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Abstract. This paper provides analytical and Monte Carlo studies of the effect of differ-
ent types of structural change (residual variance, process mean and process persistence) on
the performance of the Chow/Wald stability test. We focus on the first-order autoregres-
sive model, which has been used to estimate and assess changes in inflation persistence. Our
results show that the autoregressive model is a difficult subject for the Chow test.
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1. Introduction

Inflation persistence has recently been, again, the subject of much contro-
versy – see, e.g., the papers produced by the Eurosystem Inflation Persis-
tence Network.1 A much discussed paper in the field is that of Alogoskou-
fis and Smith (1991). Resorting to recursive estimation, Alogoskoufis and
Smith argue that inflation persistence increased in the USA and the UK
at the time of World War I, when the gold standard was abandoned, and
again in 1968, associating this to the disintegration of the Bretton Woods
system. Burdekin and Siklos (1999) challenge this dating and argue that
there were changes in persistence in the post-Bretton Woods period but
they were related to the oil shocks.

The question is whether these changes in persistence are really changes
in persistence or just the consequence of other changes in the process that
generates inflation. Several authors have explored, in some way or another,
the issue of persistence and structural change. Perron (1989) showed the
difficulties that level shifts and changes in trend pose for unit root test-
ing. A number of papers followed this lead and studied the properties of
unit-root tests under structural change, e.g., Zivot and Andrews (1992).
This strand of the literature focuses on a particular instance of persistence,
namely the case when there is a unit root. Bleaney (2001) is concerned with
stationary AR(1) models for inflation and argues that the case of mean
shifts is empirically relevant: allowing for mean shifts reduces the size of
the estimates of persistence in a number of countries. The same point has
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been made by Levin and Piger (2004). But can we rely on structural change
tests to detect shifts in the usual autoregressive models? There are several
studies on the performance of structural change tests. For instance, in the
case of a first-order autoregressive model, it has been noticed in Monte
Carlo simulations – see, e.g., Diebold and Chen (1996) or Perron (1997)
– that the performance of Chow/Wald-type tests deteriorates as the coeffi-
cient on the lagged variable increases.

This paper provides a characterisation of the effects of structural change
– namely, changes in residual variance, mean and persistence – on struc-
tural change tests of an autoregressive model. We focus on the Chow/Wald
test. The reason for focusing on this test is that it is the most commonly
used test and is also the starting point for more recent stability tests. We
are especially interested in the case where persistence – the coefficient of
lagged inflation in an autoregression – is less than 1, but might change,
which is the most relevant case for the study of inflation persistence. See
Leybourne and Taylor (2004) and the references therein for the case of test-
ing for changes between I(0) and I(1).

Our approach starts by deriving an analytical approximation to the
Wald test, which in our simulations performs similarly to the usual Chow
test with the F distribution. In order to derive the basic approximation
to the Chow/Wald test we only need to assume that the disturbances are
serially uncorrelated, have zero mean and constant variance (apart from a
possible break). Further assumptions regarding their distribution are not
required to derive our first-order approximation, but we will assume nor-
mality when we do Monte Carlo simulations. The Monte Carlo simulations
are performed to confirm the adequacy of the analytical approximation.

Note that it is difficult to classify our analysis as having a small-sam-
ple or an asymptotic character. We need the sample to be large enough (on
both sides of the break) for the average of the sum of squared disturbances
to approach their variance and for the small-sample corrections (e.g., in the
computation of the variance estimator) to be negligible. Nevertheless, our
analysis is not asymptotic for we retain terms that would disappear asymp-
totically, such as the inverse of the number of observations. We could call
this a “medium-sample” analytical study.

The paper is organised as follows. Section 2 introduces the formulation
of the autoregressive model that we investigate. Section 3 analyses the per-
formance of the Chow/Wald test of structural change when the model is
the AR(1) introduced in Section 2. Section 4 concludes.

2. The Autoregressive Model

A popular model in econometrics for inflation is the first-order autoregres-
sive model:
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yt =a +byt−1 + et (1)

where b is interpreted as a measure of persistence. We assume that this
model is an accurate representation of the behaviour of the series under
scrutiny and investigate the consequences of a structural change in the pro-
cess generating that series. We assume that the variable is generated as in
Andrews (1993):

yt =µ1 +y∗
t , 0≤ t ≤ τ (2)

yt =µ2+y∗
t , τ < t (3)

where

y∗
0 ∼N

(
0,

σ 2
1

1−β2
1

)
(4)

y∗
t =β1y

∗
t−1 +σ1ut, 1≤ t ≤ τ (5)

y∗
t =β2y

∗
t−1 +σ2ut τ < t (6)

with 0<β1 <1,0<β2 <1, σ1 >0, σ2 >0, and ut ∼ iid(0,1).
This implies that the model for yt may be written as:

y0 ∼N

(
µ1,

σ 2
1

1−β2
1

)
(7)

yt =µ1(1−β1)+β1yt−1 +σ1ut , 1≤ t ≤ τ (8)

yt =µ2 −µ1β2 +β2yt−1 +σ2ut , t = τ +1 (9)

yt =µ2(1−β2)+β2yt−1 +σ2ut , τ +1<t (10)

