ′−~pc
′ = (Q2−Qc

2,Q3−Qc
3) (14)

and hence

||~∆′c||=
√(

Q2−Qc
2
)2

+
(
Q3−Qc

3
)2
. (15)

Thus, the only requirement to determine the norm ||~∆′c||, thence
the cusp behavior of the adiabatic PESs, is to find the appropri-
ate equation of the seam that relates the positions of the disjoint
crossing points [Qc

2, Qc
3 or ρ0; see Eq. (13)] and the size of the

molecular triangle. In principle, such a requirement can be ful-
filled by any type of well-behaved function of Q1. To accomplish
this, we have performed ab initio calculations along QQQb(Q1) =

(0,Q3) for different values of Q1 (4.000a0 6Q1 6 5.750a0). This
allows to determine the C2v points of degeneracy between the
11A′ and 21A′ states along the line (Q1

2,Q
1
3)≡(0,Q1

3); see Figure 2.
Various perspectives of the current results are illustrated in Fig-
ure 3.

As shown in Figure 3(a), the Cis at C2v symmetry occur not only
for fixed valence angles of50 φ=60.2128◦, but also for angles vary-
ing between 59.7447◦ (R= 3.324a0) and 60.9511◦ (R= 2.298a0).
The crossing geometries lie therefore in close proximity to the
D3h Ci (φ =60.0◦), with the valence angles deviating by less than
1.0◦. Actually, as depicted in Figure 3, such geometries ultimately
coalesce with an equilateral triangular one at R ≈ 2.890a0 or
Q1≈5.005a0 (see Figure 3) forming an intersection node or con-
fluence of seams. In fact, following recent work17 for NO2(

1A
′′
),

the equation of the seam could be well modeled in R-space by a
straight line [Figure 3(b)] of the form R1 = f (R)= a+bR where
R2 =R3 =R, a= 0.134a0 and b= 0.954; see elsewhere18 for gen-
eralizations employing non-linear functions. As shown, the er-
rors in R1 amount to ≈10−3 a0. However, preliminary tests indi-
cated that even such small deviations prevent an accurate fit of
the proper C2v cusp location in Q-space, especially for geometries
with stretched bond distances where the deviations from the sim-
ple straight line would be of the same order of magnitude as the
difference between the geometries themselves [see inset of Fig-
ure 3(b)]. Thus, we have chosen an analytic form in ρ0 that accu-
rately mimics all C2v crossing seams. This has been accomplished
through a 1D fit of the various (0,Q1

3) crossing points obtained for
each Q1, with ρ0 extracted from the relation:

ρ0= |Q1
3|. (16)

As Figure 3(c) shows, Q1
3 can be accurately modeled by the form

Q1
3 = ρ−δ tanh

[
5

∑
i=1

ζi(Q1−Q0
1)

i

]
, (17)

which contains 8 adjustable parameters. Note that the linear fit in
panel (b) deviates quite significantly from the points in panel (c)
when plotted onto the same scale (not shown for simplicity).

In fact, as seen in the inset of Figure 3(c), the errors in the
crossing geometries predicted by Eq. (17) amount to ≈ 10−5 a0

at most. Clearly, the advantage of such a procedure, i.e., fit first
Q1

3 and subsequently extract the associated radii from Eq. (16),
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Fig. 3 Location of the C2v crossing seam (Q1
2,Q

1
3)≡ (0,Q1

3) for distinct values of Q1. The seam is shown in different perspectives and coordinate systems: (a) in valence

coordinates R and φ ; (b) in triangular coordinates R1, R2 and R3; (c) Q1
3 with respect to Q1 [Eq. (17)]; (d) ρ0 with respect to Q1 [Eq. (16)].

may circumvent problems with the analytic representation of the
“cusp-like” behavior of ρ0 near the intersection node, as seen from
Figure 3(d). Note that this latter is predicted from the analytical
form (17) to be located at Q1 = 4.997a0. The numerical coeffi-
cients of Eq. (17) are given as ESI.

Once the value of ρ0 is known, the distances to the three equiv-
alent C2v crossing seams ∆′1≡||~∆′1||, ∆′2≡||~∆′2|| and ∆′3≡||~∆′3|| can
then be determined from Eqs. (13)-(15). Note that, unlike Refs.
17 and 18, no orthogonality relations between ~∆′c and ~pc

′, i.e.,
~∆′c ·~pc

′=0, are here needed inasmuch as ~pc
′ is uniquely defined in

the (Q2,Q3) plane and so will be ||~∆′c||.

In Refs. 50 and 17, the desired cusp behavior on the adiabatic
PESs has been accomplished by using the product of such dis-
tances [see Eq. (5)] such as to ensure the permutational nature
of the crossings. Clearly, as Figure 4(a) shows, −∆′1∆′2∆′3 behaves
nonlinearly as one moves away from the intersection point. So,
we define instead a set of symmetrized combinations of ∆′1, ∆′2
and ∆′3, S1

S2

S3

=


√

1/3
√

1/3
√

1/3
0

√
1/2 −

√
1/2√

2/3 −
√

1/6 −
√

1/6


∆′1

∆′2
∆′3

 , (18)

and also
∆ =

√
S2

2 +S2
3. (19)

It is seen from Figure 4 that ∆ causes the desired cusps at C2v

geometries. Suffice it to say that Eq. (19) is analogous to the JT
coordinate (

√
Γ2) yielding the proper linear dependence of the

potential energy along non-totally symmetric distortions. Note
that ∆ has built-in the permutational equivalency of the seams,
thus allowing to create cusps on adiabatic PESs of any X3-type
system; see Figure 5. This approach is here utilized to develop a
novel DMBE form for C3(11A

′
), thus ensuring the correct topolog-

ical description of the 4 conical intersections. The details of the
new analytical form here employed is discussed next.

5 The DMBE II potential energy surface

All terms in the novel PES have the same functional form as pre-
viously used,50 with the exception of the three-body EHF term.
Such a potential is then written as

VII(R) =V (1)+V (2)(R)+V (3)
dc (R)+V (3)

II,EHF(R), (20)

where V (1), V (2)(R), and V (3)
dc (R) assume the same meaning as in

Eq. (2); the details of the corresponding analytical forms are in

This journal is @ The Royal Society of Chemistry 2017 Phys. Chem. Chem. Phys. 1–13 | 5
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Table 1 Stratified rmsd, in kJmol−1, of the DMBE I and DMBE II PESs.

DMBE Ia DMBE IIb

Energyc Nd rmsd Nd rmsd

42 105 0.67 105 0.66
84 168 0.79 168 0.82

126 250 0.88 250 0.84
167 310 1.00 518 0.62
209 327 1.21 596 0.89
251 338 1.46 651 0.87
293 347 1.67 680 0.89
335 366 2.34 747 1.53
377 367 2.51 748 1.85
418 372 2.72 773 2.03
628 396 2.85 817 2.26
837 484 2.93 905 2.66

1255 572 3.56 993 3.14
1674 623 3.81 1044 3.70
2092 626 3.97 1047 3.90
2510 629 4.14 1050 4.07

aRef. 50. bThis work. cThe units of energy are kJmol−1. Energy strata defined rel-

ative to the C3(
1Σ+

g ) global minimum. dNumber of calculated points up to indicated

energy range.

Ref. 50. In turn, the new three-body EHF component, V (3)
II,EHF(R),

assumes the form

V (3)
II,EHF(R) =V

′ (3)
II,EHF(R)+V ′′(3)II,EHF(R)+V ′′′(3)II,EHF(R). (21)

Note that, similarly to Eq. (3), V
′ (3)
II,EHF(R) is the component which

adequately describes the symmetry-imposed Ci at D3h symmetry,
while the additional terms V ′′(3)II,EHF(R) and V ′′′(3)II,EHF(R) warrant the
correct cusp behavior at C2v degeneracies over the whole config-
uration space. They are given by

V
′ (3)
II,EHF(R) =

[
PN ′

1 (Γ1,Γ2,Γ3)−FnJT (R)
√

Γ2 PM′
2 (Γ1,Γ2,Γ3)

]
T ′II(R),

(22)

V ′′(3)II,EHF(R) =
[
PN ′′

3 (Γ1,Γ2,Γ3)−FnJT (R)
√

Γ2 PM′′
4 (Γ1,Γ2,Γ3)

−∆PP′′
5 (Γ1,Γ2,Γ3)

]
T ′′II (R), (23)

and

V ′′′(3)II,EHF(R) =
[
PN ′′′

6 (Γ1,Γ2,Γ3)−FnJT (R)
√

Γ2 PM′′′
7 (Γ1,Γ2,Γ3)

−∆PP′′′
8 (Γ1,Γ2,Γ3)

]
T ′′′II (R). (24)

In Eqs. (22)-(24), PJ
n (Γ1,Γ2,Γ3) are polynomials that assume the

same form as in Eq. (6) and are suitably centered at D3h geome-
tries with bond lengths of R′0, R′′0 and R′′′0 , respectively. T ′II(R),
T ′′II (R) and T ′′′II (R) are range-determining factors defined by

T ′II(R) =
3

∏
i=1
{1− tanh[α ′(Ri−R′0)]}, (25)
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Table 2 Properties of stationary points and other relevant structures on the C3(1 1A
′
) DMBE PESs.

Method R1/a0 R2/a0 R3/a0 ∆E/kJmol−1 w1/cm−1 w2/cm−1 w3/cm−1

Min

DMBE IIa 4.888 2.444 2.444 0 b 1203.9 61.0 2125.5
DMBE Ic 4.888 2.444 2.444 0 1204.2 63.5 2126.5
Expt. 4.902 2.451 2.451d . . . 1224.49e 63.42e 2040.02e

4.890 2.445 2.445 f . . .

TSiso
DMBE II 2.401 2.771 2.771 89.46 1295.2 1840.5 1047.3i
DMBE I 2.399 2.768 2.768 89.58 1257.2 1873.3 1039.3i

SP2
DMBE II 2.478 5.511 5.511 795.35 1345.3 459.5i 546.5i
DMBE I 2.477 5.509 5.509 795.04 1354.4 453.3i 542.7i

TSvdW
DMBE II 2.470 7.249 7.249 755.80 1618.1 160.1 129.7i
DMBE I 2.470 7.247 7.247 756.09 1613.1 160.0 136.7i

Dcusp
3h

DMBE II 2.610 2.610 2.610 135.50 . . . . . . . . .
DMBE I 2.610 2.610 2.610 135.56 . . . . . . . . .

Ccusp
2v

DMBE II 2.620 2.604 2.604 135.18 . . . . . . . . .
DMBE I 2.615 2.606 2.606 135.31 . . . . . . . . .

aThis work. bRelative to the C3(
1Σ+

g ) global minimum. cRef. 50. dRef. 69. eRefs. 70 and 71. Separation between origin level and lowest vn = 1 level. f Mixed

theoretical/experimental approaches of Refs. 72 and 73.

T ′′II (R) = ∑
(i, j,k)

{
{1− tanh[β ′′(Ri−R′′01 )]}

{1− tanh[β ′′(R j−R′′02 )]}

{1− tanh[β ′′(Rk−R′′03 )]}
}
, (26)

and

T ′′′II (R) = ∑
(i, j,k)

{
{1− tanh[γ ′′′(Ri−R′′′01 )]}

{1− tanh[γ ′′′(R j−R′′′02 )]}

{1− tanh[γ ′′′(Rk−R′′′03 )]}
}
, (27)

where the summations in Eqs. (26) and (27) extend over all pos-
sible cyclic permutations of (1,2,3), and the symbols are defined
later in the text.

As remarked elsewhere,49,51,54 at the confluence point be-
tween the D3h and C2v crossing seams (or, in other words, at the
point where the three additional degeneracies coincide with the
central one), the conical nature of the intersection is lost with the
locus of degeneracy assuming the form of tangentially touching
parabolas rather than cones placed apex to apex.51 Thence, in
order mimic such topological feature, the JT-type coordinates of
Eqs. (22)-(24) have all been multiplied by a “non-JT” factor

FnJT (R) =1− exp
{
− ς [(R1−Rcp

0 )2 +(R2−Rcp
0 )2 +(R3−Rcp

0 )2]
}

(28)

where Rcp
0 = 2.885a0 is the bond length of the confluence point

predicted by the analytical function of Eq. (17) with ς = 1×
104 a0

−2 being the associated decaying parameter. Indeed, the

FnJT (R) term in Eq. (28) guarantees that any singularity on the
adiabatic PES due to

√
Γ2 is canceled out at such a point. Suffice

it to highlight that the ∆ coordinate [Eq. (19)] naturally vanishes
at the intersection node, since ρ0=0 [see Figures 3(c) and 3(d)],
∆′1=∆′2=∆′3= ||~p ′|| and hence, S2=S3=0; see Eqs (13-19).

The strategy employed for calibration of the V (3)
II,EHF(R) term in

Eq. (21) is similar to the one used for the DMBE I PES,50 and
we summarize next only the basic approach. Following usual
practice,60–63 the three-body EHF interaction energy for the ex-
tra set of 421 grid points was obtained by first removing, for a
given triatomic geometry, the one-body [V (1)] and the sum of the
two-body energy terms [V (2)(R)] from the corresponding ab initio
DMBE-SEC interaction energy [defined with respect to infinitely
separated C(3P) atoms]. One then subtracts the dynamical cor-
relation term [V (3)

dc (R)] from the total three-body energy. It is
the remaining energy so calculated that we adjust to the three-
body polynomial form V (3)

II,EHF(R). Note that the same procedure

has been adopted50 in the calibration of the V (3)
I,EHF(R) term in

Eq. (3) [previously denoted as V (3)
EHF(R)]. For the fit, a version

of the nonlinear Levenberg-Marquardt66,67 set of programs re-
ported by Press et al.68 has been used, with larger weights given
to the most important regions of the PES, including the stationary
points and the crossing geometries of D3h and C2v symmetry.

As a first step in the least-squares fitting procedure, the pa-
rameters of the V

′ (3)
II,EHF(R) component [Eq. (22)] have been kept

fixed (including the non-linear ones) to those values reported in
Ref. 50, while allowing all the coefficients of the V ′′(3)II,EHF(R) and

V ′′′(3)II,EHF(R) terms to vary (to these extra parameters, small initial
guesses have been assigned). Note that the non-linear coefficients
β ′′, γ ′′′ and ς of Eqs. (26), (27) and (28), respectively, have been

This journal is @ The Royal Society of Chemistry 2017 Phys. Chem. Chem. Phys. 1–13 | 7

DMBE II PES of ground-state C3 187



Paper PCCP

-5.0

-4.0

-3.0

-2.0

-1.0

0.0

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0

 

 

Q1=4.000 a0
Q1=4.180 a0
Q1=4.320 a0
Q1=4.520 a0
Q1=4.548 a0
Q1=4.576 a0
Q1=4.658 a0
Q1=4.749 a0
Q1=4.830 a0
Q1=4.928 a0
Q1=4.997 a0
Q1=5.005 a0
Q1=5.142 a0
Q1=5.280 a0
Q1=5.500 a0
Q1=5.750 a0

DMBE II

e
n
e
rg

y
/m

E
h

Q3/10−2a0

Fig. 6 Cross-sectional cuts of the DMBE II PES along Q3 [QQQb(Q1)=(0,Q3)] for different values of symmetric stretching coordinate Q1 (4.000a0 6Q1 65.750a0). The dots

indicate the DMBE-SEC points included in the fit of the present work. The energies are given with respect to the associated value at equilateral triangular geometries and

shifted by multiples of ±0.03mEh. Filled blue and red circles highlight the D3h and C2v crossing points, respectively.

selected by a trial-and-error fit where the total rmsd is minimized.
It should be emphasized at this point that the advantage of using
such a double set of polynomials is to guarantee the continuation
of the C2v disjoint seams as one moves way from the correspond-
ing MeX, an overall improvement over the DMBE I PES. Indeed,
the V ′′(3)II,EHF(R) and V ′′′(3)II,EHF(R) polynomials are centered at Q1 =

4.520a0 (R′′0 =2.610a0) and Q1 =5.750a0 (R′′′0 =3.320a0) with the
range-functions T ′′II (R) and T ′′′II (R) defined with respect to the as-
sociated C2v crossing geometries R′′01 =2.620a0, R′′02 =R′′03 =2.604a0

and R′′′01 =3.311a0, R′′′02 =R′′′03 =3.324a0, respectively.

Once a reasonable set of initial coefficients for the V ′′(3)II,EHF(R)

and V ′′′(3)II,EHF(R) terms have been generated, the second step con-
sisted of relaxing all involved parameters. It turns out that this
often yields solutions with unphysical features, notably in highly
repulsive regions of the PES and structures with C2v symmetries.
In fact, this behavior should be expected due to the added flexibil-
ity at such a narrow region of the configuration space.74 However,
a smooth PES could be obtained by performing a series of con-
strained optimizations in which blocks of coefficients are floated
while keeping the others fixed. Such a strategy was carried out
until chemical accuracy (4.07kJmol−1) was achieved. By employ-
ing such a procedure, all coefficients in Eqs. (22)-(24) [146 in
total: 134 cn

i jk, R′0, α ′, R′′0 , β ′′, R′′01 , R′′02 = R′′03 , R′′′0 , γ ′′′, R′′′01 ,
R′′′02 =R′′′03 , ς and Rcp

0 ] have been determined from a fit to the
1050 ab initio points; the optimal numerical values are given as
ESI. The quality of the current fit may be judged from its stratified
rmsd in Table 1. For comparison, we also give the corresponding
rmsd obtained in DMBE I.50 Accordingly, a good overall fit to the
ab initio points has been achieved for the whole PES, notably in
the regions containing the D3h and C2v crossing seams (typically,
135-490 kJmol−1 above the global minimum). As expected, the
novel PES exhibits a similar accuracy to DMBE I in describing
other relevant regions of the configuration space.

6 Features of the novel DMBE potential en-
ergy surface

The major features of the current DMBE PES are shown in Fig-
ures 6-10, while the properties of the stationary points and other
relevant structures are in Table 2. Clearly, our approach al-
lows an accurate description of both D3h and C2v crossings seams
over the entire range of nuclear configuration space, a signifi-
cant improvement over the previously reported PES.50 As Fig-
ure 6 shows, such a procedure has proven very effective in reduc-
ing the discrepancies between the ab initio data and the single-
sheeted DMBE form of Eq. (20) in the crossing regions. As
noted elsewhere51 and depicted in Figures 6 and 7, when the
size of the molecular triangle increases (i.e., from Q1 = 4.000a0

to Q1 . 4.997a0) the C2v disjoint seams approach the symmetry-
required D3h Ci almost linearly and ultimately coalesce with the
latter at Q1 = 4.997a0. In fact, as noted in section 5 and seen
from Figure 7(c), at such a confluence point the quadratic na-
ture of the PES is remarkable and the intersection appears to be a
Renner-Teller-like49,51 rather than a conical one. This is a result
of using the “non-JT” factor of Eq. (28) in the three-body terms
V
′ (3)
II,EHF(R), V ′′(3)II,EHF(R) and V ′′′(3)II,EHF(R) [Eqs. (22)-(24)]. Indeed,

as Figures 6 and 7 show, any further increase of the perimeter
leads to a rotation of the C2v seams by ±π in the (Q2,Q3)-plane,
thence becoming located at QQQb(Q1)=(0,−ρ0), (

√
3ρ0/2,ρ0/2) and

(−
√

3ρ0/2,ρ0/2).51 Clearly, this is accomplished by Eq. (13) with
the integer n being responsible for the shift of the disjoints seams
when passing the confluence point.

The seam space1 of D3h and C2v symmetries is best visualized
in Figure 8 which depicts the continuously connected points of
degeneracy for distinct values of Q1 and Q3, respectively. Also
shown are the ab initio crossing geometries highlighted in Fig-
ure 6 as well as those obtained in Ref. 50. Accordingly, the
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MeX for equilateral triangular arrangements (Dcusp
3h ) is predicted

to be located at R1 = R2 = R3 = 2.610a0 (Qcusp
1 = 4.520a0) and

lies 135.50kJmol−1 above the linear global minimum (referred
to as Min). As Table 2 shows, excellent agreement is found be-
tween such a structure and the one actually predicted from the
DMBE I PES. In turn, the MeX for C2v conformations (Ccusp

2v )
shows a characteristic bond lengths of R1=2.620a0 and R2=R3 =

2.604a0 [QQQb(Q
cusp
1 )=(0,0.013a0) with Qcusp

1 =4.520a0] which lies
135.18kJmol−1 higher in energy with respect to the Min structure.
Note that two other symmetry-related MeXs of C2v symmetry ex-
ist for similar cross-sections rotated by ±2π/3. Such structures
are predicted to be located at R2 = 2.620a0, R1 = R3 = 2.604a0

[QQQb(Q
cusp
1 ) = (0.011a0,−0.006a0)] and R3 = 2.620a0, R1 = R2 =

2.604a0 [QQQb(Q
cusp
1 )= (−0.011a0,−0.006a0)]. Suffice to say that

the Ccusp
2v structure here obtained is also in excellent agreement

with the corresponding MeX previously reported50 with bond
lengths and relative energy deviating by less than 0.005a0 and
−0.13kJmol−1, respectively; see Table 2. It should be pointed
out that the range of geometries here considered (4.000a06Q16

5.750a0 and −0.040a06Qi(i=2,3)60.040a0) is satisfactory to ac-
curately mimic the C2v disjoint seams at low-to-intermediate en-
ergy regimes of the adiabatic ground-state PES, typically up to
≈490kJmol−1 above the D∞h global minima; their validity range
gets drastically limited by the extrapolation capability of the Q1

3
function in Eq. (17) as well as the range-determining factors
T ′′II (R) and T ′′′II (R) [Eqs. (26)-(27)]. In fact, by decreasing the size
of the equilateral triangle (e.g., for Q1�4.000a0), highly repulsive
regions of the PES are accessible with both D3h and C2v cross-
ing geometries ultimately coalescing to the C(3P)+C(3P)+C(3P)
united-(Ar)-atom limit; see Figures 8 and 9. Of course, at such
regions of configuration space, the intrinsic accuracy of the ab
initio calculations themselves is expected to be poor. Conversely,
for Q1� 5.750a0, the D3h and C2v crossing geometries collapse
naturally into infinitely separated carbon atoms placed at the ver-
tices of equilateral and isosceles triangles, respectively.

The global topography of the current DMBE PES is summa-
rized in Figure 9 which shows the C2v insertion of a C atom into
C2. Also shown in panel (b) are close views of the crossing re-
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minimum energy crossing points at D3h and C2v symmetries, respectively.

gions illustrated in Figures 6-8, together with the corresponding
crossing geometries and representative degeneracy lines. Such a
plot rationalizes in a comprehensive way all the relevant details.
The most salient feature of Figure 9(a), already remarked else-
where,50,51,72,75,76 relates to the fact that the ground-state of C3

shows its global minimum at D∞h configurations with a charac-
teristic bond length of R1/2=R2 =R3 =2.444a0. Such a structure
matches the one predicted from the DMBE I PES with the har-
monic vibrational frequencies deviating by −0.3cm−1, −2.5cm−1

and−1.0cm−1 for the symmetric (w1), bending (w2) and antisym-
metric (w3) motions, respectively.

Note that the Min structure arises from structural JT+PJT
instabilities and distortions of the Dcusp

3h and Ccusp
2v MeXs to-

ward a valence angle φ > 60.0◦, with a stabilization energy of
135.18kJmol−1 (with respect to Ccusp

2v ). As seen from Figure 9(b),
if displacements toward φ < 60.0◦ take place, the title system
attains the saddle point TSiso with a stabilization energy of
46.04kJmol−1. Such a structure (visible as a minimum in the
2D plot of Figure 9) is therefore related to the isomerization be-
tween the three symmetry-equivalent C3 global minima and is
actually a transition state for pseudo-rotation.7–9 This is perhaps
best seen from the plot shown later in Figure 10. Note that, due
to large contributions of the quadratic JT vibronic coupling con-
stant GE ,51 the associated minima (Min) are shifted away from
the intersection region77 as can be seen from Figures 9(a) and
Figure 10. The classical barrier height for the isomerization pro-
cess is 89.46kJmol−1, which agrees well with the previously re-
ported barrier of50 89.58kJmol−1. Although the current PES pre-
dicts bond lengths and energy for TSiso in reasonable agreement
with the DMBE I form, the harmonic vibrational frequencies de-
viate by 38.0cm−1, −32.8cm−1 and 8.0icm−1 for the symmetric
(w1), bending (w2) and antisymmetric (w3) motions, respectively;
see Table 2. This is most likely due to the proximity of such sta-
tionary point to the locus of intersections [see Figure 9(b)] where
small discrepancies between the current and previous fit are ex-
pected to manifest. In contrast, as shown in Table 2, at regions
of configuration space far way from the crossing seams, namely
at regions of the PES dominated by long range interactions, the
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properties of the stationary structures SP2 and TSvdW are essen-
tially the same as predicted50 from DMBE I; for a detailed discus-
sion of all stationary structures and corresponding properties, see
Ref. 50. (Note that there is a misprint in Ref. 50 concerning the
subscript “vdW” in TSvdW, which stands for “van der Waals”.)

As seen from the inset of Figure 9(b), the novel DMBE PES here
obtained provides not only an improvement in the description of
the crossing region but also displays the expected sharp nature in
the vicinity of the D3h and C2v crossings seams. This is a result of
using the

√
Γ2 and ∆ coordinates. Because the present form guar-

antees by built-in construction the correct cusp behavior over an
extended region of the nuclear configuration space, one expects
that the net GP effect is largely suppressed for any path in the
(Q2,Q3)-plane that encircles the four singularity points. Obvi-
ously, no sign change is expected when looping around the con-
fluence point in pannel (c) of Figure 7. Note that, in view of
Figure 9, the intersection node corresponds to the point in config-
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uration space where the D3h and C2v intersection lines cross each
other: x=2.885a0 and y=

√
3x/2=2.498a0. Up to this point, the

C2v disjoint line lies below that of D3h symmetry, with the opposite
being the case for regions above it; see Figure 9(b).

The major topographical features of the DMBE II PES are best
viewed in a relaxed triangular plot78 using hyperspherical coor-
dinates:15 Q

β

γ

=

1 1 1
0
√

3 −
√

3
2 −1 −1


R2

1
R2

2
R2

3

 . (29)

By relaxing the “size” Q of the molecular triangle so as to mini-
mize the energy for fixed values of β and γ (or the “shape”), the
scaled β ? and γ? coordinates, plotted in Figure 10, are given by78

β
? = β/Q (30)

γ
? = γ/Q. (31)

As Figure 10(a) shows, all major topographical attributes of the
current PES can be perceived through a close inspection of the
line β ?=0 and γ? 6=0 (the C2v axis), with the associated symmetry-
equivalent structures obtained for similar cuts rotated by ±2π/3.
Note that linear geometries lie at the border of the physical cir-
cle, while the equilateral triangular conformation (D3h) is located
at the origin (β ?= 0 and γ?= 0). Also shown in panels (b) and
(c) are close views of the regions containing the three symmetry
equivalent transition states TSiso and MeXs, respectively. In addi-
tion to accurately reproducing the diatomic potentials, long-range
forces at all asymptotic channels and valence interactions over the

whole configuration space [already achieved by DMBE I50], the
novel DMBE II PES shows the correct topological behavior in the
vicinity of the MeXs; see Figure 10(c).

As shown in Figure 10(c), the minima of the C2v crossings lie
at ρ∗0 =0.008a0, where ρ∗0 is the (scaled-) radial polar coordinate
in the (β ?,γ?) plane. Thence, on this circle of radius ρ∗0 in such a
2D plane, the four MeXs are uniquely defined by the coordinates
(0,0), (0,ρ∗0 ), (−

√
3ρ∗0/2,−ρ∗0/2) and (

√
3ρ∗0/2,−ρ∗0/2). Note that

the Ccusp
2v structures lie only 0.32kJmol−1 below the corresponding

MeX of D3h symmetry.
The probability of observing the GP effect (PGP) may be specu-

lated to be given by

PGP .
Aci

Atot
×100 = (ρ∗0 )

2×100 (32)

where Aci = π(ρ∗0 )
2 is the area of the circle defined by ρ∗0 , and

Atot =π(ρ∗)2 with ρ∗=1 the radius of the physical circle in Fig-
ure 10(a). For ground-state C3, this would yield PGP . 0.0064%,
thus implying a very small number of paths that may sign-flip the
electronic adiabatic wave function when looping an odd num-
ber of times the D3h Ci.51 In most adiabatic energy regimes, one
then expects the wave function to encircle the 4 Cis (classically,
if having an energy above the barrier for pseudo-rotation) or not
encircle any, which amounts basically to 100% of the cases.

7 Conclusions
A new single-sheeted DMBE II PES for ground-state C3(11A′) has
been reported. For this, we have suggested a form capable of
accurately modeling the three symmetry-equivalent C2v disjoint

This journal is @ The Royal Society of Chemistry 2017 Phys. Chem. Chem. Phys. 1–13 | 11
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seams, in addition to the symmetry-required D3h one, over the
full configuration space. The present formalism warrants by built-
in construction the confluence of the above crossings and the
change-in-phase of the C2v seams when the size of the molecu-
lar perimeter fluctuates. Up to 1050 ab initio energies have been
employed in the calibration procedure, of which 421 were used
to map the loci of intersection. The calculated energies have been
scaled to account for the incompleteness of the basis set and trun-
cation of the MRCI expansion and fitted analytically with chemi-
cal accuracy. The novel DMBE form is shown to accurately mimic
the region defined by the 4 Cis, while exhibiting attributes similar
to the ones predicted from the previously reported DMBE I PES
at regions away from the crossing seams. Despite focusing on
C3, the present approach should be applicable to any adiabatic
PES of X3-type systems experiencing similar topological effects,
in particular for so-called small linear parameter JT molecules.
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Energy-switching potential energy surfaces for ground-state C3
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Abstract

The multiple energy switching scheme [J. Chem. Phys. 119 (2003) 2596] is utilized to improve the potential energy surface
of C3 near its linear global minima by morphing it with Taylor-series expansions of Ahmed, Balint-Kurti and Western
[J. Chem. Phys. 121 (2004) 10041] and Schröder and Sebald [J. Chem. Phys. 144 (2016) 044307]. Near spectroscopic
accuracy is conveyed to the final global forms up to 4000 cm−1 above zero-point energy, while keeping unaltered all key
attributes of the original potential, namely the topology at conical intersections and dissociative channels. Both ES
forms are commended for spectroscopic and reaction dynamics.

