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The overall objective of our research is to produce polyanion/chitosan nanoparticulate oral
delivery systems for insulin. Specific objectives of the present study were to study dextran

sulfate or alginate complexation with chitosan on mean particle size, insulin association
efficiency, loading capacity and release profile. Nanoparticles were formed by ionotropic
complexation and coacervation between polyanions (dextran sulfate and alginate) and
chitosan. Diameter was evaluated with photon correlation spectroscopy, polymer interaction

was confirmed by DSC and FTIR and particle morphology was assessed by SEM and TEM.
Mean nanoparticle diameter ranged from 423 to 850 nm, insulin association efficiency from 63
to 94% and loading capacity from 5 to 13%. Dextran sulfate provided highest insulin

association efficiency and retention of insulin in gastric simulated conditions. These
nanoparticle systems show promise as insulin and potentially other therapeutic polypeptides
carriers.
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INTRODUCTION

Polyelectrolytes are polymers containing ioniz-
able groups. As charged macromolecules, they
can form polyelectrolyte complexes (PEC) with
oppositely-charged molecules or polymers through
intermolecular interactions, such as hydrogen bond-
ing, Coulomb forces, van der Waals forces, and

transfer forces. These properties have been applied to
the encapsulation of therapeutic proteins, cells and
enzymes (Dumitriu and Chornet, 1998; Simsek-Ege
et al., 2003).

A significant number of natural polyelectrolyte-
based colloidal systems are being described as
promising carriers for bioactive molecules applying
simple and mild encapsulation processes free of
heating and organic solvents. Polymers like chitosan
(Chit), alginate (Alg) and dextran sulfate (DS) have
been described as biocompatible, biodegradable and
mucoadhesive, enabling numerous pharmaceutical
and biomedical applications (Gombotz and Wee,
1998; Ilium, 1998; Tiyaboonchai et al., 2003).
Chitosan polycation is the deacetylated form of chi-
tin (poly-b-(1-4)-N-acetyl-D-glucosamine), obtained
from exoskeletons of marine arthropods. As a
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bioadhesive polymer, absorption enhancer and hav-
ing antibacterial activity, chitosan is a good candidate
for drug delivery (Illum et al., 1994). A variety of
chitosan-based colloidal delivery vehicles have been
described for the association and delivery of drugs
(Prabaharan and Mano, 2005). Alginate is an anionic
polysaccharide of (1–4)-linked b-D-mannuronic acid
(M) and a-L-guluronic acid (G) widely used in bio-
encapsulation of drugs, proteins and cells. The gelling
properties of its guluronic residues with divalent ions
such calcium permit the formation of alginate
matrices for gels, films, beads, pellets, microparticles
and nanoparticles. Dextran sulfate is a branched
chain carbohydrate polymer of anhydroglucose units
which contains 2.3 sulfate groups per glucosyl resi-
due. In addition to its application for polyelectrolyte
complexation, it has been applied in biomedical field
for lipoprotein separation and DNA release from
DNA-histone complexes (Chen et al., 2004). Poly-
electrolyte complexes composed of oppositely
charged natural polymers have been previously for-
mulated under mild conditions to carry proteins
(Dumitriu and Chornet, 1998; Lacik et al., 2001;
Tiyaboonchai et al., 2003), and colloidal carriers
made by polymer complexation represents a very
promising vehicle to entrap proteins and provide
protection and sustained release. Insulin is a 5.8 kDa
protein used exogenously to treat insulin-dependent
diabetes mellitus (IDDM) when normal pancreatic
production is insufficient. Bioavailability of insulin
after oral administration is normally low, due to
acidic gastric pH, the enzymatic barrier of the intes-
tinal tract and the physical barrier made up of the
intestinal epithelium. The use of nano and microp-
articulate systems potentially provides gastric pro-
tection, controlled release and enhanced absorption
of perorally poorly absorbed drugs like insulin by
mucosal adhesion and nanoparticle direct uptake
(Fasano, 1998; Pan et al., 2002; Tiyaboonchai et al.,
2003). Particles smaller than 10 lm can be taken by
the M-cells and transported into the Peyer�s patches.
Most microparticles larger than 5 lm remain in the
Peyer�s patches but those smaller than 5 lm are
transported through the efferent lymphatics (Fasano,
1998; Vauthier et al., 2003).