We are, therefore, going to allow for three types of structural change at
date τ +1: a change in mean (µ1 to µ2); a change in residual variance (σ 2

1
to σ 2

2 ); and a change in persistence (β1 to β2). The goal is to examine the
impact of such changes on the Chow/Wald test of structural change. Our
focus on this test is due to the fact that this is the most common test in
empirical applications and it is also the basis for many of the more recent
tests of structural change, such as those developed by Donald Andrews and
co-authors and the testing procedure of Bai and Perron (1998).

3. The Wald Test of Structural Change

In this section we analyse the performance of the Wald test for structural
stability. Suppose then we want to test whether the parameters µ1 and β1

are stable or, alternatively, have changed at time τ + 1. A common way
of doing so is by means of the Wald test. We may write the unrestricted
model as:

yt =a1ιt +b1ιtyt−1 +a2(1− ιt )+b2(1− ιt )yt−1 + εt (11)



614 PEDRO BAÇÃO

where

ιt =1, t =1, . . . , τ (12)

ιt =0, t = τ +1, . . . , τ + δ (13)

τ and δ are the number of pre- and post-break observations, respec-
tively. In our (linear) framework, the Wald test of the hypothesis that
a1 = a2 and b1 = b2 is asymptotically distributed as χ2

2 and the statistic
equals:

W = (Rĉ)′
[
R(X′X)−1R′]−1

(Rĉ)

σ̂ 2
(14)

where

R =
( −1 0 1 0

0 −1 0 1

)
(15)

ĉ= ( â1 b̂1 â2 b̂2
)′

(16)

X =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 y0 0 0
. . . . . . . . . . . .

1 yτ−1 0 0
0 0 1 yτ

. . . . . . . . . . . .

0 0 1 yτ+δ−1

⎞
⎟⎟⎟⎟⎟⎟⎠

(17)

σ̂ 2 =
∑τ+δ

t=1 ε̂2
t

τ + δ −4
(18)

If we let

A=
(

A11 A12

A12 A22

)
= [R(X′X)−1R′]−1 (19)

then the Wald statistic can be written as:

W = 1
σ̂ 2

(
�2

aA11 +2�a�bA12 +�2
bA22

)
(20)

where

�a = â2 − â1 (21)

�b = b̂2 − b̂1 (22)

and âi and b̂i are the OLS estimates of the parameters in Eq. (11).
As shown in the Appendix, the elements of A are approximately equal to
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A11 ≈
1−β2

1

τσ 2
1

+ 1−β2
2

δσ 2
2

D
(23)

A12 ≈
µ1(1−β2

1 )

τσ 2
1

+ µ2(1−β2
2 )

δσ 2
2

D
(24)

A22 ≈
1
τ
+ µ2

1(1−β2
1 )

τσ 2
1

+ 1
δ
+ µ2

2(1−β2
2 )

δσ 2
2

D
(25)

where

D = 1−β2
1

σ 2
1 τ 2

+ 1−β2
2

σ 2
2 δτ

+ 1−β2
1

σ 2
1 δτ

+ 1−β2
2

σ 2
2 δ2

+ (1−β2
1 )(1−β2

2 )

σ 2
1 σ 2

2 δτ
(µ2 −µ1)

2 (26)

When there is no change in the mean, the OLS estimate of the intercept
a is approximately equal to µ1(1− b̂) where b̂ is the estimate of persistence.
Thus, when there is no change in mean, �a ≈−µ1�b.

Therefore, using the approximations above and σ 2
1 as a proxy for σ̂ 2, the

Wald statistic when there is no structural change is approximately equal to

Ws = 1

σ 2
1

(
�2

s,aAs,11 +2�s,a�bAs,12 +�2
bAs,22

)= �2
b

(1−β2
1 )( 1

τ
+ 1

δ
)

(27)

with

�s,a =−µ1�b (28)

As,11 = 1
1
τ
+ 1

δ

(29)

As,12 = µ1
1
τ
+ 1

δ

(30)

As,22 = µ2
1

1
τ
+ 1

δ

+ 1
(1−β2

1 )

σ 2
1

( 1
τ
+ 1

δ
)

(31)

Our approximation would suggest that the Wald statistic is distributed
as χ2

1 rather than as χ2
2 . However, the analytical results we obtain by work-

ing with the approximation are corroborated by Monte Carlo simulations,
as shall be seen later. This leads us to conclude that our approximation
captures the essential elements that influence the performance of the Wald
test, either because both our approximation and the part left out vary in
a similar way, or because the effect described in the following paragraph
makes our approximation more relevant than the omitted part.

