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Abstract Configuration interaction and coupled cluster
calculations are reported for He2 using various orbital basis
sets of the d-aug-AVXZ type, with the results being extra-
polated to the one electron basis set limit both with coun-
terpoise and without counterpoise correction. A generalized
uniform singlet- and triplet-pair extrapolation scheme has
been utilized for such a purpose. Using appropriate correc-
tions to mimic full configuration interaction, the energies
were predicted in excellent agreement with the best available
estimates. The results also suggest that extrapolation to the
complete basis set limit may be a general alternative to the
counterpoise correction that yields a more accurate potential
energy while being more economical.

1 Introduction

It is well known that the interaction energy of weakly bound
species should be calculated with electronic structure meth-
ods that offer a balanced description of both the complex
(supermolecule) and separated fragments. Stated concisely,
one should warrant the correct dependence of the energy on
the size of the system (size-extensivity) or, using superficially
similar words, the correct separation of the molecule into its
fragments. This is often referred as “size-consistency” [1,2]
to imply that the method when applied for electronic struc-
ture calculations on a diatomic AB gives limR→∞ EAB =
EA + EB. More generally, for a size-consistent method, the
energy of a group of non-interacting molecules will equal
the sum of the energies of each individual member of the
group. Examples of such methods are the Hartree–Fock (HF),
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full configuration interaction (FCI) and coupled cluster (CC)
methods [3,4]. Of course, truncation of the single-reference
CI expansion such as to include only single and double (SD)
electronic excitations will not satisfy the size-consistency
property since it retains unlinked diagram contributions [3,
4]. The same holds for the popular multi-reference CI
approach including single and double electronic excitations
(MRCISD or simply MRCI). However, when HF orbitals are
used, the (single-reference) averaged coupled-pair functional
(ACPF) method [5] that may be regarded as a modification of
MRCI is size-extensive for a system composed of equal sub-
systems. As we will see in the present work, size-consistent
methods are particularly valuable for studying closed-shell
interactions, with He2 being a well studied prototype.

A second and particularly acute difficulty that arises in the
calculation of weakly bound interactions is due to using finite
sets of basis functions. The description of the complex and the
fragments will then be unbalanced as an attractive interaction
between the involved species will develop even in the absence
of any interaction between the fragments. This spurious inter-
action is known as the basis set superposition error (BSSE),
with much work having been devoted to its understanding
over the years [4,6–11] (the list is by no means exhaustive).
The most popular approach to account for BSSE is the coun-
terpoise (CP) method of Boys and Bernardi [12], where the
monomer energies are calculated with the full dimer basis.
Although it has been objected that the monomers cannot take
advantage of the full dimer basis as the Pauli principle pre-
vents them from using the occupied orbitals of the partner
[13,14], the most popular avenue continues to be the full CP
method [12]. Since BSSE is ubiquitous and general, it may
seriously affect the weak interaction regions of any potential
energy surface, be it for a closed-shell or open-shell inter-
action. In this regard, one may even wonder whether BSSE
will get enhanced due to size-inconsistency of the methods
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employed for the calculation as the CI and MRCI approaches
are possibly the most popular ones for studying open-shell
interactions. As it will be shown later, the answer is nega-
tive when the configuration interaction method [without, CI,
and with consideration of the popular Davidson correction
for quadruple excitations, CI(Q)] is used for the title closed-
shell system. It will be also shown that the difficulties in
calculating accurate potential energy surfaces can be mini-
mized by extrapolating the raw energies without CP (NCP)
to the complete basis set (CBS) limit. Although this may
appear obvious as the BSSE vanishes by definition at the
CBS limit, it is unclear whether CBS extrapolations of CP
and NCP energies will lead to the same extrapolated value.
From studies on five hydrogen-bonded complexes, Halkier
et al. [7] noted that CP and NCP HF interaction energies both
converge unsystematically, with a similar trend being obser-
ved for the NCP correlation contribution. This unsystematic
behavior has been attributed to the fact that “the BSSE and
the error from the incomplete description of the electronic
Coulomb cusp both are present”. They concluded [7] that
once the former effect has been effectively removed by CP,
the cusp dominates and the convergence of the CP correla-
tion contribution follows an X−3 form similar to the form for
the correlation energy (see Sect. 2.2). This suggests that an
accurate description of weak interactions can only be done
at the expenses of a huge computational effort since both CP
and CBS treatments would be required. For two distinct frag-
ments, it would amount to at least six molecular calculations
per geometry. In fact, for many-body (fragment) systems, any
BSSE treatment will be considerably more expensive and
even hardly doable in a unique manner due to many-body
effects [15–18]. Indeed, it is not clear whether two-body
interactions in many-body systems should be computed in
the basis set of the whole system or of the dimer. Moreover,
(n ≥ 3)-body effects are known to be considerably smaller
than two-body ones, and hence a higher accuracy must be
achieved in their calculation. Finally, existing formulations
assume the Wigner–Witmer spin-spatial rules to be satisfied
with one set of electronic states for the fragments over the
whole configuration space, which is clearly not the general
situation [19].

Although we shall not contest the view that accounting
separately for both BSSE and CBS is the safe rule [7,9] for
an accurate potential energy surface, we will investigate in the
present work whether the situation can be ameliorated with
somewhat more flexible basis sets and a recently proposed
[20] extrapolation scheme. Indeed, Schwenke and Truhlar
[21] have found earlier that the inclusion of the CP correc-
tion may not warrant by itself a systematic improvement of
the calculations, and hence it is worth investigating whether
an optimal solution for NCP extrapolation can still be found
by using affordable basis sets and subsets of X values. Part of
the answer to our queries is implicit in the results of Ref. [7]

where the singly diffusely augmented correlation-consistent
polarized valence basis sets [22,23] (aug-cc-pVXZ or sim-
ply AVXZ) with X = D :2, T :3, . . . , 5 have been employed,
but we will re-examine here the problem for the very weakly
bound helium dimer with the doubly diffusely augmented
basis set (d-aug-cc-AVXZ or d-AVXZ) and X values up to 6.
The results will be shown to be positive, as they suggest
that CBS may to a large extent be all that is required. This
implies that the BSSE extrapolates to a very small value (zero
if the procedure was exact) as one could expect from being
a basis set size effect, thus manifesting on the HF and cor-
relation energies due to incompleteness of the one-electron
basis set as for the incomplete description of the electronic
Coulomb cusp. While noting the distinct physical origins of
such effects [7], we will emphasize their coupling at the CBS
limit in the sense that the BSSE will then vanish. In fact, the
observed nonzero extrapolated-energy difference will help in
defining the size of the error made upon CBS extrapolation.