The aim of this work was to entrap insulin in
different polyanion/chitosan nanoparticulate systems
with high efficiency, to study nanoparticulate
complexes morphologic and physical properties and
to investigate insulin release behaviour under gas-
trointestinal conditions.

MATERIALS AND METHODS

Materials

Low-G (FG = 0.39) low viscosity sodium alginate, chitosan

low molecular weight (MW) (�50 KDa), low MW dextran sulfate

(5 kDa) and calcium chloride were purchased from Sigma

(Oakville, Canada). Polyanion stock solutions were prepared in

deionised water (Milli-Q�) overnight under magnetic stirring and

chitosan samples were dissolved in 1% acetic acid solution in

deionised water followed by filtration using a Millipore #2 paper

filter and stored at 4�C. Human zinc-insulin crystal was a gift from

Lilly Farma, Portugal.

Nanoparticulate Systems Production

Three types of nanoparticles were prepared. Alg/Chit nano-

particles were formulated by ionotropic pre-gelation or by

coacervation, and DS/Chit nanoparticles were produced by coacer-

vation. Alg/Chit nanoparticulate systems were prepared by iono-

tropic gelation of polyanion with calcium chloride followed by

polycationic crosslinking (Sarmento et al., 2005). Briefly, 18 mM

calcium chloride solutionwas dropped for 60 min into 117.5 mLof a

0.063% alginate solution mixed at 800 rpm, to provide an alginate

pre-gel. Then, 0.05% chitosan solution was added dropwise into the

pre-gel over 90 mingiving afinal alginate and chitosan concentration

of 0.05 and 0.016%, respectively. The pH of alginate and chitosan

solutions was initially set to 4.9 and 4.6. A colloidal dispersion at pH

4.7 formed upon polycationic chitosan addition. Nanoparticle

complexation between DS and Chit were performed employing

aqueous solutions of oppositely charged polymers in a final volume

of 20 ml. Complexes were obtained after dropwise addition of

chitosan solution at pH 5.0 toDS solution at pH 3.4 followedmixing

for 15 min at 500 rpm to final concentrations of 0.1% chitosan and

0.15% polyanion (Chit/DS mass ratio 2:3). For Alg/Chit nanopar-

ticles produced by coacervation, chitosan solution at pH 4.6 was

dropped onto alginate solution at pH 4.9 under magnetic stirring for

15 min resulting final concentrations of 0.05 and 0.0116% to alginate

and chitosan, respectively (Alg/Chit mass ratio 4.3:1) These pH

values were selected in order to provide ideal ionic interactions.

Insulin was incorporated by prior mixing with polyanion solution

before nanoparticulate complexes formation. Nanoparticulate

complexes were isolated by centrifugation (20 000�g/30 min) and

stored at 4�C.

Size Analysis

The particle size analysis was assessed by photon correlation

spectroscopy with a Malvern Zetasizer and Particle Analyzer 5000

(Malvern Instruments, UK). Collective ten readings were per-

formed three times on a sample of particles at 25�C with a detection

angle of 90�.

Scanning (SEM) and Transmission (TEM) Electronic

Microscope

Nanoparticulate systems morphology was studied using both

scanning (SEM) and transmission electron microscope (TEM). For

SEM, samples of nanoparticulate complexes were mounted on

metal stubs, gold coated under vacuum and then examined in a
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JEOL JSM-840 SEM (10 kV, Japan). For TEM, samples were

placed in a grid, treated with uranil acetate and observed in a Zeiss

EM 902A TEM.

Differential Scanning Calorimetry (DSC)

Thermograms were obtained using a Shimadzu DSC-50 system

(Shimadzu, Kyoto, Japan). Samples were lyophilized, crimped in a

standard aluminium pan and heated from 20 to 350�C at a heating

rate of 10�C/min under constant purging of nitrogen at 20 ml/min.

Fourier Transform Infra-Red (FTIR)

FTIR-spectra were measured using a Bomem IR-spectrometer

(Bomem, Canada). The samples were gently triturated with 300 mg

of micronized KBr powder and compressed into discs at a force of

10 kN for 2 min sing a manual tablet presser (Perkin Elmer,

Norwalk, USA). For each spectrum a 256-scan interferogram was

collected in absorption with a 4 cm)1 resolution from the 4000–

600 cm)1 region at room temperature.