It is instructive to think about the implications of the approximation
above for the performance of the Wald test when there is no structural
change. If β1 ≈ 0, then there is no doubt that our approximation is close
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to a χ2
1 . If β1 �= 0, then the argument that our approximation is χ2

1 does
not hold, for the OLS estimator will not be (approximately) normally dis-
tributed. Instead, it will be have a skewed distribution, increasingly so as
β1 approaches 1. The fact that the distribution is skewed has the implica-
tion that, relative to the normal distribution, larger differences (in abso-
lute value) between “realisations” of the OLS estimator (in our context,
b̂2 − b̂1) will have larger probabilities assigned to them. As a consequence,
relative to what would be the case under a Chi-square distribution, the
numerator will tend to have larger values, and the more so the closer β1

is to 1. Therefore, the number of rejections of the null hypothesis when
in fact it is true will increase (and the test will depart from the behaviour
of the reference distribution) with the persistence of the series. This effect
may help explain why our approximation has proved good enough for our
purposes.

The impact of persistence on the performance of the Wald test (under
the null of no change and using the χ2

2 5% critical value) may be seen in
Table 1. The results in Table 1 show that when persistence is high (above
0.6) the performance of the Wald test deteriorates significantly. Using the
Wald distribution with the 2.5% critical value might help for some com-
binations of persistence and sample sizes, but not for other combinations.
Therefore, using the Chow test when persistence of the series is high is not
advisable: you are more likely to reject the null of no break than you think.

The next subsections use these approximations to investigate the impact
of structural change on the performance of the Wald test. We study sep-
arately the cases where the residual variance changes, the mean changes
and, finally, persistence changes. Throughout we use the Chi-square dis-
tribution (“Wald” test), instead of the F distribution (as is usual for the
“Chow” test). However, the results do not change much if one uses the F

distribution.

3.1. the wald test when the variance changes

If there is a change in residual variance at time τ + 1, then the estimated
residual variance over the whole sample is:

σ̂ 2 =
∑τ

t=1 ε̂2
t +∑τ+δ

t=τ+1 ε̂2
t

τ + δ −4
(32)

which we approximate by

σ 2
v = τσ 2

1 + δσ 2
2

τ + δ
(33)
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Table I. Rejection rates (in percentage) of the Wald test under the null of no change using
the 5% critical value of the χ 2

2

τ δ τ/δ β1 =0.0 β1 =0.3 β1 =0.6 β1 =0.9 β1 =0.99

30 300 0.1 4.7 5.0 5.8 9.8 17.3
30 60 0.5 4.9 5.3 6.4 12.0 21.2
30 30 1 5.1 5.7 7.0 13.8 22.0
30 15 2 5.0 5.7 7.5 15.1 20.1
50 500 0.1 4.8 5.0 5.6 8.6 17.1
50 100 0.5 5.0 5.3 6.0 9.9 21.2
50 50 1 5.1 5.4 6.2 11.2 21.9
50 25 2 4.9 5.5 6.8 12.9 21.0
50 5 10 4.3 5.1 6.5 9.6 10.9

100 1000 0.1 4.9 5.1 5.3 7.3 15.8
100 200 0.5 5.0 5.1 5.5 7.7 19.1
100 100 1 5.1 5.2 5.6 8.6 20.8
100 50 2 4.9 5.2 5.8 9.8 20.9
100 10 10 4.2 4.9 6.3 10.6 13.7
500 5000 0.1 4.9 4.9 5.0 5.4 9.4
500 1000 0.5 5.1 5.1 5.2 5.6 10.7
500 500 1 5.0 5.0 5.1 5.7 12.1
500 250 2 5.0 5.1 5.2 6.1 14.5
500 50 10 4.8 5.1 5.6 8.6 16.9

The model simulated and tested is the AR(1) model described in Section 2 with constant
parameters. Since the statistic is invariant with the mean and the residual variance, in the
simulation we set the mean equal to zero and the residual variance equal to one. The num-
ber of replications was 100,000, which gives a standard deviation of the estimates approxi-
mately equal to 0.3%.
β1 is the autoregressive coefficient, τ is the number of observations before the hypothesised
break and δ is the number of observations after the hypothesised break.