Despite the fact that He2 has only four electrons, the
accurate computation of a reliable potential for this sys-
tem provides an enormous challenge in electronic structure
theory when performed via main-stream electronic-structure
methods of the CI type. This is because the interaction is
weak (De ∼ 35 µEh), and the dimer is only barely bound.
Recently, the He2 dimer potential has been computed with
the explicitly correlated multi-reference averaged coupled-
pair functional (r12-MR-ACPF) method [24], and with MRCI
[25] and CC methods, including corrections for both the
FCI and the basis set limit [26]. References [25] and [26]
also include corrections for the basis set limit which have
been taken from CCSD(T)-R12 calculations [27,28]. In turn,
calculations employing the quantum Monte Carlo [29,30]
(QMC) approach and symmetry-adapted-perturbation theory
[31] (SAPT) have also been performed. Moreover, Klopper
[32] reported an accurate extrapolation of the He2 poten-
tial to the limit of a complete basis using CC methods, both
including single and double excitations (CCSD [33]) as well
as perturbative corrections for connected triple excitations
[CCSD(T) [34]]. Most of such accurate works, either directly
[24,35,36] or indirectly (i.e., correcting the result for basis
set unsaturation, as has been done in Refs. [25,26]) make
use of explicitly correlated methods. More recently, calcu-
lations [37,38] have been performed using supermolecular
Gaussian geminal calculations. In these, the bulk of the inter-
action energy was estimated using the Gaussian geminal
implementation of CC theory with double excitations (CCD),
while the smaller contribution due to single, triple and qua-
druple excitations has been estimated using the conventional
CCSD(T) and FCI methods. In the last publication, large
atomic d-AVXZ basis sets with X up to 6 have been utilized,
and extrapolations are performed. In summary, some of the
most accurate calculations reported thus far have employed
explicitly correlated methods by using terms that are linear

123



Theor Chem Account (2008) 119:511–521 513

in the inter-electronic coordinates [24] ri j , an approximation

thereof [35], ri j = ∑
µ exp

(
γµr2

i j

)
, or explicitly correla-

ted Gaussian geminals [37]. Indeed, the accuracy achieved
is amazing, with the best binding energy estimates differing
on small fractions of a kelvin and the most accurate inter-
action energy at a distance of R = 5.6 a0 believed to be
−11.0037 ± 0.0031 K [38].

The paper is organized as follows. In Sect. 2, we describe
the procedure used to obtain the interaction potential of He2,
while the results are reported and discussed in Sect. 3. The
conclusions are in Sect. 4. For convenience, the calculated
energies are given in micro-hartree, and the binding energies
in kelvin (1 µEh =0.315775 K).

2 Methodology

2.1 Basis-set superposition error and counterpoise

Following common wisdom, we split the total energy into its
HF and correlation (cor) components:

EAB
X (R) = EAB,HF

X (R) + EAB,cor
X (R) (1)

Traditionally, the interaction energy for an AB interaction
will then assume the form

�EAB
X (R) =

∑

α=HF,cor

�EAB,α
X (R)

=
∑

α=HF,cor

[
EAB,α

X (R) − EA,α
X − EB,α

X

]
(2)

where the summation runs over the α =HF and cor compo-
nents, the fragment energies EA,α

X and EB,α
X are calculated in

their own basis, and the energy of the complex, EAB,α
X (R),

is calculated in the combined basis of the fragments. In turn,
X is a cardinal number that specifies a given basis in the
hierarchical sequence of correlated-consistent ones [22,23]
such as the double-augmented basis set (d-aug-cc-AVXZ or
d-AVXZ) employed in the present study.1

As noted in Sect. 1, the traditional approach introduces a
systematic error in the interaction energy, which is the more
serious the poorer (smaller) the basis set (X ) is. In fact, during
the calculation on the complex AB, the description of frag-
ment A is improved by the basis functions on B and vice-

1 Basis sets were obtained from the extensible computational che-
mistry environment basis set database, version 02/25/04, as develo-
ped and distributed by the Molecular Science Computing Facility,
Environmental and Molecular Sciences Laboratory which is part of
the Pacific Northwest Laboratory, P.O. Box 999, Richland, Washing-
ton 99352, USA, and funded by the U.S. Department of Energy. The
Pacific Northwest Laboratory is a multi-program laboratory operated
by Battelle Memorial Institute for the U.S. Department of Energy under
contract DE-AC06-76RLO 1830. Contact Karen Schuchardt for further
information.

versa, while in the calculation of the fragment energies only
their own basis sets are employed. As a result, the calcula-
ted interaction energy will contain, in addition to the true
interaction energy, a spurious attractive contribution (BSSE)
that arises from the improved description of the fragments in
the improved basis. To account for this problem, Boys and
Bernardi suggested to calculate the CP-corrected interaction
energy of AB as

�EAB
CP,X (R) =

∑

α=HF,cor

�EAB,α
CP,X (R) =

∑

α=HF,cor

[
EAB,α

X (R)

−EAQ,α
X (R) − EBQ,α

X (R)
]

(3)

where Q is the dummy atom of A or B. The CP correction is
then given by

εAB
X (R) =

∑

α=HF,cor

[
�EAB,α

CP,X (R) − �EAB,α
X (R)

]

=
∑

α=HF,cor

{[
EA,α

X − EAQ,α
X (R)

]

+
[

EB,α
X − EBQ,α

X (R)
]}

=
∑

α=HF,cor

[
ε

A,α
X (R) + ε

B,α
X (R)

]
(4)

For a variational wave function, the total CP correction must
be positive as the largest unsigned energy will be obtained
with the more flexible basis set that includes the basis of the
dummy atom. On the other hand, due to size-extensivity of
the HF method, one has ε

A,HF
X (R =∞)=ε

B,HF
X (R =∞)=0.