Keywords: C3, potential energy surfaces, energy switching, rovibrational spectroscopy

1. Introduction

In principle, a global potential energy surface (PES)
is expected to reproduce experimental data at regions of
the nuclear configuration space where such information is
available, and behave in a physically reasonable manner
elsewhere (namely, at intermediate and long-range regions)
[1–4]. In practice, such a requirement is seldom fulfilled.
Despite all recent computational/methodological develop-
ments, the above problem still poses a challenge to both
ab initio theory and analytical modeling [5], particularly
if aiming at spectroscopic accuracy [6–9].

This led one of us [6] to suggest a simple, yet reliable,
scheme in which two potential forms [V1(R) and V2(R)]
optimal at distinct energy regimes can be merged together
and switched smoothly from one to the other as a function
of energy such that the final energy switching (ES) form
is accurate everywhere [6–9]. As usual, V1(R) is a double
many-body expansion (DMBE)-type [4, 10–12] function
or any global form that warrants a realistic description of
the whole surface including the location and well depth
of the potential minimum(a). In turn, V2(R) is a local-
type form that attains spectroscopic accuracy near such
minimum(a). The ES potential (VES) is then given by [6]

VES = f(∆E)V1(R) + [1− f(∆E)]V2(R), (1)

with

f(∆E) =
1

2
{1 + tanh[(γ0 + γ1∆Em)∆E]} , (2)

where ∆E = E−E0 is the displacement from some ref-
erence energy E0 at which V1(R) and V2(R) are equally

∗Corresponding author
Email address: varandas@uc.pt (A. J. C. Varandas)

reliable, and f(∆E) is a switching function that ensures
VES ≡ V2(R) for large negative energy displacements (at
the absolute minimum) and VES≡V1(R) for large positive
ones (at the atom-diatom dissociation limits). In turn, γi
(i=0, 1) are disposable parameters to be optimized for a
selected even power of m [6]. Clearly, VES benefits from
the advantages of both individual forms, while avoiding
their limitations [6–8]. The ES scheme has proved effec-
tive in obtaining spectroscopically accurate global PESs
for H2O [6–8, 13], H+

3 [14, 15] and also for systems such as
ArHCN [16], HO3 [17] and HeHCN [18].

Recently, Varandas suggested further refinements onto
the approach by introducing the multiple ES (MES) scheme
[9]. The novel methodology is particularly useful to convey
spectroscopic accuracy for systems in which the switching
from V2(R) to V1(R) takes place in a narrow energy win-
dow, as is the case for NO2(1

2A′) [9]. Accordingly, the ES
potential (V ′

ES) assumes the form [9]

V ′
ES = f ′

i . . . f
′
3f

′
2f

′
1 [V1(R)− V2(R)] + V2(R), (3)

with the switching functions f ′
i being defined by [9]

f ′
i(∆E′)=

{

exp
[

−βi

(

∆E′

0

∆E′+ξ
−1

)ni
]

if∆E′<∆E′
0

1 if∆E′≥∆E′
0.

(4)

In the above equation, ∆E′ =E−Emin is the energy dis-
placement with respect to the absolute minimum of the
global PES, while ∆E′

0 = E′
0−Emin measures the energy

difference between Emin and some cutoff energy E′
0 [9].

Typically, E′
0 can be judiciously chosen in such a way as

to keep unaltered some chosen topological feature of V1(R)
(e.g., a conical intersection [9]) or simply represent the en-
ergy threshold at which the Taylor-series-expansion-type
form V2(R) is valid. In turn, βi is a trial-and-error param-
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eter, ni is an even integer and ξ is a small number chosen
to avoid numerical overflows at E=Emin.

The present work is concerned with C3(1
1A′), an as-

trophysically relevant species that plays a central role in
the chemistry of cometary and interstellar atmospheres
[19]. Recently, the authors reported [20] an ab initio-based
global PES (DMBE I) for the ground electronic state of the
title species. A total of 629 ab initio energies calculated at
the multireference configuration interaction (MRCI) level
of theory and the aug-cc-pVTZ (AVTZ) [21] basis have
been employed. The input ab initio data have been there
also scaled to account for the incompleteness the one-
and N -electron basis via DMBE-scaled external correla-
tion (DMBE-SEC) method [22] and subsequently fitted
with a root mean square deviation (rmsd) of 4.14 kJmol−1

[20]. To judge the quality of the potential form so ob-
tained, exploratory rovibrational energy calculations have
been performed. As shown in the original paper [20], the
DMBE I PES reproduces the vibrational energy spectrum
of C3 with a rmsd of 50.4 cm−1 for 53 calculated levels up
to about 3000 cm−1 above zero point energy (ZPE) [20].
Most recently, the authors reported [23] a refined form
(DMBE II) which has been especially designed to properly
mimic the region defined by the 4 conical intersections in
the title molecule, which are due to combined Jahn-Teller
plus pseudo-Jahn-Teller [(E′ + A′

1) ⊗ e′] vibronic effects
[20, 23, 24]. For this, the ab initio data set was extended
to a total of 1050 grid points and least-squares fitted to
the DMBE II form with a rmsd of 4.07 kJmol−1.

As stated elsewhere [20], the above global PESs could
provide the required input for further improvements to
true spectroscopic accuracy via the ES scheme [6, 9]. Of
course, the first step toward such an approach consists
of selecting available local forms that fulfill the desired
requirements. As emphasized by van Order and Saykally
[19], the carbon trimer is one of the most well-characterized
nonrigid triatomics in existence and such a wealth of ex-
perimental and theoretical effort has been devoted in ob-
taining accurate near-equilibrium ground-state PESs for
the title species [25–29].

Of special relevance here is the local form due to Ahmed,
Balint-Kurti and Western (ABW) [28]. The authors em-
ployed internally contracted MRCI calculations including
the Davidson correction and a basis set of VTZ qual-
ity [21]. By using a total of 384 ab initio energies up
to 8000 cm−1 above the equilibrium geometry, they have
least-squares fitted the data to a Taylor-series-type expan-
sion with a rmsd of 13.2 cm−1. The ab initio surface so
obtained has subsequently been refined by fitting a few
of the potential coefficients to the experimental data. As
noted by the authors [28], the ground-state fit covers a
range of ≈8713 cm−1 above the ZPE level and reproduces
100 observed rovibrational levels to within 3 cm−1.

More recently, Schröder and Sebald (SS) [29] reported
a near-equilibrium ground-state PES for C3 employing a
composite approach. The potential has been calibrated
from ab initio data obtained at fc-CCSD(T*)-F12b/AV5Z

(“fc” stands for frozen core) level of theory [30]. The raw
ab initio energies have then been corrected additively hop-
ing to incorporate higher-order correlations (up to iterative
pentuples CCSDTQP [29]), core-core/core-valence effects
and also scalar relativistic contributions. All calculated
energies have been fitted to a polynomial form with a stan-
dard deviation of only 0.05 cm−1 [29]. It should be pointed
out that the work is primarily concerned with the low-lying
rotation-vibration energies obtained for J≤30 (where J is
the rotational angular momentum quantum number) and
a few vibrational term energies up to ≈ 3500 cm−1 above
the ZPE were reported. As shown by the authors [29],
these are reproduced to better than 1 cm−1.

In the present work, the ABW [28] and SS [29] local
forms are merged with the novel DMBE II PES [23] by
following Varandas’ [9] MES scheme [Eqs. (3) and (4)].
Inspired by the graphical abstract, the resulting ES po-
tentials will be called DMBE-II/ES/ABW and DMBE-
II/ES/SS, although we will remove“II” here for simplicity.

The plan of the paper is as follows. In section 2, we pro-
vide some aspects of the current ES methodology employed
for ground-state C3 and also show the main topographi-
cal features of the resulting ES potentials. The details of
the rovibrational energy calculations here performed are
described in section 3, while the results and discussion are
in section 4. Section 5 gathers the conclusions.

2. The ES potential energy surface

Since the ABW/SS [28, 29] and DMBE II [23] poten-
tials are exceptionally flat near the region defined by the
linear global minimum (Min) [see Figure 1], only a single
switching function f ′

1(∆E′)≡f ′(∆E′) with n1≡n=2 [see
Eqs. (3) and (4)] suffices to smoothly connect the above
PESs (for brevity, the corresponding functional forms will
not be given here, with the reader being addressed to the
original papers [23, 28, 29] for details). As usual, the β1≡β

parameter has been determined from the requirement that
V ′
ES should approach the accuracy of the original local

PESs in reproducing the rovibrational data (see later),
while avoiding the appearance of wrinkles at energies close
to E′

0 [9]. Such a procedure yielded β=12 and 15 for the
DMBE/ES/ABW and DMBE/ES/SS PESs, respectively.

The topographical features of the final ES PESs are de-
picted in Figures 1 and 2, together with the corresponding
local potentials. For comparison, in Figure 2, the near-
equilibrium PESs reported by Mladenović et al. (MSB)
[26] and Špirko et al. (SMJ) [27] are also shown; see Ta-
ble 1 to assess the structural parameters of the Min struc-
tures predicted from the potential forms here considered.
To warrant invariance with respect to permutation of the
C atoms, we have ensured that all sets of coordinates
[(R1,R2,R3), (R2,R3,R1), and (R3,R1,R2)] project onto
the valence coordinates (R1, R2 and φ) utilized by the
ABW and SS potential energy surfaces [28, 29].

Some comment is due on the determination of the cut-
off energies E′

0 in Eq. (4). Obviously, one wishes to keep
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Table 1: Structural parameters of the C3(1Σ
+
g ) global minima (Min structures) predicted from the ES and other potential forms.

Potential R1/a0 R2/a0 R3/a0 w1/cm
−1 w2/cm

−1 w3/cm
−1

DMBE/ES/ABWa 4.920 2.460 2.460 1214.5 64.6 2109.8
ABWb 4.920 2.460 2.460 1214.5 64.6 2109.8
DMBE/ES/SSa 4.890 2.445 2.445 1206.7 42.8 2101.3
SSc 4.890 2.445 2.445 1206.7 42.8 2101.3
DMBE IId 4.888 2.444 2.444 1203.9 61.0 2125.5
DMBE Ie 4.888 2.444 2.444 1204.2 63.5 2126.5
MSBf 4.906 2.453 2.453 1201.3 41.5 2098.2
SMJg 4.881 2.447 2.447 1195.6 32.2 2072.7
Expt. 4.902 2.451 2.451h 1224.49i 63.42i 2040.02i

4.890 2.445 2.445j

aThis work. bRef. 28. cRef. 29. dRef. 23. eRef. 20. fRef. 26. gRef. 27. hRef. 31. iRefs. 32 and 33. Separation between origin level and

lowest vn=1 level. jFrom mixed theoretical/experimental approaches of Refs. 29 and 34.

unaltered the original crossing seams with D3h and C2v

symmetries [20, 23, 24] which occur at an energy of ECi=
135.2 kJmol−1≈11302 cm−1 above the Min structure (ac-
tually the minimum energy crossing point of C2v symme-
try). Additionally, as seen in Figure 1(b) and (d), neither
the ABW nor the SS local representations properly de-
scribe the isomerization transition state TSiso located at
ETS=89.5 kJmol−1≈7482 cm−1 with respect to the global
minimum. Thence, we should warrant that the switching
from the ABW/SS to the DMBE II forms has already been
accomplished at such a limit. In fact, as shown in Figure 1,
the near-equilibrium forms show several spurious holes at
regions close to equilateral triangular conformations; see
the regions delimited by the magenta triangles.

As remarked by Ahmed et al. [28], geometries up to φ=
70◦ have been considered in their fit; thence fall into the
physically acceptable energy range (. 7400 cm−1). This
is the limit which we have used ourselves in determin-
ing E′

0. Regarding the SS potential [29], the range of ge-
ometries covered by the ab initio calculations are slightly
lower (up to φ=80◦) and we judged convenient to define
E′

0=6500 cm−1. Such energy limits are shown by the blue
dashed lines in Figures 1(a) and (c) as well as by black dot-
ted lines in the one-dimensional cuts depicted in Figure 2.
Note that Emin in Eq. (4) is set as the energy of the D∞h

global minimum with respect to the C2(a
3Πu)+C(

3P ) dis-
sociation channel (Emin=−0.2904Eh) with E being eval-
uated at the global DMBE II form.

3. Rovibrational calculations

The rovibrational energy calculations have been carried
out using the multidimensional discrete variable represen-
tation (DVR) method [36] as implemented in the DVR3D
and ROTLEV3 suite of programs of Tennyson and co-
workers [37]. All calculations employed orthogonal Jacobi
coordinates with the molecular body-fixed z-axis embed-
ded along r1 (this is the CC diatomic distance, r2 the C-CC
center-of-mass separation, and θ the included angle).

In setting the so-called finite basis representation (FBR)
[36], we have used Morse oscillator-like functions as ra-
dial vibrational basis whose parameters are summarized in
Table S1 of Supplementary Information (SI). For the an-
gular basis, (associated) Legendre polynomials have been
utilized [37]. With the above set of weighted orthogo-
nal polynomials and their associated Gaussian quadratures
(see Table S1 for the number of DVR pivots), the FBR-
to-DVR transformation (HDVR = THFBRT†) has been
accomplished by the so-called quadrature approximation
[36, 37] with the corresponding kinetic energy integrals
evaluated analytically prior to the transformation process.
The final solutions are obtained from a series of diagonal-
izations and truncations of the transformed Hamiltonian
(HDVR) occurring in the order r2 → r1 → θ. The energy
cutoff of E1D

max = 70000 cm−1 (the global minima are the
zero of the potentials) has been utilized for 1D problems
and solutions with eigenenergies ≤ E1D

max were then used
to construct 2D problems with maximum dimension of
1500. To built the final 3D matrix, such a dimension has
been increased to 2500. All calculations were restricted
to the levels reported in Ref. 28 for J ≤ 1. They cover a
range up to ≈ 8713 cm−1 above the corresponding ZPEs
and are here typically converged to within 0.1 cm−1 or
better. Excellent agreement (within 0.2 cm−1 or less) has
been found between the calculated levels and those re-
ported in the literature [28, 29]. For J = 1, the two-step
variational procedure of Tennyson and Sutcliffe [38] is em-
ployed. This uses the solutions of Coriolis decoupled “vi-
brational” problems (where the projection of J onto the
body fixed z-axis, k, is assumed to be a good quantum
number) as basis functions for the fully coupled rovibra-
tional one [38], both for even(e) and odd(f)-parities. Note
that we have not attempted to calculate rotational or l-
type doubling constants and hence, small discrepancies (up
to about 0.5 cm−1) between experimental band centers and
calculated data for J =1 should be expected (only f lev-
els are here reported). As stated in section 2 and seen in
Figure 1, the ABW and SS forms show several unphysical
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Figure 1: Relaxed triangular plots in hyperspherical coordinates [35] of the ground-state C3 PES. (a). DMBE/ES/ABW. Black solid lines
are equally spaced by 0.005 Eh, starting at −0.2904 Eh. Red and blue dashed lines are equally spaced by 0.001Eh, starting at 0.00067 Eh and
−0.0206 Eh, respectively. (b). ABW [28]. Contours are equally spaced by 0.005 Eh, starting at −0.2904Eh. (c). DMBE/ES/SS. Contours as
in (a). (d). SS [29]. Contours as in (b). In panels (a) and (c), the blue dashed lines define the associated cutoff energies (E′

0) in Eq. (4),
while the magenta triangles in panels (b) and (d) establish the limits beyond which the corresponding local potentials were delimited by a
high repulsive wall. Note that the ABW and SS PESs have been shifted by −0.2904Eh. See Refs. 20 and 23 for the stationary points.

features near D3h arrangements and therefore, the rovi-
brational calculations could only be attained by cutting
them with a high-energy wall near this region. The as-
sumed borderlines are highlighted by the colored triangles
in Figure 1(b) and (d).

4. Results and discussion

Table S2 of the SI shows the differences between the
observed (Gexpt.) [33, 39–45] and calculated vibrational

levels for the ES PESs and their associated local poten-
tials. Also shown, for comparison, are the corresponding
values from the DMBE I [20] and DMBE II [23] PESs as
well as those (when available) reported by Mladenović et

al. [26] and Špirko et al. [27]. As usual, all calculated
energy levels are assigned according to four approximate
quantum numbers (v1, v

l2
2 , v3), where v1, v2 and v3 refer to

symmetric, bending and antisymmetric vibrational modes,
respectively, and l2 is the vibrational angular momentum
quantum number. One should now comment on the assign-
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Figure 2: Cuts of the DMBE/ES/ABW [panels (a)-(d)], DMBE/ES/SS [panels (e)-(h)], DMBE II, and corresponding local potentials along
the symmetric stretching coordinate for fixed valence angles of φ=180◦, 135◦, 90◦ and 70◦.

ment process. Although automated approaches have been
successfully employed for triatomic molecules [46–48], the
relatively modest number of states here considered (100
levels) allowed us to perform such assignments by visual
inspection of the wave function plots (see Figure 5). How-
ever, for excited overtones (typically, levels > 6000 cm−1)
such an approach can become cumbersome (even for auto-
mated assignments) as the wave functions show complex
nodal structures. In fact, such intricate patterns of the
eigenfunctions are specially manifested in the global PESs
and can be attributed either to delocalization of the states
or presence of “junctions” particularly at regions where
the local and global forms mix together. Indeed, for the
most complicated cases, assignments have been done in
such a way as to minimize the discrepancies between the
calculated and observed data. Table 2 gathers the strat-
ified rmsds for all 100 calculated levels up to 9000 cm−1

(the last level is actually ≈8713 cm−1 above ZPE).
Clearly, the vibrational wave numbers calculated from

the ES potentials agree well with those obtained using
the corresponding local PESs up to 4000 cm−1 above ZPE
(this is best seen from the plots in Figures 3 and 4). As
seen, the DMBE/ES/ABW and DMBE/ES/SS potentials
show rmsds with respect to experimental term values of
8.2 and 13.2 cm−1, respectively. Indeed, Figure 2, shows
that the agreement between the ES and local forms is best
in this region. Unfortunately, as remarked elsewhere [7]
and clearly seen in Table 2, discrepancies quickly appear
with increasing energy. This is particularly true for the
DMBE/ES/ABW PES whose counterparts (the DMBE II
and ABW potentials) exhibit remarkable differences be-

tween themselves at some geometries [see Figure 2(c) and
Table 1]. In fact, Figure 1(a) shows the scars of their merg-
ing together, with the switching from one to the other
occurring in a more “severe” way. In contrast, for the
DMBE/ES/SS potential, the global and local constituents
differ only slightly from each other and hence such scars
are less marked. Actually, as Figure 2(e) depicts, the
DMBE II [23], SS [29], MSB [26] and SMJ [27] potentials
are practically indistinguishable at linear geometries (the
last three are hardly distinguishable in all plots shown)
and, apart from the SMJ PES [27], have essentially the
same equilibrium structures; Table 1. Suffice to add that
the experimentally-merged SMJ surface [27] has its equi-
librium configuration at non-linear geometries [R1=R2=
2.447 a0 and φ = 171.6◦] despite reproducing 207 vibra-
tional term values bellow 9000 cm−1 with a rmsd of 26 cm−1.

Of course, one would like to enhance the accuracy of
the global DMBE/ES potentials by bringing them into co-
incidence with the ABW or SS surfaces at regions where
they are physically acceptable. This might be achieved by
following two routes: (i) increasing the value of E′

0 and/or
(ii) the value of β in Eq. (4). The first cannot be con-
sidered due to spurious features arising in the local forms.
As for (ii), a few attempts have been done to improve the
DMBE/ES spectroscopies at higher energy strata by in-
creasing β. However, this leads to the appearance of more
marked scars, which may affect the smoothness of the re-
sulting forms close to E′

0. Afterall, a redution of 20 cm−1

or so in the final rmsd for levels up to 9000 cm−1 is al-
ready a significant asset of the ES approach which brings
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Table 2: Stratified rmsd (in cm−1) for the 100 calculated rovibrational energy levels (J≤1).

rmsd
Energya N b DMBE/ES/ABW ABW DMBE/ES/SS SS DMBE II DMBE I
1000 8 3.3 3.2 2.5 2.3 24.5 32.5
2000 17 3.3 2.8 7.3 6.9 38.9 41.8
3000 35 4.2 2.6 9.7 9.1 37.5 47.0
4000 49 8.2 2.7 13.2 11.1 40.1 48.1
5000 70 17.2 2.7 17.6 13.5 42.6 49.4
6000 83 18.0 3.0 19.8 13.4 42.2 49.0
7000 89 24.9 3.0 22.9 13.0 43.0 50.4
8000 94 26.4 2.9 27.4 12.9 44.5 52.1
9000 100 26.9 2.9 31.0 12.5 45.7 53.4

aUnits of energy are cm−1. Energy strata defined relative to the corresponding zero point energy level. bNumber of vibrational states up to

indicated energy range.

-150

-100

-50

0

50

100

0 1500 3000 4500 6000 7500 9000

DMBE/ES/ABW
DMBE II
ABW

o
b
s
−

c
a
lc

/c
m

−
1

wavenumber/cm−1

TSiso

Figure 3: Scatter plot of the errors between the observed and cal-
culated energy levels for the DMBE/ES/ABW, DMBE II and ABW
PESs as a function of the experimental band centers The vertical line
highlights the location of the isomerization transition state TSiso.
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Figure 4: As in Figure 3, but for the DMBE/ES/SS and SS PESs.

an unprecedented improvement over the global PES.
Naturally, the accuracy of the ES PESs hinges on the

quality of the corresponding local forms. Although not be-
ing spectroscopically accurate (rmsd≤1 cm−1), the ABW
[28] local PES is certainly the most reliable so far in repro-
ducing experimental rovibrational levels for ground-state
C3 at high energy regimes [49]. Recall that the lowest level
(0,00,0) of the ABW potential form has been treated [28]
as an adjustable parameter; see Table S2. Thence, as high-
lighted by the authors [28], the ZPE level (at 1728.1 cm−1

with respect to the bottom of the well) is artificial when
compared with the experimental value. A comment goes
also to the SS potential [28]. This is undoubtedly the best
purely ab initio local PES. However, one should bear in
mind that, despite significant improvements over the pre-
vious fully ab initio MSB form [26] in reproducing spec-
troscopic constants and term energies for the low-lying
states, some deficiencies remain, particularly in describing
excited bending overtones [the deviation here obtained for
the (0,180,0) state is as high as 17.6 cm−1]. Note that the
near-equilibrium PES of Mladenović et al. [26] is equally
reliable in reproducing experimental band centers and ro-
tational manifolds up to 3000 cm−1. Nevertheless, as noted
elsewhere [49], its behavior is increasingly erratic for levels
above such a limit.

As already noted, neither the ABW nor the SS near-
equilibrium forms describe the saddle point TSiso which is
responsible for the proper isomerization between the three
symmetry related C3(

1Σ+
g ) global minima [20, 23]. Al-

though such potentials adequately account for the large
amplitude vibrational motion in C3 at low-to-intermediate
energies, one should expect inadequacies related to the
proper delocalization of highly excited rovibrational eigen-
states lying close to or above the isomerization barrier. As
noted elsewhere [50] such effects are particularly relevant
in studying unimolecular reactions and intramolecular vi-
brational redistribution processes in floppy systems.

Figure 5 shows sample vibrational wave functions ob-
tained from the ES potentials and the corresponding local
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Figure 5: Contour plots of sample vibrational wave functions for J=0 calculated from the DMBE/ES/ABW [panels (a), (e) and (i)], ABW
[panels (b), (f) and (j)], DMBE/ES/SS [panels (c), (g) and (k)] and SS [panels (d), (h) and (l)] PESs at distinct energy regimes. Panels (a)-(d)
depict wave functions for the (1,120,0) and (e)-(h) for (1,240,1) levels. For comparison, panels (i)-(l), sample wave functions with similar
nodal structures in the energy range of 8000-8500 cm−1 above ZPE. Blue and red lines are for positive and negative contours, respectively.

forms at distinct energy regimes. Note that, in panels (i)-
(j), we did not attempt to make any assignments and only
wave functions with similar nodal structures (in the en-
ergy range of 8000-8500 cm−1 above the ZPE level) are
shown. Overall, for low-to-intermediate excitation ener-
gies, the vibrational wave functions so obtained from both
ES and local potentials exhibit quite close behavior; see
panels (a)-(f). However, as seen in Figure 5(g) and (h),
the eigenfunctions calculated from the DMBE/ES/SS and
SS PESs already exhibit a slightly distorted nodal struc-
ture with the former showing itself more disperse over the
nuclear configuration space. The very delocalized nature
of the vibrational wave functions can be best seen in the
plots shown in panels (i) and (k). In contrast to their AWB
or SS counterparts, these eigenfunctions can actually sur-
pass (or tunnel through) the potential barriers and delo-
calize themselves over all three symmetry related minima
at once. Indeed, the task of calculating accurately ener-
gies and wave functions for such high-lying states can be a

rather difficult one, particularly when these cover regions
of the nuclear configuration space at which crossings be-
tween surfaces are known to exist. At such regions, nonadi-
abatic effects are ubiquitous and therefore, the accuracy of
adiabatic calculations are somewhat limited. Specifically
for ground-state C3(1

1A′), it is fair to think that many of
the rovibrational states lying half-way between ZPE and
the conical intersections (5000 cm−1 above ZPE) are per-
turbed by interactions with the first excited 21A′ state
[20, 23, 24]. For this reason, we judge the present method-
ology and the results so obtained quite satisfactory. Of
course, one might struggle for a more accurate spectro-
scopic PES by employing an hybrid approach [9] through
which the Taylor-series-type expansions are refined (by fit-
ting experimental rovibrational data) once embedded in
the global DMBE PES. In so doing, we must bear in mind
that the final PESs will lie beyond the strict adiabatic ap-
proximation (as it is actually the case for the ABW form
[28]) since nonadiabatic effects are implicitly accounted.
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5. Conclusions

A simplified version of the multiple energy switching
scheme [9] is here utilized to improve the previously re-
ported DMBE II PES of ground-state C3 in the vicinity
of its linear global minima by morphing it with the best
Taylor-series expansions due to Ahmed et al. [28] and
Schröder and Sebald [29]. Near spectroscopic accuracy
is conveyed to both global forms up to about 4000 cm−1

above zero-point energy, while keeping unaltered all at-
tributes of the original DMBE II PES, namely atom-diatom
dissociation channels and the region defined by the 4 con-
ical intersections with the partner state of the same sym-
metry. Both forms so obtained are therefore commended
for both spectroscopic and reaction dynamics studies.
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A detailed survey of the major aspects of the C2,
C3 and C4 elemental carbon clusters is presented.
For the dimer, a summary of its current status is
addressed. For C3, the most recent results obtained in
our group are reviewed with special emphasis onto
the modeling of its potential energy surface (PES)
which is particularly complicated due to the presence
of multiple conical intersections. Regarding C4, the
most stable isomeric forms for both triplet and singlet
PESs and their possible interconversion pathways
are here examined afresh by means of high-level ab
initio calculations. The main strategies toward a global
modeling of the ground-state PES of triplet C4 have
also been discussed. Starting from an approximate
cluster expansion of the molecular potential that
utilizes previously reported function for C3, an
approximate four-body term has been calibrated
using accurate ab initio energies. The resulting fully
six-dimensional global DMBE form here reported
reproduces all known topographical aspects of the
title system as well as its linear-rhombic isomerization
path accurately and is, therefore, commended for both
spectroscopic and reaction dynamics studies.

1. Introduction and historical remarks
The study of pure carbon chains has fascinated chemists
and physicists over the years [1,2]. They were first
identified more than a century ago [3] in astrophysical
objects but still are today a topic of increasing interest.
Small Cn clusters play a major role in the chemistry
of carbon stars [4,5], comets [3,6], and interstellar
molecular clouds [7,8], while acting as building blocks
for formation of complex carbon-containing compounds
[9,10]. Besides such an astrophysical significance, Cn

chains can be chief intermediates in chemical vapor
deposition systems for production of carbon-rich thin
films [11], and be predominant species in terrestrial
sooting flames [1,2]. Their fascinating physicochemical
properties find justification on the exceptional bonding
flexibility of carbon as demonstrated by its unique ability
to form single, double, and triple (even speculations of
quadruple for C2(X

1Σ+
g ) [12–19]) bonds.

c© The Author(s) Published by the Royal Society. All rights reserved.
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The richness of the carbon chemistry is clearly evinced by the structural diversity of carbon
allotropes, which include [20] diamond, graphite, fullerenes [21], nanotubes [22], graphenes [23]
and other elusive periodic scaffolds [24], all with outstanding electronic, material or biological
properties. Elucidation of possible mechanisms for formation of such aggregates (i.e., their
evolution from linear to monocyclic/polycyclic rings to fullerene/cage-like structures) is only
attainable once the properties of their precursors (smallest clusters) have been clarified [25–29].