Using the approximation developed above, the Wald statistic when there
is a change in variance is approximately

Wv = 1

σ 2
1

(
�2

v,aAv,11 +2�v,a�bAv,12 +�2
bAv,22

)
(34)

where

�v,a =−µ1�b (35)

Av,11 = 1
1
τ
+ 1

δ

(36)
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Av,12 = µ1
1
τ
+ 1

δ

(37)

Av,22 = µ2
1

1
τ
+ 1

δ

+ 1

(1−β2
1 )( 1

τσ 2
1
+ 1

δσ 2
2
)

(38)

The approximation to the statistic can be simplified to

Wv = �2
b

(1−β2
1 )

(τ + δ)τσ 2
1 δσ 2

2

(τσ 2
1 + δσ 2

2 )2
(39)

We already know that the distribution of the Wald statistic under
the null departs from the χ2

2 when persistence is high. Therefore, to use the
Wald test one would need to correct the critical values. The impact of the
structural change must then be evaluated as the difference between the sta-
tistic under the alternative and the statistic under the null. The difference
between the Wald statistics when the variance changes and when there is
no break is

Wv −Ws = �2
b

(1−β2
1 )

[
(τ + δ)τσ 2

1 δσ 2
2

(τσ 2
1 + δσ 2

2 )2
− τδ

τ + δ

]
(40)

Let

vM =max
(

0,
τ 2

δ2
−1

)
(41)

vm =min
(

0,
τ 2

δ2
−1

)
(42)

The difference between the tests is:
• Wv −Ws <0 if the relative change in variance, ν = (σ 2

2 −σ 2
1 )/σ 2

1 , is ν <νm

or ν >νM ;
• Wν −Ws >0 if νm <ν <νM ;
• at a maximum when ν = τ

δ
−1.

The implication of this result is that the performance of the Wald test
when there is a break in residual variance depends nonlinearly on the size
of the change and on the distribution of the observations across the two
regimes. When the number of observations is equal in the two samples,
τ = δ ⇒ νM = νm = 0, a change in variance either up or down will, accord-
ing to our approximation, decrease the number of rejections of the null of
no structural break by the Wald test. Our experiments in the case where
τ = δ (see Table 3) led us to conclude that when persistence is low, the size
of the test is rather flat when the residual variance increases, declining sig-
nificantly only after a certain point (value for ν). When persistence is high
(e.g., β1 = 0.99 in Table 3), an increase in variance will actually lead
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to a slight increase (21.9–24.8%), initially, in the number of rejections,
again declining only after a certain point. It must be remembered that the
analytical conclusions are based on approximations, which will not always
perform well. Nevertheless, the simulations reported show that the approx-
imation employed leads to the right conclusions. When there are more
post-break than pre-break observations (τ <δ), a decrease in residual var-
iance will augment the rejection rates of the Wald test, while an increase
in residual variance will diminish the rejection rates. The opposite is true
when there are more pre-break than post-break observations – see Tables 2
and 3. Our result provides analytical support to the observation made by
Schmidt and Sickles (1977) that, contrary to Toyoda (1974), the effect of a
change in variance may be to lower the size of the Chow test.

Tables 2 and 3 show the results for a pre-break sample size of 50 obser-
vations. This sample size gives essentially the same results as a pre-break

Table II. Rejection rates (in percentage) of the Wald test when the residual variance changes
using the 5% critical value of the χ2

2 – part 1

τ δ τ/δ ν β1 =0.0 β1 =0.3 β1 =0.6 β1 =0.9 β1 =0.99

50 500 0.1 –0.999 46.4 47.4 49.7 62.2 84.5
50 500 0.1 –0.5 16.9 17.4 18.7 25.7 43.0
50 500 0.1 –0.1 6.2 6.4 7.1 10.8 20.7
50 500 0.1 0.0 4.8 5.0 5.6 8.6 17.1
50 500 0.1 0.1 3.8 4.0 4.4 7.0 14.3
50 500 0.1 0.5 1.4 1.5 1.7 3.1 7.0
50 500 0.1 10 0.0 0.0 0.0 0.0 0.2
50 500 0.1 100 0.0 0.0 0.0 0.0 0.1
50 100 0.5 –0.999 9.6 10.3 12.1 22.3 36.5
50 100 0.5 –0.5 8.1 8.6 9.6 15.6 27.5
50 100 0.5 –0.1 5.6 5.8 6.5 10.8 22.3
50 100 0.5 0.0 5.0 5.3 6.0 9.9 21.2
50 100 0.5 0.1 4.5 4.8 5.4 9.0 20.3
50 100 0.5 0.5 3.1 3.3 3.8 6.8 17.5
50 100 0.5 10 0.2 0.3 0.5 2.1 10.8
50 100 0.5 100 0.1 0.2 0.3 1.6 10.3

The model simulated and tested is the AR(1) model described in Section 2 with a change
in variance at t = τ + 1. In the simulation, the mean is always equal to zero and the initial
residual variance equals one. The number of replications was 100,000, which gives a stan-
dard deviation of the estimates approximately equal to 0.3%.
ν = (σ 2

2 − σ 2
1 )/σ 2

1 is the relative change in residual variance, β1 is the autoregressive coeffi-
cient, τ is the number of observations before the break and δ is the number of observations
after the break.