Moreover, for a variational wave function, both terms in the
summation (4) must obey the relations EA,α

X ≥ EAQ,α
X (R),

and EB,α
X ≥ EBQ,α

X (R). For the CP potential to vanish at infi-
nitely large distances, one has therefore to refer the interac-
tion to the CP correlation energy at infinity, εAB,cor

X (R =∞).
The actual interaction energies to be extrapolated to

X =∞ are therefore EAB,α
X (R) in Eq. (2), the only one requi-

red for the CBS traditional interaction energy, and EAQ,α
X (R)

and EBQ,α
X (R) when seeking to obtain the extrapolated CP

interaction energy in Eq. (3). Rather than extrapolating sepa-
rately the energy of the molecular complex and the energies
of the fragments, one might hope to do instead an extra-
polation of the interaction potential itself such as to reduce
error-cancellation to a minimum level. Despite their great
similarity, it turns out that there is no reason of principle to
expect the diatomic to extrapolate for every value of R as
a fragment dressed with the ghost functions of the other. In
particular, the extrapolation laws for the HF and cor compo-
nents are known to have a distinct dependence on X , albeit
the fact that the same rules have been employed for the total
interaction energy [39]. We will therefore carry out separate
extrapolations for the HF and cor components, as well as of
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the total interaction energy under the premise of dominance
of the correlation character.

2.2 Extrapolation methods

Complete basis set extrapolations have been inferred from
the dependence of the correlation energy on the partial wave
quantum number for two-electron atomic systems and
second-order pair energies in many-electron atoms [40–42].
The most popular two-parameter CBS scheme assumes the
form [43]

Ecor
X = Ecor∞ + A3

(X + α)3 (5)

where Ecor
X is the correlation energy for basis set of cardi-

nal number X , and Ecor∞ and A3 are parameters commonly
determined from calculations for the two highest affordable
values of X ; α is an offset parameter fixed from an auxiliary
condition. For a recent analysis on the performance of Eq. (5)
and a few other rules, see Ref. [44].

The uniform singlet- and triplet-pair extrapolation (USTE
[20]) method (see also Ref. [45]) is based on the three-
parameter rule

Ecor
X = Ecor∞ + A3

(X + α)3 + A5

(X + α)5
(6)

with A5 defined by

A5 = Ao
5 + cAm

3 (7)

where Ecor∞ , A5(0) = Ao
5, A3, c, and α are parameters. By

fixing α, Ao
5, c, and m from other criteria, Eq. (6) has been

transformed into an effective two-parameter (Ecor∞ , A3) rule
[20]. Using the USTE model, we have shown [46] that both
the full correlation in systems studied by the popular single-
reference Møller–Plesset (MP2) and coupled cluster [CCD
and CCSD] methods as well as its dynamical part in MRCI(Q)
calculations [20] or even correlation energies obtained by
correlation energy extrapolation via intrinsic scaling [47]
can be accurately extrapolated to the CBS limit. For the
dynamical correlation, the optimum values of these para-
meters are [20] Ao

5 = 0.003769 and c =−1.1784771 E−5/4
h ,

with m = 5/4 and α = −3/8. Corresponding parameters
have been given for other methods with α = −3/8, namely
Ao

5 = 0.1660699, c = −1.4222512 E−1
h , and m = 1 for CC

methods. Their extendibility (“universality”) has also been
explored by showing that they lead to accurate results for
systems that were not part of the calibrating set [46,48].

Figure 1 shows that the coefficients (A5, A3) determined
from the CI(Q)/d-AVXZ, CCSD/d-AVXZ, and CCSD(T)/d-
AVXZ calculations here reported are well described by
Eq. (7). However, there may be difficulties close to the ori-
gin (small values of A3) which correspond to small values of
A5. Since a recalibration of Eq. (7) can hardly be numerically
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Fig. 1 A5 versus A3 correlations [20] for various systems and cor-
related consistent orbital basis sets: a CI(Q) and MRCI(Q); b CCD,
CCSD, and CCSD(T). The black solid dots in a refer to the calculations
reported in Ref. [20], while the solid (up and down) triangles refer to
the calculations [48] for the ground electronic and first-excited (A 1�)
states of carbon monoxide. The CI(Q) energies that have been obtai-
ned in a similar manner for He2 both using NCP and CP methods are
also shown by the up-triangle and down-triangle in a. Similar trends
are observed for the CCSD and CCSD(T) points of He2 which are pre-
sented only at the CP level. Also shown for completeness are other
CC results, using a notation identical to that utilized elsewhere [20].
The shadowed areas have been obtained by moving the fitted [20,48]
straight lines up and down such as to encompass all calculated points:
−0.113 ≤ ηAo

5 ≤ 0.120 for CI(Q); −0.164 ≤ ηAo
5 ≤ 0.096 for CCSD

and CCSD(T). See also the text

improved, we have adopted the following procedure. First,
we have scaled the intersection of the fitted line at the
origin by replacing Ao