Small Cn clusters are highly reactive species which makes their experimental characterization
cumbersome [1,2]. On the other hand, the existence of several (nearly isoenergetic) isomers, a
high-density of low-lying singlet/triplet electronic states, and a significant multi-reference (MR)
character, makes their study theoretically challenging [30–39]. Clearly, a detailed knowledge of
the structure and energetics of such species requires a faithful interplay between state-of-the-art
experimental techniques and high-level ab initio calculations.

Most of the our knowledge on the title molecules began with the seminal work of Pitzer and
Clementi [40]. They first recognized that linear Cn molecules are low energy isomeric forms
with odd- and even-numbered chains (for n>2) attaining 1Σ+

g and 3Σ−
g ground electronic

states, respectively. Typically, for such systems, cumulenic structures ( C––C····C––C ) are lower
in energy than acetylenic ( C–––C–C····C–––C ) bonding configurations [1,2,40,41]. More recently,
supported by ab initio calculations, low-lying monocyclic isomers have also been conjectured as
being isoenergetic or even more stable than linear arrangements [25–29,39]. In this work, we
survey the current status on the smallest clusters (C2, C3 and C4) but keeping the focal point
on the trimer and tetramer. For C3, we review our recent work in section 2, while in section 3(a)
high-level ab initio calculations are reported anew for C4. A global 6D potential energy surface
(PES; see Glossary at end of the paper for all acronyms) of ground-state tripletC4 is also provided
for the first time in section 3(b).

(a) The carbon dimer: the best studied carbon cluster

The most abundant molecules in carbon vapor produced by laser vaporization of graphite
are C2 and C3 [42–44], with the former being widely quoted as important stacking sub-units
during formation (growth) of medium to large-sized fullerenes [45]. Their spectroscopy has been
extensively studied over the years,making them by far the best characterized carbon clusters [1,2].

As first observed by Wollaston [46] and Swan [47], C2 is responsible for the blue
glow emanating from hydrocarbon flames. These well-known d 3Πg–a 3Πu Swan bands (the
spectroscopic notation employed throughout is the updated one [48]) at 19380.1 cm−1 have long
been recognized in cometary spectra [49]. Despite previous knowledge of the Phillips (A 1Πu–
X 1Σ+

g ) and Mulliken (D 1Σ+
u –X 1Σ+

g ) bands involving singlet states [50], the prominence
of the Swan emission/absorption features in the laboratory and astrophysical sources led to
consider a 3Πu as the ground state of C2. This changed with Ballik and Ramsay in 1959 [50]
during investigations of the b 3Σ−

g –a 3Πu system (so-called Ballik-Ramsay band). They observed
perturbations in the rotational levels of the 3Σ−

g state which were attributed to the presence of
a neighboring singlet state. From the analysis of the spectral lines, the authors first confirmed
that 1Σ+

g is the ground state of the carbon dimer. In fact, it lies only 603.8 cm−1 below the a 3Πu

state [48]. Later on, several other singlet, triplet, quintet and intercombination band systems of
the carbon dimer have been reported in the literature [1,2,48,51]. At present, C2 has a total of
23 identified band systems, covering the spectral range 0-55000 cm−1, and 21 spectroscopically
characterized electronic states; see Refs. 1, 2, 51, and 48 for a review. Guided by this well-known
and rich rovibronic line list, the identificationC2 was made possible in a plethora of astrophysical
sources, including carbon stars, comets, interstellar medium, and the sun [1,2,48]. Such a wealth
of spectroscopic information has been recently utilized [48] to obtain highly accurate partition
functions and thermodynamic data of C2 up to 4000K.

The first theoretical work on carbon dimer dates back to 1939 by Mulliken [52]. Using known
experimental information on C2, molecular orbital arguments and an empirical formula for
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estimating internuclear distances (R0), he predicted mean relative energies and R0 values for
various low-lying states. Besides assigning the observed band system at 43239.8 cm−1 due to
1Σ+

u –1Σ+
g transition (now known under his name), Mulliken commented on the possibility that

1Σ+
g could be the “normal state” of carbon dimer. Apart from the pioneering semiempirical work

of Araki et al. [53], the first VB calculations on C2 were performed by Clementi and Pitzer [54].
The authors expanded the wave functions of the six lowest states arising from 2σ2

g2σ
2
u1π

4
u (1Σ+

g ),
2σ2

g2σ
2
u1π

3
u3σ

1
g (3Πu, 1Πu) and 2σ2

g2σ
2
u1π

2
u3σ

2
g (3Σ−

g , 1∆g , 1Σ+
g ) valence configurations in terms

of covalent, ionic and double-ionic components whose contributions have been variationally
determined. Although the results agreed reasonably with the experimental data at that time (the
3Πu curve turned out to be lowest in energy), the authors recognized the need of a more refined
theory to fully understand the inherent complexities of the system. Read and Vanderslice were
the first to report PECs of C2 using the RKR method [55]. Based on the findings of Ballik and
Ramsay [50] concerning the true ground state of the system, the authors also tentatively calculated
dissociation energies for the 9 upper-lying electronic states [55]. To our knowledge, the first purely
ab initio calculations performed on the dimer are due to Fraga [56], Fougere [57] and Kirby [58]
using CI wave functions with Slater-type orbitals. In the most complete work in these series, Kirby
and Liu reported PECs for 62 valence states of C2, including 28 singlets, 28 triplets, and 6 quintets
that correlate with carbon atoms in their 3P , 1D and 1S states [58]. Such calculations rendered
the identification of 19 possible bound states not yet observed experimentally at that time
together with the determination of their spectroscopic constants. In turn, Watts and Bartlett [59]
performed CCSD(T) calculations with several Dunning’s correlation consistent basis sets [60,61].
The discrepancies found in the prediction of the 1Σ+

g /3Πu energy splittings have been attributed
to the strong MR character of ground-state. Such aspect has previously been emphasized by
Bauschlicher and Langhoff [62] by means of CASSCF and MRCI calculations.

Since then, C2 has been the subject of extensive ab initio MRCI [30–32,63–71], full CI [72,73],
quantum Monte Carlo [74] and explicit correlated MR [75] calculations aiming at obtaining
accurate analytic representations of the various PECs (and their avoided crossings [30–32]),
electronic excitation energies, dissociation energies and expectroscopic parameters. Note that
these latter approaches frequently rely on extrapolations to the one- and/or N -electron basis
sets, core and core-valence correlation contributions, and also relativistic corrections. As argued
several times [72–75], the presence of various low-lying excited electronic states and its unusual
bonding behavior makes C2 a notoriously challenging benchmark test for quantum chemical
methods. Recently, with the aid of high-level MR calculations and state-of-the-art experimental
techniques, Krechkivska et al. reported the existence of novel 4 3Πg–a 3Πu [69] and 3 3Πg–a 3Πu

[71] systems (referred to as Krechkivska-Schmidt bands) and provided an accurate value for the
carbon dimer ionization energy [70].

C2(X
1Σ+

g ) is one of the most strongly bonded diatomic molecule in nature [14,18,19]. Besides
being the simplest possible carbon cluster, its bonding has eluded chemists over the years and
continues to render extensive debate [12–19]. The simple assumption of a 2σ2

g2σ
2
u1π

4
u valence

configuration and molecular orbital arguments would suggest a bond order of two [52] ( C––C ),
while qualitative VB considerations (e.g., assuming two sp-hybridized carbons) yield a triply-
bonded species, C–––C [12]. Recently, using high-level VB calculations, Shaik and co-workers
[13,14,18,19] proposed the existence of a fourth σ-bond on ground-state C2 (first contemplated
by Mulliken [52] and Schleyer et al. [76] for excited states). It arises from the interactions between

the “residual” singlet odd pair, pointing outwards on the sp hybrids, i.e., C−−−C . This additional
“inverted” bond would contribute ≈70-90 kJmol−1 to the overall interaction. This has been
disputed [15–18], with no consensus yet reached about the C2 bonding nature.

(b) The carbon trimer

The smallest cluster capable of forming cyclic structures is C3. Its well-known Ã 1Πu–X̃ 1Σ+
g

emission spectrumwas first recordedbyHuggins in 1881, while investigating unknown cometary
emission features near 24675.6 cm−1 [3]. These so-called Swings emission bands [1] were first
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reproduced in laboratory by Herzberg [77]. Although the emitter was initially thought to be CH2

[77], the unambiguous assignment to linear C3 is due to Douglas [78] and Gausset et al. [79,80],
who performed spectroscopic investigations on discharges through 13C-substituted methane and
flash photolysis of diazomethane, respectively. From the high resolution spectra, Gausset et al. first
emphasized the unusual low bending frequency of l-C3(X̃

1Σ+
g )with ν2≈63 cm−1 as well as the

strong RT vibronic interactions of the excited l-C3(Ã
1Πu). Such features are responsible for the

observed intricate vibrational spectrum [79,80]. Several gas-phase and matrix studies of C3 have
subsequently been devoted to its spectroscopic characterization, resulting in the assignment of
the most ground and upper state vibrational frequencies of the Ã1Πu–X̃1Σ+

g band [81–85] and
the discovery of a low-lying triplet electronic state manifold [86–88]. In fact, the carbon trimer is
perhaps one of the best characterized nonrigid triatomics in existence [2,89].

C3 has been observed in a wide range of astrophysical sources [90,91], including circumstellar
shells of carbon stars [4,92,93], interstellar molecular clouds [7,94–96], and comets [3,92]. Its mid-
IR spectrum (ν3 antisymmetric stretching mode) was measured in the circumstellar envelope of
the C-rich star IRC+10216 by Hinkle et al. [4], and the far-IR one (ν2) detected in the direction
of Sgr B2 by Cernicharo et al. [92] The abundance of C3 were determined in translucent clouds
by Maier et al. [95], Roueff et al. [96] and Oka et al. [90] through its Swings’ electronic transition.
As the most abundant small pure carbon molecule in the interstellar medium, C3 along with C2

are key to formation of more complex carbon clusters, long-chain cyanopolyynes, carbon dust
and polycyclic aromatic hydrocarbons [1,2]. In addition to its astrophysical importance, it is the
predominant carbon cluster in equilibrium hot carbon vapor [2,42,44], hydrocarbon flames [1,2],
and plasmas generated through energetic processing of carbon-containing materials [2,97,98].

The relevance of C3 in space as well as in terrestrial sooting flames and combustion processes
has motivated many theoretical [34–36,40,99–117] studies both in the ground and low-lying
excited singlet and triplet electronic manifolds [33,114,118]. In particular, much effort has been
devoted to obtain local (near-equilibrium) ground-state PESs [119] with a view to explore its
quasi-linearity and unusual large amplitude bending motions.

Early ab initio SCF studies due to Pitzer and Clementi et al. [40,99,100] agree on an electronic
structure of the form C––C––C with C3 assumed linear. Hoffmann [101] reported extended
Hückel calculations and predicted it to be nonlinear with an equilibrium CCC bond angle of
≈160◦ and a barrier to linearity of only ≈63cm−1. Motivated by the discrepancies found in
the calculated and experimental entropy values of C3 as well as the proposition by Gausset
and co-workers that the molecule could be quasi-linear, Liskow et al. [102] have subsequently
performed SCF and CI studies. They highlighted for the first time the unusual bending potential
of C3 as well as the importance of adding d functions to the basis set. In turn, Perić-Radić and
co-workers [103] used MRCI calculations and a double-ζ-plus-polarization basis set to report
curves for the symmetric, bending and antisymmetric stretching of the ground and first excited
1,3Πu trimeric states. The strong RT vibronic interactions to which the Πu states are subjected
was pointed out for the first time [103]. To the best of our knowledge, the first global PES
for the ground state of C3(1

1A′) has been reported by Carter, Mills and Murrell [105]. The
authors employed the MBE [105,119,120] formalism jointly with the experimentally determined
force field of Gausset et al. and 40 ab initio energies [102,104] to obtain an analytic form that
exactly reproduces an early experimental heat of formation, geometry, and force constants of l-
C3(X̃

1Σ+
g ). Additionally, other relevant topographical attributes such as theC2v transition-states

for isomerization between the three equivalent symmetry-relatedminima are described, as well as
an accurate characterization of the adiabatic atom+diatom asymptotic limits, C2(a

3Πu)+C(3P )

[105–107,119].
Following a previous observation due to Liskow et al. that ground-state l-C3 correlates

with an 1E′ term at equilateral triangular geometries, Whiteside et al. [121] used MP4SDQ/6-
31G*//HF/6-31G* to understand the JT nature of the PES. They noted for the first time that
both C2v transition-state and linear minimum arise from JT distortions of the D3h structure;
the corresponding isomerization barrier was predicted to be about 125.1 kJmol−1. Additionally,
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they have pointed out that a triplet 3A′
2 term arises from the e′2 valence configuration, with its

minimum occurring at equilateral triangular geometries.
Kraemer et al. [108] using CISD(Q) and a triple-ζ-plus-polarization basis set reported a local

PES which has been expressed as a force field expansion. Its minimum shows the C3 radical as
a bent species with an equilibrium bond angle of ∼ 162 ◦ and a barrier to linearity of 21 cm−1.
The results suggested C3 to be quasi-linear. Such a finding was reinforced by Jensen [109] who
used the MORBID Hamiltonian [122] along with experimentally determined bend-stretch term
values to obtain an analytic PES for the ground electronic state of C3 [109]. These earlier PESs
were soon superseded by ab initio ones from CASSCF calculations [110,111] which suggested C3

to be non-quasi-linear but possessing an exceptionally flat bending potential.
Mladenović et al. [113] published an extensive theoretical study of C3 based on SR CCSD(T)

calculations and a basis set of near AVQZ quality. An analytical local PES has also been calibrated
from a total of 108 ab initio energies up to about 3000 cm−1 above the equilibrium geometry
by least-squares fitting a Taylor-series-type expansion. With a rmsd of ∼ 2 cm−1, such a form
reproduces the rovibrational spectrum of C3 within 8 cm−1 up to the specified energy range.

Ahmed, Balint-Kurti and Western (ABW) [34] and Saha et al. [114] employed MRCI(Q)
calculations with the VTZ basis set to model local near-equilibrium PESs for both the ground
and excited Ã 1Πu and D̃ 1∆g electronic states of the C3 trimer, with the fitted parameters
subsequently altered tomimic the experimental data. From these studies, important features were
highlighted such as strong RT vibronic interactions for the Π and ∆ excited states as well as the
presence of a symmetry-required Ci between the ground and first excited singlet states of C3 at
D3h geometries. Suffice to add that a total of 384 ab initio energies up to 8000 cm−1 above the
equilibrium geometry has been employed to fit the ABW Taylor-series expansion for the ground
state, which shows a rmsd of 13.2 cm−1. As noted by the authors, their fit covers a range of
≈8713 cm−1 above ZPE and mimics 100 rovibrational levels within 3 cm−1. Note that the purely
ab initio PES shows a rmsd of about 61.6 cm−1 for the same levels.

Schröder and Sebald (SS) [115] reported a local PES for C3 employing a quantum mechanical
composite approach. Their form was obtained from fc-CCSD(T*)-F12b/AV5Z calculations, with
the raw ab initio energies corrected additively such as to approximate higher-order correlations,
core-core/core-valence effects and also scalar relativistic contributions. All calculated points were
then fitted by a polynomial form with a standard deviation of 0.05 cm−1 [115]. From it, low-lying
rotation-vibration energies for J≤30 and a few vibrational term energies up to≈3500 cm−1 above
ZPE have been reported, and shown to agree within 1 cm−1 with the observed values.

In Ref. 35, we have reported the first purely ab initio-based global PES for C3(1
1A′) [known as

DMBE I]. A total of 629 ab initio energies at MRCI/AVTZ level of theory have been employed
to calibrate a DMBE [123–125] form. To account for the incompleteness of the basis set and
truncation of the MRCI expansion, all calculated external correlation energies have been scaled
prior to calibration via DMBE-SEC method [126], and fitted with a rmsd of 4.1 kJmol−1 [35]. In
this study, we outlined for the first time the existence of three symmetry-equivalent C2v crossing
seams in close proximity to the symmetry-required D3h Ci. Because a third electronic state of
1A′ symmetry (11A′

1 in D3h) comes quite close in energy to the pair of intersecting states (11E′

in D3h) near D3h arrangements [36], such unusual topographical attributes have been ascribed
to combined JT+PJT vibronic effects [(E′ + A′

1)⊗ e′] with the proper cusped behavior modeled
accordingly [127,128]. Exploratory rovibrational energy calculations have also been performed,
and the DMBE I form shown to reproduce the vibrational energy spectrum of C3 with a rmsd of
50.4 cm−1 for 53 calculated levels up to about 3000 cm−1 above ZPE [35]. The combined JT+PJT
problem in C3 has been further exploited by us [36] with intriguing results. We will come to it
later on section 2, where other recent results form our group are also discussed for C3.

(c) The carbon tetramer

The existence of two low-lying isomeric structures of C4 is widely accepted: the cumulenic
linear chain [l-C4(

3Σ−
g )], and the bicyclic rhombic [r-C4(

1Ag)] structures [37,38,129–141]. Along

Cn (n=2-4): current status 209



6

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.
A

0000000
..................................................................

with C2 and C3, the title species is likely an important molecule in astrophysics and an abundant
one in carbon-rich stars as well as interstellar molecular clouds [8,9]. Cernicharo et al. [8] reported
a pattern of bands at 173.9 cm−1 observed in Sgr B2, IRC+10216, CRL 618, CRL 2688 and NGC
7027 which was tentatively assigned to the ν5 cis-bending mode of l-C4(

3Σ−
g ). Motivated by

the observation of C3 in interstellar clouds [95], Maier et al. [142] were the first to attempt the
detection of l-C4(

3Σ−
g ) in the ζ Ophiuchi star by measuring the origin bands of its well-known

electronic transitions 3Σ−
u –3Σ−

g at 26384.9 cm−1 [143]. Unfortunately, as stated by the authors
[142], such a detection has not been pursued. Triplet C4 has been first observed experimentally
byWeltner et al. [144] and Graham et al. [145] using IR and electron spin resonance spectroscopy of
graphite vapor trapped in inert-gas matrices. Heath and Saykally [146] first characterized such a
species in gas phase through its antisymmetric CC stretching fundamental (ν3) at 1548.9 cm−1

by means of tunable IR diode laser spectroscopy. Subsequently, Moazzen-Ahmadi et al. [147]
revisited the rotational constant for the ν3 mode. From this parameter and the associated averaged
C––C bond length (≈2.458 a0) [147], triplet C4 was confirmed to be linear with a cumulenic
structure [2,147]. A wealth of other experimental efforts have been done to characterize the title
species [2,8,140,148,149]. As noted by Senent et al. [140], relatively large errors affect other modes
besides the ν3 fundamental, which makes a definitive assignment of l-C4 in interstellar bands
a rather difficult task. Apart from the linear isomer, experimental evidence for r-C4(

1Ag) was
reported with the Coulomb explosion imaging technique [150–152]. Kella et al. [152], observed
three distinct photodetachment wavelengths, and conjectured the existence of a third 3D isomer
which has been attributed to a tetrahedral structure. However, this has not been supported
by any other experimental or theoretical evidence [38,140]. More recently, Blanksby et al. [138]
performed mass spectrometric studies on isotopically labeled C−

4 . Upon neutralization of the
incident anions and based on the peak abundances of the spectra so obtained, they reported
evidence of isotopic scrambling of both singlet (1Σ+

g ) and triplet (3Σ−
g ) neutral l-C4 due to

formation of the corresponding rhombic isomers [138].
C4 has also been the subject of many theoretical studies [37,38,40,41,129–141], starting with

the pioneering ab initio SCF calculations of Clementi [41]. To our knowledge and apart from
semiempirical MINDO/2 studies of Slanina and Zahradnik [153], the first correlated ab initio

calculations of the relative energies of l-C4(
3Σ−

g ) and r-C4(
1Ag) are due toWhiteside et al. [129] at

MP4SDQ/6-31G*//HF/6-31G* level of theory. They have predicted the singlet rhombic structure
to be 2.9 kJmol−1 more stable than the linear chain, and hence the ground state of C4. The same
authors further highlighted the existence of a C2v planar isomeric form (a capped triangle) on the
singlet PES which was found to lie ∼ 123.4 kJmol−1 above the r-C4(

1Ag) [129]. Subsequent ab
initio studies by Magers et al. [130], Bernholdt et al. [133], Martin et al. [136] and Watts et al. [137]
employing the CC method, as well as CI calculations by Ritchie et al. [131] and Pacchioni et
al. [132], have indicated the two isomers to be essentially isoenergetic, with the linear-rhombic
energy difference being extremely sensitive to the basis set and correlation treatment [136,137].
In turn, Parasuk and Almöf [37] performed MRCI calculations using CAS wave functions as
reference and ANO-type basis sets. At the highest level of theory, i.e., 16-electron MRCI in a
(13s8p4d)/[5s4p2d] ANO basis, with 5 dominant configurations in the CAS(10,10) wave function
being included in the reference set [37], l-C4(

3Σ−
g )was predicted to be the ground-state structure

with a stabilization energy of ∼ 6.8 kJmol−1 with respect to the 1Ag state. Motivated by earlier
experimental results of Cheung and Graham [154] who conjectured the existence of tripletC4 as a
bent structure, Parasuk and Almöf [37] investigated the PES of l-C4(

3Σ−
g ) along the cis (ν5)- and

trans (ν4)-bending modes whose frequencies have been estimated to be 211.0 and 428.0 cm−1 in
the same order. In contrast to the floppy nature of C3 [35,116,117], the authors were the first to
point out the stiffness of the bending potential of C4, thence refuting any evidence for a bent
structure in the gas phase [37]. In an attempt to assign some of the unknown transitions in the IR
spectrum of carbon clusters trapped in Armatrices [144], Martin et al. [135,136,155] suggested that
the observed band at 1284 cm−1 was due to the ν6 mode of r-C4(

1Ag). Subsequently, the authors
[155] computed a QFF for such a species using 116 CCSD(T) energies with a VTZ basis [60,61].

210 Cn (n=2-4): current status
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Their best ν6 estimate (including the strong Fermi resonance with the ν3+ν5 combination band)
was 1320± 10 cm−1, thence casting doubts on Martin’s earlier statement [135,136,155]. As noted
by the authors themselves [155], the correct assignment would then imply an unusual largematrix
red shift in argon. Recently,Massó et al. [38] performedMRCI(Q)/VTZ calculations onC4 keeping
all configurations with coefficients larger than 0.03 in the CAS(8,12) wave function as the reference
set. The results so obtained have shown l-C4(

3Σ−
g ) to be favored by about 100.7 kJmol−1 over r-

C4(
1Ag), thus supporting the general trend that the linear triplet structure is the most stable form

in MRCI calculations [37,38,132]. Besides various structural parameters of both singlet and triplet
PESs, the authors evaluated isomerization pathways between such forms and reported other low-
lying excited singlet, triplet and quintet electronic states [38]. To determine new spectroscopic
parameters for C4 and attempt a definitive assignment of the astrophysical band observed by
Cernicharo et al. [8], Senent et al. [140] reported local PESs for both l-C4(

3Σ−
g ) and r-C4(

1Ag)

isomers using about 1050 non-redundant energies calculated at MRCI(Q)/VTZ level [38]. The
ab initio data so obtained has then been least squares fitted to a Taylor series expansion with a
rmsd of 43 cm−1, with spectroscopic parameters determined by standard vibrational perturbation
theory (VPT2) [140]. Most recently, Wang et al. [141] reported a new QFF PES for r-C4(

1Ag)

by fitting 255 CCSD(T)/CV5Z energies. A local PES covering a wider range of geometries has
also been obtained using 2914 grid points at CCSD(T)-F12b/AVTZ level of theory, and updated
sets of spectroscopic parameters reported for the rhombic isomer using VPT2 and vibrational
configuration interaction calculations [141].

Despite the immense theoretical work done on C4 [37,38,40,41,129–141,143], it is clear from
such studies that only some very limited portions of the PES are well understood, namely regions
close to the l-C4(

3Σ−
g ) and r-C4(

1Ag)minima. While knowledge of structural and spectroscopic
parameters as well as the energetics are key for the identification of C4 [especially, r-C4(

1Ag)] in
experimental analysis and astrophysical sources, many other important issues remain to assess.
Of particular relevance is the determination of other stable (or even transient) isomeric forms and
their interconversion pathways, which provide valuable information for understanding reactive
collision processes and formation of Cn clusters in the interstellar medium [9]. In view of the
above, we report new results onC4 in section 3. By exploring the isomerization pathways between
linear and rhombic structures on both singlet and triplet PESs, several other isomers of this species
are unraveled, some reported for the first time. Based on the results so obtained and the many-
body expansion, an approximate four-body term will be calibrated using high-level ab initio data
and hence a global 6D PES for triplet C4.

2. Further on carbon trimer

(a) Electronic structure

Figure 1 shows the optimized bending potential for ground- and low-lying excited singlet states
of C3 at MRCI/AVTZ//CASSCF/AVTZ level of theory [35]. Note that for acute ∠CCC angles
(<30◦), the optimization process leads naturally to the asymptotic channels, as the optimum bond
length corresponds to widely separated atom+diatom fragments. As first pointed out by Murrell
and coworkers [105–107,119], the ground state of C3 does not dissociate adiabatically to ground-
state fragments [C2(X

1Σ+
g ) + C(3P )], inasmuch as either C2 or C must be on an excited state

to satisfy the spin-spatial Wigner-Witmer correlation rules [156,157]; see section 2(d). As Figure 1
shows, all degenerate excited states at linear geometries (Ã 1Πu, B̃′ 1∆u, C̃ 1Πg, D̃ 1∆g, etc) are
subjected to strong RT vibronic interactions which are manifested as splittings into symmetric
(A′) and antisymmetric (A′′) components as the molecule bends. Such electronic excited states
show also numerous crossings between themselves for bending angles smaller than 140◦. These
are indicated by the symbol “×” in Figure 1. However, an appreciable gap (up to 377 kJmol−1)
is visible between the excited and ground-states for ∠CCC≥100◦. Note that the B̃ 1Σ−

u and
B̃′ 1∆u states are close in energy, with the former predicted from our ab initio calculations to be
≈1.2 kJmol−1 more stable than the latter. As indicated by Ahmed et al. [34] and Saha et al. [114]
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Figure 1. Optimized bending potentials for C3 at MRCI/AVTZ//FVCAS/AVTZ level of theory as a function of

the ∠CCC angle. Shown in the key are the irreducible representations in C2v symmetry for each state, and

correlations within the Cs point group. Also shown are the associated correlations for linear geometries in D∞h

symmetry, and corresponding dissociation limits. Cis are indicated by the symbol “×”. Energies are given with

respect to the global minimum of C3 of D∞h symmetry.

such energetic proximity (near degeneracy) is expected to be of the same order of magnitude
as the accuracy of the ab initio calculations themselves, and therefore a proper examination of
their relative stability requires a higher level of theory. Recall [34,79,80,114] that the ground
state bending potential is exceptionally flat, and hence large amplitude bending vibrations are
expected: only 25.8 kJmol−1 are required to bend C3 up to ∠CCC=90◦.

A region that deserves attention refers to near equilateral triangular geometries (∠CCC=60◦).
As we have first noted [35,36], the C3 PES shows there intriguing topographical attributes
(highlighted in Figure 1 by the shaded square): rather than a single symmetry-dictated Ci, a
strong mixing of two 1A1 states occurs which pushes down the lowest to cross twice the 1B2

state. Since similar cross-sections of Figure 1 exist for rotations by±120◦, such a combined JT+PJT
[(E′ +A′

1)⊗ e′] effect creates 4 Cis in the ground-state PES; see section 2(b). Note that distortions
of the D3h structure maintaining C2v symmetry with bend angles <60◦ lead to stabilization of
the lower sheet and formation of a saddle point; see Figure 1. This represents the transition state
(TSiso) for isomerization between the three equivalent D∞h minima in the ground state PES.
Conversely,C2v distortions with angles>60◦ lead ultimately to the absoluteD∞h minima of C3.

(b) The Jahn-Teller plus pseudo-Jahn-Teller problem

As shown in Figure 1 and noted elsewhere [34–36,121], both the ground [11A′(11A1)] and first
excited [21A′(11B2)] singlet states of C3 correlate with the twofold E′ irrep at D3h geometries,
thus yielding an e′

2 valence configuration (see Figure 2). At such geometries, four electronic states
arise fromHOMO→HOMO excitations

e′ ⊗ e′
D3h−−−→A′

1+A′
2+(E′)

C2v−−−→A1+B2+(A1+B2). (2.1)

All of them correlate with the A′ irrep in Cs symmetry. Similarly, higher excited states can be
obtained from the HOMO−1→HOMO, HOMO→LUMO, and HOMO−2→HOMO excitations,
but they are not here considered. At FVCAS/AVTZ, the leading (spin-spatial symmetry adapted)
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↿↿↿⇂⇂⇂a′
1 (a1)

↿↿↿⇂⇂⇂ ↿↿↿⇂⇂⇂e′ (a1) e′ (b2)

↿↿↿⇂⇂⇂a′′
2 (b1)

↿↿↿⇂⇂⇂ a′
1 (a1)

↿↿↿⇂⇂⇂e′ (a1) e′ (b2)

e′′ (a2) e′′ (b1)

a′
2 (b2)

e′ (a1) e′ (b2)

Figure 2. MO diagram and valence electronic configuration of C3 at equilateral triangular geometries. The 1A1 (in

C2v) component of the 1E′ term (in D3h) is schematically shown. MOs are labeled according to D3h irreps with

the corresponding correlations with C2v point group in parentheses. Up and down arrows denote as usual α and

β spin states. Natural orbitals obtained from a state-averaged FVCAS/AVTZ wave function are also shown.