Insulin Association Efficiency and Loading Capacity

Association efficiency (AE) and loading capacity (LC) of

insulin to nanoparticulate complexes were obtained according to

the following equations:

AE ¼ Total amount of insulin� Free insulin in supernatant

Total amount of insulin
� 100

LC ¼ Total amount of insulin� Free insulin supernatant

Total weight of nanoparticles
� 100

Insulin was determined by HPLC running with a Varian 9012

Gradient Solvent Delivery System and a Varian 9050 Variable

Wavelength UV–VIS Detector (Varian�, USA) were used to per-

form all chromatographic runs. The HPLC system was equipped

with an XTerra RP 18 column, 5 lm particle size, 4.6 mm internal

diameter� 250 mm length (Waters�, USA) and a LiChrospher�

100 RP-18, 5 lm particle size guard column (Merck, Germany) and

a mobile phase composed of acetonitrile (ACT) and 0.1% triflu-

oracetic acid (TFA) aqueous solution in a gradient way were used

at a flow rate of 1 ml/min. Protein identification was made by UV

detection at 214 nm. The gradient changed from 30:70 (ACT:

TFA) to 40:60 in 5 min running following 5 min in isocratic 40:60

ratio. The method was validated and found to be linear in the range

of 1–100 lg/ml (R2 = 0.9996) (Sarmento et al., in press).

Evaluation of Insulin In Vitro Release from

Nanoparticles

Nanoparticles were placed either into test tubes containing

20 ml of HCl pH 1.2 USP XXVI buffer (120 min/100 rpm) and

phosphate pH 6.8 USP XXVI buffer (120 min/100 rpm). Samples

were taken and replaced by fresh medium. Released insulin was

evaluated by HPLC.

RESULTS AND DISCUSSION

In the present study, nanoparticulate polyelec-
trolyte complexes composed of cationic chitosan and
anionic alginate or dextran sulfate were developed,
involving the gentle mixing of two aqueous poly-
electrolyte solutions. Nanoparticulate systems were
formed from electrostatic interactions between the
negative carboxylic groups of alginate or sulfate
groups of dextran sulfate and the positive amine
groups of chitosan. Table I shows the composition
and properties of the nanoparticulate systems devel-
oped by three different approaches.

Photon correlation spectroscopy analyses indi-
cated that mean particles size obtained were in the
nanoscale range. Alg/Chit nanoparticulate complexes
produced by ionotropic pre-gelation of alginate fol-
lowed chitosan crosslinking presented a mean particle
size of 850 nm, while complexes produced by coac-
ervation method presented a mean particle size of
488 nm. DS/Chit nanoparticule complexes produced
by coacervation resulted in a narrow size distribution
with a mean particle size of 423 nm. In addition,
TEM and SEM micrographs (Figs. 1 and 2) revealed
that the nanoparticulate complexes were different
morphologically. Particles produced by pre-gelation
were spheroid and smooth, but coacervation method
originated amorphous and porous particles. Micro-
graphs confirmed the range size and exposed spheri-
cal and smooth particles.

Values of AE and LC for Alg/Chit nanoparticu-
late complexes produced by pre-gelation and coac-
ervation methods were found to be similar, but DS/
Chit nanoparticulate complexes produced systems
with higher insulin association efficiencies. LC ob-
tained was lower, but also the initial amount of
insulin used to prepare nanocomplexes was lower in
DS/Chit nanoparticle systems. LC appears to in-
crease with the increase of initial amount of insulin
used to prepare the nanoparticulate systems, while

Table I. Characterization of Polyelectrolyte Complexes between Polycationic Chitosan and Polyanionic Polymer in Terms of Mean Size,
Insulin Association Efficiency and Loading Capacity (n = 3)

Formulation Polyanion Method Mean particle size (nm) AE (%) LC (%)