5 →ηAo
5, with η in Eq. (7) being chosen

such as to impose the predicted τ53 = A5/A3 ratio. This has
been determined here from the average of the ratios calcula-
ted with (D, T, Q) and (D, T, Q, 5, 6) basis sets. The result
is τ53 =−0.96±0.04 both for the CI(Q) and CC [CCSD and
CCSD(T)] results. Although the scaling factor may vary with
the pair (or range) of cardinal numbers used for the extrapo-
lation, it has been found to be rather insensitive to X for the
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title system, with the result being η = 0.30 ± 0.02. Interes-
tingly, if Truhlar’s protocol [49] EX = E∞ + b/X2.4 [this
has been optimized for (D, T ) extrapolations from CCSD
and CCSD(T) energies] was employed to generate an extra
point in the D − T interval (2 ≤ X ≤ 3), such a result
could be utilized with the X = D, T raw energies to get η

(jointly with E∞ and A3) by fitting the three data points so
obtained. The result in this case is η ∼ 0.34, which is in
good agreement with the value reported above. This would
correspond to a value of τ53 ∼−0.89 that nearly falls within
the error limits above established from the raw ab initio ener-
gies. Unfortunately, no such a rule is available [49] for CI(Q)
energies, although the above result seems to imply that it
should be pretty much similar to the one for the CC family
of methods. A final remark to note that the τ53 ratio for He2

lies close (but, as expected, is not identical) to the theoretical
value [20] of −0.75 predicted from second-order Møller–
Plesset perturbation-theory for natural-parity singlet states
[41] in two-electron systems. Further details concerning the
above generalized USTE (GUSTE) approach will be given
elsewhere [50].

For the uncorrelated HF and CAS (uncorrelated in the
sense of lacking dynamical correlation) energies, several
schemes have been advanced ([20,51], and references the-
rein). A popular rule is ECAS

X = ECAS∞ + A exp(−bX), where
ECAS∞ , A, and b are parameters to be determined from a
fit to the raw HF energies, typically those calculated for
the three or more highest affordable cardinal numbers. In
[20], we have suggested a variant of such a rule based on
fitting X = T, Q, 5, 6 energies but with the recommended
value obtained by averaging EHF∞ with the raw HF energy
for the highest fitted value of X (typically X = 6). In addi-
tion, Karton and Martin [51] suggested the two-point extra-
polation rule A + B/X5.34 for (T, Q) raw energies, while
for the (Q, 5) and (5, 6) ones they have recommended [51]
A + B(X + 1) exp(−9

√
X). Since the HF energies predic-

ted from our own rule show generally good agreement with
Karton and Martin [51] for the (5,6) case, we will adopt here
for consistency both their formulas.

It should be noted that the extrapolations of EHF
X and Ecor

X
are both geometry-dependent, and hence must be perfor-
med pointwise. Although the USTE [20] method combined
with correlation scaling [52,53] has shown [48,53] signifi-
cant computer-time savings, this hybrid method will not be
utilized such as to limit errors to a minimum level.

3 Results and discussion

In the case of two interacting He atoms, the raw energies to be

extrapolated are EHe2,HF
CP,X (R), EHe2,cor

CP,X (R), EHeQ,HF
X (R), and

EHeQ,cor
X (R). All such energies have been calculated using

the MOLPRO suite of electronic structure programs [54].
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Fig. 2 Calculated raw interaction potentials for the helium dimer:
a CI(Q)/d-AVXZ; b CCSD(T)/d-AVXZ. The solid lines refer to the
potentials obtained with the CP method, while the NCP ones are indi-
cated dashed lines. The NCP (CP) potentials can be identified from
X = D to X =6 by moving upwards (downwards) at equilibrium

They correspond to the total CP and NCP interaction ener-
gies shown in panels (a) and (b) of Fig. 2a, b, respectively, for
the CI(Q) and CCSD(T) methods. Note that the largest bond
distance here considered of R =297 Å is assumed as infini-
tely large. For this, we obtain irrespectively of the cardinal
number |εHe,HF

X (R = 297 Å)| ≤ 10−8 µEh (the difference is
on the last reported digit, which is negligibly small for the
purpose of the present analysis), as expected due to the size-
extensivity of the HF method. Conversely, one gets for the
d-AVDZ basis set using the CI method, εHe,cor

D (R =297 Å)=
276.20 µEh, while the corresponding result for the d-AV6Z
basis set is ε

He,cor
6 (R =297 Å)=329.18 µEh. However, if the

calculations are carried with the popular Davidson correction
for quadruple excitations [CI(Q), a notation that should not
be confused with the commonly used Q to denote a ghost
atom], the results are ε

He,cor
D (R = 297 Å) = −275.45 µEh

and ε
He,cor
6 (R = 297 Å) = −327.04 µEh. Note that these

CI(Q) CP corrections are negative which is likely due to
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Table 1 Extrapolated helium pair interaction potential at HF and CI levels in micro-hartree

R/a0 (T, Q) (5, 6)

�EHF∞ �EHF
CP,∞ εHF∞ �ECI(Q)∞

a
�ECI(Q)

CP,∞ ε
CI(Q)∞ �EHF∞

b
�EHF∞ �EHF

CP,∞ εHF∞ �ECI(Q)∞ �ECI(Q)
CP,∞ ε

CI(Q)∞

3.0 13,508.52 13,517.51 −8.99 11970.41 11,967.25 3.16 13,517.08 13,517.50 13,517.02 0.49 11,996.12 11,992.49 3.63

3.5 4,328.07 4,334.32 −6.25 3,544.18 3,537.42 6.76 4,335.76 4,336.27 4,335.79 0.48 3,555.98 3,553.31 2.66

4.0 1,352.61 1,357.81 −5.20 943.78 940.82 2.96 1,357.88 1,358.24 1,357.91 0.33 947.38 946.33 1.06

4.5 412.91 417.06 −4.15 192.72 194.65 −1.94 416.54 416.75 416.55 0.20 195.61 195.14 0.47

5.0 121.47 125.92 −4.45 −0.78 4.17 −4.95 125.55 125.72 125.53 0.19 4.26 3.74 0.52

5.4 43.10 47.76 −4.65 −33.71 −28.99 −4.72 47.58 47.71 47.57 0.14 −28.79 −29.30 0.51