CSFs for each electronic term of Eq. (2.1) are then given by [36]

|Ψ1
3A′

2(1
3B2)〉= |α〉

|Ψ2
1E′(11A1)〉=

1√
A 2 + B2

[
A |β〉 − B |γ〉

]

|Ψ3
1E′(11B2)〉=

1√
C 2 + D2

[
C |δ〉 − D |ǫ〉

]

|Ψ4
1A′

1(2
1A1)〉=

1√
E 2 + F 2

[
E |β〉 + F |γ〉

]
,

(2.2)

(2.3)

(2.4)

(2.5)

where |α〉, |β〉, |γ〉, |δ〉 and |ǫ〉 are Slater determinants schematically shown in Figure 3: A , B, C ,
D , E and F are coefficients that weight the relative contributions in the associated CSF. At D3h

geometries, their ratios are approximately equal to one, with |A |=|B|≈|C |=|D |≈|E |=|F |≈1.
However, if any distortion of the molecular triangle occur, the ratio of each determinant changes
inasmuch as different CSFs belonging to the same spin and spatial symmetry can mix. As
seen from Eqs. (2.2)-(2.5) and Figure 4, an 3A′

2(1
3B2) term lower than the 1E′(11A1, 1

1B2) and
1A′

1(2
1A1) states also arises from the HOMO→HOMO excitations. Such a triplet state shows the

minimum at a geometrywithD3h symmetry [c-C3(
3A′

2); see Table 1] and hence is non-JT [36,121].

A close inspection of Figures 1 and 4 gives an insight into the real nature of the vibronic
problem. Clearly, instead of a typical linear E′ ⊗ e′ JT problem [158] in which only linear
JT vibronic coupling constants are taken into account, the non-negligible contribution of the
quadratic coupling constants is key for the title system (linear plus quadratic JT problem
[158,159]). Additionally, an interaction occurs due to strong vibronic mixing between the close
lying 1E′ and 1A′

1 states [158,160]. Such a JT+PJT [(E′ + A′
1)⊗ e′] vibronic problem introduces

profound changes on the topology of the PESs near equilateral triangular geometries. Indeed, as
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↿↿↿⇂⇂⇂a′
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↿↿↿⇂⇂⇂ ↿↿↿⇂⇂⇂e′ (a1) e′ (b2)

↿↿↿⇂⇂⇂a′′
2 (b1)

↿↿↿⇂⇂⇂a′
1 (a1)

↿↿↿ ↿↿↿e′ (a1) e′ (b2)

|α〉

↿↿↿⇂⇂⇂a′
1 (a1)

↿↿↿⇂⇂⇂ ↿↿↿⇂⇂⇂e′ (a1) e′ (b2)

↿↿↿⇂⇂⇂a′′
2 (b1)

↿↿↿⇂⇂⇂a′
1 (a1)

↿↿↿⇂⇂⇂e′ (a1) e′ (b2)

|β〉

↿↿↿⇂⇂⇂a′
1 (a1)

↿↿↿⇂⇂⇂ ↿↿↿⇂⇂⇂e′ (a1) e′ (b2)

↿↿↿⇂⇂⇂a′′
2 (b1)

↿↿↿⇂⇂⇂a′
1 (a1)

↿↿↿⇂⇂⇂e′ (a1) e′ (b2)

|γ〉

↿↿↿⇂⇂⇂a′
1 (a1)

↿↿↿⇂⇂⇂ ↿↿↿⇂⇂⇂e′ (a1) e′ (b2)

↿↿↿⇂⇂⇂a′′
2 (b1)

↿↿↿⇂⇂⇂a′
1 (a1)

↿↿↿ ⇂⇂⇂e′ (a1) e′ (b2)

|δ〉

↿↿↿⇂⇂⇂a′
1 (a1)

↿↿↿⇂⇂⇂ ↿↿↿⇂⇂⇂e′ (a1) e′ (b2)

↿↿↿⇂⇂⇂a′′
2 (b1)

↿↿↿⇂⇂⇂a′
1 (a1)

⇃⇃⇃ ↾↾↾e′ (a1) e′ (b2)

|ǫ〉

Figure 3. Slater determinants arising from HOMO→HOMO excitations in the e′2 valence configuration of

C3 (Figure 2). All MOs are labeled according to D3h irreps with the corresponding C2v correlations given in

parentheses. Up and down arrows denote α and β spin states.

0.0

210.0

420.1

630.1

840.2

15 30 45 60 75 90 105 120 135 150 165 180
0.0

210.0

420.1

630.1

840.2

15 30 45 60 75 90 105 120 135 150 165 180

CI

0.0

210.0

420.1

630.1

840.2

15 30 45 60 75 90 105 120 135 150 165 180

13B2

0.0

210.0

420.1

630.1

840.2

15 30 45 60 75 90 105 120 135 150 165 180

11A1

0.0

210.0

420.1

630.1

840.2

15 30 45 60 75 90 105 120 135 150 165 180

11B2

0.0

210.0

420.1

630.1

840.2

15 30 45 60 75 90 105 120 135 150 165 180

21A1

78.8

131.3

183.8

236.3

288.8

50 55 60 65 70

en
er

gy
/E

h

∠CCC/deg×

×

××

××

e
n
e
rg

y
/k

J
m

o
l−

1

6 CCC/deg

Ropt Ropt

6 CCC

X̃ 1
Σ

+
g

b̃ 3
Πg

B̃′ 1
∆u
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Σ

−
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+
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Figure 4. Optimized FVCAS/AVTZ bending potential for the four electronic states of C3 arising from HOMO→
HOMO excitations in the e′

2
configuration [see Eqs. (2.1)-(2.5)]. Shown in the key are the irreps, in C2v

symmetry, for each state. Cis are indicated by the symbol ×.

we have first shown [36] for both the ground (11A′) and first excited (21A′) singlet states of C3

radical, besides the D3h symmetry-required crossing seam there are three symmetry-equivalent
C2v seams in close proximity to the former central Ci. A cross-sectional cut of such a region is
shown in Figure 5 at MRCI/AVTZ level of theory [36]. Note that Q=(Q1, Q2, Q3) defines the
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Table 1. Properties of stationary points on ground and excited PESs of C3. Structures are labeled by the irrep, and

energies (in kJmol−1) are relative to the D∞h absolute minimum [l-C3(
1Σ+

g )] of the ground state PES. Bond

lengths (R), bond angles (∠CCC) and harmonic vibrational frequencies (wi) are in a0, degrees, and cm−1.

Structure Methoda R ∠CCC ∆E w1 w2 w3

l-C3(
1Σ+

g )
FVCAS/AVTZ 2.474 180.0 0.0 1171.0 56.1 2060.9
CBS 0.0

c-C3(
3A′

2)
FVCAS/AVTZ 2.629 60.0 114.6 1508.3 1064.2 1064.2
CBS 84.2

d-C3(
1B2)

FVCAS/AVTZ 2.629 60.9 195.5 1512.7 1124.7 3690.7
CBS 151.3
Eq. (2.9) 2.616 60.8

c-C3(
1A′

1)

FVCAS/AVTZ 2.678 60.0 213.0 1456.3 5069.5 5069.5
CBS 185.6
Eq. (2.9) 2.626 60.0

a Data retrieved from Ref. 36.
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e
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e
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y
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E
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Q3/a0

ρ0(Q1)=0.012 a0

Figure 5. PES cuts along the bending coordinate Q3 [for Q2=0 and Q1=4.548 a0] for the three lowest 1A′

electronic states of C3 over the range of −0.020 a06Q360.020 a0. Symbols indicate MRCI/AVTZ points, and

the solid lines the associated eigenvalues of Eq. (2.9) as obtained from the least-squares fitting procedure.

standard (symmetry-adapted) JT coordinates in terms of the internuclear distances by [119,125]


Q1

Q2

Q3


=




√
1/3

√
1/3

√
1/3

0
√

1/2 −
√

1/2√
2/3 −

√
1/6 −

√
1/6






R1

R2

R3


 , (2.6)

where Q1 is the totally symmetric representation a1(a1) or breathing mode, and (Q2, Q3) is the
pair of e(b2, a1) JT active vibrations associated with the asymmetric stretch and bending normal
modes, respectively.As noted above, cross-sections similar to Figure 5 exist for rotations by±120◦,
with ρ(Q1)=

√
Q2

2 +Q2
3 being the radial polar coordinate in the 2D branching plane [Qb(Q1)=

(Q2, Q3)]. Thus, for the circle of radius ρ0, the 4 Cis are defined by Qb(Q1)=(0, 0), and Qb(Q1)=

(0, ρ0), (−
√
3ρ0/2,−ρ0/2), (

√
3ρ0/2,−ρ0/2).
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To model the above JT+PJT [(E′ + A′
1)⊗ e′] vibronic problem, we write the electronic

Hamiltonian (He) as a Taylor series expansion in the nuclear displacements from the high-
symmetryD3h configuration, [158,160]

He(r,Q) =H
(0)
e (r, 0) +

∑

Γγ

(
∂V

∂QΓγ

)

0

QΓγ

+
1

2

∑

Γγ

∑

Γ 1Γ 2

{(
∂2V

∂QΓ 1
∂QΓ 2

)

0

}

Γγ

{
QΓ 1

⊗QΓ 2

}
Γγ

+ . . .

=H
(0)
e (r, 0) +W (r,Q), (2.7)

where the zeroth-order Hamiltonian H
(0)
e (r,0)=H(r) + V (r,0) includes the purely electronic

part [H(r)] and the electron-nuclear plus nuclear-nuclear interactions [V (r, 0)] with the nuclei
fixed at origin (Q0); r is the set of electronic coordinates, and QΓγ symmetrized nuclear

displacements [see Eq. (2.6)] which transform according to the line γ of the D3h irrep Γ . In
turn, W (r,Q) is the vibronic coupling perturbative operator whose matrix elements (vibronic
constants) measure the effect of changes in the electronic structure upon nuclear motion [158,160].
Note that

{(
∂2V/∂QΓ1

∂QΓ 2

)
0

}
Γγ

defines an irreducible product [161] (tensor convolution
[158]); this is a linear combination of second derivatives with respect to QΓ1

and QΓ 2
, which

transforms according to the line γ of the D3h irrep Γ⊂Γ 1 ⊗ Γ 2. Likewise,
{
QΓ 1

⊗QΓ 2

}
Γγ

denotes the irreducible product for the corresponding symmetrized coordinates.
The starting point consists therefore of solving the electronic Schrödinger equation with the

nuclei fixed at the origin

H
(0)
e (r, 0)|ϕk(r,0)〉= Ek(0)|ϕk(r,0)〉 (2.8)

where
{
|ϕk〉

}
≡
{
|Ψ2

1E′(11A1)〉, |Ψ3
1E′(11B2)〉, |Ψ4

1A′
1(2

1A1)〉
}

is the orthonormal set of
eigenvectors (the eigenvalues are {Ek(0)}) here utilized to approximate the electronic function
space with the nuclei clamped at Q0. The corresponding matrix representation of the electronic
Hamiltonian He [Eq. (2.7)] in such a basis assumes the form [36,162]

He=




−FE′Q3 + κE′ −GE′(Q2
2 −Q2

3) FE′Q2 + 2GE′Q2Q3 HE′/A′

1
Q3

FE′Q2 + 2GE′Q2Q3 FE′Q3 + κE′ +GE′(Q2
2 −Q2

3) HE′/A′

1
Q2

HE′/A′

1
Q3 HE′/A′

1
Q2 ∆+ κA′

1


 , (2.9)

where κE′(Q)= 1
2KE′(Q2

2+Q2
3) and κA′

1
(Q)= 1

2KA′

1
(Q2

2+Q2
3) are harmonic potentials for the

1E′ and 1A′
1 electronic states centered at Q0, with force constants KE′ and KA′

1
. In turn,

FE′ and GE′ are linear and quadratic JT vibronic coupling constants, respectively, and HE′/A′

1

is the associated linear PJT parameter [36,162]. Correspondingly, ∆ denotes the energy gap
(at the origin) between the vibronically mixed 1E′ and 1A′

1 terms. Note that the vibronic
coupling constants of Eq. (2.9) can be obtained from group-theoretic considerations [158,161];
see Appendix. They were all determined from a fit to ab initio MRCI/AVTZ energies, with the
numerical values and definition given in Table 2. As seen, the linear JT vibronic constant (FE′ ) is
small: about 1 and 2 orders of magnitude smaller than HE′/A′

1
and GE′ , respectively. This is the

signature of so-called small linear parameter (SLP) JT molecules [159,163].
The solutions of the present JT+PJT vibronic problem are shown in Figures 5 and 6. Clearly,

the model reproduces the full picture of the adiabatic PESs near D3h symmetry, including the
cusped behavior at all electronic degeneracies and vibronic mixing between close-in-energy
terms. Interestingly, the current three state JT+PJT model Hamiltonian also predicts a stationary
point [labeled d-C3(

1B2)] in the 2 1A′ electronic state. Such a structure has been confirmed by ab

initio FVCAS/AVTZ optimizations, and shown to be a minimum; see Table 1. Note that the PJT
vibronic effect provides an additional stabilization of the undistorted D3h minimum of the 3 1A′

state. Note also from Table 1 that the predicted structures agree well with the ab initio ones.
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Table 2. Vibronic coupling constants and parameters in Eq. (2.9). The numerical data was obtained from a fit to the

ab initio MRCI/AVTZ energies in Figure 5.

Parametera Expressionb Valuea

KE′ 〈1E′
θ/ǫ|

(
∂2V
∂Q2

2

)

0
+
(
∂2V
∂Q2

3

)

0
|1E′

θ/ǫ〉 351.3c

KA′

1
〈1A′

1|
(
∂2V
∂Q2

2

)

0
+
(
∂2V
∂Q2

3

)

0
|1A′

1〉 399.0c

FE′ 〈1E′
ǫ|
(

∂V
∂Q3

)

0
|1E′

ǫ〉 11.8d

GE′ 〈1E′
ǫ|
(
∂2V
∂Q2

2

)

0
−
(
∂2V
∂Q2

3

)

0
|1E′

ǫ〉 1940.0c

HE′/A′

1
〈1E′

ǫ|
(

∂V
∂Q2

)

0
|1A′

1〉 150.8d

∆ 11.7e

aRef. 36. bThe following symmetry correlations have been employed: |Ψ2
1E′(11A1)〉≡|1E′

θ〉, |Ψ3
1E′(11B2)〉≡|1E′

ǫ〉
and |Ψ4

1A′

1(2
1A1)〉≡|1A′

1〉.
cUnits in mEh a−2

0
. dUnits inmEh a−1

0
. eUnits inmEh.
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Figure 6. Contour plot of the lowest eigenvalues of the JT+PJT vibronic Hamiltonian of C3 [Eq. (2.9)] for

Q1=4.548 a0; (a) 1 1A′; (b) 2 1A′; (c) 3 1A′. Contours in (a) are equally spaced by −0.0300mEh starting

at 0.0000mEh, with values of 0.0168mEh and −0.2000mEh for (b), and 0.0500mEh and 11.7224 mEh

for (c). Cis are indicated by crosses (×).
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ρ = 0.004 a0
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1.0

0 π/2 π 3π/2 2π

ρ = 0.005 a0

loop (c)

0 π/2 π 3π/2 2π

φ/rad

loop (d)

ρ = 0.010 a0
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;

Q3

Q2

φ ρ

(a)

(b)

(c)

(d)

Figure 7. Adiabatic evolution of the 11A′, 21A′ and 31A′ wave functions of C3 along a closed circuit C in the

two dimensional branching plane encircling one or more Cis. c0 is the coefficient of the leading determinant (CSF)

of the FVCAS/AVTZ wave function for each state. Four closed loops are considered that encircle: (a) the central

(D3h) Ci; (b) one C2v Ci; (c) two Cis; (d) four Cis. See also text.

(c) The Longuet-Higgins sign-change theorem

As stated by the Longuet-Higgins’ theorem [164]: if a real-valued electronic wave function
changes sign when adiabatically transported around a closed circuit C in the two-dimensional
branching plane, then it must become discontinuous and degenerate with another state at an
odd number of points lying on that surface and within that loop [164–166]. Varandas, Tennyson
and Murrell [167] were the first to demonstrate the numerical validity of such sign-reversal
criterion for LiNaK by following the variation of the dominant coefficients in the ground-state
wave function along a path that encircles the crossing point [167]. We have followed the same
approach with state-averaged FVCAS/AVTZ calculations. The results are shown in Figure 7.

As first pointed out by Zwanziger and Grant [159], for SLP JT molecules the additional three
symmetry-equivalentC2v seamsmay prevent the associated electronicwave function of changing
sign when transported around a loop enclosing the four Cis. In other words, the net geometric
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Table 3. Functional representation of the three-body EHF energy terms shown in Eq. (2.12) for the DMBE I and

DMBE II PESs.

X V
′(3)
x,EHF V

′′(3)
x,EHF V

′′′(3)
x,EHF

Ia (PN′

1 −
√
Γ2 PM′

2 )T ′

I (PN′′

3 −∆1∆2∆3 PM′′

4 )T ′′

I 0

IIb (PN′

1 −FnJT

√
Γ2 PM′

2 )T ′

II (PN′′

3 −FnJT

√
Γ2 PM′′

4 −∆PP ′′

5 )T ′′

II (PN′′′

6 −FnJT

√
Γ2 PM′′′

7 −∆PP ′′′

8 )T ′′′

II

aDMBE I of Ref. 35. bDMBE II of Ref. 116.

phase (GP) effect [164–166] is largely suppressed. Consider first the case in which a circular path
is chosen such that ρ<ρ0(Q1) [see Figure 7(a)]. In this case, only one Ci (the central one) is
enclosed and the adiabatic wave function changes sign along this loop, as seen in Figure 7(a)
for the 11A′ and 21A′ electronic states. In fact, a similar sign change is expected when only one
of the three equivalent degeneracies of C2v symmetry is encircled [see Figure 7(b)]. Conversely,
as Figure 7(c) shows, a closed circuit enclosing both the central and one of the C2v Cis is sign-
preserving. By the same token, when ρ>ρ0(Q1) [Figure 7(d)], the associated electronic adiabatic
wave function is sign-unchanged upon transportation along the corresponding loop. Note that
ρ0(Q1) marks the important transition between a JT- and RT-like behavior in the sense that
the adiabatic wave functions for the 11A′ and 21A′ electronic states experience a sign change
upon adiabatic transportation about the origin (D3h seam) in the case ρ<ρ0(Q1), but not for
ρ>ρ0(Q1) [159]. Note also from Figure 7 that the adiabatic wave function for the 31A′ state does
not change sign in any of the cases mentioned above: it is non-JT in nature.

(d) Global potential energy surfaces

(i) Accurate DMBE forms

According to the spin-spatial Wigner-Witmer correlation rules [156,157], l-C3(X̃
1Σ+

g ) dissociates
adiabatically into

l-C3(X̃
1Σ+

g )−→





C2(a

3Πu) + C(3P )

C2(X
1Σ+

g ) + C(1D).

(2.10a)

(2.10b)

As noted elsewhere [105–107,119], the first excited triplet state of C2 lies only 8.6 kJmol−1

(this is actually the equilibrium electronic term value Te) above the corresponding ground
state [48], whereas the energy separation between the 3P state of atomic carbon and its first
excited state C(1D) is 122.0 kJmol−1 [168]. Thus, as Figures 1 and 4 show, the lowest channel
C2(a

3Πu)+C(3P ) is favored by 113.4 kJmol−1 relative to C2(X
1Σ+

g )+C(1D). In Refs. 35 and
116, we modeled the adiabatic ground-state PES of C3 by

VI/II(R) = V (1) + V (2)(R) + V
(3)
dc (R) + V

(3)
I/II,EHF(R), (2.11)

where [124,125] V (1) is a one-body term equal to the dissociation energy (De) of C2(a
3Πu),

V (2)(R) the sum of the two-body potentials, and V
(3)
dc (R) the three-body dc. In both DMBE I

and DMBE II potentials, the three-body EHF energy assumes the form [35,116]

V
(3)
I/II,EHF(R) = V

′(3)
I/II,EHF(R) + V

′′(3)
I/II,EHF(R) + V

′′′(3)
I/II,EHF(R), (2.12)

where V
′(3)
I/II,EHF(R) is responsible for introducing nonanalyticity into the potential along the

line of D3h symmetry, and the remaining terms provide the required cusp behavior at the C2v

degeneracies. The corresponding forms are shown in Table 3; for simplicity, obvious coordinate
dependences have been eliminated. Note that PJ

n (Γ1, Γ2, Γ3) are J-th order polynomials
expressed in the integrity basis [169] and the T (R)’s are range-decaying factors. In turn,
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Figure 8. (a) Relaxed triangular plot in hyperspherical coordinates [171] depicting the location and symmetry of

all stationary points of the DMBE I PES for ground-state C3. Solid black lines are equally spaced by 0.005 Eh,

starting at −0.2904 Eh. Dashed red and blue lines are equally spaced by 0.001 Eh, starting at 0.00067 Eh and

−0.0206 Eh, respectively. (b) Optimized reaction path along C2v arrangements. The plot starts at ∠CCC=5◦,

which corresponds to the C+C2 limit and leads to the linear global minimum at ∠CCC=180◦ via the Ci region.

The insert shows an amplified view of the nuclear configuration space illustrating the correct cusped behavior at

D3h and C2v crossing seams. The dots indicate fitted points, with the lowest curve shifted by −0.0025 Eh for

visibility. Indicated by DMBE JT is PES without the V
′′(3)

I,EHF (R) contributions in Table 3.

√
Γ2=(Q2

2 +Q2
3)

1/2 is the so-called JT-type coordinate [120,170] which essentially measures
the distance from any point in the (Q2, Q3)-plane to the D3h Ci [where Qb(Q1)=(0, 0), ∀Q1]
[127,128]. Likewise,∆1∆2∆3 is the (product of) distances from any point inR-space to the three
permutationally equivalent C2v crossing seams. Note that V ′′(3)

I,EHF(R) dies-off Gaussian-like [127]
in DMBE I, and hence the cusps at such geometries are warranted only close to the minimum of
crossing seam [35]. All major topographical features are shown in Figure 8.

As we have shown elsewhere [36], the three C2v seams are not static with respect to the D3h

Ci but evolve instead with the size of the molecule. In so doing, such degeneracy points approach
the central D3h Ci almost linearly and ultimately coalesce with it, thence forming a node of
confluence. Indeed, by increasing the size of the molecular triangle, the C2v disjoint seams get
rotated by ± π in the branching plane [36]. In order to mimic such a behavior, we have proposed
a revisited DMBE II form [116] and a novel coordinate (∆ in Table 3) that incorporates by built-in
construction the exact equation of the seam as a function of Q1. Likewise the JT coordinate, ∆
assumes the form [116]

∆=
√

S2
2 + S2

3 , (2.13)

where S2 and S3 are symmetrized coordinates made of the distances ∆=
{
∆′

1,∆
′
2, ∆

′
3

}
from an

arbitrary point to the C2v Cis [116]:

∆′
c =

√(
Q2−Qc

2

)2
+

(
Q3−Qc

3

)2
c=1, 2, 3, (2.14)

with the disjoint crossings points (Qc
2, Q

c
3) given by

(Qc
2, Q

c
3) = (ρ0 cos(ϕc±nπ), ρ0 sin(ϕc±nπ)) . (2.15)

As in sections 2(b) and 2(c), ρ0 denotes the radius at which the disjoint seams are located with
respect to the central Ci and ϕc (c=1, 2, 3) is the polar angle that explicitly defines the positions
of the crossings: ϕ1=π/2, ϕ2=7π/6 and ϕ3=11π/6 (see Figure 7). In Eq. (2.15), n=0 or 1 is an
integer that accounts for the proper rotation-in-plane of the C2v seams on passing through the
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Figure 9. Evolution of D3h and C2v crossing seams versus Q1 as predicted from the DMBE II PES for ground-

state C3: (a) Q1=4.000 a0; (b) Q1=4.520 a0; (c) Q1=4.997 a0; (d) Q1=5.750 a0. Contours are spaced as

follows [from (a) to (d)]: 0.025mEh , starting at −0.1710 Eh; 0.015mEh, starting at −0.2392 Eh; 0.012mEh,

starting at −0.2081 Eh and 0.022mEh, starting at −0.1048 Eh. Cis are indicated by ×.

confluence point [116]. The equation of the seam is self-contained in the proper definition of ρ0,
and is accurately represented by

ρ0(Q1) =

∣∣∣∣∣̺− δ tanh[
5∑

i=1

ζi(Q1 −Q0
1)

i]

∣∣∣∣∣, (2.16)

where ̺, δ, ζi andQ0
1 are adjustable parameters; the details are given elsewhere [116]. As Figure 9

shows,∆ is capable of accurately modeling the three symmetry-equivalentC2v disjoint seams, in
addition to the symmetry-requiredD3h one, over the entire configuration.

One wonders at this stage about the topographical form of the PES when all Cis meet each
other. As shown in Figure 9, at this point of all confluences the PESs become tangentially touching
paraboloids rather than two cones connected by the vertex. In order to mimic such a behavior, it
suffices to add a term FnJT (R) (non-JT factor) that warrants the

√
Γ2 singularity on the adiabatic

PESs to be canceled out (see Table 3). The result, obtained from the DMBE II PES, is illustrated
in Figure 9 which shows the evolution of such crossings versus Q1. Table 4 shows only the
properties of the linear global minima. The agreement with experimental data is good, while
the properties of other stationary points (not shown) agree well with the corresponding ab initio

attributes [35,116].

(ii) Realistic ES/DMBE forms

To improve the C3 DMBE II PES at the linear global minima, we used [117] a simplified version
of Varandas’ ES scheme [173] to morph DMBE II and the ABW [34] and SS [115] local functions.
Both DMBE/ES/ABW and DMBE/ES/SS PESs so obtained [117] read

VDMBE/ES/x = f(∆E) [VDMBE II(R)− Vx(R)] + Vx(R), (2.17)
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Table 4. Properties of the global linear minima on the C3(1 1A′) DMBE PESs. Relative energies (∆E), bond

lengths (Ri) and harmonic frequencies (wi) are in kJmol−1, a0 and cm−1, respectively.

Method R1 R2 R3 ∆E w1 w2 w3

DMBE Ia 4.888 2.444 2.444 0.0b 1204.2 63.5 2126.5
DMBE IIc 4.888 2.444 2.444 0.0 1203.9 61.0 2125.5

DMBE/ES/ABWd 4.920 2.460 2.460 0.0 1214.5 64.6 2109.8

DMBE/ES/SSd 4.890 2.445 2.445 0.0 1206.7 42.8 2101.3

Expt. 4.902 2.451 2.451e 1224.49f 63.42f 2040.02f

4.890 2.445 2.445g

aRef. 35. bRelative to the C3(
1Σ+

g ) global minimum. cRef. 116. dRef. 117. eRef. 4. fRefs. 172 and 84. Separation between

origin level and lowest vn=1 level. gMixed theoretical/experimental approach of Refs. 115 and 85.

Table 5. Stratified root-mean-square deviations (in cm−1) obtained for 100 calculated energy levels for J≤1.

rmsd

Energya Nb DMBE/ES/ABW ABW DMBE/ES/SS SS DMBE II DMBE I
1000 8 3.3 3.2 2.5 2.3 24.5 32.5
2000 17 3.3 2.8 7.3 6.9 38.9 41.8
3000 35 4.2 2.6 9.7 9.1 37.5 47.0
4000 49 8.2 2.7 13.2 11.1 40.1 48.1
6000 83 18.0 3.0 19.8 13.4 42.2 49.0
9000 100 26.9 2.9 31.0 12.5 45.7 53.4

a The units of energy are cm−1. Energy strata defined relative to the corresponding zero point energy level.
b Number of vibrational states up to indicated energy range.

where x=ABW or SS, and f(∆E) is defined by [173]

f(∆E) =




exp

[
−β

(
∆E0

∆E+ξ − 1
)n]

if ∆E <∆E0

1 if ∆E ≥∆E0.
(2.18)

In turn, ∆E=E − Emin is the energy displacement with respect to the absolute global minima
of the DMBE II PES, and ∆E0=E0 − Emin the energy difference between Emin and the cuttof
energy E0. Finally, β is a trial-and-error parameter, n is an even integer and ξ a small number
chosen to avoid numerical overflows at E=Emin. Clearly, f(∆E) ensures that the resulting PESs
converge to the local potentials at energy ranges nearEmin, while smoothly changing to the global
PES as long as the energy approaches E0. The topographical features of the final ES PESs are
shown in Figure 10, together with the utilized local potentials. Clearly, the ES scheme allows a
convenient merge of the global and local formswhile eliminating spurious holes in the latter near
equilateral triangular geometries. Additionally, they allow an extension of such spectroscopic
forms to the dissociative regions. Their reliability is shown in Table 5, which summarizes stratified
rmsds for 100 rovibrational energy levels up to 9000 cm−1 above ZPE. As seen, near spectroscopic
accuracy is conveyed to both global forms up to 4000 cm−1 above ZPE, while keeping unaltered
all attributes of the original DMBE II PES (Table 4). Not surprisingly, discrepancies appear with
increasing energy, particularly for DMBE/ES/ABW since the original PESs differ most. Despite
this, a reduction of∼ 20 cm−1 in levels up to 9000 cm−1 is already an asset of the ESmethod [173].
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Figure 10. Relaxed triangular plot in hyperspherical coordinates [171] for C3: (a) DMBE/ES/ABW [117]; (b) ABW

[34]; (c) DMBE/ES/SS [117]; (d) SS [115]. Key for all global forms are as in Figure 8. For local forms, contours

are equally spaced by 0.005 Eh, starting at −0.2904 Eh. Navy dashed lines in panels (a) and (c) define cuttof

energies (E0) of Eq. (2.18).