620 PEDRO BAÇÃO

Table III. Rejection rates (in percentage) of the Wald test when the residual variance changes
using the 5% critical value of the χ2

2 – part 2

τ δ τ/δ ν β1 =0.0 β1 =0.3 β1 =0.6 β1 =0.9 β1 =0.99

50 50 1 –0.999 2.1 2.5 3.6 9.1 12.3
50 50 1 –0.5 4.5 4.9 5.8 10.8 18.8
50 50 1 –0.1 5.0 5.4 6.2 11.2 21.5
50 50 1 0.0 5.1 5.4 6.2 11.2 21.9
50 50 1 0.1 5.0 5.4 6.2 11.2 22.4
50 50 1 0.5 4.8 5.2 6.0 11.2 23.4
50 50 1 10 2.3 2.8 3.9 10.1 24.8
50 50 1 100 2.0 2.4 3.5 9.6 24.7
50 25 2 –0.999 0.2 0.3 0.6 2.3 2.3
50 25 2 –0.5 2.2 2.5 3.2 7.2 11.3
50 25 2 –0.1 4.4 4.9 6.1 11.9 19.2
50 25 2 0.0 4.9 5.5 6.8 12.9 21.0
50 25 2 0.1 5.3 6.0 7.3 13.9 22.6
50 25 2 0.5 6.8 7.7 9.2 17.4 28.0
50 25 2 10 10.6 12.0 15.3 30.1 46.5
50 25 2 100 10.6 12.0 15.3 30.0 46.1
50 5 10 –0.999 0.0 0.0 0.0 0.0 0.0
50 5 10 –0.5 0.5 0.7 1.0 1.7 2.0
50 5 10 –0.1 3.3 4.0 5.1 7.7 8.8
50 5 10 0.0 4.3 5.1 6.5 9.6 10.9
50 5 10 0.1 5.3 6.3 8.0 11.6 13.1
50 5 10 0.5 9.7 11.3 14.2 19.6 22.0
50 5 10 10 51.0 56.2 66.1 79.8 83.3
50 5 10 100 61.5 67.7 78.0 90.9 94.4

sample size equal to 500, though rejection rates tend to be higher when
τ = 500. The results again show that resorting to the 2.5% critical value
of the χ2

2 distribution would not be useful for every possible situation. In
fact, the most noticeable thing in the results is that, matching the analytical
results, heteroscedasticity may have very different effects on the rejection
rates, depending on the sample sizes and the change in variance, and this
compounds the problem caused by persistence. Therefore, if there is hetero-
scedasticity, one should not use the Chow test. The modified Wald statistic
suggested by Watt (1979),

(Rĉ)′
[
σ̂ 2

1 (X′
1X1)

−1 + σ̂ 2
2 (X′

2X2)
−1]−1

(Rĉ) (43)

could be approximated in our framework, under heteroscedasticity alone, by
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�2
b

(1−β2
1 )( 1

τ
+ 1

δ
)

(44)

which is the same expression we obtained earlier under the null of no
change. That is to say, the modification suggested by Watt would make the
test robust to heteroscedasticity, as intended. However, the problem caused
by the persistence of the series would remain and still affect the perfor-
mance of the test when other forms of structural change occur. If there
is homoscedasticity, the Wald statistic and Watt’s statistic share the same
approximation in our framework. Therefore, the next sections would also
apply to Watt’s test. Ghilagaber (2004) and Thursby (1992) present Monte
Carlo evidence of the impact of heteroscedasticity in models with exoge-
nous regressors.

3.2. the wald test when the mean changes

The Wald statistic when the mean changes from µ1 to µ2 is approximately

Wθ = 1

σ 2
1

(
�2

θ,aAθ,11 +2�θ,a�bAθ,12 +�2
bAθ,22

)
(45)

where

�θ,a =µ2(1− b̂2)−µ1(1− b̂1) (46)

Aθ,11 =
1
τ
+ 1

δ( 1
τ
+ 1

δ

)2 + 1−β2
1

τδ

(µ2−µ1)2

σ 2
1

(47)

Aθ,12 =
µ1
τ

+ µ2
δ( 1

τ
+ 1

δ

)2 + 1−β2
1

τδ

(µ2−µ1)2

σ 2
1

(48)