5.6 24.98 29.33 −4.36 −35.90 −32.15 −3.75 29.20 29.31 29.19 0.12 −31.86 −32.30 0.44

5.8 14.15 17.95 −3.80 −34.03 −31.56 −2.47 17.88 17.97 17.88 0.09 −31.16 −31.53 0.38

6.0 7.80 10.98 −3.18 −30.31 −29.10 −1.21 10.94 11.00 10.93 0.08 −28.66 −29.00 0.34

6.5 1.43 3.17 −1.74 −19.63 −20.94 1.31 3.17 3.23 3.17 0.06 −20.60 −20.83 0.23

7.0 −0.02 0.91 −0.93 −11.62 −14.12 2.50 0.92 0.98 0.91 0.07 −13.89 −14.02 0.14

7.5 −0.54 0.25 −0.79 −7.08 −9.41 2.34 0.26 0.30 0.26 0.04 −9.30 −9.34 0.04

8.0 −0.92 0.08 −1.00 −4.82 −6.36 1.54 0.08 0.07 0.08 −0.01 −6.26 −6.19 −0.07

a In this table and Table 4, we use the usual notation CI(Q) to indicate that the CI energy includes the popular Davidson correction. This should not
be confused with the use of Q to indicate a ghost atom
b Numerical HF solution from Ref. [55]

the Davidson correction being non-variational, while the CI
values are positive due to the variational nature of the calcu-
lation. Note further that the size of the BSSE can be an order
of magnitude larger than the depth of the van der Waals well
(see later) even for the d-AV6Z basis set, in agreement with
similar findings reported [4] for other rare gas dimers.

Table 1 lists the extrapolated HF and CI(Q) energies for
the helium dimer. The first observation (valid for all methods
utilized here) is that the CP energies show more stable and
smooth patterns when plotted against X than the NCP ones.
In particular, the excellent agreement observed between the
CP extrapolated HF energies and the Kobus [55] numerical
results obtained by the finite-differences method is striking.
This manifests on the fact that the CP correction is always
positive for the (5, 6) extrapolation, as if it were a true varia-
tional calculation (the small negative difference at 8 a0 is
probably of numerical origin). Yet, the negative CP correc-
tions observed for the (T, Q) extrapolations are of only a
few µEh, and hence may be tolerable for many situations
of practical interest. We further observe that the largest CP
correction arises in the correlation energy term, with the cor-
responding HF contribution in the (5, 6) extrapolation being
always smaller than 0.5 µEh. Finally, and not surprising, the
(5, 6) extrapolated CI(Q) binding energy at 5.6 a0 is 10.20 K,
which is ∼ 0.80 K smaller than the best available estimates.
This is mostly due to the missing triple (and approximated
quadruple) electron excitations in the raw CI(Q) energies.

The extrapolated He2 interaction potentials obtained from
the CCSD/d-AVXZ and CCSD(T)/d-AVXZ calculations
here reported are listed in Table 2. We first note that the

CP correction for a given (X1, X2) cardinal-number pair is
identical for the CCSD and CCSD(T) energies. This can be
understood from Eq. (4) which shows that εAB

X depends only
on the energy of the monomers [which is identical for both
the CCSD and CCSD(T) methods due to the absence of elec-
tron excitations higher than doubles]. We emphasize that the
CP correction for the (5, 6) extrapolations is small and posi-
tive for all distances. Moreover, the binding energy at 5.6 a0

is 10.80 K, thus larger by 0.60 K than the CI(Q) value, which
is partly due to the size-consistency of the CCSD(T) method.
We further observe that the (5, 6) CCSD binding energy at
5.6 a0 using NCP (CP) is 1.86 K (1.86 K) smaller than the
CCSD(T) one, which highlights the importance of the pertur-
bative correction for the triple electron excitations. Finally,
the (5, 6) NCP binding energy is seen to underestimate the
CP one, with an opposite trend holding for the (T, Q) extra-
polation. This may be explained from the rough variation of
the NCP results with X . In fact, Fig. 3 shows that the (D−Q)

extrapolation of the total interaction energy via Eqs. (6 and
7) (with ηAo

5) under the assumption of dominance of the
electron correlation cannot be made without a sizable error.
Also shown is the fact that the CP and NCP energies tend to
converge to the basis set limit from each side, thus corrobo-
rating the findings reported in Ref. [7] for hydrogen-bonded
systems. Such a pattern may vary though with the interato-
mic bond distance, with both curves approaching from above,
e.g., for R =4 a0.

Shown in the insets of Fig. 2 are the CP corrections for
the CI(Q) (Fig. 2a) and CCSD(T) (Fig. 2b) methods. As
shown, they look very much the same for a given value of X .
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Fig. 3 Extrapolation of the raw total interaction energies of helium
dimer at 5.6 a0: a CI(Q)/d-AVXZ; b CCSD(T)/d-AVXZ. Three-
parameter fits for X = D− Q (dashed lines) and X = D−6 or X =T −6
(solid lines) using the GUSTE model are also shown. The horizontal
dash-dotted line indicates the result obtained from separate extrapola-
tions of the HF and cor energies, while the asymptotes of both solid
lines are indicated by arrows pointing to the left-hand-side axis. See
also the text

In fact, the two CP corrections are indistinguishable to less
than 3 × 10−4 K, and often to a much higher accuracy. This
demonstrates that the BSSE does not seem to be influenced
by the size-inconsistency of the CI(Q) method. As expected,
the CP corrections (relative to the asymptote) are predicted
to decrease sharply with X , being of subkelvin size beyond
X =6. As shown from Tables 1 and 2, such a pattern extends
to the CI(Q) and CCSD(T) extrapolated energies, with the

difference between ε
CI(Q)∞ and ε

CCSD(T)∞ being typically of
a few 10−2K and always smaller than 0.1 K, which is most
likely due to the numerical noise in the involved extrapolation
procedures.