3. Further on carbon tetramer

(a) Electronic structure

All structures have been optimized with MOLPRO [174] at CASSCF (or, simply, CAS) level of
theory [175] in C1 symmetry with the AVTZ basis set [60,61]. The reference wave functions
have then been obtained using the largest possible active space, which involves 8 correlated
electrons in 12 orbitals [CAS(8,12)]; 8 orbitals were treated as inactive, but optimized, throughout
all calculations. Geometry optimizations were also done, and followed by harmonic vibrational
analysis to confirm the nature of the stationary point as minima (only real frequencies)
or transition-state structures (only one imaginary frequency). To understand the connections
between the predicted transition states and associated minima, calculations along convenient
ORC paths [176,177] have further been carried out. This involves a selection of a single reactive
coordinate, i.e., the one that determines the bond-breaking/bond-forming process, with all other
degrees of freedom fully optimized at each point of the predefined grid for the active coordinate.
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Such a process has proven very effective in obtaining accurate reaction dissociation profiles for
HO3 [176], HO2 and HS2 [177] as well as for the Li3N-CO2 complex [178]. For every point of
the various ORCs, an enhanced estimate of the energetics has then been obtained at MRCI(Q)
level [175] with AVTZ and AVQZ basis sets, followed by extrapolation to the CBS limit [179,180].
Suffice it to add that all CAS(8,12) vectors were included in the reference space for the 8-electron
MRCI(Q)-8 calculations; the 8 inner orbitals were left uncorrelated.

For CBS extrapolation of the CAS energies, a double-level protocol developed in our group
[179] has been utilized,

E
CAS(8,12)
X (R) =E

CAS(8,12)
∞ (R) + Ae−1.63x, (3.1)

where x=t(2.94), q(3.87) are hierarchical numbers [181,182] associated with the X=T : 3, Q : 4

cardinals and R is a six-dimensional coordinate vector; ECAS(8,12)
∞ (R) and A are parameters

obtained from the fit to the CAS(8,12)/AVXZ ndc energies.
In turn, the extrapolated dc contribution [Edc-8

∞ (R)] is obtained with Varandas’ USTE protocol
[180]

Edc-8
X (R) =Edc-8

∞ (R) +
A3

(X − 3/8)3
+

A5(0) + cA3
5/4

(X − 3/8)5
, (3.2)

where A5(0) and c are universal parameters [180], and Edc-8
∞ (R) and A3 are obtained by fitting

the raw MRCI(Q)-8/AVXZ dc energies:

Edc-8
X (R) =E

MRCI(Q)-8
X (R)− E

CAS(8,12)
X (R). (3.3)

For a specified nuclear arrangementR, the total energy is then obtained as

E
CASDC/CBS−8
∞ (R) =E

CAS(8,12)
∞ (R) +Edc-8

∞ (R), (3.4)

and denoted CASDC/CBS-8 as suggested elsewhere [177].
As noted by Parasuk and Almöf [37], the inclusion of all valence electrons in the correlation

treatment is key to obtain the best energy differences between the linear and cyclic forms. Thence,
we carried out FVCAS geometry optimizations with the AVTZ basis set, followed by single-point
AVQZ computations. Such calculations involve correlating the 16 electrons in 16 orbitals, which
are affordable only by including point-group symmetry in the wave function. Because this could
not be pursued for stationary points of symmetry lower than C2v , single-point FVCAS/AVXZ
calculations were performed at the optimum CAS(8,12)/AVTZ geometries. To obtain a reliable
estimate of the total CBS energy, the ndc extrapolated components ECAS(16,16)

∞ (R)were added to
the Edc-8

∞ (R) contributions, with the energies so obtained denoted as ve-CASDC/CBS. Figure 11
shows the minimum energy pathways for interconversion between the linear and rhombic C4 for
both triplet and singlet isomers. The corresponding structural parameters, harmonic vibrational
frequencies and relative energies are given in Tables 6 and 7.

We begin the present discussion with some remarks on the l-C4(
3Σ−

g ) and r-C4(
1Ag)

energetics. As noted in the Introduction, it appears to be a common trend [37,38,132] that the
singlet vs triplet relative positioning, hence the true ground-state structure, depends on whether
one utilizes SR vs MR methodologies: r-C4(

1Ag) is more stable than l-C4(
3Σ−

g ) for SR, while
the contrary is the case for MR. Indeed, as noted by Parasuk and Almöf [37], SR approaches
may not be sufficient to treat adequately the high density of electronic states present in C4 which
occur already for very low internal energies [38]. Our own calculations at the CASDC/CBS-8
level suggest from Tables 6 and 7 that l-C4(

3Σ−
g ) lies about 25.9 kJmol−1 lower in energy than

the corresponding rhombic singlet structure. However, at our highest level of theory, i.e., ve-
CASDC/CBS, the linear-rhombic energy difference is reduced to only 9.1 kJmol−1 (positive signs
favors the linear form). These results are in good agreement with those obtained by Parasuk and
Almöf in their 16-electron MRCI/G[542] calculations (6.8 kJmol−1) [37]. Although such relative
quantity certainly converges to different values for distinct correlation methods, extrapolations
to the CBS limit tend to level their relative positioning; the isomer with larger correlation
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Figure 11. Minimum energy paths for interconversion of linear and rhombic C4 in both the triplet (in blue) and singlet

(red) ground-state PESs. Energies are given with respect to the l-C4(
3Σ−

g ) form and have been obtained at ve-

CASDC/CBS level of theory. Structural parameters and vibrational frequencies for each structure are in Tables 6

and 7.

Table 6. Structural parameters (distances Ri in a0, angles in degrees) and vibrational frenquencies (in cm−1) of

the stationary points on the ground-state triplet PES of C4. Energies (in kJmol−1) relative to l-C4(
3Σ−

g ).

Feature/Method
a b c d

R1 R2 R3

α β

a

b

c

d

R1 R2

R3

α

β
a

b

c

d

R1 R2

R3

α

β

l-C4(
3Σ−

g ) lr-C4(
3A′′) r-C4(

3B2g)
D∞h Cs D2h

CAS(8,12)/AVTZa 0.0 229.0 220.9
FVCAS/AVTZa 0.0 122.5 105.5
CASDC/CBS-8a 0.0 262.4 261.0
ve-CASDC/CBSa 0.0 154.1 145.6

R1
b 2.458(2.506) 3.076 2.698(2.744)c

R2 2.449(2.463)c 2.604 2.698(2.744)c

R3 2.458(2.506)c 2.637 2.698(2.744)c

α 180.0(180.0)c 105.6 111.4(112.8)c

β 180.0(180.0)c 70.4 68.6(67.2)c

w1
b 2165.0(2057.0)e 1347.1 1316.2

w2 949.3 1325.9 1038.4
w3 1667.2(1548.9)e 992.0 877.3
w4 538.8(323.0)e 706.0 665.5
w5 216.0(174.0)e 552.2 618.2
w6 392.1i 608.8

aThis work. bObtained at CAS(8,12)/AVTZ level of theory. cFVCAS/AVTZ optimized values. dThe experimentally

averaged C––C bond length is 2.458 a0 (see Ref. 2). eExperimental band origins taken from Refs. 8, 146 and 148.
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Table 7. Structural parameters (distances Ri in a0, angles in degrees) and vibrational frenquencies (in cm−1) of

the stationary points on the ground-state singlet PES of C4. Energies (in kJmol−1) relative to l-C4(
3Σ−

g ).

Feature/Method
a

b

c

d

R1 R2

R3

α

β
a

b

c d

R1
R2

R3α

β

a

b c d

R1

R2 R3

α

β

a b c d
R1 R2 R3

α β a

b

c dR1

R2

R3α

β

r-C4(
1Ag) d-C4(

1A′) dl-C4(
1A′) l-C4(

1∆g) dd-C4(
1A1)

D2h Cs Cs D∞h C2v

CAS(8,12)/AVTZa 29.8 127.0 156.8 27.5 130.2
FVCAS/AVTZa 12.7 124.4 158.2 32.0 126.5
CASDC/CBS-8a 25.9 137.6 168.3 38.7 138.8
ve-CASDC/CBSa 9.1 131.3 168.5 34.8 133.5

R1
b 2.725(2.758)c 2.616 2.507 2.467(2.509)c 2.655(2.643)c

R2 2.725(2.758)c 2.938 2.583 2.457(2.484)c 2.785(2.778)c

R3 2.725(2.758)c 2.496 2.488 2.467(2.509)c 2.480(2.556)c

α 115.9(116.7)c 56.6 91.7 180.0(180.0)c 61.5(61.6)c

β 64.4(63.3)c 130.8 179.5 180.0(180.0)c 151.5(151.6)c

w1
b 1271.9 1643.0 1796.3 2021.8 1739.8

w2 964.1 1296.1 1561.1 936.5 1269.6
w3 983.3 902.6 1103.7 1643.0 818.1
w4 406.3 689.3 1065.6 406.4/375.2 628.7
w5 514.2 287.5 284.8 209.6/194.1 257.2
w6 1445.0 211.8 475.5i 238.0i

aThis work. bObtained at CAS(8,12)/AVTZ level of theory. cFVCAS/AVTZ optimized values.

energy, i.e., r-C4(
1Ag) tends to be favoured. Indeed, the energy splittings predicted from our

(FVCAS+dc-8)/AVTZ, (FVCAS+dc-8)/AVQZ and ve-CASDC/CBS calculations are 14.7, 11.2
and 9.1 kJmol−1, respectively.A similar basis-set effect is also observed in theMRCI(Q)-8/AVTZ,
MRCI(Q)-8/AVQZ and CASDC/CBS-8 series (i.e., 31.2, 27.9 and 25.9 kJmol−1, respectively).
Suffice it to add that the corresponding (harmonic) ZPE contribution is about −4.2 kJmol−1

at CAS(8,12)/AVTZ level which, in turn, reduces the corresponding energy deferences even
further. As noted by Massó et al. [38], such energetic proximity (≈4.9 kJmol−1) between the l-
C4(

3Σ−
g ) and r-C4(

1Ag) isomers is expected to be of the same order of accuracy of the ab initio

calculations themselves, and hence any statement about the true ground-state of C4 is possibly
risky at present.

Unquestionably, the triplet ground-state is the 3Σ−
g structure. Its cumulenic nature is

evidenced by the nearly equal C––C bond lengths which are predicted from our FVCAS/AVTZ
calculations to be 2.506 and 2.463 a0 for the outer (R1=R3) and inner (R2) distances, respectively.
Such values agree well with the experimental (averaged) bond length of 2.458 a0 [2]. As first
remarked by Parasuk and Almöf [37], the corresponding acetylenic form is of 3Σ+

u symmetry and
lies well above in energy (≈107.6 kJmol−1). This state of C4 has characteristic bond distances of
an acetylenic-like molecule, i.e., the outer C––C bonds are about 0.3 a0 shorter than the inner R1

distance [37]. It should be noted that, at linear geometries, two low-lying 1∆g and 1Σ+
g excited

states also arise from the π2
g configuration [see Figure 12(a)]. These have been measured in anion

photoelectron spectra [148] to be about 32.0 and 48.2 kJmol−1, respectively, above the 3Σ−
g state.

The corresponding adiabatic excitation energies predicted from our ve-CASDC/CBS calculations
are 34.8 and 50.2 kJmol−1, respectively.

Figure 11 shows that the ground singlet is the rhombic 1Ag structure, thence an a2g electronic
configuration [see Figure 12(b)]. At the FVCAS/AVTZ level of theory, this molecule shows
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Figure 12. Molecular orbital diagrams and valence electronic configurations for (a). l-C4(
3Σ−

g ) and (b). r-

C4(
1Ag). Molecular orbitals are labeled according to D∞h and D2h irreps, respectively, with the corresponding

correlations with D2h and C2v point groups given in parentheses. Up and down arrows denote α and β spin

states, respectively. Natural orbitals obtained from a FVCAS/AVTZ wave functions are also depicted.

characteristic peripheral and intrannular (cross-ring) C–C bond lengths of 2.758 and 2.895 a0,
respectively. Such quantities agree nicelywith the most recent ab initio values of 2.739 and 2.855 a0
reported by Wang et al. [141] at CCSD(T)-F12b/AVTZ level of theory as well as those obtained
from ve-MRCI(Q)/VTZ calculations by Senent et al. [140] (2.742 and 2.873 a0). Actually, as seen
in Tables 6 and 7, all stationary structures optimized at CAS(8,12)/AVTZ level differ by less
than ≈0.05 a0 and ≈1◦ for bond lengths and bond angles, from those obtained when all valence
electrons are included in the ndc treatment. This situation clearly reflects the general observation
that geometries are often less sensitive to the theoretical level than relative energies [176,177].

Figure 11 further depicts an additional (local) minimumon the lowest triplet PES ofC4, namely
r-C4(

3B2g). At CASDC/CBS-8 level, such a structure lies about 261.0 kJmol−1 higher in energy
relative to the 3Σ−

g isomer and is located well above the corresponding 1Ag rhombic partner; see
Tables 6 and 7. Note that, although the optimized structures predicted from the CAS(8,12)/AVTZ
calculations are in excellent agreement with those obtained at FVCAS/AVTZ level, the inclusion
of all valence space in the ndc treatment reduces the energy difference between l-C4(

3Σ−
g ) and

r-C4(
3B2g) by about 115.4 kJmol−1. In fact, at ve-CASDC/CBS level, these latter forms are

separated by 145.6 kJmol−1. Note that the energy splitting between the 3B2g and 1Ag rhombic
structures is predicted be 136.5 kJmol−1 at this level. Such a result is in reasonable agreement
with the corresponding vertical excitation energy of 187.2 kJmol−1 reported by Massó et al. [38]
at ve-MRCI(Q)/VTZ level. As emphasized by the authors, their value would be decreased if one
considers the relaxation of all nuclear coordinates.

The isomerization of l-C4(
3Σ−

g ) into r-C4(
3B2g) structure occurs via a Cs transition state lr-

C4(
3A′′); see Figures 11 and 13. At CASDC/CBS-8 level, the latter is about 262.4 kJmol−1 above

the corresponding linear minimum. The full valence ndc treatment reduces that value by about
108.3 kJmol−1. Indeed, the classical barrier height predicted from our ve-CASDC/CBS protocol
is 154.1 kJmol−1. The corresponding ORC path for such a isomerization reaction is depicted
in Figure 13. For this we performed CAS(8,12)/AVTZ constrained optimizations in which a
single peripheral bond length of the r-C4(

3B2g) structure (R) is treated as inactive, with all
other degrees freedom (two bond lengths and two bond angles) optimized at each grid point.
Single-point MRCI(Q)-8/AVXT (X=T,Q) calculations along the optimized CAS(8,12)/AVTZ

Cn (n=2-4): current status 227
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Figure 13. ORC paths for interconversion of l-C4(
3Σ−

g ) and r-C4(
3B2g) via lr-C4(

3A′′) transition state. The

inactive coordinate corresponds to the peripheral bond length of the r-C4(
3B2g) structure (R), with all other

degrees of freedom optimized at each grid point. Stationary structures at CAS(8,12)/AVTZ, ve-CASDC/CBS and

ve-CASDC/CBS//CAS(8,12)/AVTZ levels are shown by dots, diamonds and triangles, respectively. Energies are

relative to l-C4(
3Σ−

g ). The MRCI(Q)-8-S and V
(2+3+4)
C4

curves are discussed in section 3(b).

path have subsequently been performed, followed by extrapolations to the CASDC/CBS-8 limit.
To check the proper convergence of the CASwave function, all ORCs have been performed in both
“forward” and “backward” directions. Unfortunately, at FVCAS/AVXZ level, such paths are
unnaffordable with the means at our disposal, and hence not pursued. However, as emphasized
in section 3(b), an alternative approach can be employed that brings MRCI(Q)-8/AVTZ energies
in close agreement with the predicted linear-rhombic energy splittings at ve-CASDC/CBS.

Figure 13 shows that, although the predicted potential barriers increase by 21.0, 28.3 and
33.5 kJmol−1 with the MRCI(Q)-8/AVTZ, MRCI(Q)-8/AVQZ and CASDC/CBS-8 correlation
treatments, respectively, the structure of the transition state differs only slightly from the
CAS(8,12)/AVTZ one. Overall, the addition of dynamical correlation shifts the location of
lr-C4(

3A′′) TS toward the rhombic isomer. Suffice to highlight that, although only a single
peripheral bond has been followed in the ORC path, the above isomerization process clearly
involves the formation/breaking of both peripheral and intrannular bonds.

To the best of our knowledge, the only ab initio study on such a reaction path for C4 is that
of Blanksby et al. [138] The authors, used CCSD(T)/AVDZ//B3LYP/6-31G* to report a value of
108.1 kJmol−1 for the isomerization barrier of l-C4(

3Σ−
g ) into r-C4(

3B2g). Suffice to add that the
rhombic 1Ag structure is 11.7 kJmol−1 more stable than l-C4(

3Σ−
g ) at their level of theory [138].

In contrast to the triplet ground-state surface, the isomerization between rhombic and linear
forms on the singlet PES occurs in a stepwise manner; see Figures 11 and 14. Starting from the
1Ag global minimum, the system attains an intermediate Cs monocyclic ring [d-C4(

1A′)] via a
ring-opening (barrierless) process in which only a single peripheral bond is broken. Indeed, d-
C4(

1A′) shows itself as a local minimum on the singlet ground-state PES and lies about 111.7
and 122.2 kJmol−1 above the r-C4(

1Ag) structure at CASDC/CBS-8 and ve-CASDC/CBS levels
of theory, respectively. As we shall see, the discrepancies between full-valence and truncated-
space correlation approaches are generally smaller for the singlet than the triplet states. This stems
from a higher multi-configurational character of the latter [141]. In fact, because the isomerization
process in the singlet PES occurs in a stepwise manner, reactants and products are somewhat
similar in nature, thus allowing for some error compensation in the ab initio calculations.
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Figure 14. ORC paths for the r-C4(
1Ag) and l-C4(

1∆g) isomerization. (a) Interconversion of r-C4(
1Ag) and

d-C4(
1A′). The inactive coordinate corresponds to the angle formed between peripheral and cross-ring bond

lengths (α). (b) Interconversion of d-C4(
1A′) and l-C4(

1∆g) via dl-C4(
1A′) transition state. The inactive

coordinate corresponds to the ring-opening angle β. Stationary structures at CAS(8,12)/AVTZ level are indicated

by solid dots. Energies are relative to l-C4(
3Σ−

g ).

The ORC path for interconversion of r-C4(
1Ag) and d-C4(

1A′) is depicted in Figure 14(a). The
salient feature relates to the appearance of a small barrier at α=151.5◦ in the CAS(8,12)/AVTZ
optimized curve. Indeed, such a geometry corresponds to a C2v capped triangle [dd-C4(

1A1) in
Table 7] which was first identified by Whiteside et al. [129] At CAS(8,12)/AVTZ level, this form
represents a transition state with an imaginary frequency of only 238.0i cm−1. A close inspection
of Figure 14(a) reveals that dd-C4(

1A1) is responsible for the degenerate isomerization between
symmetrically equivalent d-C4(

1A′) structures (one with α=130.8◦ , the other α=173.6◦). The
isomerization barrier is only 3.2 kJmol−1 at this level. However, as first noted by Massó et al. [38]
and clearly seen in Figure 14(a), extrapolations to the CBS limit make the appearance of a very
shallow minimum at such a geometry. At CASDC/CBS-8 and ve-CASDC/CBS levels of theory,
dd-C4(

1A1) is found to be 112.9 and 124.4 kJmol−1 higher in energy than the singlet rhombus,
respectively. Note from Figure 14(a) that if one increases α up to about 244.1◦ , a symmetry-
equivalent conformer of r-C4(

1Ag) (in which the intrannular bond is converted to peripheral and
vice versa) is obtained. Suffice to say that Blanksby et al. predicted a CCSD(T)/AVDZ//B3LYP/6-
31G* transition state of Cs symmetry for interconversion of r-C4(

1Ag) and d-C4(
1A′) but,

surprisingly, lying below the latter. In our preliminary CAS(8,12)/AVTZ geometry searches, a
similar transition state has been found but the IRC revealed discontinuities. Such an unphysical
behavior is removed using the ORC method.

The ultimate path in the isomerization process consists of converting d-C4(
1A′) into the more

stable l-C4(
1∆g) form. As Figure 14(b) shows, this is the rate determining step, which occurs

via a L-type transition structure dl-C4(
1A′) with a ve-CASDC/CBS barrier height of about

37.2 kJmol−1 relative to d-C4(
1A′). This compares with the value 58.6 kJmol−1 predicted by

Blanksby et al. A final remark goes to work by Ngandjong et al. [183] who studied the above
cyclization pathway for singlet C4 at M06-2X/AVDZ level of theory. The authors suggested a
one-step isomerization process where r-C4(

1Ag) is directly attained from l-C4(
1∆g) via a Cs

transition structure similar to dl-C4(
1A′). Clearly, their result differs dramatically from our own

MR result. In fact, as noted by the authors themselves, the use of DFT on electronic structure
calculations of carbon clusters can be notoriously complicated due to their intrinsic multi-state
character [183].
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Figure 15. (a). Energetics of the various asymptotic channels of l-C4(
3Σ−

g ) shown in Eq. (3.5). The atomization

energy (at 0 K) for C4 is taken from Ref. 42 with the zero-point vibrational energy retrieved from Ref. 184. The

corresponding experimental data for C3(X̃
1Σ+

g ) and C2(a
3Πu) are from Ref. 35. (b). Interparticle coordinate

system employed in the construction of the DMBE-(2+3) and DMBE-(2+3+4) PESs.

(b) A novel DMBE for triplet C4

Following the Wigner-Witmer rules [156,157], one has

l-C4(
3Σ−

g )−→






C2(a
3Πu) + C2(a

3Πu)

l-C3(X̃
1Σ+

g ) + C(3P )

C2(a
3Πu) + 2C(3P )

4C(3P ).

(3.5a)

(3.5b)

(3.5c)

(3.5d)

Likewise C3(X̃
1Σ+

g ) [35,105,106,119], the title species does not correlate to ground-state C2

fragments, with the asymptote (3.5a) lying [51] 17.2 kJmol−1 above theC2(X
1Σ+

g )+C2(X
1Σ+

g )

spin-forbidden channel. As noted by Ritchie et al. [131], this latter correlates with the excited
l-C4(

1Σ+
g ) form. Figure 15(a) shows that the dissociation process into C2(a

3Πu) occurs with
an endotermicity of about 607.0 kJmol−1. In turn, the dissociation into unlike species gives
both C3 and C fragments into their ground electronic states. As pointed out by Wakelam et

al. [9], such a collinear reaction is the lowest energy path yielding l-C4(
3Σ−

g ) which according
to Figure 15(a), is exothermic by about 503.7 kJmol−1. Note that the first excited asymptotic
channel C3(ã

3Πu)+C(3P ) lies [86,88] 202.8 kJmol−1 above the asymptote (3.5b) and correlates
with higher excited electronic states such as l-C4(

3Πu) [9] and l-C4(
1Σ+

g ). Suffice to say that the
exit channels (3.5c) and (3.5d) arise from the dissociation of C3(X̃

1Σ+
g ) [in channel (3.5b)] into

C2(a
3Πu) + C(3P ), with subsequent fragmentation into C(3P )+C(3P ) [35].

Among the most reliable approaches to obtain a realistic representation of a global PES, the
MBE [119,120] and DMBE [123–125] methods play a prominent role and have acquired popularity.
Accordingly, the PES of a molecular system is expanded in sub-clusters of atoms [119], thus
warranting by built-in construction the correct asymptotic behavior in any fragmentation. Indeed,
once the potentials of all fragments have been obtained, the key MBE development enables a first
estimate of the PES for the target polyatomic [119,120]. One should bear in mind that, even if the
series converges rapidly, chemical accuracy is only attainable by including the highest-order (i.e.,
beyond pairwise-additivity) possible contributions [119,125]. Since the potentials of C3(X̃

1Σ+
g )
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Figure 16. Partially relaxed (2.26Re/a062.6) contour plot for C∞v insertion of C atom into a C3 triatomic. (a).

DMBE/ES/SS-(2+3) PES. (b) DMBE/ES/SS-(2+3+4) PES. Contours in panel (a) are equally spaced by 0.03 Eh,

starting at −0.8370 Eh. In (b), they are 0.03 Eh, and −0.7127 Eh in the same order.

and C2(a
3Πu) are already known [section 2(d)], one can proceed to a priori estimate of the C4

triplet PES.
Following the DMBE method [123–125] and Eq. (3.5), the approximate cluster expansion for

the title species including two- and three-body contributions only assumes the form

V
(2+3)
C4

(R) =V
(2)
CaCb

(R1) + V
(2)
CaCc

(R2) + V
(2)
CaCd

(R3) + V
(2)
CcCd

(R4) + V
(2)
CbCd

(R5)

+ V
(2)
CbCc

(R6) + V
(3)
CaCbCc

(R1, R2, R6) + V
(3)
CaCcCd

(R2, R3, R4)

+ V
(3)
CaCbCd

(R1, R3, R5) + V
(3)
CbCcCd

(R4, R5, R6), (3.6)

where R={R1, R2, R3, R4, R5, R6} is a collective variable of the interparticle distances in
Figure 15(b). As usual [123–125], each n-body term is split into EHF and dc energy
contributions [35,116]: V (n)=V

(n)
EHF + V

(n)
dc . Note that all fragments dissociate into ground-state C

atoms, and hence there is no need for one-body terms; the zero of energy is the exit channel (3.5d).
Because the DMBE/ES/SS [117] form of C3 is here utilized to obtain such an approximate
potential, theC4 PES will be denoted as DMBE/ES/SS-(2+3). The required three-body terms have
been obtained by subtracting the sum of two-bodies from the total energy,

V
(3)
C3

(Ri, Rj , Rk) = VES(Ri, Rj , Rk)−
[
V

(2)
C2

(Ri) + V
(2)
C2

(Rj) + V
(2)
C2

(Rk)
]
. (3.7)

Similar topographical features are obtained when using any other of our functions. Figures 16(a)
and 17(a) show relevant aspects of the purely ab initio-based DMBE/ES/SS-(2+3) expansion.

As expected, the DMBE/ES/SS-(2+3) PES provides a realistic representation of the potential
both in the valence and long-range interaction regions. In fact, as Figures 16(a) and 17(a) show,
the current DMBE has the correct asymptotic behavior, which is a well established asset of MBE
theory [119,123–125]. It should be stressed that, although the truncated potentials give a good
representation of the triplet linear global minimum, l-C4(

3Σ−
g ) is predicted to be a saddle point of

index 4, with imaginary frequencies corresponding to the degenerate trans-(w4) and cis-bending
(w5) modes. This result stems largely from the lack of the four-body term which, according to
Figure 15(a) and the DMBE/ES/SS-(2+3) PES, is estimated to be as repulsive as 376 kJmol−1

at this geometry. Similar magnitudes of four-body interaction energies have been reported for
X4-type elemental clusters such as H4 [120,185] and O4 [186]. In fact, for ground-state C3, the
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Figure 17. As in Figure 16, but for a partially relaxed (2.26Re/a062.6) contour plot for the C atom moving

around C3 which lies along the x axis with the origin fixed at the central carbon atom. Solid black lines are in panel

(a) equally spaced by 0.01 Eh, starting at −0.8864 Eh. In panel (b), the corresponding values are 0.015 Eh

and −0.7127 Eh. Dotted gray and dashed black lines are equally spaced by 0.005 and 0.0002 Eh, starting at

−0.5624 and −0.5326 Eh, respectively.

three-body energy is known [35,116,185] to strongly favor the linear structure: it is attractive in
this region, but repulsive (or less attractive) as the molecule bends, in such a way as to counteract
the increased attraction of the two-body terms. Thus, atD3h geometries, a minimum of the latter
is accompanied by a maximum in energy of the former. On going from C3 to C4, the two-body
terms are doubled in number, while the three-body terms are quadrupled. If the four-body energy
is ignored a priori, one expects, therefore, an over-stabilization of the linear structure due to the
three-body terms, with highly symmetric geometries such as Td forms being greatly destabilized.
Obviously, there are cases in which the gain in two-body energy on passing from chains to
rings will compensate for the loss of three-body interaction so that cyclic structures can be
almost isoenergetic or even more stable than l-C4(

3Σ−
g ). However, such forms are predicted from

our ab initio calculations to be high-lying stationary structures on the triplet ground-state PES.
This is mostly attributed to the generally repulsive nature of the four-body term: although this
contributes significantly to the total energy, it is a well accepted trend that the two- and three-body
terms are predominantly structure determining in elemental clusters [119,120,185,186].

In an attempt to improve the above PES, an approximate four-body term has been added to the
DMBE/ES/SS-(2+3) potential in Eq. (3.6). For this, we employed a distributedGaussian approach
[187,188] in which sets of correcting locally-valid functions are centered at convenient geometries;
see also Ref. 189 for the original n-body distributed polynomial method. The effective four-body
term is then written as

V
(4)
C4

(R) =

7∑

i=1

P
(4)
i (Γ )Gi(Γ ), (3.8)

where P (4)
i (Γ ) are cubic polynomials of the form

P
(4)
i (Γ ) =(c0 + c1Γ1 + c2Γ

2
1 + c3Γ2 + c4Γ3 + c5Γ

3
1 + c6Γ1Γ2

+ c7Γ1Γ3 + c8Γ4 + c9Γ5 + c10Γ6), (3.9)

and Gi(Γ ) = exp[−γi(Γ1)
2] are Gaussian factors that quickly die-off away from the origin point.

Following Varandas and Murrell [119,169,186], Γi (i=1− 6) are totally symmetric combinations
of the Qi (i=1− 6) coordinates (see Table 8), which are written as symmetrized displacements
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Table 8. Integrity basis used for the representation of the triplet C4 PES.