A Alginate Pre-gelation 850±88 68.95±1.97 9.76±2.9
B Dextran sulfate Coacervation 423±37 94.10±4.80 4.71±1.02
C Alginate Coacervation 488±76 66.43 ± 7.40 12.91 ± 0.50
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AE did not changed significantly with the same initial
insulin increase (results not presented). The interac-
tion between insulin and polymers is essentially ionic,
but may also take into account hydrogen and van der
Waal�s forces. Positive amino radicals of insulin are
strongly and electrostatically attracted by sulfate/
carboxylic groups, and thus pH becomes an impor-
tant factor controlling this interaction. Since the pI of
insulin is around 5.3, positively charged insulin would
interact strongly with negatively charged dextran
sulfate/alginate. Positively charged chitosan then
complexes with free negative residues of polyanion
and insulin. The results obtained suggested that the
affinity of insulin for DS sulfate groups is higher than
for Alg carboxylic groups, as indicated by comparing
the association efficiencies of nanocomplexes con-
taining DS and Alg (Table I).

Thermograms plotted in Fig. 3 show differences
between individual polymers and complexed sug-

gesting ionic interactions expressed on the rear-
rangement of endothermic peaks and also on the
migration of exothermic decomposition peaks tem-
perature.

Isolated polymers were characterized by the
presence of initial endothermic peaks at 86.6, 62.0
and 60.6�C for alginate, chitosan and dextran sulfate,
respectively, and higher exothermic peaks at 257.8,
311.0 and 210.5�C, respectively. Endothermic peaks
are correlated with loss of water associated to
hydrophilic groups of polymers while exothermic
peaks resulted from degradation of polyelectrolytes
due dehydration, depolymerization and pyrolitic
reactions (Zohuriaan and Shokrolahi, 2004).

Association of insulin with nanoparticulate com-
plexes can also be observed by a delay of its endo-
thermic peak at 62–78�C after complexation with
formulation A (Fig. 3B). The two endothermic peaks
associated with insulin which are attributed to

Fig. 1. SEM micrographs of formulation A (a), formulation B (b) and formulation C (c).

Fig. 2. TEM micrographs of formulation A (a), formulation B (b) and formulation C (c).
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denaturation process and water loss (Huus et al.,
2005), became indistinct and transformed themselves
into a single peak after entrapped to Alg/Chit
nanoparticulate complexes. Similar results were ob-
tained for both formulations produced by coacerva-
tion process (results not shown). Insulin-loaded
systems reached this endothermic condition at lower
temperature values compared insulin-empty systems,
clearly indicating an interaction between the protein
and the polyelectrolytes. Also, comparing the exo-
thermic peak of insulin-loaded and unloaded Alg/
Chit nanocomplexes, its onset point started at lower
temperature for insulin-loaded particles, possibly
indicating that insulin being entrapped, started the
decomposition at higher temperature values
(261.3�C) than when analyzed separately from par-
ticles (248.7�C).

In order to examine relations between compo-
nents of nanoparticulate systems, preliminary con-
cerns were with the polymers� interaction and insulin
entrapment. Figures 4 and 5 represent Fourier
transform infrared (FTIR) spectra of pure alginate
and chitosan, Alg/Chit nanoparticles, and insulin and
insulin-loaded Alg/Chit nanoparticles.

Alginate presented carbonyl peaks near
1615 cm)1 (symmetric COO) stretching vibration)
and 1415 cm)1 (asymmetric COO) stretching vibra-
tion) and one peak at 1033 cm)1 that correspond to
vibrations of the carbohydrate ring. The FTIR
spectrum of chitosan also shows a peak of amide
bond at 1636 cm)1 and a strong protonated amino
peak at 1569 cm)1 because it is obtained from partial
N-deacetylation of chitin. Alginate peaks enlarged
and slightly shifted from 1613 to 1610 and 1414 to
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Fig. 3. (A). Thermograms of (a) Sodium alginate, (b) Chitosan, (c) Chitosan and alginate physical mixture, (d) Alginate/Chitosan nano-
particles produced by ionotropic pre-gelation (B). Thermograms of (a) Insulin, (b) Alginate/Chitosan nanoparticles, (c) Insulin-loaded
alginate/chitosan nanoparticles produced by coacervation (C). Thermograms of (a) Chitosan, (b) Dextran sulfate, (c) Dextran sulfate/
Chitosan nanoparticles (D). Thermograms of (a) Sodium alginate, (b) Chitosan, (c) Chitosan and alginate physical mixture, (d) Alginate/
Chitosan nanoparticles produced by coacervation.
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1415 after complexation with chitosan. Both chitosan
peaks were similarly changed after complexation with
alginate, amide peak into singlet band at 1610 cm)1