We now turn to a comparison with the result that is obtai-
ned when the traditional scheme (5) using the (5, 6) car-
dinal numbers is used to extrapolate the correlation energy.
Although the unsigned value so predicted underestimates the
corresponding GUSTE result by 5.77 K at 5.6 a0, the diffe-

rence in interaction correlation energy (once subtracted the
asymptote) is more attractive by 0.009 K. Parenthetically, we
mention that the results here reported for the GUSTE(5, 6)

interaction energies are essentially indistinguishable from
those obtained from the original USTE(5, 6) [20] method.
One then expects the calculated total interaction energy based
on Eq. (5) to agree within 0.01 K or so with the GUSTE pre-
diction from the present work. On the other hand, since the
CP interaction HF energy from Table 1 reproduces the value
tabulated by Klopper [32] within its reported accuracy, this
may explain the excellent agreement with the results obtained
from Eqs. (5) and (9) of Ref. [32].

Before comparing with experiment, we follow Klopper
[32] by noting that MRCI calculations in the IO301 basis
[25], FCI calculations in the AVQZ and d-AVT Z basis [26],
MR-ACPF calculations in the d-AV6Z basis [56], and the
Gaussian geminal implementation of CCSD theory inclu-
ding effects of triple and quadruple excitations [37] (and
employing the conventional orbital approach and very large
augmented correlation-consistent basis sets extended by sets
of bond functions) indicate that the step from CCSD(T) to
FCI adds δE(T)→FCI =−(0.323±0.005) K to the well depth.
Using even larger basis sets and extrapolations, this correc-
tion has most recently been slightly reduced to the value of
[38] δE(T)→FCI =−(0.3183 ±0.0028) K, which will be utili-
zed in the present work (for clarity, rather than rounding-off
the number, we give heretofore the last digit as a sub-index).
This leads to a binding energy of the extrapolated coun-
terpoise CCSD(T) curve at 5.6 a0 of −11.118 K. Moreover,
from our dense grid of points, the extrapolated CCSD(T) well
depth with CP is −34.25 µEh = −10.82 K [or −11.138 K
upon addition of δE(T)→FCI] at 2.7000 ± 0.0005 Å.

When attempting to draw precise quantitative conclusions
that amount to fractions of a kelvin, one may have to dwell
for further accuracy (thus narrowing of the above uncer-
tainty) by extrapolating from even larger cardinal numbers.
From his CCSD(T) calculations, Klopper [32] has observed
that going from a (5, 6) to (6, 7) extrapolation leads to a
decrease of 0.09 ± 0.04 K on the binding energy at 5.6 a0,
depending on the extrapolation law that is utilized. Since
the (5, 6) extrapolations based on Eqs. (5) and (9) of Ref.
[32] lead to the same result as the GUSTE(5, 6) approach,
we adopt the corresponding decrease of 0.115 ± 0.005 K
taken from Table III of that work. Addition of this refine-
ment leads to our best prediction of −11.003 K at 5.6 a0 or
De = −11.023 K. If one adopts instead the values obtai-
ned by direct extrapolation of the total CCSD(T) interac-
tion energy using Eqs. (6) and (7) for X = D − 6 (thus
with GUSTE, i.e., assuming the dominance of the corre-
lation energy), the result is −10.80 ± 0.03 K [−11.003 ±
0.03 K upon addition of the above δE(T)→FCI and (6, 7)
corrections] at 5.6 a0. Note that we have used the CP and
NCP asymptotes to define the best value as their unweighted
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Table 2 Extrapolated helium pair interaction potential at CCSD and CCSD(T) levels in micro-hartree

R/a0 (T, Q) (5, 6)

�ECCSD∞ �ECCSD
CP,∞ �ECCSD(T)∞ �ECCSD(T)

CP,∞ ε
CCSD(T)∞ �ECCSD∞ �ECCSD

CP,∞ �ECCSD(T)∞ �ECCSD(T)
CP,∞ ε

CCSD(T)∞

3.0 12,029.38 12,026.23 11,920.91 11,917.77 3.15 12,053.85 12,050.13 11,948.16 11,944.44 3.73

3.5 3,577.75 3,570.99 3,515.73 3,508.97 6.76 3,589.00 3,586.28 3,528.63 3,525.92 2.72

4.0 962.58 959.57 928.61 925.60 3.01 966.05 964.91 932.79 931.65 1.14

4.5 203.20 205.09 184.93 186.81 −1.89 206.09 205.54 188.01 187.46 0.56

5.0 5.10 10.00 −4.80 0.10 −4.90 10.16 9.56 0.33 −0.28 0.61

5.4 −29.99 −25.33 −36.16 −31.51 −4.66 −25.04 −25.61 −31.17 −31.74 0.57

5.6 −32.91 −29.21 −37.81 −34.11 −3.70 −28.84 −29.31 −33.72 −34.20 0.48

5.8 −31.64 −29.13 −35.56 −33.06 −2.51 −28.72 −29.16 −32.62 −33.06 0.44

6.0 −28.38 −27.13 −31.53 −30.29 −1.24 −26.69 −27.10 −29.81 −30.22 0.41

6.5 −18.47 −19.74 −20.36 −21.64 1.28 −19.38 −19.68 −21.23 −21.53 0.30

7.0 −10.89 −13.36 −12.05 −14.52 2.46 −13.10 −13.27 −14.25 −14.43 0.18

7.5 −6.60 −8.88 −7.35 −9.64 2.29 −8.78 −8.88 −9.52 −9.62 0.10

8.0 −4.49 −5.98 −4.98 −6.48 1.49 −5.91 −6.03 −6.39 −6.51 0.12

a Identical for both CCSD and CCSD(T) methods at a given (X1, X2) extrapolation level