Γ1 =Q1

Γ2 =Q2
2 +Q2

3 +Q2
4

Γ3 =Q2
5 +Q2

6

Γ4 =Q2Q3Q4

Γ5 =Q3
6 − 3Q6Q

2
5

Γ6 =Q6(2Q
2
2 −Q2

3 −Q2
4) +

√
3Q5(Q

2
3 −Q2

4)

from a Td geometry of sideR0 [119,169,186]



Q1

Q2

Q3

Q4

Q5

Q6




=




√
1/6

√
1/6

√
1/6

√
1/6

√
1/6

√
1/6√

1/2 0 0 −
√

1/2 0 0

0
√

1/2 0 0 −
√

1/2 0

0 0
√

1/2 0 0 −
√

1/2

0 1/2 −1/2 0 1/2 −1/2√
1/3 −

√
1/12 −

√
1/12

√
1/3 −

√
1/12 −

√
1/12







∆R1

∆R2

∆R3

∆R4

∆R5

∆R6




, (3.10)

where ∆Ri=Ri −R0. Thus, using symmetry labels of Td point group, Q1, (Q2, Q3, Q4), and
(Q5, Q6) transform as A1, T2 and E irreps, respectively. To calibrate Eq. (3.8), a total of 663 ab

initio points has been employed as follows. First, a set of 53 (constrained) optimized geometries
for collinear approximations of the C3+C and C2+C2 fragments has been obtained at ve-
CASDC/CBS level using C2v and D2h symmetries, respectively (Figure 18). The corresponding
four-body interaction energies have then been determined from the requirement that they vanish
at all dissociation limits (assumed as Rbc=Rcd=10.0 a0) and by further subtracting the energies
predicted from DMBE/ES/SS-(2+3). An additional set of 76 nuclear arrangements related to the
ORC path shown in Figure 13 has also been included. To give them ve-CASDC/CBS quality,
we have scaled the corresponding MRCI(Q)-8/AVTZ energies in such a way as to reproduce
the correct splitting between the l-C4(

3Σ−
g ) and r-C4(

3B2g) forms at ve-CASDC/CBS level, i.e.,
∆Elr=0.0555 Eh (see Table 6). Such a factor has been determined with

F =
[E

MRCI(Q)-8
3 (Rr)− E

MRCI(Q)-8
3 (Rl)]

∆Elr
, (3.11)

where EMRCI(Q)-8
3 (Rr) and E

MRCI(Q)-8
3 (Rl) denote the MRCI(Q)-8/AVTZ absolute energies of

the rhombic and linear isomers, yieldingF=1.7010. From (3.11), the total interaction energy, with
respect to l-C4(

3Σ−
g ), for any structure x can be expressed by

E(Rx) =
[E

MRCI(Q)-8
3 (Rx)− E

MRCI(Q)-8
3 (Rl)]

F + E(Rl), (3.12)

where E(Rl)=−0.7127 Eh is the total interaction energy of the linear global minima (relative to
the infinitely separated atoms) predicted from ve-CASDC/CBS calculations. Note that this is in
excellent agreement with the experimental estimate of −0.6958 Eh [35,42,184]; Figure 15(a). The
ORC path obtained from Eq. (3.12) and denoted MRCI(Q)-8-S is shown in Figure 13. Clearly, the
present approach bringsMRCI(Q)-8/AVTZ energies in close agreementwith the predicted linear-
rhombic energy separations at ve-CASDC/CBS, while reasonably describing the region defined
by the transition state lr-C4(

3A′′).
With the aid of Eq. (3.12), an extra set of 534 ab initio points calculated at MRCI(Q)-8/AVTZ

level has further been added in the least-squares fitting procedure. Note that the effective
four-body energies have been determined simply by subtracting the total interaction energies
predicted by Eq. (3.12) from the ones estimated with the DMBE/ES/SS-(2+3) form. Suffice to say
that, differently from the set of linear coefficients [Eq. (3.9)] in which small initial guesses have
been freely varied, the origin points (R0) and range-decaying parameters (γi) of every Gaussian
have been optimized by trial-and-error. Table 9 displays the stratified rmsd values of the final PES
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Table 9. Stratified rmsd (in kJmol−1) of the DMBE/ES/SS-(2+3+4) PES.

Energya Nb rmsd Energya Nb rmsd
41 54 0.4 334 245 5.2
83 90 0.8 460 320 6.2

125 133 1.2 878 582 6.2
167 169 2.2 1297 616 8.1
209 182 2.3 2133 633 9.3
251 207 2.9 2552 640 10.2
292 221 3.1 6317 663 12.6

aEnergy strata defined relative to the l-C4(
3Σ−

g ) structure. bNumber of calculated points up to indicated energy range.
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Figure 18. Relaxed 1D cuts for dissociation of l-C4(
3Σ−

g ) into C2(a
3Πu)+C2(a

3Πu) and l-C3(X̃
1Σ+

g )+

C(3P ) as obtained from DMBE/ES/SS-(2+3) and DMBE/ES/SS-(2+3+4). Also shown are the approximate four-

body interaction energies obtained at the ve-CASDC/CBS level and the additional term V
(4)
C4

(R).

with respect to all fitted data set. Thus, chemical accuracy is ensured up to ∼ 334 kJmol−1 above
the absolute linear minima with larger deviations occurring for more repulsive energy strata. The
optimum numerical coefficients of Eq. (3.8) are given as electronic supplementary material.

Figures 16(b), 17(b), and 18-20 depict the most salient attributes of the full DMBE PES for triplet
C4. As Figure 18 shows, the approximate four-body interaction energy [Eq. (3.8)] mimics well the
expensive set of calculated ab initio points at ve-CASDC/CBS level of theory. Note that such a plot
corresponds in Figure 16(b) to orthogonal cuts taken along the R2 and R1 directions. As clearly
seen from Figure 18, the four-body term is as repulsive as 300.0 kJmol−1 (at ve-CASDC/CBS
level) for such geometries. In fact, such a trend is further exacerbated as long as other regions
of the nuclear configuration space are accessed. Yet, the simple addition of the V

(4)
C4

(R) term
makes the triplet linear structure, l-C4(

3Σ−
g ), to be a true minimum on the full PES with

characteristic bond lengths R1=R3=2.524 a0 and R2=2.435 a0; such a feature can best be seen
from Figure 17. Moreover, the four-body term ensures that the DMBE form reproduces the correct
endothermicities for dissociation into C2(a

3Πu)+C2(a
3Πu) and l-C3(X̃

1Σ+
g )+C(3P ), which

are of about 647.8 and 504.0 kJmol−1, respectively. As shown in Figure 15(a), the corresponding
experimental estimates are ca. 607.0 and 503.7 kJmol−1.
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Figure 19. Partially relaxed contour plot (2.26Re/a062.6) of the DMBE/ES/SS-(2+3+4) PES for a C2 fragment

moving around another C2 molecule which lies along the x axis with the origin fixed at the center of the C – C bong

length. Contours are equally spaced by 0.015 Eh, starting at −0.7127 Eh.

Besides accurately describing the region of the global minima, the DMBE/ES/SS-(2+3+4)
form reproduces the minimum-energy interconversion pathway from l-C4(

3Σ−
g ) to r-C4(

3B2g)

obtained at MRCI(Q)-8-S level, as shown in Figure 13. Yet, the triplet rhombic structure is
described as a stable local minimum on the global PES (see Figure 20) with characteristic bond
lengths and angles of R1=R2=R3=2.786 a0, α=104.8◦ and β=75.2◦ ; see also Table 6. The
classical barrier height predicted for such a process is 155.2 kJmol−1 relative to the linear minima.

Figure 17(b) illustrates the total PES for C moving around C3, and corresponds to plot (a) for
DMBE/ES/SS-(2+3). As shown, the addition of the four-body term yields a simpler topography,
in the sense of free from spurious extrema. Indeed, the T-shaped valence structure (at x=0.000a0
and y=2.686a0), appears in the full PES as a barrier-like feature connecting the two symmetry
equivalent l-C4(

3Σ−
g ) structures. However, this not a true transition state on the six-dimensional

configuration space, but a saddle point of index 3, in accordance with the MRCI(Q)-8/AVTZ
calculations. Note that the additional T-shaped long-range structure (at x=0.000a0 and y=

4.290a0) form a high-symmetry D3h triangle that could therefore evidence a Ci. Preliminary
work at CAS(8,12)/AVTZ level using the sign-reversal property of the wave-function [167] have
shown this not to be the case (at least for the ground triplet state) but revealed the presence of a
high-density of close-in-energy states at this region.

The in-plane attack of C2 to another C2 as obtained from DMBE/ES/SS-(2+3+4) is shown
in Figures 19 and 20. A notable feature from Figure 19 refers to the barrier connecting the
two adjacent linear isomers, which is now a true saddle point of index 1. This feature has
been confirmed by ab initio MRCI(Q)-8/AVTZ and CCSD(T)/AVTZ calculations. Recall that
Blanksby [138] and Ngandjong et al. [183] using DFT predicted such a structure to be a minimum.
Also seen from Figure 20 is the presence of two additional stationary points on the full PES:
a slightly distorted C2v capped triangle (at x=4.582a0 and y=2.642a0), and a quasi-rhombic
form (at x=5.084a0 and y=0.669a0). Although such forms are predicted to be a minimum
and transition state in 2D, this could not be confirmed here by ab initio calculations. Clearly, a
true statement about their nature demands higher-level FVCAS/MRCI frequency calculations
which are computationally unaffordable. Despite this, the chosen four-body term has been found
reasonable at all investigated geometries. Of course, an enhanced fit may require an extended set
of points for such geometries, and more complicated polynomial forms eventually involving all
possibleX4 symmetry invariants. This is clearly a task outside the scope of the present work.
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4. Concluding remarks
A deep survey and analysis of the major features of C2, C3 and C4 carbon clusters has been
presented. For the dimer, a summary of its current status is addressed. For C3, the most recent
results obtained in our group were reviewed with emphasis on the modeling of its PES, which is
particularly complicated due to the presence of multiple conical intersections. For the tetracarbon
radical, the most stable isomeric forms of both triplet and singlet PESs and their possible
interconversion pathways were examined anew by means of high-level ab initio calculations.
Based on such results, the strategy toward a global PES for triplet C4 has also been discussed.
Starting from a truncated cluster expansion of the molecular PES that utilizes our own functions
for C3, an approximate four-body term has been suggested using 663 accurate ab initio energies.
The resulting full 6DDMBE form reproduces all known topographical aspects of tripletC4 aswell
as its linear-rhombic isomerization path, and hence is commended for reaction dynamics studies.
Clearly, the understanding of the electronic structure and properties of small precursors provides
valuable information on the reactive collision processes and formation of larger Cn clusters in
interstellar medium.

Glossary

ABW: Potential energy surface of Ahmed, Balint-Kurti and Western [34].
ANO: Atomic natural orbital basis set [37].
AVXZ: Dunning’s type augmented correlation-consistent polarized-valence basis [60,61].
CASSCF: The complete active space self-consistent field method [175].
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CAS: Simplified notation to imply CASSCF.
CAS(x,y): CASSCF specifying x active orbitals and y active electrons.
CASDC: CASSCF energy plus dynamical correlation energy [177].
c-: Cyclic molecular structure.
CBS: The complete basis set limit [179,180].
CC: The coupled-cluster method [59,130,133,136,137].
CCSD CC with single and double excitations.
CCSD(T): CCSD including triple excitations noniteratively.
CI: The configuration interaction [56–58,131].
CISD: CI with single and double excitations.
CISD(Q): CISD including the Davidson correction [175].
Ci: Conical intersection.
CSF: The configuration state function.
d-: Distorted molecular structure
dc: Dynamical correlation.
DFT: Density functional theory [138,183].
DMBE: The double many-body expansion method [123–125].
DMBE-SEC: The DMBE scaled external correlation approach [126].
EHF: The extended Hartree-Fock energy.
ES: The energy-switching method [173].
fc: The frozen core approximation.
FVCAS: The full-valence CAS method [175].
GP: Geometric phase [164–166].
HF: The Hartree-Fock method [175].
HOMO: The highest occupied molecular orbital.
IR: Abbreviation for "infrared".
IRC: Intrinsic reaction coordinate [176,177].
irrep: Irreducible representation.
JT: Jahn-Teller [158].
l-: Linear molecular structure.
LUMO: The lowest unoccupied molecular orbital.
MBE: The many-body expansion method [119,120].
MO: Molecular orbital.
MPn: Møller-Plesset perturbation theory [121,129].
MR: Multi-reference electronic structure methods.
MRCI: The MR-CI method [175].
MRCI(Q): The MRCI method including the Davidson correction [175].
ndc: Non-dynamical correlation.
ORC: Optimized reaction coordinate [176,177].
PEC: Potential energy curve.
PES: Potential energy surface.
PJT: Pseudo-Jahn-Teller [158].
QFF: The quartic force field local PES.
r-: Rhombic molecular structure.
rmsd: Root mean square deviation.
RKR: The Rydberg-Klein-Rees method [55].
RT: Renner-Teller [158].
SCF: The self-consistent field method [175].
SLP: Abbreviation for "small linear parameter".
SR: Single-reference electronic structure methods.
SS: Potential energy surface of Schröder and Sebald [115].
VB: The valence bond theory [18].
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ve: valence electron approximation.
USTE: The uniform singlet- and triplet-pair extrapolation method [180].
ZPE: Zero-point energy.

Data Accessibility. The coefficients of the four-body term for the ground-state triplet PES of C4 are available
as electronic supplementary material.
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This thesis provides an extensive report on the work done during the doctoral program

pursued by the candidate. The main focus was to study the electronic and structural

properties of elemental carbon clusters, notably C2, C3 and C4, by exploring their potential

energy surfaces (PESs). The work was divided into three main parts. Initially, a theoretical

background has been given that surveys the general theory behind the methodological

approaches here employed. Subsequently, the results so obtained have been gathered as

manuscripts published in peer-reviewed journals. As a final topic, we hereby summarize

the major achievements and scientific contributes of our research.

A global single-sheeted PES for ground-state C3 was first reported using accurate ab

initio energies as calibration data and the double many-body expansion (DMBE) method

for the modeling. Since C3(1 1A′) does not dissociate adiabatically into the ground state

of its fragments [C2(
1Σ+

g )+C(3P)] but into C2(
3Πu)+C(3P), the potential energy curve of

this latter diatomics has been employed as two-body terms. In that study, we have first

outlined the existence of three symmetry-allowed C2v conical intersections (Cis) in quite

close proximity to the symmetry-required one at D3h geometries, an attribute which had

been previously overlooked for the carbon trimer. Because a third electronic state of 1A′

symmetry (11A′
1 in D3h) is close-in-energy to the pair of intersecting states (11E′ in D3h)

near equilateral triangular arrangements, such features have been ascribed to combined

Jahn-Teller ( JT) plus pseudo-Jahn-Teller (PJT) effects. The modeling of the adiabatic PES

has then been accomplished by making use of a specially-designed functional form that

warrants by built-in construction the expected cusp behavior near the minimum energy

crossing point (MECP), while accurately describing asymptotic channels, long-range in-
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teractions as well as all topographical attributes in the valence region. These latter include

the proper description of a C2v transition state responsible for the isomerization between

the three symmetry-equivalent D∞h global minima and other long-range extrema, some

of which reported for the first time. To judge the quality of the final DMBE form, ex-

ploratory rovibrational energy calculations have also been performed, unveiling a good

match of the spectrum of C3 with a root-mean-square deviation (rmsd) of 50.4 cm−1 for

53 calculated levels.

The unusual topographical features so reported for C3 have prompted us to further

explore its JT plus PJT vibronic problem [(E′+A′
1)⊗ e′] and the results were by no means

interesting. Contrary to the previous findings, the three symmetry-equivalent C2v disjoint

seams are not static objects with respect to the symmetry-required one but instead evolves

in a non-trivial manner as the perimeter of the molecule increases. To qualitatively char-

acterize such combined (E′ + A′
1) ⊗ e′ problem, a three-state vibronic Hamiltonian has

also been proposed and the parameters least-squares fitted to accurate MRCI energies.

The diabatic potential matrix so obtained was proven to accurately describe the adiabatic

PESs and their inherent intricacies near the MECP. The large magnitude of the quadratic

JT parameter with respect to the corresponding linear one posed serious considerations

about the real nature of C3 and led us to revisit this issue by including the title radical

into a select group of species showing similar attributes, i.e., the so-called small linear

parameter (SLP) JT molecules, among which its congener Si3 is also part of. The topolog-

ical implications of such inherent features have also been assessed for the first time. We

demonstrated that, while the adiabatic wave functions of the intersecting states change

sign when transported around a loop enclosing any one of the 4 Cis, the net geometric

phase effect is largely suppressed when all degeneracies are encircled at once.

In view of the intrinsic complexities of the molecule at hand and the unusual nature

of the C2v disjoint crossings, further attempts were made to develop a global DMBE form

for C3 that properly mimics all the aforementioned features. By finding the appropriate

parametric equation that characterizes the locus of intersection, we were able to accom-

plish such a task and proposed the use of a specially-designed coordinate that, together

with the use of the JT-type coordinate and suitably chosen polynomial forms, ensure
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the expected cusp behavior of both D3h and C2v seams over the entire range of nuclear

configuration space. Although the novel methodology has been typified here for carbon

trimer, it is expected to have unprecedented applicability on modeling adiabatic PESs of

SLP JT molecules.

Since its first observation in the spectra of comets in 1881, C3 and its well-known

Ã1Πu–X̃1Σ+
g band system have been the subject of intense spectroscopic investigations

aiming at characterizing its exceptionally large amplitude bending motion in the ground

(X̃1Σ+
g ) as well as the unusual large Renner-Teller effect in the Ã1Πu excited state. Such a

flurry of experimental/theoretical studies have made C3 one of the most well-characterized

non-rigid triatomics in existence and motivated several efforts toward spectroscopically

accurate near-equilibrium PESs. This prompted us to propose and utilize a simplified

version of the energy switching scheme (ES) in which the latest global DMBE form for

C3 was actually merged with the best currently available Taylor-series expansions for

the title species: the mixed theoretical/experimental PES due to Ahmed et al. and the

purely ab initio potential by Schröder and Sebald. Near spectroscopic accuracy (rmsds of

≈10 cm−1) has been conveyed to both ES potentials for vibrational wave numbers calcu-

lated up to about 4000 cm−1 above the zero point energy level, while keeping unaltered

all the attributes of the original DMBE potential. As expected, by benefiting from the

advantages of each separated form (and, at the same time, avoiding their most serious

limitations), the final DMBE/ES PESs here obtained are suitable both for spectroscopic

and reaction dynamics studies on C3.

The relevance of C4 in the interstellar medium and the discrepancies concerning its

ground state structure motivated us to further explore its PES by performing high-level

ab initio calculations followed by extrapolations to the complete basis set (CBS) limit.

As an inherent property of small Cn molecules (highlighted here also for C2 and C3),

the presence of low-lying singlet/triplet electronic manifolds and/or isomeric forms are

even more noticeable on C4. For this system, the existence of two almost isoenergetic

structural isomers is widely accepted: the linear triplet chain l-C4(
3Σ−

g ) and the rhom-

bic singlet r-C4(
1Ag) structure. We have investigated this issue and found that, although

multi-configurational approaches predict l-C4(
3Σ−

g ) as the most stable form, extrapola-
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tions to the CBS limit tend to favor the r-C4(
1Ag) isomer. Unfortunately, even with our

best full-valence CBS protocol (for the first time applied on carbon tetramer), the ener-

getic proximity predicted between such forms (≈ 4.9 kJmol−1) is expected to be of the

same order of accuracy of the ab initio calculations themselves, and hence any statement

about the true ground-state of C4 is very risky at present. Isomerization pathways between

linear and rhombic structures on both singlet and triplet PESs have also been explored,

unraveling several other stable and transient species for the title radical, some of which

unreported thus far. Starting from an approximate cluster expansion constructed from

two- and three-body terms only (obtained from the corresponding PES of the carbon

trimer), an approximate four-body term has also been proposed and calibrated using

accurate ab initio energies. The resulting fully six-dimensional global DMBE PES re-

produces all known topographical aspects of the ground triplet state of C4, including

its linear-rhombic isomerization pathway, as well as the correct exothermicities for the

l-C3(X̃ 1Σ+
g )+C(3P) and C2(a 3Πu)+C2(a 3Πu) collinear reactions.

The results reported throughout this thesis provide a general overview on the most

fundamental aspects regarding the smallest Cn clusters and their inherent complexities.

Although such intricacies are expected to be even more pronounced on larger aggregates,

the knowledge here acquired supply safe grounds on which to base the study of more

involved pure carbon species. Clearly, it is believed that the potentials here obtained

carry important peaces of information that could be utilized as input for the construction

of PESs for larger Cn species. By employing even simpler forms for the highest order

terms in the cluster expansion, this assumption is made possible, as already demonstrated

here for C4. Suffice it to say that the current PESs for C3 and C4 are objects that per

se provide valuable observables for the title systems. Among these, one can highlight

the prediction of accurate reaction rate coefficients for the C+C2, C2+C2 and C+C3

processes which could be extremely useful in astrochemical models (chemical reaction

networks) of interstellar medium and also spectral (infrared) bands that could guide for

an unambiguous assignment of these species in astrophysical sources.
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Appendix A

Atomic units and conversion factors

Consider the Schrödinger equation for the hydrogen atom in international system of units

(SI) [1] [
− ℏ2

2me
∇2(r)− e2

4πε0|r|

]
ϕ(r) =Eϕ(r), (A.1)

where me is the electron mass, e is the elementary charge and ε0 is the vacuum permit-

tivity. In turn, ϕ(r) and E are the eigenfunction and associated eigenvalue, respectively,

with r denoting the electronic coordinates relative to the nucleus1. Thus, r is a column

matrix with three Cartesian components rα(α=x, y, z), and therefore |r|=
√

(r2x + r2y + r2z).

To convert the above equation into a dimensionless one, we perform the following trans-

formation rx, ry, rz→ξr′x, ξr
′
y, ξr

′
z and obtain[

− ℏ2

2meξ2
∇2(r′)− e2

4πε0ξ|r′|

]
ϕ′(r′) =Eϕ′(r′). (A.2)

The constants on the left-rand side of Eq. (A.2) can be factored, since ξ is chosen such

that
ℏ2

meξ2
=

e2

4πε0ξ
= Eh, (A.3)

where Eh is the atomic unit of energy, refered to as hartree. Moreover, by solving Eq. (A.3)

for ξ, we find

ξ =
4πε0ℏ2

mee2
= a0, (A.4)

1It is assumed, therefore, that the center-of-mass translational motion has already been separed off.
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with ξ being simply the Bohr radius a0 which is the atomic unit of lenght.

By using the definition of Eh [Eq. (A.3)] in Eq. (A.2), multiplying from the left by 1/Eh

and setting E′=E/Eh, one easily gets[
−1
2
∇2(r′)− 1

|r′|

]
ϕ′(r′) =E′ϕ′(r′) (A.5)

which is the Schrödinger equation in au. The exact solution of such an equation for the

ground state of the hydrogen atom yieldsE′=−0.5 Eh. Table A.1 gives conversion factors

between au and SI units for some usual physical quantities. Also given in Table A.2 are

the energy conversion factors from Eh to non-SI units used throughout this thesis.

Table A.1: Conversion factors from au to SI for some common physical quantities [2].

Atomic unit (base units) SI value Name (Symbol)

Mass (me) 9.109 383 56(11)× 10−31 kg Electron mass

Charge (e) 1.602 176 620 8(98)× 10−19 C Elementary charge

Angular momentum (ℏ) 1.054 571 800(13)× 10−34 J s−1 Planck’s constant/2π

Energy [mee4/(4πε0ℏ)2] 4.359 744 650(54)× 10−18 J Hartree (Eh)

Length (4πε0ℏ2/mee2) 5.291 772 106 7(12)× 10−11m Bohr (a0)

Time (ℏ/Eh) 2.418 884 326 509(14)× 10−17 s

Electric dipole moment (ea0) 8.478 353 552(52)× 10−30 Cm

Table A.2: Energy conversion factors from au to non-SI units [2].

1 Hartree (Eh)

2625.499 638 kJmol−1

627.509 kcalmol−1

219 474.631 370 2 cm−1

27.211 386 02 eV
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Appendix B

Derivation of the vibronic coupling

constants

B.1 The linear plus quadratic E⊗ e problem

We consider here the simplest JT problem for an X3-type molecule in a doubly degen-

erate electronic state E interacting with doubly degenerate e modes [1, 2]. The point

group for such a system is D3h; however, since no out-of-plane bending of a triatomic

system is possible, and since the wavefunctions for the degenerate state are assumed to

be symmetric with respect to reflections in the plane of the molecule, the subgroup C3v

will be used instead in the present discussion. Let |Eθ(r;0)⟩ and |Eϵ(r;0)⟩ be the two

degenerate components of the E term which are obtained as solutions of Eq. (2.13), i.e.,

{|Γγi(r;0)⟩}={|Eθ(r;0)⟩ , |Eϵ(r;0)⟩}, with associated eigenvalues V1(0)=V2(0)=V×
E (0).

Assume further that such terms are well separated in energy from all other electronic

states and only the subspace spanned by them needs to be considered here. The cor-

responding components of the normal E-type displacement are denoted as Qeθ and Qeϵ

(see Figure 2.2), while Qa1ι represents the totally symmetric mode which transform ac-

cording the single line ι of the irrep A1. We define now the matrix representation of

the electronic Hamiltonian Ĥe(r;Q) [Eq. (2.12)] in the basis {|Eθ(r;0)⟩ , |Eϵ(r;0)⟩}. Note
that the expansion in Eq. (2.12) is here truncated at the quadratic terms (second-order
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perturbation treatment). Following Eqs. (2.14)-(2.16), the associated matrix elements are

then given by

Hji(Q) = V×
E (0)δji +

∑
Γγ ̸=a1ι

F(ΓγjΓγi)
Γγ

QΓγ

+
∑

Γγ ̸=a1ι

G(ΓγjΓγi)

Γγ

{
QΓ1

⊗ QΓ2

}
Γγ

+
∑

Γγ=a1ι

1
2
K(Γ)
0

{
QΓ1

⊗ QΓ2

}
Γγ
δji (B.1)

where F(ΓγjΓγi)
Γγ

and G(ΓγjΓγi)

Γγ
are the linear and quadratic JT VCCs [see Eqs. (2.15) and

(2.16)], respectively, calculated along non-totally symmetric displacements and K(Γ)
0 is

the primary (nonvibronic) force constant which is non-vanishing only in the totally sym-

metric part of the diagonal matrix elements. For convenience, we rewrite Eq. (B.1) by

considering each term per se as a matrix element of a set of 2 by 2 sub-matrices

Hji(Q) = H(0)
ji (0) +W(1)

ji (Q) +W(2)
ji (Q) + Kji(Q), (B.2)

where

H(0)
ji (0) = V×

E (0)δji,

W(1)
ji (Q) =

∑
Γγ ̸=a1ι

F(ΓγjΓγi)
Γγ

QΓγ,

W(2)
ji (Q) =

∑
Γγ ̸=a1ι

G(ΓγjΓγi)

Γγ

{
QΓ1

⊗ QΓ2

}
Γγ
,

(B.3)

(B.4)

(B.5)

and

Kji(Q) =
∑

Γγ=a1ι

1
2
K(Γ)
0

{
QΓ1

⊗ QΓ2

}
Γγ
δji. (B.6)

Let us start by considering the matrix elements W(1)
ji (Q) which contain only linear

(first-order perturbation) terms of the vibronic coupling. Following Eqs. (2.14) and (2.15)
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Table B.1: V coefficients for the point group C3v (subgroup of D3h) calculated between twofold degen-

erate E terms. All V that are not given are zero [3].