Aθ,22 =
σ 2

1

1−β2
1

( 1
τ
+ 1

δ

)+ µ2
1

τ
+ µ2

2
δ( 1

τ
+ 1

δ

)2 + 1−β2
1

τδ

(µ2−µ1)2

σ 2
1

(49)

Simplifying, we obtain

Wθ =
(1−β1)

2
( 1

τ
+ 1

δ

)
(µ2−µ1)

2

σ 2
1

+ �2
b

1−β2
1

( 1
τ
+ 1

δ

)+ �2
b

τ+δ

(µ2−µ1)
2

σ 2
1( 1

τ
+ 1

δ

)2 + 1−β2
1

τδ

(µ2−µ1)2

σ 2
1

(50)

The important parameter is now the ratio of the squared change in
mean to the residual variance, θ = (µ2 − µ1)

2/σ 2
1 . The difference between
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Wθ and the no-change approximation, Ws , is

Wθ −Ws = (1−β1)
2
( 1

τ
+ 1

δ

)
θ( 1

τ
+ 1

δ

)2 + 1−β2
1

τδ
θ

(51)

In this case, the larger the parameter θ is, the larger the difference will
be, no matter the direction of change. The derivative of this difference with
respect to persistence is

∂(Wθ −Ws)

∂β1
=

−2θ(1−β1)
( 1

τ
+ 1

δ

) [( 1
τ
+ 1

δ

)2 + 1−β1
τδ

θ
]

[( 1
τ
+ 1

δ

)2 + 1−β2
1

τδ
θ
]2 (52)

which is negative, i.e., the larger persistence is, the less likely it is that the
test will detect a break caused by a change in mean.

This conclusion is confirmed by the simulation results in Table 4. The
test is powerful against a change in mean when persistence is low, but when
persistence is high the power of the test may become very low: the rejection
rates hardly differ from the case where no change occurs (Table 1).

3.3. the wald test when persistence changes

The Wald statistic when persistence changes from β1 to β2 is approximately

Wη = 1

σ 2
1

(
�2

η,aAη,11 +2�η,a�bAη,12 +�2
bAη,22

)= �2
b

1−β2
1

τ
+ 1−β2

2
δ

(53)

where

�η,a =−µ1�b (54)

Aη,11 = 1
1
τ
+ 1

δ

(55)

Aη,12 = µ1
1
τ
+ 1

δ

(56)

Aη,22 = 1

1−β2
1

τσ 2
1

+ 1−β2
2

δσ 2
1

+ µ2
1

1
τ
+ 1

δ

(57)

As usual in our setup, the statistic is independent of the mean, µ1. How-
ever, �b will now tend to have a non-zero mean equal to η=β2 −β1. This
will increase the value of the statistic and lead to the rejection of the null
more often. Naturally, the larger the change, the higher the likelihood of
rejecting the null.
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Table IV. Rejection rates (in percentage) of the Wald test when the mean changes using the
5% critical value of the χ2

2

τ δ τ/δ θ β1 =0.0 β1 =0.3 β1 =0.6 β1 =0.9 β1 =0.99

50 500 0.1 0.1 45.9 24.7 11.5 9.0 17.2
50 500 0.1 1 100 99.1 66.8 12.7 17.3
50 500 0.1 10 100 100 100 49.2 18.1
50 500 0.1 100 100 100 100 99.9 25.4
50 100 0.5 0.1 34.5 19.0 10.3 10.2 21.2
50 100 0.5 1 100 94.9 51.4 13.3 21.3
50 100 0.5 10 100 100 100 39.5 21.8
50 100 0.5 100 100 100 100 96.4 27.1
50 50 1 0.1 26.5 15.5 9.5 11.6 22.0
50 50 1 1 99.4 86.2 40.6 14.0 22.0
50 50 1 10 100 100 99.9 35.0 22.4
50 50 1 100 100 100 100 93.2 26.0
50 25 2 0.1 19.1 12.2 9.0 13.1 21.0
50 25 2 1 94.9 69.0 29.9 14.8 21.0
50 25 2 10 100 100 98.4 30.4 21.2
50 25 2 100 100 100 100 89.5 23.2
50 5 10 0.1 7.7 6.8 7.3 9.6 10.9
50 5 10 1 43.1 24.5 13.2 10.1 10.9
50 5 10 10 100 98.4 67.1 14.1 10.9
50 5 10 100 100 100 100 52.7 11.3

The model simulated and tested is the AR(1) model described in Section 2 with a change
in mean at t = τ + 1. In the simulation, the initial mean is equal to zero, while the residual
variance always equals one. The number of replications was 100,000, which gives a standard
deviation of the estimates approximately equal to 0:3%.
θ = (µ2 −µ1)

2/σ 2
1 is the ratio of the squared change in mean to the residual variance, β1 is

the autoregressive coefficient, τ is the number of observations before the break and δ is the
number of observations after the break.