average. Similarly, the uncertainty has been defined such as to
embrace such estimates. Tight error margins are also obtained
for the total CI(Q) interaction energies, yielding an uncor-
rected binding energy of −10.20 ± 0.005 K at the same dis-
tance [note that we have preferred a (3-6) extrapolation as the
(2-6) one extrapolates poorly in the NCP case: the asymptote
underestimates slightly the last fitted raw energy]. Given the
excellent though somewhat surprising (due to the approxima-
tions involved) agreement with the average values obtained
above via separate extrapolations of the HF and cor energies,
we will adopt the same uncertainty for the energies calcula-
ted by both methods. Similarly good agreement is obtained
for 4 and 7 a0, although the fitted range of X values shows
a slight influence on the final values (yet within the reported
error bars). Clearly, as shown in Table 3, our CCSD(T) results
extrapolated by the GUSTE method predict a well depth in
very good agreement with Cencek et al. [37] at the three dis-
tances reported in their work. The agreement is even slightly
better with the new result of Patkowski et al. [38] for 5.6 a0.
Needless to say, at such a level of accuracy, relativistic and
even QED corrections not to mention non-adiabatic effects
will probably exceed the errors in the Born–Oppenheimer
curve and hence should not be ignored. This is, however,
outside the scope of the present work.

We conclude this section with some remarks on NCP and
CP methods. Although CP energies usually facilitate extrapo-
lation, Table 4 shows that the method can be rather expensive
as it demands separate calculations on the dimer and mono-
mers with the same basis set. Note that the latter may turn
out to be somewhat more expensive than the former due to
loss of symmetry. This may explain why CP is seldom used
in detailed calculations of N -atom potential energy surfaces

since the number of studied geometries scales as the power
3N − 6 of the number of points required per dimension. For
a homonuclear such as He2, the CPU time scales roughly
as twice the time of a single calculation on the complex,
while for an heteronuclear system AB a factor of three-
fold will generally apply. On the other hand, NCP or CP
extrapolations must lead to the same result given increasin-
gly large basis sets. This may be seen from the results here
reported for He2, which may typify the trends to be expec-
ted on small molecular systems. A CP calculation using the
CCSD(T) method predicts with a d-AV6Z basis set a binding
energy of −10.58 K, while Table 2 and Fig. 4 show that a
similar accuracy is achieved at a lower cost via (T, Q) or
(5, 6) extrapolations. For example, the NCP binding energy
of He2 at 5.6 a0 obtained from raw CCSD(T)/AVQZ calcula-
tions is −11.00 K but only −4.29 K with CP. These compare
with the (T, Q) extrapolated CCSD(T) values of −11.89 K
(NCP) and −10.83 K (CP). In turn, the NCP result with
a CCSD(T)/AV6Z basis set is −10.40 K (NCP), while the
(5, 6) values are −10.64 K (NCP) and −10.80 K (CP). Note
that we are not adding δE(T)→FCI to the values reported in
this paragraph. Thus, with the exception of the NCP esti-
mate with CCSD(T)/AVQZ where the good agreement with
the best available estimates may have been accidental, the
extrapolated (X1, X2) results (NCP and CP) turn out to have
an enhanced quality when compared with the raw CP results
for the basis set of highest cardinal number (X2).

The poor quality of the CCSD(T)/d-AVT Z results at NCP
may explain the fluctuations in the CCSD(T)/d-AV(T, Q)Z
curve, thus contrasting with the stable pattern of the corres-
ponding CP results. This may explain the small deviations
between the d-AV(T, Q)Z and d-AV(5, 6)Z extrapolated CP
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Table 3 Interaction energies (in kelvin) for the helium dimer at three bond distances

Method R =4.0 a0 5.6 a0 7.0 a0

Korona et al.a 291.64 ± 0.87 −11.059 ± 0.03 −4.629 ± 0.03

Jeziorska et al.b −11.000 ± 0.01

Komasac 292.784 −10.798 −4.583

Komasad −10.981

Andersone −10.98 ± 0.02

Andersonf −10.998 ± 0.005

van Mourik and Dunningg 293.496 −11.004 ± 0.03

van de Bovenkamp and van Duijnveldth 292.72 ± 0.2 −10.99 ± 0.02

Gdanitzi 292.75 ± 0.01 −10.980 ± 0.004 −4.620 ± 0.002

Klopperj 292.6 ± 0.3 −10.99 ± 0.02

Cencek et al.k 292.54 ± 0.04 −11.009 ± 0.008 −4.619 ± 0.007

Patkowski et al.l −11.0037 ± 0.0031

This workm 292.20 ± 0.4 −11.003 ± 0.03 −4.649 ± 0.02

This workn 292.31 ± 0.4 −11.003 ± 0.03 −4.637 ± 0.02

a From symmetry adapted perturbation theory [31]
b From symmetry adapted perturbation theory [57]
c Variational upper bounds using exponentially correlated Gaussian functions [35]
d Variational upper bound [36]
e From Quantum Monte Carlo [29] calculations
f From Quantum Monte Carlo [30] calculations
g Extrapolated CCSD(T) values obtained by combining earlier results with non-extrapolated CCSDT and FCI energies [26]
h MRCI results from Ref. [25]
i From r12-MR-ACPF calculations [24]
j Extrapolated results from CCSD(T) and FCI calculations in orbital bases [32]
k From supermolecular Gaussian geminal calculations [37]
l From supermolecular Gaussian geminal calculations [38]
m From this work by direct extrapolation of the total interaction energy using Eqs. (6) and (7) and the corrections to FCI from Ref. [38]:
δE(T)→FCI =−(1.883 ± 0.011) K at 4 a0; δE(T)→FCI =−(0.08084 ± 0.00031) K at 7 a0; see also text
n Result obtained from separate extrapolations of the NCP and CP raw CCSD(T) energies with the GUSTE(5, 6) method [20]. Results corrected
for FCI as in footnote m)

binding energies. Moreover, the shape of the d-AVDZ and
d-AVT Z curves suggests that an improved NCP result may
be obtained from (D−Q) or (D, Q) extrapolations, although
this could somewhat be accidental too. However, the (Q, 5)