E E E V

θ θ θ −1
2

θ ϵ ϵ 1
2

ϵ θ ϵ 1
2

ϵ ϵ θ 1
2

as well as Table B.1, they are given by

W(1)
11 (Q) =

⟨
Eθ(r;0)

∣∣∣∣∣
(
∂ Û(r;0)
∂Qeθ

)
0

∣∣∣∣∣ Eθ(r;0)
⟩
Qeθ

=

{
FEV

E E e

θ θ θ

}Qeθ

= −
(
1
2
FE

)
Qeθ

= −FEQeθ , (B.7)

W(1)
12 (Q) =

⟨
Eθ(r;0)

∣∣∣∣∣
(
∂ Û(r;0)
∂Qeϵ

)
0

∣∣∣∣∣ Eϵ(r;0)
⟩
Qeϵ

=

{
FEV

E E e

θ ϵ ϵ

}Qeϵ

=

(
1
2
FE

)
Qeϵ

= FEQeϵ , (B.8)
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W(1)
21 (Q) =

⟨
Eϵ(r;0)

∣∣∣∣∣
(
∂ Û(r;0)
∂Qeϵ

)
0

∣∣∣∣∣ Eθ(r;0)
⟩
Qeϵ

=

{
FEV

E E e

ϵ θ ϵ

}Qeϵ

=

(
1
2
FE

)
Qeϵ

= FEQeϵ , (B.9)

and

W(1)
22 (Q) =

⟨
Eϵ(r;0)

∣∣∣∣∣
(
∂ Û(r;0)
∂Qeθ

)
0

∣∣∣∣∣ Eϵ(r;0)
⟩
Qeθ

=

{
FEV

E E e

ϵ ϵ θ

}Qeθ

=

(
1
2
FE

)
Qeθ

= FEQeθ , (B.10)

where FE is the reduced matrix element and FE the corresponding linear coupling con-

stant. Note that no other combinations of θ and ϵ in the brakets of Eqs. (B.7)-(B.10)

are here possible due to the vanishing nature of the corresponding V coefficients (see

Table B.1). Before proceeding to the calculation of the matrix elements W(2)
ji (Q) and

Kji(Q), it is convenient to provide an explicit definition of the irreducible products shown

in Eqs. (2.14) and (2.16). Such quantities assume the form [3]{(
∂ Û(r;0)
∂QΓ1

)
0

⊗
(
∂ Û(r;0)
∂QΓ2

)
0

}
Γγ

=λ(Γ)1/2
∑
γ1γ2

V

Γ1 Γ2 Γ

γ1 γ2 γ

(∂ Û(r;0)
∂QΓ1γ1

)
0

(
∂ Û(r;0)
∂QΓ2γ2

)
0

(B.11)

which means a linear combination of second derivatives with respect to the QΓ1γ1
and

QΓ2γ2
coordinates that transform according to the line γ of the representation Γ ∈ Γ1 ⊗

Γ2. Such combinations can be found by means of group theory and the Wigner-Eckart

theorem. Indeed, if Γ is not contained in the direct product of Γ1 and Γ2, Eq. (B.11)

naturally vanishes since V=0. Note that λ(Γ) defines the dimension of the representation
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Γ. From the above considerations and using Table B.1, the irreducible products relevant

for the present formulation of the E⊗ e problem are thus given by

{(
∂ Û(r;0)
∂Qe

)
0

⊗
(
∂ Û(r;0)
∂Qe

)
0

}
eθ

= (2)1/2
{
V

e e e

θ θ θ

(∂2 Û(r;0)
∂Q2

eθ

)
0

+ V

e e e

ϵ ϵ θ

(∂2 Û(r;0)
∂Q2

eϵ

)
0

}

=

√
2
2

{(
∂2 Û(r;0)
∂Q2

eϵ

)
0

−
(
∂2 Û(r;0)
∂Q2

eθ

)
0

}
, (B.12)

{(
∂ Û(r;0)
∂Qe

)
0

⊗
(
∂ Û(r;0)
∂Qe

)
0

}
eϵ

= (2)1/2
{
V

e e e

θ ϵ ϵ

(∂2 Û(r;0)
∂Qeθ∂Qeϵ

)
0

+ V

e e e

ϵ θ ϵ

(∂2 Û(r;0)
∂Qeϵ∂Qeθ

)
0

}

=
√
2

{
1
2

(
∂2 Û(r;0)
∂Qeθ∂Qeϵ

)
0

+
1
2

(
∂2 Û(r;0)
∂Qeϵ∂Qeθ

)
0

}

=
√
2

(
∂2 Û(r;0)
∂Qeθ∂Qeϵ

)
0

, (B.13)

and, for the case of the totally symmetric combination of the second derivatives, one gets

{(
∂ Û(r;0)
∂Qe

)
0

⊗
(
∂ Û(r;0)
∂Qe

)
0

}
a1ι

= (1)1/2
{
V

e e a1

θ θ ι

(∂2 Û(r;0)
∂Q2

eθ

)
0

+ V

e e a1

ϵ ϵ ι

(∂2 Û(r;0)
∂Q2

eϵ

)
0

}

=
1√
2

{(
∂2 Û(r;0)
∂Q2

eθ

)
0

+

(
∂2 Û(r;0)
∂Q2

eϵ

)
0

}
. (B.14)

Note that the corresponding values of the V coefficients calculated between E and A1

terms are given in Table B.2. Similarly, the corresponding tensor convolutions for the
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Table B.2: V coefficients of the point group C3v (subgroup of D3h) calculated between twofold degenerate

E and one-dimensional (totally symmetric) A1 terms [3]. All V that are not given are zero.

E E A1 V

or

E A1 E V

or

A1 E E V

θ θ ι 1√
2

ϵ ϵ ι 1√
2

θ ι θ 1√
2

ϵ ι ϵ 1√
2

ι θ θ 1√
2

ι ϵ ϵ 1√
2

symmetrized nuclear coordinates may be introduced as

{
Qe ⊗ Qe

}
eθ
= (2)1/2

{
V

e e e

θ θ θ

Q2
eθ + V

e e e

ϵ ϵ θ

Q2
eϵ

}

=

√
2
2

(
Q2
eϵ − Q2

eθ

)
, (B.15)

{
Qe ⊗ Qe

}
eϵ
= (2)1/2

{
V

e e e

θ ϵ ϵ

QeθQeϵ

}

=

√
2
2

(
QeθQeϵ

)
, (B.16)

and {
Qe ⊗ Qe

}
a1ι

= (1)1/2
{
V

e e a1

θ θ ι

Q2
eθ + V

e e a1

ϵ ϵ ι

Q2
eϵ

}

=
1√
2

(
Q2
eθ + Q2

eϵ

)
. (B.17)

Once the proper analytical expressions for the irreducible products have been ob-

tained, one can proceed further and define the matrix elements W(2)
ji (Q) [Eqs. (B.2) and
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(B.5)] which contain quadratic (second-order perturbation) terms of the vibronic cou-

pling. By substituting Eqs. (B.12), (B.13), (B.15) and (B.16) into the corresponding matrix

elements of Eq. (B.5) and taking into account the definition of the quadratic VCC given

in Eq. (2.16), one obtains

W(2)
11 (Q)

=
1
2

⟨
Eθ(r;0)

∣∣∣∣∣
{(

∂ Û(r;0)
∂Qe

)
0

⊗
(
∂ Û(r;0)
∂Qe

)
0

}
eθ

∣∣∣∣∣ Eθ(r;0)
⟩{

Qe ⊗ Qe

}
eθ

=
1
2

⟨
Eθ(r;0)

∣∣∣∣∣
√
2
2

{(
∂2 Û(r;0)
∂Q2

eϵ

)
0

−
(
∂2 Û(r;0)
∂Q2

eθ

)
0

}∣∣∣∣∣ Eθ(r;0)
⟩ √

2
2

(
Q2
eϵ−Q

2
eθ

)
=

{
1
4

⟨
Eθ(r;0)

∣∣∣∣∣
(
∂2 Û(r;0)
∂Q2

eϵ

)
0

−
(
∂2 Û(r;0)
∂Q2

eθ

)
0

∣∣∣∣∣ Eθ(r;0)
⟩}(

Q2
eϵ−Q

2
eθ

)
=

{
1
4
GEV

E E e

θ θ θ

}(Q2
eϵ−Q

2
eθ

)
= −

(
1
8
GE

)(
Q2
eϵ−Q

2
eθ

)
= −GE

(
Q2
eϵ−Q

2
eθ

)
, (B.18)

W(2)
12 (Q)

=
1
2

⟨
Eθ(r;0)

∣∣∣∣∣
{(

∂ Û(r;0)
∂Qe

)
0

⊗
(
∂ Û(r;0)
∂Qe

)
0

}
eϵ

∣∣∣∣∣ Eϵ(r;0)
⟩{

Qe ⊗ Qe

}
eϵ

=
1
2

⟨
Eθ(r;0)

∣∣∣∣∣√2

{(
∂2 Û(r;0)
∂Qeθ∂Qeϵ

)
0

}∣∣∣∣∣ Eϵ(r;0)
⟩ √

2
2

(
QeθQeϵ

)
=

{
1
2

⟨
Eθ(r;0)

∣∣∣∣∣
(
∂2 Û(r;0)
∂Qeθ∂Qeϵ

)
0

∣∣∣∣∣ Eϵ(r;0)
⟩}

QeθQeϵ

=

{
1
2
GEV

E E e

θ ϵ ϵ

}QeθQeϵ

=

(
1
4
GE

)
QeθQeϵ

= 2GEQeθQeϵ , (B.19)
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W(2)
21 (Q)

=
1
2

⟨
Eϵ(r;0)

∣∣∣∣∣
{(

∂ Û(r;0)
∂Qe

)
0

⊗
(
∂ Û(r;0)
∂Qe

)
0

}
eϵ

∣∣∣∣∣ Eθ(r;0)
⟩{

Qe ⊗ Qe

}
eϵ

=
1
2

⟨
Eϵ(r;0)

∣∣∣∣∣√2

{(
∂2 Û(r;0)
∂Qeθ∂Qeϵ

)
0

}∣∣∣∣∣ Eθ(r;0)
⟩ √

2
2

(
QeθQeϵ

)
=

{
1
2

⟨
Eϵ(r;0)

∣∣∣∣∣
(
∂2 Û(r;0)
∂Qeθ∂Qeϵ

)
0

∣∣∣∣∣ Eθ(r;0)
⟩}

QeθQeϵ

=

{
1
2
GEV

E E e

ϵ θ ϵ

}QeθQeϵ

=

(
1
4
GE

)
QeθQeϵ

= 2GEQeθQeϵ , (B.20)

and

W(2)
22 (Q)

=
1
2

⟨
Eϵ(r;0)

∣∣∣∣∣
{(

∂ Û(r;0)
∂Qe

)
0

⊗
(
∂ Û(r;0)
∂Qe

)
0

}
eθ

∣∣∣∣∣ Eϵ(r;0)
⟩{

Qe ⊗ Qe

}
eθ

=
1
2

⟨
Eϵ(r;0)

∣∣∣∣∣
√
2
2

{(
∂2 Û(r;0)
∂Q2

eϵ

)
0

−
(
∂2 Û(r;0)
∂Q2

eθ

)
0

}∣∣∣∣∣ Eϵ(r;0)
⟩ √

2
2

(
Q2
eϵ−Q

2
eθ

)
=

{
1
4

⟨
Eϵ(r;0)

∣∣∣∣∣
(
∂2 Û(r;0)
∂Q2

eϵ

)
0

−
(
∂2 Û(r;0)
∂Q2

eθ

)
0

∣∣∣∣∣ Eϵ(r;0)
⟩}(

Q2
eϵ−Q

2
eθ

)
=

{
1
4
GEV

E E e

ϵ ϵ θ

}(Q2
eϵ−Q

2
eθ

)
=

(
1
8
GE

)(
Q2
eϵ−Q

2
eθ

)
= GE

(
Q2
eϵ−Q

2
eθ

)
, (B.21)

where GE is the reduced matrix element and GE the corresponding quadratic coupling

constant. Again, no other combinations of θ and ϵ in the brakets of Eqs. (B.18)-(B.21) are

possible since for them V=0 (see Table B.1). Finally, we are now in position to calculate

the diagonal matrix elements Kjj(Q) (recall that off-diagonal terms are zero by symmetry)
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which are the (nonvibronic) harmonic potentials around the JT reference geometry. The

procedure is similar to the calculation of the W(2)
ji (Q) elements, with the exception that

totally symmetric irreducible products [Eqs. (B.14) and (B.17)] are now employed in place

of the non-totally symmetric ones. In so doing, one gets (see also Table B.2)

K11(Q) = κE(Q)

=
1
2

⟨
Eθ(r;0)

∣∣∣∣∣
{(

∂ Û(r;0)
∂Qe

)
0

⊗
(
∂ Û(r;0)
∂Qe

)
0

}
a1ι

∣∣∣∣∣ Eθ(r;0)
⟩{

Qe ⊗ Qe

}
a1ι

=
1
2

⟨
Eθ(r;0)

∣∣∣∣∣ 1√
2

{(
∂2 Û(r;0)
∂Q2

eθ

)
0

+

(
∂2 Û(r;0)
∂Q2

eϵ

)
0

}∣∣∣∣∣ Eθ(r;0)
⟩

1√
2

(
Q2
eθ+Q

2
eϵ

)
=

1
2

{
1
2

⟨
Eθ(r;0)

∣∣∣∣∣
(
∂2 Û(r;0)
∂Q2

eθ

)
0

+

(
∂2 Û(r;0)
∂Q2

eϵ

)
0

∣∣∣∣∣ Eθ(r;0)
⟩}(

Q2
eθ+Q

2
eϵ

)
=

1
2

{
1
2
K
(E)
0 V

E E a1

θ θ ι

}(Q2
eθ+Q

2
eϵ

)
=

1
2

(
1

2
√
2
K
(E)
0

)(
Q2
eθ+Q

2
eϵ

)
=

1
2
K(E)
0

(
Q2
eθ+Q

2
eϵ

)
, (B.22)

and

K22(Q) = κE(Q)

=
1
2

⟨
Eϵ(r;0)

∣∣∣∣∣
{(

∂ Û(r;0)
∂Qe

)
0

⊗
(
∂ Û(r;0)
∂Qe

)
0

}
a1ι

∣∣∣∣∣ Eϵ(r;0)
⟩{

Qe ⊗ Qe

}
a1ι

=
1
2

⟨
Eϵ(r;0)

∣∣∣∣∣ 1√
2

{(
∂2 Û(r;0)
∂Q2

eθ

)
0

+

(
∂2 Û(r;0)
∂Q2

eϵ

)
0

}∣∣∣∣∣ Eϵ(r;0)
⟩

1√
2

(
Q2
eθ+Q

2
eϵ

)
=

1
2

{
1
2

⟨
Eϵ(r;0)

∣∣∣∣∣
(
∂2 Û(r;0)
∂Q2

eθ

)
0

+

(
∂2 Û(r;0)
∂Q2

eϵ

)
0

∣∣∣∣∣ Eϵ(r;0)
⟩}(

Q2
eθ+Q

2
eϵ

)
=

1
2

{
1
2
K
(E)
0 V

E E a1

ϵ ϵ ι

}(Q2
eθ+Q

2
eϵ

)
=

1
2

(
1

2
√
2
K
(E)
0

)(
Q2
eθ+Q

2
eϵ

)
=

1
2
K(E)
0

(
Q2
eθ+Q

2
eϵ

)
, (B.23)
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where K
(E)
0 is the reduced matrix element and K(E)

0 is the corresponding primary force

constant which is equal for both |Eθ(r;0)⟩ and |Eϵ(r;0)⟩ states. By considering all the

set of 2 by 2 sub-matrices of Eq. (B.1) and their associated elements, the final E⊗ e JT

vibronic Hamiltonian is thus given by [1, 2]

He =

V×
E (0)−FEQeθ−GE(Q2

eϵ−Q
2
eθ)+κE(Q) FEQeϵ+2GEQeϵQeθ

FEQeϵ+2GEQeϵQeθ V×
E (0)+FEQeθ+GE(Q2

eϵ−Q
2
eθ)+κE(Q)

.
(B.24)

B.2 The (E + A1)⊗ e problem

If by solving the TIESE [Eq. (2.13)] for a triangular X3-type molecule one obtains, besides

the twofold degenerate E term with component wave functions |Eθ(r;0)⟩ and |Eϵ(r;0)⟩,
a non-degenerate close-in-energy A1 state |A1ι(r;0)⟩, then all such terms get vibroni-

cally mixed along the JT-active displacements. Indeed, the vibronic problem at hand

is effectively a three state one, i.e., a combined JT plus PJT [(E + A1) ⊗ e] [1, 4, 5]. To

formulate the present case we again assume that the coupled states are well separated in

energy from all other electronic terms, and hence only the subspace spanned by them

needs to be considered. Let V1(0) = V2(0) = V×
E (0) and V3(0) = VA1(0) be the asso-

ciated eigenvalues of the E and A1 states, respectively. Again, the proper behavior of

the adiabatic PESs in the vicinity of the high-symmetry configuration is obtained by first

constructing the matrix representation of the operator Ĥe(r;Q) [Eq. (2.12)] in the basis

{|Eθ(r;0)⟩ , |Eϵ(r;0)⟩ , |A1ι(r;0)⟩}. For this, one should then determine the matrix ele-

ments of the set of sub-matrices shown in Eq. (B.2) which, for the current (E + A1) ⊗ e

problem, assume dimensions 3 by 3. Since the pure (2 by 2) JT problem has already

been addressed in section B.1, all that remains now is to determine the corresponding

PJT block which couples both E and A1 terms. For the sake of simplicity, we assume that

only first-order perturbation operators W(1)(r;Q) in the expansion of Eq. (2.12) are here

needed for the formulation of the PJT problem and that the correspondingW(2)
ji (Q) block

is identically zero. Following Eqs. (2.14) and (2.15) as well as Table B.2, the remaining
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W(1)
ji (Q) elements are thus given by

W(1)
13 (Q) =

⟨
Eθ(r;0)

∣∣∣∣∣
(
∂ Û(r;0)
∂Qeθ

)
0

∣∣∣∣∣A1ι(r;0)

⟩
Qeθ

=

{
HE/A1V

E A1 e

θ ι θ

}Qeθ

=

(
1√
2
HE/A1

)
Qeθ

= HE/A1Qeθ , (B.25)

W(1)
23 (Q) =

⟨
Eϵ(r;0)

∣∣∣∣∣
(
∂ Û(r;0)
∂Qeϵ

)
0

∣∣∣∣∣A1ι(r;0)

⟩
Qeϵ

=

{
HE/A1V

E A1 e

ϵ ι ϵ

}Qeϵ

=

(
1√
2
HE/A1

)
Qeϵ

= HE/A1Qeϵ , (B.26)

W(1)
31 (Q) =

⟨
A1ι(r;0)

∣∣∣∣∣
(
∂ Û(r;0)
∂Qeθ

)
0

∣∣∣∣∣ Eθ(r;0)
⟩
Qeθ

=

{
HE/A1V

A1 E e

ι θ θ

}Qeθ

=

(
1√
2
HE/A1

)
Qeθ

= HE/A1Qeθ , (B.27)
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and

W(1)
32 (Q) =

⟨
A1ι(r;0)

∣∣∣∣∣
(
∂ Û(r;0)
∂Qeϵ

)
0

∣∣∣∣∣ Eϵ(r;0)
⟩
Qeϵ

=

{
HE/A1V

A1 E e

ι ϵ ϵ

}Qeϵ

=

(
1√
2
HE/A1

)
Qeϵ

= HE/A1Qeϵ , (B.28)

where, in contrast to the linear (FE) and quadratic (GE) JT VCCs (section B.1), HE/A1 is now

the linear PJT vibronic constant which effectively measures the coupling between the non-

degenerate A1 state and the pair of degenerate E terms by e vibrations. Note that, similarly

to the pure E⊗ e problem, any vibronic perturbation associated with the breathing normal

coordinate (Qa1ι; see Figure 2.2) is here neglected, and henceW(1)
33 (Q)=0. Since the linear

approximation is assumed for the PJTE, i.e., W(2)
13 (Q)=W(2)

23 (Q)=W(2)
31 (Q)=W(2)

32 (Q)=0,

we are left with the definition of the diagonal matrix element K33(Q). Following the same

procedure adopted in (B.22) and (B.23), the harmonic nuclear (nonvibronic) interaction

potential for the A1 state is thus given by

K33(Q) = κA1(Q)

=
1
2

⟨
A1ι(r;0)

∣∣∣∣∣
{(

∂ Û(r;0)
∂Qe

)
0

⊗
(
∂ Û(r;0)
∂Qe

)
0

}
a1ι

∣∣∣∣∣A1ι(r;0)

⟩{
Qe ⊗ Qe

}
a1ι

=
1
2

⟨
A1ι(r;0)

∣∣∣∣∣ 1√
2

{(
∂2 Û(r;0)
∂Q2

eθ

)
0

+

(
∂2 Û(r;0)
∂Q2

eϵ

)
0

}∣∣∣∣∣A1ι(r;0)

⟩
1√
2

(
Q2
eθ+Q

2
eϵ

)
=

1
2

{
1
2

⟨
A1ι(r;0)

∣∣∣∣∣
(
∂2 Û(r;0)
∂Q2

eθ

)
0

+

(
∂2 Û(r;0)
∂Q2

eϵ

)
0

∣∣∣∣∣A1ι(r;0)

⟩}(
Q2
eθ+Q

2
eϵ

)
=

1
2

{
1
2
K
(A1)
0 V

A1 A1 a1

ι ι ι

}(Q2
eθ+Q

2
eϵ

)
=

1
2

(
1
2
K
(A1)
0

)(
Q2
eθ+Q

2
eϵ

)
=

1
2
K(A1)
0

(
Q2
eθ+Q

2
eϵ

)
, (B.29)
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where K
(A1)
0 is the reduced matrix element and K(A1)

0 is the corresponding primary force

constant. Note that the expressions for the totally symmetric irreducible products are

shown in Eqs. (B.14) and (B.17), with the V coefficient in Eq. (B.29) assuming the value

of 1. By considering all the above matrix elements together with those obtained in

section B.1, the final (E+ A1)⊗ e (JT plus PJT) vibronic Hamiltonian thus reads [1, 4, 5]

He =


V×
E (0)−FEQeθ−GE(Q2

eϵ−Q
2
eθ)+κE(Q) FEQeϵ+2GEQeϵQeθ HE/A1Qeθ

FEQeϵ+2GEQeϵQeθ V×
E (0)+FEQeθ+GE(Q2

eϵ−Q
2
eθ)+κE(Q) HE/A1Qeϵ

HE/A1Qeθ HE/A1Qeϵ VA1(0)+κA1(Q)

 .

(B.30)
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Appendix C

General linear least squares method

In the process of calibrating potential energy surfaces from ab initio energies, one fre-

quently faces the problem of representing sets of discrete data points (xi, yi) by target

(continuous) functions that depends on adjustable parameters. Clearly, such a task can

only be accomplished with the aid of the linear least squares method [1, 2].

Here, we assume that the set of N grid points is to be fitted to a model function of

the general form

y(x) =
M∑
k=1

akXk(x), (C.1)

where ak are M disposable parameters with Xk(x) defining a set of arbitrary functions

of x, called the basis functions. Note that term “linear” referred throughout this section

takes into account only the dependence that y(x) has on its parameters ak, regardless

the order and explicit functional forms of the basis functions Xk(x). Assuming that each

data point has a “measurement error” (or weighting factor) σi, the best-fit coefficients are

those that minimize the merit function

χ2 =
N∑
i=1

[
yi −

∑M
k=1 akXk(xi)
σi

]2
. (C.2)

This can be accomplished by ensuring that χ2 is stationary with respect to variation in

279
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the parameters ak, or in other words, by solving the set of M equations

∂χ2

∂ak
=

N∑
i=1

1
σ2
i

[
yi −

M∑
j=1

ajXj(xi)

]
Xk(xi) = 0 k = 1, . . . ,M. (C.3)

Interchanging the order of summations, we can write (C.3) as

M∑
j=1

N∑
i=1

Xj(xi)Xk(xi)
σ2
i

aj =
N∑
i=1

yiXk(xi)
σ2
i

k = 1, . . . ,M. (C.4)

The above expressions are called the normal equations of the least squares problem. In

matrix form, these latter can also be defined by

α · a = β, (C.5)

where

αkj =
N∑
i=1

Xj(xi)Xk(xi)
σ2
i

(C.6)

is an M by M square matrix and

βk =
N∑
i=1

yiXk(xi)
σ2
i

(C.7)

a column vector of length M. Note that, in Eq. (C.5), a is the corresponding vector

containing the M least squares parameters. The problem of determining the optimal

coefficients ak is then reduced to a matrix multiplication

a = α−1β, (C.8)

or

aj =
M∑
k=1

[α]−1
jk βk = [α]−1

jk

[
N∑
i=1

yiXk(xi)
σ2
i

]
, (C.9)

where [α]−1
jk are the corresponding elements of the inverse matrix α−1.

Although no assumptions have been made regarding the explicit functional forms of

the Xk(x)’s, the present discussion was restricted to those cases in which y depends on

a single variable only. Clearly, there will also be situations in which y is a function of

more than one variable, say a vector of variables x. For such multidimensional fits, the

preceding formalism is equally valid, with the exception that x is now replaced by x.
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Appendix D

Parameters for the ground-state PESs

of C3

D.1 DMBE I PES

Table D.1: One-body term V(1) [Eq. (8) of chapter 6].

V(1) 0.232 341 40

283
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Table D.2: Coefficients for the two-body potential V(2)(R) [Eq. (8) of chapter 6].

Re/a0 2.479 320 12

D/Eh a0 0.467 488 66

a1/a0−1 0.850 571 03

a2/a0−2 −1.071 149 98

a3/a0−3 0.969 121 98

a4/a0−4 −0.612 554 01

a5/a0−5 0.310 832 98

a6/a0
−6 −0.094 424 41

a7/a0−7 −0.007 369 76

a8/a0−8 0.013 785 21

a9/a0−9 −0.003 332 89

a10/a0−10 0.000 257 90

γ0/a0 0.286 062 94

γ1 15.553 200 00

γ2/a0 0.073 633 46

R0/a0 7.891 073 44

C5/Eh a05 14.540 400 00

C6/Eh a0
6 40.900 000 00

C8/Eh a08 984.720 273 07

C10/Eh a010 31 058.018 611 88
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Table D.3: Coefficients for the three-body dynamical correlation energy term V(3)
dc (R) [Eq. (10) of chapter 6].

C0
6(R) C2

6(R) C0
8(R) C2

8(R) C4
8(R) C0

10(R)

RM/a0 4.500 000 00 4.500 000 00 4.471 100 00 4.482 300 00 4.487 300 00 4.452 500 00

DM/Eh a0n 27.527 900 00 28.523 300 00 1037.637 000 00 2941.945 600 00 452.687 600 00 46 263.479 600 00

a1/a0−1 0.994 999 99 0.763 626 10 0.931 359 73 0.798 190 39 1.235 396 71 0.896 186 14

a2/a0−2 0.257 787 83 0.214 353 56 0.237 317 25 0.225 899 41 0.576 441 49 0.223 254 95

a3/a0−1 0.001 395 84 −0.000 085 71 −0.000 130 49 −0.000 820 11 0.074 608 65 −0.001 827 31

b2/a0−2 0.274 353 11 0.249 302 36 0.243 990 61 0.296 448 98 0.586 440 02 0.231 400 31

b3/a0−3 0.025 462 46 0.006 768 50 0.024 868 58 0.021 097 93 0.073 266 21 0.026 813 74
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Table D.4: Coefficients (in atomic units) for the V′(3)
I,EHF(R) term [Eq. (20) of chapter 6].

i j k c1ijk c2ijk R′0

0 0 0 0.909 436 33E−01 0.560 289 45E−01 3.267 966 39

1 0 0 0.978 788 59E−02 0.918 056 83E−01

0 1 0 −0.101 623 93E+00 −0.128 719 02E+00

2 0 0 −0.112 621 13E−01 0.437 007 07E−01

0 0 1 −0.621 143 64E−01 0.532 406 31E−01

1 1 0 0.449 527 02E+00 0.162 555 17E+01

3 0 0 −0.144 289 02E−01 −0.716 502 06E−02

0 2 0 0.503 843 79E−01 0.201 036 00E+00

1 0 1 −0.731 913 44E−01 −0.358 721 15E−01

2 1 0 0.292 146 38E+00 0.974 117 08E+00

4 0 0 −0.699 694 01E−02 −0.744 909 58E−02

0 1 1 0.287 443 03E+00 0.290 844 71E+00

1 2 0 0.257 581 63E+01 0.199 113 59E+01

2 0 1 −0.505 992 29E−02 0.209 507 42E−01

3 1 0 0.776 469 05E−01 0.247 040 70E+00

5 0 0 −0.167 250 50E−02 −0.907 673 63E−03

0 0 2 0.941 553 11E−02 0.746 817 60E−02

0 3 0 0.154 079 85E+00 0.506 758 04E−01

1 1 1 0.574 792 04E−01 0.508 646 59E−01

2 2 0 0.118 363 57E+01 0.594 069 04E+00

3 0 1 0.152 251 68E−01 0.241 452 50E−01

4 1 0 0.330 883 36E−01 0.611 897 60E−01

6 0 0 −0.679 753 17E−03 0.821 591 69E−03

0 2 1 0.118 139 43E+00 0.173 932 34E−01

1 0 2 0.723 937 48E−02 0.287 520 74E−02

1 3 0 0.758 982 66E+00 0.123 754 08E+00

2 1 1 0.189 476 36E−01 0.450 854 50E−02

3 2 0 0.201 426 09E+00 0.448 320 73E−01

Continued on next page.
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Table D.4 – Continued from previous page.

i j k c1ijk c2ijk R′0

4 0 1 0.333 739 86E−02 0.202 364 99E−02

5 1 0 0.634 017 97E−02 0.581 278 24E−02

7 0 0 −0.128 405 38E−04 0.124 153 54E−03

0 1 2 0.146 265 66E−02

0 4 0 0.609 650 11E−02

1 2 1 0.105 448 67E−01

2 0 2 0.158 873 87E−02

2 3 0 0.105 115 95E+00

3 1 1 0.712 927 62E−02

4 2 0 0.234 226 79E−01

5 0 1 0.519 929 18E−03

6 1 0 0.587 778 72E−03

8 0 0 0.485 704 60E−04

0 0 3 −0.371 821 41E−04

0 3 1 0.185 201 77E−03

1 1 2 −0.256 620 12E−03

1 4 0 0.444 814 66E−02

2 2 1 0.247 860 35E−03

3 0 2 0.652 337 11E−04

3 3 0 −0.216 751 43E−02

4 1 1 −0.530 447 49E−03

5 2 0 −0.192 435 58E−03

6 0 1 0.133 198 11E−03

7 1 0 −0.213 772 74E−04

9 0 0 0.127 624 44E−04



288 Appendix D. Parameters for the ground-state PESs of C3

Table D.5: Coefficients for the range function T′I(R) [Eq. (22) of chapter 6].