It is also likely that the impact of a change in persistence will be larger
when persistence is high, i.e., for equal changes η =β2 −β1, rejections will
increase more when β1 is higher. However, the simulation results (Table 5)
show that when persistence is large (β1 =0.9) and declines, the rejection rate
of the Wald test may actually slightly decline if τ/δ is large. This might
be because in this case the denominator in Eq. (53) will be dominated by
the new, lower persistence, which may compensate the positive numerator,
with the result being a lower value of the statistic. The simulation results
also confirm that the test rejects less when persistence is low. This means
that having low persistence is bad when we are interested in changes in



624 PEDRO BAÇÃO

Table V. Rejection rates (in percentage) of the Wald test when persistence changes using the
5% critical value of the χ2

2

β1 =0.3, η= β1 =0.9, η=

τ δ τ/δ –0.3 –0.1 0.1 0.3 –0.3 –0.1

50 500 0.1 43.3 8.9 8.8 46.6 82.2 26.6
50 100 0.5 32.0 7.9 7.7 35.6 68.3 19.6
50 50 1 23.9 7.2 7.4 28.1 52.4 16.4
50 25 2 16.1 6.4 7.0 21.2 35.4 14.6
50 5 10 6.6 4.9 6.1 11.6 16.2 9.8

500 5000 0.1 100 49.6 50.8 100 100 96.0
500 1000 0.5 99.9 37.3 39.0 100 100 89.0
500 500 1 99.3 28.6 30.4 99.9 100 77.0
500 250 2 94.8 20.1 21.5 97.9 100 55.5
500 50 10 41.0 8.5 9.5 53.8 71.9 16.7

The model simulated and tested is the AR(1) model described in Section 2 with a change in
persistence at t = τ + 1. Since the statistic is invariant with the mean and the residual vari-
ance, in the simulation we set the mean equal to zero and the residual variance equal to one.
The number of replications was 100,000, which gives a standard deviation of the estimates
approximately equal to 0.3%.
β1 is the initial autoregressive coefficient, η is the change in the autoregressive coefficient, τ

is the number of observations before the break and δ is the number of observations after the
break.

persistence, and good when we are interested in changes in the mean, as
we concluded in the previous subsection.

To finalise, let us look at a perhaps more interesting case, when there is
simultaneously a change in persistence and in residual variance. The change
in the Wald statistic relative to the case in which there is only a change in
persistence is:

�2
b(τ + δ)(

1−β2
1

) [
1+ δ

τ
(1+ν)

]+ (1−β2
2

) [
1+ τ

δ(1+ν)

] − �2
b

1−β2
1

τ
+ 1−β2

2
δ

=−�2
bτδν

×
⎛
⎝ δ2(1−β2

1 )
[
1+ν − τ 2

δ2
(1−β2

2 )

(1−β2
1 )

]
(τ + δ + δν)(−δ − δν +β2

1δ + δβ2
1ν − τ + τβ2

2 )(−δ +β2
1δ − τ + τβ2

2

⎞
⎠
(58)

Let2

vM =max
(

0,
τ 2

δ2

(1−β2
2 )

(1−β2
1 )

−1
)

(59)
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vm =min
(

0,
τ 2

δ2

(1−β2
2 )

(1−β2
1 )

−1
)

(60)

Then the difference is negative if ν <vm or ν >vM , and it is positive if
vm <ν <vM . Again, there is a nonlinear effect of heteroscedasticity on the
behaviour of the test. However, the effect is now weighted by the values of
persistence in the two regimes.

4. Conclusion

In this text we have provided an analysis of the impact of different types
of structural change (change in variance, mean and persistence) on the
Chow/Wald test for structural stability when the model of interest is a
first-order autoregressive model.

We employed a simple approach, based on approximations to the statis-
tics of interest. Nevertheless, the analytical results reached are both sharp
and corroborated by Monte Carlo simulation. The results settle the issue of
what the impact of heteroscedasticity on the Chow test is. It is shown that
the impact is nonlinear, with the consequence that the size of the test may
either increase or decrease. The conditions under which each case occurs
were derived.

Even if one eliminates the effect of heteroscedasticity, e.g., using the test
proposed by Watt (1979), our results show that the autoregressive model is
still not a good subject for the Chow test. When persistence is high, under
the null of no break, the distribution departs significantly from the refer-
ence distribution. In this case, if there is a change in mean, the test is not
very powerful. On the other hand, if persistence is low, the test is powerful
against changes in mean, but not against changes in persistence. If we com-
bine this result with the fact that a change in mean is likely to be the main
cause of an increase in estimated persistence – see, e.g., Bleaney (2001) –
we get the common confusion between breaks in mean, detected by Chow
or Chow-type tests, and changes in persistence, detected by the estimates of
persistence.