and amino peak to 1534 cm)1. In addition, the peak
intensity of amino groups of chitosan at 1153 cm)1

was also decreased after complexation. Thus, the re-
sults presented here suggest an effective interaction
between polymers after complexation and the pro-
duction of nanoparticles made by opposite charged
Alg and Chit, since the peaks of the molecular groups
responsible for the ionic interaction had been altered.
Similar observations were noted previously (Mitrevej
et al., 2001).

The introduction of insulin into nanoparticulate
complexes was also investigated by FTIR spectrum of
insulin-loaded nanoparticles. The spectrum revealed
more pronounced shoulders absorption in the amide
I (�1650 cm)1) and amide II (�1540 cm)1) regions as
characteristic of protein spectra (Fig. 6).

Dextran sulfate presented sulfyl peaks near
1026 cm)1(symmetric SOO) stretching vibration) and
1261 cm)1 (asymmetric SOO) stretching vibration) as
well as band around 820 cm)1 correspondent to S–O–
S vibrations (Cakic et al., 2005).

The cumulative release of insulin at HCl pH 1.2
USP XXVI buffer and phosphate pH 6.8 USP XXVI

2000 1800 1600 1400 1200 1000 800 600

(c)

(b)

(a)

10911414
1610

1022
14111569

1033

1415

1613
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Fig. 4. FTIR spectra of (a) Alginate, (b) Chitosan and (c) Alginate/Chitosan Nanoparticles produced by ionotropic pre-gelation.
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Fig. 5. FTIR spectra of (a) Alginate/Chitosan nanoparticles, (b) Insulin and (c) Insulin-loaded Alginate/Chitosan nanoparticles.
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buffer from insulin-loaded Alg/Chit nanoparticulate
complexes prepared by ionotropic pre-gelation and
DS/Chit nanoparticulate complexes prepared by
coacervation are depicted in Fig. 7a and b, respec-
tively. Nanoparticulate complexes of Alg/Chit pre-
pared by coacervation released all associated insulin
after 5 min in contact with both pH buffers (results
not shown), indicating that these nanoparticulate
complexes lost their integrity very rapidly.

It may be seen that insulin release from Alg/Chit
and DS/Chit occurred very rapidly as a burst effect
within the first 5 min, followed by a reduction in re-
lease rate. It is possible that some insulin was asso-
ciated with the particle surface and desorbed in
contact with the aqueous environment. In simulated
gastric conditions a significant increment of insulin
retention when using dextran sulfate in the formula-
tion compared with alginate was observed. The sul-
fate negative groups probably interact strongly with

insulin amino groups suggesting higher affinity than
alginate carboxylic groups, as observed above in AE
values.

In intestinal simulated conditions, the release
pattern was similar to that in gastric environment for
Alg/Chit nanoparticulate complexes, but slight
higher amounts for DS/Chit nanoparticulate com-
plexes. One explanation could be the overall negative
charge that insulin adopted at pH 6.8 which con-
tribute to the decrease of ionic interaction with neg-
ative DS.

CONCLUSIONS

Insulin was associated with nanoparticulate
polyelectrolyte complexes in the nanomeric size
range, made with biodegradable, natural polymers.
Nanoparticulate complexes interactions themselves
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Fig. 6. FTIR spectra of (a) Dextran sulfate, (b) Chitosan and (c) DS/Chitosan Nanoparticles produced by coacervation.
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Fig. 7. Insulin release profile at USP XXVI pH 1.2 buffer (a) and USP XXVI pH 6.8 buffer (b) from formulations A (—) and B (o) (n = 3).
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and with insulin were revealed by DSC and FTIR
analysis. Its release was evaluated under simulated
gastrointestinal conditions and protection improved
by complexation with highly negative charged dex-
tran sulfate. These nanoparticulate complexes appear
to possess good properties for oral protein delivery,
particularly those containing dextran sulfate/chitosan
polyelectrolytes, although additional in vitro and in
vivo studies must be conducted to confirm such
properties.
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