α/a0−1 R0/a0

0.620 000 00 3.267 966 39

Table D.6: Coefficients (in atomic units) for the V′′(3)
I,EHF(R) term [Eq. (24) of chapter 6].

i j k c3ijk c4ijk R′′0

0 0 0 0.554 069 27E−04 0.121 928 09E+03 2.609 548 37

1 0 0 −0.116 158 51E+00 0.152 290 66E+05

0 1 0 −0.105 749 02E+01 −0.848 833 46E+06

2 0 0 −0.138 202 49E+02 0.464 923 56E+07

0 0 1 0.323 309 44E+03

1 1 0 −0.156 373 89E+04

3 0 0 0.813 938 51E+04

0 2 0 0.298 763 56E+04

1 0 1 0.463 257 58E+06

2 1 0 −0.125 286 57E+07

4 0 0 0.126 022 24E+07

Table D.7: Coefficients for the Gaussian function T′I(R) [Eq. (27) of chapter 6].

R01/a0 R02/a0 R03/a0 β/a0−2

2.606 660 67 2.606 660 67 2.615 323 78 1.260 000 00
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D.2 DMBE II PES

Table D.8: Coefficients for the Q1
3 equation [Eq. (17) of chapter 8].

ϱ/a0 0.004 548 73

δ/a0 0.025 091 03

Q0
1/a0 4.782 913 31

ζ1/a0−1 1.059 386 52

ζ2/a0−2 −0.926 173 46

ζ3/a0−3 −0.216 477 65

ζ4/a0−4 0.172 219 37

ζ5/a0−5 0.682 819 12

Table D.9: Coefficients (in atomic units) for the V′(3)
II,EHF(R) term [Eq. (22) of chapter 8].

i j k c1ijk c2ijk R′0

0 0 0 0.939 419 64E−01 0.552 705 80E−01 3.267 966 39

1 0 0 0.814 094 36E−02 0.867 056 28E−01

0 1 0 −0.137 991 77E+00 −0.292 061 51E+00

2 0 0 −0.120 752 32E−01 0.340 031 29E−01

0 0 1 −0.526 763 00E−01 0.127 723 52E+00

1 1 0 0.344 140 52E+00 0.126 702 81E+01

3 0 0 −0.144 177 78E−01 −0.153 752 77E−01

0 2 0 −0.216 556 74E+00 −0.253 399 96E−02

1 0 1 −0.118 516 40E+00 −0.121 847 97E+00

2 1 0 0.194 334 44E+00 0.762 417 02E+00

4 0 0 −0.672 855 80E−02 −0.102 626 12E−01

0 1 1 0.445 640 96E+00 0.439 870 79E+00

1 2 0 0.210 270 11E+01 0.168 735 34E+01

2 0 1 −0.473 015 44E−01 −0.593 511 61E−01

3 1 0 0.424 675 61E−01 0.207 750 40E+00

5 0 0 −0.142 313 90E−02 −0.884 966 70E−03

Continued on next page.
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Table D.9 – Continued from previous page.

i j k c1ijk c2ijk R′0

0 0 2 0.922 426 07E−02 0.722 406 87E−02

0 3 0 0.779 262 05E−01 0.380 312 89E−01

1 1 1 −0.430 756 62E−03 0.340 641 95E−01

2 2 0 0.101 106 39E+01 0.535 047 68E+00

3 0 1 0.168 777 00E−01 0.262 522 42E−01

4 1 0 0.310 076 81E−01 0.643 720 13E−01

6 0 0 −0.555 669 71E−03 0.101 519 27E−02

0 2 1 0.189 073 35E+00 0.341 658 75E−01

1 0 2 0.531 839 79E−02 0.149 953 12E−02

1 3 0 0.659 753 28E+00 0.108 240 18E+00

2 1 1 −0.405 365 14E−01 −0.157 367 22E−01

3 2 0 0.187 354 02E+00 0.438 820 54E−01

4 0 1 0.813 305 57E−02 0.583 518 01E−02

5 1 0 0.782 028 66E−02 0.679 892 78E−02

7 0 0 −0.102 320 71E−03 0.138 470 99E−03

0 1 2 0.139 389 15E−02

0 4 0 0.551 339 89E−02

1 2 1 0.871 095 29E−02

2 0 2 0.142 558 45E−02

2 3 0 0.982 099 72E−01

3 1 1 0.766 319 03E−02

4 2 0 0.253 278 27E−01

5 0 1 0.815 312 36E−03

6 1 0 0.920 746 72E−03

8 0 0 0.437 428 58E−04

0 0 3 −0.381 045 13E−04

0 3 1 0.175 798 20E−02

1 1 2 −0.466 517 44E−03

1 4 0 0.351 449 35E−02

Continued on next page.
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Table D.9 – Continued from previous page.

i j k c1ijk c2ijk R′0

2 2 1 −0.235 648 64E−02

3 0 2 0.672 025 19E−04

3 3 0 −0.212 710 14E−02

4 1 1 0.215 021 73E−03

5 2 0 0.134 146 36E−03

6 0 1 0.641 835 27E−04

7 1 0 −0.113 967 96E−04

9 0 0 0.102 605 86E−04

Table D.10: Coefficients for the range function T′II(R) [Eq. (25) of chapter 8].

α′/a0−1 R′0/a0

0.610 000 00 3.267 966 39
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Table D.11: Coefficients (in atomic units) for the V′′(3)
II,EHF(R) term [Eq. (23) of chapter 8].

i j k c3ijk c4ijk c5ijk R′′0

0 0 0 −0.818 307 84E−03 −0.117 434 18E+00 −0.136 264 89E−01 2.609 610 00

1 0 0 −0.763 963 41E−03 −0.157 822 96E+00 −0.160 230 67E−01

0 1 0 −0.585 126 33E−03 −0.144 728 63E+01 0.789 401 23E−01

2 0 0 −0.254 858 22E−02 −0.354 159 91E+00 −0.469 425 27E−01

0 0 1 −0.507 353 54E−01 −0.278 247 47E+01 0.892 272 22E−02

1 1 0 0.246 576 86E−01 −0.221 459 20E+01 0.354 883 89E−01

3 0 0 −0.891 309 41E−03 −0.107 676 34E+00 −0.139 408 71E−01

0 2 0 0.850 094 95E−01

1 0 1 0.400 507 86E−01

2 1 0 0.272 964 77E−01

4 0 0 −0.901 669 22E−03

Table D.12: Coefficients for the range function T′′II(R) [Eq. (26) of chapter 8].

β′′/a0−1 R′′01 /a0 R′′02 =R′′03 /a0

3.297 519 97 2.619 996 38 2.604 401 28
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Table D.13: Coefficients (in atomic units) for the V′′′(3)
II,EHF(R) term [Eq. (24) of chapter 8].

i j k c6ijk c7ijk c8ijk R′′′0

0 0 0 0.323 232 71E−05 −0.135 147 88E−01 0.512 262 98E−02 3.319 764 05

1 0 0 0.486 143 04E−04 −0.541 527 77E−01 0.117 985 61E−01

0 1 0 −0.212 510 69E−02 0.197 689 94E+00 −0.244 890 51E−02

2 0 0 0.213 367 05E−03 −0.851 429 17E−01 0.745 602 60E−02

0 0 1 −0.128 324 51E−02 0.323 164 05E−01 0.641 217 47E−04

1 1 0 −0.573 522 11E−02 0.288 432 41E+00 −0.782 019 37E−02

3 0 0 0.357 905 16E−03 −0.478 502 57E−01 −0.534 177 23E−03

0 2 0 0.197 085 36E−02

1 0 1 −0.178 597 72E−02

2 1 0 0.215 027 56E−03

4 0 0 0.219 562 60E−03

Table D.14: Coefficients for the range function T′′′II (R) [Eq. (27) of chapter 8].

γ′′′/a0−1 R′′′01 /a0 R′′′02 =R′′′03 /a0

4.304 304 05 3.311 206 10 3.324 043 02

Table D.15: Coefficients for the non-Jahn-Teller function FnJT(R) [Eq. (28) of chapter 8].

ς/a0−2 Rcp0 /a0

10 000 2.885 169 41
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D.3 ABW local PES

Table D.16: Coefficients (in atomic units) for the experimentally-determined ABW local PES of C3

[Eq. (D.1)].

i j k cijk i j k cijk

1 2 0 −0.752 496 8 4 0 0 0.057 189 1

1 2 2 0.018 065 6 0 2 0 0.336 895 7

1 0 2 −0.007 722 9 0 2 2 −0.006 461 4

1 0 4 0.003 213 7 0 2 4 0.027 706 7

1 0 6 −0.004 352 8 0 2 6 −0.031 560 2

1 0 8 0.001 889 5 0 2 8 0.013 800 7

1 0 10 −0.000 314 2 0 2 10 −0.002 225 3

2 0 0 0.334 939 2 0 4 0 0.117 423 1

2 2 0 0.556 112 2 0 0 2 0.000 957 0

2 0 2 −0.017 297 9 0 0 4 −0.000 361 6

2 0 4 0.005 571 6 0 0 6 0.001 217 8

3 0 0 −0.238 685 8 0 0 8 −0.000 450 0

3 0 2 0.029 711 0 0 0 10 0.000 086 3

3 0 4 −0.009 069 1

The computed local PES for ground-state C3 due to Ahmed, Balint-Kurti and Western

(ABW) [J. Chem. Phys. 121, 10041 (2004)] assumes the simple functional form

VABW(R) =
∑
ijk

cijkS
i
1S
j
2θ

k, (D.1)

where

S1 =
1√
2
(∆R1 +∆R2), (D.2)

and

S2 =
1√
2
(∆R1 −∆R2), (D.3)

represent the symmetric and antisymmetric stretching coordinates, respectively. Note

that ∆Ri = Ri−Re (i= 1, 2) denote the displacements of the C-C bond lengths from the

http://doi.org/10.1063/1.1806820
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equilibrium position Re = 2.46004548 a0, while θ in (D.1) measures the deviation from

linearity. The PES terms cijk are listed in Table D.16.

D.4 SS local PES

Table D.17: Non-redundant coefficients (in atomic units) for the purely ab initio SS local PES of C3

[Eq. (D.4)].

i j k cijk i j k cijk i j k cijk i j k cijk

2 0 0 0.332 406 93 1 1 0 −0.003 557 10 4 0 2 0.015 707 02 3 0 6 0.005 371 82

3 0 0 −0.350 600 64 2 1 0 −0.006 143 66 3 1 2 −0.019 485 33 2 1 6 −0.001 729 69

4 0 0 0.226 902 09 3 1 0 −0.000 752 77 2 2 2 0.005 767 65 4 0 6 0.063 146 77

5 0 0 −0.118 229 82 2 2 0 0.000 396 80 1 0 4 −0.000 428 66 3 1 6 −0.066 932 12

6 0 0 0.053 588 55 4 1 0 0.002 159 95 2 0 4 0.003 274 71 2 2 6 0.017 050 80

7 0 0 −0.028 499 87 3 2 0 0.005 448 95 1 1 4 −0.002 639 69 1 0 8 −0.000 208 93

8 0 0 0.020 014 95 5 1 0 −0.028 567 59 3 0 4 −0.003 216 68 2 0 8 −0.001 579 56

0 0 2 0.000 413 87 4 2 0 0.001 766 88 2 1 4 −0.000 045 68 1 1 8 0.000 683 53

0 0 4 0.000 646 54 3 3 0 0.013 937 69 4 0 4 −0.065 500 30 3 0 8 −0.002 203 84

0 0 6 0.000 165 47 1 0 2 −0.004 491 59 3 1 4 0.069 681 79 2 1 8 −0.000 599 65

0 0 8 −0.000 048 51 2 0 2 −0.001 031 48 2 2 4 −0.057 576 93 4 0 8 −0.009 352 19

0 0 10 0.000 106 04 1 1 2 −0.012 220 84 1 0 6 0.000 455 29 3 1 8 0.001 070 21

0 0 12 −0.000 042 45 3 0 2 0.001 555 57 2 0 6 −0.000 748 81 2 2 8 0.045 224 82

0 0 14 0.000 006 44 2 1 2 0.014 602 43 1 1 6 0.001 621 08 1 3 8 0.001 070 21

The local PES reported by Schröder and Sebald (SS) [J. Chem. Phys. 144, 044307

(2016)] is analytically represented as a polynomial of the form

VSS(R) =
∑
ijk

cijk∆R
i
1∆R

j
2θ

k, (D.4)

where, similarly to Eqs. (D.2) and (D.3), ∆Ri (i=1, 2) are the single C-C bond stretching

coordinates defined with respect to an equilibrium position of Re = 2.44524892 a0. θ

in (D.4) also denotes the instantaneous value of the bond-angle supplement. The non-

redundant parameters of the SS potential are given in Table D.17. Note that, since the

PES is represented in terms of displacement coordinates rather than symmetric ones as

in (D.1), the coefficients with different i and j should be permutationally equivalent.

http://dx.doi.org/10.1063/1.4940780
http://dx.doi.org/10.1063/1.4940780




Appendix E

Rovibrational energy levels for the

ground-state PESs of C3

Table E.1: Parameters employed in the rovibrational energy calculations (see chapter 9).

Parameter DMBE/ES/ABWa DMBE/ES/SSa DMBE I-II

NPNT1b 26 40 34

NPNT2b 56 56 56

NALFc 80 80 80

re,1/a0d 2.585 2.453 2.585

De,1/Eh 0.300 0.558 0.562

we,1/Eh 0.010 0.011 0.011

re,2/a0 3.675 3.505 3.695

De,2/Eh 0.300 0.399 0.305

we,2/Eh 0.005 0.009 0.008

a The same parameters are used for the corresponding local forms.
b Number of DVR points in ri (i=1, 2) from Gauss-(associated) Laguerre quadrature.
c Number of DVR points in θ from Gauss-(associated) Legendre quadrature.
d re,i, De,i and we,i are the equilibrium separation, fundamental frequency and disso-

ciation energy of the relevant coordinate ri (i=1, 2), respectively.
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Table E.2: Differences (in cm−1) between the observed (Gexpt.) and calculated rovibrational energy levels for C3 radical. The quantum

numbers v1, v2 and v3 refer to symmetric, bending and antisymmetric motions, respectively, and l2 is the vibrational angular momentum

quantum number. J is the total angular momentum quantum number.

Observed−calculated

DMBE/ES/ABWb ABWc DMBE/ES/SSb SSd DMBE IIe DMBE If
Mladenović Špirko

v1 vl22 v3 J Gexpt.
a et al.g et al.h

0 00 0 0 0.0 7.9 7.6 0.0 0.0 0.0 0.0 0.0 0.0

0 11 0 1 63.4 3.1 2.9 −0.2 −0.3 2.7 1.8 −0.9 0.7

0 20 0 0 132.8 2.7 2.5 0.1 0.0 −3.8 −8.0 −0.5 −0.2

0 31 0 1 207.3 0.3 0.1 −0.7 −0.8 −17.6 −24.6 0.8 0.3

0 40 0 0 286.1 −0.6 −0.7 −0.7 −0.9 −29.8 −42.4 2.7 −0.3

0 60 0 0 461.1 0.8 0.7 3.0 2.8 −31.3 −61.8 11.0 2.7

0 80 0 0 647.6 −1.1 −1.3 3.5 3.2 8.7 −44.2 15.1 1.2

0 100 0 0 848.4 −1.9 −2.1 5.2 4.8 50.3 −14.4 19.1 0.3

0 120 0 0 1062.0 −2.2 −2.5 7.8 7.2 68.6 −23.3

1 00 0 0 1224.5 5.1 5.4 −0.3 −0.1 −9.6 63.5 5.5 1.1

0 140 0 0 1289.3 −0.2 −0.6 13.1 12.4 71.5 71.8

1 20 0 0 1404.1 0.4 1.7 −1.1 −0.8 −13.3 74.1 1.0 −1.5

0 160 0 0 1525.6 −0.4 −0.9 16.2 15.4 55.8 55.8

1 40 0 0 1590.1 −2.3 0.0 −2.6 −1.8 −38.0 −16.7 0.0 −1.5

0 180 0 0 1773.4 0.2 −0.4 18.5 17.6 26.6 26.5

Continued on next page.
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Table E.2 – Continued from previous page.

Observed−calculated

DMBE/ES/ABWb ABWc DMBE/ES/SSb SSd DMBE IIe DMBE If
Mladenović Špirko

v1 vl22 v3 J Gexpt.
a et al.g et al.h

1 60 0 0 1785.1 −4.9 −1.8 −3.4 −2.2 −59.6 −27.1 2.4 −3.0

1 80 0 0 1990.5 −6.7 −3.5 −2.0 −1.0 −44.9 35.8 6.6 0.0

0 200 0 0 2031.3 0.6 −0.1 16.2 15.3 −16.9 −18.3

0 00 1 0 2040.0 3.9 2.0 −0.1 0.4 −16.7 53.9 −0.6 0.1

0 11 1 1 2078.5 1.1 −0.9 0.3 −0.2 −13.7 2.8 −4.4 0.2

0 20 1 0 2133.9 2.0 0.1 −0.3 −0.5 −25.6 6.9 −4.7 0.1

0 31 1 1 2191.1 −1.2 −3.0 −2.6 −3.1 −36.3 −88.8 −5.7 0.2

1 100 0 0 2210.5 −3.7 −0.9 5.8 6.3 5.3 40.8 15.3 3.3

0 220 0 0 2299.4 1.1 0.1 7.0 5.9 −61.3 −61.6

0 51 1 1 2330.0 −1.7 −3.7 −2.4 −3.6 −22.8 −97.3 −2.1 0.0

2 00 0 0 2435.2 −2.2 2.4 −2.1 −0.6 −16.0 −15.5 10.5 −10.4

1 120 0 0 2439.9 −1.0 1.3 15.2 15.1 30.4 41.3

0 71 1 1 2489.7 −0.7 −3.0 0.7 −1.6 28.9 −81.9 3.3 0.2

0 240 0 0 2575.9 −0.3 −1.5 −11.7 −13.6 43.6 35.2

2 20 0 0 2656.3 −10.1 0.3 −5.5 −1.6 −25.6 −30.3 3.9 −2.0

0 91 1 1 2665.7 0.3 −2.6 5.4 1.9 49.0 40.3 8.1 −0.1

1 140 0 0 2669.7 −7.6 −5.9 17.3 16.6 45.0 43.9

Continued on next page.
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Table E.2 – Continued from previous page.

Observed−calculated

DMBE/ES/ABWb ABWc DMBE/ES/SSb SSd DMBE IIe DMBE If
Mladenović Špirko

v1 vl22 v3 J Gexpt.
a et al.g et al.h

0 111 1 1 2856.8 1.6 −1.8 12.4 7.6 57.0 48.9

2 40 0 0 2876.9 −13.9 1.7 −7.9 −1.2 −45.4 −53.2 0.4 −5.4

1 160 0 0 2919.7 −3.5 −2.4 33.0 31.6 45.8 42.1

0 131 1 1 3060.7 2.4 −1.6 21.0 15.1 64.8 58.9

2 60 0 0 3099.9 −16.8 3.2 −9.3 0.1 −69.7 −79.2 1.6 −3.4

1 180 0 0 3170.5 −7.9 −7.4 35.7 34.7 −25.7 −29.8

1 00 1 0 3259.9 −1.3 1.1 −3.7 0.1 −29.9 −31.4

0 151 1 1 3278.1 4.4 −0.4 28.3 22.5 54.9 51.6

1 11 1 1 3327.5 −7.6 −3.2 −6.6 −3.1 −32.0 −37.8 −21.1

1 31 1 1 3475.9 −11.1 −4.5 −9.1 −5.4 −44.0 −54.9 −21.5

0 171 1 1 3506.8 6.0 0.4 29.0 23.5 −9.2 −16.3

3 00 0 0 3636.1 −20.0 −0.1 −7.1 −1.0 −20.9 −20.5 −13.5

1 51 1 1 3641.3 −11.2 −3.0 −8.7 −4.7 −57.0 −72.7 −17.4

0 191 1 1 3743.3 4.3 −2.2 34.1 23.6 −77.7 −83.3

1 71 1 1 3820.9 −9.2 −1.4 −3.8 −1.7 −30.2 −44.1 −14.5

3 20 0 0 3894.3 −37.6 −0.4 −17.0 −1.9 −37.2 −42.1 −20.2

0 211 1 1 3995.0 6.3 −1.0 8.9 3.9 −28.0 −31.7

Continued on next page.
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Table E.2 – Continued from previous page.

Observed−calculated

DMBE/ES/ABWb ABWc DMBE/ES/SSb SSd DMBE IIe DMBE If
Mladenović Špirko

v1 vl22 v3 J Gexpt.
a et al.g et al.h

1 91 1 1 4012.3 −7.0 −1.1 4.8 3.4 17.2 7.5 −13.5

0 00 2 0 4035.4 10.1 0.3 5.8 3.1 −19.8 −37.0 −7.2

0 20 2 0 4110.9 10.8 2.4 1.3 1.9 −21.1 −41.7 −5.3

3 40 0 0 4146.3 5.2 2.2 −25.2 −1.5 −54.4 −62.9 −21.1

0 40 2 0 4211.3 13.3 3.8 6.4 0.9 24.8 13.4 −4.9

1 111 1 1 4216.4 −3.9 −0.4 18.1 13.2 26.9 16.4

0 231 1 1 4252.9 5.2 −3.6 −29.4 −33.5 −60.8 −65.4

0 60 2 0 4339.4 15.4 5.0 13.3 1.3 42.2 28.1 −4.8

3 60 0 0 4392.8 −61.9 2.1 −35.6 −3.3 −82.5 −92.8 −20.9

1 131 1 1 4432.6 −0.2 0.8 35.1 27.8 27.5 20.4

2 00 1 0 4459.3 −18.7 −1.0 −11.0 0.0 −36.3 −37.0

0 80 2 0 4489.2 22.1 6.6 23.0 4.8 54.6 38.8 −4.5

2 11 1 1 4557.1 −25.4 0.3 −13.2 1.2 −40.4 −44.9 −39.8

3 80 0 0 4641.0 −68.9 2.6 −39.7 −2.2 −100.1 −110.5 −18.1

0 100 2 0 4651.6 21.2 3.2 30.0 6.5 27.8 17.3 −9.7

1 151 1 1 4659.1 2.9 1.4 7.7 33.1 32.4 21.3

2 31 1 1 4745.7 −34.1 0.8 −18.2 0.2 −44.8 −55.1 −42.0

Continued on next page.
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Table E.2 – Continued from previous page.

Observed−calculated

DMBE/ES/ABWb ABWc DMBE/ES/SSb SSd DMBE IIe DMBE If
Mladenović Špirko

v1 vl22 v3 J Gexpt.
a et al.g et al.h

4 00 0 0 4828.7 −52.0 −1.6 −17.0 −1.3 −25.0 −25.0

0 120 2 0 4832.5 24.4 3.2 33.2 9.7 −9.8 −18.3

1 171 1 1 4895.7 5.8 1.8 54.6 58.7 −73.9 −85.5

2 51 1 1 4938.8 −40.4 2.1 −23.3 −0.8 −64.8 −79.2 −38.3

0 140 2 0 5029.0 28.2 4.1 50.3 21.5 13.1 1.5

2 71 1 1 5139.1 −42.0 3.1 −22.1 0.1 −66.7 −83.5 −34.6

0 160 2 0 5236.6 30.4 3.6 47.3 36.5 37.8 33.1

1 00 2 0 5265.4 −16.5 −7.7 −17.9 −2.7 −47.6 −53.2

2 91 1 1 5347.1 6.6 2.9 −11.4 4.0 −7.3 −40.5 −32.7

1 20 2 0 5367.2 −16.4 −7.2 −14.6 −4.2 −45.1 −58.7

1 40 2 0 5495.4 −16.6 −5.7 −14.1 −7.2 −46.8 −70.2

2 111 1 1 5564.7 −31.6 2.8 8.4 14.0 30.5 25.2

1 60 2 0 5643.5 −11.4 −4.2 −3.0 −7.8 −0.7 −17.2

3 11 1 1 5766.3 −9.0 −0.4 −32.2 1.6 −49.5 −53.5

1 80 2 0 5809.1 −4.0 −2.5 13.6 −3.1 32.3 14.5

1 100 2 0 5989.2 10.3 −1.5 35.5 3.6 29.4 8.4

3 31 1 1 5991.9 −22.7 1.2 −43.9 1.3 −52.7 −63.4

Continued on next page.
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Table E.2 – Continued from previous page.

Observed−calculated

DMBE/ES/ABWb ABWc DMBE/ES/SSb SSd DMBE IIe DMBE If
Mladenović Špirko

v1 vl22 v3 J Gexpt.
a et al.g et al.h

5 00 0 0 6013.6 −86.5 −2.1 −29.2 −1.5 −28.6 −29.0

3 51 1 1 6214.0 −99.6 2.6 −55.7 −0.4 −71.0 −86.0

3 71 1 1 6437.7 9.7 4.2 −61.4 −0.9 −86.5 −103.6

3 91 1 1 6663.1 −104.8 2.8 −53.6 −0.3 0.0 −85.1

3 111 1 1 6896.6 −0.9 3.2 −26.5 8.6 −11.5 −20.9

4 11 1 1 6962.2 −4.1 −1.9 −54.3 1.3 −57.6 −1.1

3 131 1 1 7134.9 −3.9 1.4 5.2 23.4 10.3 −0.6

6 00 0 0 7191.3 −97.9 −1.5 −36.4 −1.6 −32.6 −33.3

4 31 1 1 7220.2 13.3 −0.6 −72.2 0.7 −60.7 −71.9

4 51 1 1 7470.6 14.2 1.0 −87.9 −1.4 −81.3 −95.3

4 91 1 1 7962.9 0.0 1.1 −97.7 −5.1 −99.7 −117.9

5 11 1 1 8146.4 12.0 −4.4 −68.1 −0.3 −65.6 −69.6

4 111 1 1 8214.1 −5.1 2.8 −69.7 1.9 −58.4 −70.8

7 00 0 0 8361.5 −77.1 −0.3 −37.5 −2.1 −37.2 −38.2

5 31 1 1 8435.8 3.3 −2.1 −59.6 0.6 −72.0 −82.3

4 131 1 1 8467.5 −0.4 2.1 −27.9 1.4 −19.2 15.3

5 51 1 1 8712.8 −25.9 −1.3 −101.8 −2.5 −89.3 −103.9

Continued on next page.
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Table E.2 – Continued from previous page.

Observed−calculated

DMBE/ES/ABWb ABWc DMBE/ES/SSb SSd DMBE IIe DMBE If
Mladenović Špirko

v1 vl22 v3 J Gexpt.
a et al.g et al.h

rmsd 26.9 2.9 31.0 12.5 45.7 53.4 7.3 15.4

a Ref. 1.
b This work [2].
c Ref. 1. Reported values are from the present work [2].
d Ref. 3. Reported values are from the present work [2].
e Ref. 4.
f Ref. 5.
g Ref. 6.
h Ref. 7.
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Appendix F

Parameters for the ground-state

triplet PES of C4

Table F.1: Coefficients (in atomic units) for the V(4)(R) term [Eq. (3.8) of chapter 10].

Coeff. P(4)1 P(4)2 P(4)3 P(4)4

c0 −0.478 167 76E+04 −0.237 711 77E+01 −0.811 573 50E+02 0.615 133 80E+04

c1 −0.271 472 12E+04 0.709 260 49E+01 −0.207 888 33E+02 −0.102 657 22E+04

c2 −0.525 205 53E+03 −0.219 888 93E+01 0.106 814 06E+02 0.210 207 69E+03

c3 0.169 299 51E+01 0.000 000 00E+00 0.555 662 02E+01 0.000 000 00E+00

c4 0.545 580 51E+01 0.000 000 00E+00 0.276 525 65E+01 0.000 000 00E+00

c5 0.368 088 65E+02 0.191 584 55E+00 0.000 000 00E+00 0.000 000 00E+00

c6 −0.635 472 28E+01 0.000 000 00E+00 0.000 000 00E+00 0.000 000 00E+00

c7 −0.542 893 47E+01 0.000 000 00E+00 0.000 000 00E+00 0.000 000 00E+00

c8 −0.795 888 36E+01 −0.669 460 77E−01 −0.518 205 18E+01 0.873 630 69E+01

c9 −0.172 935 81E+01 0.247 421 20E−01 0.161 920 20E+01 −0.754 415 45E+00

c10 −0.123 823 45E+01 0.333 573 10E−01 −0.188 633 58E+01 0.222 863 66E+01

R0 2.081 905 27 2.730 220 79 2.385 206 86 2.567 589 96
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Table F.2: Coefficients (in atomic units) for the V(4)(R) term [Eq. (3.8) of chapter 10].

Coeff. P(4)5 P(4)6 P(4)7

c0 0.294 312 41E+00 0.426 956 33E+01 −0.204 080 25E+01

c1 0.665 881 76E+00 0.302 731 99E+00 0.119 338 45E+01

c2 −0.423 009 05E+00 −0.197 031 03E+01 −0.629 823 09E+00

c3 −0.189 612 64E+00 0.460 204 35E+00 −0.550 706 57E−01

c4 −0.272 134 74E+00 0.555 094 15E+00 −0.399 972 30E−01

c5 −0.455 491 75E−01 0.000 000 00E+00 0.000 000 00E+00

c6 0.229 975 15E+00 0.000 000 00E+00 0.367 447 80E−01

c7 0.236 455 58E+00 0.000 000 00E+00 −0.640 015 36E−02

c8 0.282 137 11E+00 −0.136 311 14E+01 0.398 203 61E−01

c9 0.211 564 54E−01 −0.801 353 03E−01 −0.393 972 10E−01

c10 0.529 894 86E−01 −0.257 833 33E+00 0.415 407 85E−02

R0 3.135 912 28 3.000 000 00 3.629 201 37

Table F.3: Coefficients for the Gaussian functions Gi(Γ) [Eq. (3.8) of chapter 10].

Gaussian γi/a0−2

G1 0.254 469 99

G2 0.100 000 00

G3 0.237 106 61

G4 0.327 077 57

G5 0.500 000 00

G6 0.600 000 00

G7 0.450 000 00
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