Appendix

In this appendix the steps towards the derivation of the approximation to
the Wald statistic are presented.

Using the notation of Sections 2 and 3, we have

X′X =

⎛
⎜⎜⎝

τ
∑τ

t=1 yt−1 0 0∑τ
t=1 yt−1

∑τ
t=1 y2

t−1 0 0
0 0 δ

∑τ+δ
t=τ+1 yt−1

0 0
∑τ+δ

t=τ+1 yt−1
∑τ+δ

t=τ+1 y2
t−1

⎞
⎟⎟⎠ (A.1)
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Let

(X′X)−1 =
(

X1 0
0 X2

)
(A.2)

where

X1 = 1

τ
∑τ

t=1 y2
t−1 − (

∑τ
t=1 yt−1)2

( ∑τ
t=1 y2

t−1 −∑τ
t=1 yt−1

−∑τ
t=1 yt−1 τ

)

=
(

x11 x12

x12 x22

)
(A.3)

X2 = 1

δ
∑τ+δ

t=τ+1 y2
t−1 − (

∑τ+δ
t=τ+1 yt−1)2

( ∑τ+δ
t=τ+1 y2

t−1 −∑τ+δ
t=τ+1 yt−1

−∑τ+δ
t=τ+1 yt−1 δ

)

=
(

x33 x34

x34 x44

)
(A.4)

Then we can write

R(X′X)−1R′ =
(

x11 +x33 x12 +x34

x12 +x34 x22 +x44

)
(A.5)

If we let

A=
(

A11 A12

A12 A22

)
= [R(X′X)−1R′]−1

(A.6)

then

A= 1
(x11 +x33)(x33 +x44)− (x12 +x34)2

(
x22 +x44 −(x12 +x34)

−(x12 +x34) x11 +x33

)
(A.7)

We use the following approximations:
(

τ∑
t=1

yt−1

)2

≈ τ 2µ2
1 (A.8)

τ∑
t=1

y2
t−1 ≈ τ

σ 2
1

1−β2
1

+ τµ2
1 (A.9)

(
τ+δ∑

t=τ+1
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)2

≈ δ2µ2
2 (A.10)

τ+δ∑
t=τ+1

y2
t−1 ≈ δ

σ 2
2

1−β2
2

+ δµ2
2 (A.11)
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A more rigorous approximation to the square of the sum of yt would
include a term in the residual variance, but that would only complicate
the derivations without benefit. This simplification may make the approx-
imation less trustworthy when persistence is very high and the number of
observations is very low.

The xij elements are:

x11 =
∑τ

t=1 y2
t−1

τ
∑τ

t=1 y2
t−1 − (

∑τ
t=1 yt−1)2

≈
σ 2

1

1−β2
1
+µ2

1

τ
σ 2

1

1−β2
1

(A.12)

x12 = −∑τ
t=1 yt−1

τ
∑τ

t=1 y2
t−1 − (
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t=1 yt−1)2

≈ −µ1

τ
σ 2

1

1−β2
1

(A.13)

x22 = τ

τ
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t=1 y2
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t=1 yt−1)2

≈ 1

τ
σ 2

1

1−β2
1

(A.14)

x33 =
∑τ+δ

t=τ+1 y2
t−1

δ
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(∑τ+δ
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σ 2
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x34 = −∑τ+δ
t=τ+1 yt−1

δ
∑τ+δ

t=τ+1 y2
t−1 −

(∑τ+δ
t=τ+1 yt−1

)2 ≈ −µ2

δ
σ 2
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x44 = δ

δ
∑τ+δ

t=τ+1 y2
t−1 −

(∑τ+δ
t=τ+1 yt−1

)2 ≈ 1

δ
σ 2

2

1−β2
2

(A.17)

These approximations for the xij ’s imply

(x11 +x33)(x33 +x44)− (x12 +x34)
2 ≈ 1−β2

1

σ 2
1 τ 2

+ 1−β2
2

σ 2
2 δτ

+ 1−β2
1

σ 2
1 δτ

+1−β2
2

σ 2
2 δ2

+ (1−β2
1 )(1−β2

2 )

σ 2
1 σ 2

2 δτ
(µ2 −µ1)

2 (A.18)

Substituting the approximations for the xij ’s into Eq. (A.7) we obtain
the expressions for the Aij ’s given in equations (23)–(25) in the text.
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Notes

1. See the network’s website:http://www.ecb.int/home/html/researcher ipn.en.html.
2. Compare with Eqs. (41) and (42).
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