NCP extrapolation is seen from Fig. 4 to yield flatter energy
differences as one would hope for use in spectroscopic cal-
culations. Table 1 further suggests that the problem with the
(T, Q) extrapolation lies to a large extent on the HF energy
as the corresponding (T, Q) and (5, 6) interaction energies
show marked differences. Unfortunately, this cannot be tes-
ted due to lack of precise (D− Q) or (D, Q) rules to extrapo-
late the HF energy. However, one may decide to converge the
(easier to converge from the point of view of memory requi-
rements but still time consuming; see Table 4) HF energy
and combine the result with the correlation energy extra-
polated from small-X schemes. In this case, the difference
between the NCP and CP total interaction energies equals
the difference in the correlation energy components. For the

NCP extrapolation with (D− Q) it amounts to ∼−0.5 K [the
minus sign implies overestimation of the (5, 6) CP result],
and ∼0.1 K for (T, Q). This is roughly an order of magni-
tude smaller than the difference obtained (1.4 K) when the
HF energy is similarly extrapolated.

Finally, a CCSD(T)/d-AV(5, 6)Z calculation without
CP takes CPU times roughly a factor of two smaller than a
raw CP calculation with the d-AV6Z basis set. If one consi-
ders instead a CCSD(T)/d-AV(T, Q)Z extrapolation with
NCP, the scaling factor raises to 18 and over 100 when com-
pared with raw CP calculations employing d-AV5Z and
d-AV6Z basis sets, respectively. Hopefully, more reliable
estimates can be obtained if extrapolating with CP energies,
and this can still be done at a reasonable cost if based on
CCSD(T)/d-AV(T, Q)Z calculations. However, the burden
is larger since 4 calculations per geometry will be required.
In summary, similar trends are expected at CI(Q) and other
levels of theory. If one then adds the difficulty of using the
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Table 4 CPU times for raw HF, CI(Q), CCSD, CCSD(T) and extrapolated calculations with a d-AVXZ basis set (in seconds)

X HF CI(Q)a CCSDa CCSD(T)a,b

HeQ He2 CP HeQ He2 CP HeQ He2 CP He2 CP

Raw

D 0.0 0.1 0.1c 0.1 0.1 0.2c 0.1 0.1 0.2c 0.1 0.2c

T 0.4 0.6 1.0 0.9 0.7 1.6 1.0 0.7 1.7 0.9 1.9

Q 2.5 7.7 10.2 24.0 9.4 33.4 10.1 8.9 19.0 10.4 20.5

5 34.5 83.9 118.4 216.4 92.1 308.5 100.2 91.0 191.2 99.5 199.7

6 215.6 616.6 832.2 1,825.2 916.3 2,741.5 574.8 651.9 1,226.7 696.3 1,271.1

Extrapolated

(T, Q) 2.9 8.3 11.2 24.9 10.1 35.0 11.1 9.6 20.8 11.3 22.4

(Q, 5) 37.0 91.6 128.6 245.4 101.5 341.9 110.3 99.9 210.4 109.9 220.2

(5, 6) 250.1 700.5 950.6 2,041.5 1,008.4 3, 049.4 675.0 742.9 1,418.0 795.8 1,470.8

a All CPU times refer to the first calculated point and include the time spent in the restricted HF calculation
b Obviously, no triple excitations can be observed for HeQ, with the CISD and CCSD results corresponding to a FCI calculation. The HeQ column
is therefore missing and should be taken as the corresponding column for a CCSD calculation
c Although taken here as the sum of the He2 and HeQ CPU times, for an AB (heteronuclear) species the times for CP correspond to the sum of the
AB, AQ and BQ ones
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Fig. 4 Deviations of the raw d-AVT Z, d-AVQZ, and d-AV5Z
raw CCSD(T) interaction energies with respect to the extrapolated
d-AV(5, 6)Z curve with CP. Also shown are the deviations for the
d-AV(T, Q)Z, d-AV(Q, 5)Z, and d-AV(5, 6)Z interactions both with
NCP and CP. Although perceivable, the noise of typically 1 cK (in a few
points even up to 2 cK) in the densely covered regions has been partly
removed by connecting the calculated points with smooth splines

CP method for open-shell interactions (where the electronic
state of the fragments—often more than two—in a polyato-
mic system can be even hardly defined a priori except for
an infinite separation), one concludes that CBS extrapola-
tion can be a viable general alternative (or, if used jointly, an
asset for quality) to counterpoise.

4 Concluding remarks

We have reported calculations on the helium dimer using
the conventional CI(Q), CCSD, and CCSD(T) methods with

various orbital basis sets of the d-AVXZ type. The results
have been extrapolated to the one electron basis set limit
both using the CP method and the traditional NCP one.
A generalized uniform singlet- and triplet-pair extrapolation
method has been employed for the extrapolation procedure.
After introduction of appropriate corrections to mimic FCI,
the energies were predicted to be in very good agreement
with the best available estimates. Two other findings are
worth mentioning. First, the CP correction has been found
invariant to size-consistency within the accuracy of the cal-
culations, i.e., the CP correction is the same for CI and
CCSD(T). This observation applies also to the extrapola-
ted results once the numerical noise is considered. To our
knowledge, this has not been reported before. Second, the
results have also shown that extrapolation to the CBS limit
can offer an alternative to the counterpoise correction that
yields a more accurate potential energy while being more
economical. It may therefore help on overcoming the diffi-
culties with BSSE, particularly when more than two frag-
ments are present. This will not contradict previous findings
[7] since relatively large basis sets and cardinal numbers may
be required for accurate predictions. In fact, the present work
may provide a hint on the basis set size required to achieve
reliable results for other systems. Of course, further studies
that may test the generality of the present approach would
be valuable, particularly for open-shell interactions given the
utmost importance of having accurate potentials for reaction
dynamics.
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